
End User Involvement
in Exploratory Test Automation

for Web Applications

Version of December 12, 2011

Paolo Luigi Schipani

End User Involvement
in Exploratory Test Automation

for Web Applications

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF ENGINEERING

in

COMPUTER ENGINEERING

by

Paolo Luigi Schipani
born in Rome, Italy

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology

Delft, the Netherlands
www.ewi.tudelft.nl

ii

c© 2011 Paolo Luigi Schipani.

End User Involvement
in Exploratory Test Automation

for Web Applications

Author: Paolo Luigi Schipani
Student id: 4035801
Email: paololschipani@gmail.com

Abstract

The traditional way of developing websites as hypertexts, which can be navigated
link by link, is progressively giving way to the AJAX approach, in which the entire
hypertext can be contained in a single web page. The resulting page has the advantage
of offering navigation by loading only specific parts of the page - only the changing
content. Conventional web crawlers, applications which explore web pages in a sys-
tematic way, are not able to browse AJAX pages. In order to overcome this barrier,
which prevents the execution of automated tasks such as web indexing or mechanized
tests, the Software Engineering Group at TU Delft has developed Crawljax, a tool
capable of crawling AJAX pages.

Crawljax already offers many possibilities. It provides default settings for simple
page testing, but it can also be included in a Java project and be programmed to execute
more complicated testing, or specific crawling in certain directions of the page. For
example, Crawljax can include or exclude some buttons, check boxes, text areas and
other elements of the page to help focus on a certain area to test. Through its various
plugins it can benchmark websites, find invariants to use in regression tests, export a
graphical representation of the states tree graph, and more. All of these possibilities
are however restricted to Java programmers, willing to learn how to use a new tool
to expand their limited crawling power. What Crawljax does not yet offer is a simple
way, even for non-programmers, to create and execute specific test cases.

Here we present an extension on Crawljax, a way to simplify the process of run-
ning crawling sessions and integrity tests on webpages. We call this system CrawlMan,
the Crawljax Manager. CrawlMan uses components of Crawljax and his plugins and
libraries, connected to a Graphical User Interface, in order to provide automated, re-
peatable crawling and testing. The application allows a basic user to start crawling a

web page by simply inserting the selected URL, then shows a graphical representation
of the result and uses it to guide the user in the refinement of the settings. The user can
then crawl the same URL with more specific settings, inspect the new result and use
the new suggestions to refine the settings, again and again. The obtained cycle, where
the test results are used to improve the test itself, is the main project contribution. We
evaluate our approach by means of analyzing the behavior of selected novice users
during the execution of predefined tests.

Thesis Committee:

Chair: Prof. Dr. Arie van Deursen, Faculty EEMCS, TU Delft
University supervisor: Prof. Dr. Arie van Deursen, Faculty EEMCS, TU Delft
External supervisor: Dr. Ir. Ali Mesbah, Faculty ECE, University of British Columbia (UBC)
Committee Member: Dr. Phil. Hans-Gerhard Gross, Faculty EEMCS, TU Delft
Committee Member: Dr. Martin Pinzger, Faculty EEMCS, TU Delft

ii

Preface

This master thesis is not just the result of a final project, but the conclusion of an exciting
journey that brought me to discover an amazing country, torn out of the waters of the sea by
the hands of men, and to meet many new friends. I have been honored by being accepted
to study in the Delft University of Technology, and to live between such unweary people as
the Dutch.

This thesis could simply not be possible without the work of Ali Mesbah and Arie van
Deursen. The project in fact extends Crawljax, by adding a layer between user and program,
to facilitate the setting and the interpretation of results. More than for their work, on which
the project is based on, I would like to especially thank them for their time and personal
constant support. There is not a moment that I was left alone in this journey, and I am very
grateful for it.

These master studies would have not been possible if it was not for the support of my
parents, which always encouraged me to make the best of my capabilities, even when it
meant sending me away. Luckily, it is not distance that defines relationships with the people
we truly love. I also want to thank my distant friends, patiently waiting for me to return and
celebrate with them.

Last thanks go to the first users of CrawlMan, the group of friends that collaborated to
the evaluation tests, giving me precious advices on how to make CrawlMan better, easier
and more intuitive: Bassem Zarour, Christiaan Menkveld, Marcela Izaguirre, Marco Cova,
Nicola Pambakian, Rogerio Canales Perez, Sandra Treviño Barbosa, Teun Janssen, Yani
Mur. Thank you all for your unconditioned help.

Paolo Luigi Schipani
Delft, the Netherlands

December 12, 2011

iii

Contents

Preface iii

Contents v

List of Figures xi

List of Tables xv

1 Introduction 1

1.1 Project Motivation . 2

1.2 Research Questions . 2

1.3 Project Synopsis . 3

2 Background 5

2.1 Crawlers . 5

2.2 AJAX . 7

2.3 Crawljax . 8

2.3.1 Crawljax Example . 8

2.4 Crawljax Settings . 10

2.4.1 Element Identification . 10

2.4.2 Conditions . 12

2.4.3 General Settings . 13

2.4.4 IFrame Settings . 14

v

CONTENTS

2.4.5 Thread Settings . 14

2.4.6 Input Settings . 14

2.4.7 Click Settings . 15

2.4.8 Crawl Settings . 15

2.4.9 Invariants . 15

2.4.10 Wait For Settings . 16

2.4.11 Oracle Comparators . 16

2.4.12 Plugins . 17

3 Requirements 19

3.1 Requirements . 19

3.1.1 Crawljax Features . 19

3.1.2 Project Development . 21

3.1.3 CrawlMan Features . 21

3.2 Scenarios . 22

3.2.1 Basic Scenario . 23

3.2.2 Default Crawling . 23

3.2.3 Advanced Crawling . 23

3.2.4 Result Inspection . 23

3.2.5 Settings Suggestions . 23

4 Approach 25

4.1 High Level Challenges . 25

4.1.1 Main Project Challenge . 25

4.1.2 Interface Friendliness . 26

4.1.3 Project Modularity . 26

4.2 Conceptual Solutions . 26

4.3 Conceptual Contributions . 27

5 Implementation 29

5.1 Interface Characteristics . 29

5.1.1 Immediate Crawling . 30

vi

5.1.2 Setting Creation . 31

5.1.3 Result Editing . 32

5.1.4 Offering Crawling Suggestions . 32

5.2 Technical Solutions . 36

5.2.1 Google Web Toolkit . 36

5.2.2 Parallel Crawling . 37

5.2.3 Browser Loading Exception . 38

5.2.4 Data Presentation . 38

5.2.5 Click Default Setting . 39

6 Evaluation 41

6.1 Pilot Tests . 41

6.1.1 Logging in to Facebook . 42

6.1.2 Sending Mail from Gmail . 43

6.2 Evaluation Tests . 48

6.2.1 Test 1: crawling Wikipedia . 48

6.2.2 Test 2: crawling Ebay . 50

6.2.3 Test 3: crawling Mediafire . 53

6.2.4 Test 4: crawling WordPress . 56

6.3 Interpretation . 58

6.3.1 Test 1: crawling Wikipedia . 58

6.3.2 Test 2: crawling Ebay . 59

6.3.3 Test 3: crawling Mediafire . 61

6.3.4 Test 4: crawling WordPress . 62

6.4 Evaluation . 62

6.4.1 Usability . 62

6.4.2 Effectiveness . 63

7 Related Work 65

7.1 Product Testing . 65

7.1.1 Manual Testing . 65

vii

CONTENTS

7.1.2 Automated Testing . 66

7.1.3 Exploratory Testing . 66

7.1.4 Systematic Testing . 67

7.2 Web Interface Testing Tools . 67

7.2.1 Tools Panorama . 69

7.2.2 Comparative Analysis . 72

8 Conclusions 75

8.1 Contributions . 75

8.2 Research Questions Revisited . 76

8.3 Reflection . 76

8.4 Future work . 77

Bibliography 79

A Introduction to CrawlMan 83

A.1 Dynamic Pages . 83

A.2 HTML Fundamentals . 84

A.3 Using CrawlMan . 87

A.4 Crawling Process . 90

B Crawljax Modifications 93

B.1 Scope of the Document . 93

B.2 Adaptations for CrawlMan’s necessities 93

B.2.1 CrawljaxPluginsUtil . 95

B.2.2 CrawljaxController . 96

B.2.3 StateMachine . 97

B.2.4 BrowserPool . 97

B.2.5 Crawler, InitialCrawler, PluginTest, OnFireEventFailedPluginTest . 98

B.2.6 StateMachineTest . 98

B.2.7 BrowserPoolTest . 98

B.3 Improvements on the code reliability . 99

viii

B.3.1 InitialCrawler . 99

B.3.2 BrowserPool . 100

B.3.3 FormHandler . 101

B.4 Addition of other functions . 101

ix

List of Figures

2.1 Operations of a crawler, as showed in [1]. 6

2.2 The code for a simple HTML page. 7

2.3 A basic example of Crawljax’s utilization. 9

2.4 Adding an ad-hoc plugin to CrawljaxConfiguration. 9

2.5 Setting Crawljax to click on all images. 10

2.6 A HTML page containing a button. 10

2.7 Newline HTML element. 11

2.8 Empty text box HTML element. 11

2.9 Text box HTML element with default text. 12

2.10 Crawljax plugins flow, as showed in [2]. 18

5.1 CrawlMan’s homepage. 29

5.2 CrawlMan’s ‘Basic Settings’ page. 30

5.3 CrawlMan’s ‘Click Settings’ page. 31

5.4 CrawlMan’s ‘Condition Settings’ page. 34

5.5 CrawlMan’s ‘Oracle Comparators’ page. 35

6.1 CrawlMan’s homepage during the crawling process. 42

6.2 CrawlMan’s ‘Result’ page for URL http://www.facebook.com. 43

6.3 HTML code for Facebook’s log-in button. 43

6.4 CrawlMan’s ‘Result’ page for URL http://mail.google.com/mail. 44

6.5 CrawlMan showing Gmail’s state corresponding to the ‘Inbox’ page. 45

xi

LIST OF FIGURES

6.6 HTML code for Gmail’s ‘Write’ button. 46

6.7 CrawlMan showing Gmail’s state corresponding to the ‘Compose’ page.’ 46

6.8 HTML code for Gmail input fields in the ‘Compose’ page. 47

6.9 HTML code for Gmail ‘Send’ button. 47

6.10 Test links to Wikipedia’s pages. 49

6.11 Test result tree. Links between nodes correspond to events generated by click-
ing on links between pages. 49

6.12 Test result expected tree for the Ebay case. 51

6.13 Mediafire homepage. 53

6.14 Line 36 of Mediafire’s homepage DOM representation respectively for states
‘index’ and ‘state2’. 54

6.15 Line 411 of Mediafire’s homepage DOM representation respectively for states
‘index’ and ‘state2’. 55

6.16 Wordpress test result tree. 56

6.17 Two different pseudo HTML representations of the button in Figure 2.6. 60

6.18 List boxes styles. 61

A.1 Traditional website representation: every node corresponds to a different page. 83

A.2 Web application representation: the nodes are different states assumed by the
application. 84

A.3 Wikipedia web page describing web pages. 85

A.4 HTML code for a button. 85

A.5 HTML code of a page containing a button. 86

A.6 Tree representation of HTML code. 86

A.7 XPath description of button. 86

A.8 CrawlMan’s homepage. 87

A.9 CrawlMan ‘Result’ page for URL http://www.google.com/webhp. 88

A.10 Crawljax decisional flowchart. 90

B.1 POM setting for including the Java sources in the packaging of a Maven project. 93

B.2 CrawljaxPluginsUtil’s loadPlugins(List <Plugin> pluginList) method. 94

B.3 List of plugins in class CrawljaxPluginsUtil. 96

B.4 CrawljaxController’s getPluginsUtil() method. 96

xii

B.5 CrawljaxController’s modifications. 97

B.6 Modifications to functions calls. 97

B.7 Constructor for class BrowserPool. 98

B.8 Modification to functions call. 98

B.9 Call to CrawljaxPluginsUtil’s loadPlugins(List <Plugin> pluginList) method. . 98

B.10 Terminating the InitialCrawler. 99

B.11 BrowserPool’s new constructor. 100

B.12 Terminating the CrawlerExecutor. 100

B.13 Modifications to the class FormHandler. 101

B.14 StateVertix’s getUnprocessedCrawlActions() method. 102

xiii

List of Tables

6.1 Users’ background and performed tests. 48

7.1 Web Interface Testing Tools overview. 73

xv

Chapter 1

Introduction

The relentless evolution of the web is rapidly changing the way we learn to use computers
and software applications. The simple vision of the Web as a collection of hypertexts,
providing multimedia data and more generally information, has given way to Web 2.0 [3],
a collection of web applications where the user can generate and share contents. On this
direction, there soon will be no more need for a user to install software on his computer, as
new techniques allow the porting of software applications into web applications, accessible
with a browser from any part of the world.

One of the key technologies contributing to this change is AJAX [4] (Asynchronous
JavaScript and XML). AJAX is a collective name for a set of techniques employed for al-
lowing asynchronous data exchange between a web server and a browser client, suppressing
the need to continuously reload the visited page, making web applications more similar to
desktop applications. In the panorama of web application testing, the use of these technolo-
gies calls for new ways to automatically test and verify the behavior of web pages [5]. The
evolution of the web calls upon an evolution of the methods for testing the web, switching
from a mostly manual approach, where a user repeats testing scenarios by browsing pages
and annotating the results, to an automated approach, where a testing framework allows a
user to define tests and repeatedly execute them. Such a framework would automate the
creation of tests, the verification of results and the refinement of these tests depending on
their results. The framework would reduce costs and time for testing, while guiding the
user in the definition of meaningful test cases. The purpose of this project is to provide this
testing framework.

The project consists of a testing framework based on Crawljax [5, 6, 7, 8, 9, 10], a Java
desktop tool for crawling AJAX pages developed at TU Delft by Ali Mesbah et al. Crawljax
can detect changes in the DOM of a web page, thus composing a graph representation
of crawled websites through their different states. The project, denominated CrawlMan
(CRAWLjax MANager), is a web application, created to extend Crawljax by providing
ease of use and graphical means for interaction. CrawlMan aims to provide a user-friendly
way to modify the scope of the state space to examine, by creating settings for Crawljax in

1

1. INTRODUCTION

response to user actions on the result of a crawling session. The project provides a simple
interface for using Crawljax, eliminating the need for installation and the learning process of
the application. When requesting the crawling of a website, the application returns a visual
result, which is modifiable by the user. These modifications directly act on the crawling
process, pushing it in a specific direction, where the interest of the user resides.

