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Real-time 3D UAV Path Planning in Dynamic Environments with
Uncertainty
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The integration of Unmanned Aerial Vehicles (UAVs) is being proposed in a spectrum of applications varying from military to civil.
In these applications, UAVs are required to safely navigate in real-time in dynamic and uncertain environments. Uncertainty can
be present in both the UAV itself and the environment. Through a literature study, this paper first identify, quantify and model
different uncertainty sources using bounding shapes. Then, the UAV model, path planner parameters and four scenarios of different
complexity are defined. To investigate the effect of uncertainty on path planning performance, uncertainty in obstacle position and
orientation and UAV position is varied between 2% and 20% for each uncertainty source first separately and then concurrently.
Results show a deterioration in path planning performance with the inclusion of both uncertainty types for all scenarios for both
A* and the Rapidly-Exploring Random Tree (RRT) algorithms, especially for RRT. Faster and shorter paths with similar same
success rates (>95%) result for the RRT algorithm with respect to the A* algorithm only for simple scenarios. The A* algorithm
performs better than the RRT algorithm in complex scenarios.

Keywords: Path Planning; Real-time; Dynamic Environment; 3D; A*; RRT; Uncertainty.

1. Introduction

Unmanned Aerial Vehicles (UAVs) are becoming increas-
ingly available for a wide spectrum of personal, industrial
and military uses. In this regard, reliable, robust and au-
tonomous guidance, navigation and control systems that
can operate in real-time within obstacle-rich environments
in the presence of uncertainties are required for UAVs to
operate safely. The operating environment of a UAV may
incorporate fixed and/or moving obstacles with different
shape, size, orientation and speed. The obstacle character-
istics are known, partially known or totally unknown to
the UAV sensing system. In such time-varying scenarios,
planning algorithms must ensure that the UAV reaches the
predefined goal point using only onboard computational,
sensory and fuel resources.

Planning can be segmented into two categories: Mo-
tion planning and Task planning.1 Motion or path planning
refers to the process of generating feasible and non-colliding
paths from a predetermined start to a goal position. Task
planning refers to a higher planning level which focuses on
the task rather than vehicle dynamics and obstacle geome-
tries.1 In real environments with moving obstacles, plan-

ning algorithms need to construct and/or update path seg-
ments in real-time to reach the intermediate and final goal
positions safely. In this regard, for the scope of this work
path planning algorithms will be considered.

The environmental situation in dynamic environments
is changing continuously and therefore the path planning
system must re-assess already constructed path segments
and if necessary re-evaluate path segments leading to inter-
mediate and final goal positions to ensure obstacle avoid-
ance and optimal navigation. Research stresses on the de-
velopment of robust and generic path planning algorithms
that can ensure obstacle avoidance in uncertain environ-
ments. In this regard, researchers remark that the problem
of real-time path planning in uncertain environments is not
fully studies.2–4

These motivations are key to the aim of this paper.
The twofold aim of this paper is to assess the performance
of the A* and the Rapidly-Exploring Random Tree (RRT)
algorithms for real-time 3D UAV path planning in dynamic
environments and consequently to investigate the effect of
uncertainty in the same environment. A single UAV path
planning system without knowledge of the obstacles’ future
path, will be considered in this paper. A dynamic environ-
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ment with both fixed and moving obstacles will be consid-
ered, with moving obstacles having either a time-varying
position, speed or orientation or any combination of these
possibilities.

In real scenarios, uncertainty originating from different
sources is only partially known or totally unknown to the
path planner at the start of the planning process. Moreover,
the real-time path planning algorithm must take account of
time-variant uncertainty sources that can have a different
effect as the UAV is navigating through the environment.
In this regard, real-time path planning mandates that the
path planning time is less than or equal to the time required
by the UAV to traverse the same path.5–7 The performance
measures considered to assess the A* and RRT path plan-
ning algorithms in 3D real-time dynamic environments in
the presence of uncertainty are: path length, planning time
and success rate.

The work presented in this paper is founded on a previ-
ous paper presented in Unmanned Systems8 that analysed
the path planning response of graph-based and sampling-
based algorithms for 3D path planning of UAVs. Based on
the outcomes of this previous work, this paper will assess
the path planning response of the A* and RRT algorithms
in real-time 3D UAV path planning in dynamic environ-
ments in the presence of uncertainty. In this regard, the
key contributions of this paper are:

(1) The design of a real-time A* and RRT path plan-
ning algorithm;

(2) The design of four translationally moving and ro-
tating obstacles scenarios;

(3) The modelling of a set of uncertainties related to
the UAV model and environment sensing, using
bounding shapes;

(4) The analysis of the path planning responses of both
the A* and RRT algorithms in all scenarios men-
tioned in 2 for a set of uncertainties mentioned in
3.

This paper will be organised as follows. Section 2 will
present a review of the state-of-the-art in UAV path plan-
ning in dynamic environments including uncertainty. Sec-
tion 3 will provide a summary of the A* and RRT algo-
rithms, the path smoothing algorithm (applied only to the
RRT algorithm) and a real-time path planning method, all
presented in our previous work.8–11

Section 4 will define an obstacle generation algorithm,
the environmental scenarios, the UAV model, the path
planner parameter definitions and constraints and the un-
certainty modelling and quantification rationale. Section 5
will present, discuss and analyse real-time 3D UAV path
planning results for the UAV operating in dynamic en-
vironments in the presence of uncertainty. Section 6 will
highlight the main outcomes, strengths and weaknesses of
this work while recommending future endeavours.

2. Review on Path planning in dynamic
environments in the presence of
uncertainty

Autonomous path planning refers to the automatic process
of constructing a collision free path to the goal position
in the presence of both time invariant and time variant
constraints, obstacles and threats (COT) and uncertain-
ties.8,9, 12 This review will be divided into two sections:
path planning in dynamic environments and path planning
in the presence of uncertainty.

