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Summary

Robots are leaving factory floors and entering human environments, where they must
move safely and efficiently while interacting with people and other autonomous systems.
In these settings, decisions are interdependent: what a robot should do depends on how
others will respond, and vice versa. Anticipating and shaping these responses is central to
competent behavior in multi-agent settings, but it is difficult in practice because interac-
tion unfolds under uncertainty, with limited prior knowledge of other agents’ objectives
and limited sensing, and often under tight computational constraints.

Because decisions made in interaction with others are often safety-critical, receding-
horizon online optimization is widely adopted for its ability to optimize performancewhile
enforcing constraints such as collision avoidance. Established approaches of this category
typically decouple prediction and planning: they start by predicting the future motion of
other agents (for example, by assuming constant velocity or extrapolating learned motion
patterns) and then plan the robot’s actions based on those predictions. While simple, this
predict-then-plan paradigm cannot capture the mutual influence of agents: predictions
ignore that the robot’s future actions will affect how others behave. More advanced ap-
proaches go beyond this paradigm by casting interaction as joint decision-making via a
single optimization problem. While this captures the interdependence of future decisions
between agents, it implicitly forces them to share a common objective and thus cannot
express strategic trade-offs, nudging, blocking, or other elements of competition.

This dissertation addresses these challenges by studying robot motion planning for in-
teractive scenarios through the lens of game theory, which provides a principled language
for modeling multiple self-interested decision makers who act simultaneously and whose
objectives may only be partially aligned. Our focus is on settings in which we control a
single robot that interacts with one or more other uncontrolled agents, be they humans
or other robots, with particular attention to cases where the robot does not know other
agents’ intents a priori. For these settings, we develop a set of tools, grounded in game-
theoretic principles, that allow a robot to understand the intents of other agents and enable
it to generate motion plans that capture the interdependence of decisions between agents
and their self-interested decision-making. We showcase the effectiveness of these tools in
applications such as autonomous driving, mobile navigation, and multi-agent manipula-
tion. The main contributions of this dissertation are as follows.

First, we study the problem of learning the unknown intents of other agents from
observed past behavior. We formulate this so-called inverse game problem as maximum-
likelihood estimation with equilibrium constraints and propose a transcription solvable by
off-the-shelf optimization solvers. This resulting method jointly estimates game parame-
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ters, current states, and future decisions of other agents, improving inference accuracy.
Second, we integrate inverse games with online decision-making so that a robot can

adapt its strategy as estimates of others’ intents evolve. To this end, we propose a new solu-
tion technique for the inverse game problem that handles inequality constraints, enabling
safer interaction, and provides a first-order update rule that integrates naturally with neu-
ral network training for amortized inference. This yields a game-theoretic motion planner
that adapts online to estimated player intents as observations become available.

Third, we study settings in which the robot has access not to a point estimate of other
players’ intents but explicitly reasons about a distribution over possible intents. In this
context, we propose contingency games, an uncertainty-aware planning technique that
jointly produces a multi-hypothesis prediction of others and a corresponding conditional
plan for the robot. By estimating the future time at which uncertainty will be resolved, this
approach anticipates future information gains. We show that this formulation generalizes
prior approaches that either ignore uncertainty or conservatively assume that uncertainty
will never be resolved. As a result, contingency games offer amiddle ground between these
two extremes, discovering efficient and safe interaction strategies.

Fourth, we turn to the problem of reducing the computational burden of solving game-
theoretic motion planning problems online. We study this problem in the context of games
in which agents are not forced to commit to a single deterministic trajectory, but may
choose a distribution of trajectories, so-called mixed strategies. In this context, we in-
troduce an amortized solver that learns, offline, to propose a small set of low-cost, dy-
namically feasible trajectory candidates per agent. Online, a discrete game is solved over
these candidates to compute a mixed Nash equilibrium. The resulting solver rapidly finds
feasible mixed strategies that are competitive.

Fifth, we study an interaction problem with inherently non-smooth dynamics, using
the example of multi-agent manipulation. This interaction problem violates a fundamental
assumption made in the majority of prior work in interactive motion planning (including
those presented in this dissertation): the assumption that costs and constraints (including
dynamics) are differentiable. To address this challenge, we propose a data-driven approach
that combines learning from single-agent demonstrations with reasoning about joint costs
across agents. By studying this problem through the lens of probabilistic inference and
generative diffusion models, we construct a generative process of the coordinated, joint
policy that directly leverages the pre-trained single-agent policies as a prior. This approach
discovers collaborative strategies that are absent from the single-agent demonstrations
while avoiding the logistical burden of providing large amounts of multi-agent data.

In summary, this thesis advances interactive motion planning by taking a game-
theoretic perspective, allowing a robot to infer the intents of others, account for uncer-
tainty in these estimates during planning, and solve challenging instances of multi-agent
interaction through a mix of offline learning and online reasoning. All contributions are
validated extensively in simulation of tasks such as autonomous driving, mobile navi-
gation, and multi-agent manipulation, with selected methods additionally demonstrated
on a mobile ground robot. Among the supporting contributions of this thesis are sev-
eral open-source software packages that transcribe motion planning and intent inference
problems into forward and inverse games and solve them efficiently. The code and data
for most chapters have been made publicly available to accelerate future research.
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Samenvatting

Robots verlaten de fabrieksvloer en betreden menselijke omgevingen, waar zij zich veilig
en efficiënt moeten verplaatsen en interacties aangaan met mensen en andere autonome
systemen. In zulke omgevingen zijn beslissingen onderling afhankelijk: wat een robot
zou moeten doen, hangt af van hoe anderen zullen reageren, en omgekeerd. Het kunnen
anticiperen op en sturen van deze reacties is essentieel voor competent gedrag in multi-
agent omgevingen, maar in de praktijk is dit uitdagend omdat interactie gebeurt onder
onzekerheid, met beperkte voorkennis over de doelen van andere agenten en beperkte
waarneming, en vaak onder strikte computationele beperkingen.

Omdat beslissingen die in interacties met anderen worden genomen vaak veiligheids-
kritisch zijn, wordt online optimalisatie met verschuivende horizon veel gebruikt vanwege
het vermogen om prestaties te optimaliseren, terwijl tegelijk beperkingen zoals het vermij-
den van botsingen worden afgedwongen. Gangbare methodes in deze categorie ontkop-
pelen doorgaans het voorspellen en het plannen: zij beginnen met het voorspellen van
de toekomstige beweging van andere agenten (bijvoorbeeld door een constante snelheid
aan te nemen of door aangeleerde bewegingspatronen te extrapoleren) en plannen ver-
volgens de acties van de robot op basis van die voorspellingen. Hoewel eenvoudig, kan
dit predict-then-plan-paradigma de wederzijdse beïnvloeding tussen agenten niet beschrij-
ven: de voorspellingen negeren dat de toekomstige acties van de robot van invloed zullen
zijn op hoe anderen zich gedragen. Meer geavanceerde methodes gaan verder dan dit
paradigma door interactie te formuleren als gezamenlijke besluitvorming via één enkel
optimalisatieprobleem. Hoewel dit de onderlinge afhankelijkheid van toekomstige beslis-
singen tussen agenten vastlegt, dwingt het impliciet af dat zij een gemeenschappelijke
doelstelling delen en kan het daardoor geen strategische afwegingen, subtiele beïnvloe-
ding, blokkeren, of andere elementen van competitie uitdrukken.

Dit proefschrift pakt deze uitdagingen aan door bewegingsplanning voor robots in in-
teractieve scenario’s te bestuderen door de lens van de speltheorie, die een principiële taal
biedt om meerdere op eigenbelang gerichte besluitvormers te modelleren die gelijktijdig
handelen en van wie de doelstellingen slechts gedeeltelijk op elkaar afgestemd kunnen zijn.
Onze focus ligt op scenario’s waarin we één robot besturen die in interactie staat met één
of meerdere niet door ons bestuurde agenten, die mensen of andere robots kunnen zijn,
met bijzondere aandacht voor gevallen waarin de robot de intenties van andere agenten
niet a priori kent. Voor deze scenario’s ontwikkelen we een set hulpmiddelen, gegrond in
speltheoretische principes, die een robot in staat stellen de intenties van andere agenten
te begrijpen en bewegingsplannen te genereren die de onderlinge afhankelijkheid van be-
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slissingen tussen agenten en hun op eigenbelang gerichte besluitvorming vastleggen. We
tonen de effectiviteit van deze hulpmiddelen aan in toepassingen zoals autonoom rijden,
mobiele navigatie en manipulatie met meerdere agenten. De belangrijkste bijdragen van
dit proefschrift zijn als volgt.

Ten eerste bestuderen we het probleem om de onbekende intenties van andere agen-
ten te leren uit waargenomen gedrag in het verleden. We formuleren dit zogeheten inverse
spelprobleem als maximum-likelihood schatting met evenwichtsrestricties en stellen een
transcriptie voor die oplosbaar is met standaard optimalisatiesolvers. De resulterende me-
thode schat gezamenlijk spelparameters, huidige toestanden en toekomstige beslissingen
van andere agenten, wat de inferentienauwkeurigheid verbetert.

Ten tweede integreren we inverse spellen met online besluitvorming zodat een robot
zijn strategie kan aanpassen terwijl schattingen van de intenties van anderen evolueren.
Daartoe ontwikkelen we een nieuwe oplossingstechniek voor het inverse spelprobleem
die ongelijkheidsrestricties aankan, wat veiligere interactie mogelijkmaakt, en een update-
regel van eerste orde biedt die op natuurlijkewijze integreert met neurale-netwerktraining
voor geamortiseerde inferentie. Dit leidt tot een speltheoretische bewegingsplanner die
zich online aanpast aan geschatte spelersintenties naarmate observaties beschikbaar ko-
men.

Ten derde bestuderen we scenario’s waarin de robot niet over een puntschatting van
de intenties van andere spelers beschikt, maar expliciet redeneert over een verdeling van
mogelijke intenties. In deze context stellen we contingency games voor, een onzekerheids-
bewuste planningsmethode die gezamenlijk een multi-hypothese-voorspelling van ande-
ren produceert en een overeenkomstig conditioneel plan voor de robot. Door de toekom-
stige tijd te schatten waarop onzekerheid zal worden opgelost, anticipeert deze aanpak op
toekomstige informatiewinsten. We laten zien dat deze formulering eerdere methodes ge-
neraliseert die ofwel onzekerheid negeren, ofwel conservatief aannemen dat onzekerheid
nooit zal worden opgelost. Daardoor bieden contingency games een middenweg tussen
deze twee extremen en vinden ze efficiënte en veilige interactiestrategieën.

Ten vierde richten we ons op het verminderen van de computationele last van het
online oplossen van speltheoretische bewegingsplanningsproblemen. We bestuderen dit
probleem in de context van spellen waarin agenten niet gedwongen zijn zich vast te leggen
op één deterministisch traject, maar een verdeling over trajecten kunnen kiezen, zogehe-
ten gemengde strategieën. In deze context introduceren we een geamortiseerde solver die
offline leert om per agent een kleine set goedkope, dynamisch haalbare trajectkandidaten
voor te stellen. Online wordt vervolgens een discreet spel over deze kandidaten opgelost
om een gemengd Nash-evenwicht te berekenen. De resulterende solver vindt snel haal-
bare gemengde strategieën die competitief zijn.

Ten vijfde bestuderen we een interactieprobleem met inherent niet-gladde dynamica,
met als voorbeeld manipulatie met meerdere agenten. Dit interactieprobleem schendt een
fundamentele aanname in het merendeel van eerder werk over interactieve bewegings-
planning (inclusief de eerdergenoemde methodes in dit proefschrift): de aanname dat kos-
ten en restricties (inclusief dynamica) differentieerbaar zijn. Om deze uitdaging op te los-
sen, stellen we een data-gedreven aanpak voor die leren uit demonstraties van één agent
combineert met redeneren over gezamenlijke kosten over alle agenten. Door dit probleem
te bestuderen door de lens van probabilistische inferentie en generatieve diffusiemodellen,
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construeren we een generatief proces van het gecoördineerde, gezamenlijke beleid dat di-
rect gebruikmaakt van de vooraf getrainde beleidsregels voor individuele agenten als prior.
Deze aanpak vindt collaboratieve strategieën die afwezig zijn in de demonstraties van één
agent, terwijl het de logistieke last van het aanleveren van grote hoeveelhedenmulti-agent
data vermijdt.

Samengevat bevordert dit proefschrift interactieve bewegingsplanning door een spel-
theoretisch perspectief te nemen, waardoor een robot de intenties van anderen kan aflei-
den, onzekerheid in deze schattingen kan meenemen tijdens het plannen, en uitdagende
instanties van multi-agent interactie kan oplossen via een combinatie van offline leren
en online redeneren. Alle bijdragen worden uitgebreid gevalideerd in simulatie van taken
zoals autonoom rijden, mobiele navigatie en manipulatie met meerdere agenten, met gese-
lecteerdemethoden die bovendien zijn gedemonstreerd op eenmobiele grondrobot. Onder
de ondersteunende bijdragen van dit proefschrift bevinden zich verschillende open-source
softwarepakketten die bewegingsplanning- en intentie-inferentieproblemen omzetten in
voorwaartse en inverse spellen en deze efficiënt oplossen. De code en data voor de meeste
hoofdstukken zijn publiek beschikbaar gemaakt om toekomstig onderzoek te versnellen.

This Dutch summary was translated from the English version above with the help of Opus 4.6 [1] and Saray
Bakker.
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Chapter 1

Introduction

R obots are becoming cheaper, more available, and lighter [2–4]. These developments set
the stage for a new era of robotics: one in which they are no longer bound to factory

floors but can aid us in our everyday lives. In fact, this revolution has already begun:
vacuum-cleaning robots are a common sight inmany households [5], mobile service robots
are starting to be deployed in the hospitality sector [6], and the first open-road tests of self-
driving cars are underway in several cities across the world [7].

In view of these advances, it becomes increasingly clear that general autonomous
robots provide a unique opportunity to improve overall welfare and promise to solve
some of the most pressing challenges facing society. For example, autonomous robots
offer promising technological solutions to address labor shortages posed by an aging pop-
ulation in many developed countries [8]. Furthermore, applications such as autonomous
ride sharing, which eliminate the need for individuals to own and operate their own ve-
hicles, have the potential to reduce traffic congestion, lower emissions, and decrease the
number of accidents. Nonetheless, progress has been largely confined to domains char-
acterized by abundant data to inform system design decisions and high potential returns
that justify extensive engineering investments in domain-specific solutions, such as au-
tonomous driving. General-purpose algorithms that enable robots to autonomously act
across a wide range of domains to assist us in our everyday lives remain out of reach.

To handle such complex tasks, much like humans, robotsmust exploit prior knowledge,
sense theworld to learn from experience, and adapt their decision-making in order tomove
safely and efficiently through the world—or even to change (aspects of) the world itself.
In short, they must have agency. Therefore, in this dissertation, we will use the term agent
broadly to refer to any entity—human or robot—that has the capacity to act in the world
by moving through it or otherwise changing it.

From Isolation to Interaction. Navigating in and interacting with a complex environ-
ment is inherently a challenging task. Beyond sensing the current state of the world, it
requires understanding the “rules” that dictate how the world evolves in order to make pre-
dictions about its future. That is, it requires understandingwhich actions lead towhich out-
comes. When agents act in solitude, these “rules” of the world reduce to laws of physics—
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the set of mathematical equations that describe the dynamics of the world. For many phys-
ical phenomena, these “rules” are well-understood: we have accurate models that capture
effects ranging from the electro-mechanical dynamics of motors [9] to the behavior of
entire vehicles, whether on the ground [10], on water [11], or in the air [12].

As soon as we introduce another agent into the same world—even if just one other
agent—the set of “rules” becomes substantially more complex. In this setting, the “rules”
that govern the robot’s environment include not only the laws of physics but also the more
subtle, implicit, and unwritten principles that govern the decisions of other agents. Hence,
the added complexity is driven by the following, seemingly innocuous question that poses
itself to the robot:

How will other agents react to the robot’s actions?

As we bring robots closer into our lives, it is this question that we must confidently
answer to ensure a robot’s efficiency without compromising safety, particularly when the
health and safety of humans are at stake. This dissertation seeks to provide robots with
principled tools to answer this question.

This Dissertation. The focus of this dissertation is on settings where we control a single
robot—also referred to as the “ego agent”—that must plan its motion to physically interact
with one or more other agents, whether humans or other robots, without explicit com-
munication or trust established between them. We will study settings ranging from full
cooperation to full competition and pay special attention to settings where other agents’
true intent and willingness to cooperate are not clear to the ego agent a priori.

The primary lens throughwhich wewill study these interactions is that of game theory.
Beyond this main tool, key concepts underpinning this dissertation are those of optimiza-
tion, receding-horizon reasoning, and learning from demonstration. We shall provide a
brief introduction to these key concepts in Sections 1.1 and 1.2.

Throughout this dissertation, we develop tractable and effective methods grounded in
game-theoretic principles for online motion generation in interactive settings and show
how the proposed techniques enable robots to reason about and respond to the actions of
other agents, facilitating safe and efficient interaction.

AThought Experiment ofMulti-Agent Interaction. Beforewe dive into amore tech-
nical discussion of multi-agent interaction, let us first consider a thought experiment to
illustrate the challenges characterizing this class of problems.

If the reader happens to be human—rather than, e.g., a languagemodel—theymay have
a good intuition for this more opaque set of “rules” that governs interactions with others.¹
In fact, we humans are remarkably skillful at navigating many of these scenarios, often
without actively thinking about it. To illustrate this point, let us consider the unsignalized
intersection scenario in Figure 1.1 to conduct a thought experiment. Imagine that this were
an unfamiliar intersection, perhaps even in another country governed by different traffic
laws and driving habits than you are used to. Even under those challenging circumstances,
you would likely be able to quickly adapt to this scenario, rapidly inferring the “rules” of

¹Some of this intuition is now slowly becoming available to language models as well [13], but it remains unclear
how to make use of that knowledge for decision-making.
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Figure 1.1: A typical multi-agent interaction scenario. Note: Image generated with Google Gemini [14].

the new environment while accounting for uncertainty along the way by adopting a more
cautious driving strategy. In doing so, you would implicitly answer many layers of our key
question above; e.g., Where are others trying to go? What are their capabilities and how
fast can they go? What do they know? Did they even see me? What social conventions
do they follow?

In this dissertation, we will formalize this kind of reasoning through the lens of game
theory; an introduction to which is provided in the following section.

1.1 Interaction as a Game
Game theory provides a powerful tool for modeling multi-agent interaction because it
captures the simultaneous yet interdependent nature of decision-making among multiple
self-interested agents.

More formally, game theory studies how several agents, also called players, choose
their individual strategies—plans of action—to achieve their individual objectives. These
objectives are encoded by a cost function, which measures how good or bad an outcome is
from the perspective of that player. Hence, players seek to choose a strategy that mini-
mizes their own cost function.

For example, in the setting of Figure 1.1, a player’s strategies may dictate their accel-
eration, braking and steering commands and their cost function may assign lower costs
to decisions that satisfy traffic rules while driving efficiently. Importantly, however, a
player’s cost depends not only on their own actions, but also on the actions of other play-
ers. For example, the cost of entering the intersection may be higher if that would require
another player to brake aggressively or change their trajectory.

Beyond soft incentives, a game can also capture hard constraints between players’
strategies; such as disallowing two players to occupy the same position at the same
time.² The dependence of a player’s cost and available strategies on the decisions of other
players is what makes games both powerful and challenging to solve: their solutions nat-
urally give rise to strategic interactions, but finding those solutions requires, in general,
reasoning about all players’ strategies jointly.³

²In other words: “vehicles must not collide”.
³This point is in contrast to more traditional approaches in the field that first predict the decisions of other play-
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An Odd Game? The term “game” and vocabularies such as “player” may prompt the
reader to think of “table-top games”, such as chess, go, or poker. This association is not
wrong, in that, much like the games studied in this dissertation, “success” in all of these
settings requires strategic reasoning and careful consideration of other players’ future
(and, sometimes, even past) moves. These table-top games are characterized by

• finite, discrete actions: all players have a countable number of actions to choose
from at every turn;

• sequential play: players take turns making their decisions;
• zero-sum cost-structure: one player’s gain is another player’s loss;
• and, fully known rules: all players know the rules of the game and the cost that
others seek to minimize.

By contrast, the games underpinning the physical multi-agent interactions that we study
in this work are characterized by:

• infinite, continuous actions: all players have an uncountable number of actions to
choose from at every turn;

• simultaneous play: players make their decisions at the same time;
• general-sum cost-structure: one player’s gain is not necessarily another player’s
loss;

• and, partially unknown rules: players may not know all aspects of the game, such
as the cost that others seek to minimize.

What’s more: there is typically no binary “winner” or “loser” in the games studied here.
Rather, performance falls onto a continuous scale. For example, measuring a combination
of safety (e.g., clearance between vehicles) and efficiency (e.g., fuel consumption and time
to reach the goal) in the example of Figure 1.1.

1.2 Related Methods and Key Concepts
Thecontributions of this dissertation stand in close relation to several key concepts beyond
game theory. Here, we discuss three cornerstone concepts that appear repeatedly through-
out this chapter: optimization, receding-horizon reasoning, and learning from demonstration.
We shall use this opportunity to highlight how they relate to the game-theoretic perspec-
tive on interaction and why established instantiations of these tools fall short of solving
the challenges ofmulti-agent interaction highlighted above. Note that the treatment below
is deliberately held non-technical to make it accessible to a broad audience. Each follow-
ing chapter below includes a more detailed review of the background material relevant to
understanding the contributions of that chapter.

1.2.1 Optimization
Games can be understood as a network of coupled optimization problems [16]. As such,
the vocabulary and tools of optimization play an important role in this dissertation. Con-
ventional optimization problems are concerned with choosing the best decision from a set
of alternatives. Note that, a “decision” in that context can still be multi-dimensional—e.g.,

ers and then plan their own actions, ignoring interdependence of future actions [15]—more on this difference
in Section 1.2.
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assigning values for steering, acceleration, and braking commands simultaneously in the
example of Figure 1.1. However, the way in which “best” is measured is only with respect
to a single cost function against which all aspects of the decision are evaluated.

This is the key difference compared to games, where each player has their own cost
function. Therefore, in a game, the notion of “best”—as perceived by all players jointly—is
no longer well-defined, since “what is best” for one player may not be best for another. As
a result, in contrast to optimization problems, games are concerned with finding equilibria:
points at which no player can unilaterally reduce their cost by changing their strategy. By
virtue of this subtle difference, games are fundamentally more powerful than optimization
problems. In particular, games can capture aspects such as collaboration between players
when both are sensitive to the same cost component—e.g., two players trying to avoid
collision in the example of Figure 1.1—but they are equally capable of capturing partial,
or even complete, competition between players—e.g., when a driver prioritizes their own
progress over that of others. By contrast, if we were to model the same interaction as a
joint optimization, all agents are forced to collaborate in a way that minimizes the overall
cost.

1.2.2 Receding-Horizon Reasoning
Many interactions of interest in robotics unfold over an extended time window. For exam-
ple, returning to the driving scenario of Figure 1.1, an individual driver in this scene may
be on their way to a target destination that is several minutes, perhaps even hours, away.
However, it is not practical to plan over this entire time window at once considering the
full fidelity of interactions one will encounter along the way.

The Role of Receding-Horizon Reasoning for Online Decision-Making Rather
than considering the entire time window at once, it is common for a robot to optimize
decisions only over the next, say, 20 seconds in the immediate future, execute a portion of
that plan, and then re-plan over the next 20-second window. Beyond keeping complexity
manageable, this receding-horizon approach to decision-making takes on another impor-
tant role: it allows the robot to dynamically adapt to any unforeseen changes in the world.
After all, the model that the robot uses to predict the outcomes of their decisions is only an
approximation of reality. As such, the robot must constantly observe the true outcome (i.e.,
the current state of the world) to ground its upcoming decisions in reality, thereby avoid-
ing divergence. One of the most popular instantiations of this idea of receding-horizon
reasoning is the paradigm of model predictive control (MPC) [17].

Challenges in Multi-Agent Settings. When applied to motion planning for multi-
agent interaction, receding-horizon planning requires making predictions about what
other agents will do in the immediate future. MPC approaches typically resort to first
predicting the future decisions of others—often with models as simple as assuming con-
stant velocity [15]—and then plan the robot’s actions in response to those predictions.
While simplifying implementation, these “predict-then-plan” approaches preclude model-
ing influence of the robot on other agents’ future decisions. More advanced instantiations
of MPC go beyond a “predict-then-plan” approach by modeling the joint decision of
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all agents as a single optimization problem [18]. This approach, however, requires all
agents to share the same objective, implicitly assuming trust and collaboration. Hence,
phenomena such as nudging or blocking do not naturally emerge from these approaches.

Extending Receding-Horizon Reasoning to Games. This dissertation applies the
receding-horizon approach to multi-agent interaction but, rather than deriving future
plans from an optimization problem, it derives them from a game over the immediate
future [19]. That is, at every time step, the robot constructs a game-theoretic model of
the interaction in the immediate future and uses the resulting equilibrium strategies for
two purposes: to predict the future decisions of others and, simultaneously, to find its
own optimal strategy. Through this coupled reasoning about predictions and plans, the
robot ensures that their predictions of others’ decisions are consistent with its own future
decisions. We will refer to this approach as model-predictive game play (MPGP).

1.2.3 Learning from Demonstration

Another key concept relevant to this dissertation is learning from demonstration; i.e.,
learning from observed decisions. While this thesis contends that directly learning the
robot’s own strategy in this way is inapplicable (since we require competent and safe be-
havior across diverse situations that may not be foreseen when giving demonstrations),
we build on these ideas in two different ways. First, to learn models of others’ future be-
havior from their past decisions (Chapters 2 and 3); and second, to accelerate the search
for the robot’s own strategy (Chapter 6).

Two strands of learning from demonstration popularized in the single-agent domain
are particularly relevant to this dissertation: inverse optimal control (IOC) [20–22] and
generative diffusion policies learned from demonstration [23–26]. These approaches dif-
fer in how they represent policies and structure the learning process. IOC assumes that
observed behavior is the result of solving an optimal control problem with unknown pa-
rameters (e.g., unknown aspects of the cost or dynamics). Generative diffusion policies, by
contrast, impose less structure: observed behavior is treated as samples from an unknown
distribution, not tied to any particular objective. Due to the imposed structure, IOC is
often sample-efficient, amenable to online inference, and offers an interpretable model of
the observed behavior, but it is less expressive than diffusion policies [21, 27, 28]. The
improved expressiveness of diffusion policies, on one hand, comes at the cost of requiring
much more data and extensive offline training [23–26].

Taken alone, neither of these methods suffices for our setting. IOC enables online
inference of a player’s objective (encoded by their cost function); however, it does not
extend to the non-cooperative settings considered in this dissertation, where players may
have partially conflicting objectives. Diffusion policies provide a powerful framework for
learning a robot’s policy but are prohibitively data-hungry in the multi-agent setting. We
build on both paradigms and combine them with game-theoretic reasoning to address
these limitations.
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1.3 Contributions and Outline
This dissertation contributes a set of tools—grounded in game-theoretic principles—that
enable a robot to interact with other agents by (i) inferring their objectives, (ii) dealing
with uncertainty in their intent, (iii) solving game-theoretic formulations of interaction
efficiently, and (iv) utilizing single-agent demonstrations to learn complex policies.

Details on each contribution are listed below. Since the dissertation dedicates a sep-
arate chapter to each of these contributions, we shall use this opportunity to also clarify
the structure of this document. This structure is additionally summarized in Figure 1.2.
The contributions of this dissertation are:

(i) A maximum-likelihood formulation of inverse games, which allows a robot
to learn other agents’ objectives from observations of their past behavior. Unlike
prior approaches, this formulation explicitly accounts for the fact that the robot
receives only partial and potentially noise-corrupted observations. Two methods
are proposed to solve this inverse game problem:

(a) Chapter 2: A constrained-optimization approach to inverse games that
transcribes the inverse game into a standard constrained optimization prob-
lem by maximizing observation likelihood while enforcing the first-order nec-
essary conditions of the game as constraints. This transcription allows one
to solve the inverse game with off-the-shelf optimization solvers. Techniques
for both offline and online learning are proposed. Simulation results across
several simulated traffic scenarios show that this method reliably estimates
game-theoretic models from noise-corrupted data that closely match ground-
truth objectives, consistently outperforming state-of-the-art approaches.

(b) Chapter 3: An implicit differentiation approach to inverse games that
computes the gradient of the observation likelihood by analyzing the sensitiv-
ity of the game’s solution to changes in its parameters. This gradient signal
facilitates first-order optimization for parameters that explain the observed be-
havior. Beyond online learning, this approach enables amortized inference by
training an neural network (NN) offline to predict game parameters directly
from observation histories. This chapter evaluates both parameter estimation
accuracy and the closed-loop performance of a game-theoretic motion planner
using these estimates. In simulated traffic scenarios, this method outperforms
prior game-theoretic and non-game-theoretic approaches in terms of safety
and interaction efficiency. This chapter also showcases the real-time planning
capabilities and robustness of the method through hardware experiments in-
volving interactions between mobile robots and pedestrians.

(ii) Chapter 4: A game-theoretic approach to contingency planning that allows
a robot to jointly recover a multi-hypothesis prediction of others and a correspond-
ing conditional plan for itself. By estimating the future time at which uncertainty
will be resolved, this approach anticipates future information gains. This approach
formalizes a middle-ground between prior game-theoretic approaches that either ig-
nore uncertainty or conservatively assume that uncertainty will never be resolved,
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recovering these prior approaches as a special case. Simulation results show that
robots using this approach match the more conservative approaches in terms of
safety while outperforming them in terms of interaction efficiency.

(iii) Chapter 5: An amortized solver for trajectory games that addresses the compu-
tational challenges of online planning in games with large strategy spaces by intro-
ducing an offline training phase. This chapter develops the approach in the context
of games in which agents have access to a richer class of mixed—i.e., strategically
randomized—strategies, allowing them to commit to a distribution of trajectories
rather than a single deterministic plan. Simulation results of the pursuit-evasion
game “tag” demonstrate the mixed strategies found by this approach provide a com-
petitive advantage. This chapter also showcases that this approach facilitates rapid
training from scratch via simulated self-play.

(iv) Chapter 6: A technique for learning multi-agent policies while leverag-
ing single-agent demonstrations that applies to problems with inherently non-
smooth interactions (e.g., problems with contact such as multi-agent manipulation).
The method pretrains single-agent policies from demonstrations of basic skills and
composes them into a coordinated multi-agent policy by reasoning about joint costs
using generative diffusion models. In high-fidelity simulations of a two-robot ma-
nipulation task, we demonstrate that this method learns coordinated behavior from
single-agent data, discovers collaborative strategies absent from the single-agent
demonstrations, and achieves more efficient and accurate policies than a baseline
trained on multi-agent demonstrations with the same data budget.

Following the presentation of these main contributions in Chapters 2 to 5, Chapter 7 con-
cludes the dissertation with final remarks and outlines directions for future research.

forward gamesinverse games
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optimization
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Chapter 4
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Introduction
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Conclusions and Future Work

Figure 1.2: Structure of this dissertation.
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1.4 Contributions Beyond this Dissertation
Beyond the contributions summarized in Section 1.3, concurrent research efforts and col-
laborations have produced several noteworthy contributions relevant to the topics covered
in this dissertation.

1.4.1 Co-Authored Publications
Page 159 provides a complete list of publications, including those led by other authors. Be-
low is a brief overview of the most relevant co-authored publications and their connection
to this dissertation.

Additional Approaches to Inverse Games. Chapters 2 and 4 propose maximum-
likelihood solutions for inverse games under open-loop information structures. Two
co-authored works advance this approach. Work [29] extends the approach of Chapter 4
to games with feedback information structures; i.e., games that explicitly account for the
fact that players receive additional information about the state in the future and can react
accordingly. The follow-up work [30] further extends the approach of Chapter 3 beyond
maximum-likelihood-based point estimates, instead inferring distributions of players’
intents in a Bayesian framework. By integrating with the game-theoretic contingency
planner of Chapter 4, this provides an example of how inverse game techniques can be
incorporated into the contingency games paradigm.

Accelerating the Solution ofMulti-HypothesisGames. Aswe shall see in Chapter 4,
contingency games result in powerful but also computationally challenging equilibrium
problems. To scale this paradigm to settings with a large number of hypotheses, [31]
proposes a specialized ADMM solver that parallelizes computation across hypotheses.

Safety Filters. When interacting with the world and other agents, robots must ensure
that their actions are safe. In this work, safety is primarily addressed in terms of avoiding
collisions with other agents. In more complex scenarios, however, collision avoidance is
not the only aspect of safety. Two lines of work explore this aspect in more detail by
filtering—i.e., overwriting—robot actions that violate a semantic notion of safety that goes
beyond collision avoidance. In [32], a vision-languagemodel (VLM) [33] interprets natural
language feedback and the robot’s image observations to continuously update the robot’s
representation of safety constraints. In [34], a latent-space generalization of Hamilton-
Jacobi (HJ) reachability is proposed that enables robots to detect and avoid complex, hard-
to-specify hazards—such as spilling or toppling objects—directly from high-dimensional
observations like images.

1.4.2 Software
For each of the methods presented in the following chapters, this dissertation pro-
duced an open-source reference implementation. These reference implementations
are built on a set of core abstractions, which were distilled into standalone software
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packages and are now hosted under the GitHub organization https://github.com/
JuliaGameTheoreticPlanning. These packages are briefly summarized below:

• TrajectoryGamesBase.jl [35] provides a common interface to describe trajectory
games. The solvers in Chapters 3 to 5 all make use of this interface.

• ParametricMCPs.jl [36] provides an abstraction on top of the PATH solver [37] to
automatically synthesize Mixed Complementarity Problems (MCPs) as a function
of user-defined parameters. It allows automatic differentiation of the result, provid-
ing the core component for forward and inverse game solutions, including those
presented in Chapters 3 and 4.

• MCPTrajectoryGameSolver.jl [38] automates the transcription of trajectory
games into MCPs and, by building on top of ParametricMCPs.jl, implicitly facil-
itates differentiation of the solution with respect to game parameters.

• DifferentiableTrajectoryOptimization.jl [39] provides an abstraction on top of
established optimization solvers such as IPOPT [40] and OSQP [41] to automati-
cally synthesize trajectory optimization problems from user-defined costs and dy-
namics. By implementing back-propagation rules, this package facilitates automatic
differentiation of the solution map, allowing for integration with machine-learning
pipelines and providing the backbone for Chapter 5.

https://github.com/JuliaGameTheoreticPlanning
https://github.com/JuliaGameTheoreticPlanning
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Chapter 2

Estimating Player Objectives
from Partially Observed
Interactions

Robots deployed to the real world must be able to interact with other agents in their environ-
ment. Game theory provides a powerful mathematical framework for modeling scenarios in
which agents have individual objectives and interactions evolve over time. However, a key
limitation of such techniques is that they require a-priori knowledge of all players’ objectives.

This chapter proposes a novel method for learning players’ objectives in continuous games
from noise-corrupted, partial state observations. Our approach learns objectives by coupling
the estimation of unknown cost parameters of each player with inference of unobserved states
and inputs throughNash equilibrium constraints. By coupling past state estimates with future
state predictions, our approach is amenable to simultaneous online learning and prediction
in receding-horizon fashion.

This chapter is a verbatim copy, with minor modifications, of the peer-reviewed journal article [42]:

 Lasse Peters, Vicenç Rubies-Royo, Claire J. Tomlin, Laura Ferranti, Javier Alonso-Mora, Cyrill Stachniss,
David Fridovich-Keil. “Online and Offline Learning of Player Objectives from Partial Observations in
Dynamic Games.” International Journal of Robotics Research (IJRR), 2023.

This journal article extends the earlier conference version of this work [43].

Contribution statement: Lasse developed and implemented the proposed method and conducted all experiments
and evaluations. Lasse and David jointly proposed the problem formulation and wrote the initial draft of
the manuscript. All authors contributed to technical discussions and edits of the original paper submitted to
IJRR [42].



2

12 2 Estimating Player Objectives from Partially Observed Interactions

2.1 Introduction

To operate safely and efficiently in environments shared with other agents, robots must
be able to predict the effects of their actions on the decisions of others. In many such
settings, agents do not form a single team that shares a joint objective. Instead, each
agent may have an individual objective, encoded by a cost function which they optimize
unilaterally. Unless the objectives of all agents are perfectly aligned, agents must therefore
compete to minimize their own cost, while accounting for the strategic behavior of others.
For example, consider the highway navigation scenario in Figure 2.1. Here, each driver
travels along the highway with an individual objective that encodes their preferences for
speed, acceleration, and proximity to other cars. In heavy traffic, the objectives of drivers
may conflict. For instance, if car 1 (blue) wishes to maintain its speed, it must overtake the
slower vehicles in front. At the same time, however, the faster car 2 (orange) may wish to
maintain its speed but would be forced to decelerate if the driver of car 1 changes lanes.

Mathematically, such interactions of multiple agents with individual, potentially con-
flicting objectives are characterized by a noncooperative dynamic game. The theory under-
pinning dynamic games is well established [44, 45] and recent work has put forth efficient
algorithms to determine equilibrium solutions to these problems, given players’ objec-
tives [46, 47]. The forward game problem is depicted in Figure 2.1 (left to right) for the
highway driving scenario: given the cost functions of all players (left), a forward game
solver computes their rational strategies and corresponding future trajectories (right).

Unfortunately, the objectives of agents in a scene are often not known a priori. There-
fore, in order for game-theoretic methods to find practical application in fields such as
robotics, it is imperative to recover these objectives from data. This inverse dynamic game
problem is illustrated in Figure 2.1 (right to left) for the highway driving scenario: given
observations of players’ strategies (right), an inverse game solver recovers objectives (left)
which explain the observed behavior. This inverse dynamic game problem is the focus of
this work.

The challenge of recovering objectives from observed behavior has been extensively
studied in the literature on IOC [20, 21, 48] and inverse reinforcement learning (IRL)
[49, 50]. Unfortunately, however, these methods are fundamentally limited to the single-
player setting. While recent efforts extend these ideas to multi-agent IRL [51, 52], those
approaches are limited to games with potential cost structures [53] and do not directly ap-
ply in general noncooperative settings. While initial work extends IOCmethods to address
this limitation [54–56], these inverse dynamic game solvers rely upon full observation of
states and inputs of all players.

Themain contribution of this work is a novel method for learning players’ objectives in
noncooperative dynamic games from only noise-corrupted, partial state observations. In
addition to learning a cost model for all players, our method also recovers a forward game
solution consistent with the learned objectives by enforcing equilibrium constraints on
latent trajectory estimates. This bilevel formulation further allows us to couple observed
and predicted behavior to recover player’s objectives even from temporally-incomplete
interactions. As a result, our approach is amenable to online learning and prediction in a
receding-horizon fashion.

This work builds upon and extends our earlier work [43]. In this work, we provide a
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Figure 2.1: 5-player highway driving scenario, modeled as a dynamic game. Solving the “forward” problem
amounts to finding optimal trajectories (right) for all cars, given their objectives (left). In contrast, this work
addresses the “inverse,” i.e., it estimates the objectives of each player given noise-corrupted observations of each
agent’s trajectories. For example, our method can infer properties such as the degree to which each player wishes
to keep a safe distance from others (heatmap, left). These learned objectives constitute an abstract model which
can be used to predict players’ actions in the future.
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more in-depth analysis of that approach. Additionally, while our original workwas limited
to offline operation and could therefore only recover players’ objectives for interactions
which had already occurred, in this work we remove this requirement.

We evaluate our method in extensive Monte Carlo simulations in several traffic scenar-
ios with varying numbers of players and interaction geometries. Empirical results show
that our approach is more robust to partial state observations, measurement noise, and
unobserved time-steps than existing methods, and consequently is more suitable for pre-
dicting agents’ actions in the future.

2.2 Prior Work
We begin by discussing recent advances in the well-studied area of IOC. While methods
from that field address only single-player, cooperative settings, this body of work exposes
many of the important mathematical and algorithmic concepts that appear in games. We
discuss how some of these approaches have been applied in the noncooperative multi-
player setting and emphasize the connections between existing approaches and our con-
tributions.

2.2.1 Single-Player Inverse Optimal Control
The IOC problem has been extensively studied since the well-known work of Kalman [20].
In the context of IRL, early formulations such as that of Ng and Russell [49] and maximum-
entropy variants [50, 57] have proven successful in treating problems with discrete state
and control sets. In robotic applications, optimal control problems typically involve deci-
sion variables in a continuous domain. Hence, recent work in IOC differs from the IRL
literature mentioned above as it is explicitly designed for smooth problems.

One common framework for addressing IOC problems with nonlinear dynamics and
nonquadratic cost structures is bilevel optimization [21, 48]. Here, the outer problem is
a least squares or maximum likelihood estimation (MLE) problem in which demonstra-
tions are matched with a nominal trajectory estimate and decision variables parameterize
the objective of the underlying optimal control problem. The inner problem determines
the nominal trajectory estimate as the optimizer of the “forward” (i.e., standard) optimal
control problem for the outer problem’s decision variables. A key benefit of bilevel IOC
formulations is that they naturally adapt to settings with noise-corrupted partial state
observations [21].

Early bilevel formulations for IOC utilize derivative-free optimization schemes to es-
timate the unknown objective parameters in order to avoid explicit differentiation of the
solution to the inner optimal control problem [48]. That is, the inner solver is treated as
a black-box mapping from cost parameters to optimal trajectories which is utilized by the
outer solver to identify the unknown parameters using a suitable derivative-free method.
While black-box approaches can be simple to implement due to their modularity and lack
of reliance on derivative information, they often suffer from a high sampling complex-
ity [58]. Since each sample in the context of black-box IOC methods amounts to solving a
full optimal control problem, such approaches remain intractable for scenarios with large
state spaces or additional unknown parameters, such as unknown initial conditions.
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Other works instead embed the Karush–Kuhn–Tucker (KKT) conditions of the inner
problem as constraints on the outer problem. Since these techniques enforce only first-
order necessary conditions of optimality, globally optimal observations are unnecessary
and locally optimal demonstrations suffice. Yet, a key computational difficulty of KKT-
constrained IOC formulations is that they yield a nonconvex optimization problem due
to decision variables in the outer problem appearing nonlinearly with inner problem vari-
ables in KKT constraints. This occurs even in the relatively benign case of linear-quadratic
IOC.