1.1 Project Motivation

Web applications are more and more popular every day, and AJAX techniques with them.
The most renowned websites at the moment - Facebook [11], Gmail [12] (and other Google
products), Wikipedia [13], Ebay [14] and more - make use of these technologies. A reliable
way to test those applications is required, which cannot be tested using traditional meth-
ods. Crawljax offers such a way, filling a hole in the web application testing market, but
it introduces in turn new challenges. Crawljax is a powerful tool, but it requires specific
acquaintance with programming. Every desired setting, click or condition must be manu-
ally programmed in Java, and the result must be extracted in the same way. This aspect
means that every new test to perform with Crawljax requires a new program to be written in
Java. If the test needs to be changed, the program must be rewritten, then recompiled, and
only then it can be executed again. Of course, the programmer needs to know the libraries
and methods of Crawljax, and the right way to write settings and conditions, as the tests he
writes must refer to elements and paths inside the applications he wants to try. The learning
curve of Crawljax and the necessity to write a Java executable for every test constitute a
barrier to its utilization, impossible to overcome for non-programmers. The overall purpose
of this project is to take down this barrier, by extending Crawljax with an easy-to-use inter-
face, turning it into a web application, allowing non-specialists end users to run Crawljax
on their sites.

1.2 Research Questions

The goal of the project is offering a simple and reliable alternative for testing (AJAX) web
applications. To that end we propose CrawlMan, a simple and intuitive framework for
Automated Exploratory Testing (Section 7.1.3), effective and user friendly. Inexperienced
users should be able to perform tests, and understand the result and modify the settings to
accomplish their needs (Section 7.2). At the same time it must bring innovation in testing
web applications, using Crawljax to perform tests in a dynamic, exploratory way. The
success of this project will depend from the answers to the following questions:

• Given a specific web application behavior, is it possible for a common user to set
CrawlMan to reproduce it and understand the result?

• Is CrawlMan effective in reaching interesting states and identifying potential faults?

2

Project Synopsis

• Is CrawlMan useful for automated exploration of a web application, and does the user
benefit from the data it collects?

The answers will be provided during the evaluation (Chapter 6) of the project. A group
of end users will be involved in the testing, to assess project reliability and intuitiveness.

1.3 Project Synopsis

The project presents itself as a web application, written in Java using Google Web
Toolkit [15], a web application development framework based on AJAX. Through its var-
ious panels, it is possible to access all the possible settings of Crawljax, or simply start
crawling and then refine the session using the suggestions presented by the application. The
information inserted by the user into the application gets converted into settings, with no
need to know Java programming or the structure of Crawljax. The result obtained, repre-
senting the possible states of the crawled website, is visualized as a tree graph, whose nodes
can be selected for displaying their information. The original contribution of this project is
the possibility to create new settings by directly acting on the graphical representation of
the state-flow graph, and to use these settings immediately in a new crawling session. In
this way the project realizes a flow of data between settings and result, each influencing the
other. The crawling process is more easily directed in the desired way, while it is possible
to rapidly build and execute routine tests for web pages, even the most complicated, as the
ones built using AJAX techniques.

3

Chapter 2

Background

In the earlier times of the Internet era, websites were hypertexts, pages with fixed content
connected together by links [3, 4]. Most pages contained just HTML, showed some text,
pictures and a fancy background. The home page was the root of a tree of links and nodes,
the pages, and every page would have its own address, composed by the main URL plus the
name of the actual HTML file. Loading different content meant loading a different page.

What changed from then? We still navigate through web pages, we still use a browser.
And the code our browser interprets is still the familiar HTML... with some additions. Some
elements were introduced to the scene, new technologies to add dynamic content to the
pages - Java applets and JavaScript, IFrames and other ways to modify content at run time.
New content can now be loaded without reloading the page itself, and we are already used
to it, we do not even notice it anymore. Our email warns us we received a new message. We
press a button and a movie starts, while it gets downloaded frame by frame. Content loading
became asynchronous, thus we do not need to reload the page anymore. A website is not a
static collection of data anymore, it is a web application, which can perform operations and
give the result to the user, can store data, can allow users to share data, and ultimately, in the
limits of system resources and bandwith, it can perform everything a desktop application
can do. Maybe one day we will not need to install any program anymore on our computer,
as everything we need is reachable online. Google [16], which has lately become the leader
in the field, already proposes a set of Office-like web applications, free for everyone online.

2.1 Crawlers

This project ultimately is an extension of a crawler [17], but what is a web crawler? It is
an application, a tool for exploring the web. Web crawler is a general denomination for all
kind of software capable of browsing the Internet automatically, given as input one or more
addresses.

Crawlers can be useful for different reasons. One, which we are all indirectly familiar

5

2. BACKGROUND

with, is the automatic indexing of web pages. Web crawlers are in fact essential for the
working of search engines, like Google [16], Yahoo! [18], Bing [19]. Web search engines
need to continuously index new pages, as the World Wide Web is in a state of perpetual
change. When a search is made in the engine, it looks for the query words in all its indexes,
and then lists the corresponding URLs (Uniform Resource Locators) to the user. Crawlers
can also be used for other tasks, such as retrieving specific infomation, making a copy of an
entire website (web archiving), or automatic testing. A crawler can be given, for example,
instructions to click on certain elements of the page it visits, and repeat that over and over,
then create a report. Also, they are of academic interest, as means for information retrieval,
the study of searching information in a set of documents.

How do crawlers explore websites, and how do they navigate from page to page? The
input, as we said, is a list of addresses, URLs. When loading one address, the crawler
inspects the content of the page, to find all the links to other pages. The crawler can then
use these new found links to load other pages, inspect them and find more. If a page is not
linked anywhere, it cannot be found: it is an invisible page, unless its URL is given as input
to the crawler. This process is shown in Figure 2.1.

Figure 2.1: Operations of a crawler, as showed in [1].

This was the way of working of traditional crawlers, which relied on hyperlinks and
the vision of the web as a collection of hypertexts. Then web applications came into the
picture, using asynchronous techniques to load new content without changing their page

6

AJAX

or address. While the pages of a hypertext represent its states, a web application can have
different content through different states of the same page. Modern crawlers must be able to
detect the changes in the page, to recognize that new content has been loaded, and consider
the new content in the processing.

2.2 AJAX

AJAX [4], Asynchronous JAvascript and XML, is a collective name for a set of techniques
used on the client side, responsible for rendering the page visualized in the browser. To un-
derstand it fully, we must comprehend the nature of web pages and the working of browsers.
Web browsers, such as Internet Explorer [20], Firefox [21], Chrome [22], are desktop ap-
plications which can load a page defined by a certain address, the URL (Uniform Resource
Locator). The server hosting the page provides it in a language comprehensible to the
browser, the HTML language [23]. A page written in HTML language is a document form-
ing a tree structure, where on top, forming the root, there is a ‘html’ element. Figure 2.2
shows the HTML code for a very simple web page.

<html>
<head>

<title>My page</title>
</head>
<body>This is my page.</body>

</html>

Figure 2.2: The code for a simple HTML page.

This hierarchical structure is commonly known as the HTML DOM - Document Object
Model [24]. Through this structure and some client side language, such as JavaScript, it
is possible to access the elements of a page, by their identifiers or positions. Then their
content can be changed at runtime, for example as a response to the user clicking on a
button. Furthermore, the style of the page, and other inherent properties, can be modified,
new requests can be sent to the server, an entirely different content, seemingly a new page,
can be showed without reloading the full page.

Here resides the problem. Traditional web crawlers rely on hyperlinks to figure out the
structure of a website. With AJAX, and in general asynchronous techniques, there are no
different URLs, and if there are they are not connected with the change of content [9]. This
fact represents a problem for crawlers, and different solutions have been proposed, which
we explore in Chapter 7.

7

2. BACKGROUND

2.3 Crawljax

Crawljax [5, 7, 9] is a project conceived by Ali Mesbah and the SERG group in
TU Delft [25]. Crawljax is a web crawler, written in Java. It can crawl traditional web-
sites, but more importantly it can crawl AJAX pages. Unlike other crawlers, it does not
look for hyperlinks in the pages, but it examines their DOM looking for changes. This
means that Crawljax does not try to find ways out of a website, but tries to find out all the
possible states the website can assume, inside different pages or one unique page, according
to the settings. This way Crawljax can explore all the possible content of a website, even
the content appearing after specific sequences of user actions. The changes in the page are
triggered by actions the crawler performs on the page, by firing events on the elements of
the DOM. For example, Crawljax can be programmed to click all the buttons it finds, or all
the buttons with some specific text.

Many different settings can be applied to Crawljax. It can be set to follow specific crawl-
ing conditions, for example to crawl, or not to crawl, a page if a certain element is visible, or
it can be set to ignore elements of a page, so that some changes do not bring the crawler in
a new state. Different DOMs are compared without the ignored elements, according to the
selected Oracle Comparator (Section 2.4.11). There is also the possibility to check some
condition, as the presence or absence of an element, or the validity of a JavaScript expres-
sion, on all the states of the web application. This condition, which has to always hold, is an
Invariant condition. An important strength of Crawljax is its structure, which makes it easy
to extend it by creating plugins. The plugins can be associated with Crawljax execution and
collect data during the crawling to produce a result, push the crawling in a certain direction,
perform operations of the states and many other tasks.

2.3.1 Crawljax Example

Crawljax is distributed as a Java library, to be imported in a Java project. The simplest
example of utilization of Crawljax is inserting a configuration, and then running Crawljax
through its class CrawljaxController.

8

Crawljax

CrawlSpecification spec
= new CrawlSpecification("http://www.some_domain.com");

spec.clickDefaultElements();

CrawljaxConfiguration config = new CrawljaxConfiguration();
config.setCrawlSpecification(spec);

try {
CrawljaxController crawljax = new CrawljaxController(config);
crawljax.run();

} catch (CrawljaxException e) {
e.printStackTrace();
System.exit(1);

} catch (ConfigurationException e) {
e.printStackTrace();
System.exit(1);

}

Figure 2.3: A basic example of Crawljax’s utilization.

As showed in Figure 2.3, the URL of the website to crawl is inserted through the Crawl-
Specification class. We also apply the Click Default setting, which allows to click on every
link and every button detected by Crawljax. In this example we do not collect the result,
just crawl a website. As a user of Crawljax would run the class containing these instructions
on his personal computer, he would see the default browser Mozilla Firefox open, load the
specified URL, and automatically navigate through the website pages. To collect the result
data for later utilization, one must extract the State Flow Graph produced by CrawljaxCon-
troller or use a plugin to collect the data during execution. The second method, which is
the advised one, offers more possibilities, because the browser and the current crawled state
can be accessed through Crawljax - for example for capturing a screenshot of the current
state. Figure 2.4 shows the way to add a plugin through CrawljaxConfiguration.

MyPlugin plugin = new MyPlugin();
config.addPlugin(plugin);

Figure 2.4: Adding an ad-hoc plugin to CrawljaxConfiguration.

There is a variety of settings which can be inserted through CrawljaxSpecification. It is
possible to set Crawljax to click on all elements respecting a specific description, to crawl
a state of the application only if a given condition is true, and much more (Section 2.4).

9

2. BACKGROUND

Clicking on all the detected images, for example, can be done as shown in Figure 2.5.

spec.click("img");

Figure 2.5: Setting Crawljax to click on all images.

For every new state Crawljax encounters, it clicks on all the HTML elements with tag
‘img’. A more specific description can be given, inserting text, attributes and position of
the HTML element inside the DOM representation of the state. A detailed explanation is
offered in Section 2.4.

2.4 Crawljax Settings

This section describes all the settings currently offered by Crawljax. It is important to know
what the possibilities of Crawljax are, because this project, being an extension of Crawljax,
wants to able to do everything Crawljax can do, plus its own contribution.

2.4.1 Element Identification

There are various means for identifying an element of the DOM. Every element has a tag
and a position inside the document, and it can have different attributes. The tag is the actual
HTML element, for example a button in the HTML page is defined by the ‘button’ tag. The
position is defined by an xpath, which is, as explained later in this section, a description of
the path from the root of the DOM tree to the desired element. For example, the xpath of
the button contained in the code of Figure 2.6 is ‘/html[1]/body[1]/button[1]’.

<html>
<head>
<title>My page</title>

</head>
<body>
<button id="buttonId" type="submit">button text</button>

</body>
</html>

Figure 2.6: A HTML page containing a button.

10

Crawljax Settings

Every element of the DOM can be identified in these ways, which are implemented in
Crawljax in three different manners, according to their utilization:

• Id - the ‘id’ attribute of a HTML element. It is used to identify input fields in in-
put (Section 2.4.6) and Set Values Before Click settings (Section 2.4.7) .

• Tag, text, xpath and attributes - these four characteristics are used to identify DOM
elements in the Click settings (Section 2.4.7) .

• Identification object - the user can define the characteristic of a DOM element he
prefers between tag, id, name, xpath, text or partial text. It is used in Expected condi-
tions and in the Visible crawl condition (Section 2.4.2).

Element characteristics

A HTML document is a hierarchy of elements, where the main element, or the root, is the
‘html’ element. An element is defined by one or two tags, depending if it needs or not a
closure. The element ‘br’, for example, is never closed, so it just needs the start tag, as in
Figure 2.7.

Figure 2.7: Newline HTML element.

A text box with no default text is defined by a single, closed tag, as in Figure 2.8.

<input type="text"/>

Figure 2.8: Empty text box HTML element.

A text box with some text, as all other tags which require content, is defined with a start
and an end tag, as in Figure 2.9.

11

2. BACKGROUND

<input type="text">some text</input>

Figure 2.9: Text box HTML element with default text.

In this case we defined only one attribute, the input ‘type’, but we could have specified
an id, a name, or other attributes as specified in the HTML standard [23]. It is not possible
to use self made tags or attributes, because they will not be recognized by the standard
HTML interpreters.

XPath

XPath [26] is a language, aimed at identifying elements inside an XML document, from
where the name - XML Path. HTML, the language used in coding web pages, is a markup
language, as the XML. Both languages present a hierarchical structure composed by tags,
text and attributes, so that XPath represent a valid mean to identify elements in both lan-
guages.

If we examine again the HTML code example of Figure 2.6, we will notice that the
same element, for example the button, can be addressed with different xpaths:

• /html[1]/body[1]/button[1] - ‘button’ is child of the node ‘body’, which is child of
‘html’.