2.1. Path planning in dynamic environments

A wide range of time invariant and time variant COTs may
pop-up when a UAV is moving through a dynamic environ-
ment.13–15 These COTs include fuel, wind, altitude con-
straints, flight profile requirements, no fly zones and UAV
kinematic and dynamic holonomic and non-holonomic con-
straints.15–18

Mac et al.19 presented a path planning review span-
ning from 2000 to 2015 that concluded that only static
obstacles and static targets are considered in 49% of the
path planning projects. Both static and dynamic obstacles
are included in only 18% of the path planning projects.
Only 11% considered dynamic targets of which only 9%
considered an adaptive UAV speed.19 This shows although
dynamic COTs are considered in a number of studies, the
absolute majority considered a constant speed UAV.19,20

The need for path planning in dynamic environments is
highlighted in these reviews. This is attributed to the diffi-
culty in path planning in dynamic environments.19

An autonomous path planner operating in a unknown
and/or dynamic environment must re-plan in real-time
or within a preset time window, using only onboard sys-
tem information, a non-colliding path to the final goal
point by also considering previously unknown COTs with-
out assistance from an operator or a ground guidance sys-
tem.2,13–15,21–25 This obvious requirement,14 is mandatory
for an autonomous path planning system to be considered
for real path planning applications.26

Normally, in path planning, the environmental space
is assumed to be made up of two disjoint subsets, the free
and the obstacle space subsets.2 Different levels of environ-
mental knowledge are provided to the path planning algo-
rithms in different research studies. One category assumes
that all environmental characteristics are known prior the
start of the path planning process.13,27 Another category
assumes that the environment is totally unknown to the
path planning algorithm.24,28–30 A final category incorpo-
rates anything in between.15,21,31

Onboard computational power is limited in real-time
UAV applications and the efficient use of it is essential
for real UAV implementations.21 In this regard, real-time
COT modelling needed in time-variant environments for re-
planning requires efficient collision checks, efficient storage
and fast inclusion and removal of environmental informa-
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tion.32 The computational burden of these requirements
depends mainly on environmental complexity derived from
obstacle occupancy. Obstacle modelling can be categorised
into 4 main areas namely, Raw Data (vertices-edges sets),
Kalman filtering, Bounding Volumes (Oriented Bounding
Boxes) and Spatial Partitioning (Quadtrees).21,33–35

The problem of real-time path planning required for
re-planning in dynamic environments was also addressed
using classical methods including potential fields, cell de-
composition, sub-goal networks and sampling-based algo-
rithms.19,36–38 Different performance measures including
path length, computational time, clearance and deviation
to the goal point are used to assess the validity of differ-
ent path planning algorithms which are dependent on the
mission requirements.11,22,39

2.2. Path planning in the presence of
uncertainty

A path planning algorithm navigating a UAV in both in-
door and outdoor environments, must mitigate with numer-
ous factors with some incorporating uncertainty. These fac-
tors include environmental disturbances, partially known
environments, limited on-board computational power, lim-
ited payload capacity and uncertainties in state and mea-
surement.3 A valid path planner must always ensure that
the UAV safely navigates and stops in the goal region de-
spite the presence of uncertainty in both sensing and con-
trol.40 But, different researchers remark that uncertainty
has not been fully studied.2,41

Robotic system uncertainties were categorised by
LaValle et. al76 in four categories: robot predictability un-
certainty, robot sensing uncertainty, environmental sens-
ing uncertainty and environmental predictability uncer-
tainty. This study can be extended to 3D UAV scenar-
ios. For the scope of this work, all uncertainty sources will
be grouped into four main categories: UAV sensing system
uncertainty,2,40,54 UAV model uncertainty,3,44,60 environ-
mental sensing and prediction uncertainty2,58,73 and com-
munication uncertainty.42

The path planning algorithm’s performance is highly
dependent upon the fidelity of the uncertainty modelling
methodology. Literature suggests that two main categories
can be used to model uncertainty, namely Bounded Shapes
and Probabilistic Distributions.43,44 Bounded shapes tech-
nique use worst-case bounds are considered to set the lim-
its of bounding shape.44 These bounding volumes can have
different shapes and can be modelled as time variant and
time invariant. Oppositely, Probabilistic Distributions ap-
proximates parametric and agent states uncertainties using
either a singular or a set of unbounded distribution func-
tions.44–46

Uncertainties in certain parameters are sometimes in-
terrelated with other environmental, mission and UAV
modelling restrictions. Different studies define uncertain-
ties prior mission initiation and add uncertainty weight at
a predefined rate as the UAV is navigating towards the fi-

nal goal position. Some studies focused on developing tech-
niques to decrease this time propagated uncertainty with
mission progression. A technique that address this diffi-
culty uses previous data to reduce uncertainty in already
explored volumes.4 Another technique targets time propa-
gated uncertainty attenuation by considering only the most
recent sensory information.47–49

Different studies employed different path planning al-
gorithms in the presence of uncertainty. The RRT algo-
rithm and its variants were extensively used for path plan-
ning in the presence of uncertainty.44,50–53 The A* al-
gorithm is less used to plan paths in uncertain environ-
ments when compared to the RRT algorithm and its vari-
ants. This observation does not rule out the use of graph-
based algorithms in uncertain environments. Other meth-
ods that were considered in path planning in uncertain en-
vironments include Partially Observable Markov Decision
Process (POMDP),54 Sliding Mode Control,55,56 Linear
and optimal Methods,57 reactive path planning strategies,3

Potential Fields and Probabilistic Maps,58 Simultaneous
Localisation and Mapping (SLAM)2,59 Receding Horizon
Control (RHC),2 Q-learning,60 Deep reinforcement Learn-
ing61 and Shell Space Decomposition (SSD).62

3. The A*, RRT, Smoothing and Real-time
Algorithms

This section will first present a brief description of the
A* and RRT algorithms. These are the two most utilised
graph-based and sampling-based methods. To mitigate
with the RRT algorithm’s non-optimality, a smoothing al-
gorithm will be described. A summary of real-time path
planning studies using the A* and RRT algorithms will
conclude this section.