In contrast to bilevel optimization formulations where necessary conditions of opti-
mality are embedded as constraints, recent methods [22, 27, 59–61] minimize the residual
of these conditions directly at the demonstrations. Since the observed demonstration is as-
sumed to satisfy any constraints of the underlying forward optimal control problem, this
method can be formulated as fully unconstrained optimization. Additionally, these resid-
ual formulations yield a convex optimization problem if the class of objective functions is
convex in the unknown parameters at the demonstration [22, 28]. This condition holds
in the common setting of linearly-parameterized objective functions. Levine and Koltun
[59] propose a variant of this approach that utilizes quadratic approximations of the re-
ward model around demonstrations to derive optimality residuals in a maximum entropy
framework. Englert and Toussaint [22] present an extension of this method to accommo-
date inequality constraints on states and inputs. Much like KKT-constrained formulations,
these residual methods operate on locally optimal demonstrations. However, an impor-
tant limitation of residual methods is that they require observations of full state and input
sequences. More recently, Menner and Zeilinger [27] compared IOC techniques based on
KKT constraints and residuals and demonstrated inferior performance of the latter even
in problems with linear dynamics and quadratic target objectives.

Our work takes inspiration from the KKT-constraint formulation for single-player IOC
as discussed by Albrecht et al. [21] and Menner and Zeilinger [27]. While these works
apply only to single-player settings, we utilize the necessary conditions for open-loop
Nash equilibria (OLNEs) [45] to generalize this approach to noncooperative multi-player
scenarios.

2.2.2 Multi-Player Inverse Dynamic Games

Many of the IOC techniques discussed above have close analogues in the context of multi-
player inverse dynamic games.

As in single-player IOC, methods akin to black-box bilinear optimization have also
been studied in the context of inverse games [62, 63]. Peters [62] uses a particle-filtering
technique for online estimation of human behavior parameters. This work demonstrates
the importance of inferring human behavior parameters for accurate prediction in inter-
active scenarios. However, there, inference is limited to a single parameter and the work
highlights the challenges associated with scaling this sampling based approach to high-
dimensional latent parameter spaces. Le Cleac’h et al. [63] employ a similar derivative-free
filtering technique based on an unscented Kalman filter. While this approach drastically
reduces the overall sample complexity, it still relies on exact observations of the state to
reduce the required number of solutions to full dynamic games at the inner level.
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Another line of research has put forth solution techniques for inverse games that fol-
low from the residual methods outlined in Section 2.2.1 [54–56, 64]. Köpf et al. [64] study a
special case of an inverse linear-quadratic game in which the equilibrium feedback strate-
gies of all but one player are known. This assumption reduces the estimation problem
to single-player IOC to which the residual methods discussed above can be applied di-
rectly. Rothfuß et al. [54] present a more general approach that does not exploit such
special structure but instead minimizes the residual of the first-order necessary condi-
tions for a local OLNE. Inga et al. [55] present a variant of this OLNE residual method in a
maximum entropy framework, generalizing the single-player IOC algorithm proposed by
Levine and Koltun [59]. Recently, Awasthi and Lamperski [56] also extended the OLNE
residual method of Rothfuß et al. [54] to inverse games with state and input constraints.
This approach extends that of Englert and Toussaint [22] to noncooperative multi-player
scenarios.

All of these inverse game KKT residual methods share many properties with their
single-player counterparts. In particular, since they rely upon only local equilibrium cri-
teria, they are able to recover player objectives even from local—rather than only global—
equilibrium demonstrations. However, as in the single-player case, they rely upon obser-
vation of both state and input to evaluate the residuals.

In contrast to KKT residual methods [54–56], we enforce these conditions as con-
straints on a jointly estimated trajectory, rather than minimizing the residual of these
conditions directly at the observation. By maintaining a trajectory estimate in this man-
ner, our method explicitly accounts for observation noise, partial state observability, and
unobserved control inputs. Furthermore, in contrast to black-box approaches to the in-
verse dynamic game problem [62, 63], our method does not require repeated solutions of
the underlying forward game. Moreover, our method returns a full forward game solution
in addition to the estimated objective parameters for all players.

2.3 Background: Open-Loop Nash Games
While this work is concerned with the inverse game problem of learning objectives from
observed behavior, we first provide a technical introduction to the theory of forward open-
loop dynamic Nash games. These forward games correspond to the model that we seek to
recover in this work. Furthermore, as we shall discuss in Section 2.4, they may be used at
the inner level of a bilevel optimization problem to formulate the inverse game problem.

As discussed in Section 2.1, dynamic games provide an expressive mathematical for-
malism for modeling the strategic interactions of multiple agents with differing objectives.
Interested readers are directed to [45] for a more complete discussion. We note that dy-
namic games afford a wide variety of equilibrium concepts; our choice of open-loop Nash
Equilibria in this work captures scenarios in which players do not account for future infor-
mation gains and instead commit to a sequence of control decisions a priori. These condi-
tions may occur when occlusions prevent future information gains or when bounded ratio-
nality causes players to ignore them. OLNEs have been demonstrated to capture dynamic
interaction when embedded in receding-horizon re-planning schemes [65, 66]. Beyond
that, restricting our attention to OLNEs engenders computational advantages which are
discussed below. Other choices of solution concept are possible and should be explored in
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future work. Recent methods such as those of Di and Lamperski [47] and Le Cleac’h et al.
[66] facilitate efficient solutions to the “forward” open-loop games given players’ objectives
a priori.

2.3.1 Preliminaries
Consider a game played betweenN players over discrete time-steps t ∈ [T ] := {1, . . . , T}.
The game is comprised of three key components: dynamics, objectives (which are later
presumed to be unknown in this work), and information structure.

We presume that the game is Markov with respect to state x ∈ Rn. That is, given each
player’s control input ui ∈ Rmi

, i ∈ [N ], the state evolves according to the difference
equation

xt+1 = ft(xt, u
1
t , . . . , u

N
t ). (2.1)

For clarity, we shall introduce the following shorthand notation:

x = (x1, . . . , xT ),

ui = (ui1, . . . , u
i
T ),

ut = (u1t , . . . , u
N
t ),

u = (u1, . . . ,uN ).

Observe that the state x pertains to the entire game, not only to a single player. In the
examples presented in this work,x is simply the concatenation of individual players’ states,
and correspondingly the dynamics are independent for all players. However, this is not
always the case and the methods developed here apply in the more general settings as
well.

The objective of player i is encoded by their distinct cost function J i, which they seek
to minimize. This cost can in general depend upon the sequence of states and inputs for
all players.¹ In this work, we presume that objectives are expressed in time-additive form,
as is common across the optimal control and reinforcement learning literature:

J i(x,u) :=
T∑
t=1

git(xt, u
1
t , . . . , u

N
t ). (2.2)

Since the state trajectory x follows (2.1), these cost functions can also be written in terms
of the initial condition x1 and the sequence of control inputs for all players u. For this
reason, we shall also use the notation J i(u;x1), and refer to the tuple of initial state,
dynamics, and objectives as

Γ :=
(
x1, {ft}t∈[T ], {J i}i∈[N ]

)
. (2.3)

Finally, the information structure of a dynamic game refers to the information avail-
able to each player when they are required to make a decision at each time. At time t,

¹State and input constraints are also possible, although they complicate the notion of equilibrium solution. So-
lution methods such as those of Dirkse and Ferris [37] and Laine et al. [67] address constrained forward games.
The present work readily extends to the constrained case; however, we neglect them for clarity of presentation.
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then, Playeri’s input is a function γit : Iit → Rmi , where Iit is the set of information avail-
able to Playeri at time t. In this work, we consider open-loop information structures, i.e.,
where Iit = {x1}.² In open-loop information, then, it suffices for Playeri to specify their
input sequence ui given a fixed initial condition x1. For this reason, we neglect a more
detailed treatment of strategy spaces and information structure, and simply refer to the
finite-dimensional sequence of control inputs for each player.

This characterization of a dynamic game is intentionally general. Our solution meth-
ods will rely upon established numerical methods for smooth optimization, however, and
as such we require the following assumption.

Assumption 2.1 (Smoothness) Dynamics f and objectives J i have well-defined second
derivatives in all state and control variables, at all times and for all players.

Most physical systems of interest and interactions thereof are naturally modeled in this
way. However, we note that, for example, hybrid dynamics such as those induced by
contact do not satisfy this assumption.

We shall illustrate key concepts using a consistent “running example” throughout this
chapter.
Running example: Consider an N = 2-player linear-quadratic (LQ) game—i.e., one in
which dynamics ft are linear in state xt and control inputs ut, and costs J i are quadratic
in states and controls. Let each player independently follow the dynamics of a double inte-
grator in the Cartesian plane. State x = (p1x, p

1
y, ṗ

1
x, ṗ

1
y, p

2
x, p

2
y, ṗ

2
x, ṗ

2
y) then evolves with

inputs ui = (p̈ix, p̈
i
y) according to

xt+1 =

A︷ ︸︸ ︷[
Ã 0

0 Ã

]
xt +

B1︷︸︸︷[
B̃
0

]
u1t +

B2︷︸︸︷[
0

B̃

]
u2t , (2.4)

where Ã =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , B̃ =


0 0
0 0
∆t 0
0 ∆t

 ,
and ∆t is a uniform time discretization, e.g., 0.1s. Each player has a quadratic objective of
the form

J i =
1

2

T∑
t=1

θiQxtQitxt + N∑
j=1

θijRu
j⊤
t Rijt u

j
t

 . (2.5)

In this simple example,Qit andR
ij
t are known, positive definite matrices encoding the prefer-

ences of each player. The scalars θiQ ∈ R and θijR ∈ R weight these known matrices. In this
work, we develop a technique to learn a priori unknown parameters such as the costs weights
above from both offline and online data. Note that this simple LQ game shall only serve to
explain the general concepts of our method. For our experiments presented in Section 2.7, we

²Recent work in solving forward games also considers feedback information in which Ii
t = {xt}; see Fridovich-

Keil et al. [46] and Laine et al. [67].
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consider more complex problems with nonlinear dynamics and nonquadratic costs, such as
the 5-player highway navigation problem shown in Figure 2.1.

2.3.2 The Nash Solution Concept
Combining these components, each player i in an open-loop dynamic game seeks to solve
the following optimization problem

∀i ∈ [N ]

{
min
x,ui

J i(u;x1) (2.6a)

s.t. xt+1 = ft(xt,ut), ∀t ∈ [T − 1]. (2.6b)

There exist a variety of distinct solution concepts for such smooth open-loop dynamic
games. In this work, we consider the well-known Nash equilibrium concept, wherein no
player has a unilateral incentive to change its strategy. Mathematically, the Nash concept
is defined as follows.

Definition 2.1 (Open-loop Nash equilibrium) The strategies u∗ := (u1∗, . . . ,uN∗) consti-
tute an open-loop Nash equilibrium (OLNE) in the game Γ =

(
x1, {ft}t∈[T ], {J i}i∈[N ]

)
if

the following inequalities hold:

J i∗ = J i(u∗;x1) ≤ J i
(
(ui,u−i∗);x1

)
, ∀i ∈ [N ]. (2.7)

Here, we use the shorthand (ui,u−i∗) to indicate the collection of strategies in which only
Playeri deviates from the Nash profile, i.e., ui 6= ui∗.

Note that, at a Nash equilibrium, each player must independently have no incentive to de-
viate from its strategy. Since players’ objectives may generally conflict, the Nash concept
encodes noncooperative, rational, and potentially selfish behavior.

Unfortunately, Nash equilibria are known to be very difficult to find in general [68].
In this work, we seek only local equilibria which satisfy the Nash conditions (2.7) to first
order. That is, following similar approaches in both single-player IOC [21, 22] and for-
ward/inverse open-loop games [60, 66], we encode forward optimality via the correspond-
ing first-order necessary conditions. These first-order necessary conditions are given by
the union of the individual players’ KKT conditions, i.e.,

0 = G(x,u,λ) :=

 ∇xJ
i +∇xF(x,u)⊤λi

∇uiJ i +∇uiF(x,u)⊤λi
}
∀i ∈ [N ]

F(x,u)

 . (2.8)

Here, the first two block-rows are repeated for all players, and the function F(x,u) ac-
cumulates the dynamic constraints of (2.6b) at all time steps, with the tth row given by
xt+1 − ft(xt, u

1
t , . . . , u

N
t ). Note that we have also introduced costate variables λi :=

(λi1, . . . , λ
i
T−1) for each player, with λit ∈ Rn the Lagrange multiplier corresponding to

Playeri’s dynamics constraint in (2.6b) at time step t. Note that, as with control inputs, we
use the notation λ := (λ1, . . . ,λN ).
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Running example: Consider the two-player LQ example above with double integrator
dynamics given by (2.4) and quadratic objectives given by (2.5). The tth block of the first row
of (2.8) is given by

0 = θiQQ
i
txt + λit−1 −A⊤λit (2.9)

for Playeri. Likewise, the tth block of the second row of (2.8) for Playeri is given by

0 = θiiRR
ii
t u

i
t −Bi⊤λit. (2.10)

Finally, the tth block of the final row of (2.8) is given by

0 = xt+1 −Axt −B1u1t −B2u2t . (2.11)

Computationally, the KKT conditions of the forward game, given in (2.8), are a set of,
generally nonlinear, equality constraints in the variables x,u, and λ. To find a solution—
that is, a root of G(x,u,λ)—we may employ a root-finding algorithm such as a variant
of Newton’s method [58, Chapter 11]. This is the approach taken by, e.g., Le Cleac’h et al.
[66].
Running example: For our LQ example, it can be seen that a single step of Newton’s
method on G(·) amounts to the well-known Riccati solution to an open-loop LQ game [45,
Chapter 6].³

2.4 Problem Setup
Solving a forward Nash game amounts to identifying optimal strategies for all players, pro-
vided a priori knowledge of their objectives J i. By contrast, in this work we are concerned
with the inverse Nash problem, i.e., that of identifying players’ objectives which explain
their observed behavior. To develop the inverse Nash problem, here we shall presume that
learning occurs offline, given a sequence of noisy, partial observations of all players’ state.
The method we develop for this setting, however, is amenable to trajectory prediction and
online, receding-horizon operation as discussed in Section 2.5.2.

We formulate the inverse Nash problem as one of offline learning, in which players’ ob-
jectives belong to a known parametric function class. To that end, we make the following
assumption.

Assumption 2.2 (Parametric objectives) Playeri’s cost function is fully described by a vec-
tor of parameters θi ∈ Rki . That is, J i(·; θi) ≡

∑T
t=1 g

i
t(xt, u

1
t , . . . , u

N
t ; θi).

Recalling Assumption 2.1, the functions git(·; θi) have well-defined derivatives in
states xt and controls ui. We shall also extend this smoothness assumption to include the
parameters themselves.

³Note that this Newton step differs from that given by the Riccati solution to a feedback LQ game.



2.4 Problem Setup

2

21

Assumption 2.3 (Smoothness in parameter space) Extending Assumption 2.1, we require
that stage cost functions git(·; θi) have well-defined first- and second-derivatives with respect
to the parameter vector θi.

This smoothness assumption is quite general. For example, players’ stage costs git(·; θi)
may be encoded as arbitrary function approximators such as artificial neural networks. In
this work, we choose a more interpretable (though less flexible) parametric structure; we
defer an investigation of more general cost structures for future work. In particular, the
examples considered here use a linearly-parameterized structure in which git(·; θi) is a
linear function of θi, i.e., git(·; θi) ≡ θi⊤g̃it(·) for some set of potentially nonlinear basis
functions g̃it(·). By incorporating appropriate domain-specific knowledge, however, these
relatively simple cost structures are able to encapsulate complex, strategic interactions
such as the highway lane changes of Figure 2.1.
Running example: Recall the quadratic objectives of (2.5), and take cost parameters θi =
(θiQ, θ

ij
R )j∈[N ]. Observe, therefore, that Playeri’s objective depends linearly upon its cost pa-

rameters θi.

Thus equipped, the objective learning problem reduces to maximizing the likelihood
of a sequence of partial state observations y := (y1, . . . , yT ) for the parametric class of
games Γ(θ) =

(
x1, f, {J (i)( · ; θ(i))}i∈[N ]

)
. Formally, we seek to solve a problem of the

form

max
θ,x,u

p(y | x,u) (2.12a)

s.t. (x,u) is an OLNE of Γ(θ) (2.12b)
(x,u) is dynamically feasible under f, (2.12c)

where θ aggregates all players’ cost parameters, i.e., θ := (θ1, . . . , θN ), and p(y | x,u)
constitutes a known observation likelihood, or measurement, model.

Remark 2.1 (Initial state) Observe that x1 is an explicit decision variable in (2.12), whereas
it represents a constant (known) initial condition in the forward game problem discussed in
Section 2.3. This reflects the fact that the state trajectory, including initial conditions, must
be estimated as part of the inverse problem. As we shall see, estimating the state trajectory
jointly with the cost parameters allows our method to be less sensitive to observation noise.

This measurement model is arbitrary, though, following Assumption 2.1 and Assump-
tion 2.3, it must be smooth. In the simplest instance, we may receive an exact measure-
ment of the sequence of states and inputs for all players. In that case, the measurement
model p(y | x,u) reduces to a Dirac delta function. More generally, p(y | x,u) may be
an arbitrary smooth probability density function, making our formulation amenable to
realistic sensors such as cameras or LiDARs.

Prior work in both single-player IOC, such as that of Englert and Toussaint [22], and in-
verse games, such as those of Awasthi and Lamperski [56] and Rothfuß et al. [54], presumes
a degenerate measurement model in which states and controls are observed directly with-
out any noise. When perfect observations are unavailable, these methods naturally extend
by first estimating a sequence of likely states and controls (a standard nonlinear filtering
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problem). In Section 2.6, we describe these sequential estimation methods in greater detail.
In contrast, our formulation given in (2.12) encodes a coupled estimation problem inwhich
states, control inputs, and cost parameters must all be estimated simultaneously. Thus, our
method exploits the additional coupling imposed by the Nash equilibrium constraints onto
the unknowns. In Section 2.7, we conduct a series of Monte Carlo experiments to quantify
the advantages afforded by simultaneous learning over sequential estimation.

2.5 Equilibrium-Constrained Cost Learning
Here we present our core contribution, a mathematical formulation of objective inference
in multi-agent, noncooperative games. We express this problem as a nonconvex optimiza-
tion problemwith equilibrium constraints, whichwe relax into a standard-format equality-
constrained nonlinear program.

2.5.1 Offline Learning
We first consider the problem of learning each player’s objective from previously recorded
data of prior interactions, offline.

(2.12) is a mathematical programwith equilibrium constraints [69, 70], with the nested
equilibrium conditions of (2.12b) encoding the Nash inequalities of Definition 2.1. Equi-
librium constraints generalize bilevel programming, and computational approaches tend
to be less mature than those for standard-form (in)equality-constrained programming.

We relax the equilibrium constraint of (2.12b) by replacing it with its KKT condi-
tions, i.e., by substituting (2.8). This yields:

max
θ,x,u,λ

p(y | x,u) (2.13a)

s.t. G(x,u,λ; θ) = 0. (2.13b)

Here, we have explicitly written the KKT conditions from (2.8) in terms of the cost param-
eters θ. Additionally, observe that in (2.13), the costates λ required to evaluate the KKT
conditions G(·; θ) appear as additional primal variables. The constraints of (2.13b) will be
assigned their own Lagrange multipliers, which are distinct from the original costates. By
letting states, control inputs, and costates be primal variables, the KKT conditions G(·) do
not depend explicitly upon the observations y. Thus, solving (2.13) does not require com-
plete state or input observations; rather, the equilibrium constraints of (2.13b) allow us to
reconstruct this missing information while we estimate cost parameters θ, simultaneously.
Several remarks are in order.

Remark 2.2 (Multiple observed trajectories) We have developed (2.13) for the setting in
which a single trajectory (x,u) has been observed, yielding a measurement sequence y. How-
ever, our approach affords straightforward extension to settings in which player’s objectives
are learned from multiple demonstrations. In this instance, the primal variables (x,u,λ)
would be replicated for all trajectories, although the cost parameters θ would be shared. The
objective given by (2.13a) would be replaced by the joint probability of all measurements con-
ditioned on all underlying trajectories, and the equilibrium constraints in (2.13b) would be
concatenated for all trajectories.
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Remark 2.3 (Regularizing parameters) Depending upon the parametric structure of play-
ers’ objectives J i(·; θi), and hence the structure of KKT residual G(·; θ), it can be critical to
regularize and/or constrain cost parameters. For example, if there exists a choice of θi for
Playeri such that J i(x,u; θi) is constant for all dynamically-feasible trajectories (x,u), then
every such trajectory would satisfy the equilibrium constraint of (2.12b). Such choices of θ
must be avoided, e.g., by regularizing or otherwise constraining parameters.

Running example: Following Remark 2.3, we constrain the parameters θi ≥ c > 0.
Moreover, to account for scale invariance, we constrain their sum to unity, i.e.,

∑
i∈[N ]

θiQ +
∑
j∈[N ]

θijR

 = 1.

Least Squares

A common observation model p(y | x,u) is the additive white Gaussian noise (AWGN)
model. Here, each observation yt depends only upon the current state xt and control
inputs ut, i.e.,

yt = ht(xt,ut) + nt, (2.14)

where the (potentially nonlinear) function ht computes the expected measurement, and nt
is a zero-mean Gaussian white noise process with known covariance, i.e., nt ∼ N (0,Σt).
In this case, following standard methods in maximum likelihood estimation [71], it is
straightforward to express the maximization in (2.13a) as nonlinear least squares by taking
the negative logarithm of p(y | x,u):

min
θ,x,u,λ

T∑
t=1

(
yt − ht(xt)

)⊤
Σ−1
t

(
yt − ht(xt)

)
(2.15a)

s.t. G(x,u,λ; θ) = 0. (2.15b)

In summary, this inverse problem entails the following task: Find those parameters
θ for which the corresponding game solution generates expected observations near the
observed data. This formulation of the inverse game problem can be encoded using well-
established numerical modeling languages such as CasADi [72] or JuMP [73], and solved
using off-the-shelf optimization routines such as IPOPT [40] or SNOPT [74].

Problem Complexity

Let us examine the structure of the least squares problem in (2.15) more carefully. In
general, the observation map ht(·) and KKT conditions G(·; ·) may be arbitrarily nonlin-
ear. Therefore, without further structural assumptions, our formulation is an equality-
constrained nonlinear least squares problem. Due primarily to the nonlinearities in G,



2

24 2 Estimating Player Objectives from Partially Observed Interactions

(2.15) is generally nonconvex. Solution methods, therefore, may be sensitive to initial val-
ues of primal variables; we discuss a straightforward initialization scheme in Section 2.6.1.

Perhaps surprisingly, this nonconvexity persists in the LQ setting of our running ex-
ample, even when ht(·) is the identity.
Running example: Consider the LQ setting, with θi = (θiQ, θ

ij
R )j∈[N ] as before. Let the

observationmap be the identity, i.e.,ht(xt) = xt and presumeAWGN.The resulting nonlinear
least squares problem in (2.15) has constraints of the form given in Equations (2.9) to (2.11).
Let us consider the first of these constraints for a single time step t and Playeri:

0 = θiQQ
i
txt + λit−1 −A⊤λit.

Recall that the decision variables in our formulation are (θ, x,u,λ). Here, we see that θi

multiplies xt. At best, therefore, this constraint is a bilinear equality, making the overall
problem in (2.15) nonconvex even for this minimal inverse LQ game.

Whenwe directly observe both state and control inputswithout noise, i.e., yt ≡ (xt,ut),
these constraints become linear even in the general non-LQ setting, so long as players’
objectives are linearly parameterized. In this setting, we may rewrite (2.9) as

0 = ∇xt

θi⊤g̃i
t(·)︷ ︸︸ ︷

git(xt, ut; θ
i)+λit−1 −∇xt

ft(xt, ut)
⊤λit (2.16a)

= θi⊤∇xt
g̃ it(xt, ut) + λit−1 −∇xt

ft(xt, ut)
⊤λit. (2.16b)

With this observation model, then, the only decision variables are (θi, λit, λit−1), which all
appear linearly. Furthermore, the least squares objective in (2.15a) becomes unnecessary,
since, by assumption, the measurements y already include the states x exactly. Incorpo-
rating these simplifications, the entire constrained least squares problem of (2.15) reduces
to the problem

find θ,λ (2.17a)
s.t. 0 = θi⊤∇xt

g̃ it(xt, ut) + λit−1

−∇xt
ft(xt, ut)

⊤λit, ∀i, t (2.17b)
0 = θi⊤∇ui

t
g̃ it(xt, ut)

−∇ui
t
ft(xt, ut)

⊤λit, ∀i, t. (2.17c)

Because the constraints in (2.17) are linear, the problem is equivalent to a linear system
of equations. Moreover, since the constraints are completely decoupled for each player,
they may be solved separately and in parallel for all players to obtain cost parameters θi
and costates λi. This reduction forms the basis for the state-of-the-art in solving inverse
dynamic games [54, 56], which only apply in settings with perfect state and input obser-
vations. To compare against these methods in more general settings that feature noise,
unobserved inputs, and partial state measurements, we augment these methods with a
sequential optimization procedure in Section 2.6. Comparative Monte Carlo studies of all
approaches are presented in Section 2.7.
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2.5.2 Online Learning
While Section 2.5.1 estimates the objectives of interacting agents from recorded data offline,
our formulation for inverse Nash problems extends naturally to an online learning setting;
i.e., cost learning from observations of ongoing interactions. As we shall discuss below,
our method can perform online cost learning and trajectory prediction simultaneously,
making it suitable for receding-horizon applications.

Learning with Prediction

Equipped with a tractable solution strategy for the setting of offline learning, we now con-
sider a coupled prediction and learning problem. Similar problems have been considered in
the single-agent setting by, e.g., [61, 75]. Here, we aim to learn the cost parameters θ from
only a subset of the game horizon; i.e., we presume that observations y = (y1, . . . , yT̃ )

where the observation horizon T̃ ≤ T . Despite this change, the original problem of (2.12)
remains effectively unchanged; only the objective has changed. In particular, by substi-
tuting the KKT conditions for an OLNE in place of the original equilibrium constraint as
in (2.13), and making AWGN assumptions, we recover a variant of the constrained least
squares formulation of (2.15):

min
θ,x,u,λ

T̃∑
t=1

(
yt − ht(xt)

)⊤
Σ−1
t

(
yt − ht(xt)

)
(2.18a)

s.t. G(x,u,λ; θ) = 0. (2.18b)

Note that the upper limit of addition is T̃ , rather than T as in (2.15a), while the OLNE
KKT conditions in (2.18b) depend upon states, inputs, and costates for all times t ∈
{1, . . . , T̃ , . . . , T}.

Despite the similarities between this problem and (2.15), the Nash trajectory (x∗,u∗),
which emerges as a solution affords a new interpretation. In particular, for times t ≤ T̃
these equilibrium states and controls constitute filtered estimates of the observed quanti-
ties y, while for times t > T̃ they represent predictions of the future. Importantly, how-
ever, extending trajectories beyond the observation horizon T̃ adds additional constraints
to (2.15). This ability to incorporate future, unobserved states makes the method more
robust and data efficient when only a fraction of the game horizon is observed. Conse-
quently, this formulation can be employed for online learning in scenarios of ongoing
interactions. We provide a detailed empirical analysis of this setting in Section 2.7.2. A
summary of this variant of our inverse game solver is provided in Figure 2.2a.

receding-horizon Learning

Our method is directly amenable to receding-horizon, online operation. Here, we suppose
that the agents interact over the half-open time-interval t ∈ {1, . . . , T̃ , . . . ,∞}, and that
observations exist for t ≤ T̃ . Here, T̃ may be interpreted as the current time and, as
time elapses, both T̃ and the overall prediction horizon T increase accordingly. Unfortu-
nately, however, increasing the overall problem horizon increases the number of variables
in (2.12), eventually making the problem intractable.
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To simplify matters, we approximate the learning problem at each instant by neglect-
ing all times outside the interval {T̃ − so, . . . , T̃ , . . . , T̃ + sp}, where so is the length of a
fixed-lag buffer of past observations, and sp is the horizon of future state predictions. In
this setting, the total number of variables remains constant (since the length of this inter-
val is constant), rendering (2.12) tractable to solve online. More precisely, at time T̃ (and
under AWGN assumptions), we solve a modified version of (2.18)

min
θ,x,u,λ

T̃∑
t=T̃−so

(
yt − ht(xt)

)⊤
Σ−1
t

(
yt − ht(xt)

)
(2.19a)

s.t. G(x,u,λ; θ) = 0, (2.19b)

where the KKT constraint G(·) is understood to depend upon times t ∈ {T̃ − so, . . . ,
T̃ , . . . , T̃ + sp} and states, control inputs, and costates are also limited to that interval.
At each later time, we solve a problem with identical structure, with the understanding
that T̃ will have changed to reflect the elapsed time. In effect, this procedure amounts
to simultaneous fixed-lag smoothing and receding-horizon prediction. We simulate this
online learning procedure in Section 2.7.3.

2.6 Baseline
Recall the discussion of Section 2.5.1, in which we show that—with noiseless observations
of states x and controls u, and linear cost parameterization git(·; θi) ≡ θi⊤g̃it(·)—our for-
mulation reduces to the linear system of equations of (2.17). This reduction underlies state
of the art methods for learning the objectives of players in games [54, 56]. Therefore,
such methods unfortunately require noiseless observations of the full state and input se-
quences for all players. In contrast, our approach in (2.13) is amenable to noisy, partial
observations.

2.6.1 Recovering Unobserved Variables
To provide ameaningful comparison between our proposed technique and the state-of-the-
art in settings with imperfect observations, we augment [54, 56] with a pre-processing to
estimate unobserved states and inputs. To that end, we solve the following relaxed version
of (2.13):

x̃, ũ := argmax
x,u

p(y | x,u) (2.20a)

s.t. F(x,u) = 0. (2.20b)

As in Section 2.5.1, under a AWGN assumption (2.20) becomes equality-constrained non-
linear least squares. However, unlike (2.15), we have neglected the first two rows of the
equilibrium constraint given in (2.8). That is, (2.20) computes a maximum likelihood esti-
mate of states and inputs irrespective of the underlying game structure.

The solution of this smoothing problem is used as an estimate of states and inputs when
the baseline is employed in partially observed settings. Beyond that, the same procedure
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serves as simple, yet effective initialization scheme for our method to tackle issues of non-
convexity discussed in Section 2.5.1.

2.6.2 Minimizing KKT Residuals
Like our proposed method, the state-of-the-art methods developed by Rothfuß et al. [54]
and Awasthi and Lamperski [56] use the forward game’s KKT conditions to measure the
quality of a set of cost parameters θ. While we compare to this derivative-based, KKT
condition approach, we note that other approaches outlined in Section 2.2.2 such as [63]
utilize black-box optimization methods and do not require or exploit derivative informa-
tion. These significant algorithmic differences—and the resulting differences in sample
complexity, locality of solutions, etc.—make a direct comparison difficult to interpret.

Specifically, the KKT residual method of [54, 56] fixes the state and input sequences to
their observed—or in our case, estimated via (2.20)—values. Fixing these variables, how-
ever, the resulting linearly-constrained satisfiability problem of (2.17) may be infeasible,
depending upon the parametric structure of costs git(·; θi). In lieu, state-of-the-art ap-
proaches minimize the KKT residual itself, i.e.,

min
θ,λ
‖G(x̃, ũ,λ; θ)‖22 . (2.21)

In prior work [54, 56], x̃ and ũ are assumed to be directly observed. As discussed in
Section 2.6.1, here we presume they are the results of the pre-processing step given in
(2.20). Additionally, like the linear system of equations in (2.17), the only decision variables
here are the objective parameters θ and the costates λ. In effect, the baseline does not
refine the state and input estimates given by the pre-processing step of (2.20). Furthermore,
as in (2.17), the problem may be decomposed into separate problems for each player and
solved in parallel. In essence, then, this KKT residual formulation neglects the coupling
between players’ actions which is encoded in the equilibrium conditions; computationally,
it reduces to solving separate IOC problems for each player neglecting game-theoretic
interactions with others.

A schematic overview of this baseline approach is depicted in Figure 2.2b. By first
estimating the states x and inputs u from measurements y, and only afterward learning
the cost parameters θ and associated costates λ, the KKT residual method can be thought
of as a sequential decomposition of our approach. By contrast, our formulation main-
tains (x,u) as decision variables and refines the initial guess of (x̃, ũ) by identifying all
variables simultaneously.
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2.7 Experiments
In this work, we develop a technique for learning players’ objectives in continuous dy-
namic games from noise-corrupted, partial state observations. We conduct a series of
Monte Carlo studies to examine the relative performance of our proposed methods and
the KKT residual baseline in both offline and online learning settings.

2.7.1 Experimental Setup
We implement our proposed approach as well as the KKT residual baseline of [54] in the
Julia programming language [76], using the mathematical modeling framework JuMP [73].
As a consequence, our implementation encodes an abstract description of (2.13), making
it straightforward to use in concert with a variety of optimization routines. In this work,
we use the open source COIN-OR IPOPT algorithm [40]. The source code for our imple-
mentation is publicly available.⁴

To evaluate the relative performance of our proposed approach with the KKT resid-
ual baseline, we perform several Monte Carlo studies. The details of these studies are
described below. However, all of these studies share the following overall setup: we fix
a cost parameterization for each player, find corresponding OLNE trajectories as roots
of (2.8) using the well-known iterated best response (IBR) algorithm [65], and simulate
noisy observations thereof with additive white Gaussian noise (AWGN) as in (2.14). Each
study then presents samples across a different problem parameter to test the sensitivity of
both approaches to observation noise (Sections 2.7.2 and 2.7.3) and unobserved time-steps
(Section 2.7.2) in two different problem settings.

In each of the studies below, we considerN vehicles navigating traffic, and instantiate
game dynamics and player objectives as follows. Each vehicle has its own state xi such
that the global game state is concatenated as x = (x1, . . . , xN ). Further, each vehicle
follows unicycle dynamics at time discretization ∆t:

xit+1 =


(x-position) pix,t+1 = pix,t +∆t vit cosψit
(y-position) piy,t+1 = piy,t +∆t vit sinψit
(heading) ψit+1 = ψit +∆t ωit
(speed) vit+1 = vit +∆t ait,

(2.22)

where uit = (ωt, at) includes the yaw rate and longitudinal acceleration. Finally, each
player’s objective is characterized by a stage cost git which is a weighted sum of several
basis functions, i.e.,

git =

5∑
ℓ=1

wiℓg
i
ℓ,t



gi1,t = 1(t ≥ T − tgoal)d(xit, xigoal) (2.23a)

gi2,t = −
∑
j ̸=i

log(‖pi − pj‖22) (2.23b)

gi3,t = (vi)2 (2.23c)
gi4,t = (ωit)

2 (2.23d)
gi5,t = (ait)

2. (2.23e)

⁴https://github.com/PRBonn/PartiallyObservedInverseGames.jl

https://github.com/PRBonn/PartiallyObservedInverseGames.jl
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Here, the cost parameters θi = (wiℓ)ℓ∈[5], w
i
ℓ ∈ R+ are positive weights for each cost

component. Further, pi = (pix, p
i
y) denotes the planar position of Playeri, and d(·, ·) is

an arbitrary distance mapping. For example, we may choose d(xit, xigoal) = ‖pit − pigoal‖22
to compute squared distance from a fixed goal position. Note, however, that this map
is generic and can also be used to encode more complex goal-reaching specifications as
in the highway lane-changing example depicted in Figure 2.1. Taken together, the basis
functions encode the following aspects of each player’s preferences:

1. Be close to the goal state within the last tgoal time steps (2.23a)

2. Avoid close proximity to other vehicles (2.23b)

3. Avoid high speeds (2.23c)

4. Avoid large control efforts (2.23d, 2.23e)

Games of this form are inherently noncooperative since players must compete to reach
their own goals efficiently while avoiding collision with one another. Hence, they must
negotiate these conflicting objectives and thereby find an equilibrium of the underlying
game.

In all of the Monte Carlo studies, we evaluate the approaches for two different noisy
observation models hfull

t and hpartial
t . In hfull

t (xt) := xt, estimators observe the full state,
and in hpartial

t (xt) := (p1t , ψ
1
t , . . . , p

N
t , ψ

N
t ), estimators observe the position and heading

but not the speed of each agent; i.e., they receive a partial state observation.

2.7.2 Detailed Analysis of a 2-Player Game
We first study the performance of our method in a simplified, N = 2-player game. This
set of experiments demonstrates the performance gap of our approach and the KKT resid-
ual baseline in methods in a conceptually simple and easily interpretable scenario. Here,
the game dynamics are given as in (2.22), and player objectives are parameterized as in
(2.23). In particular, we let d(xit, xigoal) = ‖pit − pigoal‖22. In summary, therefore, each vehi-
cle wishes to reach a fixed, known goal position in the plane while avoiding collision with
the other.

Offline Learning

We begin by studying both our method’s and the baseline’s ability to infer the unknown
objective parameters θ , as developed in Section 2.5.1. To do so, we conduct a Monte Carlo
study for the aforementioned 2-player collision-avoidance application.

We generate 40 random observation sequences at each of 22 different levels of isotropic
observation noise. For each of the resulting 880 observation sequences we run both our
method and the baseline to recover estimates of weights θi = (wiℓ)ℓ∈[5] for each player.
Note that in this offline setting both methods learn these objective parameters from noisy
observations of a single, complete game trajectory. That is, each estimate relies upon 25 s
of simulated interaction history from a single scenario.
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Figure 2.3 shows the estimator performance for varying levels of observation noise in
two different metrics. Figure 2.3a reports the mean cosine error of the objective parameter
estimates. That is, we measure cosine-dissimilarity between the unobserved true model
parameters θtrue and the learned estimates θest according to

Dcos(θtrue, θest) = 1− 1

N

∑
i∈[N ]

θi⊤trueθ
i
est∥∥θitrue∥∥2 ∥∥θiest∥∥2 , (2.24)

where the mean is taken over the N players. The normalization of the parameter vectors
in (2.24) reflects the fact that the absolute scaling of each player’s objective parameters
does not effect their optimal behavior, holding other players’ parameters fixed. In sum,
this metric measures the estimator performance in objective parameter space.

Figure 2.3b shows the mean absolute position error for trajectory reconstructions com-
puted by finding a root of (2.8) using the estimated objective parameters. Reconstruction
error allows us to inspect the quality of learned cost parameters for explaining observed
vehicle motion, providing a more tangible metric of algorithmic quality. In addition to the
raw data, we highlight themedian as well as the interquartile range (IQR) of the estimation
error over a rolling window of 60 data points.

Figure 2.3a shows that both our method and the baseline recover the true parameters θ
reliably even for partial observations, if the observations are noiseless. However, the per-
formance of the baseline degrades rapidly with increasing noise variance. This pattern is
particularly pronounced in the setting of partial observations. On the other hand, our es-
timator recovers the unknown cost parameters more accurately in both settings, and with
a smaller variance than the baseline. Thus, compared to the KKT residual baseline, the
performance of our method degrades gracefully when both full and partial observations
are corrupted by noise.

Next, we study these methods’ relative performance as measured by reconstruction
error, as shown in Figure 2.3b. Here, reconstruction error is measured according to

Drec(θtrue, θest) =
1

NT

∑
i∈[N ]

∑
t∈[T ]

‖pirec,t − pitrue,t‖2, (2.25)

where pitrue,t denotes the true position of Playeri at time step t, and pirec,t denotes the posi-
tion reconstructed from a Nash solution to the game with estimated cost parameters θest.
We see similar patterns here as in the parameter error space, indicating the reliability of
our method in both noisy full and partial observation settings.

Additionally, note that we have denoted some data points for the baseline method with
triangular markers. For these Monte Carlo samples, the learned parameters θest specify
ill-conditioned objectives that prevent us from recovering roots of (2.8)—essentially ren-
dering the parameter estimates useless for downstream applications. This can happen, for
example, when proximity costs dominate control input costs. For the baseline, a total of
104 out of 880 estimates result in an ill-conditioned forward game when states are fully ob-
served. In the case of partial observations, the number of learning failures increases to 218.
In contrast, our method recovers well-conditioned player objectives for all demonstrations
and allows for accurate reconstruction of the game trajectory.
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Figure 2.3: Estimation performance of our method and the baseline for the 2-player collision-avoidance example,
with noisy full and partial state observations. (a) Error measured directly in parameter space using (2.24). (b)
Error measured in position space using (2.25). Triangular data markers in (b) highlight objective estimates which
lead to ill-conditioned games. Solid lines and ribbons indicate the median and IQR of the error for each case.
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For additional intuition of the performance gap, Figure 2.4 visualizes the reconstruc-
tion results in trajectory space for a fixed initial condition. Figure 2.4a shows the noise
corrupted demonstrations generated for isotropic AWGNwith standard deviation σ = 0.1.
Figure 2.4b and Figure 2.4c show the corresponding trajectories reconstructed by solving
the game using the objective parameters learned by our method and the baseline, respec-
tively. Note that our method generates a far smaller fraction of outliers than the baseline.
Furthermore, the performance of our method is only marginally affected by partial state
observability, whereas baseline performance degrades substantially.

Online Learning with Prediction

Next, we study the performance of both our proposed method and the KKT residual base-
line in the setting of objective learning with prediction. Following the problem description
of Section 2.5.2, here, only the beginning of an unfolding dynamic game is observed. This
problem naturally describes a single time frame of online operations where observations
accumulate as time evolves.