• /html/body/button - the previous expression emphasized that the button is the first
‘button’ child of the first ‘body’ child of the first ‘html’ tag. This expression selects
all the button nodes at the defined level, but in this case the result is the same.

• /html//button - selects all the buttons at any level after the ‘html’ tag.

• //button[@text=‘button text’] - selects all the buttons with text ‘button text’, anywhere
in the DOM.

These are examples of simple expressions one can build with the XPath language, but
there are many other operators that can be used, and conditions that can be defined, to build
all kinds of complicated xpaths.

2.4.2 Conditions

Many settings used by Crawljax employ some conditions, which must be verified during
the crawling or influence its direction. There are two kinds of conditions:

12

Crawljax Settings

• Crawl conditions, used by Click When, Crawl, Invariant and Oracle Comparator
settings.

• Expected conditions, used by Wait For settings.

The settings will be explained in detail, but let us now examine the conditions.

Crawl conditions

Crawl conditions are conditions verified against the content of the page being crawled. For
example, the JavaScript condition is an expression which gets executed in every page. If the
expression returns true, the condition is considered true.

• JavaScript - true when the JavaScript expression is true.

• (Not) Regex - true when the regular expression does (not) match with some expres-
sion in the page.

• (Not) URL - true when the crawler is (not) visiting the defined URL.

• (Not) Visible - true when the specified element of the DOM is (not) visible.

• (Not) XPath - true when the element of the DOM specified by the xpath can (not) be
reached.

Expected conditions

An expected condition is a condition that is not immediately true in the page, but it is
expected to become true. In the condition we define an element, which is the expected
element, through an Identification object.

• Element - true when the defined element gets loaded in the page.

• Visible - true when the defined element becomes visible in the page.

2.4.3 General Settings

These settings define general properties of Crawljax:

• Max Depth - maximum depth to reach during the crawling, defined as the number of
events necessary to reach a certain state.

• Max States - maximum number of states to find.

13

2. BACKGROUND

• Max Runtime - maximum number of milliseconds to keep crawling.

• Click Default - click on all anchors and button elements of the DOM.

• Random Input - set random values inside input fields.

• Click Once - click only once on every element.

• Wait after event - milliseconds to wait after an event is fired.

• Wait after reload - milliseconds to wait after reloading an URL.

• Browser - the browser to use between Firefox, Internet Explorer, Chrome, a remote
browser on a specified URL or the mock browser HTML Unit.

2.4.4 IFrame Settings

An IFrame is a HTML element used for displaying an external document inside a HTML
page. The document is referenced inside the IFrame, avoiding duplication of content. Al-
though at the moment Crawljax is not able to crawl IFrames, it presents two different IFrame
settings. It is possible to disable the crawling of all IFrames, or it is possible to ignore spe-
cific IFrames. Every IFrame is defined by the ‘id’ attribute, passed as a string.

2.4.5 Thread Settings

Crawljax makes it possible to perform the crawling process in parallel on different browser
instances and multiple threads. Through Crawljax thread configuration it is possible to set
how many browser instances and threads to use. If the number of threads is not set, it is by
default equal to the number of browsers, and vice versa. By default the number of browsers
and threads to use is set to 1.

It is also possible to apply some more advanced settings:

• Browser booting - load the browsers in advance.

• Max Number of Creation Retries - maximum number of times Crawljax tries to open
a browser.

• Sleep Time on Creation Failure - milliseconds to wait before trying to open a browser
after a failure.

2.4.6 Input Settings

It is possible to add to the crawling one or more input-value pairs, in order to fill with a
specific value the desired fields. The field must be of a HTML input type - text box, text

14

Crawljax Settings

area, check box, radio button, select box, et cetera. The input can be identified by an ‘id’,
which is a common HTML attribute. The possible values to insert are strings, representing
the different options in the select box, except for check boxes and radio buttons, which take
as input boolean values - true or 1 if checked, false or 0 otherwise. It is possible to set more
than one value for the same field, so that all values will be inserted one after the other. If it
is required to insert input in different fields before proceeding with an action, a Set Values
Before Click setting (Section 2.4.7) should be used instead.

2.4.7 Click Settings

Crawljax is generally able to fire any kind of action on the elements of the DOM, but at the
moment it is programmed to perform only click actions. There are five different kinds of
Click settings in Crawljax. All of them define an element of the DOM to click, or not to
click. This element is defined by an obligatory tag, and optional text, xpath and attributes.
When only the tag is defined, all the elements sharing the tag will (not) be clicked. The
possible Click settings are:

• Click - click an element of the DOM.

• Don’t Click - do not click an element of the DOM.

• Set Values Before Click - set values in one or more input fields before clicking an
element of the DOM. Input-value pairs are defined in the same way as input set-
tings (Section 2.4.6).

• Click When - click an element of the DOM when all the defined conditions are true.

• Don’t Click When - do not click an element of the DOM when all the defined condi-
tions are true.

Conditions used in the (Don’t) Click When settings are the same type of conditions used
in the Crawl settings.

2.4.8 Crawl Settings

Crawl settings use crawl conditions to decide whether to crawl or not the newly found state.
The settings need one condition, and zero or more preconditions. The preconditions are
also Crawl conditions. Crawl and Invariant settings are defined in the same way.

2.4.9 Invariants

Invariants are settings that verify certain conditions on the entire visited website. If the
condition is violated by some state during the crawling, Crawljax fires an Invariant violation

15

2. BACKGROUND

alert, which can be caught by specific plugins, as explained in Section 2.4.12. Crawl and
Invariant settings are defined in the same way.

2.4.10 Wait For Settings

Crawljax can be set to wait on a certain (even partial) URL for one or more Expected
condition to happen. An optional maximum waiting time can be specified in milliseconds.

2.4.11 Oracle Comparators

Oracle Comparators are a special type of settings, which allow to ignore specific parts of
crawled pages. The analyzed DOMs are stripped off the desired attributes, and then com-
pared. The simplified DOMs with equal results are grouped in a unique state. Zero or more
Crawl conditions can be associated with a comparator. It is possible to use in Crawljax
many type of comparators:

• Attribute - takes as input a list of HTML attributes to ignore.

• Date - ignores time and date regular expression patterns.

• Distance - applies Levenshtein Edit Distance and ignores differences above a given
threshold.

• Plain Structure - strips the DOM elements of all attributes and content.

• Regex - ignores content matching the specified regular expressions.

• Script - removes all the ‘script’ elements from the DOM.

• Simple - eliminates whitespaces and linebreaks.

• Style - ignores style attributes.

• XPath - remove elements or attributes defined by XPath expressions.

Levenshtein Edit Distance

Levenshtein Edit Distance is a measure for comparing two strings. The number of changes
needed to convert a string into another determines the distance, where the possible changes
are insertion, removal or substitution. The specific implementation of Crawljax requires as
input a threshold, a real number between 0 and 1. If 0, even completely different DOMs are
considered the same; if 1, DOMs are considered the same only if they show no difference
at all. This setting is a convenience for applying a general but effective comparison.

16

Crawljax Settings

2.4.12 Plugins

Plugins are a mechanism to make Crawljax easily extendable. Crawljax can be executed
with no plugins, but in that case there is no result, as plugins also collect the output. There
are many kinds of plugins, each representing a point during Crawljax execution. When
Crawljax finds itself at that point, it will fire the corresponding event to the attached plugins.

• Pre Crawling - called before loading the initial URL, returns the used browser in-
stance.

• On New State - called when a new state is found.

• On Revisit State - called when the same state is revisited.

• On Invariant Violation - alerts of an invariant violation.

• On Browser Created - alerts when a new browser is started.

• On URL Load - called every time a URL is (re)loaded.

• On Fire Event Failed - warns if an event was fired unsuccessfully.

• Pre State Crawling - executed before crawling a state.

• Post Crawling - executed after the entire crawling is over.

• Proxy Server - associates to Crawljax a proxy and its settings.

• Guided Crawling - gives control to the plugin.

• Generates Output - makes it possible to set an output folder.

Figure 2.10 shows the working of plugins. The plugins are invoked at crucial moments
of the crawling process - before loading the initial page, when loading a URL, when a new
state is discovered or revisited, and at the end of the process. They can be used to collect
data about the current state and the process itself, information that would not be saved by
Crawljax. They can also be used to guide the crawler from inside, to intervene at specific
moments.

17

2. BACKGROUND

Figure 2.10: Crawljax plugins flow, as showed in [2].

18

Chapter 3

Requirements

The project is an extension of Crawljax, so a logical requirement is that it must allow access
to all possibilities Crawljax has to offer, while adding its own twist. Section 2.3 described
settings and features of Crawljax. The porting of Crawljax may not be a straightforward
process, meaning that not all characteristics of the application could be directly portable into
the project. This chapter describes what is necessary for making the project a satisfactory
extension on Cralwjax, and what is needed to make the project a success, while the next
chapter deals with the approach we followed.

3.1 Requirements

3.1.1 Crawljax Features

The project generally requires to cover all characteristics descibed in Section 2.3. The
structure of Crawlax is defined through Java classes, organized in libraries which can be
easily imported into a Java project. We decided to develop CrawlMan in Java, using the
Eclipse IDE [27] and Google Web Toolkit [15]. As these environments are based on the
principles of extensibility and compatibility, extending Crawljax seems not to pose specific
threats to the programmer. Still we need to analyze what features of Crawljax make sense
in a web environment.

In order to properly set up Crawljax, the project must allow element identification (Sec-
tion 2.4.1), creation of the different types of conditions (Section 2.4.2), insertion of gen-
eral (Section 2.4.3) and advanced settings. To keep the project extensible, we need to take
advantage of the plugin structure (Section 2.4.12). Some of these requirements deserve a
deeper investigation.

19

3. REQUIREMENTS

Thread Settings

Of all the settings, the thread settings impose closer attention, for various reasons. The first
intuitive reason is that running Crawljax in multiple threads or browser instances means that
the number of resources employed by a single user is multiplied, as well as the size of the
result. Furthermore, in case different results are produced, all of them must be transmitted
and showed to the user. The use of more resources can be justified only if it creates a
valuable addition, as it does in the desktop environment for which it was ideated.

The second reason is that the thread settings allow crawling a website in parallel. This
project represents a web extension of Crawljax. A user navigating CrawlMan, as explained
in Section 2.4.3, is immediately able to crawl a website, by sending a request from his
browser to the CrawlMan server. If the user wants to have two crawling sessions of the
same website in parallel, what he can do is simply open CrawlMan in two different tabs on
his browser and send two requests at the same time. A basic principle of a web server is in
fact to satisfy multiple user requests in parallel.

A third reason is that thread settings allow the user to adjust the behavior of Crawljax
when the crawling process is failing. One thing that the user expects when navigating a
web application as CrawlMan is that the application does not crash while he is using it. The
application must be reliable, and in case of a failure it must report an intelligible message.
If the crawling process fails or is not smoothly performed, and the problem can be fixed by
simply set some properties, the adjustment should be done automatically by the application.
In our opinion the listed reasons are enough to exclude the thread settings from CrawlMan.

IFrame Settings

Crawljax offers settings to ignore eventual IFrames inside a website, but in fact Crawljax
is not able to crawl IFrames at the moment. For the sake of future compatibility, IFrames
settings are implemented in CrawlMan, but they are not presented to the user, as it would
only generate confusion.

Invariant Settings

Invariants pose an indirect problem, as the result of Invariants is collected through On In-
variant Failure plugins (Section 2.4.12). Using Invariant settings by itself does not present
particular issues, but presenting the result of Invariant settings depends on the implementa-
tion of the plugin structure into CrawlMan, discussed in the next section.

Plugins

The Crawljax plugin organization makes it easy to extend Crawljax without touching its
core libraries. There is no need of directly modifying Crawljax when a programmer uses

20

Requirements

the plugins, as they can control the crawling, collect a result, report failures on Invariants
and fired events, and more (Section 2.4.12). Thanks to the plugin structure, Crawljax can be
extended, but the project can still benefit of every update to Crawljax, as it uses its libraries
with no modifications, just additions. This is the reason why it is required that CrawlMan
takes advange of the plugins.

An additional aspect of plugins is the fact that not only CrawlMan, but many extensions
of Crawljax are in the form of plugins, for the same reason of mantaining compatibility.
This fact hints that it should be possible to easily adapt existing plugins to the project,
further extending CrawlMan. Implementing existing plugins is not a project requirement,
but a significant possibility to consider.

3.1.2 Project Development

Some constraints apply to the project development. The project must be built using the
Java programming language, as Crawljax libraries are written in Java. The project must be
publishable on a web server, for online access. There are no constraints on the programming
environment to employ, but Eclipse [27] and Google Web Toolkit [15] represent almost
forced choices for their popularity, versatility and ease of use. An additional requirement,
to improve portability and ease of compilation, is that the project must use Maven [28].

Maven

Maven is a tool which facilitates build and dependency management. It is executed with
console commands, or it can be integrated in a development environment as Eclipse. The
commands perform compilation, installation and generally build of projects. Directions
for the tool are gathered in a Project Object Model (POM) file, which also describes the
project structure, necessary libraries, authors and other information. When executing a
build, Maven connects to a central Internet repository and downloads the specified libraries,
automatically solving project dependencies. Thanks to Maven, a project can be transferred
by copying its source files and ignoring the space consuming libraries, which will be down-
loaded directly on the computer where they are needed. Lastly Maven projects employ a
common structure, separating source code from tests, resources and compiled units. The
main project folder contains the POM file, the folder ‘src’ with the source code and the
folder ‘target’ with the compiled units.

3.1.3 CrawlMan Features

The first requirement of the project is that the user must be able to insert a URL, send a
crawling request and reliably receive a useful result in a finite time. The second requirement
of the project is that CrawlMan must be easy to use and set, offering ready to use settings
and suggestions to apply. The third but most important requirement is that the project must

21

3. REQUIREMENTS

innovate Crawljax, using its elements in an original way to help the user into obtaining the
result he wants.

Settings and Result

CrawlMan must be able to apply all the required settings. Settings must be simple to create,
modify and delete. The user needs to be able to understand the settings and easily check
them, manually and automatically.

The result should be understandable and valuable to the user. The user is not able to
see the guided browser performing the crawling, as in the case of a desktop application, so
the recognized states need to be described exhaustively. The user needs to understand the
behavior of the crawler, and the reasons behind it. In case the crawling fails, the application
is required to show a message describing the error, in order for the user to correct the
settings.

The user needs to be able to save his settings and result, to stop his crawling session and
restart whenever he wants.