3.1. The A* Algorithm

Graph-based algorithms approximates the state space by
an occupancy grid, setting points occupied by obstacles as
unavailable grid points. If possible, Graph-based methods
construct a path between start and goal positions using
only available grid points.63 A solution guarantee is only
ensured if an adequate resolution is considered.64

The original A* algorithm determines the cost of
neighbouring grid points using a heuristic evaluation func-
tion.65 This function adds the cost from the current state
to a projected future state to the cost from the latter to its
respective goal point.65,66 A detailed description of the A*
algorithm is provided in our previous works.8–11

3.2. The Rapidly-Exploring Random Tree
(RRT) Algorithm

Sampling-based methods construct a path from start to
goal by connect non-occupied, randomly selected points in



April 25, 2022 13:31 output

4 Christian Zammit

the defined configuration space.26,64 As opposed to graph-
based techniques, sampling-based methods guarantee a so-
lution in infinite time, if a solution exists.64

The original Rapidly-Exploring Random Tree (RRT)
ultimately sets up a unidirectional tree from start to goal,
by growing the tree and interconnecting tree branches. The
tree branch construction process starts by randomly select-
ing an obstacle-free point. Then a point is defined at a
predetermined distance from the nearest tree node, on the
line connecting the nearest tree node with the randomly
selected node. The tree branch will be the straight line
connecting the defined point with the nearest tree node,
only if, the tree branch does not collide with an obstacle.
Tree branches are constructed until one branch reaches the
goal point since the tree start at the start position.67–69

Although the RRT algorithm is efficient in obstacle dense
high-dimension situations it suffers in optimality and there-
fore it needs a post-planning smoothing algorithm.69–71

Reference is made to our previous works for a more de-
tailed review of the RRT algorithm and its variants.8–11

3.3. The Smoothing Algorithm

Both A* and RRT methods generate path points that when
interconnected result in a non-colliding path from start to
goal. Owing to the non optimality of the RRT algorithm, a
post path planning smoothing algorithm is developed. For
fair comparison, it was also applied to the A* algorithm.

The developed smoothing algorithm initiates by ran-
domly selecting two path points from the set of path points
defined by the path planning algorithm. Then two points
on the straight line connecting the selected path points
and their next path point are randomly selected. Provided
that the straight line connecting these two points in non-
colliding, the path points residing in between these two
points are eliminated from the path. This will create shorter
paths with lesser turns. This smoothing procedure is re-
peated, if the percentage reduction in path length is more
than 1% in the last 20 iterates or less than 20 iterates were
computed. Results from our previous work,10 showed that
for the A* algorithm a path length reduction between 1%
to 10% results while a 25% to 45% reduction results for
the RRT algorithm for only 1% of the path planning time.
These results showed the validity of the relatively low com-
plexity smoothing algorithm that can reduce path oscilla-
tions at a low computational expense. Refer to our previous
work for a more detailed description and evaluation of this
algorithm.10,11

3.4. The Real-time Algorithm

The requirement for real-time path planning is presented
in literature in situations where the UAV is navigating in
dynamic environments. This need is further emphasised in
partially known or totally unknown environments in which
the environmental situation is only fully known within the
sensing range and the limited Field of View (FOV).77–79

In our previous work a path planning algorithm emulating
real-time response was developed.11 The use of such algo-
rithm is within the scope of this work and therefore the
latter algorithm will be integrated within this study.

This real-time path planning algorithm first defines
a non occupied intermediate goal point, a look-ahead dis-
tance from the current UAV position in the final goal point
direction. The UAV’s sensing range is directly proportional
to the look-ahead distance. Then using either the A* or
RRT algorithm, if possible, a path connecting the current
UAV position with intermediate goal point is constructed.
The UAV travelling distance along this intermediate path is
governed by the maximum allocated intermediate time and
UAV speed. The actuator systems’ response is assumed to
be unaffected by uncertainties and external disturbances
and modelled with high fidelity. Moreover, the environ-
ment is assumed to remain static between intermediate
path planning iterates since a short intermediate time is
considered. A No Solution is set if either an intermedi-
ate non colliding path cannot be produced in the assigned
time, the total time since the start of the mission exceeds
the assigned time or the UAV collides with an obstacle.
Section 4.3 provides a summary of the definitions of the
different UAV parameters. A more in depth explanation of
the real-time algorithm and its path planning performance
characteristics for both A* and RRT algorithms is provided
in our previous work.11

4. Environmental and Uncertainty
Modelling

This section will initiate with the definition of the obstacle
generation algorithm followed by the developed environ-
mental scenarios. A description of the UAV model and the
path planner parameter constraints will follow. This sec-
tion will conclude with the percentage uncertainty bound
definitions of both UAV position and obstacles.

4.1. Obstacle generation algorithm

Literature suggests that every real-life obstacle can be mod-
elled using regular shapes.12,14,23,39 This algorithm first
retrieves the characteristics and position of each obstacle
at initiation stage and at future time intervals. Real-time
path planning requires the sensing and modelling systems
to estimate the environment independently from the path
planning algorithm. Therefore the environment is estimated
prior the initiation of the real-time path planning tests.

Closed or open obstacle shapes are constructed by in-
terconnecting a set of planes. Each obstacle shape is re-
produced a number of predetermined times. Each replica is
then randomly placed within the environmental space. A
random rotation in all 3 different axis about a randomly-
generated line is added for each copy, in case obstacle ro-
tation is considered. To define the position and orientation
of each obstacle at progressing time stamps, a random shift
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by a random distance and direction and/or a random rota-
tion for each obstacle copy is performed for a predetermined
times. This results in obstacles experiencing a time-varying
speed, roll, pitch and yaw. For every change in obstacle
state it is assumed that a time window has passed. During
this time window the UAV would move from its current
point to a new point along the intermediate path. To en-
sure obstacle avoidance, it is required that the maximum
distance that the UAV can move is longer than the maxi-
mum distance obstacles cam move. If obstacle future move-
ment is known apriori, obstacles with faster movement can
be evaded by the UAV.

4.2. Environmental Scenarios

The path planning performance of both the A* and RRT
algorithms are assessed using four different complexity sce-
narios. In the obstacle environment implementation three
shapes were considered, namely a cube, the V obstacle and
2D planes with small windows. The obstacle characteris-
tics of which are tabulated in Table 1. The same occupancy
chance is considered in all the environment when randomly
placing cubes and V obstacles. Throughout the obstacle
modelling and environment design process, modular unit-
less dimensions are used so as to ease scaling to real UAV
path planning situations. The four environmental scenarios
are constructed, as described in the following list.