We conduct a Monte Carlo analysis of the two-player collision-avoidance game from
Section 2.7.1 in which we vary the number of observed time steps of a fixed-length game.
For this truncated observation sequence, each method is tasked to learn the players’ un-
derlying cost parameters θi and predict their motion for the next sp = 10 time steps.
Our method accomplishes these coupled tasks jointly by solving (2.18). The KKT residual
baseline, however, operates on the estimates provided by the preceding smoothing step,
therefore, cannot couple unobserved, future time steps with cost inference. Instead, it
achieves this task in a two-stage procedure: First, parameter estimates are recovered from
a truncated game over only the observed T̃ time steps. With these parameters in hand,
the baseline then predicts future game states by re-solving a forward game starting from
the final state estimate x̃T̃ with time steps simulated from t ∈ {T̃ , . . . , T̃ + 10}.

In Figure 2.5, we vary the observation horizon T̃ ∈ {5, . . . , 15} for a ground-truth
game played over 25 time steps. For each value of T̃ , we sample 40 sequences of observa-
tions {yt}T̃t=1. Here, we fix an isotropic Gaussian noise level of σ = 0.05, and measure the
performance of both ourmethod and the baseline using two distinctmetrics. In Figure 2.5a,
we measure learning performance in parameter space using the metric given in (2.24). As
shown, our approach consistently estimates the cost parameters more accurately than the
baseline. Furthermore, as the observation horizon T̃ increases, both methods improve. In
Figure 2.5b, we see that these patterns persist when we measure performance in trajectory
space, applying the metric of (2.25) to the predicted states xt, t ∈ {T̃ , . . . , T̃ +10}. Indeed,
in this case, the performance gap is evenmore pronounced. By observing only T̃ = 5 steps,
our method reliably outperforms the baseline even when the baseline is given triple the
number of observations.

To inspect these results more closely, in Figure 2.6 we show the output of both meth-
ods for a single observation sequence of length T̃ = 10. This visualization highlights
a key advantage of our approach compared with the baseline. In this scenario, Player2
(bottom) turns left early on in order to avoid Player1 (left) later along the path to its goal.
Their ground truth trajectories are shown in black. However, the methods only receive
noise-corrupted partial state observations of the first T̃ = 10 time steps shown in gray.
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Figure 2.4: Qualitative reconstruction performance for the 2-player collision avoidance example at noise
level σ = 0.1 for 40 different observation sequences. (a) Ground truth trajectory and observations, where
each player wishes to reach a goal location opposite their initial position. (b, c) Trajectories recovered by solving
the game at the estimated parameters for our method and the baseline using noisy full and partial state observa-
tions. h
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Figure 2.5: Estimation performance for our method and the baseline for varying numbers of observations of the
2-player collision-avoidance example at a fixed noise level of σ = 0.05. (a) Estimation performance measured
directly in parameter space using (2.24). (b) Prediction error over the next 10 s beyond the observation horizon
using (2.25).
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Figure 2.6: Qualitative prediction performance of our method and the baseline for the 2-player collision avoid-
ance example when only the first 10 out of 25 time steps are observed.
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Figure 2.7: Runtime of our method and the baseline for varying numbers of observations of the 2-player collision-
avoidance example at a fixed noise level of σ = 0.05.

Our method models the players’ interactions as continuing into the future, allowing it to
attribute observed behavior to future costs. In this instance, our method correctly explains
Player2’s observed left turn as the result of a modest penalty on proximity, which becomes
important only later in the trajectory when the players are close to one another. Cost es-
timation is shown at the bottom of Figure 2.6. The KKT residual baseline is incapable of
such attributions. More precisely, it can only consider the KKT residuals G(·; θ) of (2.21)
for time steps t ∈ [T̃ ]. Hence, the baseline must presume that the game terminates at T̃
rather than at some time in the future. Thus, it cannot anticipate the immediate future
consequences of particular cost models. In Figure 2.6, the baseline can only explain the
players’ early observed collision avoidance maneuver with an extremely large penalty on
proximity to their opponents. As a result, it predicts that the players will quickly drive
away from one another. Unlike our method, the baseline’s prediction rapidly diverges
from the ground truth.

Beyond inference and prediction accuracy, a key factor for online operation is the com-
putational complexity. To investigate this point, Figure 2.7 shows the computation time of
both methods for the same dataset underpinning Figure 2.5. These timing results were ob-
tained on a AMD Ryzen 9 5900HX laptop CPU. Overall, we observe that the KKT residual
baseline has a lower runtime than our approach. The reduced runtime can be attributed to
the fact that, by fixing the states and inputs a priori, the KKT residual formulation yields
a simpler convex optimization problem in (2.21). Nonetheless, our method’s runtime still
remains moderate and scales gracefully with the observation horizon. We note that our
current implementation is not optimized for speed. In practical applications in the con-
text of receding-horizon applications—a topic that we shall discuss in Section 2.7.3—the



2

38 2 Estimating Player Objectives from Partially Observed Interactions

runtime may be further reduced via improved warm-starting and memory sharing across
planner invocations.

2.7.3 Scaling to Larger Games
While our approach is more easily analyzed in the small, two-player collision-avoidance
game of Section 2.7.2, it readily extends to larger multi-agent interactions. In order to
demonstrate scalability of the approach, we therefore replicate the offline learning analysis
of Section 2.7.2 in a larger 5-player highway driving scenario depicted in Figure 2.1. Finally,
we demonstrate a proof of concept for online, receding-horizon learning in this scaled
setting following the setup of Section 2.5.2.

In the highway scenario discussed through the remainder of this section, each player
wishes to make forward progress in a particular lane at an unknown nominal speed, rather
than reach a desired position as above. Therefore, ground-truth objectives use a quadratic
penalty on deviation from a desired state that encodes each player’s target lane and pre-
ferred travel speed rather than a specific goal location. Despite these differences, this class
of objectives is still captured by the cost structure introduced in (2.23).

Offline Learning

First, we study the performance of our method and the KKT residual baseline in the set-
ting of offline learning without trajectory prediction. Figure 2.8 displays these results,
using the same metrics as in Section 2.7.2 to measure performance in parameter space—
Figure 2.8a—and position space—Figure 2.8b. As before, our method demonstrably outper-
forms the baseline in both fully and partially observed settings. Furthermore, whereas our
method performs comparably according to both metrics in the full and partial observation
settings, the baseline performance differs between the two metrics. That is, while the per-
formance of the baseline measured in parameter space is not significantly effected by less
informative observations, the effect is significant in trajectory space. This inconsistency
can be attributed to the fact that certain objective parameters have stronger influence on
the resulting game trajectory than others. Since our method’s objective is observation
fidelity, here measured by the measurement likelihood of (2.13a), it directly accounts for
these varying sensitivities. The baseline, however, greedily optimizes the KKT residual of
(2.21), irrespective of the resulting equilibrium trajectory.

Online Learning and Receding-Horizon Prediction

Finally, we demonstrate the application of our method for simultaneous online learning
and receding-horizon prediction in the 5-player highway navigation scenario depicted in
Figure 2.1.

Here, the information available to the estimator evolves over time and the problem
only admits access to past observations of the game state for cost learning. Following the
proposed procedure of Section 2.5.2, here, we limit the computational complexity of the
estimation problem by considering only a fixed-lag buffer of observations over the last 5s
and predict all player’s behavior over the next 10s. The qualitative performance of our
method under noise-corrupted partial state observation is shown in Figure 2.9. As can be
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(b) Trajectory Reconstruction

Figure 2.8: Estimation performance of our method and the baseline for the 5-player highway overtaking example,
with noisy full and partial state observations. (a) Error measured directly in parameter space using (2.24). (b)
Error measured in position space using (2.25). Triangular data markers in (b) highlight objective estimates which
lead to ill-conditioned games. Solid lines and ribbons indicate the median and IQR of the error for each case.
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Figure 2.9: Demonstration of our method in an online application of simultaneous objective learning and trajec-
tory prediction for the 5-player highway navigation scenario. At each time step, objective learning is performed
on a fixed-lag buffer of 5 s of observation data which is coupled with trajectory prediction 10 s into the future.

seen, from only a few seconds of data, our method learns player objectives that accurately
predict the evolution of the game over a receding prediction horizon. Note that, by de-
sign, objective learning and behavior prediction is achieved simultaneously by solving a
single joint optimization problem as in (2.13). This ability to couple online learning and
prediction makes it particularly suitable for online applications.

2.8 Conclusion
In this work, we have introduced a novel approach to learn the parameters of players’ ob-
jectives in dynamic, noncooperative interactions, given only noisy, partial observations.
This inverse dynamic game arises in a wide variety of multi-robot and human-robot in-
teractions and generalizes well-studied problems such as inverse optimal control, inverse
reinforcement learning, and learning from demonstrations. Contrary to prior work, our
method learns players’ cost parameters while simultaneously recovering the forward game
trajectory consistent with those parameters, with overall performance measured accord-
ing to observation fidelity. We have shown how this formulation naturally extends to both
offline learning and prediction problems, as well as online, receding-horizon learning.
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We have conducted extensive numerical simulations to characterize the performance
of our method and compare it to a state-of-the-art baseline method [54, 56]. These simula-
tions clearly demonstrate ourmethod’s improved robustness to both observation noise and
partial observations. Indeed, existing methods presume noiseless, full state observations
and thus require a priori estimation of states and inputs. Our method recovers objective
parameters, reconstructs past game trajectories, and predicts future trajectories far more
accurately than the baseline. Beyond that, our method’s structure allows performing all
of these tasks jointly as the solution of a single optimization problem. This feature renders
our method suitable for online learning and prediction in a receding-horizon fashion.

In light of these encouraging results, there are several directions for future research.
Most immediately, our method lends itself naturally to deployment onboard physical
robotic systems such as the autonomous vehicles considered in the examples of Sec-
tion 2.7. In particular, the online, receding-horizon learning and prediction procedure of
Section 2.5.2 may be run onboard an autonomous car. Here, the “ego” agent would seek
to learn other vehicles’ objective parameters while simultaneously using the receding-
horizon game solution to respond to predicted opponent strategies.

Another exciting, more theoretical direction consists of extending our formulation to
more complex equilibrium concepts than OLNE. For example, recent solution methods for
forward games in state feedback Nash equilibria [46, 67, 77] might be adapted to solve
inverse games along the lines of (2.12).
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Chapter 3

Learning to Interact with
Agents That Have Unknown
Objectives

In Chapter 2, we proposed a method for estimating players’ objectives in dynamic games from
noise-corrupted, partial state observations by casting the problem as constrained maximum
likelihood estimation (MLE) and solving it via canonical constrained optimization methods.
However, results in the previous chapter were limited to inference.

This chapter builds on the MLE inverse game formulation of Chapter 2, and moves beyond
inference by integrating inferred intents into online decision-making. To enable this, we de-
velop a new solution technique for the MLE inverse game problem that (i) handles inequality
constraints for safer interaction and (ii) yields a simple, first-order update rule for param-
eters that composes naturally with neural networks (NNs) training for amortized inference.
Large-scale simulations show that our approach outperforms game-theoretic and non-game-
theoretic baselines in terms of safety and interaction efficiency. Finally, this chapter demon-
strates the method’s real-time planning capabilities and robustness through hardware exper-
iments of interactions between mobile robots and pedestrians.

This chapter is a verbatim copy, with minor modifications, of the peer-reviewed journal article [78]:

 Lasse Peters*, Xinjie Liu*, Javier Alonso-Mora. “Learning to Play Trajectory Games Against Opponents
with Unknown Objectives.” IEEE Robotics and Automation Letters (RA-L), 2023.

* indicates equal contribution.

Contribution statement: Lasse proposed the key idea of solving MLE inverse games via differentiable program-
ming, inspired by his prior work in [42, 79, 80]. Lasse and Xinjie jointly implemented the underpinning dif-
ferentiable trajectory game solver. Under Lasse’s guidance, Xinjie performed all experiments. Lasse and Xinjie
wrote the initial draft of the manuscript. All authors contributed to technical discussions and edits of the original
manuscript submitted to RA-L [78].
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3.1 Introduction
Many robot planning problems, such as robot navigation in a crowded environment, in-
volve rich interactions with other agents. Classic “predict-then-plan” frameworks neglect
the fact that other agents in the scene are responsive to the ego-agent’s actions. This
simplification can result in inefficient or even unsafe behavior [81]. Dynamic game the-
ory explicitly models the interactions as coupled trajectory optimization problems from
a multi-agent perspective. A noncooperative equilibrium solution of this game-theoretic
model then provides strategies for all players that account for the strategic coupling of
plans. Beyond that, general constraints between players, such as collision avoidance, can
also be handled explicitly. All of these features render game-theoretic reasoning an attrac-
tive approach to interactive motion planning.

In order to apply game-theoretic methods for interactive motion planning from an ego-
centric rather than omniscient perspective, suchmethodsmust be capable of operating only
based on local information. For instance, in driving scenarios as shown in Figure 3.1, the
red ego-vehicle may only have partial-state observations of the surrounding vehicles and
incomplete knowledge of their objectives due to unknown preferences for travel velocity,
target lane, or driving style. Since vanilla game-theoretic methods require an objective
model of all players [46, 82], this requirement constitutes a key obstacle in applying such
techniques for autonomous strategic decision-making.

To address this challenge, we introduce our main contribution: a model-predictive
game solver, which adapts to unknown opponents’ objectives and solves for generalized
Nash equilibrium (GNE) strategies. The adaptivity of our approach is enabled by a dif-
ferentiable trajectory game solver whose gradient signal is used for MLE of opponents’
objectives.

We perform thorough experiments in simulation and on hardware to support the fol-
lowing three key claims: our solver (i) outperforms both game-theoretic and non-game-
theoretic baselines in highly interactive scenarios, (ii) can be combined with other differ-
entiable components such as NNs, and (iii) is fast and robust enough for real-time planning
on a hardware platform.
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Figure 3.1: An ego-agent (red) merging onto a busy road populated by six surrounding vehicles whose pref-
erences for travel velocity and lane are initially unknown. Our approach adapts the ego agent’s strategy by
inferring opponents’ intention parameters θ̃ from partial state observations.

3.2 Related Work

To put our contribution into context, this section discusses four main bodies of related
work. First, we discuss works on trajectory games which assume access to the objectives
of all players in the scene. Then, we introduce works on inverse dynamic games that infer
unknown objectives from data. Thereafter, we also relate our work to non-game-theoretic
interaction-aware planning-techniques. Finally, we survey recent advances in differen-
tiable optimization, which provide the underpinning for our proposed differentiable game
solver.

3.2.1 N-Player General-Sum Dynamic Games

Dynamic games are well-studied in the literature [45]. In robotics, a particular focus is on
multi-player general-sum games in which players may have differing yet non-adversarial
objectives, and states and inputs are continuous.

Various equilibrium concepts exist in dynamic games. The Stackelberg equilibrium
concept [83] assumes a “leader-follower” hierarchy, while the Nash equilibrium problem
(NEP) [46, 83] does not presume such a hierarchy. Within the scope of NEP, there exist
open-loop NEPs [82] and feedback NEPs [46, 67]. We refer the readers to [45] for more
details about the difference between the concepts. When shared constraints exist between
players, such as collision avoidance constraints, one player’s feasible set may depend on
other players’ decisions. In that case, the problem becomes a generalized Nash equilibrium
problem (GNEP) [84]. In this work, we focus on GNEPs under an open-loop information
pattern which we solve by converting to an equivalent MCP [85].
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3.2.2 Inverse Games
There are three main paradigms for solving inverse games: (i) Bayesian inference, (ii) min-
imization of KKT residuals, and (iii) equilibrium-constrained maximum-likelihood estima-
tion. In type (i) methods, Le Cleac’h et al. [63] employ an Unscented Kalman Filter (UKF).
This sigma-point sampling scheme drastically reduces the sampling complexity compared
to vanilla particle filtering. However, a UKF is only applicable for uni-modal distributions,
and extra care needs to be taken when uncertainty is multi-modal, e.g., due to multiple
Nash equilibria. Type (ii) methods require full demonstration trajectories, i.e., including
noise-free states and inputs, to cast the N -player inverse game as N independent uncon-
strained optimization problems [54, 56]. However, they assume full constraint satisfac-
tion at the demonstration and have limited scalability with noisy data [79]. The type (iii)
methods use KKT conditions of an OLNE as constraints to formulate a constrained opti-
mization problem [79]. This type of method finds the same solution as type (ii) methods
in the noise-free cases but can additionally handle partial and noisy state observations.
However, encoding the equilibrium constraints is challenging, as it typically yields a non-
convex problem, even in relatively simple linear-quadratic game settings. This challenge
is even more pronounced when considering inequality constraints of the observed game,
as this results in complementarity constraints in the inverse problem.

Our solution approach alsomatches the observed trajectory data in anMLE framework.
In contrast to all methods above, we do so bymaking a generalizedNash equilibrium (GNE)
solver differentiable. This approach yields two important benefits over existing methods:
(i) general (coupled) inequality constraints can be handled explicitly, and (ii) the entire
pipeline supports direct integration with other differentiable elements, such as NNs. This
latter benefit is a key motivation for our approach that is not enabled by the formulations
in [63] and [79].

Note that Geiger and Straehle [86] explore a similar differentiable pipeline for inference
of game parameters. In contrast to their work, however, our method is not limited to the
special class of potential games and applies to general GNEPs.

3.2.3 Non-Game-Theoretic Interaction Models
Besides game-theoretic methods, two categories of interaction-aware decision-making
techniques have been studied extensively in the context of collision avoidance and au-
tonomous driving: (i) approaches that learn a navigation policy for the ego-agent directly
without explicitly modeling the responses of others [87–89], and (ii) techniques that ex-
plicitly predict the opponents’ actions to inform the ego-agent’s decisions [57, 90–93].
This latter category may be further split by the granularity of coupling between the ego-
agent’s decision-making process and the predictions of others. In the simplest case, pre-
diction depends only upon the current physical state of other agents [94]. More advanced
interaction models condition the behavior prediction on additional information such as
the interaction history [57], the ego-agent’s goal [91, 92], or even the ego-agent’s future
trajectory [90, 93].

Our approach is most closely related to this latter body of work: by solving a trajec-
tory game, our method captures the interdependence of future decisions of all agents; and
by additionally inferring the objectives of others, predictions are conditioned on the in-
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teraction history. However, a key difference of our method is that it explicitly models
others as rational agents unilaterally optimizing their own cost. This assumption provides
additional structure and offers a level of interpretability of the inferred behavior.

3.2.4 Differentiable Optimization

Our work is enabled by differentiating through a GNE solver. Several works have explored
the idea of propagating gradient information through optimization algorithms [95–97], en-
abling more expressive neural architectures. However, these works focus on optimization
problems and thus only apply to special cases of games, such as potential games stud-
ied by Geiger and Straehle [86]. By contrast, differentiating through a GNEP involves N
coupled optimization problems. We address this challenge in section 3.4.2.

3.3 Preliminaries

This section introduces two key concepts underpinning our work: forward and inverse
dynamic games. In forward games, the objectives of players are known, and the task
is to find players’ strategies. By contrast, inverse games take (partial) observations of
strategies as inputs to recover initially unknown objectives. In Section 3.4, we combine
these two approaches into an adaptive solver that computes forward game solutions while
estimating player objectives.

3.3.1 General-Sum Trajectory Games

Consider an N -player discrete-time general-sum trajectory game with horizon of T . In
this setting, each player i has a control input uit ∈ Rmi which they may use to influ-
ence their state xit ∈ Rni at each discrete time t ∈ [T ]. In this work, we assume that
the evolution of each player’s state is characterized by an individual dynamical system
xit+1 = f i(xit, u

i
t). For brevity throughout the remainder of this chapter, we shall use

boldface to indicate aggregation over players and capitalization for aggregation over time,
e.g., xt := (x1t , . . . , x

N
t ), U i := (ui1, . . . , u

i
T ), X := (x1, . . . , xT ). With a joint trajectory

starting at a given initial state x̂1 := (x̂11, . . . , x̂
N
1 ), each player seeks to find a control

sequence U i to minimize their own cost function J i(X, U i; θi), which depends upon the
joint state trajectory X as well as the player’s control input sequence U i and, additionally,
takes in a parameter vector θi.¹ Each player must additionally consider private inequality
constraints pgi(Xi, U i) ≥ 0 as well as shared constraints sg(X,U) ≥ 0. This latter
type of constraint is characterized by the fact that all players have a shared responsibility
to satisfy it, with a common example being collision avoidance constraints between play-
ers. In summary, this noncooperative trajectory game can be cast as a tuple ofN coupled

¹The role of the parameters will become clear later in this chapter when we move on to inverse dynamic games.



3

48 3 Learning to Interact with Agents That Have Unknown Objectives

trajectory optimization problems:

∀i ∈ [N ]



min
Xi,Ui

J i(X, U i; θi)

s.t. xit+1 = f i(xit, u
i
t), ∀t ∈ [T − 1]

xi1 = x̂i1
pgi(Xi, U i) ≥ 0

sg(X,U) ≥ 0.

(3.1)

Note that each player’s feasible set in this problem may depend upon the decision
variables of others, which makes it a GNEP rather than a standard NEP [84].

A solution of this problem is a tuple of GNE strategies U∗ := (U1∗, . . . , UN∗) that sat-
isfies the inequalities J i(X∗, U i∗; θi) ≤ J i((Xi,X¬i∗), U i; θi) for any feasible deviation
(Xi, U i) of any player i, with X¬i denoting all but player i’s states. Since identifying a
global GNE is generally intractable, we require these conditions only to hold locally. At a
local GNE, then, no player has a unilateral incentive to deviate locally in feasible directions
to reduce their cost.

Running example: We introduce a simple running example² which we shall use
throughout the presentation to concretize the key concepts. Consider a tracking game
played between N = 2 players. Let each agent’s dynamics be characterized by those
of a planar double-integrator, where states xit = (pix,t, p

i
y,t, v

i
x,t, v

i
y,t) are position and

velocity, and control inputs uit = (aix,t, a
i
y,t) are acceleration in horizontal and vertical

axes in a Cartesian frame. We define the game’s state as the concatenation of the two
players’ individual states xt := (x1t , x

2
t ). Each player’s objective is characterized by an

individual cost

J i =

T−1∑
t=1

‖pit+1 − pigoal‖22 + 0.1‖uit‖22 + 50max(0, dmin − ‖pit+1 − p−it+1‖2)3, (3.2)

where we set p1goal = p2t so that player 1, the tracking robot, is tasked to track player 2,
the target robot. Player 2 has a fixed goal point p2goal. Both agents wish to get to their goal
position efficiently while avoiding proximity beyond a minimal distance dmin. Players also
have shared collision avoidance constraints sgt+1(xt+1,ut+1) = ‖p1t+1−p2t+1‖2−dmin ≥
0, ∀t ∈ [T − 1] and private bounds on state and controls pgi(Xi, U i). Agents need to
negotiate and find an underlying equilibrium strategy in this noncooperative game, as no
one wants to deviate from the direct path to their goal.

3.3.2 Inverse Games
We now switch context to the inverse dynamic game setting. Let θ := (x̂1, θ

2, ..., θN ) de-
note the aggregated tuple of parameters initially unknown to the ego-agent with index 1.
Note that we explicitly infer the initial state of a game x̂1 to account for the potential

²Our final evaluation in Section 3.5 features denser interaction such as the 7-player ramp-merging scenario
shown in Figure 3.1.
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sensing noise and partial state observations. To model the inference task over these pa-
rameters, we assume that the ego-agent observes behavior originating from an unknown
Nash game Γ(θ) := (x̂1,

sg, {f i,p gi, J i(·; θi)}i∈[N ]), with objective functions and con-
straints parameterized by initially unknown values θi and x̂1, respectively.

Similar to the existing method [79], we employ an MLE formulation to allow observa-
tions to be partial and noise-corrupted. In contrast to that method, however, we also allow
for inequality constraints in the hidden game. That is, we propose to solve

max
θ,X,U

p(Y | X,U)

s.t. (X,U) is a GNE of Γ(θ)
(3.3)

where p(Y | X,U) denotes the likelihood of observations Y := (y1, ..., yT ) given the
estimated game trajectory (X,U) induced by parameters θ. This formulation yields an
mathematical program with equilibrium constraints (MPEC) [69], where the outer problem
is an estimation problemwhile the inner problem involves solving a dynamic game. When
the observed game includes inequality constraints, the resulting inverse problem necessar-
ily contains complementarity constraints and only few tools are available to solve the re-
sulting problem. In the next section, we showhow to transform (3.3) into an unconstrained
problem by making the inner game differentiable, which also enables combination with
other differentiable components.

Running example: We assign the tracker (player 1) to be the ego-agent and param-
eterize the game with the goal position of the target robot θ2 = p2goal. That is, the tracker
does not know the target agent’s goal and tries to infer this parameter from position obser-
vations. To ensure that (3.3) remains tractable, the ego-agent maintains only a fixed-length
buffer of observed opponent’s positions. Note that solving the inverse game requires solv-
ing games rather than optimal control problems at the inner level to account for the nonco-
operative nature of observed interactions, which is different from IOC even in the 2-player
case. We employ a Gaussian observation model, which we represent with an equivalent
negative log-likelihood objective ‖Y − r(X,U)‖22 in (3.3), where r(X,U) maps (X,U) to
the corresponding sequence of expected positions.

3.4 Adaptive Model-Predictive Game Play
We wish to solve the problem of MPGP from an ego-centric perspective, i.e., without
prior knowledge of other players’ objectives. To this end, we present an adaptive model-
predictive game solver that combines the tools of Section 3.3: first, we perform MLE of
unknown objectives by solving an inverse game (Section 3.3.2); then, we solve a forward
game using this estimate to recover a strategic motion plan (Section 3.3.1).

3.4.1 Forward Games as MCPs
We first discuss the conversion of the GNEP in (3.1) to an equivalent MCP. There are
three main advantages of taking this view. First, there exists a wide range of off-the-shelf
solvers for this problem class [98]. Furthermore, MCP solvers directly recover strategies
for all players simultaneously. Finally, this formulation makes it easier to reason about
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derivatives of the solution w.r.t. problem data. As we shall discuss in Section 3.4.3, this
derivative information can be leveraged to solve the inverse game problem of (3.3).

In order to solve the GNEP presented in (3.1) we derive its first-order necessary con-
ditions. We collect all equality constraints for player i in (3.1) into a vector-valued function
hi(Xi, U i; x̂i1), introduce Lagrangemultipliersµi, pλi and sλ for constraintshi(Xi, U i; x̂i1),
pgi(Xi, U i), and sg(X,U) and write the Lagrangian for player i as

Li(X,U, µi, pλi, sλ; θ) = J i(X,U; θi) (3.4)
+ µi⊤hi(Xi, U i; x̂i1)− sλ⊤sg(X,U)− pλi⊤pgi(Xi, U i).

Note that we share the multipliers associated with shared constraints between the players
to encode equal constraint satisfaction responsibility [99]. Under mild regularity condi-
tions, e.g., linear independence constraint qualification (LICQ), a solution of (3.1) must
satisfy the following joint KKT conditions:

∀i ∈ [N ]

{
∇(Xi,Ui)Li(X,U, µi, pλi, sλ; θ) = 0

0 ≤ pgi(Xi, U i) ⊥ pλi ≥ 0

h(X,U; x̂1) = 0

0 ≤ sg(X,U) ⊥ sλ ≥ 0,

(3.5)

where, for brevity, we denote by h(X,U; x̂1) the aggregation of all equality constraints. If
the second directional derivative of the Lagrangian is positive along all feasible directions
at a solution of (3.5)—a condition that can be checked a posteriori—this point is also a
solution of the original game. In this work, we solve trajectory games by viewing their
KKT conditions through the lens of MCPs [85, Section 1.4.2].

Definition 3.1 (Mixed Complementarity Problem (MCP)) A Mixed Complementarity Prob-
lem (MCP) is defined by the following problem data: a function F (z) : Rd 7→ Rd, lower
bounds ℓj ∈ R ∪ {−∞} and upper bounds uj ∈ R ∪ {∞}, each for j ∈ [d]. The solution
of an MCP is a vector z∗ ∈ Rn, such that for each element with index j ∈ [d] one of the
following equations holds:

z∗j = ℓj , Fj(z
∗) ≥ 0 (3.6a)

ℓj < z∗j < uj , Fj(z
∗) = 0 (3.6b)

z∗j = uj , Fj(z
∗) ≤ 0. (3.6c)

The parameterized KKT system of (3.5) can be expressed as a parameterized family of
MCPs with decision variables corresponding to the primal and dual variables of (3.5),

z =
[
X⊤,U⊤,µ⊤, pλ1⊤, . . . , pλN⊤, sλ⊤

]⊤
,
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and problem data

F (z; θ) =



∇(X1,U1)Li
...

∇(XN ,UN )LN
h
pg1

...
pgN
sg


, ℓ =



−∞
...
−∞
−∞
0
...
0
0


, u =



∞
...
∞
∞
∞
...
∞
∞


, (3.7)

where, by slight abuse of notation, we overload F to be parametrized by θ via Li and use
∞ to denote elements for which upper or lower bounds are dropped.

3.4.2 Differentiation of an MCP solver
An MCP solver may be viewed as a function, mapping problem data to a solution vector.
Taking this perspective, for a parameterized family ofMCPs as in (3.7), wewish to compute
the function’s derivatives to answer the following question: How does the solution z∗
respond to local changes of the problem parameters θ?

The Nominal Case

Let Ψ(θ) := (F (·; θ), ℓ, u) denote an MCP parameterized by θ ∈ Rp and let z∗ ∈ Rn
denote a solution of that MCP, which is implicitly a function of θ. For this nominal case,
we consider only solutions at which strict complementarity holds. We shall relax this as-
sumption later. If F is smooth, i.e., F (·; θ), F (z∗; ·) ∈ C1, we can recover the Jacobian
matrix∇θz∗ =

(
∂z∗j
∂θk

)
∈ Rn×p by distinguishing two possible cases. For brevity, below,

gradients are understood to be evaluated at z∗ and θ.

Active bounds Consider first the elements z∗j that are either at their lower or upper
bound, i.e., z∗j satisfies (3.6a) or (3.6c). Since strict complementarity holds at the solution,
Fj(z

∗; θ)must be bounded away from zero with a finite margin. Hence, the smoothness of
F guarantees that a local perturbation of θ will retain the sign of Fj(z∗; θ). As a result, z∗j
remains at its bound and, locally, is identically zero. Let Ĩ := {k ∈ [n] | z∗k = ℓk ∨
z∗k = uk} denote the index set of all elements matching this condition and z̃∗ := [z∗]Ĩ
denote the solution vector reduced to that set. Trivially, then, the Jacobian of this vector
vanishes, i.e., ∇θ z̃∗ = 0.

Inactive bounds The second case comprises elements that are strictly between the
bounds, i.e., z∗j satisfying (3.6b). In this case, under mild assumptions on F , for any local
perturbation of θ there exists a perturbed solution such that F remains at its root. There-
fore, the gradient ∇θz∗j for these elements is generally non-zero, and we can compute it
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via the implicit function theorem (IFT). Let Ī := {k ∈ [n] | Fk(z∗; θ) = 0, ℓk < z∗k < uk}
be the index set of all elements satisfying case (b) and let

z̄∗ := [z∗]Ī , F̄ (z∗, θ) := [F (z∗; θ)]Ī (3.8)

denote the solution vector and its complement reduced to said index set. By the IFT, the
relationship between parameters θ and solution z∗(θ) is characterized by the stationarity
of F̄ :

0 = ∇θ
[
F̄ (z∗(θ), θ)

]
=

∇θF̄ + (∇z̄∗ F̄ )(∇θ z̄∗) + (∇z̃∗ F̄ ) (∇θ z̃∗)︸ ︷︷ ︸
≡0

(3.9)

Note that, as per the discussion in case (a), the last term in this equation is identically
zero. Hence, if the Jacobian ∇z̄∗ F̄ is invertible, we recover the derivatives as the unique
solution of the above system of equations,

∇θ z̄∗ = −
(
∇z̄∗ F̄

)−1
(∇θF̄ ). (3.10)

Note that (3.9) may not always have a unique solution, in which case (3.10) cannot be
evaluated. We discuss practical considerations for this special case below.

Remarks on Special Cases and Practical Realization

The above derivation of gradients for the nominal case involves several assumptions on
the structure of the problem. We discuss considerations to improve numerical robustness
for practical realization of this approach below. We note that both special cases discussed
hereafter are rare in practice. In fact, across 100 simulations of the running example with
varying initial states and objectives, neither of them occurred.

WeakComplementarity Thenominal case discussed above assumes strict complemen-
tarity at the solution. If this assumption does not hold, the derivative of the MCP is not
defined. Nevertheless, we can still compute subderivatives at θ. Let the set of all indices for
which this condition holds be denoted by Î := {k ∈ [n] | Fk(z∗; θ) = 0∧ z∗k ∈ {ℓk, uk}}.
Then by selecting a subset of Î and including it in Ī for evaluation of (3.10), we recover a
subderivative.

Invertibility The evaluation (3.10) requires invertibility of∇z̄∗ F̄ . To this end, we com-
pute the least-squares solution of (3.9) rather than explicitly inverting∇z̄F̄ .

3.4.3 Model-Predictive Game Play with Gradient Descent
Finally, we present our pipeline for adaptive game-play against opponents with unknown
objectives. Our adaptive MPGP scheme is summarized in Algorithm 1. At each time step,
we first update our estimate of the parameters by approximating the inverse game in (3.3)
via gradient descent. To obtain an unconstrained optimization problem, we substitute the
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Algorithm 1 Adaptive MPGP
Hyper-parameters: stopping tolerance: stop_tol, learning rate: lr
Input: initial θ̃, current observation buffer Y, new observation y
Y← updateBuffer(Y,y)
while not stop_tol and not max_steps_reached do

(z∗,∇θz∗)← solveDiffMCP(θ̃) ▷ sec. 3.4.2
∇θp← composeGradient(z∗,∇θz∗,Y) ▷ eq. (3.12)
θ̃ ← θ̃ −∇θp · lr

z∗ ← solveMCP(θ̃) ▷ forward game, eq. (3.7)
applyFirstEgoInput(z∗)
return θ̃,Y

constraints in (3.3) with our differentiable game solver. Following the discussion of (3.7),
we denote by z∗(θ) the solution of the MCP formulation of the game parameterized by θ.
Furthermore, by slight abuse of notation, we overload X(z∗),U(z∗) to denote functions
that extract the state and input vectors from z∗. Then, the inverse game of (3.3) can be
written as unconstrained optimization,

max
θ

p(Y | X(z∗(θ)),U(z∗(θ))). (3.11)

Online, we approximate solutions of this problem by taking gradient descent steps on
the negative logarithm of this objective, with gradients computed by chain rule,

∇θ [p(Y | X(z∗(θ)),U(z∗(θ))] =
(∇Xp)(∇z∗X)(∇θz∗) + (∇Up)(∇z∗U)(∇θz∗).

(3.12)

Here, the only non-trivial term is∇θz∗, whose computation we discussed in Section 3.4.2.
To reduce the computational cost, we warm-start using the estimate of the previous time
step and terminate early if a maximum number of steps is reached. Then, we solve a
forward game parametrized by the estimated θ̃ to compute control commands. We execute
the first control input for the ego agent and repeat the procedure.

3.5 Experiments
To evaluate our method, we compare against two baselines in Monte Carlo studies of sim-
ulated interaction. Beyond these quantitative results, we showcase our method deployed
on Jackal ground robots in two hardware experiments.

The experiments below are designed to support the key claims that our method (i) out-
performs both game-theoretic and non-game-theoretic baselines in highly interactive sce-
narios, (ii) can be combined with other differentiable components such as NNs, and (iii) is
sufficiently fast and robust for real-time planning on a hardware platform. A supplemen-
tary video of qualitative results as well as the code for our method and experiments can
be found at https://xinjie-liu.github.io/projects/game.

https://xinjie-liu.github.io/projects/game
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3.5.1 Experiment Setup
Scenarios

We evaluate our method in two scenarios.

2-player running example To test the inference accuracy and convergence of our
method in an intuitive setting, we first consider the 2-player running example. For eval-
uation in simulation, we sample the opponent’s intent—i.e., their unknown goal position
in (3.2)— uniformly from the environment. Partial observations comprise the position of
each agent.

Ramp merging To demonstrate the scalability of our approach and support the claim
that our solver outperforms the baselines in highly interactive settings, we also test our
method on a ramp merging scenario with varying numbers of players. This experiment is
inspired by the setup used in [82] and is schematically visualized in Figure 3.1. We model
each player’s dynamics by a discrete-time kinematic bicycle with the state comprising
position, velocity and orientation, i.e., xit = (pix,t, p

i
y,t, v

i
t, ψ

i
t), and controls comprising

acceleration and steering angle, i.e., uit = (ait, ϕ). We capture their individual behavior
by a cost function that penalizes deviation from a reference travel velocity and target
lane; i.e., θi = (viref, p

i
y,lane). We add constraints for lane boundaries, for limits on speed,

steering, and acceleration, for the traffic light, and for collision avoidance. To encourage
rich interaction in simulation, we sample each agent’s initial state by sampling their speed
and longitudinal positions uniformly at random from the intervals from zero to maximum
velocity vmax and four times the vehicle length lcar, respectively. The ego-agent always
starts on the ramp and all agents are initially aligned with their current lane. Finally, we
sample each opponent’s intent from the uniform distribution over the two lane centers
and the target speed interval [0.4vmax, vmax]. Partial observations comprise the position
and orientation of each agent.

Baselines

We consider the following three baselines.

KKT-Constrained Solver In contrast to our method, the solver by Peters et al. [79]
has no support for either private or shared inequality constraints. Consequently, this
baseline can be viewed as solving a simplified version of the problem in (3.3) where the
inequality constraints associated with the inner-level GNEP are dropped. Nonetheless, we
still use a cubic penalty term as in (3.2) to encode soft collision avoidance. Furthermore, for
fair comparison, we only use the baseline to estimate the objectives but compute control
commands from a GNEP considering all constraints.

MPC with Constant-Velocity Predictions This baseline assumes that opponents
move with constant velocity as observed at the latest time step. We use this baseline as
a representative method for predictive planning approaches that do not explicitly model
interaction.
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Figure 3.2: Monte Carlo study for the 2-player tracking game for 100 trials. Solid lines and ribbons in (a) and
(b) indicate the mean and standard error of the mean. Cost distributions in (c) are normalized by subtracting
ground truth costs.

Heuristic Estimation MPGP To highlight the importance of online intent inference,
for the ramp merging evaluation, we also compare against a game-theoretic baseline that
assumes a fixed intent for all opponents. This fixed intent is recovered by taking each
agent’s initial lane and velocity as a heuristic preference estimate.

To ensure a fair comparison, we use the same MCP backend [37] to solve all GNEPs
and optimization problems with a default convergence tolerance of 1e−6. Furthermore, all
planners utilize the same planning horizon and history buffer size of 10 time steps with a
time-discretization of 0.1 s. For the iterative MLE solve procedure in the 2-player running
example and the ramp merging scenario, we employ a learning rate of 2e−2 for objective
parameters and 1e−3 for initial states. We terminate maximum likelihood estimation itera-
tion when the norm of the parameter update step is smaller than 1e−4, or after a maximum
of 30 steps. Finally, opponent behavior is generated by solving a separate ground-truth
game whose parameters are hidden from the ego-agent.

3.5.2 Simulation Results
To compare the performance of our method to the baselines described in Section 3.5.1, we
conduct a Monte Carlo study for the two scenarios described in Section 3.5.1.

2-Player Running Example

Figure 3.2 summarizes the results for the 2-player running example. For this evaluation,
we filter out any runs for which a solver resulted in a collision. For our solver, the KKT-
constrained baseline, and theMPC baseline this amounts to 2, 2 and 13 out of 100 episodes,
respectively.

Figures 3.2(a-b) show the prediction error of the goal position and opponent’s tra-
jectory, each of which is measured by ℓ2-norm. Since the MPC baseline does not ex-
plicitly reason about costs of others, we do not report parameter inference error for it
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Set. Method Ego
cost

Opp.
cost Coll. Inf. Traj.

err. [m]
Param.
err. Time [s]

3 player

Ours 0.64
± 0.36

0.06
± 0.03 0 0 1.29

± 0.05
0.41
± 0.03

0.081
± 0.002

KKT-con 1.85
± 1.21

0.05
± 0.02 0 1 1.32

± 0.06
2.39
± 0.11

0.060
± 0.002

Heuristic 6.73
± 2.40

0.09
± 0.07 0 11 7.89

± 0.26
3.96
± 0.13

0.008
± 0.001

MPC 1.50
± 0.45

0.33
± 0.07 28 218 2.40

± 0.11 n/a 0.009
± 0.002

5 player

Ours 0.56
± 0.43

0.16
± 0.06 0 2 1.66

± 0.07
0.47
± 0.03

0.29
± 0.02

KKT-con 0.07
± 0.32

0.06
± 0.02 1 4 1.70

± 0.06
2.15
± 0.06

0.28
± 0.02

Heuristic 2.06
± 0.44

0.35
± 0.10 5 25 8.05

± 0.19
2.91
± 0.07

0.015
± 0.001

MPC 5.73
± 2.91

0.42
± 0.13 44 552 2.87

± 0.13 n/a 0.014
± 0.002

7 player

Ours 1.60
± 1.19

0.06
± 0.02 1 1 1.89

± 0.05
0.46
± 0.02

0.68
± 0.02

KKT-con 3.11
± 1.72

0.09
± 0.04 7 22 2.01

± 0.06
1.93
± 0.03

0.63
± 0.06

Heuristic 6.60
± 1.67

0.27
± 0.06 8 8 8.18

± 0.15
2.44
± 0.05

0.031
± 0.002

MPC 8.41
± 1.45

0.59
± 0.09 43 848 3.07

± 0.08 n/a 0.0274
± 0.004

Table 3.1: Monte Carlo study for the ramp merging scenario depicted in Figure 3.1 with 100 trials for settings
with 3, 5, and 7 players. Except for collision and infeasible solve times, all metrics are reported by mean and
standard error of the mean.

in Figure 3.2a. As evident from this visualization, both game-theoretic methods give rel-
atively accurate parameter estimates and trajectory predictions. Among these methods,
our solver converges more quickly and consistently yields a lower error. By contrast, MPC
gives inferior prediction performance with reduced errors only in trivial cases, when the
target robot is already at the goal. Figure 3.2c shows the distribution of costs incurred
by the ego-agent for the same set of experiments. Again, game-theoretic methods yield
better performance and our method outperforms the baselines with more consistent and
robust behaviors, indicated by fewer outliers and lower variance in performance.