Settings Refinement

The main focus of this project is facilitating the process of settings refinement. It is not
obvious when first looking at Crawljax what the meaning and purpose are of many of the
settings it proposes. It is much easier to understand something when a good example is
proposed. CrawlMan presents suggested settings using elements of the result, so that the
user has a direct image of what is happening in the application. Then a report on the result is
presented, telling the user how the settings did perform. New settings can be continuously
added, progressively changing the result until the user obtains what he wants. CrawlMan’s
main requirement is allowing the exchange of data between settings and result, each influ-
encing the other, in a way transparent to the user. Crawling can be performed again and
again, without reloading or recompilation, speeding up the job of the user.

3.2 Scenarios

In this section we describe the possibilities of CrawlMan and what it has to offer to the
user. Crawljax relies on the user to apply correct settings. It is in fact impossible for the
application to know if the user wants to apply general settings, or if instead the settings are
incomplete, because the way of crawling finally depends from the user’s will. For example,
the user could set the crawler to click on all buttons it finds, but he may be only interested
in clicking on one specific button in a specific page. What CrawlMan can do is guiding
the user into refining the settings, making the user conscious of what happens during the
crawling process and using the elements of the result for suggestions. When inspecting the

22

Scenarios

result, the user checks if the element he wanted to click has been clicked, and selects the
appropriate suggested setting for refinement.

3.2.1 Basic Scenario

The user must be able to insert a URL, send a crawling request and reliably receive a result.
The basic requirement of the application is to work as an interface between the user and
Crawljax. The user must be able to set Crawljax and examine its work, as if he had direct
access to Crawljax.

3.2.2 Default Crawling

The application offers default settings to start crawling immediately. Using Crawljax’s gen-
eral settings (Section 2.4.3), Crawljax can click default elements such as buttons and an-
chors, and return a small result in a limited amount of time. After inspecting the result, the
user can then refine the crawling, applying suggested settings or creating his own. As ex-
plained later in Section 6.3.1, Crawljax’s Click Default setting functionality was substituted
with ad hoc Click settings to comply with user expectations.

3.2.3 Advanced Crawling

The user can define all kinds of advanced settings, as Click, Wait For, Crawl, Invariants
and Oracle Comparators. The user is guided in the definition of these settings by selecting
suggestions presented using the result of the last crawling session. The suggestions cannot
modify existing settings: it is up to the user to recognize the suggestions as more complete
versions of the applied settings, and eventually substitute them.

3.2.4 Result Inspection

The result is presented to the user as a state tree graph. The root of the tree is the page cor-
responding to the initial address. The other nodes represent states of the visited application,
found by comparing DOMs after firing the selected events.

The application must report failed invariants and fired events, and general application
failure. The information related to every state needs to be present, as the URL, DOM source
code and a recognizable image. The events leading to every state must be clearly reported.

3.2.5 Settings Suggestions

Clickables and other data found during the crawling are used to suggest settings around the
application, especially in the result. As the user inspects the result, the events that lead to a

23

3. REQUIREMENTS

certain state are visible, so that the user can choose specific events to become permanent part
of the settings. There is no assurance that the event will be repeated on the same element,
as in the next session the crawler could find an element with the same characteristics. This
is why the suggested setting automatically reports all the possible characteristics of the
element.

Settings can be expanded with conditions. A simple suggested condition is for example
a URL condition, if the URL of the selected state is different from the URL of the root. Con-
ditions must be created independently from the settings, so that they can be used multiple
times.

24

Chapter 4

Approach

This chapter defines conceptual challenges and solutions of the project. There are problems
inherent to the development, solved by adopting certain programming strategies. Other
problems, dependent on the final utilization of the project, rely for their solution on the
main project contribution - using the result for setting refinement.

4.1 High Level Challenges

This section discusses challenges and issues presented by the project. Guidelines of Crawl-
Man are here resumed:

• All settings and result data must be accessible to the user in a clear way and at every
moment.

• Usage and processing of the crawler must be transparent to the user.

• The application must accompany the user during result inspection and settings refine-
ment, facilitating the user’s task.

4.1.1 Main Project Challenge

CrawlMan must represent a valid, reliable test framework for web developers and testers.
It is not sufficient for it to be an interface to Crawljax. It must allow dynamic setting,
verification of the result and reliable execution. The user must be able to save his work and
start back where he left. Most importantly, the application must provide valuable feedback
to the user.

25

4. APPROACH

4.1.2 Interface Friendliness

Click settings can be considered easy to understand for the average user. The concept is that
they allow to click on all the elements corresponding to a specific description. The same
cannot be applied to the rest of the settings, so that the interface has to be clear and user-
friendly. The challenge here is to make CrawlMan sufficiently easy to use and understand
that a user who does not know Java, HTML, XPath and has never used a crawler before
can successfully crawl and push the crawling in the desired direction. This is not a simple
challenge, because it requires not only the expertise of a Java programmer but also the
skills of a Web designer. The design of CrawlMan’s interface must be focused on the user’s
experience, smoothening the user’s interaction. Much of the knowledge needed for using
Crawljax must be conveyed through graphical means inside CrawlMan - we do not want to
force the user to read long manuals, but to start crawling immediately.

4.1.3 Project Modularity

It is important to keep the components of CrawlMan separated, to improve maintainability
and expandability. This is necessary because the project is an extension on Crawljax, which
is a growing project itself. By taking advantage of plugins instead of directly modifying
its libraries we can easily substitute Crawljax libraries in the event of new version releases.
The adoption of Maven [28] also helps in this matter, and also in enhancing modularity by
enforcing a solid project structure.

While Maven helps in keeping source code, tests, resources and documents separated,
Google Web Toolkit (GWT) [15] enforces a separation between server and client code.
Client code in GWT is all the Java code which can be transformed in HTML and JavaScript,
to be displayed on the browser. The requirement poses constraints on what can be pro-
grammed on the client side - only Java constructs compatible with GWT can be used, only
GWT compatible libraries can be inherited, and data passed through client and server must
be serializable. Crawljax and its libraries are not GWT compatible, so they cannot be di-
rectly inherited into the client side of CrawlMan. One problem is that it is not possible to
send Crawljax results directly to the user, but that they must be converted to be compatible.
The same holds for the settings, so the interface must represent a complete layer between
the user and Crawljax.

4.2 Conceptual Solutions

Using the crawling result for guiding the user into refining the settings is the main concept
of CrawlMan. The result of a crawling session is a graph of subsequent states assumed by
the inspected website. CrawlMan does not report the raw collected data, but organizes them
in an ordered graphical representation. The user visualizes a tree graph of nodes as the re-
sult, and he can select every node to show URL, DOM, events leading to the corresponding
state, and other important data. By directly acting on the tree, the user can select states he

26

Conceptual Contributions

does (not) want to appear in the next crawling process, and generate according settings. As
these settings reflect the will of the user, they help him understanding the general work-
ing of CrawlMan, and to perfect the settings. As they are naturally reflected in the result
data, the user has an immediate feedback on the applied changes. The implementation of
this mechanism resides in a set of suggestions distributed throughout the application and
especially in the result, as explained in the next Chapter.

4.3 Conceptual Contributions

At the moment, there is no software tool or testing environment on the market comparable
to CrawlMan. This project is in fact the first testing tool for AJAX pages, and websites
in general, not to require installation, programming skills and crawling experience. More
importantly, it is the only one making use of an AJAX crawler to automate web exploration
and reconstruct the structure of a web site. As other tools (Section 7.2), CrawlMan offers
automatic creation of test scripts, but the original contribution is in using the data collected
during the test to improve the test itself. In this way it realizes an Automated Exploratory
Testing process, which is not offered by any other web testing tool. The value of this
contribution will be defined in the evaluation of Chapter 6, but the real success of this
project will consist in its actual use in the web application testing world.

27

Chapter 5

Implementation

5.1 Interface Characteristics

The interface is formed by panels, divided in four categories:

• Main panel, to send the crawling request.

• Settings panels, for setting creation and editing.

• Result panel, for result inspection.

• Help panels, displaying specific information about the application.

Figure 5.1 shows the main panel - CrawlMan’s homepage.

Figure 5.1: CrawlMan’s homepage.

29

5. IMPLEMENTATION

5.1.1 Immediate Crawling

The web application consents immediate crawling with default settings, so that a user can
insert a URL and simply start crawling. The main panel basically consists of a text box to
insert the URL, and a button to send the request. The default settings, modifiable in the
‘Basic Settings’ panel shown in Figure 5.2, include:

• Max States equal to 6.

• Max Runtime of 300 seconds, 30.000 milliseconds.

• HTMLUnit browser, which does not require a real browser.

• Click Default, for firing events on general clickables.

• Random Input, to fill the possible input fields.

Figure 5.2: CrawlMan’s ‘Basic Settings’ page.

The first three settings serve for producing a result in the shortest time possible. HTML
Unit does not require the starting of a browser and content visualization, so that the crawl-
ing is substantially faster than using a real browser. The user is advised to mantain these
initial settings, and then inspect the result to refine the crawling. When a request is sent,
a clockdown counter starts, set on the Max Runtime. The duration of the process can be
shorter, but not longer, so the user knows if something went wrong - connection loss, server
or client problems.

The last two settings allow the crawler to find and click anchors and buttons, and to find
and fill with random input all possible fields. An aspect of Crawljax is that it finds all the

30

Interface Characteristics

fields and clickables it is programmed to find, so without the last two settings there would
be no event producing new states, no navigation in the website. The last two settings can be
then substituted by the user with Click and Input settings.

5.1.2 Setting Creation

Settings are organized in different panels, in order to avoid confusion to the user. In fact
a basic user, not interested in advanced settings and deep testing, does not need the whole
extension of settings Crawljax can offer, for example Invariants. The panels respect the
organization depicted in Section 2.3.

All settings can be independently created. As conditions may be reused by more than
one setting, their creation is as well independent from settings. At any moment the user
can define and edit settings and conditions in the settings panel, after crawling he can also
accept the suggested settings in the settings panels and principally in the result panel. The
suggestions in the settings panels take the form of descriptions of HTML elements of the
crawled pages, as shown in Figure 6.17. The suggestions in the result panel are instead
ready to use settings, relevant to the selected node of the result tree. For example, the user
may include or exclude the selected state from the next crawling session, which results in
the creation of Click or Don’t Click settings for clickables that generated the event bringing
the crawler in that specific state. The user can then review the Click settings in the ‘Click
Settings’ panel, shown in Figure 5.3.

Figure 5.3: CrawlMan’s ‘Click Settings’ page.

31

5. IMPLEMENTATION

5.1.3 Result Editing

The result of the crawling process is a directed graph, whose nodes are the states reached
by the crawler. We decided to render the graph as an organizational chart, a class offered
by Google Web Toolkit [15] which offers some means of graphical interaction. The graph
appears to the user as a tree of states, which can be selected to inspect their data (Chapter 6).
By selecting a state, the following information is showed:

• URL address relative to the state.

• HTML DOM representation of the state.

• A screenshot of the state, in case CrawlMan was set to use Firefox in the ‘Basic
Settings’ page.

• A set of Incoming Edges, describing click and input field events which brought into
the state.

• A set of Outgoing Edges, describing click and input field events which brought out-
side of the state.

• A set of Other Edges, representing clickables which were not clicked or did not fire
an event when clicked.

This information, collected during the crawling, gives the user a faithful representation
of the session. It is also enough for creating and displaying the suggestions the next section
describes. Some of the suggestions can avoid the entering of a certain state, so that the
state is “eliminated” from the crawling. When the user accepts this kind of suggestions,
the elimination is graphically showed in the displayed tree. In this way the creation of new
settings is experienced as a form of result editing, more intuitive for the user.

5.1.4 Offering Crawling Suggestions

This section defines the actual features of CrawlMan representing the project contribution.
The application mainly wants to suggest possible new settings to the user, or settings that
require few adaptations to express the user’s will. The features can be fundamentally divided
into four groups:

• Suggestions of Click settings.

• Suggestions of conditions.

• Suggestions of Oracle Comparators.

• Application utilities.

32

Interface Characteristics

The suggested settings benefit from the automatized processing of the result. They are
settings that a user could create, but it would take time for the user to collect such specific
information, such as the attributes and xpath of a HTML element. Suggested settings are
shown to the user during the result inspection, when the user selects a node of the result tree.
In the case of settings which can contain conditions, the innovation consists of suggesting
a setting with conditions relative to the selected state, so that the user has a clear idea of
the moment of the crawling in which that condition is true. As the condition yields true
whenever the description fits, it is the user’s task to verify the condition is met only in the
desired cases. The proposed condition can be enforced by adding more than one condition
to the setting.

By converting the result in GWT-compatible classes (Section 5.2.1), the suggestions can
be processed on the client side, lightening the weight of the result, the need of bandwidth
and the use of precious server resources.

Click Suggestions

During the inspection of the result, a user of CrawlMan can select a state of the application
to see which elements where clicked to enter the state and from the state itself. The descrip-
tions of these elements are presented together with buttons allowing to apply Click settings
relative to the elements. In this way the user adds new settings by confirming the crawler
actions, meaning he wants these actions to be repeated at the next crawling request. The
presented click suggestions are:

• Suggestions on the reachability of a state, which can be included or excluded from
next session with (Don’t) Click settings.

• Suggestions of (Don’t) Click settings, formed with the data of the elements clicked
during the crawling session. The feature takes advantage of the Click Default setting
to click on all the links and buttons, and the fact that Crawljax can click on elements
respecting a general description, for example all the elements with tag ‘img’.

• Suggestions of Set Values Before Click settings, using input data inserted during the
session. The feature takes advantage of the Random Input setting of Crawljax to insert
random data in all the possible fields.

Condition Suggestions

Many settings of Crawljax take as input conditions of different genres (Section 2.4.2). When
a user selects a state from CrawlMan’s result, the elements of the result are processed to
generate a number of conditions relative to the selected state. The conditions can be imme-
diately used to add (Don’t)Click When, Crawl, Invariant and Wait For settings. They can
also be optionally associated with Oracle Comparators. The suggested conditions are:

33

5. IMPLEMENTATION

• (Not) URL conditions, when the URL of a state differs from the URL of the root in
the state tree graph.

• (Not) Visible and Element conditions, using the data of the elements retrieved during
the session, such as id, name and text.

• (Not) XPath conditions, composed with the xpaths of the retrieved elements.

The generated settings can be reviewed in their respective panels. Figure 5.4 shows the
‘Condition Settings’ page, where it is possible to modify Crawl and Invariant settings and
to create new conditions.

Figure 5.4: CrawlMan’s ‘Condition Settings’ page.