• Scenario 1: Ten 0.1x0.1x0.1 cubes without rotation;
• Scenario 2: Ten 0.1x0.1x0.1 cubes with different
random rotation at initiation stage and different
time varying random rotation with time iterates
increments;

• Scenario 3: Ten V obstacles each made up of two
0.1x0.112 planes, touching with each other with a
common side, having a 53◦ the. A random rotation
as described in Scenario 2 is considered. This plane
size and configuration is considered since it exactly
fits into a 0.1x0.1x0.1 cube; and

• Scenario 4: The combination of Scenarios 2 and 3
together with two X-Z planes, 0.4 distant from each
other with a 0.2x0.2 square window.

These tests are designed starting with the simplest
translationally moving and non-rotating cube case with
each test scenario adding path planning difficulty. It is as-
sumed that, all shapes except the 2D planes in Scenario 4
move at different time varying speeds in random directions.

Figure 1 shows an instance for each scenario at an ar-
bitrary time stamp neglecting uncertainty constraints. The
obstacle positions in each scenario will vary in subsequent
iterates since the obstacles are experiencing translational
and rotational movement.

4.3. Path planning parameter definitions

Table 2 tabulates the nominal path planning parameter val-
ues, derived from our previous work,11 which was based on

the evaluation of real UAV characteristics.
A cubic environmental space of 1x1x1 is constructed

with a fixed start point at (0,-0.5,0) and fixed goal point at
(0,0.5,0). These characteristics are considered in all tests.
In all path planning tests using the A* algorithm, the envi-
ronmental space and start and goal points are all randomly
displaced between 0 and half the distance between grid po-
sitions. This process is intended to cancel the ripple in path
length as analysed in.10

For graph-based algorithms, including the A*, the res-
olution is defined as the number of grid points per unit
dimension. For sampling-based algorithms, including the
RRT, all non-occupied points can be used for path plan-
ning. For an impartial comparison between the A* and
RRT algorithms, the distance between grid positions for A*
and the tree branch length for RRT are assigned the same
value. The distance to travel per iterate (ds step) is set to
two times the distance between grid positions for A* and
the tree branch length for RRT. The the distance between
the current UAV position and a possible intermediate goal
point (dint goal) is then set to two times ds step. For the path
planner to visualise the second obstacle plane window, in
the mixed case, dint goal has to be increased to 0.6[-] from
the initial 0.4[-]. The time required for the UAV to move
ds step is defined as the maximum time to generate a path
segment (titerate max). The maximum time to generate the
whole path (tpath gen max) is set at 10 times titerate max.
The distance reduction factor is included to decrease the
respective distance in situations where the prospective in-
termediate goal points and/or the prospective future UAV
position will not be set on an obstacle-free point. UAV
speed is assumed constant during each test situation. In
different tests, UAV speed is varied from 0.01[-/s] to 0.1[-
/s] in 0.01[-/s] steps. The [-] sign imply that distances are
modular. These real-time path planning algorithm param-
eters are set based on performance analysis in.11

4.4. Bounded Uncertainty Definitions and
Quantification

The literature review presented in Section 2, categorised
uncertainty based on four main uncertainty categories.
These are uncertainty in sensing systems, uncertainty in
UAV model, uncertainty in the environment and uncer-
tainty in communication. The former three uncertainty cat-
egories will influence the obstacles and UAV’s position and
orientation within the UAV sensing volume. In this regard,
these three uncertainty categories are integrated within
UAV positional uncertainty and obstacle positional and ori-
entation uncertainties as shown in Figure 2. Also, Figure 2
show that communication uncertainty is not considered in
this study, since a standalone UAV is assumed. Moreover,
orientation uncertainty is not considered since the UAV is
approximated by a point model.

As explained in literature, both bounded shapes and
probabilistic uncertainty modelling techniques are poten-
tial candidates for uncertainty modelling in both UAV and
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Table 1. Obstacle characteristics

Shape Size Number of Planes Open/Closed

Cube 0.1x0.1x0.1 6 Closed

V obstacle 0.112x0.1 2; (53o between planes) Open

Plane with window 1x1 1; (0.2x0.2 window) Open

(a) (b)

(c) (d)

Fig. 1. Obstacle scenarios: (a) Non-rotating cubes, (b) Rotating cubes, (c) Rotating V obstacles and (d) Mixed case scenarios.

obstacle positions. All grid and selected points within the
UAV sensing volume can have only two states namely,

occupied or non-occupied when the bounded shape tech-
nique is considered. Oppositely, probabilistic techniques
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Table 2. Real-time path planning algorithm parameter assignment

Parameter Nominal Value Units

Resolution (res) for A* 21 [-]

Step size for RRT (dstep RRT )
1

21−1 = 0.05 [-]

Distance to travel per iterate (ds step)
2

res−1 = 0.1 [-]

Distance between current UAV position and prospective
new intermediate goal point (dint goal)

0.4 and 0.6 for Mixed case
scenario

[-]

Maximum time to generate path segment (titerate max)
ds step×60×60

10×vUAV
s

Maximum time to generate path (tpath gen max) 10× titerate max s

Distance reduction factor (dfactor) 0.8 [-]

Fig. 2. Illustration of uncertainty sources categorisation, showing how these uncertainty sources are integrated within the devel-
oped uncertainty modelling environment

consider a probability based distribution function for ev-
ery point. A threshold will then determine whether each
point is occupied or non-occupied. This threshold must be
defined in real-time or prior mission initiation. Probabilistic
methods will result in higher computational requirements
as opposed to bounded shape techniques. For this study,
bounded shape techniques will construct a bounded shape
enclosing obstacles or the UAV position with an added un-
certainty factor and presumes that the environmental space
within bounds is occupied with certainty.