Ramp Merging

Table 3.1 summarizes the results for the simulated ramp-merging scenario for 3, 5, and 7
players.
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(a) Qualitative performance.

Ego
cost

Opp.
cost Coll. Inf. Traj.

err. [m]
Param.
err. Time [2]

2.19
± 1.21

0.17
± 0.07 3 5 2.34

± 0.08
0.91
± 0.08

0.274
± 0.01

(b) Quantitative performance.

Figure 3.3: Performance of our solver in combination with an NN for 100 trials of the 7-player ramp merging
scenario.

Task Performance To quantify the task performance, we report costs as an indica-
tor for interaction efficiency, the number of collisions as a measure of safety, number
of infeasible solves as an indicator of robustness, and trajectory and parameter error as
a measure of inference accuracy. On a high level, we observe that the game-theoretic
methods generally outperform the other baselines; especially for the settings with higher
traffic density. While MPC achieves high efficiency (ego-cost) in the 3-player case, it
collides significantly more often than the other methods across all settings. Among the
game-theoretic approaches, we observe that online inference of opponent intents—as per-
formed by our method and the KKT-constrained baseline—yields better performance than
a game that uses a heuristic estimate of the intents. Within the inference-based game
solvers, a Manning-Whitney U-test reveals that, across all settings, both methods achieve
an ego-cost that is significantly lower than all other baselines but not significantly higher
than solving the game with ground truth opponent intents. Despite this tie in terms of
interaction efficiency, we observe a statistically significant improvement of our method
over the KKT-constrained baseline in terms of safety: in the highly interactive 7-player
case, the KKT-constrained baseline collides seven times more often than our method. This
advantage is enabled by our method’s ability to model inequality constraints within the
inverse game.

Computation Time We also measure the computation time of each approach. The
inference-based game solvers have generally a higher runtime than the remaining meth-
ods due to the added complexity. Within the inference methods, our method is only
marginally slower than the KKT-constrained baseline, despite solving a more complex
problem that includes inequality constraints. The average number of MLE updates for our
method was 11.0, 19.2, and 22.7 for the 3, 5, and 7-player setting, respectively. While
our current implementation achieves real-time planning rates only for up to three players,
we note that additional optimizations may further reduce the runtime of our approach.



3

58 3 Learning to Interact with Agents That Have Unknown Objectives

Among such optimizations are low-level changes such as sharing memory between MLE
updates as well as algorithmic changes to perform intent inference asynchronously at an
update rate lower than the control rate. We briefly explore another algorithmic optimiza-
tion in the next section.

Combination with an NN

To support the claim that our method can be combined with other differentiable modules,
we demonstrate the integration with an NN. For this proof of concept, we use a two-layer
feed-forward NN, which takes the buffer of recent partial state observations as input and
predicts other players’ objectives. Training of this module is enabled by propagating the
gradient of the observation likelihood loss of (3.11) through the differentiable game solver
to the parameters of the NN. Online, we use the network’s prediction as an initial guess
to reduce the number of gradient steps. As summarized in Figure 3.3, this combination
reduces the computation time by more than 60% while incurring only a marginal loss in
performance.

3.5.3 Hardware Experiments
To support the claim that our method is sufficiently fast and robust for hardware de-
ployment, we demonstrate the tracking game in the running example in Section 3.3.1
with a Jackal ground robot tracking (i) another Jackal robot (Figure 3.4a) and (ii) a hu-
man player (Figure 3.4b), each with initially unknown goals. Plans are computed on-
line on a mobile i7 CPU. We generate plans using the point mass dynamics with a ve-
locity constraint of 0.8ms−1 and realize low-level control via the feedback controller
of [100]. A video of these hardware demonstrations can be found at https://xinjie-
liu.github.io/projects/game. In both experiments, we observe that our adaptive MPGP
planner enables the robot to infer the unknown goal position to track the target while
avoiding collisions. The average computation time in both experiments was 0.035 s.

https://xinjie-liu.github.io/projects/game
https://xinjie-liu.github.io/projects/game
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(a) Interacting with another Jackal.

(b) Interacting with a human.

Figure 3.4: Time lapse of the running-example in which a Jackal tracks (a) another Jackal and (b) a human.
Overlaid in (a) are the position of target robot (red) its true goal (red star), the tracker (blue), and its goal estimate
(blue star).
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3.6 Conclusion
In this work, we presented a model-predictive game solver that adapts strategic motion
plans to initially unknown opponents’ objectives. The adaptivity of our approach is en-
abled by a differentiable trajectory game solver whose gradient signal is used for MLE
of unknown game parameters. As a result, our adaptive MPGP planner allows for safe
and efficient interaction with other strategic agents without assuming prior knowledge
of their objectives or observations of full states. We evaluated our method in two simu-
lated interaction scenarios and demonstrated superior performance over a state-of-the-art
game-theoretic planner and a non-interactive MPC baseline. Beyond that, we demon-
strated the real-time planning capability and robustness of our approach in two hardware
experiments.

In this work, we have limited inference to parameters that appear in the objectives of
other players. Since the derivation of the gradient in Section 3.4.2 can also handle other
parameterizations of F—so long as they are smooth—future work may extend this frame-
work to infer additional parameters of constraints or aspects of the observation model.
Furthermore, encouraged by the improved scalability when combining our method with
learning modules such as NNs, we seek to extend this learning pipeline in the future. One
such extension would be to operate directly on raw sensor data, such as images, to exploit
additional visual cues for intent inference. Another extension is to move beyond MLE-
based point estimates to inference of potentially multi-modal distributions over opponent
intents, which may be achieved by embedding our differentiable method within a varia-
tional autoencoder. Finally, our framework could be tested on large-scale datasets of real
autonomous-driving behavior.



4

61

Chapter 4

Contingency Games: Strategic
Interaction Under Uncertainty
In Chapters 2 and 3, we introduced methods for estimating and adapting to players’ objectives
using an MLE formulation of inverse games. However, a key limitation of this MLE perspec-
tive is that it only considers a point estimate of other players’ objectives. When uncertainty
about other players’ objectives is high, deriving decisions from such a point estimate may be
unreliable.

In this chapter, we go beyond point estimates and instead consider a distribution of possi-
ble players’ objectives.¹To facilitate this, we take inspiration from the concept of contingency
planning, wherein an agent generates a set of possible plans conditioned on the outcome of
an uncertain event. Building on this key idea, this chapter develops a game-theoretic variant
of contingency planning, tailored to multi-agent scenarios in which a robot’s actions impact
the decisions of other agents and vice versa. Contingency games are parameterized via a
scalar variable which represents a future time when intent uncertainty will be resolved. By
estimating this parameter online, we construct a game-theoretic motion planner that adapts
to changing beliefs while anticipating future certainty. We show that existing variants of
game-theoretic planning under uncertainty are readily obtained as special cases of contin-
gency games. Through a series of simulated autonomous driving scenarios, we demonstrate
that contingency games close the gap between certainty-equivalent games that commit to a
single hypothesis and non-contingent multi-hypothesis games that do not account for future
uncertainty reduction.

This chapter is a verbatim copy, with minor modifications, of the peer-reviewed journal article [101]:

 Lasse Peters, Andrea Bajcsy, Chih-Yuan Chiu, David Fridovich-Keil, Forrest Laine, Laura Ferranti, Javier
Alonso-Mora. “Contingency Games for Multi-Agent Interaction.” IEEE Robotics and Automation Letters
(RA-L), 2024.

Contribution statement: Lasse developed the mathematical framework for contingency games, implemented the
proposed method, and performed all experiments. Andrea put forth the initial idea of taking a game-theoretic
perspective on contingency planning. Lasse, Andrea, Chih-Yuan, David, and Forrest wrote the initial draft of
the manuscript. All authors contributed to technical discussions and edits of the original manuscript submitted
to RA-L [101].

¹Such distributions of intents could come from [30], a work that is beyond the scope of this dissertation but is
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briefly discussed in Section 1.4.
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Spectrum of Contingency Game Solutions

(a) Certainty Equivalence (b) General Contingency Game (c) Fixed Uncertainty

Value of the  branching time,

......

... ...

MLE

Figure 4.1: A vehicle approaching a jaywalking pedestrian with uncertain intent. (a) A risk-taking driver may
gamble for the most likely outcome, ignore uncertainty, and pass on the left. (c) A risk-averse driver may hedge
against all outcomes by bringing their vehicle to a full halt, waiting for the situation to resolve. (b) An expe-
rienced driver may realize that this uncertainty will resolve in the near future (at time tb) and thus commit to
an immediate plan that can be continued safely and efficiently under both outcomes. Our contingency games
formalize this middle ground between the two extremes.

4.1 Introduction

Imagine you are driving and you see a pedestrian in the middle of the road as shown
in Figure 4.1. The pedestrian is likely to continue walking to the right, but you also saw
them turning their head around; so maybe they want to walk back to the left? You think
to yourself, “If the pedestrian continues to the right, I just need to decelerate slightly and
can safely pass on the left; but if they suddenly turn around, I need to brake and pass
them on the right.” Moreover, you understand that your actions influence the pedestrian’s
decision regarding whether and how quickly to cross the street. You decide to take your
foot off the gas pedal and drive forward, aiming to pass the pedestrian on the left, but you
are ready to brake and swerve to the right should the pedestrian turn around.

This example captures three important aspects of real-world multi-agent reasoning:
(i) strategic interdependence of agents’ actions due to their (partially) conflicting intents—
e.g., the pedestrian’s actions do not only depend on their own intent but also on your
actions, and vice versa; (ii) accounting for uncertainty—e.g., how likely is it that the pedes-
trian wants to move left or right?; and (iii) planning contingencies—e.g., by anticipating
that uncertainty will be resolved in the future, a driver can commit to an immediate
plan (shown in black in Figure 4.1b) that can be continued safely and efficiently under
each outcome (shown in red and blue in Figure 4.1b).
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In this work, we formalize this kind of reasoning by introducing contingency games:
a mathematical model for planning contingencies through the lens of dynamic game the-
ory. Specifically, we focus on MPGP settings, wherein an ego agent (i.e., a robot) plans by
choosing its future trajectory in strategic equilibrium with those of other nearby agents
(e.g., humans) at each planning invocation. Importantly, the ego agent must account for
any uncertainty about other agents’ intents—i.e., their optimization objectives—when solv-
ing this game. For computational tractability, most established methods take one of two
approaches. One class of methods ignores uncertainty by performing MLE and solving a
certainty-equivalent game [78, 102, 103]. The other class accounts for uncertainty by plan-
ning with a full distribution—or “belief”—conservatively assuming that intent uncertainty
will never be resolved during the planning horizon [63, 104]. Our main contribution is
a game-theoretic interaction model that bridges the gap between these two extremes:

A contingency game is a model for strategic interactions which allows a robot
to consider the full distribution of other agents’ intents while anticipating in-
tent certainty in the near future.

Importantly, unlike existing formulations of trajectory games with parametric uncer-
tainty [63, 104, 105], contingency games capture the fact that future belief updates will
reduce uncertainty and hence, eventually, the true intent of the human will be clear at a
future “branching” time, tb. As a result, solutions of contingency games are conditional
robot strategies which take a tree structure as shown in Figure 4.1b. The “trunk” of the
conditional plan encodes decisions that are made before certainty is reached (before tb).
After tb, the robot generates separate conditional trajectories for each possibility θ ∈ Θ.

Beyond our main contribution of an uncertainty-aware game-theoretic interaction
model, we also (i) show how general-sum N -player contingency games can be trans-
formed into Mixed Complementarity Problems, for which off-the-shelf solvers [37] are
available and (ii) discuss how beliefs and branching times may be estimated online for
receding-horizon operation. We also highlight the desirable modeling flexibility of contin-
gency games as a function of the parameter tb, recovering certainty-equivalent games on
one extreme, and conservative solutions on the other (see Figure 4.1). Through a series of
simulation experiments, we demonstrate that contingency games close the gap between
these two extremes, and highlight the utility of estimating the branching time online.

4.2 Related Work
4.2.1 Game-Theoretic Motion Planning
Game-theoretic planning has become increasingly popular in interactive robotics domains
like autonomous driving [102, 106, 107], drone racing [108], and shared control [109] due
to its ability to model influence among agents. A crucial axis in which prior works differ
is in the modeling of the robot’s uncertainty regarding other agents’ objectives, dynam-
ics, and state at each time. Methods which assume no uncertainty in the trajectory game
model (e.g., taking the most probable hypothesis as truth) result in the simplest game for-
mulations, and have been explored extensively [46, 82, 103, 110]. However, in real-world
settings it is unrealistic to assume that a robot has full certainty, especially with respect
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to other agents’ intents. Instead, robots will often maintain a probability distribution, or
“belief,” over uncertain aspects of the game.

There are several ways in which such a belief can be incorporated in a trajectory game.
On one hand, the robot could simply optimize for its expected cost under the distribution
of uncertain game elements. We call this a “fixed uncertainty” approach, since the game
ignores the fact that as the game evolves, the robot could gain information leading to be-
lief updates [63, 104, 105]. While these methods do utilize the robot’s uncertainty, they
often lead to overly conservative plans because the robot cannot reason about future in-
formation that would make it more certain (i.e., confident) in its decisions.

On the other hand, the agents in a game may reason about how their actions could
lead to information gain; we refer to this as “dynamic uncertainty.” Games which ex-
actly model dynamic information gain are inherently more complex, and are generally
intractable to solve, especially when the belief space is large and has non-trivial update
dynamics [111, 112]. Recent methods attempted to alleviate the computational burden
of an exact solution via linear-quadratic-Gaussian approximations of the dynamics, ob-
jectives, and beliefs [113]. While the computational benefits of such approximations are
significant, they introduce artifacts that make them inappropriate for scenarios such as
that shown in Figure 4.1 in which uncertainty is fundamentally multimodal. It remains an
open challenge to solve “dynamic uncertainty” games tractably.

Our contingency games approach presents a middle ground between these paradigms
via a belief-update model simple enough to compute exact solutions to the resulting
dynamic-uncertainty game, and realistic enough to generate intelligent behavior that
anticipates future uncertainty reduction.

4.2.2 Non-Game-Theoretic Contingency Planning

There is a growing literature of non-game-theoretic interaction planners [114], including
various flavors of contingency planning. Online-optimization-based approaches primar-
ily focus on predict-then-plan contingency planning [115–118]. Recent learning-based
contingency planners leverage deep neural networks to generate human predictions con-
ditioned on candidate robot plans [119, 120]; a robot plan is then selected via methods like
sampling-based model-predictive control [119], dynamic programming [121], or neural
trajectory decoders [120].

Other approaches draw inspiration from deep reinforcement learning to accomplish
both intention prediction and motion planning. To predict multi-agent trajectories in the
near future, Packer et al. [122] and Rhinehart et al. [91] construct a flow-based generative
model and a likelihood-based generative model, respectively. Meanwhile, Rhinehart et al.
[123] develop an end-to-end contingency planning framework for both intention predic-
tion and motion planning. We bring the notion of contingency planning to a different
modeling domain—dynamic game theory—to extend its capabilities to handle “dynamic
uncertainty” in strategic interactions. This game-theoretic perspective captures interde-
pendent behavior by modeling other agents as minimizing their own cost as a function of
the decisions of all players in the scene.
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4.3 Formalizing Contingency Games
In this work, we consider settings where a game-theoretic interaction model is not fully
specified. For example, an autonomous car may not be sure if a nearby pedestrian intends
to jaywalk; an assistive robot may not know which tool a surgeon will wish to use next.
In such instances, the robot (agent R) can construct a dynamic game in which components
of the model depend upon an unknown parameter θ ∈ Θ, with |Θ| = K < ∞. When
the robot has some prior information—e.g., from observations of past behavior—it can
maintain a probability distribution or belief, b(θ), over the set of possible games. Naturally,
however, this belief changes as a function of the human’s behavior and the robots actions.
It is this dynamic nature of the uncertainty that the robot can exploit to come upwithmore
efficient plans. In the formal description below, we adopt a two-player convention for
clarity. We note, however, that the formalism can incorporate more players as illustrated
in Section 4.7.2.
Approximations and modeling assumptions. Contingency games approximate a
game which exactly models dynamic uncertainty, which are generally intractable to solve.
Specifically, we introduce the following key modeling assumptions to facilitate tractable
online computation:

1. We assume unilateral uncertainty with discrete support, i.e. |Θ| = K . That is, while
the robot R has uncertainty in the form of a discrete probability mass function b(θ),
the human H acts rationally under the true hypothesis θ̂.

2. We assume the robot has access to (an estimate of) the so-called branching time,
tb, which models the future time at which additional state observations will have
resolved all uncertainty about the initially unknown θ.

3. We simplify the robot’s belief dynamics. Instead of capturing the exact belief dy-
namics across the planning horizon, the robot distinguishes two phases: before tb
the belief is fixed at b(·); after tb the belief collapses to certainty about a single
hypothesis.

We envision contingency games to be employed in a receding-horizon (MPGP) fashion. In
that context, beliefs are updated between each planner invocation and the branching time
may vary and can be estimated online.² We discuss considerations and results for this case
in Sections 4.6 and 4.8.
Notation conventions. We consider interaction of agents i ∈ {R,H} over T < ∞ time
steps. In contrast to existing game-theoretic formulations [45, 46, 67, 82], in a contingency
game we endow each player with multiple trajectories; one for each hypothesis θ. At
each t ∈ [T ] = {1, 2, . . . , T} and hypothesis θ ∈ Θ the state of the game is comprised
of separate variables for each agent i, i.e., xθ,t := (xR

θ,t, x
H
θ,t). Each agent i begins at a

fixed initial state x̂ := (x̂R, x̂H), i.e., xiθ,1 = x̂i, which evolves over time as a function of
that agent’s control action, uiθ,t. States and control actions are assumed to be real vectors
of arbitrary, finite dimension. For brevity, we introduce the following shorthand: we use

²Note that, despite the use of assumption 3 within our game formulation, we will employ a belief updater that
still captures more accurate belief dynamics as we shall discuss in Section 4.6.



4.4 Features of Contingency Game Solutions

4

67

ziθ,t := (xiθ,t, u
i
θ,t) to denote a state-control tuple, we use boldface to denote aggregation

over time, e.g. ziθ := (ziθ)t∈[T ], we omit player indices to denote aggregation, e.g. zθ =
(zR
θ, z

H
θ ), and we denote the finite collection of all K = |Θ| trajectories for player i as

ziΘ = (xiΘ,u
i
Θ) := (ziθ)θ∈Θ.

Contingency game formulation. With these conventions in place, we formulate a con-
tingency game as follows. The robot wishes to optimize its expected performance over
all hypotheses (4.1a) while restricting all contingency plans to be feasible with respect to
hypothesis-dependent constraints hθ (4.1b) and enforcing the contingency constraint (4.1c)
that the first tb − 1 control inputs must be identical across all hypotheses θ ∈ Θ:

R : SR (zH
Θ

)
:= argmin

zR
Θ

∑
θ∈Θ

b(θ)JR(zR
θ, z

H
θ ) (4.1a)

hR
θ(z

R
θ, z

H
θ ) ≥ 0, ∀θ ∈ Θ (4.1b)

c(uR
Θ; tb) = 0. (4.1c)

Simultaneously, the robot interactswithK versions of agentH, each ofwhich is guided
by a different intent θ which parameterizes both the hypothesis-dependent cost JH

θ (4.2a)
and constraints hH

θ (4.2b):

∀θ ∈ Θ :

Hθ : SHθ
(
zR
θ

)
:= argmin

zH
θ

JH
θ (z

R
θ, z

H
θ )

hH
θ (z

R
θ, z

H
θ ) ≥ 0.

(4.2a)

(4.2b)

In this contingency game formulation, it is important to appreciate that the robot’s strat-
egy depends on the distribution b(θ) and all the trajectories zΘ = (zθ)θ∈Θ, while Hθ’s
strategy depends only on the trajectories under hypothesis θ, zθ . Since the objectives of
R and H may in general conflict with one another, and we model agents as being self-
interested, such a game is termed noncooperative.

Taken together, optimization problems Equations (4.1) and (4.2) take the form of
a GNEP. “Solutions” to this problem are defined as follows.

Definition 4.1 (Generalized Nash Equilibrium, [85, Ch. 1]). A trajectory profile (zR∗
Θ , z

H∗
Θ )

is a GNE of the game from Equations (4.1) and (4.2) if and only if

zR∗
Θ ∈ SR (zH∗

Θ

)
and

∧
θ∈Θ

zH∗
θ ∈ SHθ

(
zR∗
θ

)
.

In practice, we relax Definition 4.1 and only require local minimizers of Equations (4.1)
and (4.2). Under appropriate technical qualifications, such local equilibria are character-
ized by first and second order conditions commensurate with concepts in optimization.
Readers are directed to [85] for further details.

A solution method for contingency games is discussed in Section 4.5; but first, we
take a step back to build intuition about the behavior induced by the proposed interaction
model.
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(f) (g) (h)

(f-h) Varying branching times, 

branching
time

sidewalk

(a) (b) (c) (d) (e)

(a-e) Varying beliefs, 

Figure 4.2: Contingency game solutions for the jaywalking scenario at varying beliefs and branching times.

4.4 Features of Contingency Game Solutions

Scenario 1: driving near a jaywalking pedestrian. Consider the scenario shown in
Figure 4.2. Here, the robot (R) wants to move forward but does not know if the pedes-
trian (H) wants to reach the left or right side of the road. To model this ambiguity, let θ ∈
Θ := {left, right}. Robot R plans a trajectory for each hypothesis, i.e. zR

Θ := (zR
left, z

R
right),

each of which is tailored to react appropriately to humanHθ in the corresponding scenario.
Similarly, H maintains zH

Θ := (zH
left, z

H
right), which capture its “ground truth” behavior un-

der each hypothesis. Each of H’s trajectories will react to the corresponding trajectory
of R. We model the robot as a kinematic unicycle and the pedestrian as a planar point
mass. To ensure collision avoidance, the robot must pass behind the pedestrian, i.e. not
between the pedestrian and its (initially unknown) goal position. We capture all of these
constraints via a single vector-valued function hiθ(zR

θ, z
H
θ ) ≥ 0, which explicitly depends

on hypothesis θ.
How each agent acts in a contingency game formulation of this problem is largely

affected by two quantities: (i) the initial belief that the robot holds over the human’s intent
and (ii) the branching time which models the time at which the robot will get certainty.
We discuss the role of both quantities below.
Qualitative behavior: Role of the belief. First, we keep the branching time fixed and
analyze the contingency plans for a suite of beliefs. Figures 4.2a-e show how both the
robot’s contingency plan and the pedestrian’s reaction change as a function of the robot’s
intent uncertainty. At extreme values of the belief, the robot is certain which hypothesis
is accurate and the contingency strategy is equivalent to that of a single-hypothesis game
with intent certainty. At intermediate beliefs, the contingency game balances hypotheses’
cost according to their likelihood, yielding interesting behaviors: in Figure 4.2d the robot
plans to inch forward at first (black), but biases its initial motion towards the scenario
where the pedestrian will go left (blue). Nevertheless, it still generates a plan for the less
likely event that the pedestrian goes right (red).
Qualitative behavior: Role of the branching time. Next, we assume that the robot’s
belief is always a uniform distribution, and vary the contingency game’s tb parameter.
Figures 4.2f-h show how extreme values of this parameter automatically recover existing
variants of game-theoretic planning under uncertainty: certainty-equivalent games [78,
102, 103] and non-contingent games that plan in expectation [104, 105]. At one extreme,
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pedestrian (H)

ego
agent
(R)

(a) (c)

(b)

Hleft Hright

Figure 4.3: Cost of contingency plans in the jaywalking scenario. (a) state sampling region, (b) cost per tb
averaged over all initial states, (c) spatial cost distribution for two fixed tb.

when tb = 1, the contingency constraint (4.1c) is removed entirely and we obtain the
solutions of the fully observed game under each hypothesis (see Figure 4.2f). These are
precisely the solutions found for the certainty-equivalent games in Figures 4.2a,e. Note,
however, that in this special case the contingency plan is not immediately actionable since
it first requires the ego agent to commit to a single branch, e.g., by considering only the
most likely hypothesis [78, 102, 103]. While easy to implement, such an approach can
be overly optimistic and can lead to unsafe behavior since the control sequence from the
selected branch may be infeasible for another intent hypothesis. For example, if the robot
were to commit to θ = left in Figure 4.2f, it would be on a collision course with 50%
probability.

By contrast, at the upper extreme of the branching time, tb = T , the contingency plan
no longer branches and it consists of a single control sequence for the entire planning
horizon, c.f. [104, 105]. As a result, this plan is substantially more conservative since
it must trade off the cost under all hypotheses while respecting the constraints for any
hypothesis with non-zero probability mass: in Figure 4.2g, the ego agent plans to slow
down aggressively since its uncertainty about the pedestrian’s intent renders both sides
of the roadway blocked.

Overall, this analysis shows that contingency games (i) unify various popular ap-
proaches for game-theoretic planning under uncertainty, and (ii) go beyond these existing
formulations towards games that consider the distribution of other players’ intents while
anticipating intent certainty in the future.

Quantitative impact of the branching time. Given the central role of the branching
time in our interactionmodel, we further analyze the quantitative impact of this parameter
on the robot’s contingency plan. For this purpose, we generate contingency plans across
varying branching times, tb ∈ {1, . . . , 25}, for each of 70 different initial pedestrian posi-
tions sampled from a uniform grid around the nominal position as shown in Figure 4.3a.



4

70 4 Contingency Games: Strategic Interaction Under Uncertainty

Figure 4.3b shows that, by anticipating future certainty at earlier branching times (tb = 5),
the robot discovers lower-cost plans than a method that assumes uncertainty will never
resolve (tb = 25). Furthermore, the spatial distribution of the cost in Figure 4.3c reveals
that the robot generates particularly low-cost plans for tb = 5 if the human is initially in
the center of the road. Here, the contingency plan exploits the fact that—irrespective of
the human’s true intent—the road will be cleared by the time the robot arrives, c.f. Fig-
ure 4.2g. Of course, this analysis pertains to the open-loop plan. However, as we shall
demonstrate in Section 4.8, a performance advantage persists under the added effect of
receding-horizon planning.

4.5 Transforming Contingency Games into
Mixed Complementarity Problems

Next, we discuss how to compute strategies from this interaction model. Rather than de-
veloping a specialized solver, we demonstrate how contingency games can be transformed
into MCPs for which large-scale off-the-shelf solvers are readily available [37]. Our im-
plementation of a game-theoretic contingency planner internally synthesizes such MCPs
from user-provided descriptions of dynamics, costs, constraints, and beliefs.

We begin by deriving the KKT conditions for the contingency game in Equations (4.1)
and (4.2). Under an appropriate constraint qualification (e.g., Abadie, or linear indepen-
dence [85, Ch. 1], [58, Ch. 12]), these first-order conditions are jointly necessary for any
generalized Nash equilibrium of the game. The Lagrangians of both players are:

R : LR(zR
Θ, z

H
Θ, λ

R
Θ, ρ) = ρ⊤c(uR

Θ; tb) +∑
θ∈Θ

(
b(θ)JR(zR

θ, z
H
θ )− λR⊤

θ hR
θ(z

R
θ, z

H
θ )
)
, (4.3)

Hθ : LH
θ (z

R
θ, z

H
θ , λ

H
θ ) = JH

θ (z
R
θ, z

H
θ )− λH⊤

θ hH
θ (z

R
θ, z

H
θ ),

where ρ is the Lagrange multiplier for player R’s contingency constraint, and λiθ are
Lagrange multipliers for all other constraints of player i at hypothesis θ. Denoting com-
plementarity by “⊥”, we derive the following KKT system for all players:

∀θ ∈ Θ :


∇zR

θ
LR(zR

Θ, z
H
Θ, λ

R
Θ, ρ) = 0,

∇zH
θ
LH
θ (z

R
θ, z

H
θ , λ

H
θ ) = 0,

0 ≤ hR
θ(z

R
θ, z

H
θ ) ⊥ λR

θ ≥ 0,

0 ≤ hH
θ (z

R
θ, z

H
θ ) ⊥ λH

θ ≥ 0,

(4.4a)

(4.4b)

(4.4c)
(4.4d)

c(uR
Θ; tb) = 0. (4.4e)

Collectively, (4.4) forms an MCP, as defined below [85, Ch. 1].

Definition 4.2 (Mixed Complementarity Problem) A Mixed Complementarity Prob-
lem (MCP) takes the following form: Given G : Rd → Rd, lower bounds vlo ∈ [−∞,∞)d
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and upper bounds vup ∈ (−∞,∞]d, solve for v⋆ ∈ Rd such that, for each j ∈ {1, · · · , d},
one of the equations below holds:

[v]⋆j = [vlo]j , [G]j(v
⋆) ≥ 0,

[vlo]j < [v]⋆j < [vup]j , [G]j(v
⋆) = 0,

[v]⋆j = [vup]j , [G]j(v
⋆) ≤ 0,

where [G]j denotes the jth component of G, and [vlo]j and [vup]j denote the jth components
of vlo and vup, respectively.

Observe that the KKT conditions (4.4) encode an MCP with variable v, functionG, and
bounds vlo, vup block-wise defined (by slight abuse of notation): one block for each θ ∈ Θ,

[v]θ = (zR
θ, z

H
θ , λ

R
θ, λ

H
θ ), (4.5a)

[vlo]θ = (−∞,−∞, 0, 0), (4.5b)
[vup]θ = (∞,∞,∞,∞), (4.5c)

[G(v)]θ =


∇zR

θ
LR(zR

Θ, z
H
Θ, λ

R
Θ, ρ)

∇zH
θ
LH(zR

θ, z
H
θ , λ

H
θ )

hR
θ(z

R
θ, z

H
θ )

hH
θ (z

R
θ, z

H
θ )

 , (4.5d)

and an additional block for the contingency constraint

[v]c = ρ, [vlo]c = −∞, [vup]c =∞, [G(v)]c = c(uR
Θ; tb). (4.6)

To establish that the MCP solution is indeed a local equilibrium of the contingency game,
sufficient second-order conditions [58, Thm. 12.6] can be checked for (4.1) and (4.2).

4.6 Online Planning with Contingency Games
We envision contingency games to be deployed in a MPGP framework where beliefs and
branching times are estimated online. Next, we discuss considerations for this setting.

4.6.1 Belief Updates
While the true human intent θ̂ is hidden from the robot, the robot can utilize observations
of past human decisions to update its current belief bτ (θ) = P (θ | x̂) about this quantity,
where x̂ := {(x̂R

1, x̂
H
1 ), . . . (x̂

R
τ , x̂

H
τ )} is the sequence of joint human-robot states observed

up until the current time τ . We use the model in Figure 4.4 to cast this inference prob-
lem in a Bayesian framework. In this model, we use our game-theoretic planner to com-
pute jointly a nominal state-action trajectory for each agent and for each hypothesis. The
robot’s portion of this solution computed at time τ , zR

Θ,τ , serves as our receding-horizon
motion plan, and the human’s portion of the plan, zH

θ,τ , constitutes a nominal receding-
horizon prediction of their future actions under each hypothesis θ ∈ Θ. However, due
to bounded rationality [124], the human may not execute exactly this plan. Hence, at the



4

72 4 Contingency Games: Strategic Interaction Under Uncertainty

... ...

Figure 4.4: Bayesian network modeling the robot’s intent inference problem. Shaded nodes represent observed
variables.

next time step τ + 1 when we observe a new human physical state, x̂H
τ+1, we treat it as a

random emission of the previous nominal predictions. Similar to prior works [118, 120], in
our experiments we assume that human states are distributed according to a Gaussianmix-
ture model with one mode for each hypothesis θ; i.e., p(x̂H

τ+1 | zH
θ,τ ) = N (µθ,Σ) where

the mean µθ is the expected human state extracted from the previous human prediction,
zH
θ,τ , and Σ is a covariance parameter characterizing human rationality. In summary, the

robot can recursively update their belief via

bτ+1(θ) =
p(x̂H

τ+1|zH
θ,τ )bτ (θ)∑

θ′∈Θ p(x̂
H
τ+1 | zH

θ′,τ )bτ (θ
′)
. (4.7)

4.6.2 Estimating Branching Times
Prior work on non-game-theoretic contingency planning either chooses the branching
time as informed by a careful heuristic design [115] or through offline analysis of the belief
updater [125]. A thorough theoretical analysis on how to choose the branching time tb
in the more general game-theoretic case is beyond the scope of this work. Nonetheless,
to demonstrate the utility of anticipating future intent certainty, we propose a branching
time heuristic which only requires access to the previous game solution and current belief.
Heuristic branching time estimator. Intuitively, the branching time should be lower
when the future human actions are more “distinct” under each hypothesis. Our heuristic
captures this relationship as follows. Let H[bτ ] = −

∑
θ∈Θ bτ (θ) log|Θ|(bτ (θ)) denote

the entropy of belief bτ . Furthermore, let B(zH
Θ,τ−1, θ, k)[·] denote the operator that, for

a given θ, takes the first k states from the previously-computed zH
Θ,τ−1 as hypothetical

observations and returns the thus updated belief. We approximate the branching time as

tb(bτ , z
H
Θ,τ−1) = max

θ∈Θ
min

k∈{2,...,T}
k s.t. H

[
B(zH

θ,τ−1, θ, k)[bτ ]
]
≤ ϵ (4.8)

Note that the minimum branching time chosen by this heuristic is tb = 2, ensuring that
the robot has a unique first input to apply during receding-horizon operation. Procedu-
rally, this heuristic is straightforward to implement: for each hypothesis, we predict the
belief via a hypothetical observation sequence as if the human (i) is perfectly rational and
(ii) does not re-plan in the future; then, we return the first time at which all predicted
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beliefs reach entropy threshold ϵ³. Assumptions (i) and (ii) make this heuristic cheap to
evaluate since they avoid the need to re-compute game solutions within (4.8). While, these
approximations may affect the accuracy of the estimator we shall demonstrate the utility
of this approach in Section 4.8.

4.7 Experimental Setup
We wish to study the value of anticipating future certainty in game-theoretic planning.
Therefore, we compare our method against a non-contingent game-theoretic baselines on
two simulated interaction scenarios in which dynamic uncertainty naturally occurs.

4.7.1 Compared Methods
Beyond the contingency game that uses our branching time heuristic, we consider the
following methods, all of which operate in receding-horizon fashion with online belief
updates according to (4.7). Note that, following the discussion in Section 4.4, all game-
theoretic methods below can be understood as a contingency game with a special branch-
ing time choice.
Baseline 1: Certainty-equivalent (tb = 1). This baseline assumes certainty, making a
point estimate by considering only the most probable hypothesis at each time step.
Baseline 2: Fixed uncertainty (tb = T ). Similar to [104], this baseline ignores future
information gains, assuming fixed uncertainty along the entire planning horizon.
Baseline 3: MPC.This baseline uses non-game-theoretic model-predictive control (MPC),
forecasting opponent trajectories assuming constant ground-truth velocity.
Contingency game with tb = 2. To test the utility of our branching time heuristic,
we also consider a contingency game that assumes certainty one step into the future—an
assumption also used in non-game-theoretic contingency planning [117].
Contingency game with oracle branching time. Additionally, we consider an “ora-
cle” branching time estimator that recovers the true branching time by first simulating
receding-horizon interaction with a nominal branching time and then extracting the time
of certainty from the belief evolution in hindsight. Naturally, this oracle requires access to
the true human intent and hence is not realizable in practice. Nonetheless, we include this
variant to demonstrate the potential performance achievable with our interaction model.

4.7.2 Driving Scenarios
Beyond the jaywalking example (“Scenario 1”) introduced in Section 4.4, we evaluate our
method on the following three-player scenario.
Scenario 2: highway overtaking. In this scenario, an autonomous vehicle attempts to
overtake a human-operated vehicle with additional slow traffic in front, c.f. Figure 4.5.
To perform this overtaking maneuver safely, the robot must reason about possible lane

³A low threshold results in more conservative behavior. As informed by a parameter sweep over ϵ, we choose
ϵ = 2−2 for all experiments for best performance.
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ego agent

ego
agent (R)Hmerge

Hstay

~

human
driver (H)

human
driver (H)

~

Figure 4.5: Scenario 2: an autonomous vehicle seeks to overtake slow traffic on a highway while being uncertain
about the lane changing intentions of the vehicle ahead.

changing intentions of the other vehicle. Since the robot is uncertain about the target
lane of human-driven car in front, it maintains a belief over the hypothesis space Θ =
{merge, stay}. We add a non-convex collision avoidance constraint between pairs of play-
ers which enforces that cars cannot be overtaken on the side of their target lane.
Implementation details. Throughout all experiments, we model cars as kinematic uni-
cycles, and pedestrians as planar point masses. All systems evolve in discrete-time with
time discretization of 0.2 s and agents plan over a horizon of T = 25 time steps. In both
scenarios, road users’ costs comprise of a quadratic control penalty and their intent θ ∈ Θ
dictates a goal position for pedestrians and a reference lane for cars via a quadratic state
cost. Collision avoidance constraints are shared between all agents.

4.8 Simulated Interaction Results
The following evaluations are designed to support the claims that (C1) contingency games
close the gap between the two extremes shown in Figure 4.1: providing more efficient
plans than fixed-uncertainty games at higher levels of safety than certainty-equivalent
games; and that (C2) our branching time heuristic improves the performance of contin-
gency games over a naive fixed branching time estimate of tb = 2.
Data collection. We evaluate all methods in a large-scale Monte Carlo study as follows.
For each scenario, we simulate receding-horizon interactions of 6 s duration. As in the
open-loop evaluation of Section 4.4, we repeat the simulation for 70 initial states of each
non-ego agent. These initial states are drawn from a uniform grid over the state regions
shown in Figure 4.3a and 4.5. We generate the ground-truth human behavior from a game
solution at each fixed hypothesis θ̂ ∈ Θ. Since this true human intent is initially unknown
to the robot, the robot starts with a uniform belief. To test the methods under varying
information gain dynamics—and thereby varying branching times—we consider five levels
of human rationality, σ2, parameterizing an isotropic observation model, i.e., Σ = σ2I
where I denotes the identity matrix. In contrast to the open-loop evaluation of Section 4.4,
here the robot re-plans at every time step with the latest online estimate of the belief and
branching time. Figures 4.6 and 4.7 summarize the results of this Monte Carlo study.
Quantitative results. In terms of safety, Figures 4.6a and 4.7a show that the methods
making a single prediction about the future, Baseline 1 and Baseline 3, fail significantly
more often than the remaining approaches, all of which achieve failure rates below 1%
across all levels of human rationality. In terms of efficiency, Figures 4.6b and 4.7b show
that contingency games incur a lower interaction cost than the more conservative fixed-
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Figure 4.6: Quantitative closed-loop results for the jaywalking example.
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Figure 4.7: Quantitative closed-loop results for the overtaking example.

uncertainty Baseline 2. However, this performance advantage relies on a dynamic branch-
ing time estimate, as indicated by the performance advantage of Ours (heuristic) over
Ours (tb = 2). Finally, Ours (oracle) further improves efficiency due to the tight branch-
ing time estimate (c.f. Figures 4.6c and 4.7c), demonstrating the potential of our interaction
model. In summary, these results support our claims C1 and C2 above.
Qualitative results. To further contextualize these results with respect to claim C1, we
visualize examples of the closed-loop behavior generated by our method, the certainty-
equivalent Baseline 1, and the fixed-uncertainty Baseline 2 in Figures 4.8 and 4.9. Here,
we show both the sequence of states traced out by all players and the robot’s plan five
time steps into the interaction. In both scenarios, the robot’s initial observations cause
its belief to favor an incorrect hypothesis. This belief prompts Baseline 1 to commit to an
unsafe strategy, causing a collision with the human. Baseline 2, on the other hand, brakes
conservatively in the face of this belief and only accelerates once the uncertainty fully
resolves. Finally, our contingency game planner anticipates the future information gain
and avoids excessive braking while remaining safe.



4

76 4 Contingency Games: Strategic Interaction Under Uncertainty

Estimated
branching
point

collision

True
branching
point

left right

Figure 4.8: Qualitative closed-loop results for the jaywalking example.

stay merge

 reaches certainty at t = 15robot

(b) belief at t = 5

(c) stage costs(a) closed-loop trajectories

less conservative

Figure 4.9: Qualitative closed-loop results for the overtaking example.

4.9 Limitations & Future Work

Even with a simple branching time heuristic, our approach outperforms the baselines.
Nonetheless, the observed performance gains for the branching time “oracle” motivate fur-
ther research into more precise estimators. Beyond that, in this work we assumed access
to a fixed set of suitable intent hypotheses and our approach relies on receding-horizon
re-planning to adapt to changes of this set. Future work should seek to automate the
discovery of intent hypotheses, test our approach in scenarios with more complex intent
dynamics, and consider extensions that explicitly capture these effects in the contingency
game. Furthermore, the complexity of our approach is proportional to the product of the
number of individual intents of each player, and the technique we employ to solve these
games generally scales cubically with regards to total strategy size. Future work could con-
sider employing a learning-based predictor [92] to automatically identify high-likelihood
intents in complex scenarios and sub-select local players [126]. Finally, future work may
extend our approach to continuous hypothesis spaces, e.g., by sampling as in [63, 127].
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4.10 Conclusion
Wepresent contingency games, a game-theoretic motion planning framework that enables
a robot to efficiently interact with other agents in the face of uncertainty about their in-
tents. By capturing simplified belief dynamics, our method allows a robot to anticipate
future changes in its belief during strategic interactions. In detailed simulated driving ex-
periments, we characterized both the qualitative behavior induced by contingency games
and the quantitative performance gains with respect to non-contingent baselines.
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Chapter 5

Amortized Equilibrium
Approximation through Offline
Learning

In Chapters 3 and 4, we have developed game-theoretic motion planners that adapt to chang-
ing beliefs of unknown game parameters online. Despite their demonstrated utility, these
techniques share an important limitation: they require reasoning over large strategy spaces
online, which can be computationally challenging.