Oracle Comparator Suggestions

Some of the data which is used to suggest conditions is also used for creating Oracle Com-
parator suggestions. In addition, an analysis of the selected state’s DOM is performed to
verify the presence of date patterns or ‘script’ elements. If these are detected, the corre-
sponding Comparators are suggested. The possible suggestions are:

• Attribute Oracle Comparators, using attributes of the retrieved elements.

• Date Oracle Comparators, when the date regular expression pattern appears in the
DOM.

• Script Oracle Comparators, when the ‘script’ tag appears in the DOM.

• XPath Oracle Comparators, using xpaths of the elements retrieved during the session.
The user only has to select the xpath of an element to ignore.

34

Interface Characteristics

A date pattern is detected when the state presents some text describing a date or a time,
as in the case of a page hosting a digital clock. Figure 5.5 shows the ‘Oracle Comparators’
page, where the user can review the generated Comparators and create new ones.

Figure 5.5: CrawlMan’s ‘Oracle Comparators’ page.

Application Utilities

The following features are needed to simplify the usage of CrawlMan. They present to
the user feedback on the settings and crawling result, and allow for session saving and
reloading.

• Settings coherence common problems verification.

• Result report based on settings confrontation and collection of plugin data.

• Saving settings and crawling result for later (re)use.

• Loading settings and crawling result from a previous session.

The first feature warns the user when two or more Click settings reference the same
element. The settings are compared on the base of tag, text, attributes and xpath. The
analysis is performed between settings of the same type, for example all the Set Values
Before Click settings, and settings of different type, for example Click and Don’t Click
settings. The warnings are displayed in red above the settings descriptions in the ‘Click
Settings’ page.

35

5. IMPLEMENTATION

The second feature performs a comparison between the defined Click settings and the
clickables detected during the crawling session. It verifies that the elements defined by
Click, Set Values Before Click and Click When settings appear in the crawling result, by
comparing their tag, text, attributes and xpath with the crawling result clickables data. It
also verifies that the elements defined by Don’t Click and Don’t Click When settings do not
appear in the crawling result. The report is presented to the user in CrawlMan’s ‘Result’
page.

The session saving and loading features are necessary for the user to interrupt and re-
sume his work, and to share it with other users. We refer to Section 5.2.1 for a discussion
of these features.

5.2 Technical Solutions

This section presents technical problems encountered during the development of CrawlMan
and the solutions that were applied. Some of the issues are relative to the technologies
involved, while some are dependent on the Crawljax implementation.

5.2.1 Google Web Toolkit

We decided to build CrawlMan as a web application, using Java and Google Web Toolkit
(GWT) [15]. In order to present the result of Crawljax to users, the produced data had to be
converted in a format transmittable through Remote Procedure Call (RPC) services, which
is the way GWT implements asynchronous server requests and responses. All data carried
by RPC services must be serializable, so that it can be converted into JavaScript by GWT.
The nature of RPC services raised problems in three cases, involving data which cannot be
serialized:

• Saving settings and result in XML format.

• Loading settings and result of a previous session from an XML file.

• Showing to the user screenshots captured during the crawling.

Saving and Loading User Sessions

A user session is composed of user created settings and the corresponding result. We needed
a way to save the user session, so that the work of the user could be interrupted and resumed
at any moment. Secondarily, the saved data had to be easily organizable, and we considered
it a plus if the data could also be shared among users. At a first moment an attempt was
made to create a database in the same machine hosting the server. Saving the user session
in a database would have solved all the previous problems, but it would have added a great
amount of complexity to the project:

36

Technical Solutions

• Tables and classes corresponding to the data had to be created.

• Access to a database would have required user log-in, so that only an authenticated
user could save his session.

• Limitations on the amount of space conceded to every user had to be taken into ac-
count.

• An interface to let the user organize his data had to be added.

• Classes and functions to connect to the database had to be implemented.

A second solution, avoiding this increase in complexity, was found - letting the user
save the session data in a file. The XML format, easy for conversion of serializable objects
and simple for users to understand, was chosen. The solution is not devoid of problems
itself. First of all, changes in the classes representing settings and result can make an old
session incompatible. Once a structure for the user session is established, it should not be
modified for future versions of the project. Furthermore, files are not conveyable through
RPC services. To send an XML file from the server to the client and vice versa a conven-
tional HTTP service must be used. This means that the data must be first sent to the server
through an RPC service. When the server responds, a HTTP request is sent, so that the
XML file can be transmitted along the HTTP response. The XML file is downloaded inside
a hidden frame, avoiding the opening of a new window, which would not communicate an
application feel and which is usually hindered by automatic popup blockers. The data is
saved on the user session in the server between the calls, ensuring the data is deleted when
the user finishes his work.

Screenshot Transmission

Crawljax is able to capture a screenshot for every new state in PNG format when crawling
through an instance of Mozilla Firefox. As in the previous case, PNG files are not serializ-
able, so they cannot be transmitted through RPC services. Screenshots are part of the result,
so that they must be sent together with the rest of the data back to the user browser.

A way was found to convert an image into a serializable object, in the specific case
a string in Base64, which can be saved into the result, sent through an RPC service and
saved in an XML file. The string is then set as the URL field of an Image object, added
into the Result page. Given the natural properties of Image HTML elements, the string is
automatically converted into the corresponding PNG representation by the user browser.

5.2.2 Parallel Crawling

Although Crawljax is distributed as a Java library to be included in any Java project, it had
never been used in a web application before. CrawlMan is the first project to run Crawljax

37

5. IMPLEMENTATION

in a web server, and even if no specific problems were initially foreseen, one problem was
encountered. Crawljax has been created as a desktop application, intended to be employed
by one user at a time. There are settings (Section 2.4.5) which allow to crawl using differ-
ent threads and different browser instances at the same time, providing parallel crawling.
When using multiple threads, added plugins are shared through a static class. This aspect of
Crawljax results to be a problem when the server is required to process different crawling
requests, as we do not want the plugins to be shared through different threads. Every request
must be serviced independently, because the data collected through plugins must produce
independent result. To solve the issue, the static class, namely CrawljaxPluginsUtil, had to
be changed to a class which can be instantiated. We refer to Section B.2 for the technical
details of this operation.

These modifications can hinder the possibility of Crawljax to use multiple threads at the
same time, but this is not important in the case of our project, where parallel crawling is
performed by sending multiple requests to the server at the same time. This is the reason
why the modifications were not included in the standard version of Crawljax, although they
are necessary for CrawlMan to work. The decision caused the project to proceed using a
special version of Crawljax. It can be possible to go back using Crawljax standard version
in the future if the modification will be incorporated in Crawljax trunk.

5.2.3 Browser Loading Exception

As we explained, Crawljax was originally meant for desktop utilization. As such, reliability
of the software was not the main goal, as an error would simply result in the interruption
of the crawling process. The same cannot be said when using Crawljax in a web environ-
ment. An error during the crawling process must give control back to the primary interface,
warning the user of the problem.

When the requested browser type cannot be loaded by Crawljax, an exception is gener-
ated. This can happen in various situations - the browser not being present in the system,
the port for communication with the browser being locked, system resources being over
exploited. In the case an exception is generated, the main Crawljax engine is not getting
halted. The original code was modified to give back control to CrawlMan, by stopping the
engine in case an exception is generated. The modifications are detailed in Section B.3.

5.2.4 Data Presentation

Crawling a website can generate a huge amount of data. Let us just consider the number
of links in a single web page - during a simple test on Wikipedia [13], a page was found to
contain more than two thousands different links. Imagine showing the result of a crawling
session inside a single page. Just showing all the links in a page would take much of a client
system resources. In order to limit the consumption of client resources, we decided to give
the user the possibility to disable the generation of crawl conditions suggestions and the

38

Technical Solutions

capture of screenshots. Detected clickables which did not generate new states are showed
ten at a time, not to clog the ‘Result’ page.

5.2.5 Click Default Setting

The Click Default setting is used to fire click actions on all anchors and buttons. When
enabled, the setting has priority on other user-defined settings. When the user chooses a
specific link to be clicked during the crawling, if Click Default is enabled, all the links
preceding that one in the page will be clicked before it. As the user-defined Click settings
are more important than default clickables, we decided to substitute the Click Default setting
with the actual corresponding Click settings. Crawljax settings are executed in the order they
are defined, so by adding the new settings after the user-defined ones, it is possible to make
the crawler click on specific elements before turning to the default clickables. The solution
was implemented to make Crawljax behavior more respectful of user expectations.

39

Chapter 6

Evaluation

We want CrawlMan to be a tool for testing web applications that should be easy to use for
anyone. We investigate here the factors indicating if the purpose of this project has been
reached. Specifically, it must be possible for the user to:

• Program CrawlMan to follow a desired behavior.

• Understand when and why the application is not following the desired behavior.

• Understand when and why the crawling process is possibly failing.

• Easily modify settings to obtain the desired result.

A challenge when testing web applications is reproducing real use case scenarios, ie.,
examples of utilization of a website as a final user would do. Is it possible for a CrawlMan
user to set the application to execute a specific series of actions, as in a Script or a Recorder
tool (Section 7.2)? CrawlMan can be used for simple tests such as clicking on every link of
a web page, but this kind of tests can provide little information on the working of complex
web applications. The user must be able to specify a behavior and verify it gets followed.

6.1 Pilot Tests

This section reports a set of preliminary experiments carried out to understand the chal-
lenges presented by using CrawlMan, and what aspects should be exercised during its eval-
uation. The tests were manually performed, as a normal user would employ CrawlMan.
The experiments were carried out using Mozilla Firefox version 3.6.13.

41

6. EVALUATION

6.1.1 Logging in to Facebook

Facebook [11] is one of the best known contemporary dynamic web applications [29, 30].
It is a social web application, connecting users through “friend subscription”. Crawling
Facebook and understanding the result represents a challenge by itself. The question arose
if it was possible and easy to log-in into an application, using some predefined username
and password. The test was performed on Facebook, being an iconic web application that
many people know and use, with the intent of expanding the test to a use case for CrawlMan
evaluation. The idea was discarded for the simple fact that Facebook does not allow creation
of more than one personal profile, but the test resulted in a useful demonstration of the
possibility of CrawlMan to log-in into a web application.

Figure 6.1: CrawlMan’s homepage during the crawling process.

Figure 6.1 shows CrawlMan’s homepage during the crawling process. After inserting
Facebook’s URL in the application and performing the crawling with default settings, as
advised to final users, the result was inspected. Figure 6.2 shows the result for the crawling
request. Using the presented suggestions it was easy to create a Set Values Before Click
setting, to fill username and password fields and click on the log-in button. The Click
Default and Random Input settings were then disabled, to make CrawlMan execute just
the desired action. The crawling was performed again, expecting the crawler to log-in into
Facebook. The test failed as the log-in button was not found.

42

Pilot Tests

Figure 6.2: CrawlMan’s ‘Result’ page for URL http://www.facebook.com.

What went wrong in these simple steps? The description of the log-in button in the Set
Values Before Click setting did not correspond to the actual button inside Facebook’s home-
page. Upon inspection of the setting, we found that the definition of the button included a
HTML attribute, ‘id’, which was dynamically generated at every loading of the page. After
removing this attribute from the Set Values Before Click setting, the test was repeated and
the log-in was successful. Figure 6.3 shows the code corresponding to the log-in button.

<input value="Log In" tabindex="4" type="submit"
id="u174114_3" />

Figure 6.3: HTML code for Facebook’s log-in button.

The test shows that it is up to the user to adjust CrawlMan settings in the most opportune
way. The project cannot automatically point out too strict definitions, which cause test
failure in dynamic environments as the one presented. CrawlMan can suggest settings to
the user, but it is up to the user to adjust them to his needs. This test also demonstrates that
dynamic application testing needs a certain degree of freedom in the test specification to
actually work.

6.1.2 Sending Mail from Gmail

Gmail [12] is the Google free email service, with more than one hundred and fifty millions
users. Sending one email from a test account to a defined address is a complicated task,

43

6. EVALUATION

requiring first to sign in to the service, then load the email page, and finally set the fields
with the right data to send the email. This test is intended to give us a good idea of the
difficulties a user encounters when reproducing a complex behavior.

Log In

The first thing to do when reproducing a behavior is manually executing it. The address to
load, from where is possible to sign in to Gmail, is http://mail.google.com/mail.

The page presents a number of informative and help links. We are interested in the
‘Username’ and ‘Password’ fields, and the ‘Sign in’ button. In order to log in, we must
use a Set Values Before Click setting describing these three elements. Now that we famil-
iarized ourselves with the the page, we proceed with some default crawling. Gmail’s URL
is inserted in CrawlMan’s homepage to start crawling. The Click Default setting should
automatically reveal buttons and fields, so that we can use the result suggestions instead of
manually building the settings.

Figure 6.4: CrawlMan’s ‘Result’ page for URL http://mail.google.com/mail.

Figure 6.4 shows the result for the crawling request. Unexpectedly, the result only shows
the ‘Username’ field, identified as a text box with id ‘Email’, and the check box to click for
the cookie persistence, which we are not interested in. The ‘Sign in’ button was clicked,
but it was not possible to sign in given the incorrect credentials. At this point, we use
CrawlMan’s result suggestion to create a Set Values Before Click setting using the detected
field button. We still have to manually add the password field, which means we have to find
it inside the DOM representation, in the result page. The search is performed by looking
for the word ‘password’ using the internal browser find functionality. The search rapidly
highlights the presence of an input field of type password with id ‘Passwd’. We proceed to
modify the previously added setting inside CrawlMan’s ‘Click Settings’ page. At this point

44

Pilot Tests

we visit the ‘Basic Settings’ page to disable the Click Default and Random Input options,
not to mess with the more specific setting, then crawl again. The result shows the address
of ‘state1’ corresponding to the address loaded after a successful log-in, so that we know
the behavior was reproduced. Figure 6.5 shows CrawlMan’s ‘Result’ page when ‘state1’ is
selected. The session is saved and the work can prosecute.

Figure 6.5: CrawlMan showing Gmail’s state corresponding to the ‘Inbox’ page.

Load Email Page

After signing in, Gmail’s ‘Inbox’ page is loaded. This is a page listing the recently received
messages. The page contains many elements firing different actions related to the man-
agement of messages or other Gmail services. We are interested in the ‘Write’ button, the
button allowing to access the email writing page. In order to make CrawlMan present the
button in the result, we re-enable Click Default.

The resulting tree graph is composed this time by four nodes. The index is the log-in
page. The second node, ‘state1’, is the page loaded after signing in. The other two states
are reached by clicking other elements than the ‘Write’ button. Why was the button not
clicked? Looking for the button inside the DOM should give us an answer.