Figure 3 shows enclosures bounding a set of obstacles
and a spherical bound surrounding the UAV position. The
constructed 3D enclosures add an equidistant limit from the
true obstacle edges. A sphere enclosing the UAV position
is considered for impartial analysis since it creates an equal
uncertainty bound in all 3 dimensions. For the scope of this
study, uncertainty in UAV’s position and obstacle position
and orientation are assumed invariant. This assumption is
valid since the precision and accuracy of the UAV sensing
and positional systems remain constant within the look-
ahead distance volume.

During real-time path planning, it is assumed that the
true UAV position can be located, with the same probabil-

ity, at any point within the spherical bound. This spherical
time invariant bound includes the worst case UAV posi-
tional deviation. In this regard, the current UAV position
in the next iteration is randomly chosen from within the
bound enclosing the future UAV position, with the latter
defined on the path constructed in the last iteration. The
UAV position and obstacle movement and rotation defini-
tion process is computed for every UAV step movement.
Each test case scenario is repeated for 100 times for every
UAV speed considered.

A percentage of the obstacle volume is considered in
the quantification of uncertainty bounds for 3D obstacles,
namely cubes. For V obstacles, constructed from two 2D
planes, 10 planes are used to define the associated uncer-
tainty bounds so as to totally enclose the V obstacle as
shown in Figure 3 (b). Figure 3 (b).(i) shows the V obsta-
cle’s 3D profile while (b).(ii) and (b).(iii) shows the same
V obstacle with uncertainty bounds from the X-Y and X-Z
perspective, respectively. The mixed scenario incorporates
cubes, V obstacles and 2D planes with windows. The un-
certainty bounds of cubes and V obstacles are defined as
described earlier. For the 2D planes with windows, uncer-
tainty bounds are defined by two identical planes but with
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(a) (b).(ii)

(c).(ii) (c).(iii)

(b).(iii)

(d)

x

y

z

(b).(i)

x

y

z

(c).(i)

Fig. 3. Illustrations of uncertainty bounds for: (a) Cube, (b) V obstacle, (c) X-Z planes with window openings and (d) UAV
position.

smaller windows displaced equidistantly to opposite sides
from original 2D plane. The 2D plane is enclosed to cre-
ate a 3D uncertainty bound, by connecting the edges of
the two identical planes as shown in Figure 3 (c). In this
regard, Figure 3 (c).(i) illustrates a 3D profile of the X-Z
window plane while (c).(ii) and (c).(iii) illustrate the un-
certainty bounds from the X-Z and X-Y perspective, re-
spectively. The nominal uncertainty percentage values of
obstacle shapes are decided based on literature.72,73 Fig-
ure 3 (d) shows the spherical bound defining the maximum
UAV positional uncertainty. The spherical bound radius is
calculated by the multiplication of the distance moved by
the UAV in one iterate ds step and the literature-derived
uncertainty.60,72

In all tests, percentage uncertainty in obstacle posi-
tion and/or UAV position ranges from 2% to 20% and
is increased in 2% steps when uncertainty effects on path
planning performance is being assessed. In all other cases
uncertainty is set to 0%.

5. Results

The 3D real-time A* and RRT path planning algorithms,
the obstacle environments and the UAV positional and ob-
stacles’ positional and orientation uncertainties explained
earlier are all implemented in MATLAB. Testing is done
using a 3.2GHz Intel Xeon ES-1650 processor. The perfor-
mance measures for path planning analysis are the path
length, computational time and success rates. When the
effects of uncertainty are evaluated the UAV speed is set at
0.05[-/s]. In all other cases, UAV speed ranges from 0.01[-

/s] to 0.1[-/s] in 0.01[-/s] steps. For all tests, the nominal
path planning parameters values listed in Table 2 are con-
sidered.

In case, that an intermediate path could not be con-
structed since the path construction time exceeds the path
traversal time (real-time path planning requirement), such
test case is considered as unsuccessful and labelled: ”Int.
Time Exc.”. Similarly, if the total time to construct and
traverse the path exceeds the predetermined time defined
in Table 2, such test case is considered as unsuccessful and
labelled: ”Max. Time Exc.”. All other unsuccessful cases
are labelled: ”No Path”.

5.1. A* and RRT without uncertainty

This section assesses the real-time path planning perfor-
mance of the A* and RRT algorithms in translationally
moving and rotating obstacle environments without uncer-
tainty. Figure 4 shows the path length, computational time
and success rate results for both A* and RRT algorithms
as UAV speed increases from 0.01[-/s] to 0.1[-/s] keeping
the path planning parameters listed in Table 2 constant.

Two contrasting rationales were considered in our pre-
vious work74 in case an obstacle-free path to an interme-
diate goal point is impossible or when the prospective new
UAV position resides on an obstacle. Two solutions were
proposed in this situation. In the first solution the real-time
planner re-assign the new UAV current position to its previ-
ous state until an obstacle-free path to an intermediate goal
point is possible. The real-time planner also waits in situa-
tions where the new prospective UAV position is available
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Fig. 4. Performance parameters vs. speed: (a) Path Length, (b) Computational Time, (c) Success rates for A* and (d) Path Length,
(e) Computational Time and (f) Success rates for RRT for 100 iterates with 95% confidence interval. The left side black vertical
axis relates to the non-rotating cube, rotating cube and rotating V-obstacle case while the right side, red vertical axis relates to
the Mixed case. The set of four columns in (c) and (f) represent the non-rotating cube, rotating cube, rotating V-obstacle and the
Mixed case scenarios. Adapted from74

but a path cannot be constructed due to obstacles (waiting
variant). In the second solution, the real-time planner does
not wait, but instead defines a new intermediate goal point
or a new UAV position (controlled by dfactor) nearer to the
current UAV position (moving variant). An analysis con-
cluded that the moving variant solution resulted in better
overall performance in terms of all performance measures
than the waiting variant solution. Therefore moving variant
is considered for this analysis.