The size of the strategy space is influenced by a variety of factors. In Chapter 3, the driving
factor of the problem size is the number of players. In Chapter 4, the presence of multiple
game-parameter-hypotheses further increases the problem size.

In this chapter, we tackle the computational challenges induced by large strategy spaces by
developing a game solver that amortizes the computation of equilibrium solutions via an
offline training phase. While the core principles of this chapter also apply to the games in
Chapters 3 and 4, we develop our contribution in the context of another class of problems
that naturally gives rise to enlarged strategy spaces: games in which agents are not forced to
commit to a single, deterministic trajectory, but may choose a distribution of trajectories—so-
called “mixed” strategies. We validate our approach on a number of experiments using the
pursuit-evasion game “tag.”

This chapter is a verbatim copy, with minor modifications, of the peer-reviewed conference publication [80]:

 Lasse Peters, David Fridovich-Keil, Laura Ferranti, Cyrill Stachniss, Javier Alonso-Mora, Forrest Laine.
“Learning Mixed Strategies in Trajectory Games.” Proceedings of Robotics: Science and Systems (RSS), 2022.

Contribution statement: Lasse and Forrest developed the key ideas for the lifted game formulation and the offline
training phase. Lasse implemented the lifted game solver, the underpinning trajectory optimization routines, the
infrastructure for making all components differentiable, and conducted all experiments. Forrest implemented
the underpinning finite game solver and proved the theoretical results in Appendix 5.A and 5.B. Lasse, David,
and Forrest jointly wrote the initial draft of the manuscript. All authors contributed to technical discussions and
edits of the original manuscript submitted to RSS [80].
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5.1 Introduction
Trajectory optimization techniques have become increasingly common in motion plan-
ning. So long as vehicle dynamics, design objectives, and safety constraints satisfy mild
regularity conditions, a motion planning problemmay be encoded as a nonlinear program
and solved efficiently to a locally-optimal solution. The widespread successes of trajectory
optimization have sparked growing interest in similar techniques for multi-agent, nonco-
operative decision-making and motion planning. In this context, game theory offers an
elegant mathematical framework for modeling the strategic interactions of rational agents
with distinct interests. By reasoning about interactions with others as a trajectory game, an
autonomous agent can plan future decisions while accounting for the strategic reactions
of others.

Since they involve multiple players with distinct, potentially competing objectives, tra-
jectory games can be far more complex to solve than single-agent trajectory optimization
problems. Recent algorithmic advances make solving trajectory games tractable in some
instances [46, 47]. Still, they remain fundamentally more challenging to solve than single-
agent problems, and consequently, trajectory games have not been widely adopted in the
robotics community.

(a) Pure strategies (b) Mixed strategies

Figure 5.1: A zero-sum game of tag played between two agents with planer point-mass dynamics in a pentago-
nal environment. (a) In pure strategies, players are bound to deterministic behavior, and the evader is quickly
captured. (b) Our approach lifts the strategy space to learn more competitive, mixed strategies, i.e., distributions
over multiple trajectory candidates per player. The opacity of each trajectory in (b) encodes probability of se-
lecting that learned candidate.

Perhaps more importantly, however, equilibrium solutions to trajectory games do not
always exist. Nonexistence arises even in extremely simple static games such as rock-
paper-scissors, in which neither player wishes to commit to a fixed, deterministic action
which could be exploited by its opponent. Unsurprisingly, the same phenomenon can arise
in more complex trajectory games. For example, consider the game of tag shown in Fig-
ure 5.1, where the red pursuer wishes to catch the blue evader. Here, if the evader chooses
a single, deterministic trajectory, it will certainly be caught by a rational pursuer. In the
context of small, discrete games such as rock-paper-scissors, these non-existence issues
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are commonly avoided by allowing players to “mix” their actions, i.e., to choose an action
at random from a distribution of their choice. This distribution is called a “mixed strategy,”
in contrast to the choice of a single deterministic action or “pure strategy.” However, for
continuous trajectory games it can be difficult to represent mixed strategies. Hence, it is
common to regularize players’ objectives in order to encourage the existence of pure solu-
tions.¹ For example, in Figure 5.1a each player is penalized for large accelerations, leading
to an equilibrium in which the evader is cornered by the pursuer.

With these issues in mind, this work introduces the following key contributions:

1. a principled method for reducing the online computation needed to solve trajectory
games via the introduction of an offline training phase, and

2. a formulation of lifted games over multiple trajectory candidates, which admit a
natural class of high-performance mixed strategies.

Together, these contributions enable efficient and reliable on-line trajectory planning for
autonomous agents in noncooperative settings, such as the tag example of Figure 5.1. We
validate our methods in a suite of Monte Carlo studies, in which we demonstrate that lift-
ing gives rise to mixed strategies as shown in Figure 5.1b, providing a significant compet-
itive advantage in both open-loop and receding-horizon play. Our method’s reliable con-
vergence and its ability to explicitly account for constraints enables training from scratch
within only a few minutes of simulated self-play. Once fully trained, learning can be
disabled and our method generates mixed strategies within 2ms for the tag example in
Figure 5.1.

5.2 Related Work
Our contributions build upon recent work in trajectory optimization and game-theoretic
planning, and bear a close relationship with work in learning motion primitives and im-
plicit differentiation. We discuss these relationships in further detail below.

5.2.1 Trajectory Optimization
Trajectory optimization refers to a finite-horizon optimal control problem inwhich a robot
seeks a sequence of control inputs which minimize a performance criterion [129]. It is
common to use trajectory optimization for model predictive control (MPC), whereby a
robot quickly re-optimizes a new sequence of control inputs as new sensor data becomes
available [130]. While a host of trajectory optimization techniques have been proposed
in recent years, most common algorithms build upon the iterative linear-quadratic regu-
lator [131–133] and differential dynamic programming [134–136]. In turn, these may be
understood as specific approximations to standard algorithms in nonlinear programming
(NLP), such as sequential quadratic programming [58, 137]. As discussed below, this fun-
damental NLP representation underlies the proposed approach for multi-agent trajectory
games.

¹Regularizing players’ control inputs to ensure the existence of equilibria is well-established in the literature on
dynamic games and robust control [45], [128].
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5.2.2 Trajectory Games

Recent work has sought to generalize the aforementioned trajectory optimization tech-
niques to address multi-agent, competitive planning. Here, each player seeks to minimize
an individual performance criterion subject to constraints arising from, e.g., dynamics and
actuator limits. The objectives and constraints for different players may, in general, de-
pend upon the trajectories of others. Solutions to these problems are characterized by
equilibrium points at which all players’ strategies are unilaterally optimal.

The theoretical underpinnings of dynamic games were established in the context of
state feedback [44, 45, 138, 139]. However, computational methods were historically lim-
ited to highly-structured problems such as those found in linear robust control [128, 140].
Recent work on iterative linear-quadratic methods [46, 67, 104] extends these ideas to
more general games such as those found in noncooperative robotic planning.

Closely related problems have also been studied in the context of static games. Here,
equilibrium points are found by treating the trajectory of each player as a single action,
and assuming the players choose these actions simultaneously [45]. This results in a Gen-
eralized Nash Equilibrium Problem (GNEP), for which general-purpose solution methods
exist [37, 84, 141]. Several domain-specific solvers have been developed to exploit the
structure of trajectory games, ranging from augmented Lagrangian [66] to iterated best
response methods [65, 142]. Still, these methods can have a high computational burden in
challenging settings.

Regardless of the equilibrium definition (dynamic or static), solving trajectory games
is fundamentally harder than solving single-agent trajectory optimization problems, if for
nothing else but the increased problem dimension. The number of decision variables scales
linearly with the number of players involved, and even with proper handling of sparsity,
computation generally scales cubically with the number of players [46]. In Section 5.4.1,
we introduce an offline training phase for trajectory games which effectively reduces the
online computational burden to that of solving a trajectory optimization problem for each
player in parallel.

5.2.3 Motion Primitives

In this work, we introduce a trajectory lifting technique, which may be understood in
the context of motion primitives [143]. As we discuss in Section 5.4, this reformulation
endows each player with a distribution over finitely many trajectory candidates, which
may be learned. However, learning trajectories, or motion primitives, is also meaningful
in the context of a single agent, and recent work has proposed this concept in the contexts
of quadcopter navigation [144] and robot manipulation [145]. In this light, the present
workmay be viewed as a multi-agent generalization of these techniques. Additionally, our
work constitutes an adaptive, learning-enabled generalization of the multi-agent motion
primitive games formulated for autonomous racing in [83]. In Section 5.4.2, we show that
these trajectory primitives may be learned efficiently with first-order optimization.
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5.2.4 Differentiable Optimization
To improve learning efficiency, we employ implicit differentiation to propagate derivative
information through all steps of our proposed trajectory lifting approach. Recent works
in end-to-end neural architectures for autonomous driving have developed specialized
network layers that embed optimization problems [96, 97, 146]. Like these methods, we
obtain derivatives of players’ game values with respect to learnable parameters by implic-
itly differentiating through the first order optimality conditions for all players in a lifted
trajectory game.

5.3 Formulation
We develop our approach in the context of games played between two² agents over time, in
which each agent’s motion is characterized by a smooth discrete-time dynamical system.
That is, we model agent i’s motion as the temporal evolution of its state x̄i(t) ∈ Rn and
control input ūi(t) ∈ Rm over discrete time-steps t ∈ {1, . . . , T} with x̄i(t + 1) =
F
(
x̄i(t), ūi(t)

)
for differentiable vector field F (·, ·).

Taking an egocentric approach, we investigate using model-predictive game play
(MPGP) [46, 65, 66] as a method by which each player can plan strategically while account-
ing for the predicted reactions of its opponent. MPGP constitutes a natural analogue to
MPC [130] for noncooperative, multi-agent settings. That is, at regular intervals the ‘ego’
agent formulates a finite-horizon trajectory game between itself and its opponent. The
equilibrium of this game specifies optimal trajectories for both players; the ego agent
begins to execute its equilibrium trajectory, and the procedure repeats after a short time
once the players have moved.

The finite-horizon trajectory games formulated at each planning interval can be mod-
eled as a pair of coupled optimization problems, as is common in the literature [45, 67]:

OPT1(τ2, x1) := argmin
τ1

f1(τ1, τ2)

s.t. τ1 ∈ K1(x1)
(5.1a)

OPT2(τ1, x2) := argmin
τ2

f2(τ1, τ2)

s.t. τ2 ∈ K2(x2)
(5.1b)

The decision variables τi for each player i ∈ {1, 2} represent discrete-time state-control
trajectories starting from initial configuration xi. Therefore, the constraint setsKi(xi) rep-
resent the set of all trajectories satisfying dynamic constraints, control limits, etc. Note
that these sets need not be compact or convex, and that the players’ constraint sets are inde-
pendent of one another’s trajectory. In contrast, the differentiable cost functions fi(τ1, τ2)
in each problem can depend upon both players’ trajectories. Thus, the fi can encode pref-
erences such as goal-reaching and collision-avoidance. In particular, since constraints are

²Although we limit our discussion to two players, our formulation may be extended to the general case. For
further discussion, refer to Section 5.4.3.
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decoupled, we assume that any aspect of interaction in the game is modeled via the cost
functions and not through constraints.

As discussed in Section 5.2.2, existing methods to find local equilibrium solutions of
(5.1) include iterative best response [65, 65] and iterative linear-quadratic methods [46, 47,
66, 67]. A Nash equilibrium for Game (5.1) starting from initial configuration (x1, x2) is
defined to be a pair of trajectories, (τ∗1 , τ∗2 ), satisfying

τ∗1 ∈ OPT1(τ
∗
2 , x1) and τ∗2 ∈ OPT2(τ

∗
1 , x2). (5.2)

Nash equilibrium points encode rational strategic play for both players, and hence serve
as a natural solution concept in trajectory games (5.1). For this reason, most recent MPGP
methods [46, 47, 65–67] aim to compute a Nash equilibrium of the trajectory game (5.1).
As a practical matter, however, Nash equilibria can be intractable to compute and modern
methods often settle for local equilibria, in which players’ trajectories are only locally
optimal.

Several important issues arise when employing an MPGP approach. The first is that
solving for a Nash equilibrium—even a local Nash—is harder than solving for a locally
optimal trajectory (as would be done in the single-agent setting of MPC). Not only is the
search space larger due to the inclusion of both players’ trajectory variables, but potential
complications are also introduced by agents’ different and potentially conflicting objec-
tives. As in MPC, real-world applications depend upon our ability to compute solutions to
(5.1) quickly; unfortunately though, this increased complexity can make MPGP unsuitable
for real-time applications.

The second issue is that a Nash equilibrium point may not even exist for Game (5.1),
particularly when one or both of the subproblems (5.1a) and (5.1b) are non-convex. Relat-
edly, even if a Nash equilibrium does exist, it may not be unique. Consequently, in MPGP
an agent may spend significant computational effort searching for an equilibrium point
that does not exist. Worse, non-uniqueness implies that even if an agent finds an equi-
librium, the opponent’s predicted Nash trajectory may not be representative of its true
strategy.

To make these issues more concrete, consider the following “toy” variant of the tag
game in Figure 5.1. Let τ1 and τ2 be scalars, f1(τ1, τ2) = ‖τ1 − τ2‖22 = −f2(τ1, τ2), and
K1 = K2 = [−1, 1]. Here, the pursuer (Player 1) and evader (Player 2) choose positions in
the interval [−1, 1]. By inspection, we may verify that no Nash equilibrium exists. With
additional regularization, however, this example can be modified to admit local equilibria.
With f1 defined as above, if we redefine the function f2(τ1, τ2) = −‖τ1−τ2‖22−‖τ2‖22, two
local equilibrium points result: (−1,−1) and (1, 1). Unfortunately, the locality of these
equilibria causes a significant problem: if Player 1 computed one of these equilibria, and
Player 2 computed the other, the resulting pairing of actions, e.g. (−1, 1), would have a
significantly different outcome for the players than what occurs at either local equilibrium.

5.4 Approach
We propose a novel lifted trajectory game formulation which ameliorates the complexity
and existence/uniqueness issues discussed in Section 5.3.
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5.4.1 Reducing Run-time Computation
To begin, we propose a technique for offloading the complexity introduced by multi-agent
interactions to an offline training phase. The result of this pre-training is that at run-time,
only a single-agent trajectory optimization problem remains for each player, and these
problems can be solved in parallel. To do so, we introduce auxiliary trajectory references
ξi for each Player i, and with a slight abuse of notation, reformulate Game (5.1) as:

OPT1(ξ2, x1, x2) := argmin
ξ1

f1(τ1, τ2) (5.3a)

OPT2(ξ1, x1, x2) := argmin
ξ2

f2(τ1, τ2) (5.3b)

Here, the decision variables ξi and the initial states xi determine trajectory variables
τi = TRAJi(ξi, xi), which we presume to have the form:

TRAJi(ξi, xi) := argmin
τ

1

2
‖Giτ − ξi‖22 +

1

2
‖Hiτ‖22

s.t. τ ∈ Ki(xi).
(5.4)

The first term of the cost functions in problem (5.4) enables ξi to serve as a reference
for τi. For example, if τi = [XT

i U
T
i ]

T, with Xi and Ui representing the state and control
variables of the trajectory, then Gi could be [0 I], giving ξi the interpretation of a control
reference signal. Alternatively, ξi could represent a reference for the terminal state of the
trajectory. The second term allows regularization of the trajectory, which may be needed
if the reference and constraint sets are otherwise insufficient to isolate solutions.

In Appendix 5.A, we prove that for any stationary point (τ1, τ2) of Game (5.1), there ex-
ists a stationary point (ξ1, ξ2) of Game (5.3) such that for both players i, τi = TRAJi(ξi, xi).
This implies that no stationary points are “lost” in the reformulation from (5.1) to (5.3). Fur-
thermore, we discuss practical methods to guarantee that all computed stationary points
of (5.3) result in stationary points of (5.1). This implies that no spurious stationary points
are “introduced” in the reformulation.

With this reformulation, it is now possible to offload a significant amount of compu-
tation to an offline training phase. To do so, we propose training a reference generator
for each player, denoted by the function πθi(x1, x2), which maps both player’s initial
states (x1, x2) to reference ξi. Generator πθi is parameterized by θi and, e.g., may be a
multi-layer perceptron as described in Section 5.4.4. Given a data set³ of initial MPGP con-
figurationsD := {xk1 , xk2}dk=1, we train the reference generators (πθ1 and πθ2 ) by solving
the following game offline:

GEN1(θ2, D) := argmin
θ1

1

d

d∑
k=1

f1(τ
k
1 , τ

k
2 ), (5.5a)

GEN2(θ1, D) := argmin
θ2

1

d

d∑
k=1

f2(τ
k
1 , τ

k
2 ). (5.5b)

³D need not be constructed laboriously; in Section 5.5.5 we show that it can even be accumulated during online
operation.
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Similar to Game (5.3), each trajectory τki appearing in (5.5) is a function of θi, xk1 and xk2 ,
via the relationships

τk1 = TRAJ1
(
πθ1(x

k
1 , x

k
2), x

k
1

)
,

τk2 = TRAJ2
(
πθ2(x

k
1 , x

k
2), x

k
2

)
.

(5.6)

A Nash equilibrium for Game (5.5) can be found by simultaneous gradient descent over
each player’s reference generator parameters, θ1 and θ2. Simultaneous gradient play is
widely used in adversarial machine learning, and is particularly important in both genera-
tive adversarial networks [147] and multi-agent reinforcement learning [148]. Here, each
player’s parameter θi is iteratively updated as θi ← θi − δθi, where

δθ1 =
α1

d
∇θ1

d∑
k=1

f1

(
TRAJ1(θ1, xk),TRAJ2(θ2, xk)

)
δθ2 =

α2

d
∇θ2

k∑
k=1

f2

(
TRAJ1(θ1, xk),TRAJ2(θ2, xk)

) (5.7)

Note that in (5.7), we use the shorthand xk ≡ (xk1 , x
k
2), and although we abbreviate the

arguments to the TRAJ functions, they should be interpreted exactly as in (5.6). The values
α1 and α2 are learning rates used for the respective reference generators. To compute
these gradients, we must differentiate through each player’s objective fi and through each
TRAJi. We have assumed a priori that the fi were differentiable. To differentiate through
the trajectory optimization step of (5.4), we follow a procedure similar to what is outlined
in [96, 97, 146].

Assuming that offline gradient play converges to a Nash equilibrium over the training
set D, and that the resulting trajectory generators generalize to instances of (5.3) defined
by configurations (x1, x2) not included in D, then an approximate equilibrium solution
to Game (5.1), denoted by (τ̂∗1 , τ̂

∗
2 ) can be found via the following evaluations:

ξ1 = πθ1(x1, x2), ξ2 = πθ2(x1, x2)

τ̂∗1 = TRAJ1(ξ1, x1), τ̂∗2 = TRAJ2(ξ2, x2)
(5.8)

Hence, at run-time, solving this reformulated game only requires evaluating the refer-
ence generators and solving the optimization problems TRAJi to compute the correspond-
ing trajectories. These problems can be solved in parallel. Furthermore, since trajectories
are generated according to (5.4), each player’s constraints defined by Ki(xi) are guaran-
teed to be satisfied. Thus, if the reference generator does not generalize well, the only
negative consequence is suboptimality (but not infeasibility).⁴

In summary, by pre-training a reference generator for each player offline, the run-time
concerns of MPGP can be alleviated. Unfortunately, however, potential issues persist due
to the possible non-existence or non-uniqueness of Nash equilibrium solutions. To address
this concern, we introduce a concept we refer to as strategy lifting.

⁴Recall that each player’s constraints do not depend upon the trajectory of the other player. Extension to this
more complex case is possible, but beyond the scope of this work.
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Figure 5.2: Overview of our proposed lifted game solver using reference generators. Generators πθi for both
players are trained jointly to minimize their respective average lossesLi (5.10a). At run-time deployment of this
pipeline, the pre-trained generators produce references ξi which approximate a Nash equilibrium of (5.9). These
references evaluate to equilibrium motion plan candidates τi and mixing strategies qi for each player. When
used in an ego-centric MPGP fashion, e.g. for Player 1, (τ1, q1) serves as a distribution over ego motion plans,
and (τ2, q2) constitutes a probabilistic opponent prediction.

5.4.2 Lifted Trajectory Games
Rather than endowing each player with a single reference and its resulting trajectory,
we allow each player to choose among multiple independent references according to the
equilibrium solution of the bimatrix game formulated below:

OPTlifted
1 (ξ2, x1, x2) := argmin

ξ1

L1(ξ1, ξ2) (5.9a)

OPTlifted
2 (ξ1, x1, x2) := argmin

ξ2

L2(ξ1, ξ2) (5.9b)

where the dependence of L1 and L2 on ξ1 and ξ2 is made explicit through the following
relationships:

L1 = q⊤1 Aq2, L2 = q⊤1 Bq2 (5.10a)
Ai,j = f1(τ

i
1, τ

j
2 ), Bi,j = f2(τ

i
1, τ

j
2 ) (5.10b)

τ i1 = TRAJ1(ξi1, x1), i ∈ N1 (5.10c)
τ j2 = TRAJ2(ξ

j
2, x2), j ∈ N2 (5.10d)

(q1, q2) = BMG(A,B). (5.10e)

Here, N1 := {1, ..., n1}, and N2 := {1, ..., n2}, where n1 and n2 are the number of
trajectories for Player 1 and Player 2, respectively. Specifically, each variable τ i1 repre-
sents one of n1 trajectories that Player 1 optimizes over (and similar for Player 2). The
reference variables ξi := (ξ1i , . . . , ξ

ni
i ) are now collections of trajectory references, with

each ξji associated to τ ji . The function BMG(A,B) maps cost matrices A and B to mixed
equilibrium strategies for the resultant bimatrix game. Specifically, BMG(A,B) returns a
point (q∗1 , q∗2) ∈ Rn1 × Rn2 such that

(q∗1)
TAq∗2 ≤ qT1Aq∗2 , ∀q1 ∈ ∆n1−1,

(q∗1)
TBq∗2 ≤ (q∗1)

TBq2, ∀q2 ∈ ∆n2−1.
(5.11)
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In (5.11),∆k is the k-simplex, representing the space of valid parameters for a categor-
ical distribution over k + 1 elements. Note that when n1 = n2 = 1, Game (5.9) reduces
exactly to Game (5.3), since BMG(A,B) ≡ (1, 1).

Continuous games, such as (5.1), may suffer from non-existence of equilibrium points,
but when those games are separable, a mixed strategy equilibrium is known to exist with
finite support [149, 150]. This theoretical result motivates the lifting (5.9) of our reference-
based formulation of Game (5.1).

For comparative purposes, Game (5.9) is presented analogously to (5.3), i.e. without
any explicit dependence on reference generators. Nevertheless, generators can be trained
analogously to (5.5), using a similar simultaneous gradient procedure. As before, solving
(5.9) or an analogous version of (5.5) via gradient play requires that each of the function
evaluations in (5.10) are differentiable in their arguments. It has already been discussed
how each of these functions are differentiable, with the exception of the bimatrix game in
(5.10e). We discuss in Appendix 5.B how this function is also differentiable.

A summary of the lifted game solver that utilizes reference generators for reduced
online computation is provided in Figure 5.2. With this computation graph, the cost of
approximating solutions to Game (5.9) is that of evaluating the two generator calls, solving
the resultant n1 + n2 trajectory optimization problems (in parallel, if warranted), and
solving a bimatrix game formed by considering all combinations of player trajectories.

5.4.3 Extension to Many-Player Games

We reiterate that, although we present this formulation in the two player setting, general-
izations to larger games are straightforward. In this case, each player would consider mul-
tiple trajectory candidates, and a cost tensor would be created for each player, representing
the costs for all possible combinations of players’ trajectories. A finite Nash equilibrium
could be identified over these cost tensors to compute the equilibrium mixing weights qi
[151], and computed by solving a nonlinear, mixed complementarity program [37, 152].
Note that the majority of computation required to construct these cost tensors can be triv-
ially parallelized, making our framework particularly promising for many-player settings.
We defer further study of such games to future work.

5.4.4 Implementation

We implement the lifted game solver depicted in Figure 5.2 in the Julia programming lan-
guage [76]. For the experiments conducted in this work, reference generators πθi are re-
alized as multi-layer perceptrons, trajectory optimization problems TRAJi are solved via
OSQP [41], and bimatrix games are solved using a custom implementation of the Lemke-
Howson algorithm [153].

In order to facilitate back-propagation of gradients through this computation graph,
we utilize the auto-differentiation tool Zygote [154]. For those components that cannot be
efficiently differentiated automatically, namely TRAJi and BMG in Figure 5.2, we provide
custom gradient rules via the implicit function theorem, c.f. [96, 97, 146] and Appendix 5.B.
Our implementation can be found at https://lasse-peters.net/pub/lifted-games.

https://lasse-peters.net/pub/lifted-games
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5.5 Results
We have presented a novel formulation of lifted trajectory games in which learned ref-
erence generators facilitate the efficient online computation of mixed strategies. In this
section, we evaluate the performance of our proposed lifted game solver on variants of the
“tag” game shown in Figure 5.1 and described below in Section 5.5.1. Concretely, we aim
to quantify the utility of learning trajectory references rather than choosing them a pri-
ori (Section 5.5.2), characterize the equilibria identified by trajectory lifting (Section 5.5.3),
evaluate the performance of trajectory lifting in head-to-head decentralized competition
(Section 5.5.4), and demonstrate our method’s capacity for online training in receding-
horizon MPGP (Section 5.5.5).

5.5.1 Environment: The Tag Game
We validate our methods in a two-player tag game, illustrated in Figure 5.1. Here, each
player’s trajectory τi follows time-discretized planar double-integrator dynamics p̈i = ui,
where pi ∈ R2 is understood to represent horizontal and vertical position in the plane.
The set Ki(xi) then encompasses all dynamically-feasible trajectories that also satisfy in-
put saturation limits and state constraints. In particular, we require that positions remain
within a closed set, such as the pentagon illustrated in Figure 5.1, and that speeds remain
below a fixed magnitude. These choices yield linear constraints, so that (5.4) becomes a
quadratic program. We note, however, that our approach does not rely upon this conve-
nient structure and is compatible with more general embedded nonlinear programs.

For the purposes of this example, we shall designate Player 1 to be the “pursuer” and
Player 2 to be the “evader.” Hence, the pursuer’s objective f1(τ1, τ2) measures the aver-
age distance between players’ trajectories over time and is regularized by the difference in
control effort between the two players to ensure the existence of at least local pure Nash
equilibria for the original game (5.1). The evader’s objective is f2(τ1, τ2) = −f1(τ1, τ2).
Since the tag game has zero-sum cost structure, throughout the following evaluations we
only report the cost for the pursuer and refer to this quantity as the game value. Further-
more, unless otherwise stated, we use an input reference signal ξi for all players in (5.3)
and (5.9).

5.5.2 The Importance of Learning Trajectory Candidates
Without lifting, it is still possible to approximate mixed strategies for the trajectory game
by discretizing the trajectory space (e.g., via sampling [83]). We compare to a sampling-
based mixed-strategy baseline to study the isolated effects of learning in a lifted space.
Setup. We instantiate an evader with n2 = 20 pre-sampled trajectory references. To
strengthen the evader, we ensure that these samples cover a large region of the trajectory
space. To that end, in this experiment (only) we use ξi as a reference for Player i’s goal
state rather than their input sequence. We compare the pursuer’s performance for two
different schemes of generating trajectory candidates. The non-learning baseline samples
n1 ∈ {1, . . . , 20} pursuer trajectory references from the same distribution as the evader.
Our method computes the pursuer strategy by performing gradient play on (5.9a) to learn
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2 trajectory candidates via the goal reference parameterization. The mixed Nash equilib-
rium (q1, q2) over the players’ trajectory candidates is computed according to (5.10). We
evaluate both methods for 50 random initial conditions, and record the game value for
each trial.
Discussion. Figure 5.3 summarizes the results of this experiment. As shown, the baseline
steadily improves its performance with increasing numbers of sampled trajectory refer-
ences to mix over. However, even with 20 trajectory samples, it cannot match the per-
formance of our approach with only two learned candidates. Moreover, learning only a
few trajectory references drastically reduces the number of trajectory optimizations and,
consequently, the size of the bimatrix game in (5.10).

Baseline trajectories
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Figure 5.3: Comparison of game value for both sampled and learned pursuer trajectories. Lines trace the sample
mean over 50 randomized trials, and the surrounding ribbons denote the SEM. On the horizontal axis, we vary
the number of sampled baseline trajectories n1, while fixing our approach to learn only 2 trajectories.

5.5.3 Convergence and Characteristics of Lifted Equilibria
In this experiment, we analyze mixed strategies found by our lifted solver and compare
them to pure strategies computed by a non-lifting baseline. We shall demonstrate that both
approaches reliably converge to different equilibria, and characterize these differences.
Setup. We perform a Monte Carlo study in which we randomly sample 20 initial states
of the tag game. On each sample, we invoke two solvers which perform gradient play on
different strategy spaces. The baseline solver is restricted to pure strategies as in Game
(5.3).⁵ Our method utilizes lifting to find mixed strategies which solve Game (5.9). In each
iteration of gradient play, we record the game value.
Discussion. Figure 5.4 shows the reliable convergence of both methods in this Monte
Carlo study. Since both players learn competitively via simultaneous gradient play, the
game value ought not to evolve monotonically; an equilibrium is reached when neither
player can improve its strategy unilaterally. At convergence, we observe that the mixed
strategies found by our lifting procedure result in a higher game value. This higher value
implies that, by operating in a lifted strategy space, the evader can secure a greater average
distance between itself and the pursuer.

This gap in value may be understood intuitively by examining the strategy profiles
for each method shown in Figure 5.1. In Figure 5.1a, players are restricted to pure strate-
gies, and a rational pursuer can exploit the evader’s deterministic choice of trajectory. In

⁵Such pure Nash solutions could also be found using iterated best response [65], iterative linear-quadratic meth-
ods [47], or mixed complementarity methods [37].
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Figure 5.4: Equilibrium value convergence averaged over 20 initial states. Ribbons indicate the SEM. The base-
line approximates Nash equilibria in pure strategies via gradient play on (5.3). Our method approximates Nash
equilibria in lifted strategies via gradient play on (5.9).

contrast, our proposed lifting formulation allows the evader to mix over multiple trajec-
tory candidates, c.f. Figure 5.1b, making its motion less predictable and hence increasing
the chance of escaping the pursuer. In response, the pursuer also mixes between two tra-
jectory candidates. However, each of the pursuer’s candidates must account for the full
distribution of evader trajectories; hence, the pursuer plans to turn less aggressively than
the evader.

In this experiment, we have studied a centralized setting in which each method com-
putes strategies for both players from a single game. Therefore, the results presented
above are only suitable to characterize the solution points of (5.3) and (5.9), but do not
justify conclusions about the competitive performance of these solutions in decentralized
settings, such as MPGP. In the next section, we extend our analysis to settings in which
the opponent’s decision-making process is unknown.

5.5.4 Competitive Evaluation Against Non-Lifted Strategies
This experiment is designed to examine the performance of both pure (Baseline) and lifted
(Ours) strategies in decentralized head-to-head competition. For this purpose, we perform
two additional Monte Carlo studies which simulate tournaments among players in each
strategy class.

Note that, in contrast to previous experiments, here, player strategies are not computed
as the solution to a single, centralized game. Rather, each player is oblivious to their
opponent’s decision making process and solves its own version of the game from a known
initial state over a finite time interval.

Open-Loop Competition

To begin, we evaluate both methods in open-loop on a fixed, 20-step time horizon.
Setup. For this Monte Carlo study, we randomly sample 100 initial states. For every
sampled state, we invoke pure and lifted game solvers twice with randomly sampled initial
strategies; once to obtain pursuer strategies, and once to obtain evader strategies.⁶ For all

⁶This initialization procedure avoids leaking information about players’ decision making processes to one an-
other.
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Table 5.1: Open-loop competition.

Evader

Pursuer Lifted Pure
Lifted 1.577± 0.021 1.502± 0.022
Pure 1.672± 0.022 1.370± 0.027

Table 5.2: Receding-horizon competition.

Evader

Pursuer Lifted Pure
Lifted 1.360± 0.003 1.289± 0.005
Pure 1.463± 0.004 0.903± 0.009

possible solver pairings on these 100 state samples we record the resultant value of the
competing strategies; i.e., if Player i chooses trajectory τi, we record f1(τ1, τ2).
Discussion. Table 5.1 summarizes the mean and the standard error of the mean (SEM) of
the resultant game value for this open-loop tournament. The evader has a clear incentive
to utilize lifted strategies, since they secure the highest game value irrespective of the
solution technique used by the pursuer. The best response of the pursuer is then also to
play a lifted strategy to minimize value within this column. Hence, (Ours, Ours) is the
unique Nash equilibrium in this meta game between solvers.

Additionally, observe that the baseline pursuer performs very well against the baseline
evader, as deterministic evasion strategies can always be exploited by a rational pursuer.
However, the tournament value reported in the bottom right of Table 5.1 is inconsistent
with the equilibrium value for the baseline found earlier in Figure 5.4. This discrepancy
suggests that players in this decentralized setup find different local solutions depending
on the initialization of the baseline solver. Hence, random initialization effectively makes
even a pure strategy evader slightly unpredictable, thereby allowing it to attain a higher
average value. By contrast, the value of the lifted strategy computed by our method (top
left, Table 5.1) closely agrees with the equilibrium value computed in Figure 5.4, which
indicates that non-uniqueness of solutions is not an issue for our approach.⁷

Receding-Horizon Competition

As MPGP is naturally applied in a receding-horizon fashion, we replicate the previous
Monte Carlo study in that setting.
Setup. For each of 5 state samples, we simulate receding-horizon competitions for all
possible solver pairings. As before, we use a planning horizon of 20 time steps for all
players, and in order to simulate latency, we only allow players to update their plans every

⁷This close agreement in value suggests that ourmethod identifies global (rather than local) Nash equilibria which
satisfy the so-called ordered interchangeability property [45]. Unfortunately, as in continuous optimization, it is
generally intractable to properly verify that these solutions are global.
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Figure 5.5: Training a reference generator for the lifted game solver in Figure 5.2 in simulated self-play. Trans-
parency denotes the mixing probabilities associated with each trajectory which arise from BMG. (a) Game value
mean and SEM over a moving window of 500 turns. (b-d) Strategies at different phases of learning.



5

94 5 Amortized Equilibrium Approximation through Offline Learning

9 time steps. Each simulation terminates once players have updated their strategy for the
500th time. From one such trial, we compute the game value by evaluating the pursuer’s
objective f1 on the entire closed-loop trajectories of both players. Note that, in contrast
to previous experiments, here we use pre-trained reference generators for all solvers as
described in Section 5.4.1 to accelerate the computation in this large simulation.
Discussion. Table 5.2 summarizes both the mean and SEM for the resultant game value
in this receding-horizon Monte Carlo tournament. Overall, we observe the same pat-
terns as in the open-loop setting: lifting is the dominant strategy for the evader and
the corresponding best response for the pursuer. However, the game values found for
this receding-horizon setting are generally lower than in open-loop. By replanning in a
receding-horizon fashion, the pursuer can react to the evader’s decision before the dis-
tance between them grows very large.

5.5.5 Learning in Receding-Horizon Self-Play

Finally, we demonstrate that a lifted game solver with trajectory generators, as shown in
Figure 5.2, can be rapidly trained from scratch in simulated self-play.
Setup. We repeat the following experiment 10 times. For each player, we randomly sam-
ple an initial state xi and initialize their reference generator πθi with parameters θi sam-
pled from a uniform distribution. Subsequently, we simulate receding-horizon learning
over 2500 turns with the lifted game solver in the loop. In contrast to the setup used in
Section 5.5.4, here, we do not use pre-trained reference generators. Instead, the network
parameters are updated on the fly using gradient descent. That is, at every turn, we first
perform a forward pass through the computation graph of Figure 5.2 to compute a lifted
strategy profile, followed by a backwards pass to compute a gradient step on each player’s
reference generator parameters θi. For each experiment, we record players’ strategies as
well as the game value over a moving window of 500 turns.
Discussion. Figure 5.5 summarizes the results of lifted learning in self-play. Initially, the
untrained reference generators cause both players to move haphazardly, c.f. Figure 5.5b.
As learning progresses, players become more competitive, resulting in purposeful, dy-
namic maneuvers, c.f. Figure 5.5c. Within approximately 1500 turns, learning converges,
the game value stabilizes, and the solver has learned to generate highly competitive mixed
strategies as shown in Figure 5.5d.

Note that, throughout the learning procedure, state and input constraints are explic-
itly enforced in the TRAJ step of the pipeline in Figure 5.2. Moreover, since our proposed
pipeline is end-to-end differentiable, it provides a strong learning signal. Therefore, train-
ing in simulated self-play over 2500 turns can be performed in less than three minutes
on a standard laptop. Then, once the reference generators πθi are fully trained, learning
can be disabled, and a forward pass on the pipeline in Figure 5.2 can be computed with
an average run-time of 2ms. In summary, these results indicate that our method learns
quickly and reliably, making it well-suited for online learning in real systems with embed-
ded computational hardware.
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5.6 Conclusion
In this work, we have proposed two key contributions to the field of noncooperative, multi-
agent motion planning. First, we have introduced a principled technique to reduce the on-
line computational complexity of solving these trajectory games. Second, we extended this
approach to optimize over a richer, probabilistic class of lifted strategies for each player.
Taken together, these innovations facilitate efficiently-computable, high-performance on-
line trajectory planning for multiple autonomous agents in competitive settings. More-
over, our method directly accounts for problem constraints and hence guarantees that
learned trajectories satisfy these constraints whenever they are feasible.

While our formulations readily extend to games with many players and arbitrary cost
structure, we demonstrate our results in a two-player, zero-sum game of tag. We validate
our approach in extensive Monte Carlo studies, in which we observe rapid and reliable
convergence to solutions which outperform those which emerge in the original, non-lifted
strategy space.

Finally, we showcase our approach in online learning, where each player solves lifted
trajectory games in a receding time horizon. Despite the additional complexity present
in this setting—e.g., non-stationary training data and potential limit cycles—our method
converges reliably to competitive mixed strategies. These initial results are extremely
encouraging, and future work should investigate online learning and adaptation in nonco-
operative settings more extensively. In particular, we note that our method is limited to
so-called open-loop information structures, in which each agent in a trajectory game must
choose future control inputs as a function only of the current state. We believe that the
incorporation of feedback structures at the trajectory-level will be an exciting direction
for future research.
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5.A Equivalence of Game (5.1) and Game (5.3)
In this section we establish an equivalence result between (5.1) and (5.3). We prove this
for a particular interpretation of the reference variables ξi, and forms of Gi,Hi,Ki(xi),
noting that similar results can be established for other settings.

For each Player i, consider the instance of (5.4) in which Gi := I and Hi := 0, rep-
resenting the identity and zero matrices of appropriate dimension. Furthermore, assume
that the set Ki(xi) := {τ : lbi ≤ gi(τ) ≤ ubi}, for some vector-valued and twice-
differentiable function gi, and lower and upper bounds lbi and ubi. It is assumed that a
suitable constraint qualification applies to this constraint set, such as the LICQ [58]. This
implies that ξi has dimension equal to that of the decision variable τ , and the objective of
(5.4) is to find a trajectory τ ∈ Ki(xi) which is as close as possible to ξi as measured by
the ℓ2-norm.

Theorem 5.1 In the setting as stated above,

1. For any stationary point (τ1, τ2) of Game (5.1), there exists a stationary point (ξ1, ξ2)
of Game (5.3) such that τi = TRAJi(ξi, xi) for all players i.

2. For any stationary point (ξ1, ξ2) of Game (5.3) satisfying ξi ∈ Ki(xi), the trajectories
τi = TRAJi(ξi, xi) constitute a stationary point for (5.1).

Proof. To prove this result, we first make explicit the definition of a stationary point for
(5.1) and (5.3). A stationary point for (5.1) is a point (τ1, τ2), such that for both players i,

dT∇τifi(τ1, τ2) ≥ 0, ∀d ∈ TKi(τi). (5.12)

Here, TKi
(τi) is the set of linearized feasible directions with respect to constraint

set Ki(xi) at τi, which because we have assumed a suitable constraint qualification, is
equivalent to the tangent cone at this point [58]. Specifically, at a feasible point τ , let
Il(τ) := {j : gi,j(τ) = lbj}, and Iu(τ) := {j : gi,j(τ) = ubj}. Then

TKi
(τ) := {d : dT∇gi,j(τ) ≥ 0, j ∈ Il(τ),

dT∇gi,j(τ) ≤ 0, j ∈ Iu(τ)}
(5.13)

A stationary point for (5.3) is a point (ξ1, ξ2) such that

(∇ξiτi · d)T∇τifi(τ1, τ2) ≥ 0, ∀d, (5.14)

where τi = TRAJi(ξi, xi). Note that (∇ξiτi · d) := (∇ξiTRAJi(ξi, xi)d) as appearing
above is the directional derivative of TRAJi(ξi, xi) with respect to changes of ξ in the
direction d. This directional derivative is defined to be e, where e solves the following
quadratic program [95]:

min
e

1

2
eTQ1e+ dTQ2e

s.t. e ∈ Cλi(τi),
(5.15)
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where Q1 := I − ∇2
τ,τ (g(τi)

Tλi), Q2 := −I , λi are the dual variables associated with
the primal solution τi to TRAJi(ξi, xi), and Cλi(τ) is the critical cone to the constraint set
gi(τ) with respect to λi at τ :

Cλi(τ) := {d : l̄bi,j ≤ dT∇gi,j(τ) ≤ ūbi,j)}. (5.16)

The bounds l̄bi,j and ūbi,j are defined as:

(l̄bi,j , ūbi,j) :=



(0, 0) j ∈ Il(τ) & λi,j > 0

(0,∞) j ∈ Il(τ) & λi,j = 0

(−∞,∞) i /∈ (Il(τ) ∪ Iu(τ))
(−∞, 0) j ∈ Iu(τ) & λi,j = 0

(0, 0) j ∈ Iu(τ) & λi,j < 0

(5.17)

Now, to prove 1), we show that ξi = τi satisfies the claim. It follows directly that
τi = TRAJi(ξi, xi). It can be verified that, because τi ∈ Ki(xi) by definition, then all
constraints appearing in TRAJi are only weakly active, implying λi = 0. This implies
that the constraint set appearing in (5.15) is precisely the tangent cone (5.13). Therefore,
for all directions d, ∇ξiTRAJi(τi, xi) · d ∈ TKi(τi), which by (5.12), implies that (5.14)
holds, establishing the result.