After a fast search, it is clear that the DOM presents no button with text ‘Write’. The
fact is suspicious, as the button we see must correspond to an element of the DOM. As the
test was performed with HTMLUnit, which is a Browser Simulator and does not have a
complete support of JavaScript, we decide to reexecute the test using Mozilla Firefox. This
is easily changed into CrawlMan’s ‘Basic Settings’ page.

This time a much richer result is returned. The button we look for is again not listed
between the detected clickables. The most likely reason why the button was again not
detected is that what is showed as a button is instead a different element. We perform again

45

6. EVALUATION

a search of the text ‘Write’ inside the DOM. We find this time a ‘div’ element with the
corresponding text and attribute role equal to ‘button’, as shown in Figure 6.6.

<DIV class="J-Zh-I J-J5-Ji L3" role="button"
style="-moz-user-select: none;"
tabindex="0">

Write
</DIV>

Figure 6.6: HTML code for Gmail’s ‘Write’ button.

We create the corresponding Click setting, driving the crawler to click on all DIVs
with text ‘Write’ and attribute role equal to ‘button’, disable the Click Default option again
and crawl. This time we are able to enter the ‘Compose’ page, denoted by the address
https://mail.google.com/mail/?shva=1#compose.

Send Email

We obtained a result tree with three states, as shown in Figure 6.7. The new ‘state2’ is now
the state we wanted to reach. From ‘state2’ is possible to compose and send an email, given
the right settings.

Figure 6.7: CrawlMan showing Gmail’s state corresponding to the ‘Compose’ page.’

Four elements of the page are of interest: the three text boxes to insert destination
address, subject and body of the message, and the ‘Send’ button. The three input fields are

46

Pilot Tests

not shown in the result. This fact suggests us again that the elements we are looking for
may not be defined as conventional text boxes. A search in the DOM reveals us that the
three elements are indeed present in the page. The following HTML elements correspond
respectively to the destination, subject and body field. They can be recognized by the name
attribute, being ‘to’, ‘subject’ and ‘body’. Their ids, necessary for input filling, are instead
‘:kz’, ‘:kw’ and ‘:k3’, as shown in Figure 6.8. Using those ids we should be able to fill the
inputs before clicking on the ‘Send’ button, if the ids are not dynamically generated.

<TEXTAREA aria-haspopup="true" class="dK nr" dir="ltr"
id=":kz" name="to" spellcheck="false" tabindex="1"></TEXTAREA>

<INPUT class="ez nr" id=":kw" name="subject" spellcheck="true"
tabindex="1">

<TEXTAREA class="Ak" id=":k3" name="body" spellcheck="true"
style="height: 224.6px;" tabindex="1"></TEXTAREA>

Figure 6.8: HTML code for Gmail input fields in the ‘Compose’ page.

The ‘Send’ button, shown in Figure 6.9, is composed similarly to the previously dis-
cussed ‘Write’ button. The button definition and the input fields ids will be again used for
building a Set Values Before Click setting.

<DIV class="J-Zh-I J-J5-Ji Bq L3" id=":ke" role="button"
style="-moz-user-select: none;" tabindex="1">
Invia </DIV>

Figure 6.9: HTML code for Gmail ‘Send’ button.

After adding the setting, we proceed again to crawl. The result shows us that the input
fields were not detected, and the message was not sent. It seems that the input fields cannot
be detected for some reason. The description of the elements correspond to the most recent
result, so that we know the elements ids are not generated dynamically. The analysis of the
DOM helps us understand once again, revealing the inclusion of these elements in IFrames,
which at present Crawljax is not capable to manage.

This test shows us that, in order to be able to understand and modify the crawling ses-
sion, a user must be familiar with the basics of HTML and the possibilities of the appli-

47

6. EVALUATION

cation. It is possible to define a complex behavior with CrawlMan, as long as the tested
application is crawlable.

6.2 Evaluation Tests

We asked a group of testers with no crawling experience to use CrawlMan and complete
the following tests. The tests want to verify usability and intuitiveness of the application,
so the testers are offered no other information except the data provided by the tests and the
application itself. The tests were performed in the arch of two months, from October to
November 2011, as the results of the tests were used to improve the application and the
tests themselves before proceeding.

Although various people contributed with their advices to the project, the tests we
present were actually performed by four users. We present in Table 6.1 an overview of
their background, and the tests they performed. The four users are master students at the
TU Delft university, so that they share an engineering background, but only User 4 has pro-
gramming experience. However, none of them has knowledge related to Crawljax or other
crawlers.

Age Nationality TU Delft MSc Study Course Test 1 Test 2 Test 3 Test 4
User 1 25 Mexican Sustainable Energy Technology, and Science

Education and Communication
X X X

User 2 23 Dutch Systems Engineering, Policy Analysis and
Management

X X X

User 3 24 Italian Systems and Control X X
User 4 24 Italian Computer Engineering X X X

Table 6.1: Users’ background and performed tests.

The tests exercise the innovative features presented in the project (Section 5.1.4). Test 1
guides the user in refining the crawling with suggested Click settings. Test 2 introduces
the user to Set Values Before Click and Invariant settings. Test 3 shows the concept and
usage of Oracle Comparators. Finally, test 4 exercises Crawl settings and the suggestion
of conditions. The tests do not exhaustively tests all the innovative features, which were
manually tested separately, but the general comprehension and ability to use them by unex-
perienced users. Popular websites, ranked in the top one hundred most-visited sites ranking
by Alexa [29] and Google Ad Planner [30], were chosen for the test, to ensure familiarity
with the pages by the user and to demonstrate the capability of CrawlMan to handle real
case problems.

6.2.1 Test 1: crawling Wikipedia

Wikipedia [13] is an interactive multimedia encyclopedia, written by its very same users,
and the most popular encyclopedia on the Web [29, 30]. We have chosen to use Wikipedia

48

Evaluation Tests

because of its popularity and the clear organization of its articles, divided into pages con-
nected by links. In this test the user is required to find the shortest path between two unre-
lated Wikipedia pages, shown in Figure 6.10.

http://en.wikipedia.org/wiki/Zucchini
http://en.wikipedia.org/wiki/Julius_Caesar

Figure 6.10: Test links to Wikipedia’s pages.

It is possible to navigate from the first page to the second page by using internal
Wikipedia links. The user is first required to find the shortest path manually, then repro-
duce the behavior using CrawlMan. This test requires basic knowledge of CrawlMan and
Click settings, given in the following. The test verifies if an unexperienced user is able to
use CrawlMan to navigate between links.

The expected result of this test is the tree graph in Figure 6.11.

Figure 6.11: Test result tree. Links between nodes correspond to events generated by click-
ing on links between pages.

In case of a website with a hypertext structure, as Wikipedia, every node represents a
page. One or more nodes separate the initial page from the final page. The edges connecting
these nodes are links clicked to navigate from node to node.

49

6. EVALUATION

Th test steps to be conducted by the user are:

1. Manually find the shortest path between the two pages.

2. Load CrawlMan’s homepage.

3. Disable the Random Input setting, set Max Depth and Max States to the number of
pages you had to navigate (including the initial one), select Firefox browser.

4. Insert the initial URL and proceed to crawl.

5. Inspect the result. The result consists of the node ‘index’, representing the initial page,
and zero or more child nodes, representing the pages reached by navigating from the
index page. What links were clicked? What should you have clicked instead?

6. Select the initial node. The application shows the elements of the page that were
clicked (outgoing edges) and the elements which did not generate a new node (other
clickables). These elements, which are the edges connecting nodes, are buttons
and links, appearing respectively as elements with tag ‘button’ and ‘a’ (anchor).
Buttons can also appear as elements with tag ‘input’ and attribute ‘type=button’ or
‘type=submit’. From these edges, find the element you need to click to get to the
second page.

7. Add the suggested setting by using the ‘click’ button. This will generate a Click
setting to click on the defined element. Click on ‘apply settings’.

8. Disable the Click Default setting. This setting tells the program to click on all anchors
and buttons, which would lead to click on links we are not interested in just because
they precede our link in the page.

9. Crawl again, then inspect the result. Did the application reach the desired state?

10. Load the ‘Click Settings’ page. This page shows the setting you applied from the
result, telling the program to click on all anchors (elements with tag ‘a’) with a spe-
cific text. Create analogous settings to click on the other links you want to click.
The program will programmatically search every state it navigates for corresponding
elements, and click them all.

11. Confirm the settings, then crawl again. Inspect the result. Did the application reach
the desired state?

6.2.2 Test 2: crawling Ebay

Ebay [14] is a international auctioning web application. It offers to users the possibility to
participate to auctions from all around the world, or create their own. The association with
the popular online payment method PayPal [31] turned out to be a very successful formula,
pushing both sites in the top forty most-visited on the Web [29, 30].

50

Evaluation Tests

The purpose of this test is exercising Click, Set Values Before Click and Invariant set-
tings. Starting from an Ebay page describing an object for auction, the user is required
to insert a description to search in Ebay, and then load the ‘Advanced Search’ page. The
defined Invariant must hold through the states.

The steps to conduct by hand on Ebay are the following:

1. Select an object on sale on Ebay. The URL of the selected page is the initial URL for
the test.

2. Insert a search word in the text box at the top of the page, then press the ‘Go’ button.

3. Look inside the page for the anchor with text ‘Advanced’, then click it.

The test requires to repeat these same steps through CrawlMan. How many pages were
visited? The visited pages are the states the application has to assume during the crawling
process. The links between the states are the performed click actions. Figure 6.12 shows
the expected result graph for this test.

Figure 6.12: Test result expected tree for the Ebay case.

The corresponding CrawlMan steps are:

1. Load CrawlMan’s homepage.

2. Go to the ‘Basic Settings’ page and change Max States to the number of states to visit.

3. Insert the initial URL and proceed to crawl.

4. Inspect the result. The result consists of the node ‘index’, representing the initial
page, and zero or more child nodes, representing pages reached by navigating from
the index page as shown in Figure 6.12. What links were clicked? What did you want
to click instead?

51

6. EVALUATION

5. Select the initial node. The application shows the elements of the page that were
clicked (outgoing edges) and the elements which did not generate a new node (other
clickables). These elements, which are the edges connecting nodes, are buttons
and links, appearing respectively as elements with tag ‘button’ and ‘a’ (anchor).
Buttons can also appear as elements with tag ‘input’ and attribute ‘type=button’ or
‘type=submit’. From these edges, find the description of the ‘Go’ button.

6. The node data also show the input fields that were detected. These fields have been
filled with random data input. Which of these fields corresponds to the text box near
the ‘Go’ button? Looking into the DOM source code, showed at the bottom of the
page, or directly at the original page could help with this operation.

7. Near each one of the detected input fields in Crawlman’s result there is a button with
text ‘before click’. This button allows to create a Set Values Before Click setting using
the already present value or one inserted by the user. Insert the value to search, select
the description of the ‘Go’ button in the list, and then press the ‘before click’ button.

8. Click on ‘apply settings’ at the top of the page.

9. Go to the ‘Basic Settings’ page and disable the Random Input setting. The setting
tells the program to insert random input in all the fields it finds.

10. Crawl again, then inspect the result. Did the application reach the desired state?

11. Find the anchor with text ‘Advanced’ between the elements of ‘state1’.

12. Add the suggested setting by using the ‘click’ button. This will generate a Click set-
ting to click on the defined element. Uncheck generated settings that are not needed,
then click on ‘apply settings’.

Applying an Invariant setting:

1. The first two visited web pages have various HTML elements in common. Can you
identify them, looking at the actual pages?

2. From CrawlMan’s result page is possible to create an Invariant setting. This setting
can verify a condition on every new state during the crawling process. Create an
Invariant to verify that the text box near the ‘Go’ button is present in every state.

3. Crawl again, then inspect the result. Press the ‘check result’ button to verify the result
of Invariant settings. Was the Invariant successful on the first two states? What about
the third state?

4. Can you explain the reason why the Invariant is still holding on ‘state2’.

The Invariant setting is expected to fail on the last state, because apparently the search
text box does not appear in it. The test actually succeeds because a different text box, but
with the same ‘id’, appears inside the page. As the condition used by the Invariant checks
for the presence of an element with the specified ‘id’, the condition is true also on ‘state2’.

52

Evaluation Tests

6.2.3 Test 3: crawling Mediafire

Mediafire [32] is a website that offers content storage and sharing. Users can subscribe to
manage their content, but uploading is actually free for everyone. Mediafire appears in the
top one hundred most-visited sites ranking by Alexa [29] and Google Ad Planner [30], and
it is an AJAX web application. We are not using Mediafire for a test of the website features,
but we are interested instead in the dynamic changes in the main page content.

Figure 6.13: Mediafire homepage.

When loading Mediafire’s homepage using Firefox 5.0 or other browsers not in their
most recent version, a message appears on top of the page to advice the user to update their
browser, as showed in Figure 6.13. When clicking on the message, a pop-up is showed with
links to browser distributor websites. From the pop-up, the message can be dismissed, to
return to the main page. After dismissing the message, the homepage appears unchanged
expect for the absence of the message on top of the page. The browsers employed by Sele-
nium, and thus employed by Crawljax and CrawlMan (Section 7.2.1), present this behavior,
so that the test can be effectively performed. The behavior suggests that the initial and fi-
nal states of the Mediafire web application can be considered equal if the top part of the
homepage is ignored, which represents the perfect situation to verify the working of Oracle
Comparator settings.

When applying an Oracle Comparator setting, we are telling the program to ignore parts
of the detected states during their comparison. In order to recognize a new state Crawljax
compares the current state’s structure and content (the state’s DOM) with the previous states.
During the comparison, Oracle Comparators can tell Crawljax to ignore an element with
a specific ‘id’, ‘xpath’, or a specific attribute of HTML elements, for example the ‘type’
or the ‘name’. It is also possible to add more general Oracle Comparator settings, such
as the Simple Structure comparator, which ignores all the content and attributes of detected

53

6. EVALUATION

states, to compare only their structure, or the Levenshtein Distance comparator, which uses
a threshold from 0 to 1 to decide on state equality. When using the 0 threshold, all states are
considered the same, so that the result only consists of one state, the ‘index’.

Initial steps of the test are:

1. Load CrawlMan’s homepage.

2. Go to the ‘Basic Settings’ page and change Max States to three.

3. Insert the initial URL http://www.mediafire.com and proceed to crawl.

4. Inspect the result. The result consists of the node ‘index’, representing the initial
page, and zero or more child nodes, representing pages reached by navigating from
the index page. What links were clicked? What did you need to be clicked instead?