From an analysis of Figure 4 it can be concluded that
all scenarios, except for the mixed case, produce a path
very close to 1 (straight line distance from start to goal)
for both algorithms for whole range of speeds considered.
The cube without rotation resulted in the shortest path
length followed by the rotating cube and V obstacle sce-
narios, respectively for both algorithms and the range of
UAV speeds. A significant path length increase results in
the Mixed case using both A* and RRT algorithms for all
speeds. This results since the planner is required to pass
through two opposite-sided windows on two different planes
as shown in Figure 1 (d). The overall path length for A* is
longer than RRT for all scenarios and speeds under anal-

ysis. Moreover, speed only limits the maximum intermedi-
ate and total time entitlement and is independent of path
length.

The difference in both path length and computational
time between Scenarios 1 and 2 is small, but not negligi-
ble, compared with the Mixed case scenario. In fact, the
path length is 0.8% and 0% longer and computational time
is 3.3% and 33% longer for the rotating cube case with
respect to the non-rotating cube case, for A* and RRT re-
spectively. Both Scenarios 1 and 2 need to be considered
to directly assess the effect of rotation on path planning
performance.

For scenarios 1 to 3, the path planning time of the
A* algorithm is longer by 5 to 7 times with reference to
the RRT algorithm. For the mixed scenario, the path plan-
ning time for A* is 18% shorter with respect to RRT for
UAV speeds from 0.01[-]/s to 0.05[-]/s. This results since
the RRT success rate is close to 0% at higher UAV speeds.
It can be concluded that path planning time is indepen-
dent of UAV speed for both path planning algorithms. The
path planning time for both path planning algorithms is
lowest in the V obstacle case, followed by the non-rotating
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and rotating cube cases and the mixed case experiencing
a large increase. This outcome shows the direct relation-
ship between scenario complexity and computational re-
quirements. In fact, the V obstacle consists of only two 2D
planes while 6 planes are used to construct cubes with an
internally occupied space. This larger computational de-
mand for A* with respect to RRT is a consequence of the
A*’s graph-based rationale and its ripple reduction algo-
rithm that requires re-modelling in every iteration.

In terms of path length variance, A* is 28% smaller
and 89%, 4 and 2 times larger than RRT for scenarios 1
to 4 respectively. A similar analysis for computational time
show that A* is 44% and 45% smaller and 5 and 3 times
larger than RRT in terms of variance for scenarios 1 to 4
respectively.

Both path planning algorithms result in an almost
100% success rate for scenarios 1 to 3. A 100% success rate
results for RRT and a minimum 95% success rate results
for A*. In the mixed case, a minimum of 95% success rate is
recorded for RRT for UAV speeds up to 0.03[-/s], reducing
to 0% with increase in UAV speed. The A* success rate is
lower than RRT’s at low speeds but retained a minimum
success rate of 40% at the highest UAV speed as opposed to
the success rate of RRT that dropped to 0%. For a deeper
analysis refer to.74

In terms of success rate both algorithms exhibit a near
100% success rate for the first three scenarios with RRT ex-
hibiting a 100% success rate, while A* achieved a minimum
of 95% success rate. For the Mixed case, the RRT achieved
a success rate of a minimum of 95% for speeds from 0.01[-
/s] to 0.03[-/s], deteriorating to 0% as speed increases. The
A* algorithm, never achieved this high success rate of the
RRT algorithm, but maintained a success rate above 40%
at the highest speed as opposed to the success rate of RRT
that dropped to 0%. For further analysis of these results
refer to.74

The path planning performance analysis show
that both A* and RRT algorithms can operate in
real-time path planning environments with trans-
lationally moving and rotating obstacles provided
that an adequate intermediate and total time is al-
located.

The inclusion of UAV positional uncertainty as de-
scribed in Section 4 will follow.

5.2. A* and RRT with uncertainty in UAV
position

The UAV positional uncertainty is a percentage of the pre-
determined UAV movement per iterate. This is randomly
added during the calculation of the true UAV position
for the next iterate. The path planning performance of
both A* and RRT algorithms with different UAV posi-
tional uncertainties is illustrated in Figure 5. During these
tests, two inter-linked parameters are concurrently chang-
ing. The first parameter is the maximum UAV positional
uncertainty that determines the minimum UAV distance

to obstacles for non-collision. The second parameter is the
random movement between 0[-] and the maximum UAV
positional uncertainty (first parameter) added in the calcu-
lation of the UAV position for the next iterate.

For the A* algorithm, the cube with no rotation case
results in the shortest path length, followed by the rotat-
ing cube, V obstacle and mixed cases, respectively. For
the RRT algorithm, the V obstacle scenario generates the
shortest path length, followed by the non-rotating cube, ro-
tating cube and mixed cases, respectively. The path length
in scenarios 1 to 3 is small. This ranking is in line with the
no uncertainty test cases for the A* algorithm but differs
for RRT due to the V obstacle’s large path performance de-
terioration. Path length for the mixed scenario is 1.5 to 2
times longer with respect to Scenarios 1 to 3 for both path
planning algorithms. It can be concluded from Figure 5 (a)
and (d) that path length increases with increase in percent-
age UAV positional uncertainty for both algorithms and all
scenarios.

The V obstacle case resulted in the lowest computa-
tional time for the whole range of uncertainties for both
path planning algorithms. This results since in the V ob-
stacle case, only two planes per shape are checked for po-
tential collisions while in the cube cases, six planes and the
cube interior requires collision checks. The A* algorithm
recorded a decease in path planning time while the RRT
algorithm recorded an increase in path planning time with
an increase in UAV positional uncertainty. But, overall the
path planning time for A* with respect to RRT remain 2.4
to 1.1 times longer for scenarios 1 to 3, respectively and
30% shorter for scenario 4. This results even if A* experi-
enced a decrease and RRT experienced an increase in path
planning time with the inclusion of UAV positional uncer-
tainty.

For scenarios 1 to 3, the success rate exceeds 90% for
both path planning algorithms for the whole percentage
uncertainty range with approximately 5% deterioration for
the RRT algorithm only. The mean success rate for A* is
more than double that of RRT for the mixed case scenario.
A 5% deterioration in success rate results with the inclusion
of uncertainty for scenarios 1 to 3 for both path planning
algorithms. No deterioration is recorded for the Mixed case
scenario, for all the range of uncertainties considered.