To prove 2), we simply note that if ξi ∈ Ki(xi), then τi = ξi. Furthermore, in this
setting λi = 0 as before, and therefore the critical cone appearing in (5.15) is again equiv-
alent to the tangent cone (5.13). This implies that the directional derivative (∇ξiτi · d) is
defined to simply be the projection of the direction d into the tangent cone at τi. The set
of all directions d mapped through this projection results precisely in TKi(τi). Therefore,
the conditions (5.14) imply (5.12) for this setting, implying our result. □

The result as stated in Theorem 5.1 does not imply that an arbitrary stationary point
found for (5.3) corresponds to a stationary point for (5.1), since it may be that either of the
references ξi /∈ Ki(xi). For such reference points, it is possible that for some direction d
the expression in (5.14) holds with equality, yet the expression in (5.12) is violated. This
situation results in “sticky constraints,” in which a descent direction exists for fi(τ1, τ2),
yet that direction is not in the range of∇ξiTRAJi(ξi, xi), i.e. small changes to the reference
are not enough to release τi away from the active constraint boundaries.

To address this issue, we propose a modest regularization scheme to eliminate the
possibility of reference stationary points of (5.3) which do not correspond to trajectory
stationary points of (5.1). One such approach could be to enforce constraints in (5.3) such
that ξi ∈ Ki(xi). This, however, would render the reformulation from (5.1) to (5.3) point-
less. Instead, we impose a simple regularization in the objectives of each player in (5.3).
Namely, instead of minimizing over fi(τ1, τ2) w.r.t. ξi, we minimize over

fi(τ1, τ2) + ‖(g(ξi)− ub)+ + (lb− g(ξi))+‖22, (5.18)

where (·)+ := max(·, 0).
Note that this introduced regularization is exact, and has precisely the effect of elim-

inating any stationary points for (5.3) in which ξi /∈ Ki(xi). If the regularization term
is non-zero, then necessarily from the definition of the directional derivative (5.15), the



5

100 5 Amortized Equilibrium Approximation through Offline Learning

gradient of the regularization component is in the null-space of ∇ξiTRAJi(ξi, xi). This
implies the regularization can be driven to zero without changing the resultant solution
τi. This is true irrespective of the scale factor multiplying the regularization term. Further-
more, if ξi ∈ Ki(xi), then the regularization term is zero, and has no effect on stationary
points of the un-regularized game (5.3).

We note that the particular choice of regularization (5.18) is only applicable for the
interpretation of the references ξi made throughout this section. For more general param-
eterizations of the reference, as discussed in the main text, a suitable regularization is the
norm of inequality constraint multipliers associated with the solution of TRAJi(ξi, xi).
The use of this dual-variable regularization is effective at eliminating the spurious sta-
tionary points for (5.3), so long as the parameterization of the reference is rich enough
such that for any ξi and associated τi, λi, there exists directions d in which the ξi can be
perturbed and the directional derivative of τi is 0, and the directional derivative of λi,j is
negative for all j. This is true, for example, of the control signal reference used throughout
this work.

Therefore, with use of the introduced regularization (5.18), the stationary points of
Games (5.1) and (5.3) have a one-to-one correspondence, warranting the use of Game (5.3)
in place of Game (5.1).

5.B Differentiating through BMG
The problem of finding q1, q2 which satisfy (5.11) (as is the task of the function BMG), can
be equivalently expressed as the linear complementarity problem [155]

find p1, p2

s.t. p1 ≥ 0 ⊥ Āp2 ≥ 1

p2 ≥ 0 ⊥ B̄Tp1 ≥ 1.

(5.19)

The solution (q1, q2) to the BMG are related to the solution to (5.19) by the relations

(q1)i =
(p1)i∑
k(p1)k

, (q2)i =
(p2)i∑
k(p2)k

. (5.20)

It is assumed that Ā and B̄ are derived from the original matrices A,B, as the following.
Āi,j := Ai,j + α, B̄i,j := Bi,j + β, for some positive constants α, β such that every
element of Ā and B̄ are strictly positive. Furthermore, the 1s appearing in the right-hand
side of the constraints in (5.19) are assumed to represent vectors of appropriate dimension
with each value equal to 1.

Consider some solution p1, p2 to (5.19) in which strict complementarity holds for each
condition, e.g. either p1,j = 0 or (Āp2)j = 1, but not both. For each j ∈ {1, 2}, Denote
the index sets I+j := {i : (pj)i > 0}. Then let

p+1 := [p1]I+
1
, p+2 := [p2]I+

2
,

Ā+ := [A]I+
1 ,I

+
2
, B̄+ := [B]I+

1 ,I
+
2
.
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In words, p+1 is the vector formed by only considering the non-zero elements of p1, and
B̄+ is the matrix formed by considering the columns specified by I+1 and rows specified
by I+2 . By the strict complementarity, at equilibrium, it is that[

0 Ā+

(B̄+)⊤ 0

] [
p+1
p+2

]
= 1, (5.21)

where, as before, the right-hand side 1 is a vector consisting of all 1s.
The values p−j := [pj ]i, i /∈ I+j are defined to be identically 0, and as such have 0

derivative with respect to the values Ā, B̄. The derivatives of remaining portion of the
solution, p+1 , p

+
2 , can be evaluated from (5.21). If the matrix on the left-hand-side of (5.21)

is singular, then the resulting solution is in fact non-isolated (there exist a continuum of
solutions satisfying (5.19)), and the derivatives of the solution are not defined. If thematrix
is non-singular, then necessarily so are Ā+ and B̄+, and the isolated solutions of p+1 , p

+
2

are locally related to the matrices Ā, B̄ as

p+1 = (B̄+)−⊤1,

p+2 = (Ā+)−11.
(5.22)

In this form, the derivatives of each element of p+j can be found by differentiating
through the expressions (5.22). Combining the above results, the derivatives of the solu-
tion vector p1, p2 with respect to the problem data A, B, can be established as the follow-
ing:

∂(p1)i
∂Aj,k

:= 0,

∂(p1)i
∂Bj,k

:=

{
0 : i /∈ I+1
−((B̄+)−⊤Ik,jp

+
1 )i : else

,

∂(p2)i
∂Aj,k

:=

{
0 : i /∈ I+2
−((Ā+)−1Ij,kp

+
2 )i : else

,

∂(p2)i
∂Bj,k

:= 0.

(5.23)

Above, the term Ij,k is used to refer to the matrix consisting of zero everywhere except
at the (j, k)-th position, which has value 1.

When strict complementarity does not hold at the solution to (5.19), then only direc-
tional derivatives of the solution vectors exist w.r.t. the problem data. The various di-
rectional derivatives are found by, for each condition which does not hold with strict
complementarity, making a selection on whether that index should be included the sets
I+j or not. Then proceeding with the remainder of calculations, the result forms one of
the directional derivative for the system. The directions for which this derivative is valid
are defined to be those which make the directional derivative consistent with the selected
index sets.

The derivatives of the elements of p1 and p2 with respect to the cost matrices are
formed by propagating the derivatives (5.23) through the relationships (5.20).
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Chapter 6

Utilizing Single-Agent
Demonstrations to Learn
Multi-Agent Policies
Chapters 2 to 5 introduced several game-theoretic approaches to multi-agent interaction prob-
lems, including methods for intent inference, handling uncertainty, and efficient game solv-
ing. In these works, we relied on the assumption that the problems are smooth, meaning that
the costs and constraints (including dynamics) have well-defined first and second derivatives.
This enabled solution techniques that leverage the local geometry to iteratively search for a
local equilibrium. While this assumption holds for many problems of interest, such as au-
tonomous driving, there are important settings where it becomes limiting. For instance, in
multi-agent manipulation, the contact dynamics involved are often inherently non-smooth.
Furthermore, the requirement for smoothness can make it challenging to specify the task it-
self, as users may be forced to create smooth approximations of the cost (and/or constraints)
they truly care about, reducing expressiveness.

In this chapter, we address these challenges by adopting a fundamentally different approach:
we learn a multi-agent policy directly from a combination of expert demonstrations and a
(potentially non-smooth) joint cost function. Our main contribution is a training framework
that first learns single-agent policies from demonstrations of basic skills (e.g. the ability
to pick and place objects) and then composes these policies into coordinated multi-agent be-
havior by reasoning about the joint cost of actions across agents. Unlike previous chapters,
we present this contribution primarily in the language of probabilistic inference rather than
game theory. This perspective enables us to draw on recent tools for generative modeling of
complex distributions. Despite this shift in perspective, we maintain links to game-theoretic
reasoning to connect this work to the broader context of the dissertation. We validate our
approach in a high-fidelity simulation of a two-agent manipulation task.
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6.1 Introduction
Imitation learning (IL) enables individual robots to learn complex behaviors such as object
manipulation from expert demonstrations. Generative models such as diffusion policies
have recently further enhanced this capability [23–26]. However, many real-world tasks
requiremulti-agent interaction—e.g., a robotic manipulator relying on another arm to grab
an out-of-reach object, clearing a table after dinner, or assembling a piece of furniture.

A key challenge in solving complex multi-agent tasks is the scarcity of data in these
settings, which can be attributed to two main issues: (i) the product space of states and
actions grows exponentially with the number of players and (ii) the cost of acquiring data
for multi-agent systems is inevitably higher than for single-agent systems.

To tackle these challenges, this work focuses on the following question:

How can we generate multi-agent behavior while leveraging
single-agent demonstrations?

We investigate this question based on the observation that the gap between single-agent
and multi-agent behavior often does not arise in the low-level actuation of robots, but
rather at a higher level of decision-making. In the out-of-reach pick-and-place setup, for
instance, the core challenge lies in the coordination between agents (e.g., which robot
should pick up the object and where to place it next) rather than on the low-level skill of
object interaction (e.g. how to pick an object). As a result, single-agent data can serve as
a strong prior for learning multi-agent policies.¹

The main contribution of this chapter is CoDi, a method for synthesizing a single co-
hesive multi-agent policy by guiding multiple single-agent diffusion policies towards coor-
dinated behavior. We achieve this via a multi-stage training procedure as summarized in
Figure 6.1. First, the user provides single-agent demonstrations of basic single-agent skills
(e.g. picking and placing objects). We use this data to train single-agent diffusion policies
that capture the low-level skills of each agent. Next, the user provides a multi-agent cost
function that penalizes deviations from desired multi-agent behavior (e.g. rewarding ob-
ject movement towards the goal location while penalizing collisions with other agents).
We construct a centralized guidance model from this cost function that bridges the gap be-
tween the marginal (single-agent) diffusion policies and the joint (multi-agent) diffusion
policy.

As a result, our approach effectively inverts the conventional centralized training, de-
centralized execution paradigm [156]: we enable decentralized (single-agent) pre-training
at the expense of requiring centralized execution. We contend that in many settings, this
trade-off is preferable; enabling centralized execution via multi-agent communication is
often less demanding than collecting multi-agent demonstration data.

We validate our approach in simulation, where we demonstrate that our method can (i)
learn multi-agent policies while pre-training only on single-agent data, (ii) discover new
collaboration strategies not present in the original single-agent demonstrations, and (iii)
generates more efficient and accurate manipulation policies than a baseline that directly
relies on multi-agent demonstrations, given the same amount of data.

¹While we will use multi-agent manipulation as a running example throughout this chapter, the method applies
more generally to multi-agent tasks in other domains.
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Step 1: Single-Agent Data Collection Step 2: Single-Agent Pretraining

Step 3: Composition via Muti-Agent Cost Step 4: Multi-Agent Behavior Synthesis

artifact: single-agent data set

User provides demos of base-skills (here: pick and place)

demo 1
(i)

t = 0T > t > 0t = T

We train single-agent diffusion policies via denoising.

Forward Process (Equation (2))

Reverse Process (Equation (3))
approximated via Equation (5) with learned score model from DSM training (Equation (4))

artifact: single-agent diffusion policies

User designs multi-agent cost that penalizes undesired joint actions.

/

artifact: guidance score 

J((  ,   ), s)

final result: a coordinated generative multi-agent policy

We guide the pre-trained diffusion policies
towards coordinated joint actions using   .

Joint Reverse Process via Equation (9)

goal

Figure 6.1: We present Coordinated Diffusion (CoDi), a method for synthesizing coordinated multi-agent behavior
from single-agent demonstrations.

6.2 Background: Forward- and Reverse-time
Diffusion

This section provides a brief background to diffusion policies and their theoretical under-
pinnings in forward and reverse-time diffusion processes. For a comprehensive treatment
of these foundations, we refer the reader to the tutorial by Lai et al. [157].

6.2.1 Forward-time Diffusion Processes: From Data to Noise
In order to understand the diffusion models as a generative paradigm, it is useful to first
understand their sibling process: the forward-time diffusion process. This process models
the act of incrementally corrupting structured data with noise. When the data x ∈ X ⊆
Rnx is distributed according to p∗(x), and qσ(t)(x(t) | x) denotes the perturbation kernel
at noise-time t ∈ [0, T ], then the noise-corrupted data is distributed according to

x(t) ∼ p∗σ(t)(x(t)) :=
∫
X
p∗(x)qσ(t)(x(t) | x)dx, (6.1)

If we choose a Gaussian perturbation kernel, i.e., qσ(t)(x(t) | x) := N (x(t); x, σ(t)2I), at
monotonically increasing isotropic variance σ(t)2, the process {x(t)}t∈[0,T ] matches the
target distribution p∗ at noise-time t = 0 (i.e., p∗ ≡ p∗σ(0)) and satisfies the stochastic
differential equation (SDE)

dx(t) =
√

2σ̇(t)σ(t)dwt (6.2)

where wt is a standard Wiener process.
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6.2.2 Reverse-time Diffusion Processes: From Noise to Data

Generative diffusion models [158–161] are grounded in the key idea of reversing the time
direction in (6.2). Intuitively, this means that, while the forward-time diffusion process cor-
rupts the structured data distribution p∗ with noise (as in (6.2)) until it is indistinguishable
from a (high-variance) Gaussian, the reverse-time diffusion process transforms samples
of (high-variance) Gaussian noise into samples from the structured data distribution p∗.

This time reversal is enabled by the celebrated result of Anderson [162], which es-
tablishes that the following reverse-time SDE governs the noise-corrupted data x(t) as
noise-time flows backwards:

dx(t) = − 2σ̇(t)σ(t)∇x log p∗σ(t)(x(t))dt+
√
2σ̇(t)σ(t)dw̄t, x(T ) ∼ p∗σ(T )(x(T )).

(6.3)

Here, w̄t is a standard Wiener process when time flows backwards and dt is a negative
time differential. Generative diffusion models leverage this SDE by learning a model of
the only unknown in this equation: the term ∇x log p∗σ(t)(x(t)). This term—the gradient
of the log-likelihood of the mollified target distribution p∗σ(t)(x(t))—is commonly referred
to as the score of p∗σ(t)(x(t)).

Training. Vincent [163] show that, when samples from the data distribution p∗(x) are
available, a score model sp

∗

θ (x;σ) can be trained by minimizing the denoising score match-
ing (DSM) loss

L(θ) := E
x∼p∗(x),t∼W,ϵ∼N (0,I)

[∥∥∥σ(t)2sp∗θ (x+ σ(t)ϵ;σ) + σ(t)ϵ
∥∥∥2] , (6.4)

where θ are the trainable parameters of the score model sp
∗

θ , andW is a distribution over
the noise-time t following [164].

Generating Samples. Once the score model is trained, it satisfies sp
∗

θ (x;σ) ≈
∇x log p∗σ(t)(x;σ). Additionally, when the terminal noise scale σ(T ) is sufficiently large,
we have p∗σ(T )(x) ≈ N (x; 0, σ(T )2I). Therefore, we can generate samples from the target
distribution p∗(x) by integrating the reverse-time SDE

dx(t) = − 2σ̇(t)σ(t) sp
∗

θ (x(t);σ(t))︸ ︷︷ ︸
≈∇x log p∗

σ(t)
(x(t))

dt+
√
2σ̇(t)σ(t)dw̄t, x(T ) ∼ N (x; 0, σ(T )2I)︸ ︷︷ ︸

≈p∗
σ(T )

(x(T ))

(6.5)

backwards in time from T to 0 (c.f. (6.3)).

Remarks on Notation and Properties. We denote the implicit distribution induced by
the generative process governed by the score model sp

∗

θ as pθ(x). Importantly, however,
while we can draw samples x ∼ pθ(x), we cannot evaluate its density pθ(·).
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6.2.3 Diffusion Policies
While diffusion models have been popularized in the context of image generation [161,
165], in this work we will use them to represent a stochastic policy for decision-making
as in [23–26]; i.e., to represent π(a | s)—a distribution of actions a ∈ A ⊆ Rna to take
given a specific state s ∈ S ⊆ Rns .

One simple way of training diffusion policies is via imitation learning: given a dataset
D := {(s(d), a(d))}Dd=1 of D state-action pairs (s(d), a(d)) with a(d) ∼ π∗(a | s(d)), we
train a score model sπθ via DSM as in (6.4). Mirroring the sampling procedure of Sec-
tion 6.2.2, sampling actions from the policy, π, amounts to integrating the reverse-time
SDE with the learned score model for a given state s, which approximates the true distri-
bution π∗.

Action Representation. Like prior works [24, 25], rather than predicting an action
for a single time step, we predict an action sequence a1:K ∈ Rna×K—where column ak
represents the action applied k steps into the future. The action sequence is executed in
a receding-horizon fashion and re-planning is warm-started from the previous solution
to promote temporal consistency and computational efficiency [24, 25]. From here on
forwards, we will overload a to denote the action sequence a1:K for brevity and use A to
denote the corresponding space of action sequences.

6.3 Composing Multi-Agent Behavior from
Single-Agent Diffusion Policies

In this work, we are interested in synthesizing policies that allowmultiple agents to collab-
oratively interact with each other. In theory, the concept of diffusion policies introduced
in Section 6.2.3 naturally extends to such a multi-agent setting. However, naive training
of such a multi-agent diffusion policy would require vast amounts of multi-agent demon-
strations: expert demonstrations of how all agents should behave jointly in a given state.

Therefore, a naive extension of diffusion policies to themulti-agent setting (i.e, training
a joint policy from multi-agent expert demonstrations) faces two key challenges:

(i) the joint state-action space grows exponentially with the number of agents, making
it difficult to ensure good coverage of the entire space with expert demonstrations,

(ii) providing demonstrations for multi-agent systems is cumbersome, even simply due
to the logistical challenge of controlling N agents simultaneously.

To address these challenges, this section introduces ourmain contribution: a framework
for composing multi-agent behavior from single-agent diffusion policies.

A Word on Notation: Distinguishing Single-Agent and Multi-Agent Quantities.
Before we proceed to present ourmain contribution, we introduce some notation to clearly
distinguish between single-agent and multi-agent quantities. We will use superscripts, i.e.,
(·)(i), to denote quantities relating to the i-th ofN agents and omit such superscripts when
we refer to quantities pertaining to all N agents jointly. Following this convention, we
use
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• s(i) ∈ S(i) to denote the state of the i-th agent, and s ∈ S to denote the joint state
of all N agents, both of which are related via the mapping f (i)single : S → S(i) so that
s(i) = f

(i)
single(s),

• a(i) ∈ A(i) to denote the action of the i-th agent, a := (a(1), . . . , a(N)) ∈ A :=∏N
i=1A(i) to denote the joint action of all N agents,

• π(a | s) to denote the multi-agent policy that characterizes a distribution over joint
actions given a joint state,

• and D(i) = {(s(i)(d), a
(i)
(d))}

Di

d=1 to denote a dataset of single-agent demonstrations for
agent i.

6.3.1 Key Idea: Multi-Agent Learning with Single-Agent Data
Constraints

Consider a multi-agent task such as moving an object to a specific goal location on a wide
table with two robots as shown in Figure 6.1. Since each robot can only reach a limited
area of the table, they need to collaborate to complete the task. It is clear that many skills
involved in this task pertain to individual agents, most importantly the ability to pick up
objects and place them elsewhere. Once both robots possess these skills, more complex
behaviors—such as passing an object to another agent who can otherwise not reach the
object—can emerge through careful coordination of individual skills across agents.

Inspired by this intuition, we propose the following workflow, dubbed Coordinated
Diffusion (CoDi), summarized in Figure 6.1.

Step 1: Provide Single-Agent Demonstrations. Theuser provides single-agent demon-
strations of basic skills for each agent. In our running example of Figure 6.1, this means
providing demonstrations of picking and placing objects at various positions on the
table. Let D(i) denote the dataset of single-agent demonstrations for agent i.

Step 2: Single-Agent Pretraining. We fit a single-agent diffusion policy p(i)θ for each
agent based on its corresponding dataset D(i). This diffusion policy thus captures a
probabilistic “library” of base-skills for each agent. Note that when agents are homoge-
neous, the same diffusion policy can be shared across agents.

Step 3: Multi-Agent Cost Function. The user provides a multi-agent cost function J :
S × A → R, that penalizes deviations from desired multi-agent behavior (in our run-
ning example, rewarding object movement towards the goal location while penalizing
collisions with other agents).

Step 4: Deployment via Multi-Agent Policy Composition. At test time, we generate
coordinated multi-agent behavior by composing the single-agent diffusion policies with
the multi-agent cost function into a multi-agent diffusion policy, π.

Mathematically, our proposed multi-agent policy takes the following composite form:
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π(a | s) := 1

Z(s)
exp

− J (s, a)
λ

 pθ (a | s), pθ(a | s) :=
N∏
i=1

p
(i)
θ (a(i) | f (i)single(s)),

user-defined multi-agent cost learned from single-agent data

(6.6)

where pθ(a | s) takes the role of a prior, structured as the product of (independent) single-
agent diffusion policies, and Z(s)−1 exp

(
−J(s, a)λ−1

)
takes the role of a coupling term,

assigning higher probability to joint actions that result in lower cost, with λ ∈ R≥0 con-
trolling the strength of this coupling and the scalar Z(s) :=

∫
A exp

(
−J(s, a)λ−1

)
da

being the normalization constant.
Below, we provide two main motivations for this policy structure: a connection to

game-theoretic principles and an analysis of its design space.

6.4 A Connection to Game-Theoretic Concepts
To furthermotivate the proposed policy structure, we offer a game-theoretic interpretation
of the proposed policy structure.

To this end, we remark that the proposed policy π in (6.6) is the solution of the follow-
ing joint optimization problem:

π(a | s) ∈ arg min
π̃∈P{A|S}

E
a∼π̃

[J(a, s)]− λDKL (π̃‖pθ) , (6.7)

whereP{A | S} is the space of all possible joint policies.² Intuitively, in this game, players
jointly seek to minimize their expected cost while regularizing their strategy towards the
data-driven prior distribution pθ . This connection reveals that, by finding a generative
model for our policy π, we are finding the solution of a cooperative game.³

6.4.1 Exploring the Design Space of CoDi
Let us take a moment to understand what kind of multi-agent behavior we can capture
via the proposed policy structure of (6.6). The key question guiding this analysis is: where
does the “knowledge” of the multi-agent behavior really come from? Is it baked into the
single-agent demonstrations provided by the user? Or is it encoded in the user-defined
multi-agent cost function?

To formalize this analysis, let π∗ denote a hypothetical multi-agent target policy that
we wish to approximate with π via our proposed approach. Note that this target policy
can be of arbitrary structure, i.e., it can be any distribution over the joint action space A;
not limited to the composite form of (6.6). Under which conditions can our learned policy,
π, approximate such a target policy π∗?

²This connection is well-established in prior work [166–168], known as the Donsker-Varadhan variational for-
mula; therefore, we omit the proof.
³If we were to restrict ourselves to the language of non-cooperative games, we can also interpret equation (6.7)
as a correlated quantal response equilibrium [169] in a game with identical incentives, but the interpretation as
joint optimization in (6.7) more clearly reveals that the cooperative nature of the resulting solution.
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Decomposing the Approximation Error. To answer this question, we can decompose
the Kullback–Leibler (KL)-divergence between the target policy π∗ and our learned policy
π as follows:

DKL (π
∗‖π) = E

a∼π∗

[
logπ∗(a | s) − logπ(a | s)

]
(6.8a)

= E
a∼π∗

log π∗(a | s)

pθ(a | s)


︸ ︷︷ ︸

=DKL(π∗∥pθ)≥0

+ logZ + E
a∼π∗

[
J(s, a)
λ

]
︸ ︷︷ ︸

̸=0

. (6.8b)

Here, the first corresponds to the KL-divergence between the target policy π∗ and
the data-driven component pθ , and the second corresponds to the contribution of the
user-defined multi-agent cost function J .
Analyzing the Approximation Error. From this decomposition, it is clear that, if
the data-driven component pθ (learned from single-agent demonstrations) is not able to
capture the target behavior π∗ perfectly, i.e., DKL (π

∗‖pθ) > 0, then the multi-agent cost
function J must compensate for this error. Analyzing (6.8b) further, we can see under
which condition this error compensation is achievable: the target behavior π∗ must be
absolutely continuous w.r.t. the data-driven component pθ (π∗ � pθ) in the sense that
pθ(a | s) = 0 must imply π∗(a | s) = 0 for all a ∈ Ã ⊆ A for which Ã has non-zero
measure under π∗. When this condition is satisfied, the optimally compensating multi-
agent cost function is given by

J∗(s, a) = −λ logZ(s) + λ log pθ(a | s)
π∗ (a | s)

. (6.9)

This result highlights that the role of J is to account for the log-likelihood gap between π∗

and pθ .⁴ If the demonstrations are perfectly informative, we would have log pθ(a|s)
π∗(a|s) = 0

and it is easy to see that J∗(s, a) ∝ 1. The larger the KL-gap between pθ and π∗ is, the
more information must be encoded in the cost function to compensate for this error.
Key Insight. In conclusion, this analysis reveals two important results when trying to
learn multi-agent behavior π∗ with π in the proposed form of (6.6) with our method. First,
it reveals an important requirement for the single-agent demonstrations provided by the
user: The single-agent demonstrations must be sufficiently rich to cover the support of the
target behavior π∗. And second, (6.9) reveals that the more informative the single-agent
demonstrations are for the targeted multi-agent behavior, the less design effort needs to
go into J .

6.5 Sampling from CoDi Policies
Sampling from the multi-agent policy in (6.6) is non-trivial for several reasons. First, even
computing the correct normalizing constant is challenging. Moreover, since the data-
driven component is represented by diffusion policies, its distribution is only known in
⁴See Section 6.A.1 for more details.
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terms of a generative model: generating samples is easy but computing the density func-
tion is not (c.f. Section 6.2).

In this section, we show how to exploit the structure of (6.6) to directly construct a
generative model for the multi-agent policy, thereby tackling the challenges of sampling
from the multi-agent policy. We present this key result in two steps. First, in Section 6.5.1,
we derive a reverse-time SDE following the structure of (6.3) whose numerical integration
generates samples from the multi-agent policy π(a | s). Then, in Section 6.5.2, we show
how to construct estimators for the required ingredients of this generative model.

6.5.1 Constructing a Generative Model for the Multi-Agent Policy
To construct a generative model for the multi-agent policy, we seek a SDE of the form
of (6.3) whose solution matches the target distribution π(a | s).

The Multi-Agent Reverse-Time SDE. In Section 6.2.2, we saw that a generative dif-
fusion model for a distribution p∗(x) can be constructed by learning a score model that
satisfies sθ(x;σ) ≈ ∇x log p∗σ(t)(x;σ) and solving the reverse-time SDE in (6.5) back-
wards in time from T to 0. By symmetry, in order to construct a generative model for
π(a | s), we need a score model that satisfies sπθ (a;σ(t), s) ≈ ∇a logπσ(t)(a; s), where
πσ(t)(a; s) :=

∫
A π(a | s)qσ(t)(a(t) | a)da and solve

da(t) = − 2σ̇(t)σ(t) sπθ (a(t);σ(t), s)︸ ︷︷ ︸
≈∇a(t) logπσ(t)(a(t);s)

dt+
√
2σ̇(t)σ(t)dw̄t; a(T ) ∼ N (x; 0, σ(T )2I)︸ ︷︷ ︸

≈πσ(T )(a(T );s)

.

(6.10)

Observe that the only unknown in this equation is themulti-agent scoremodel sπθ (a;σ(t), s).
Unlike in conventional diffusion models, however, we cannot trivially learn this score
model via DSM from samples as in (6.4) because we precisely do not have access to
any samples from the multi-agent policy. Therefore, to overcome this chicken-and-egg
problem, we must construct a model of the multi-agent score sπθ (a;σ(t), s) in a different
way.

Recognizing the Single-Agent Score Contribution to the Multi-Agent Score. To
find an estimator of the multi-agent score model, we first decompose it in terms of the
single-agent score models. To this end, as we detail in Appendix 6.A.2, we can decompose
the multi-agent score as follows:

∇a(t) logπσ(t)(a(t); s) = (6.11)

∇a(t) log pθσ(t)(a(t) | s) + ∇a(t) log E
a∼pθ(a|a(t),s,σ(t))

[
exp

(
−J(s, a)

λ

)]
︸ ︷︷ ︸

gJ (a(t);s,σ(t)):=

.

Analyzing the first term reveals that it is the score of the data-driven component pθ whose
score model can be trivially constructed from the scores learned by the single-agent diffu-
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sion policies:

∇a log pθσ(t)(a(t) | s) = ∇a log
N∏
i=1

p
(i)
θ σ(t)

(a(i) | f (i)single(s)) (6.12)

=


∇a(1) log p

(1)
θ σ(t)

(a(1) | f (1)single(s))
...

∇a(N) log p(N)
θ σ(t)

(a(N) | f (N)
single(s))

 (6.13)

=


sp

(1)

θ (a(1);σ(t), f (1)single(s))
...

sp
(N)

θ (a(N);σ(t), f
(N)
single(s))


=: spθ(a;σ(t), s),

where sp
(i)

θ denotes the score model underpinning the i-th agent’s single-agent diffusion
policy p(i)θ . This reveals that we do not need to approximate the multi-agent score from
scratch: we can re-use the single-agent score models already available from the under-
pinning single-agent diffusion policies. Consequently, the only missing ingredient is the
second term in (6.11) which encodes the contribution of the user-defined multi-agent cost
function J . As we show in Section 6.B, this term can be related to the framework of clas-
sifier guidance [165]. We therefore refer to gJ(a(t); s, σ(t)) as the guidance score.

Key Insight. We can sample from our multi-agent policy π in (6.6) by numerically
integrating the reverse diffusion SDE in (6.10). The score model involved in this SDE can
be constructed from the single-agent scores (which we already have from pre-training
the single-agent diffusion policies) plus an extra guidance score term. Constructing an
estimator for this guidance score term will be the focus of the next section.

6.5.2 Multi-Agent Guidance Score Estimation
Having established that the only missing ingredient required for sampling from the multi-
agent policy is the guidance score, gJ(a(t); s, σ(t)), in (6.11), we now discuss two tech-
niques for estimating this term.

Design Constraints. When constructing these estimators, we specifically consider two
design constraints: (i) the user-provided cost function J may not be differentiable; and
(ii) we do not have access to any samples from the multi-agent policy pθ(a | s). Hence,
these estimators must be constructed from point-wise evaluations of the black-box cost J ,
without access to its derivatives.

High-Level Overview. In the following, we propose two estimators that satisfy these
design constraints. Section 6.5.2 proposes an online estimator that approximates gJ in a
sampling-based manner. This estimator is useful for design-time exploration of different
cost functions, but is computationally expensive for final deployment because it requires
taking many samples online. Therefore, Section 6.5.2 proposes an offline estimator that
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amortizes this computation into a guidance network, learning an approximation of the
vector field gJ(·; s, σ(t)) directly. This estimator is computationally efficient for final de-
ployment at the expense of an additional training phase.

Online Guidance Score Estimation

Our online guidance score estimator approximates gJ(a(t); s, σ(t)) in a sampling-based
(i.e., gradient-free) manner. To achieve this, as shown in Appendix 6.A.3, we rewrite
gJ(a(t); s, σ(t)) as follows:

gJ(a(t); s, σ(t)) = E
a∼pθ(a|a(t),s,σ(t))

[
w(a(t), a, s, t)∇a(t) log qσ(t)(a(t) | a)

]
(6.14)

where

w(a(t), a, s, t) :=
exp

(
−J(a;s)

λ

)
− Ea∼pθ(a|a(t),s,σ(t))

[
exp

(
−J(a;s)

λ

)]
Ea∼pθ(a|a(t),s,σ(t))

[
exp

(
−J(a;s)

λ

)] (6.15)

This formulation side-steps the need to compute gradients of J .⁵ Next, we approximate
the expectations in (6.14) in a sampling-based manner usingMonte Carlo integration. This
requires tractable generation of samples from the posterior p(a | a(t), s, σ(t)) (sampling
noise-free data a given noisy data a(t)). To this end, we construct a Gaussian posterior
approximation using Tweedie’s formula [170, 171] as shown in Appendix 6.A.4, admitting

p(a | a(t), s, σ(t)) ≈
N (a; a(t) + σ(t)2spθ(a(t);σ(t), s)︸ ︷︷ ︸

µonline:=

, σ(t)2I+ σ(t)4∇a(t)s
p
θ(a(t);σ(t), s)︸ ︷︷ ︸

Σonline:=

). (6.16)

Observe that the parameters µonline and Σonline of this distribution are constructed directly
from the single-agent score models characterizing spθ(a(t);σ(t), s) (c.f. (6.12)), requiring
no additional training. Since, in practice, the score model spθ is a neural network, its Jaco-
bian,∇a(t)s

p
θ(a(t);σ(t), s) (required to computeΣonline), can be computed using automatic

differentiation.

Key Insight. In summary, exploiting Equations (6.14) to (6.16) and applyingMonte Carlo
integration, we can approximate the guidance score of (6.44) withM samples as

gJ(a(t); s, σ(t)) ≈

gJonline(a(t); s, σ(t)) :=
1

M

M∑
m=1

wJonline(a(m), s)∇a(t) log qσ(t)(a(t) | a(m)) (6.17)

⁵When J is differentiable in a, we can alternatively compute a lower-variance estimate of the expectation in (6.14)
using the reparameterization trick. Here, however, we are interested in the general case where the user-provided
multi-agent cost need not be differentiable.
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where a(m) are sampled from (6.16) and

wJonline(a, s) := exp
(
−J(s, a)

λ

)
/µw − 1, where µw :=

1

M

M∑
m=1

exp
(
−J(s, a(m))

λ

)
.

(6.18)

This estimator can be evaluated for varying choices of J without retraining, making
it a flexible design-time tool that allows a user to try out different cost functions quickly.

Learning a Guidance Score Estimator Offline

While the online estimator provides design-time flexibility, evaluating gJ for many sam-
ples can be computationally expensive. Therefore, for final deployment, we also propose
an amortized guidance score estimator.

As we show in Appendix 6.A.5, we can train such an estimator by minimizing the
following loss:

Lg(ψ) := E
a∼pθ(a|s),t∼W,ϵ∼N (0,I)

[
exp

(
−J(a; s)

λ

)∥∥σ(t)2sπψ(a+ σ(t)ϵ;σ) + σ(t)ϵ
∥∥2] ,
(6.19a)

where sπψ(a(t); s, σ(t)) = spθ(a(t);σ(t), s)︸ ︷︷ ︸
base model

+ gJψ(a(t); s, σ(t))︸ ︷︷ ︸
learned guide

. (6.19b)

This loss takes the form of a re-weighted DSM loss (c.f. (6.4).⁶ During training, the base
scoremodel sπθ (previously trained on single-agent data) is frozen, and only the parameters
of the residual guidance term gJψ are updated. Thus, (6.19) fine-tunes this residual model
using the user-defined cost J as the learning signal. Finally, observe that evaluation of the
loss (6.19) requires only samples from the base-model pθ(a | s), which are readily available
via the single-agent diffusion models.

Key Insight. In summary, an offline guidance score estimator can be trained by fine-
tuning the residual model of (6.19b) by minimizing the re-weighted DSM loss (6.40a) over
the product of single-agent data distributions, pθ(a | s).

6.6 Experimental Evaluation
The following simulation experiments are designed to support the key claims that CoDi
(i) learns multi-agent policies while pre-training only on single-agent data, (ii) discovers
new collaboration strategies not present in the original single-agent demonstrations, and
(iii) generates more efficient and accurate manipulation policies than a baseline that di-
rectly relies on multi-agent demonstrations, given the same amount of data.

⁶Interestingly, Ma et al. [172] find a similar re-weighted DSM loss when training (single-agent) diffusion-policies
from scratch. By contrast, our approach additionally accounts for priors via the base model sπθ .
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6.6.1 Task
To test our method, we instantiate the out-of-reach manipulation task from Figure 6.1 in
a high-fidelity simulation environment using the Isaac Gym simulator [173]. As shown
in Figure 6.2, in this task, two 7-DoF Franka arms are placed at opposite ends of a wide
table. The dimensions of the table (width 1.8m, depth 1.2m) are such that no single robot
can reach across the entire table. The task requires both robots to collaboratively move
the object (a red cube with an edge length of 5 cm) to the goal location (marked by a green
star in Figure 6.2) within a tolerance of 5 cm. For each simulated episode, we randomly
generate initial configurations, i.e., pairs of initial object poses and goal locations.

6.6.2 Compared Methods
In the simulation environment, we compare the following methods:

CoDi (online) This variant of our approach instantiates CoDi with the online guidance
score estimator proposed in Section 6.5.2. We include this method to showcase the
performance observed when using our online score estimator during design-time ex-
ploration without requiring additional training.

CoDi (offline) This variant of our approach instantiates CoDi with the amortized guid-
ance score estimator learned offline as proposed in Section 6.5.2. We include this
method to showcase the final performance achievable once the user has settled on a
cost function design and trains a dedicated guidance score estimator.

Multi-Agent Classifier-Guidance (MACG): This method instantiates vanilla classifier-
guidance [165] applied to a multi-agent diffusion policy—amounting to a multi-agent
instantiation of the approach presented in Janner et al. [25]. We include this method
to provide a reference for the performance achievable when multi-agent data were
available.

Demonstration Data. We generate pick-and-place demonstrations using a simple state-
machine-based controller. This controller drives the end-effector via inverse kinematics
to move the object to randomly sampled goal locations on the table. At each invocation,
the controller checks if the object is within reach; if so, it picks up the object and places
it at the goal. For MACG’s multi-agent demonstrations, when multiple robots can reach
the object, the controller randomly assigns it to one robot. If no robot interacts with the
object for 100 time steps, the position of the cube is reset to a new random location on
the table. The datasets for all methods contain the same number of samples: we provide
2k demonstrations, split into 100k receding-horizon segments of 16 action predictions at
a rate of 10Hz.

Policy Representation. We represent the score model underpinning single- and multi-
agent diffusion policies via a denoising UNet architecture as in Chi et al. [23]. In our
experiments, diffusion policies predict desired end-effector translation and rotation veloc-
ities as well as desired gripper width. We use inverse kinematics to convert end-effector
velocities into joint velocities.
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Cost Function Design. The demonstration data only encodes knowledge of the base
skills (here, the ability to pick up and place the object); not of the exact task to be performed
(here, the position where the object should be placed). Instead, the task-specific informa-
tion is encoded in the cost function. We chose this setup to capture a scenario where the
user may want to use the same base policy for multiple different tasks (because generating
demonstrations for each task is annoying). This philosophy is consistent with Janner et al.
[25].

The cost function used for guidance takes the form of a weighted sum of cost compo-
nents,

J(s, a) = wgoalJgoal(s, a) + wcollisionJcollision(s, a) + wengageJengage(s, a). (6.20)

The cost components are defined as follows: Jgoal(s, a)measures the distance of the object
from the goal resulting from applying action-sequence a from state s; Jcollision(s, a) is a
binary indicator, equal to one if end-effectors are closer than a given safety distance as a
result of taking the joint action sequence a from state s and zero otherwise; and Jengage(s, a)
measures the distance of the closer robot to the object. Section 6.C provides additional
implementation details on this cost function.

Note that, in order to evaluate Jgoal, we need to make a prediction about the combined
effect of all agents’ actions on the future position of the object. Since such a prediction
is not part of the diffusion policies’ output, we obtain the prediction by simulating the
outcome of the joint action sequence a from state s using Isaac Gym. Note that this simu-
lation can be done for many samples in parallel during online-guidance score estimation
of (6.17). Nonetheless, the computational cost of this simulation is non-negligible, moti-
vating the use of an offline estimator at test time. We provide an additional discussion of
this point in Section 6.7.

6.6.3 Evaluation & Metrics
We perform closed-loop simulations of all methods for 10 episodes. Initial states are sam-
pled uniformly at random from the table; these include settings where robots must collab-
orate to complete the task since no single robot can reach both the initial object position
and the goal location.

To assess the performance of the different methods, we compute the following metrics
on closed-loop rollouts of the different policies:

Minimum Goal Distance: The minimum distance of the object to the goal. This metric
provides insights into the manipulation accuracy.

Task Completion Time: The time it takes for the object to be placed within 5 cm of the
designated goal location. This metric provides insights into task efficiency.