5. As the link we need to click is the first found in Mediafire’s homepage, the behavior
we needed to reproduce is actually the one obtained. Select ‘state2’, then click on the
button to ‘ALWAYS reach this state’.

6. Click on ‘apply settings’.

7. Crawl, then inspect the result again. Were the settings respected?

We stated that the initial and final state of the application only differ for the presence of
a message. This difference must reflect on the actual code of the page, which is presented by
the result. After a line-by-line comparison of the DOMs of ‘index’ and ‘state2’, performed
with a text comparator tool, it is clear that the sources of the states only differ in lines 36
and 411, respectively containing a ‘body’ and a ‘script’ HTML element.

<BODY class="home animating time-to-upgrade upload condensed windows ie7
basic">

<BODY class="home animating upload condensed windows ie7 basic">

Figure 6.14: Line 36 of Mediafire’s homepage DOM representation respectively for states
‘index’ and ‘state2’.

54

Evaluation Tests

<SCRIPT language="JavaScript" type="text/JavaScript">
//<![CDATA[kd=’xnzuenj66k6; [...]

<SCRIPT language="JavaScript" type="text/JavaScript">
//<![CDATA[kd=’k8qgaaawwap’; [...]

Figure 6.15: Line 411 of Mediafire’s homepage DOM representation respectively for states
‘index’ and ‘state2’.

As shown in Figure 6.14, the ‘body’ elements in the two states differ because of one
parameter absent in the ‘class’ attribute in ‘state2’ - the self-speaking parameter ‘time-to-
upgrade’. The ‘script’ elements of Figure 6.15 differ instead because of the value of the
attribute ‘kd’ inside the ‘CDATA’ element content. The remaining content was omitted
because it did not present differences. We are not interested in the working or the meaning
of these differences, but we know that they are related to the visual changes in the Mediafire
homepage. The result page suggests the necessary settings to ignore these changes.

Applying Oracle Comparator settings:

1. Load CrawlMan’s ‘Result’ page.

2. Click on the check box at the top of the page to enable the suggestion of conditions
and Attribute and XPath comparators.

3. Select ‘index’, then reach the bottom of the page.

4. Add the correct Oracle Comparator setting to ignore the HTML attribute ‘class’.

5. Add the correct Oracle Comparator setting to ignore the HTML element ‘script’.

6. Click on ‘apply settings’.

7. Go to the ‘Basic Settings’ page and disable the Click Default and Random Input
settings, to ensure only the desired elements are exercised.

8. Crawl, then inspect the result again. What did change in the result? Where does the
outgoing edge from ‘state1’ lead now?

After the addition of the correct Oracle Comparators, the changing parts of the page are
ignored. The states ‘index’ and ‘state2’ are recognized as the same page, so that the click
event performed on the pop-up in ‘state1’ leads back to ‘index’. The final result graph is
composed of only two nodes.

55

6. EVALUATION

6.2.4 Test 4: crawling WordPress

WordPress [33] is a blogging platform offering free publishing space and second-level do-
mains. WordPress is an interesting case of a web application which automatically creates
new web applications. A user who subscribes to WordPress creates his own blog, supported
by WordPress services but entirely customizable.

All blogs created through WordPress have a URL in the form of
‘http://yourdomain.wordpress.com/ ’, where ‘yourdomain’ can be substituted with the
preferred expression, given the address does not already exist. This specific aspect makes
WordPress an interesting website to crawl. The website homepage, in fact, contains a huge
variety of links, but most of them lead outside of the original domain, ‘wordpress.com’,
to enter other pages with URLs of the form ‘yourdomain.wordpress.com’. Crawljax, and
CrawlMan with it, is designed to automatically ignore the clickables explicitly bringing
out of the original domain. The user is required to have CrawlMan find all the links present
in the homepage which do not lead out of the original domain, and he is asked to do so by
using only Crawl settings. Figure 6.16 shows the expected result at the end of the test.

Figure 6.16: Wordpress test result tree.

Crawl settings tell the program to crawl or not the current state of the tested web site,
depending on the outcome of the specified conditions. They are applied to every state de-
tected during the crawling process, every time a crawling request is sent. There are various
types of conditions, based on the current state’s URL, or the visibility or position (XPath)
of the elements in it, or more advanced as JavaScript and regular expressions to verify on
the current state. All conditions can be also Not conditions, based on a negative expression.
For example, by applying a Crawl setting with URL condition ‘URL is ‘something”, we
want the program to crawl the current state if its URL contains the word ‘something’ in
it, as in ‘http://www.mydomain.com/something.htm’. If we use the condition ‘URL is not
‘something”, we want the state to be crawled only if ‘something’ does not appear in its
URL. If instead we apply a Crawl setting with a (Not) Visible condition, for example using
the ‘id’ of a HTML element, we want the program to crawl the current state if the element
with that ‘id’ is (not) visible inside the page. When adding a Crawl setting, only the states
respecting the specified conditions will be crawled, which means the program will proceed

56

Evaluation Tests

from these states to find new ones. If the ‘index’ state does not respect the condition(s), the
result consists in no more than one state, the ‘index’ itself.

The corresponding CrawlMan steps are:

1. Load CrawlMan’s homepage.

2. Insert the initial URL http://wordpress.com/ and proceed to crawl.

3. Inspect the result. The result consists of the node ‘index’, representing the initial
page, and zero or more child nodes, representing pages reached by navigating from
the index page. What links were clicked? Which nodes should be removed to comply
with the expected result?

4. The WordPress ‘Sign Up’ page has been reached in more than one state, and more
states have been found starting from this page. Even if it is the same page, the ‘Sign
Up’ page is seen as different states because of randomly generated content, which can
be ignored by applying Oracle Comparator settings, but this is not the point of the
test. We are instead interested in adding a Crawl setting to proceed crawling when
not in this page, so that the states corresponding to this page will not spawn more
child nodes.

5. Click on the check box at the top of the page to enable the suggestion of conditions,
then reach the bottom of the page to add the correct Crawl setting. Select a meaning-
ful condition which will exclude the ‘Sign Up’ page from the crawling. The condition
must be valid in the states we want to crawl and invalid in the states we do not want
to crawl.

6. Click on ‘apply settings’ on the top of the page.

7. Crawl, then inspect the result again. What did change in the result?

8. Repeat the addition of Crawl settings for all the nodes that do not comply with the
desired result. Augment Max States in the ‘Basic Settings’ page until all the conform-
ing clickables in the ‘index’ page have been clicked. Crawl until the desired result is
obtained.

9. Are there elements of the page which were not clicked? If so, can you explain why?

The ‘index’ state presents one link that was not clicked in the ‘Other Clickables’ section
- a link with text ‘later’. The link is not clicked because it is invisible, and only displayed
after clicking on the symmetric link ‘earlier’, which displays blog pages less recent than
the ones already displayed in WordPress’s homepage. The results present states with URLs
outside of the original domain, but this is due to the fact that the clicked elements refer to
internal addresses - yet actually redirect the user to these final URLs.

The same result that we obtained, one root node connected to many leaf nodes, can
be also obtained by specifying Max Depth as 1 in the ‘Basic Settings’ page of CrawlMan.

57

6. EVALUATION

Different settings of CrawlMan can produce the same result, depending on the way they are
used, to ensure the application is flexible enough to satisfy the user needs.

6.3 Interpretation

We discuss here the lessons learned and the modifications derived from the previous tests.

6.3.1 Test 1: crawling Wikipedia

The Wikipedia test was very informative and highlighted the necessity of some changes
to the application. First of all, the test wants the user to navigate from link to link, using
result suggestions. A small Wikipedia page contains around two hundred different links, but
other pages involved in the test contain more than two thousand. The difficulty of showing
the result of crawling such data-rich pages was immediately clear. An early version of the
project simply showed all the detected clickables at once, in the same page. When visiting
a Wikipedia page, the produced result blocked the browser while loading the page, as for
every detected link various visualization elements had to be produced. Furthermore, the
automatic generation of conditions was adding an even heavier burden. Conditions are
in fact generated using id, name, text and xpath of the detected elements, which means
that for every element at least four conditions are generated. It is straightforward that some
modifications had to be applied to lighten up the workload of the application. The following
measures were applied:

• Listing of clickables that did not generate new states were limited to ten at a time.
The user can use internal arrows to navigate the result, so that all the clickables are
shown but not all at once.

• Generation of conditions was disabled by default, but can be enabled through a check
box in the ‘Result’ page.

• Capturing of screenshot was disabled by default, but can be enabled through a check
box in the ‘Basic Settings’ page.

These measures successfully reduced the size of the result and the application workload
on the user’s machine, so that even data intensive results could be inspected.

The test demonstrated that an unexperienced user can use CrawlMan to explore a web-
site, while also showing that the more severe difficulties of crawling are not derived from
CrawlMan itself, but from the working of Crawljax. The users, having no familiarity with
Crawljax, could not imagine the effect of their actions on the crawling process, and how
new settings could influence the crawling and what they had to expect. The solution to
this problem was to include a decision flow graph inside the CrawlMan tutorial (see Ap-
pendix A). This graph intends to show to a user the causes behind Crawljax behavior, so

58

Interpretation

that creation of settings and inspection of result are simplified. Furthermore, it was decided
to add more explanations in the form of tooltips in the areas of the application requiring
more user interaction.

Lastly, the Wikipedia test relies on the Click Default setting to automatically suggest
links to the user. It was noticed that the setting was only useful in the initial crawling, while
hindering the test during the successive steps. The test in fact requires the user to select the
right link to click from the suggested clickables. However, after applying the right sugges-
tion, the Click Default setting was forcing the program to click on all links encountered in
the page before the desired element, resulting in the wrong clicks. The problem was caused
by the fact that at every new found state Crawljax applies all the Click settings in order. The
Click Default setting indicates to click on all anchors and buttons, and it always appears as
the first Click setting, so that more specific settings are practically ignored. This aspect of
Crawljax does not represent a problem in Crawljax itself, because the Click Default setting
was not meant to be used in combination with specific Click settings. Nevertheless, it is not
what a user expects when using it inside CrawlMan. The user would like the program to
execute the specific settings, but also detect other clickables in order to receive new sugges-
tions. The solution to this problem was to substitute Crawljax’s Click Default setting with
Click settings to position after the user-specified settings when Click Default is enabled.

6.3.2 Test 2: crawling Ebay

The Ebay test demonstrated that Invariant settings can be easily used by the common user
through CrawlMan, if the user can understand the concept beside it. A practical example
such as the proposed test is a perfect introduction to Invariants and other advanced settings.
Therefore, it was decided to include the tests of this chapter in the CrawlMan website,
along with the tutorial of Appendix A. The tests will guide the user in their first utilization
of CrawlMan.

As the Invariant settings can succeed or fail independently from other settings, we de-
cided to clearly distinguish their outcome inside the result report. The test highlighted that
the user was confused by the previous form of the report, which did not inform about the
success of Invariants in the presence of errors related to other settings.

The implementation of Set Values Before Click settings was intuitive and easy to use. A
problem was detected related to the suggested clickables for these settings: when the user
selects a state from the result containing many clickables and input fields, loading the page
can be rather slow. We considered the possibility to add a check box to enable the suggestion
of clickables for Set Values Before Click settings only when the user needs it, so that the
standard visualization has a lower weight on the browser. We discarded the possibility
because of the importance of the presence of all the clickables inside the suggestions, and
the fact that is always possible to restrict the size of the result by employing more stringent
definitions inside the settings.

Another confusing point for the user was the unclear separation between ‘Incoming

59

6. EVALUATION

Edges’, ‘Outgoing Edges’ and ‘Other Clickables’ inside the result page. The solution was
to emphasize the titles and borders of the three sections, so that the user could understand
their elements embody different concepts. The ‘Other Clickables’ section was especially
tricky: this section lists all the clickables detected in the selected state, but also clickables
whose click failed. We decided to list failed clicks in the result report, and present this
section just as a list of the detected clickables, to clearly present possible errors to the user.

The test encourages the user to explore the DOM of the selected state and the corre-
sponding web page, in order to identify the elements he needs to perform the test steps. As
CrawlMan wants to make the user familiar with HTML code, it was decided to reformulate
the descriptions of HTML elements in the result page in a way that suggests to the user
their original form. The best way to concisely describe HTML elements is using the HTML
language, so it was decided to employ a kind of pseudo HTML in the descriptions, as shown
in Figure 6.17. When the user looks inside the DOM and the original web page for a certain
element, he now knows what to expect based on its description.

Element <A> with text BUTTON TEXT with attributes ID=’buttonId’
type=’submit’

with xpath /HTML[1]/BODY[1]/BUTTON[1]

Figure 6.17: Two different pseudo HTML representations of the button in Figure 2.6.

The direction of the content of list boxes was changed after this test. The content of list
boxes was often exceeding the limits of the result page, causing the user not to understand
the listed options and not to notice the presence of the list boxes sidebar, necessary for
inspecting all the options. The solution for this problem was found outside Google Web
Toolkit, applying a CSS style to list boxes and their options as shown in Figure 6.18.

60

Interpretation

.gwt-ListBox {
direction: rtl;
text-align: left;

}

.gwt-ListBox option {
direction: ltr;

}

Figure 6.18: List boxes styles.

The styles indicate the direction of the content for list boxes as right to left, and for their
options as left to right. This last addition was necessary as the resulting options text was
messed up by the use of the first style.

6.3.3 Test 3: crawling Mediafire

The Mediafire test showed that Oracle Comparator settings can easily confuse the users.
The concept of ignoring part of the state’s DOM to merge different states in one was easy to
understand for the test users. The difficulties appeared when the users were requested to ap-
ply the settings. The ‘comparison’ process was felt as separated from the ‘ignoring’ process,
so that the users thought they had to add more settings than just an Oracle Comparator. It
was suggested to use a different name for the settings, such as “Ignore Comparators”, to
make their function clearer. The suggestion was not followed as the terminology tails the
original one used by Crawljax, to avoid confusion for possible users who want to access
Crawljax’s original documentation.

We must underline that the tests were done providing to the users as little information
as possible, to verify the intuitiveness of the application. Due to the poor understanding
of Oracle Comparator settings, more information was provided in the test itself and in
CrawlMan’s ‘Result’ page. We decided to visually separate the suggestion of comparators
from the other settings, and to add some simple explanation lines.