Both path planning algorithms record a suc-
cess rate in the 100% region for scenarios 1 to 3
through the whole uncertainty range. The A* al-
gorithm produces longer paths in longer planning
time with respect to the RRT algorithm. As un-
certainty increases, path planning performance de-
teriorates, especially for the RRT algorithm. The
success rate of the RRT algorithm is only half that
of the A* algorithm in the mixed case through the
whole uncertainty range considered even though
the A* algorithm produced longer paths.
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Fig. 5. Performance parameters vs. UAV positional uncertainty: (a) Path Length, (b) Computational Time, (c) Success rates for
A* and (d) Path Length, (e) Computational Time and (f) Success rates for RRT for 100 iterates with 95% confidence interval.
The left side black vertical axis relates to the non-rotating cube, rotating cube and rotating V-obstacle case while the right side,
red vertical axis relates to the Mixed case. The set of four columns in (c) and (f) represent the non-rotating cube, rotating cube,
rotating V-obstacle and the Mixed case scenarios.

5.3. A* and RRT with uncertainty in
obstacle position and orientation

The path planning performance of both A* and RRT al-
gorithms over a range of obstacle uncertainties is shown in
Figure 6. For 3D shapes, namely cubes, the obstacle uncer-
tainty bound is a function of the obstacle volume. For the
other 2D shapes, same shape uncertainty bounds that fully
enclose the obstacle are used.

The path length results for the A* and RRT algorithms
are shown in Figure 6 (a) and (d). The inclusion of obsta-
cle uncertainty has no major effect (<2%) on the mean
path length for both path planning algorithms, except in
the mixed case where the success rate dropped to 0%. This
outcome is contrasting with the increase in path length re-
sulting from the inclusion of UAV positional uncertainty
for both algorithms in all scenarios.

Figure 6 (b) and (e) show that for both algorithms,
the non rotating cube case reaches the goal point in the
lowest time followed by the rotating cube, V obstacle and
mixed cases, respectively. This ranking differs for that of
the no uncertainty and UAV positional uncertainty cases

for both algorithms. Obstacle uncertainty reduces the free
space when compared with the no uncertainty tests. This
reduces the number of path planning combinations for the
A* algorithm, effectively reducing computational time. For
the RRT algorithm, the reduction of planning space in-
creases the number of colliding tree branches, hence increas-
ing the computational time required prior a non colliding
tree is constructed. For the V-obstacle case both algorithms
experienced an increase with respect to the no uncertainty
test case, with RRT showing the larger increase, since in
this case the obstacle changes from a 2D shape to a 3D
one. Obstacle uncertainty in the mixed case, further re-
duces the already limited obstacle free space, ultimately
decreasing the success rate. The A* algorithm’s computa-
tional time is 2.2, 0.73 and 2.1 longer in comparison with
RRT’s for Scenarios 1 to 3, respectively, when obstacle un-
certainty is considered. A major increase in computational
time for the V obstacle and mixed case scenarios, for both
A* and RRT algorithms, results when comparing obstacle
uncertainty tests with UAV positional uncertainty tests.

It can be deduced from Figure 6 (c) and (f) that an al-
most 100% success rate results for A* and RRT algorithms,
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Fig. 6. Performance parameters vs. Obstacle uncertainty: (a) Path Length, (b) Computational Time, (c) Success rates for A* and
(d) Path Length, (e) Computational Time and (f) Success rates for RRT for 100 iterates with 95% confidence interval. The left side
black vertical axis relates to the non-rotating cube, rotating cube and rotating V-obstacle case while the right side, red vertical axis
relates to the Mixed case. The set of four columns in (c) and (f) represent the non-rotating cube, rotating cube, rotating V-obstacle
and the Mixed case scenarios.

for Scenarios 1 to 3. The A* and RRT algorithms exhib-
ited a lower than 40% and a 0% success rate, respectively in
the mixed case. A <5% success rate difference results when
compared with the no uncertainty tests for scenarios 1 to 3
for both algorithms and a major difference (>30%) for the
Mixed case scenario. Moreover, for the uncertainty range
considered, results show that obstacle uncertainty exhibits
a higher degradation effect on success rate than UAV posi-
tional uncertainty. The difference is only 2% for scenarios
1 to 3 in both algorithms, becoming mainly evident in the
mixed case scenarios.

In conclusion, the results show that a larger
deterioration results with the inclusion of obstacle
uncertainty than with the inclusion of UAV posi-
tional uncertainty. The RRT algorithm exhibits the
largest deterioration in path planning performance
especially for V obstacles and mixed scenarios.

5.4. A* and RRT with uncertainty in
obstacle position and orientation and
UAV position

The path planning performance of both path planning algo-
rithms in the presence of both obstacle and UAV positional
uncertainties is shown in Figure 7. Both uncertainty types
are modelled as explained in Section 4.4. Till now, obsta-
cle and UAV positional uncertainties were analysed sep-
arately. Therefore, to assess their combined influence on
path planning performance both uncertainties are added
concurrently.

The path length for the A* and RRT algorithms are
shown in Figure 7 (a) and (d), respectively. Path length re-
sults combine the responses of Figure 5 (a) and (d) (UAV
positional uncertainty only)and Figure 6 (a) and (d) (ob-
stacle uncertainty only). Path length increases with uncer-
tainty increase for both path planning algorithms. This in-
crease is more evident for the RRT algorithm. In compari-
son with the no uncertainty case, with UAV positional and
with obstacle uncertainty, A* and RRT results show an
minor average increase in path length (<2% for A* and
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Fig. 7. Performance parameters vs. UAV positional and obstacle uncertainties: (a) Path Length, (b) Computational Time, (c)
Success rates for A* and (d) Path Length, (e) Computational Time and (f) Success for RRT for 100 iterates with 95% confidence
interval. The left side black vertical axis relates to the non-rotating cube, rotating cube and rotating V-obstacle case while the right
side, red vertical axis relates to the Mixed case. The set of four columns in (c) and (f) represent the non-rotating cube, rotating
cube, rotating V-obstacle and the Mixed case scenarios.