6.6.4 Results
Figures 6.3 and 6.4 summarize the results of our simulation experiments by reporting
the empirical cumulative distribution function (ECDF) of each metric by method. These
results provide the following key insights.
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initial state

final state

Figure 6.2: Qualitative example of the closed-loop behavior of CoDi. The goal is not reachable for the right robot.
Our approach causes the right robot to pick up the object and place it at an intermediate location reachable by
the left robot, which then completes the task.

We observe that both instantiations of CoDi achieve a fast task completion time (cf. Fig-
ure 6.3) and better manipulation accuracy (cf. Figure 6.4) than MACG. Since both methods
are trained on the same amount of data, this suggests that—by learningmanipulation skills
in the smaller single-agent state-action space—CoDi makes use of the training data more
efficiently than MACG.

Furthermore, note that object handovers are not part of single-agent demonstrations.
Hence, these results reveal that CoDi is able to discover new collaboration strategies not
present in the original single-agent demonstrations.

In sum, these results support the key claims enumerated above.
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Figure 6.3: ECDF of task completion times by method.
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Figure 6.4: ECDF of minimum goal distances by method.
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6.7 Limitations & Future Work
This work introduces CoDi, a method for synthesizing multi-agent behavior from single-
agent demonstrations by guiding the product of single-agent diffusion policies toward
coordinated multi-agent behavior using a multi-agent cost function.

Our simulation results demonstrate that CoDi discovers novel collaboration strategies
absent from the original single-agent demonstrations and achieves superior manipulation
accuracy and task efficiency compared to vanilla classifier guidance applied to diffusion
policies trained on multi-agent demonstrations.

Despite these promising results, several limitations suggest directions for future work.
A primary limitation of the current approach is the need to evaluate the joint effect of
all agents’ actions on the future environment state. In our manipulation example, this
requires a simulator to assess the cost function. Although our offline score estimator mit-
igates the computational cost of these simulations, such a simulator may not always be
available—especially for tasks involving complex physical phenomena (e.g., manipulating
soft objects or even liquids). Additionally, while our proposed online score estimator fa-
cilitates rapid evaluation of a given cost design on the joint behavior of all agents without
retraining, specifying an appropriate cost function remains challenging.

Combined, these limitations motivate future research into learning the guidance term
directly from a small number of multi-agent demonstrations, thereby eliminating the need
to define the multi-agent cost function explicitly. While this approach would relax the
reliance on single-agent demonstrations alone, such an approach still shows promise in
being more data-efficient overall than naive multi-agent imitation learning.

Furthermore, here we assumed fully cooperative behavior, requiring all players to op-
timize the same cost function and assuming correlated action distributions across agents.
Future work should explore themore general non-cooperative setting, including those with
distinct costs and independent action distributions.



6

121

Appendix for Chapter 6
Utilizing Single-Agent Demonstrations to Learn Multi-Agent Policies
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6.A Derivations

6.A.1 Optimally Compensating Multi-Agent Cost Function
For completeness, we begin by repeating the decomposition result of (6.8), labeling the
second term as γ [J ]:

DKL (π
∗‖π) = E

a∼π∗

log π∗(a | s)

pθ(a | s)


︸ ︷︷ ︸

DKL(π∗∥pθ)≥0

+ logZ + E
a∼π∗

[
J(s, a)
λ

]
︸ ︷︷ ︸

:= γ[J]

.

To achieve a perfect match of the target behavior, i.e.,DKL (π
∗‖π) = 0, we need π∗(a |

s) = π(a | s) for all a ∈ Ã ⊆ A for which Ã has non-zero measure under π∗. Solving for
J , this yields the optimally compensating multi-agent cost function

π∗(a | s) = 1

Z(s)
exp

(
−J∗(a; s)

λ

)
pθ(a | s) (6.21)

=⇒ J∗(a; s) = −λ logZ(s) + λ log pθ(a | s)
π∗ (a | s)

(6.22)

6.A.2 Decomposition of π

πσ(t)(a(t); s) =
∫
A
π(a | s)qσ(t)(a(t) | a)da (6.23a)

= pθσ(t)(a(t) | s)
∫
A π(a | s)qσ(t)(a(t) | a)da

pθσ(t)(a(t) | s)
(6.23b)

= pθσ(t)(a(t) | s)
∫
A

exp
(

−J(a;s)
λ

)
pθ(a | s)

Z(s)
qσ(t)(a(t) | a)
pθσ(t)(a(t) | s)

da (6.23c)

= pθσ(t)(a(t) | s)
∫
A

exp
(

−J(a;s)
λ

)
Z(s)

pθ(a | a(t), s, σ(t))da (6.23d)

= pθσ(t)(a(t) | s)
1

Z(s)
E

a∼pθ(a|a(t),s,σ(t))

[
exp

(
−J(a; s)

λ

)]
, (6.23e)

and thus we can express the multi-agent score as

∇a(t) logπσ(t)(a(t); s) = ∇a(t) log pθσ(t)(a(t) | s) −�������:0
∇a(t) logZ(s) (6.24)

+ ∇a(t) log E
a∼pθ(a|a(t),s,σ(t))

[
exp

(
−J(a; s)

λ

)]
︸ ︷︷ ︸

gJ (a(t);s,σ(t)):=

.
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6.A.3 Simplification of gJ(a(t); s, σ(t))
We can simplify gJ(a(t); s, σ(t)):

gJ(a(t); s, σ(t)) = ∇a(t) log E
a∼pθ(a|a(t),s,σ(t))

[
exp

(
−J(a; s)

λ

)]
(6.25a)

=
∇a(t) Ea∼pθ(a|a(t),s,σ(t))

[
exp

(
−J(a;s)

λ

)]
Ea∼pθ(a|a(t),s,σ(t))

[
exp

(
−J(a;s)

λ

)] (6.25b)

=
Ea∼pθ(a|a(t),s,σ(t))

[
exp

(
−J(a;s)

λ

)
∇a(t) log pθ(a | a(t), s, σ(t))

]
Ea∼pθ(a|a(t),s,σ(t))

[
exp

(
−J(a;s)

λ

)]
(6.25c)

Due to the identities

∇a(t) log pθ(a | a(t), s, σ(t)) = ∇a(t) log qσ(t)(a(t) | a)−∇a(t) log pθσ(t)(a(t) | s)
(6.26)

and

∇a(t) log pθσ(t)(a(t) | s) = E
a∼pθ(a|a(t),s,σ(t))

[
∇a(t) log qσ(t)(a(t) | a)

]
(6.27)

we conclude that

gJ(a(t); s, σ(t)) = E
a∼pθ(a|a(t),s,σ(t))

[
w(a(t), a, s, t)∇a(t) log qσ(t)(a(t) | a)

]
(6.28)

where

w(a(t), a, s, t) :=
exp

(
−J(a;s)

λ

)
Ea∼pθ(a|a(t),s,σ(t))

[
exp

(
−J(a;s)

λ

)] − 1 (6.29)

6.A.4 Gaussian approximation of the posterior pθ(a | a(t), s, σ(t))
We can obtain a Gaussian approximation of the posterior pθ(a | a(t), s, σ(t)) by exploiting
Tweedie’s formula [170, 171] to recover the first two moments.

E
a∼pθ(a|a(t),s,σ(t))

[a] = a(t) + σ(t)2∇a(t) log pθσ(t)(a(t) | s) (6.30)

Cov
a∼pθ(a|a(t),s,σ(t))

[a] = σ(t)2I+ σ(t)4∇2
a(t) log pθσ(t)(a(t) | s) (6.31)

Recall that the score model satisfies sπθ (a(t);σ(t), s) ≈ ∇a(t) log pθσ(t)(a(t) | s). Hence,
we can approximate

pθ(a | a(t), s, σ(t)) ≈
N (a; a(t) + σ(t)2sπθ (a(t);σ(t), s)︸ ︷︷ ︸

µonline:=

, σ(t)2I+ σ(t)4∇a(t)s
π
θ (a(t);σ(t), s)︸ ︷︷ ︸

Σonline:=

). (6.32)
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The Jacobian of the score model, ∇a(t)s
π
θ (a(t);σ(t), s), is computed using automatic dif-

ferentiation.
The formula for the first moment arises by expanding∇a(t) log pθσ(t)(a(t) | s):

∇a(t) log pθσ(t)(a(t) | s) =
∇a(t)pθσ(t)(a(t) | s)
pθσ(t)(a(t) | s)

(6.33a)

=

∫
A pθ(a | s)∇a(t)

qσ(t)(a(t)|a)︷ ︸︸ ︷
N (a(t) | a, σ(t)2I) da

pθσ(t)(a(t) | s)
(6.33b)

=

∫
A pθ(a | s)(a− a(t))N (a(t) | a, σ(t)2I)da

σ(t)2pθσ(t)(a(t) | s)
(6.33c)

=
1

σ(t)2
E

a∼pθ(a|s)
[a− a(t)] (6.33d)

=⇒ E
a∼pθ(a|s)

[a] = a(t) + σ(t)2∇a(t) log pθσ(t)(a(t) | s) (6.33e)

The formula for the second moment arises by expanding∇2
a(t) log pθσ(t)(a(t) | s),

∇2
a(t) log pθσ(t)(a(t) | s) =

1

pθσ(t)(a(t) | s)
∇2

a(t)pθσ(t)(a(t) | s) (6.34)

− 1

pθσ(t)(a(t) | s)2
(∇a(t)pθσ(t)(a(t) | s))(∇a(t)pθσ(t)(a(t) | s))⊤,

and exploiting the identities ∇p
p = ∇ log p and

∇2
a(t)pθσ(t)(a(t) | s) (6.35a)

= ∇a(t)

(
pθσ(t)(a(t) | s)

σ(t)2
E

a∼pθ(a|a(t),s,σ(t))
[a− a(t)]

)
(6.35b)

= pθσ(t)(a(t) | s)
(
− 1

σ(t)2
I +

1

σ(t)4
E

a∼pθ(a|a(t),s,σ(t))

[
(a− a(t))(a− a(t))⊤

])
(6.35c)

to recover

∇2
a(t) log pθσ(t)(a(t) | s) = (6.36a)

− 1

σ(t)2
I +

1

σ(t)4
E

a∼pθ(a|a(t),s,σ(t))

[
(a− a(t))(a− a(t))⊤

]
(6.36b)

− (∇a(t) log pθσ(t)(a(t) | s))(∇a(t) log pθσ(t)(a(t) | s))⊤. (6.36c)

Recognizing

E
a∼pθ(a|a(t),s,σ(t))

[
(a− a(t))(a− a(t))⊤

]
= (6.37)

Cov
a∼pθ(a|a(t),s,σ(t))

[a] + E
a∼pθ(a|a(t),s,σ(t))

[a(t)] E
a∼pθ(a|a(t),s,σ(t))

[a(t)]⊤
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we conclude that

Cov
a∼pθ(a|a(t),s,σ(t))

[a] = σ(t)2I+ σ(t)4∇2
a(t) log pθσ(t)(a(t) | s). (6.38)

6.A.5 Offline Guidance Score Estimation
As outlined in Section 6.2, generative diffusion models approximate a target distribution
p∗(x) by approximating the score of the mollified target distribution∇x(t) log p∗σ(t)(x(t))
and DSM [163] learns the required score model sp

∗

θ (x;σ) of∇x(t) log p∗σ(t)(x(t)) by mini-
mizing the DSM loss given in (6.4), repeated here for convenience:

L(θ) := E
x∼p∗(x),t∼W,ϵ∼N (0,I)

[∥∥∥σ(t)2sp∗θ (x+ σ(t)ϵ;σ) + σ(t)ϵ
∥∥∥2] . (6.39)

By symmetry, in order to learn ∇a(t) logπσ(t)(a(t); s), we must find a score model
sπψ(a(t); s, σ(t)) that minimizes the following loss:

L̃(ψ) := E
a(t)∼π(a(t);s),t∼W,ϵ∼N (0,I)

[∥∥σ(t)2sπψ(a+ σ(t)ϵ;σ) + σ(t)ϵ
∥∥2] (6.40a)

∝ E
a∼pθ(a|s),t∼W,ϵ∼N (0,I)

[
exp

(
−J(a; s)

λ

)∥∥σ(t)2sπψ(a+ σ(t)ϵ;σ) + σ(t)ϵ
∥∥2]
(6.40b)

The latter formulation has the advantage of requiring only samples from the base-model
pθ(a | s) rather than from the joint policy π(a(t); s).⁷

To leverage the single-agent priors, we parameterize sπψ(a(t); s, σ(t)) in a residual fash-
ion as

sπψ(a(t); s, σ(t)) = spθ(a(t);σ(t), s)︸ ︷︷ ︸
base model

+ gJψ(a(t); s, σ(t))︸ ︷︷ ︸
learned guide

, (6.41)

where spθ is the score model obtained from single-agent pre-training and gJψ is the learned
guidance score model tasked to match gJ of (6.11).

It is easy to verify that minimization of this loss formulation indeed causes gJψ to match
the optimal guidance score gJ of (6.11). To see this, observe that by standard DSM-score-
equivalence, this loss causes sπψ tomatch∇a(t) logπσ(t)(a(t); s)which in turn decomposes
as derived in (6.11). Therefore,

sπψ(a(t); s, σ(t)) = spθ(a(t);σ(t), s) + gJψ(a(t); s, σ(t)) (6.42a)
≈ ∇a(t) logπσ(t)(a(t); s) = ∇a(t) log pθσ(t)(a(t) | s)︸ ︷︷ ︸

=spθ(a(t);σ(t),s) (c.f. (6.12))

+ gJ(a(t); s, σ(t)), (6.42b)

revealing that optimization of (6.40b) results in gJψ(a(t); s, σ(t)) ≈ gJ(a(t); s, σ(t)).

⁷We could, of course, synthesize such samples by using our online estimator from Section 6.5.2 but this data-
generation strategy would come at a substantial computational cost which is precisely what we want to avoid
by proposing this offline estimator.
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6.B Relationship to Conventional Classifier Guidance

Background on Classifier Guidance. A useful property of diffusion models is that
their generative process can be adapted at test-time by composing multiple score models.
A prominent instance of this composition is classifier-based guidance [165], which adapts
a diffusionmodel of an unconditional distribution p∗(x) to insteadmatch a new conditional
distribution pc(x | y), where y ∈ Rny denotes test-time context information not known
during training. This is enabled by the identity

∇x(t) log pc(x(t) | σ(t), y) = ∇x(t) log p∗σ(t)(x(t)) +∇x(t) log pcσ(t)(y | x(t))

−
��������:0
∇x(t) log pcσ(t)(y), (6.43)

where pcσ(t)(y | x(t)) := Ex∼p∗(x|x(t),σ(t)) [p
c(y | x)] takes the interpretation of a noise-

conditioned classifier, assessing the (unnormalized) log-likelihood of the context y given
the noisy sample x(t) at noise level σ(t). Thus, given an unconditional score model
sp

∗

θ (x(t);σ(t)) ≈ ∇x log p∗σ(t)(x(t);σ(t)), we can obtain conditional samples from pc(x |
y) by adding the classifier score∇x(t) log pcσ(t)(y | x(t)) to s

p∗

θ in the reverse SDE of (6.5).

Recognizing gJ as a classifier score. When we interpret exp (−J(a; s)/λ) as a classi-
fier pc(y | a, s), we can rewrite gJ(a(t); s, σ(t)) as the gradient of a noise-conditioned log
classifier

gJ(a(t); s, σ(t)) := ∇a(t) log E
a∼pθ(a|a(t),s,σ(t))


pc(y|a(t),s,σ(t))︷ ︸︸ ︷

exp
(
−J(a; s)

λ

) (6.44)

= ∇a log pc(y | a(t), s, σ(t)) (6.45)

making (6.11) reminiscent of the vanilla classifier guidance framework (c.f. (6.43)) with
the composed score

∇a(t) logπσ(t)(a(t); s) = ∇a(t) log pθσ(t)(a(t) | s) +∇a(t) log pc(y | a(t), s, σ(t))︸ ︷︷ ︸
gJ (a(t);s,σ(t))

.

6.C Cost Function Implementation Details
We use the following cost function structure, repeated here for convenience:

J(s, a) = wgoalJgoal(s, a) + wcollisionJcollision(s, a) + wengageJengage(s, a). (6.46)

Below, we provide the implementation details for this cost structure. Table 6.1 lists the
values we use for any parameters referenced below.

Notation. Let τ : {1, . . . ,K} → S denote the joint state trajectory resulting from
applying the action-sequence a from state s over the receding-horizonwindowof lengthK
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so that τ(k) = sk denotes the joint state at future time step k. Let p(i)k ∈ R3 denote the
position of the ith end-effector at time step k in the workspace and pobjectk ∈ R3 denote the
position of the object at time step k. Let dws(pa, pb) denote the Euclidean distance between
two points pa ∈ R3 and pb ∈ R3 in the workspace. Let dt2p(τ̃ , p̃) denote the minimum
distance between any point along the trajectory τ̃ and the point p̃, i.e.

dt2p(τ̃ , p̃) = min
k=1,...,K

∥∥∥p(i)k − p̃∥∥∥ , (6.47)

and analogously for a pair of trajectories

dt2t(τ̃
a, τ̃ b) = min

k=1,...,K

∥∥∥p(i)k − p(j)k ∥∥∥ , (6.48)

Finally, let pgoal denote the goal position and pobject denote the position of the object asso-
ciated with state s. The cost components are defined as follows.

Goal Cost. The goal cost component penalizes the minimum distance of the object to
the goal along the receding-horizon trajectory

Jgoal(s, a) = min{dt2p(τ object, pgoal)−∆goal, 0}. (6.49)

where ∆goal denotes the threshold at which this penalty is applied.

Collision-Avoidance Cost. The collision-avoidance cost component penalizes the
largest safety-distance violation between both end-effectors via

Jcollision(s, a) = min{∆collision − dt2t(τ (1), τ (2)), 0}, (6.50)

where ∆collision denotes the threshold at which this penalty is applied.

Engagement Cost. The engagement cost encourages the closer robot to engage with
the object via

Jengage(s, a) =

{
min{dt2t(τ (1), τ object)−∆engage, 0} if

∥∥∥p(1)1 − pobject
1

∥∥∥ <
∥∥∥p(2)1 − pobject

1

∥∥∥
min{dt2t(τ (2), τ object)−∆engage, 0} otherwise.

(6.51)
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Parameter Symbol Value

Goal penalty threshold ∆goal 1 cm
Goal reaching cost weight wgoal 1
Engage penalty threshold ∆engage 20 cm
Engage cost weight wengage 10
Collision avoidance radius ∆collision 30 cm
Collision avoidance cost weight wcollision 10

Table 6.1: Cost function parameters.
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Chapter 7

Conclusions and Future Work

This chapter discusses the main takeaways of this dissertation and presents directions for
future research.

7.1 Conclusions
This dissertation advances robotic motion planning in scenarios where a robot interacts
with other agents—i.e., with humans or other robots. By studying this problem through the
lens of game theory, this dissertation developed algorithms that enable a robot to estimate
the intents of others (Chapter 2), adapt its strategic plans to these estimates (Chapter 3),
account for uncertainty (Chapter 4), and compute its own strategies efficiently (Chapter 5).
A common thread across these chapters was the reliance on the assumption that the under-
lying problem data—i.e., the costs and constraints (including dynamics)—are smooth to fa-
cilitate iterative search for local equilibria. While this assumption holds for many applica-
tions, such as autonomous driving, it becomes limiting in settings where non-smoothness
is inherent, such as multi-agent manipulation. Chapter 6 adopts a distinct approach, lever-
aging probabilistic inference and generative modeling to address complex, non-smooth
interactions by combining learning from demonstrations with reasoning about joint costs
across agents. Below, we summarize the key conclusions of Chapters 2 to 6.

7.1.1 Estimating Player Objectives from Partially Observed
Interactions

Chapter 2 studied the problem of inferring other agents’ objectives from observations of
their past behavior—a problem commonly referred to as the inverse game problem. The
central contribution of this chapter was a maximum-likelihood formulation of this inverse
game problem. The key innovation of this formulation was that it captured scenarios
characterized by partial and noise-corrupted observations. In contrast, existing methods
assumed full observability of all agents’ states and could only handle partial observations
when combined with a separate state estimation preprocessing step. After formalizing
the problem, we demonstrated how to transcribe the proposed partially observed inverse
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games into standard constrained optimization problems that can be solved using off-the-
shelf optimization solvers. The resulting approach estimated players’ cost parameters
while simultaneously recovering the forward game trajectory consistent with those pa-
rameters, with overall performance measured according to observation likelihood.

To validate this approach, we conducted extensive numerical simulations across mul-
tiple autonomous driving scenarios involving up to 5 vehicles, where key aspects of other
vehicles’ behavior—such as goal locations, target lanes, and desired travel speeds—were
initially unknown to the robot. Our simulation results demonstrated several key advan-
tages of the joint inference approach compared to prior methods that treated state esti-
mation and objective inference as separate problems. Most notably, the results showed
that this joint formulation consistently produced more accurate inference of other agents’
objectives, which in turn enabled more accurate predictions of future trajectories for all
players compared to the baseline approach. Finally, this joint formulation improved state
estimation of the past trajectory, further highlighting the benefits of coupling inference
and trajectory reconstruction.

To reduce the computational burden, we proposed a receding-horizon variant of the
inverse game problem, in which the robot performs inference as observations become
available and is taskedwith updating its predictions on the fly. Similar to the offline setting,
our approach showed improved robustness to noise and partial observations. Furthermore,
we found a pronounced performance advantage over the baseline when the robot had
access to relatively short observation horizons.

Despite these advances, the computational complexity of the joint formulation re-
mained a key limitation of the methods proposed in this chapter, as they required solving
challenging nonlinear optimization problems. Furthermore, the solution approach used
in this chapter did not handle inequality constraints. Finally, this chapter studied intent
inference in isolation, without integrating it with online decision making.

7.1.2 Learning to Interact with Agents That Have Unknown
Objectives

Chapter 3 built on the inverse game problem of Chapter 2 by integrating this paradigm
with online decisionmaking. Hence, this chapter moved beyond pure inference to adaptive
motion planning—simultaneously estimating other agents’ objectives and responding to
them in real time. To facilitate this integration, we developed a new solution approach
that addressed the key limitations of the constrained optimization approach.

The key innovation facilitating these advancements was the contribution of an implicit
differentiation scheme that efficiently computes gradients of the observation likelihood
with respect to the game’s parameters. We showed how this gradient signal can be used
to estimate these game parameters online, yielding an adaptive game solver that updates
the game-theoretic interaction model as observations become available. Relative to the
formulation in Chapter 2, this new approach had two technical advantages: (i) it handled
inequality constraints, facilitating safer interaction; and (ii) it gave rise to a simple, first-
order update rule for parameters that integrates naturally with NNs training for amortized
inference.
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To validate this approach, we conducted extensive simulations of autonomous driving
scenarios similar to those in Chapter 2, but now focused on decision making rather than
pure inference. Beyond the approach from Chapter 2, we compared against a non-adaptive
game-theoretic planner that assumes a prior game model and a non-game-theoretic MPC
baseline that ignores interdependence of actions.

In terms of interaction performance, our simulation results showed that the implicit dif-
ferentiation approach to inverse games predicted game parameters more accurately than
the baselines, and thereby enabled safer and more efficient online interaction. This advan-
tage was particularly pronounced in high-density traffic scenarios, where the complexity
of multi-agent interactions made adaptive planning most beneficial.

In terms of computational efficiency, we presented two key findings. First, when in-
stantiated as first-order online optimization, the implicit differentiation approach of this
chapterwas onlymarginally slower than an optimized implementation of themethod from
Chapter 2, despite solving a harder inverse problem due to the consideration of inequality
constraints. And second, when instantiated as amortized inference via an offline training
phase, we found that this approach was about 3 times faster than the amortized form of
Chapter 2 while still having better interaction performance.

Finally, we also conducted hardware experiments that showcased the real-time plan-
ning capacity of the proposed adaptive game solver in two variants of a 2-player interac-
tion problem with (i) another robot and (ii) a human player.

Despite these advances, the implicit differentiation approach had a key limitation: it
produced only a single point estimate of other agents’ objectives, thus planning as if this
estimate represented the true underlying game model without accounting for uncertainty
in the estimate.

7.1.3 Contingency Games: Strategic Interaction Under
Uncertainty

Chapter 4 set out to address the neglect of uncertainty in the previous chapter. To this end,
we formalized a new uncertainty-aware planning paradigm, termed contingency games, in
which the robot generates plans for a distribution of possible game models¹.

The key innovation of contingency games was their ability to capture the fact that
future belief updates will reduce uncertainty and hence, eventually, the true intent of oth-
ers will be revealed at a future “branching time”. By encoding this feature in the game
formulation, equilibrium solutions of contingency games take the form of a conditional
plan, allowing the robot to develop distinct interactive strategies after the branching time
for each possible intent of others. We demonstrated that contingency games generalize
prior approaches that either assumed full certainty [78, 102, 103] or assumed fixed uncer-
tainty [63, 104], recovering prior approaches as special cases under extreme choices of the
branching time. To formulate a middle ground between these two extremes, we proposed
a simple yet effective heuristic to estimate the branching time online, enabling adaptive,
uncertainty-aware game-theoretic motion planning.

¹Such intents could come from [30], a work that is beyond the scope of this dissertation but is briefly discussed
in Section 1.4.
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We evaluated contingency games in simulations of several driving scenarios with up
to 3 players. In these simulations, we compared against game-theoretic baselines from
both extremes: certainty-equivalent games (as in Chapter 3) and fixed uncertainty games
that assume uncertainty will never be resolved (as in [63, 104]).

Our simulation results demonstrated several key findings. First, we found that all meth-
ods accounting for uncertainty improved safety over those techniques that ignored uncer-
tainty by avoiding commitment to overly optimistic plans. Among the uncertainty-aware
game formulations, we found that contingency games matched the fixed uncertainty base-
line in terms of safety but improved over it in terms of efficiency when using the proposed
adaptive branching time estimator.

7.1.4 Amortized Equilibrium Approximation through Offline
Learning

Chapter 5 set out to address a challenge observed repeatedly throughout this dissertation:
the difficulty of computing game-theoretic equilibria, particularly when the strategy space
is large. To study this challenge, this chapter focused on games with enlarged strategy
spaces due to mixed strategies; i.e., games in which players may strategically randomize
their actions to avoid exploitation by opponents.

The contribution of this chapter was a game solver that amortized the computation
of equilibrium solutions by decomposing the problem into an offline training phase and
an online reasoning phase. Offline, the method trained a NN to predict a finite number
of low-cost trajectory candidates. Online, a discrete game solver computed a mixed Nash
equilibrium over the trajectory candidates proposed by the pre-trained NN for the cur-
rent game state. Two technical advances enabled this approach. First, by embedding a
trajectory optimization layer in the NN architecture, this approach ensured that, despite
amortization, all candidate trajectories are feasible. And second, bymaking both trajectory
optimization and game solver differentiable, this approach ensured that the NN training
could directly use the game value as supervision signal.

Extensive evaluation of this amortized approach in simulations of the pursuit-evasion
game “tag” revealed the following key results. First, a comparison against a baseline that
sampled a fixed number of trajectory candidates a priori revealed the utility of learning
the trajectory candidates: even with just two learned trajectory candidates, the amortized
approach found more competitive strategies than the sampling-based baseline with up to
20 candidates. Second, a comparison against a baseline that considers only pure strategies
revealed the utility of reasoning over the enlarged mixed-strategy space: in head-to-head
competition, agents utilizing mixed strategies consistently outperformed opponents that
considered only the simplified pure-strategy space. Finally, we also demonstrated the ef-
ficiency of the targeted use of learning for amortization in our approach. This efficiency
was highlighted by the average runtime of 2ms for online decision making and the abil-
ity to train from scratch in only a few minutes of simulated self-play, converging within
approximately 1500 turns.
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7.1.5 Utilizing Single-Agent Demonstrations to Learn
Multi-Agent Policies

Chapter 6 shifted gears to address an assumption underpinning all of the previous chap-
ters: the requirement that the problem data—i.e., the costs and constraints (including
dynamics)—are smooth. While this assumption holds for many applications, such as au-
tonomous driving, it becomes limiting in settings where non-smoothness is inherent, such
as multi-agent manipulation due to contact dynamics. Furthermore, insisting on smooth-
nessmay require users to formulate artificial, smoothed versions of the costs or constraints
they genuinely intend, potentially complicating task specification.

The key innovation of this chapter was a method for synthesizing a single, cohe-
sive multi-agent policy while leveraging single-agent demonstrations. This was achieved
through a multi-stage learning process: we first trained single-agent policies from demon-
strations of basic skills (e.g., pick-and-place), and then composed these policies into coordi-
nated multi-agent behavior by reasoning about the joint cost of actions across agents. By
studying this problem through the lens of probabilistic inference and generative diffusion
models [158–161], we constructed a generative process of the coordinated, joint policy
while reusing pre-training results from single-agent learning. We also discussed how this
probabilistic inference approach can be tied back to a game-theoretic perspective.

We validated our approach in high-fidelity simulations of a two-agent manipulation
task, where two robots must collaborate to move an object to a specified location on a wide
table. We demonstrated that our method is able to learn multi-agent policies from single-
agent demonstrations, discover new collaborative strategies not present in the original
data, and generate more efficient and accurate manipulation policies than a baseline that
relies on multi-agent demonstrations, given the same amount of data.

7.2 Limitations & Future Work
Themethods developed in this dissertation provide a foundation for several lines of future
work to further advance robotic motion planning for multi-agent interaction. The preced-
ing Chapters 2 to 6 each concluded with chapter-specific suggestions for future research.
This section identifies overarching key directions for future work that extend beyond the
scope of individual chapters.

Amore holistic view on uncertainty. While this dissertation introduced methods for
inferring unknown game parameters (Chapters 2 and 3) and planning under the resulting
uncertainty (Chapter 4), important opportunities remain to reason about uncertainty in
a more integrated manner—primarily along two key dimensions. First, although Chap-
ters 2 and 3 unified intent inference and state estimation, our work treated this estimation
pipeline as distinct from planning. As a result, the planners in Chapters 3 and 4 did not
consider how their actions might influence future state estimation or intent inference.
Second, in all studied scenarios, uncertainty was strictly one-directional: the robot was
uncertain about other agents, but assumed others had perfect knowledge. Future work
should address these limitations by moving toward a more comprehensive perspective
of a full partially observed stochastic game (POSG)—the game-theoretic analogue of dual
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control—where each agent’s actions depend on the entire observation history. Such exten-
sions would enable robots to reason not only about their own uncertainty, but also about
how their actions shape the beliefs of others, supporting more effective implicit communi-
cation through informative actions. Although POSGs are notoriously challenging, there is
significant potential for tractable methods that approximate belief dynamics and strategy
spaces to capture the most relevant effects in a manner that exploits the structure of the
motion planning problem.

Towards a mature ecosystem of modern game solvers for motion planning. For
non-game-theoretic instances of motion planning—i.e., settings in which a robot acts
in solitude or treats others as part of the environment rather than as strategic agents—
practitioners benefit from a broad range of tools spanning three main categories, each
with distinct advantages: (i) gradient-free solvers [174–176] handle non-smooth problem
data, such as those arising in problems with contact, naturally exploit parallel hardware
for real-time applications, and offer relatively simple user interfaces since they can oper-
ate on black-box specifications of the problem; (ii) gradient-based first- and second-order
solvers [177–179] enable fast online optimization for problems with smooth dynam-
ics, constraints, and objectives, and (iii) amortized approaches, from structured learn-
ing [180, 181] to general reinforcement learning [182–186], address otherwise intractable
problems by shifting computation offline when large-scale experience is available. This
rich toolbox in the single-agent domain enables practitioners to select methods tailored
to their application’s needs. While approaches in each of these categories exist also for
game-theoretic problems [46, 66, 80, 187–194], options in that domain are far more lim-
ited. For example, while in single-agent tasks with non-smooth dynamics, methods like
Model Predictive Path Integral Control (MPPI) [175] are well established [195–197], no
comparable standard exists for games. Similarly, while recent work has put forth robust
amortized approaches such as Dreamer [198–201] or TD-MPC [202, 203] that provide
general-purpose reinforcement learning solutions in the single-agent domain with lit-
tle tuning effort, and algorithms like Proximal Policy Optimization (PPO) [182] are the
de facto standard for quickly learning new skills in the single-agent domain with well-
explored best practices and guidelines for practitioners [204], learning-based methods are
much less explored in the game-theoretic domain and require extensive problem-specific
tuning, in particular for general-sum games. To make game-theoretic planning broadly
accessible, future research should seek to advance game solvers in each of these cate-
gories, aiming for a robust ecosystem of ”plug-and-play” tools. Beyond considerations of
simple user interfaces, these solvers should be designed from the ground up with modern
hardware in mind, particularly targeting GPU acceleration for massive parallelization.

Model-order reduction. This dissertation includes games involving up to seven play-
ers. In real-world scenarios, however, there can often be many more players, posing a
computational challenge. Interestingly, cognitive psychology consistently shows that hu-
mans can attend to no more than five dynamic targets at once [205–207]. Motivated by
these findings, future research in game-theoretic motion planning should focus on prin-
cipled model-order reduction techniques that distill many-player games into manageable
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representations, for example, by aggregating agents into macro-entities or pruning those
whose influence on the ego agent’s strategy is marginal.

Interaction beyond collision avoidance. Themajority of this dissertation (Chapters 2
to 5) focused onmulti-agent scenarios inwhich collision avoidancewas the primary source
of interaction. Yet, many real-world applications—such as autonomous assembly, con-
struction, and household robotics—require richer forms of interaction that go well be-
yond mere collision avoidance, involving tightly coupled collaboration, physical contact,
or shared manipulation tasks. Such interactions are often governed by complex, some-
times non-smooth dynamics, and they typically involve high-dimensional states that must
be inferred indirectly from rich sensory data such as RGB images or LiDAR point clouds.
Chapter 6 took an step beyond pure collision avoidance by studying a manipulation task
in which multiple agents must actively coordinate to achieve a joint goal. However, this
chapter made two key simplifying assumptions: all agents were required to share a joint
cost function (thus ruling out tasks with elements of competition), and the state was as-
sumed to be directly observed and low-dimensional rather than operating directly on high-
dimensional sensory inputs.

In the single-agent domain, the emergence of world models pretrained on internet-
scale data [201] has shown promise for enabling robot control directly from these rich
sensory inputs. These methods jointly learn a state representation and state dynamics
alongside a corresponding state estimator, thereby enabling decision-making in a latent
space. Multi-agent extensions of these approaches have begun to emerge [208–212], but
they remain largely confined to fully cooperative settings where all agents share a com-
mon objective [210–212]. A notable exception is [209], which supports distinct cost func-
tions for each player to capture non-cooperative settings. Notwithstanding, this work has
been demonstrated only in a simple two-player simulation with shared observations and
zero-sum cost structure, and it requires training from scratch on large-scale multi-agent
experience.

Future work should seek to build more flexible multi-agent world models that are capa-
ble of capturing the full complexity of non-cooperative partially observable general-sum
games. Two concrete directions appear most promising in this regard. First, future work
should develop new model architectures that capture arbitrary individual costs per player,
accommodate distinct observations and beliefs while building on the latest architectural
advances in the single-agent domain [201, 203, 213, 214]. Second, to facilitate cost-effective
training, this new generation of multi-agent world models should leverage single-agent
data exhaustively, since this data is far more abundant than multi-agent data. Here, a key
challenge is distilling and transferring knowledge from single-agent data to multi-agent
settings. Beyond learning transferable data representations, this requires developing tech-
niques to compensate for the lack of interaction in these single-agent data sources. Here,
one promising approach is to apply game-theoretic reasoning to single-agent policies to
synthesize new interaction-aware data, building on the initial results of Chapter 6.

When these efforts to build general multi-agent world models succeed, such models
can serve as versatile “adapters” that connect game-theoretic tools to complex real-world
interactions in a data-efficient manner. Future work should investigate specialized game
solvers that harness these models’ latent spaces—including non-cooperative multi-agent
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reinforcement learning (MARL), online equilibrium-seeking approaches, and hybrids of
offline learning with online reasoning [202, 203, 215–217]—all while exploiting the mas-
sively parallelizable evaluation of these world models.



137

Bibliography

References
[1] Anthropic. Claude 4.6 opus. Software, 2 2026. URL https://www.anthropic.com/

news/claude-opus-4-6. Large language model.

[2] Jonathan Tilley. Automation, robotics, and the factory of the future. McKinsey &
Company, 67(1):67–72, 2017.

[3] Daniel Zhang, Nestor Maslej, Erik Brynjolfsson, John Etchemendy, Terah Lyons,
James Manyika, Helen Ngo, Juan Carlos Niebles, Michael Sellitto, Ellie Sakhaee,
et al. The ai index 2022 annual report. arXiv preprint arXiv:2205.03468, 2022.

[4] Yuchuang Tong, Haotian Liu, and Zhengtao Zhang. Advancements in humanoid
robots: A comprehensive review and future prospects. IEEE/CAA Journal of Auto-
matica Sinica, 11(2):301–328, 2024.

[5] International Federation of Robotics. 2.1 million domestic floor cleaning robots
sold in 2023, 2025. URL https://ifr.org/post/21-million-domestic-floor-
cleaning-robots-sold-in-2023. Accessed: 2025-01-15.

[6] Juan Angel Gonzalez-Aguirre, Ricardo Osorio-Oliveros, Karen L Rodríguez-
Hernández, Javier Lizárraga-Iturralde, Ruben Morales Menendez, Ricardo A
Ramirez-Mendoza, Mauricio Adolfo Ramirez-Moreno, and Jorge de Jesus Lozoya-
Santos. Service robots: Trends and technology. Applied Sciences, 11(22):10702, 2021.

[7] Gwyn Topham. Driverless taxis from waymo will be on london’s roads next year,
us firm announces, 2025. URL https://www.theguardian.com/technology/2025/
oct/15/driverless-taxis-from-waymo-will-be-on-londons-roads-next-year-
us-firm-announces. Accessed: 2025-01-15.

[8] Daron Acemoglu and Pascual Restrepo. Demographics and automation. The Review
of Economic Studies, 89(1):1–44, 2022.

[9] Berker Bilgin, Jianbin Liang, Mladen V Terzic, Jianning Dong, Romina Rodriguez,
Elizabeth Trickett, and Ali Emadi. Modeling and analysis of electric motors: State-
of-the-art review. IEEE Transactions on Transportation Electrification, 5(3):602–617,
2019.

https://www.anthropic.com/news/claude-opus-4-6
https://www.anthropic.com/news/claude-opus-4-6
https://ifr.org/post/21-million-domestic-floor-cleaning-robots-sold-in-2023
https://ifr.org/post/21-million-domestic-floor-cleaning-robots-sold-in-2023
https://www.theguardian.com/technology/2025/oct/15/driverless-taxis-from-waymo-will-be-on-londons-roads-next-year-us-firm-announces
https://www.theguardian.com/technology/2025/oct/15/driverless-taxis-from-waymo-will-be-on-londons-roads-next-year-us-firm-announces
https://www.theguardian.com/technology/2025/oct/15/driverless-taxis-from-waymo-will-be-on-londons-roads-next-year-us-firm-announces


138 Bibliography

[10] Thomas Gillespie. Fundamentals of vehicle dynamics. SAE international, 2021.

[11] Ying He, Dao Bo Wang, and Zain Anwar Ali. A review of different designs and
control models of remotely operated underwater vehicle. Measurement and Control,
53(9-10):1561–1570, 2020.

[12] Leonard Bauersfeld, Elia Kaufmann, Philipp Foehn, Sihao Sun, and Davide Scara-
muzza. Neurobem: Hybrid aerodynamic quadrotor model. In Proc. of Robotics:
Science and Systems (RSS), 2021.

[13] Tom Driessen, Dimitra Dodou, Pavlo Bazilinskyy, and Joost De Winter. Putting
chatgpt vision (gpt-4v) to the test: risk perception in traffic images. Royal Society
open science, 11(5):231676, 2024.

[14] Illustration of amulti-agent interaction scenario, 2025. Generatedwith Google Gem-
ini, https://gemini.google.com/app, Accessed: 2025-12-06.

[15] Wilko Schwarting, Javier Alonso-Mora, and Daniela Rus. Planning and decision-
making for autonomous vehicles. Annual Review of Control, Robotics, and Au-
tonomous Systems, 1(1):187–210, 2018.

[16] David Fridovich-Keil. Smooth game theory, 2024.

[17] Frank Allgöwer and Alex Zheng. Nonlinear model predictive control, volume 26.
Birkhäuser, 2012.

[18] Laura Ferranti, Lorenzo Lyons, Rudy R Negenborn, Tamás Keviczky, and Javier
Alonso-Mora. Distributed nonlinear trajectory optimization for multi-robot motion
planning. IEEE Trans. on Robotics (TRO), 31(2):809–824, 2022.

[19] Alessandro Zanardi, Saverio Bolognani, Andrea Censi, and Emilio Frazzoli. Game
theoretical motion planning: Tutorial ICRA 2021, 2021.

[20] Rudolf E. Kalman. When Is a Linear Control System Optimal? ASME Journal of
Basic Engineering, 86(1):51–60, 1964.

[21] Sebastian Albrecht, Karinne Ramirez-Amaro, Federico Ruiz-Ugalde, David Weikers-
dorfer, Marion Leibold, Michael Ulbrich, andMichael Beetz. Imitating human reach-
ing motions using physically inspired optimization principles. In Proc. of the IEEE
Intl. Conf. on Humanoid Robots. IEEE, 2011.

[22] Peter Englert and Marc Toussaint. Inverse KKT: Learning cost functions of manip-
ulation tasks from demonstrations. Intl. Journal of Robotics Research (IJRR), pages
57–72, 2018.

[23] Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel,
Russ Tedrake, and Shuran Song. Diffusion policy: Visuomotor policy learning via
action diffusion. Proc. of Robotics: Science and Systems (RSS), 2023.

https://gemini.google.com/app


References 139

[24] Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel,
Russ Tedrake, and Shuran Song. Diffusion policy: Visuomotor policy learning via
action diffusion. Intl. Journal of Robotics Research (IJRR), 44(10-11):1684–1704, 2025.