Table 3. Relational table between uncertainty type and path planning performance. A ∝ or ∝−1 notation imply that the
uncertainty type and path planning performance measure are directly or inversely proportional, respectively. An L, M and H
subscript show that the effect on path planning performance due to uncertainty type being directly or inversely proportional
is low, medium and high, respectively.

Parameter Path Length Planning Time Success rate

A* RRT A* RRT A* RRT

UAV positional uncertainty ∝L ∝M ∝H
−1 ∝M ∝L ∝L

Obstacle uncertainty ∝L ∝L ∝L ∝H ∝H
−1 ∝H

−1

UAV positional and obstacle uncertainty ∝L ∝M ∝L ∝H ∝H
−1 ∝H

−1

<10% for RRT) for all scenarios. From the results, it can
be concluded that both UAV positional and obstacle uncer-
tainties negatively influence path length, with the former
having the prevalent impact.

The computational time results for the A* and RRT
algorithms are shown Figure 7 (b) and (e), respectively.
The computational time comparison for A* and RRT at
2% and 20% uncertainty in obstacle and UAV position
show an increase for the first three scenarios and a decrease
for the Mixed case scenario. This decrease is attributed

to the decreasing success rate. A comparative analysis of
the combined uncertainty with no uncertainty, show that
both UAV positional uncertainty and obstacle uncertain-
ties contribute to increasing computational time for both
algorithms with obstacle uncertainty predominantly time
consuming in V-obstacle and Mixed cases for the A* algo-
rithm.

Figure 7 (c) and (f), show the success rate for the A*
and RRT algorithms, respectively. A near 100% success rate
results for both path planning algorithms for scenarios 1 to
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3 throughout the range of uncertainties considered. In the
mixed scenario success rate drops to 13% and 0% for A*
and RRT, respectively, mirroring the obstacle uncertainty
results. A comparison of these results with the no uncer-
tainty, UAV positional uncertainty only and obstacle un-
certainty only show a decrease in success rate especially for
the Mixed case scenario for both path planning algorithms.
Obstacle uncertainty results in the major deteriorating ef-
fect in success rate for A* while for RRT both uncertainties
contribute more equally to the deterioration of the success
rate.

In conclusion, the concurrent inclusion of both
UAV positional and obstacle uncertainties deteri-
orates path planning performance, particularly for
the RRT algorithm as opposed to a singular uncer-
tainty source.

5.5. Conclusion

The real-time path planning performance of the A* and
RRT algorithms without uncertainty, with UAV positional
uncertainty, with obstacle uncertainty and with the latter
two combined, in four different scenarios were presented,
discussed and analysed in this section. Results show that:

(1) All uncertainties considered, deteriorate path
length, computational time and success rates, es-
pecially for the RRT algorithm;

(2) The RRT algorithm constructed shorter paths in
less time for the cube and V-obstacle scenarios,
while the A* algorithm showed a better perfor-
mance in complex scenarios;

(3) Path planning performance is deteriorated differ-
ently by different uncertainties;

(4) The concurrent inclusion of both UAV positional
and obstacle uncertainties further deteriorate path
planning performance, particularly for the RRT al-
gorithm.

This study affirms that the neglect of uncertainties in
3D UAV path planning, particularly in complex environ-
ments, can undermine the safety and effectiveness of the
UAV and the environment in which it operates.

Table 3 summarises the results presented in this sec-
tion by showing the effect of each uncertainty type and their
combined effect on path planning performance. A ∝ or ∝−1

notation imply that the uncertainty type and path planning
performance measure are directly or inversely proportional,
respectively. Additionally, the subscripts L, M and H show
that the effect on path planning performance due to uncer-
tainty type being directly or inversely proportional is low,
medium and high, respectively.

6. Conclusion and Future Work

This study discussed 3D UAV real-time path planning
performance of a state-of-the-art graph-based (A*) and a

sampling-based (RRT) algorithm in different complexity
dynamic environments with UAV positional and obstacle
uncertainties. The need for consideration of dynamic en-
vironments and uncertainty in path planning for UAV is
specifically demanded in literature. Four main uncertainty
sources are identified in literature. For the scope of this
study, these are integrated into UAV positional and obsta-
cle positional and orientation uncertainties. The bounded
shape technique is used to model these uncertainties. The
path planner parameters, the UAV model and four scenar-
ios are developed based on real UAV implementations. Both
UAV positional and obstacle uncertainties are range from
2% to 20%. Path planning performance is assessed using
path length, computational time and success rates.

This study concludes that the path planning perfor-
mance is hindered by both UAV positional and obstacle
uncertainties in all scenarios, for both A* and RRT al-
gorithms. Path planning performance is further hindered
if both uncertainties are included at the same time. The
RRT algorithm’s path planning performance is the worse
effected by all the uncertainties considered. The RRT algo-
rithm constructed shorter paths in less path planning time
for an equivalent (>95%) success rate with respect to the
A* algorithm for all cases except the mixed scenario. In
the latter scenario, A* performed better while RRT’s suc-
cess rate dropped to 0%. Paths constructed by the RRT
algorithm pass nearer to obstacles, creating a higher colli-
sion risk than those constructed by the A* algorithm. Al-
though each path planning method has its generic inherent
characteristics, the selection of a path planning algorithm
over another requires a thorough analysis of the mission re-
quirements, environment and UAV model. Therefore, it is
highly difficult to generically state in absolute terms that
a path planning method is better than another. This study
concludes that both A* and RRT algorithms are poten-
tial candidates for 3D real-time UAV path planning in dy-
namic, uncertain and low obstacle density scenarios. For
more complex environments, success rate drops, particu-
larly for RRT, since path planning time increases. There-
fore, the application of both A* and RRT algorithms in
complex scenarios will require a multiple times increase in
computational resources as opposed to that required for
low occupancy, low speed obstacle scenarios.

Future analysis shall focus on the relationship between
path planning performance and the distance to travel per
iterate, the look-ahead distance and the total path plan-
ning time. The integration of a 3D real-time A* and RRT
based path planning algorithm into a real UAV navigation
system, operating in an indoor environment shall be con-
sidered as the ultimate aim.
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