[25] Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with
diffusion for flexible behavior synthesis. arXiv preprint, 2022. arXiv:2205.09991.

[26] Moritz Reuss, Maximilian Li, Xiaogang Jia, and Rudolf Lioutikov. Goal-conditioned
imitation learning using score-based diffusion policies. Proc. of Robotics: Science and
Systems (RSS), 2023.

[27] Marcel Menner and Melanie N. Zeilinger. Maximum likelihood methods for inverse
learning of optimal controllers. arXiv preprint arXiv:2005.02767, 2020.

[28] Arezou Keshavarz, Yang Wang, and Stephen Boyd. Imputing a convex objective
function. In Proc. of the Intl. Symp. on Intelligent Control (ISIC). IEEE, 2011.

[29] Jingqi Li, Chih-Yuan Chiu, Lasse Peters, Somayeh Sojoudi, Claire J Tomlin, and
David Fridovich-Keil. Cost inference for feedback dynamic games from noisy partial
state observations and incomplete trajectories. In Proceedings of the International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), 2023.

[30] Lasse Peters, Xinjie Liu, Javier Alonso-Mora, Ufuk Topcu, and David Fridovich-Keil.
Auto-encoding bayesian inverse games. In Intl. Workshop on the Algorithmic Foun-
dations of Robotics (WAFR), 2024.

[31] Jingqi Li, Chih-Yuan Chiu, Lasse Peters, Fernando Palafox, Mustafa Karabag, Javier
Alonso-Mora, Somayeh Sojoudi, Claire Tomlin, and David Fridovich-Keil. Scenario-
game admm: A parallelized scenario-based solver for stochastic noncooperative
games. Proceedings of the Conference on Decision Making and Control (CDC), 2023.

[32] Leonardo Santos, Zirui Li, Lasse Peters, Somil Bansal, and Andrea Bajcsy. Updating
robot safety representations online from natural language feedback. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2025.

[33] Matthias Minderer, Alexey Gritsenko, and Neil Houlsby. Scaling open-vocabulary
object detection. Advances in Neural Information Processing Systems (NeurIPS), 2023.

[34] Kensuke Nakamura, Lasse Peters, and Andrea Bajcsy. Generalizing safety beyond
collision-avoidance via latent-space reachability analysis. In Proc. of Robotics: Sci-
ence and Systems (RSS), 2025.

[35] Lasse Peters, David Fridovich-Keil, and Forrest Laine. TrajectoryGamesBase.jl, 2022.
URL https://github.com/JuliaGameTheoreticPlanning/TrajectoryGamesBase.
jl. Accessed: 2025-12-06.

[36] Lasse Peters. ParametricMCPs.jl, 2022. URL https://github.com/
JuliaGameTheoreticPlanning/ParametricMCPs.jl. Accessed: 2025-12-06.

https://github.com/JuliaGameTheoreticPlanning/TrajectoryGamesBase.jl
https://github.com/JuliaGameTheoreticPlanning/TrajectoryGamesBase.jl
https://github.com/JuliaGameTheoreticPlanning/ParametricMCPs.jl
https://github.com/JuliaGameTheoreticPlanning/ParametricMCPs.jl


140 Bibliography

[37] Steven P Dirkse and Michael C Ferris. The Path Solver: a Non-monotone Stabi-
lization Scheme for Mixed Complementarity Problems. Optimization Methods and
Software, 1995.

[38] Lasse Peters. MCPTrajectoryGameSolver.jl, 2022. URL https://github.com/
JuliaGameTheoreticPlanning/MCPTrajectoryGameSolver.jl. Accessed: 2025-12-
06.

[39] Lasse Peters, David Fridovich-Keil, and Forrest Laine. Differentiable-
TrajectoryOptimization.jl, 2022. URL https://github.com/lassepe/
DifferentiableTrajectoryOptimization.jl. Accessed: 2025-12-06.

[40] Andreas Wächter and Lorenz T Biegler. On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Mathematical
Programming, 106(1):25–57, 2006.

[41] Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen
Boyd. OSQP: An operator splitting solver for quadratic programs. Mathematical
Programming Computation, 12(4):637–672, 2020.

[42] Lasse Peters, Vicenc Rubies-Royo, Claire J. Tomlin, Laura Ferranti, Javier Alonso-
Mora, Cyrill Stachniss, and David Fridovich-Keil. Online and offline learning of
player objectives from partial observations in dynamic games. In Intl. Journal of
Robotics Research (IJRR), 2023.

[43] Lasse Peters, David Fridovich-Keil, Vicenc Rubies-Royo, Claire J. Tomlin, and Cyrill
Stachniss. Inferring objectives in continuous dynamic games from noise-corrupted
partial state observations. In Proc. of Robotics: Science and Systems (RSS), 2021.

[44] Rufus Isaacs. Differential games i-iv. Technical report, RAND CORP SANTA MON-
ICA CA SANTA MONICA, 1954-1955.

[45] Tamer Başar and Geert Jan Olsder. Dynamic Noncooperative Game Theory. Society
for Industrial and Applied Mathematics (SIAM), 2. edition, 1998.

[46] David Fridovich-Keil, Ellis Ratner, Lasse Peters, Anca D. Dragan, and Claire J. Tom-
lin. Efficient iterative linear-quadratic approximations for nonlinear multi-player
general-sum differential games. In Proc. of the IEEE Intl. Conf. on Robotics & Automa-
tion (ICRA), 2020.

[47] Bolei Di and Andrew Lamperski. Newton’s method and differential dynamic pro-
gramming for unconstrained nonlinear dynamic games. In Proceedings of the Con-
ference on Decision Making and Control (CDC), 2019.

[48] Katja Mombaur, Anh Truong, and Jean-Paul Laumond. From human to humanoid
locomotion—an inverse optimal control approach. Autonomous Robots, 28(3):369–
383, 2010.

[49] Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning.
In Proc. of the Int. Conf. on Machine Learning (ICML), 2000.

https://github.com/JuliaGameTheoreticPlanning/MCPTrajectoryGameSolver.jl
https://github.com/JuliaGameTheoreticPlanning/MCPTrajectoryGameSolver.jl
https://github.com/lassepe/DifferentiableTrajectoryOptimization.jl
https://github.com/lassepe/DifferentiableTrajectoryOptimization.jl


References 141

[50] Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum
entropy inverse reinforcement learning. In Proc. of the Conference on Advancements
of Artificial Intelligence (AAAI), 2008.

[51] Adrian Šošić, Wasiur R KhudaBukhsh, Abdelhak M Zoubir, and Heinz Koeppl. In-
verse reinforcement learning in swarm systems. arXiv preprint arXiv:1602.05450,
2016.

[52] Sriraam Natarajan, Gautam Kunapuli, Kshitij Judah, Prasad Tadepalli, Kristian Ker-
sting, and Jude Shavlik. Multi-agent inverse reinforcement learning. In 2010 ninth
international conference on machine learning and applications, pages 395–400. IEEE,
2010.

[53] Dov Monderer and Lloyd S Shapley. Potential games. Games and economic behavior,
14(1):124–143, 1996.

[54] Simon Rothfuß, Jairo Inga, Florian Köpf, Michael Flad, and Sören Hohmann. In-
verse optimal control for identification in non-cooperative differential games. IFAC-
PapersOnLine, 50(1):14909–14915, 2017.

[55] Jairo Inga, Esther Bischoff, Florian Köpf, and Sören Hohmann. Inverse dynamic
games based on maximum entropy inverse reinforcement learning. arXiv preprint
arXiv:1911.07503, 2019.

[56] Chaitanya Awasthi and Andrew Lamperski. Inverse differential games with mixed
inequality constraints. In Proc. of the IEEE American Control Conference (ACC), 2020.

[57] Henrik Kretzschmar, Markus Spies, Christoph Sprunk, and Wolfram Burgard.
Socially compliant mobile robot navigation via inverse reinforcement learning.
Intl. Journal of Robotics Research (IJRR), 35(11):1289–1307, 2016.

[58] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer Verlag, 2.
edition, 2006.

[59] Sergey Levine and Vladlen Koltun. Continuous inverse optimal control with locally
optimal examples. Proc. of the Int. Conf. on Machine Learning (ICML), 2012.

[60] Chaitanya Awasthi. Forward and inverse methods in optimal control and dynamic
game theory. Master’s thesis, University of Minnesota, 2019.

[61] Wanxin Jin, Dana Kulić, ShaoshuaiMou, and SandraHirche. Inverse optimal control
from incomplete trajectory observations. Intl. Journal of Robotics Research (IJRR), 40
(6-7):848–865, 2021.

[62] Lasse Peters. Accommodating intention uncertainty in general-sum games for
human-robot interaction. Master’s thesis, Hamburg University of Technology, 2020.

[63] Simon Le Cleac’h, Mac Schwager, and Zachary Manchester. LUCIDGames: Online
unscented inverse dynamic games for adaptive trajectory prediction and planning.
IEEE Robotics and Automation Letters (RA-L), 6(3):5485–5492, 2021.



142 Bibliography

[64] Florian Köpf, Jairo Inga, Simon Rothfuß, Michael Flad, and Sören Hohmann. Inverse
reinforcement learning for identification in linear-quadratic dynamic games. IFAC-
PapersOnLine, 50(1):14902–14908, 2017.

[65] Zijian Wang, Riccardo Spica, and Mac Schwager. Game theoretic motion planning
for multi-robot racing. In Distributed Autonomous Robotic Systems, pages 225–238.
Springer Verlag, 2019.

[66] Simon Le Cleac’h, Mac Schwager, and Zachary Manchester. ALGAMES: A fast
solver for constrained dynamic games. In Proc. of Robotics: Science and Systems
(RSS), 2020.

[67] Forrest Laine, David Fridovich-Keil, Chih-Yuan Chiu, and Claire Tomlin. The com-
putation of approximate generalized feedback nash equilibria. SIAM Journal on
Optimization, 33(1):294–318, 2023.

[68] Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. The
complexity of computing a Nash equilibrium. SIAM Journal on Computing, 39(1):
195–259, 2009.

[69] Zhi-Quan Luo, Jong-Shi Pang, and Daniel Ralph. Mathematical programs with equi-
librium constraints. Cambridge University Press, 1996.

[70] Michael C Ferris, Steven P Dirkse, and Alexander Meeraus. Mathematical programs
with equilibrium constraints: Automatic reformulation and solution via constrained
optimization. Frontiers in applied general equilibrium modeling, pages 67–93, 2005.

[71] Robert G Gallager. Stochastic processes: theory for applications. Cambridge Univer-
sity Press, 2013.

[72] Joel A. E. Andersson, Joris Gillis, Greg Horn, James B. Rawlings, and Moritz Diehl.
CasADi: a software framework for nonlinear optimization and optimal control.
Mathematical Programming Computation, 11(1):1–36, 2019.

[73] Iain Dunning, Joey Huchette, and Miles Lubin. JuMP: A modeling language for
mathematical optimization. SIAM Review (SIREV), 59(2):295–320, 2017.

[74] Philip E. Gill, Walter Murray, and Michael A. Saunders. SNOPT: An SQP algorithm
for large-scale constrained optimization. SIAM Review (SIREV), 47:99–131, 2005.

[75] Mustafa Mukadam, Jing Dong, Frank Dellaert, and Byron Boots. Steap: simultane-
ous trajectory estimation and planning. Autonomous Robots, 43(2):415–434, 2019.

[76] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: A fresh
approach to numerical computing. SIAM Review (SIREV), 59(1):65–98, 2017.

[77] Bolei Di and Andrew Lamperski. Newton’s method, Bellman recursion and differen-
tial dynamic programming for unconstrained nonlinear dynamic games. Dynamic
Games and Applications, pages 1–49, 2021.



References 143

[78] Lasse Peters, Xinjie Liu, and Javier Alonso-Mora. Learning to play trajectory games
against opponents with unknown objectives. IEEE Robotics and Automation Letters
(RA-L), 2023.

[79] Lasse Peters, David Fridovich-Keil, Claire J Tomlin, and Zachary N Sunberg. Infer-
ring objectives from demonstrations with unknown rewards. In Proceedings of the
International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS),
2021.

[80] Lasse Peters, David Fridovich-Keil, Laura Ferranti, Cyrill Stachniss, Javier Alonso-
Mora, and Forrest Laine. Learning mixed strategies in trajectory games. In Proc. of
Robotics: Science and Systems (RSS), 2022.

[81] Peter Trautman and Andreas Krause. Unfreezing the robot: Navigation in dense, in-
teracting crowds. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), 2010.

[82] Simon Le Cleac’h, Mac Schwager, and Zachary Manchester. ALGAMES: a fast aug-
mented lagrangian solver for constrained dynamic games. Autonomous Robots, 2022.

[83] Alexander Liniger and John Lygeros. A noncooperative game approach to au-
tonomous racing. IEEE Trans. on Control Systems Technology (TCST), 28(3):884–897,
2019.

[84] Francisco Facchinei and Christian Kanzow. Generalized nash equilibrium problems.
Annals of Operations Research, 175(1):177–211, 2010.

[85] Francisco Facchinei and Jong-Shi Pang. Finite-dimensional Variational Inequalities
and Complementarity Problems, volume 1. Springer Verlag, 2003.

[86] Philipp Geiger and Christoph-Nikolas Straehle. Learning game-theoretic models of
multiagent trajectories using implicit layers. In Proc. of the Conference on Advance-
ments of Artificial Intelligence (AAAI), volume 35, 2021.

[87] Michael Everett, Yu Fan Chen, and Jonathan P How. Motion planning among dy-
namic, decision-making agents with deep reinforcement learning. In Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2018.

[88] Bruno Brito, Michael Everett, Jonathan P How, and Javier Alonso-Mora. Where
to go next: Learning a subgoal recommendation policy for navigation in dynamic
environments. IEEE Robotics and Automation Letters (RA-L), 6(3):4616–4623, 2021.

[89] Varun Tolani, Somil Bansal, Aleksandra Faust, and Claire Tomlin. Visual navigation
among humans with optimal control as a supervisor. IEEE Robotics and Automation
Letters (RA-L), 6(2):2288–2295, 2021.

[90] Edward Schmerling, Karen Leung, Wolf Vollprecht, and Marco Pavone. Multimodal
probabilistic model-based planning for human-robot interaction. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2018.



144 Bibliography

[91] Nicholas Rhinehart, Rowan McAllister, Kris Kitani, and Sergey Levine. Precog: Pre-
diction conditioned on goals in visual multi-agent settings. In Proc. of the IEEE/CVF
Intl. Conf. on Computer Vision (ICCV), 2019.

[92] Junha Roh, Christoforos Mavrogiannis, Rishabh Madan, Dieter Fox, and Siddhartha
Srinivasa. Multimodal trajectory prediction via topological invariance for naviga-
tion at uncontrolled intersections. In Proc. of the Conf. on Robot Learning (CoRL),
2021.

[93] Muchen Sun, Francesca Baldini, Peter Trautman, and Todd Murphey. Move beyond
trajectories: Distribution space coupling for crowd navigation. Proc. of Robotics:
Science and Systems (RSS), 2021.

[94] Christoph Schöller, Vincent Aravantinos, Florian Lay, and Alois Knoll. What the
constant velocity model can teach us about pedestrian motion prediction. IEEE
Robotics and Automation Letters (RA-L), 5(2):1696–1703, 2020.

[95] Daniel Ralph and Stephan Dempe. Directional derivatives of the solution of a para-
metric nonlinear program. Mathematical Programming, 70(1):159–172, 1995.

[96] Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in
neural networks. In Proc. of the Int. Conf. on Machine Learning (ICML), 2017.

[97] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond,
and J Zico Kolter. Differentiable convex optimization layers. Advances in Neural
Information Processing Systems (NeurIPS), 2019.

[98] Stephen C Billups, Steven P Dirkse, and Michael C Ferris. A comparison of large
scale mixed complementarity problem solvers. Computational Optimization and
Applications, 7(1):3–25, 1997.

[99] Ankur A Kulkarni and Uday V Shanbhag. On the variational equilibrium as a re-
finement of the generalized nash equilibrium. Automatica, 48(1):45–55, 2012.

[100] Yutaka Kanayama, Yoshihiko Kimura, Fumio Miyazaki, and Tetsuo Noguchi. A
stable tracking control method for an autonomous mobile robot. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 1990.

[101] Lasse Peters, Andrea Bajcsy, Chih-Yuan Chiu, David Fridovich-Keil, Forrest Laine,
Laura Ferranti, and Javier Alonso-Mora. Contingency games for multi-agent inter-
action. IEEE Robotics and Automation Letters (RA-L), 2024.

[102] Dorsa Sadigh, Shankar Sastry, Sanjit A Seshia, and Anca D Dragan. Planning for
autonomous cars that leverage effects on human actions. In Proc. of Robotics: Science
and Systems (RSS), 2016.

[103] Negar Mehr, Mingyu Wang, Maulik Bhatt, and Mac Schwager. Maximum-entropy
multi-agent dynamic games: Forward and inverse solutions. IEEE Trans. on Robotics
(TRO), 2023.



References 145

[104] Forrest Laine, David Fridovich-Keil, Chih-Yuan Chiu, and Claire Tomlin. Multi-
Hypothesis Interactions in Game-Theoretic Motion Planning. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), pages 8016–8023, 2021. doi: 10.1109/
ICRA48506.2021.9561695.

[105] Ran Tian, Liting Sun, Andrea Bajcsy, Masayoshi Tomizuka, and Anca D Dra-
gan. Safety assurances for human-robot interaction via confidence-aware game-
theoretic human models. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), 2022.

[106] Jaime F Fisac, Eli Bronstein, Elis Stefansson, Dorsa Sadigh, S Shankar Sastry, and
Anca D Dragan. Hierarchical game-theoretic planning for autonomous vehicles. In
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2019.

[107] Oswin So, Paul Drews, Thomas Balch, Velin Dimitrov, Guy Rosman, and Evange-
los A Theodorou. MPOGames: Efficient multimodal partially observable dynamic
games. arXiv preprint arXiv:2210.10814, 2022.

[108] Riccardo Spica, Eric Cristofalo, ZijianWang, EduardoMontijano, andMac Schwager.
A real-time game theoretic planner for autonomous two-player drone racing. IEEE
Trans. on Robotics (TRO), 2020.

[109] Selma Musić and Sandra Hirche. Haptic shared control for human-robot collabora-
tion: a game-theoretical approach. IFAC-PapersOnLine, 2020.

[110] Edward L Zhu and Francesco Borrelli. A sequential quadratic programming ap-
proach to the solution of open-loop generalized nash equilibria. arXiv preprint
arXiv:2203.16478, 2022.

[111] Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The
complexity of decentralized control of Markov decision processes. Mathematics of
Operations Research, 2002.

[112] Judy Goldsmith and Martin Mundhenk. Competition adds complexity. Advances in
Neural Information Processing Systems (NeurIPS), 2007.

[113] Wilko Schwarting, Alyssa Pierson, Sertac Karaman, and Daniela Rus. Stochastic
dynamic games in belief space. IEEE Trans. on Robotics (TRO), 2021.

[114] Wenshuo Wang, Letian Wang, Chengyuan Zhang, Changliu Liu, Lijun Sun, et al.
Social interactions for autonomous driving: A review and perspectives. Foundations
and Trends in Robotics, 10(3-4):198–376, 2022.

[115] Jason Hardy and Mark Campbell. Contingency planning over probabilistic obstacle
predictions for autonomous road vehicles. IEEE Trans. on Robotics (TRO), 2013.

[116] Wei Zhan, Changliu Liu, Ching-Yao Chan, and Masayoshi Tomizuka. A non-
conservatively defensive strategy for urban autonomous driving. In Proc. of the
IEEE Intl. Conf. on Intelligent Transportation Systems (ITSC), 2016.



146 Bibliography

[117] Yuxiao Chen, Ugo Rosolia, Wyatt Ubellacker, Noel Csomay-Shanklin, and Aaron D
Ames. Interactive multi-modal motion planning with branch model predictive con-
trol. IEEE Robotics and Automation Letters (RA-L), 7(2):5365–5372, 2022.

[118] Siddharth H Nair, Vijay Govindarajan, Theresa Lin, Chris Meissen, H Eric Tseng,
and Francesco Borrelli. Stochastic mpc with multi-modal predictions for traffic
intersections. In Proc. of the IEEE Intl. Conf. on Intelligent Transportation Systems
(ITSC), pages 635–640, 2022.

[119] Alexander Cui, Sergio Casas, Abbas Sadat, Renjie Liao, and Raquel Urtasun. Look-
Out: Diverse multi-future prediction and planning for self-driving. In Proc. of the
IEEE/CVF Intl. Conf. on Computer Vision (ICCV), 2021.

[120] Ekaterina Tolstaya, Reza Mahjourian, Carlton Downey, Balakrishnan Vadarajan,
Benjamin Sapp, and Dragomir Anguelov. Identifying driver interactions via condi-
tional behavior prediction. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), 2021.

[121] Yuxiao Chen, Peter Karkus, Boris Ivanovic, Xinshuo Weng, and Marco Pavone.
Tree-structured policy planning with learned behavior models. arXiv preprint
arXiv:2301.11902, 2023.

[122] Charles Packer, Nicholas Rhinehart, RowanThomas McAllister, Matthew A Wright,
Xin Wang, Jeff He, Sergey Levine, and Joseph E Gonzalez. Is anyone there? learn-
ing a planner contingent on perceptual uncertainty. In Proc. of the Conf. on Robot
Learning (CoRL), 2022.

[123] Nicholas Rhinehart, Jeff He, Charles Packer, Matthew A Wright, Rowan McAllister,
Joseph E Gonzalez, and Sergey Levine. Contingencies from observations: Tractable
contingency planning with learned behavior models. Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2021.

[124] Ariel Rubinstein. Modeling bounded rationality. MIT Press, 1998.

[125] Andrea Bajcsy, Anand Siththaranjan, Claire J Tomlin, and Anca D Dragan. Analyz-
ing human models that adapt online. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2021.

[126] Makram Chahine, Roya Firoozi, Wei Xiao, Mac Schwager, and Daniela Rus. Local
non-cooperative games with principled player selection for scalable motion plan-
ning. arXiv preprint arXiv:2310.12958, 2023.

[127] Dario Paccagnan andMarco C Campi. The scenario approachmeets uncertain game
theory and variational inequalities. In Proceedings of the Conference on Decision
Making and Control (CDC), pages 6124–6129, 2019.

[128] Tamer Başar and Pierre Bernhard. H-infinity optimal control and related minimax
design problems: a dynamic game approach. Springer Science & Business Media,
2008.



References 147

[129] Daniel Liberzon. Calculus of variations and optimal control theory. Princeton Uni-
versity Press, 2011.

[130] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Predictive Control for
Linear and Hybrid Systems. Cambridge University Press, 2017.

[131] Weiwei Li and Emanuel Todorov. Iterative linear quadratic regulator design for
nonlinear biological movement systems. In Proc. of the Int. Conf. on Informatics in
Control, Automation and Robotics (ICINCO), pages 222–229, 2004.

[132] Weiwei Li and Emanuel Todorov. Iterative linearization methods for approximately
optimal control and estimation of non-linear stochastic system. Intl. Journal of Con-
trol, 80(9):1439–1453, 2007.

[133] Emanuel Todorov and Weiwei Li. A generalized iterative LQG method for locally-
optimal feedback control of constrained nonlinear stochastic systems. In Proc. of
the IEEE American Control Conference (ACC), pages 300–306. IEEE, 2005.

[134] David H Jacobson and David Q Mayne. Differential dynamic programming. Modern
analytic and computational methods in science and mathematics. Elsevier, 1970.

[135] Zhaoming Xie, C Karen Liu, and Kris Hauser. Differential dynamic programming
with nonlinear constraints. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), pages 695–702, 2017.

[136] Yuval Tassa, Nicolas Mansard, and Emo Todorov. Control-limited differential dy-
namic programming. In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA),
pages 1168–1175, 2014.

[137] Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research
Society, 48(3):334–334, 1997.

[138] Alan Wilbor Starr and Yu-Chi Ho. Further properties of nonzero-sum differential
games. Journal of Optimization Theory and Applications, 3(4):207–219, 1969.

[139] Alan Wilbor Starr and Yu-Chi Ho. Nonzero-sum differential games. Journal of
Optimization Theory and Applications, 3(3):184–206, 1969.

[140] Michael Green and David JN Limebeer. Linear robust control. Courier Corporation,
2012.

[141] Francisco Facchinei, Andreas Fischer, and Veronica Piccialli. Generalized nash equi-
librium problems and newton methods. Mathematical Programming, 117(1-2):163–
194, 2009.

[142] Mingyu Wang, Zijian Wang, John Talbot, J Christian Gerdes, and Mac Schwager.
Game-theoretic planning for self-driving cars in multivehicle competitive scenarios.
IEEE Trans. on Robotics (TRO), 2021.

[143] Oussama Khatib, Sean Quinlan, and David Williams. Robot planning and control.
Journal on Robotics and Autonomous Systems (RAS), 21(3):249–261, 1997.



148 Bibliography

[144] Efe Camci and Erdal Kayacan. Learning motion primitives for planning swift ma-
neuvers of quadrotor. Autonomous Robots, 43(7):1733–1745, 2019.

[145] Freek Stulp, Evangelos Theodorou, Mrinal Kalakrishnan, Peter Pastor, Ludovic
Righetti, and Stefan Schaal. Learning motion primitive goals for robust manipu-
lation. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
pages 325–331. IEEE, 2011.

[146] Brandon Amos. Differentiable optimization-based modeling for machine learning.
PhD thesis, Carnegie Mellon University, 2019.

[147] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.
Advances in Neural Information Processing Systems (NIPS), 2014.

[148] Jakob N Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter
Abbeel, and Igor Mordatch. Learning with opponent-learning awareness. arXiv
preprint arXiv:1709.04326, 2017.

[149] Noah D Stein, Asuman Ozdaglar, and Pablo A Parrilo. Separable and low-rank con-
tinuous games. International Journal of Game Theory, 37(4):475–504, 2008.

[150] I Glicksberg and Oliver Gross. 9. notes on games over the square. In Contributions to
the Theory of Games (AM-28), Volume II, pages 173–182. Princeton University Press,
2016.

[151] Christos H Papadimitriou and Tim Roughgarden. Computing equilibria in multi-
player games. In SODA, volume 5, pages 82–91, 2005.

[152] Forrest Laine. TensorGames, 2022. URL https://github.com/4estlaine/
TensorGames.jl.

[153] Carlton E Lemke and Joseph T Howson, Jr. Equilibrium points of bimatrix games.
Society for Industrial and Applied Mathematics (SIAM), 12(2):413–423, 1964.

[154] Michael Innes. Don’t unroll adjoint: Differentiating ssa-form programs. arXiv
preprint arXiv:1810.07951, 2018.

[155] Katta G Murty and Feng-Tien Yu. Linear complementarity, linear and nonlinear pro-
gramming, volume 3. Citeseer, 1988.

[156] Frans AOliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and approximate q-
value functions for decentralized pomdps. Journal of Artificial Intelligence Research,
32:289–353, 2008.

[157] Chieh-Hsin Lai, Yang Song, Dongjun Kim, Yuki Mitsufuji, and Stefano Ermon. The
principles of diffusion models. arXiv preprint, 2025. arXiv:2510.21890.

https://github.com/4estlaine/TensorGames.jl
https://github.com/4estlaine/TensorGames.jl


References 149

[158] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli.
Deep unsupervised learning using nonequilibrium thermodynamics. In Proc. of the
Int. Conf. on Machine Learning (ICML), pages 2256–2265. Proceedings of Machine
Learning Research, 2015.

[159] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of
the data distribution. Advances in Neural Information Processing Systems (NeurIPS),
2019.

[160] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano
Ermon, and Ben Poole. Score-based generative modeling through stochastic differ-
ential equations. Proc. of the Int. Conf. on Learning Representations (ICLR), 2021.

[161] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
Advances in Neural Information Processing Systems (NeurIPS), 2020.

[162] Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes
and their Applications, 12(3):313–326, 1982.

[163] Pascal Vincent. A connection between score matching and denoising autoencoders.
Neural computation, 23(7):1661–1674, 2011.

[164] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design
space of diffusion-based generative models. Advances in Neural Information Process-
ing Systems (NeurIPS), 2022.

[165] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image syn-
thesis. Advances in Neural Information Processing Systems (NeurIPS), 2021.

[166] Monroe D Donsker and SR Srinivasa Varadhan. Asymptotic evaluation of certain
markov process expectations for large time, i. Communications on pure and applied
mathematics, 28(1):1–47, 1975.

[167] Emanuel Todorov. Linearly-solvable markov decision problems. Advances in Neural
Information Processing Systems (NeurIPS), 2006.

[168] Pierre H Richemond and Brendan Maginnis. A short variational proof of equiva-
lence between policy gradients and soft q learning. arXiv preprint arXiv:1712.08650,
2017.

[169] Luis E Ortiz, Robert E Schapire, and Sham M Kakade. Maximum entropy correlated
equilibria. In Artificial Intelligence and Statistics, pages 347–354. PMLR, 2007.

[170] Herbert E Robbins. An empirical bayes approach to statistics. In Breakthroughs in
Statistics: Foundations and basic theory, pages 388–394. Springer Verlag, 1992.

[171] Bradley Efron. Tweedie’s formula and selection bias. Journal of the American Sta-
tistical Association, 106(496):1602–1614, 2011.



150 Bibliography

[172] Haitong Ma, Tianyi Chen, Kai Wang, Na Li, and Bo Dai. Soft diffusion actor-critic:
Efficient online reinforcement learning for diffusion policy. arXiv preprint, pages
arXiv–2502, 2025.

[173] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey,
Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al.
Isaac gym: High performance gpu-based physics simulation for robot learning. Ad-
vances in Neural Information Processing Systems (NeurIPS), 2021.

[174] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and Stefan
Schaal. Stomp: Stochastic trajectory optimization for motion planning. In Proc. of
the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2011.

[175] Grady Williams, Andrew Aldrich, and Evangelos A Theodorou. Model predictive
path integral control: From theory to parallel computation. Journal of Guidance,
Control, and Dynamics, 40(2):344–357, 2017.

[176] Mohak Bhardwaj, Balakumar Sundaralingam, Arsalan Mousavian, Nathan D Ratliff,
Dieter Fox, Fabio Ramos, and Byron Boots. Storm: An integrated framework for
fast joint-space model-predictive control for reactive manipulation. In Proc. of the
Conf. on Robot Learning (CoRL), 2022.

[177] Nathan Ratliff, Matt Zucker, J Andrew Bagnell, and Siddhartha Srinivasa. Chomp:
Gradient optimization techniques for efficient motion planning. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2009.

[178] John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry Bradlow,
Jia Pan, Sachin Patil, Ken Goldberg, and Pieter Abbeel. Motion planning with se-
quential convex optimization and convex collision checking. Intl. Journal of Robotics
Research (IJRR), 33(9):1251–1270, 2014.

[179] Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of
complex behaviors through online trajectory optimization. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2012.

[180] Ugo Rosolia and Francesco Borrelli. Learning model predictive control for iterative
tasks. a data-driven control framework. IEEE Trans. on Automatic Control (TAC), 63
(7):1883–1896, 2017.

[181] Juraj Kabzan, Lukas Hewing, Alexander Liniger, and Melanie N Zeilinger. Learning-
based model predictive control for autonomous racing. IEEE Robotics and Automa-
tion Letters (RA-L), 4(4):3363–3370, 2019.

[182] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[183] Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin,
Raphael Marinier, Leonard Hussenot, Matthieu Geist, Olivier Pietquin, and Marcin
Michalski. What matters in on-policy reinforcement learning? a large-scale empir-
ical study. In Proc. of the Int. Conf. on Learning Representations (ICLR), 2021.



References 151

[184] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor.
In Proc. of the Int. Conf. on Machine Learning (ICML), 2018.

[185] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep re-
inforcement learning. In Proc. of the Int. Conf. on Learning Representations (ICLR),
2016.

[186] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation
error in actor-critic methods. In Proc. of the Int. Conf. on Machine Learning (ICML),
2018.

[187] Pravesh Koirala and Forrest Laine. Monte carlo optimization for solving multilevel
stackelberg games. arXiv preprint arXiv:2312.03282, 2023.

[188] Yuanhanqing Huang and Jianghai Hu. Zeroth-order learning in continuous games
via residual pseudogradient estimates. IEEE Transactions on Automatic Control, 2024.

[189] Mattia Bianchi, Giuseppe Belgioioso, and Sergio Grammatico. Fast generalized nash
equilibrium seeking under partial-decision information. Automatica, 136:110080,
2022.

[190] Carlo Cenedese, Giuseppe Belgioioso, Sergio Grammatico, and Ming Cao. An asyn-
chronous distributed and scalable generalized nash equilibrium seeking algorithm
for strongly monotone games. European Journal of Control, 58:143–151, 2021.

[191] Eric Mazumdar, Lillian J Ratliff, and S Shankar Sastry. On gradient-based learning
in continuous games. SIAM Journal on Mathematics of Data Science, 2(1):103–131,
2020.

[192] Amélie Héliou, Panayotis Mertikopoulos, and Zhengyuan Zhou. Gradient-free on-
line learning in continuous games with delayed rewards. In Proc. of the Int. Conf. on
Machine Learning (ICML), 2020.

[193] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learn-
ing: A selective overview of theories and algorithms. Handbook of reinforcement
learning and control, pages 321–384, 2021.

[194] Yaodong Yang, Chengdong Ma, Zihan Ding, Stephen McAleer, Chi Jin, Jun Wang,
and Tuomas Sandholm. Game-theoretic multiagent reinforcement learning. arXiv
preprint arXiv:2011.00583, 2025.

[195] Cunxi Dai, Xiaohan Liu, Koushil Sreenath, Zhongyu Li, and Ralph Hollis. Interac-
tive navigation with adaptive non-prehensile mobile manipulation. arXiv preprint
arXiv:2410.13418, 2024.

[196] JuanAlvarez-Padilla, John ZZhang, Sofia Kwok, JohnMDolan, and ZacharyManch-
ester. Real-time whole-body control of legged robots with model-predictive path
integral control. In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA),
2025.



152 Bibliography

[197] Corrado Pezzato, Chadi Salmi, Elia Trevisan, Max Spahn, Javier Alonso-Mora, and
Carlos Hernández Corbato. Sampling-based model predictive control leveraging
parallelizable physics simulations. IEEE Robotics and Automation Letters (RA-L),
2025.

[198] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream
to control: Learning behaviors by latent imagination. In Proc. of the Int. Conf. on
Learning Representations (ICLR), 2020.

[199] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering
atari with discrete worldmodels. In Proc. of the Int. Conf. on Learning Representations
(ICLR), 2021.

[200] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering di-
verse control tasks through world models. Nature, pages 1–7, 2025.

[201] Danijar Hafner, Wilson Yan, and Timothy Lillicrap. Training agents inside of scal-
able world models. arXiv preprint arXiv:2509.24527, 2025.

[202] Nicklas A Hansen, Hao Su, and Xiaolong Wang. Temporal difference learning for
model predictive control. In Proc. of the Int. Conf. on Machine Learning (ICML), 2022.

[203] Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world
models for continuous control. In Proc. of the Int. Conf. on Learning Representations
(ICLR), 2024.

[204] Shengyi Huang, Rousslan Fernand Julien Dossa, Antonin Raffin, Anssi Kanervisto,
and Weixun Wang. The 37 implementation details of proximal policy optimization.
In ICLR Blog Track, 2022. URL https://iclr-blog-track.github.io/2022/03/25/
ppo-implementation-details/. Accessed: 2025-12-06.

[205] Zenon W Pylyshyn and Ron W Storm. Tracking multiple independent targets: Evi-
dence for a parallel tracking mechanism. Spatial vision, 3(3):179–197, 1988.

[206] Daryl Fougnie and Rene Marois. Distinct capacity limits for attention and working
memory: Evidence from attentive tracking and visual working memory paradigms.
Psychological science, 17(6):526–534, 2006.

[207] George A Alvarez and Steven L Franconeri. How many objects can you track?:
Evidence for a resource-limited attentive tracking mechanism. Journal of vision, 7
(13):14–14, 2007.

[208] Mark Cavolowsky. Building better multi-agent systems: The theory and prac-
tice of multi-agent world models. Technical report, University of Maryland, Col-
lege Park, 2025. URL https://www.cs.umd.edu/sites/default/files/scholarly_
papers/202501_Cavolowsky%2C_Mark_Scholarly_Paper.pdf. Accessed: 2025-12-
06.

https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://www.cs.umd.edu/sites/default/files/scholarly_papers/202501_Cavolowsky%2C_Mark_Scholarly_Paper.pdf
https://www.cs.umd.edu/sites/default/files/scholarly_papers/202501_Cavolowsky%2C_Mark_Scholarly_Paper.pdf


References 153

[209] Wilko Schwarting, Tim Seyde, Igor Gilitschenski, Lucas Liebenwein, Ryan Sander,
Sertac Karaman, and Daniela Rus. Deep latent competition: Learning to race using
visual control policies in latent space. In Proc. of the Conf. on Robot Learning (CoRL),
2021.

[210] Yang Zhang, Xinran Li, Jianing Ye, Shuang Qiu, Delin Qu, Xiu Li, Chongjie Zhang,
and Chenjia Bai. Revisiting multi-agent world modeling from a diffusion-inspired
perspective. arXiv preprint arXiv:2505.20922, 2025.

[211] Zifeng Shi, Meiqin Liu, Senlin Zhang, Ronghao Zheng, Shanling Dong, and Ping
Wei. Gawm: Global-aware world model for multi-agent reinforcement learning.
arXiv preprint arXiv:2501.10116, 2025.

[212] Hongxin Zhang, Zeyuan Wang, Qiushi Lyu, Zheyuan Zhang, Sunli Chen, Tian-
min Shu, Behzad Dariush, Kwonjoon Lee, Yilun Du, and Chuang Gan. Combo:
Compositional world models for embodied multi-agent cooperation. In Proc. of the
Int. Conf. on Learning Representations (ICLR), 2025.

[213] Gaoyue Zhou, Hengkai Pan, Yann LeCun, and Lerrel Pinto. Dino-wm: World
models on pre-trained visual features enable zero-shot planning. arXiv preprint
arXiv:2411.04983, 2024.

[214] Riccardo Mereu, Aidan Scannell, Yuxin Hou, Yi Zhao, Aditya Jitta, Antonio
Dominguez, Luigi Acerbi, Amos Storkey, and Paul Chang. Generative world mod-
elling for humanoids: 1x world model challenge technical report. arXiv preprint
arXiv:2510.07092, 2025.

[215] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
et al. A general reinforcement learning algorithm that masters chess, shogi, and go
through self-play. Science, 362(6419):1140–1144, 2018.

[216] Yuhang Wang, Hanwei Guo, Sizhe Wang, Long Qian, and Xuguang Lan. Boot-
strapped model predictive control. In Proc. of the Int. Conf. on Learning Represen-
tations (ICLR), 2025.

[217] Álvaro Serra-Gomez, Daniel Jarne Ornia, Dhruva Tirumala, and Thomas Moerland.
A kl-regularization framework for learning to plan with adaptive priors. arXiv
preprint arXiv:2510.04280, 2025.





155

Abbreviations

AWGN additive white Gaussian noise.

CoDi Coordinated Diffusion.

DSM denoising score matching.

ECDF empirical cumulative distribution function.

GNE generalized Nash equilibrium.

GNEP generalized Nash equilibrium problem.

HJ Hamilton-Jacobi.

i.i.d. independent and identically distributed.

IBR iterated best response.

IFT implicit function theorem.

IL imitation learning.

IOC inverse optimal control.

IQR interquartile range.

IRL inverse reinforcement learning.

KKT Karush–Kuhn–Tucker.

KL Kullback–Leibler.

LICQ linear independence constraint qualification.

LQ linear-quadratic.

LQR linear-quadratic regulator.



156 Abbreviations

MARL multi-agent reinforcement learning.

MCP Mixed Complementarity Problem.

MLE maximum likelihood estimation.

MPC model predictive control.

MPEC mathematical program with equilibrium constraints.

MPGP model-predictive game play.

MPPI Model Predictive Path Integral Control.

NEP Nash equilibrium problem.

NN neural network.

OLNE open-loop Nash equilibrium.

PAC probably approximately correct.

POMDP partially observable Markov decision process.

POSG partially observed stochastic game.

PPO Proximal Policy Optimization.

QRE quantal-response equilibrium.

RL reinforcement learning.

RSS Robotics: Science and Systems.

SDE stochastic differential equation.

SEM standard error of the mean.

SVO social value orientation.

T-RO IEEE Transactions on Robotics.

UKF unscented Kalman filter.

VLM vision-language model.
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Propositions
accompanying the dissertation

Game-Theoretic Motion Planning for Multi-Agent Interaction
by

Lasse Peters

1. To understand the intentions of others, robots must reason about the interaction in the
context of their own sensory limitations. [Chapters 2 and 3]

2. By reasoning about the actions of all players jointly, robots can discover safer and more
efficient plans than traditional “predict-then-plan” approaches. [Chapters 3 and 4]

3. While games provide a powerful interaction model, real-time implementations of game-
theoretic motion planning for complex interactions remain intractable without additional
approximations [Chapters 3, 5, and 6].

4. Game-theoretic reasoning has the potential to drastically improve the data efficiency of
learning-based approaches [Chapters 5 and 6].

5. Offline learning alone is doomed to fail: resilient autonomy requires some degree of online
reasoning.

6. Model-free approaches are a hoax: ultimately, every method that works in practice needs
a model.

7. The role of academia is to explore, so that industry can exploit.

8. A key challenge in robotics and in life is knowing what to learn next in order to improve.

9. At least 30% of people in a robotics institution should focus on state estimation and percep-
tion, working closely with planning and control teams to understand each other’s needs.

10. To keep pace with the rapid evolution of the field, robotics research funding should be
allocated dynamically rather than through rigid, long-term grant cycles that risk locking
researchers into outdated goals.

These propositions are regarded as opposable and defendable, and have been approved as such
by the promotors Prof. Dr. Javier Alonso-Mora and Dr. Laura Ferranti.