Another point of confusion was the use of conditions together with Comparators. For
other settings, when a list box with conditions is present it means adding a condition is
mandatory. For Oracle Comparator settings the condition is optional, but this was not
perceived by the user. The solution was to specify the optionality of the condition on the list
box itself, so that the user understands it is not necessary to specify a condition - it depends
of course on the test we want to perform.

61

6. EVALUATION

6.3.4 Test 4: crawling WordPress

The concept of Crawl settings was the most difficult for users to understand. The test asks
to select a condition which is false in the states we do not want to crawl, but true in all the
other states. Once the users assimilated this concept, they easily proceeded in applying the
correct settings. The first Crawl setting was hard to choose, but once the users inspected the
result and verified its working, the rest of the test was easily performed. More information
was added to the test to correctly guide the users.

The tests also shows how Crawljax selects the clickables to exercise. Many links inside
WordPress’s homepage clearly lead out of the original domain. Other links at first sight
lead to internal pages, but instead redirect to pages outside of the original domain. The
users were surprised to see these states inside the result, but easily realized the difference
between the links by navigating through the actual pages.

Another good point of the test is that the users understood that the same result could
be obtained using other settings - specifying to click on the desired elements or even in a
simpler way by setting Max Depth to 1. The users suggested the methods based on the
experience of the previous tests, so that the test also showed that the use of the application,
once learned, is easy to remember.

6.4 Evaluation

This section uses the information collected during the previous tests to provide an engi-
neering judgment on the CrawlMan project. We have often pointed out the need to make
CrawlMan intuitive and easy to use, and to provide Automated Exploratory Testing. We
investigate here the actual factors that would satisfy the two requirements.

6.4.1 Usability

Easy and intuitive are very vague terms. What we are trying to investigate is the usability of
the project, which is actually defined by an ISO standard for human-targeted products [34].
The definition of usability is “the extent to which a product can be used by specified users to
achieve specified goals with effectiveness, efficiency, and satisfaction in a specified context
of use”. More specifically, usability is composed by five factors [35]:

• Learnability: the degree on which the system is approachable by new users.

• Efficiency: ease and rapidity of completing tasks once the system has been learned.

• Memorability: ease of remembering how to use the system.

• Errors: user’s tendency to errors, and capability to recover from them.

• Satisfaction: pleasantness of use of the product by the user.

62

Evaluation

We explored how CrawlMan can be used by unexperienced users, if good guidance is
provided. With no guidance, testers demonstrated to understand the results of crawling, but
not the refinement of settings. However, the simple tests proposed were enough to teach the
testers group how to select and apply the correct result suggestions.

Once a user has learned to use CrawlMan, it is easy to remember it. Proceeding from
test to test, users did not require an explanation of the features they already used. The
memorability of the project is enhanced by the graphical representation of the result.

CrawlMan is approachable by new users, but they tend to make simple errors. The
concepts behind the proposed settings were fundamental for the users to understand Crawl-
Man’s usage during the tests. For this reason more information was added to the tests, and
we decided to share more documentation on the application itself, such as the tests, the cor-
responding XML session files and the introductory Appendix presented at the end of this
document.

Feedback from users showed that using CrawlMan is an interesting challenge, which
makes testing somewhat pleasant. The test performed on Wikipedia (Section 6.3.1) partic-
ularly seemed to entertain the users, as the goal to reach was clear and thought-provoking.

The efficiency of CrawlMan is the less positive of the investigated factors. Even for
an experienced user, it takes some time to refine a test to perfection, and to understand
the result. This is due to the nature of the provided settings, which represent descriptions
of HTML elements. Every time a setting matches an element of the crawled page, the
element is taken into consideration, so that the crawling process can return more data than
the user expects. Furthermore, because CrawlMan offers Automated Testing, it is the user
expectation that the tests would be performed in a very brief time. The actual crawling
process is not visible to the user, as it is conducted on the server side, so that the user does
not take into consideration the actual time employed by the browser to load the pages under
analysis. These aspects are inherent to testing a web application by using a crawler together
with real browsers. However, CrawlMan gives to the users the possibility to directly define
their settings, so that an experienced user can create the correct settings even before starting
to crawl.

6.4.2 Effectiveness

To measure the ability of CrawlMan to provide Automated Testing we have to consider its
effectiveness. The effectiveness of a system is part of its usability, in the sense of efficiency.
We discuss here about effectiveness instead of efficiency to shift the focus on the compre-
hensibility of the results obtainable through the system, more than the ability of the users to
obtain them.

The effectiveness of a product is also an ISO standard, defined as “the accuracy and
completeness of users’ tasks while using a system”. A system must be able to complete a
user’s task to be effective. The question is, what tasks is a web testing framework required
to complete? We can easily say that a user would like CrawlMan to detect an error, if it

63

6. EVALUATION

exists in the subjected website. But CrawlMan represents an atypical case of web testing
tool, placing the emphasis on the exploratory side. This is why we define the effectiveness
factors for CrawlMan through the ability of CrawlMan’s users to:

• Reach the desired application states.

• Exercise the elements of web pages.

• Detect eventual faults.

• Verify the holding of Invariant conditions.

• Learn information about the website under test.

• Improve the test using CrawlMan’s suggestions.

We have seen that it is not possible to reproduce every desired behavior with CrawlMan.
The project has some limitations, derived from Crawljax, such as the inability to crawl
IFrames. It is possible that these limitations will be overcome in future Crawljax releases,
but at the moment they hinder CrawlMan’s ability to reach every possible application state
and to exercise all the elements of a web page.

CrawlMan presents the eventual failing of Click and Invariant settings in a report gen-
erated in the result page. What other faults could be interesting to detect? The elasticity of
Invariant settings combined with conditions offer many possibilities to the users willing to
experiment.

CrawlMan is very informative about the website under test. The user learns about im-
portant elements of the visited states by inspecting the result, introducing him to the original
HTML code. CrawlMan provides specific state data and an overview of the entire crawling
process, to visually compare the generated states.

We employed unexperienced users to show that everyone can create a web test using
CrawlMan’s suggestions. We can easily say that the suggestions are a great simplification
of the process of collecting the necessary data to create and perfect a test, and that users
willing to learn using the application can easily make the best of CrawlMan’s capabilities.

64

Chapter 7

Related Work

CrawlMan represents first of all a way to crawl and test AJAX pages, dynamic web appli-
cations and websites in general. The crawling capabilities of the project are derived from
Crawljax, so that the project can ultimately be ascribed in the category of the web crawl-
ing test tools. Although a user can use CrawlMan for crawling a website, the focus of this
project is not on the crawling, or offering an interface for making crawling easier. The
project wants to be a testing framework for Automated Exploratory Web Testing, involv-
ing end users in the process. While Crawljax can be extended to be used in other common
crawling environments, such as web indexing or information retrieval, these are different
utilization scenarios that are not in the scope of the present project. This chapter does not
want to compare Crawljax with other AJAX crawlers, it presents instead a panorama of the
web testing techniques and tools, and analyzes them in comparison with CrawlMan.

7.1 Product Testing

We define here four general categories of product testing. The categories are often not
clearly separated in practice, and they apply to all kinds of products, not just web applica-
tions and user interfaces. The description is not a detailed discussion of testing methods,
but a general analysis to help framing the scope of CrawlMan and similar testing tools.

7.1.1 Manual Testing

The simplest way of testing a website is loading it in a browser and navigating through its
pages. Manual Testing is a very common way of testing, especially employed in the final
stage of a product evolution - acceptance testing. It is applied to every kind of product, not
only web applications, as the best way to verify if a product corresponds to user expectations
is trying it out. Manual testing is not synonym of sloppy, negligent testing. It is a way of
testing the final product in the final utilization environment, testing also product integration
if the product is part of a bigger system. Manual testing does not consist in randomly

65

7. RELATED WORK

exercising the functionalities of a product, but in rationalized tests that recreate scenarios of
utilization to exercise vulnerable behavior.

Why do we mention manual testing? It is the form of testing which can actually in-
volve end users. End users, in fact, usually do not have or need insight knowledge on the
development process. What is required from end users is to understand what is the utility
of the product and how to use it. In the specific case of web applications, the end user
could require specialized knowledge related to the final utilization scenarios. For example,
an end user of a banking web interface could be a bank employee, familiar with account-
ing, transactions and other financial operations. The technical, web knowledge which is
required from every end user is just how to use a mouse and navigate a website, which can
be considered common knowledge of every computer user.

7.1.2 Automated Testing

We indicate with Automated Testing the automation of tests that are usually manually per-
formed. Test automation allows to repeat these tests in a mechanical way, making sure
the tests do not change over time and the tested software maintains its characteristics even
through modification. Automated tests are normally written and performed using some test-
ing tool. Our interest is in Web Interface Automated Testing, specifically testing dynamic
pages, and the existing tools presenting these capabilities. Porting of manual tests into an
automated environment means reproducing with a tool the way a user would navigate a web
application. As explained in Section 7.2, there are few ways to reproduce this behavior.
Differences between automated web testing tools consist mostly in which kind of browser
they exercise, how the tool interacts with the web page and the language used for scripting
tests.

7.1.3 Exploratory Testing

Exploratory testing [36] is usually performed by an experienced tester. The tester could
be a user aware of the technologies underlying the application. It is defined in [37] as
“simultaneous learning, test design and test execution”, which means that while the test is
designed and performed, the tester gains knowledge to improve the test and design new
ones. In a general view, all testing can be considered exploratory, but here the focus of the
tester is not on executing a series of prebuilt tests over and over, but deciding every moment
which is a valuable test to run, something which could lead to the discovery of undetected
faults. The decision is based on many factors, such as the the product objective, interface,
behavior, the known problems and weaknesses, recent modifications, and all other data
relative to the development and testing of the project, but it ultimately relies on the tester’s
role, knowledge and skills.

Exploratory testing does not substitute systematic testing, it is employed to diversify it.
It is itself a form of documented testing, except for the specific case of freestyle exploratory
testing, where the tester only produces a report of newly detected bugs. Its strength is in

66

Web Interface Testing Tools

the speed of collecting feedback, which can then be used for creating new tests. The infor-
mation collected during test execution helps refactoring the tests themselves, representing
a flow of information between design and execution. As this aspect represents also the
main strength of this project, CrawlMan can be defined a form of Automated Exploratory
Testing. As defined in [38], Automated Exploratory Testing can be divided into passive or
active. In the passive testing, the testing session is registered by some tool for later analysis,
for example using a video capturing tool. Time and effort for reporting a bug are consid-
erably reduced, as the conditions of its appearance are clearly documented. In the active
testing, the test is designed during the execution. The tester is not required any program-
ming knowledge, as this kind of testing follows a Keyword Driven Testing approach [39],
in which the logical layer is divided by the test automation infrastructure layer by means of
a translating interface. The tester inserts into the interface a set of keywords describing the
elements to test, the action to perform and eventual input data. Those keywords are used
by the infrastructure layer to generate and execute scripted tests. CrawlMan falls into this
latter category, as an Active Automated Exploratory Testing framework, where the inserted
keywords are formed by description of HTML elements, actions to perform such as click,
crawl, ignore and other settings, and possible input data for input fields.

Does this mean CrawlMan cannot be used in a systematic approach? Absolutely not,
because every session executed in CrawlMan can generate a script describing a test case,
part of a larger test suite. A single test case can also be considered systematic if it is exercis-
ing all the elements of a certain kind, for example all anchors in a web page. Nevertheless,
the nature of the definition of settings in Crawljax, capable of fitting many elements at the
same time, leaves open the exploratory side of every test case, which will exercise newly
introduced elements if their description corresponds to the already tested elements.

7.1.4 Systematic Testing

In Systematic Testing, opposed to Exploratory Testing, there is always a defined plan. Test
cases are first designed, then executed, manually or in an automated way. Tests are collected
in test suites, versioned for regression tests. Systematic Testing does not only consider the
interface of a system, but it is performed at a granular, in-depth level. Functional and
unit testing are forms of Systematic Testing, but the term generally includes all kinds of
thorough inspection of a product. Systematic Testing ensures the absence of obvious bugs,
the regression of the product to previous unstable situations and its overall functionality and
respect for requirements. The test designer can be different from the test executioner, who
need not have technical knowledge of the product.

7.2 Web Interface Testing Tools

Testing web applications client side is a specific brand of Graphical User Interface (GUI)
Testing, as the user interface is a web interface, accessible through a browser. There are
actually not so many techniques and tools which automatize the testing process. Following

67

7. RELATED WORK

the distinction made in [40] and better expressed in [41], we divide web testing tools in two
categories:

• Browser Simulators, tools that can perform HTTP requests to a server, load and parse
HTML content and execute actions on it as a browser would do.

• Browser Drivers, tools that drive browser instances and perform actions on the page
through the browser.

Crawljax pertains to the second category, thanks to its use of the Selenium libraries (Sec-
tion 7.2.1), and so does CrawlMan. The advantage of browser drivers is the power to exe-
cute tests reproducing the actual way a user would navigate the website. On the other side,
browser simulators do not require installation of third party browsers and the utilization of
a display environment, usually missing on dedicated machines and servers. Still, the use of
browser simulators may be feasible just for executing simple smoke tests, as simulators do
not support all the possibilities of JavaScript, as instead implemented by real browsers.

Another distinction must be made between testing tools, depending on the level of au-
tomation they support:

• Scripting tools, offering automation of test execution.

• Capture&Replay (or Recorder) tools, automating test creation and execution.

• Crawlers, allowing automated exploration.

Most of the AJAX testing tools, simulators and drivers, are of the Capture&Replay
type [7]. Those tools record the actions of a user during the navigation of a web application,
so that the session can be automatically repeated. The user’s actions are converted in a
script, which can be later manually modified. Capture&Replay tools make easy for an
end user to write a test, and often to modify it, by employing a Keyword Driven Testing
approach (Section 7.1.3). They can be used in a passive exploratory way, with the tool
recording everything the tester does. The tool is generally a framework, allowing definition,
modification and filing of tests.

The other option for interface testers is to create their own scripts. Scripting tools and
languages automate the execution of the tests, but it is still left to the developer to gain the
necessary knowledge and manually script the tests. The scripts call on browser simulators or
browser drivers for test execution, usually part of the tool. Those tools are often extended to
create Capture&Replay tools, which do not need scripting knowledge, enhancing end user
involvement.

Until now we did not find a tool using a testing method similar to the one employed by
CrawMan, capable of automatic exploration of a web application through a crawler to detect
abnormalities and errors, and collecting data to improve the current testing session. There
are similar tools based on traditional crawlers, developed for testing the Web 1.0 [7]. The

68

Web Interface Testing Tools

approach for testing AJAX interfaces until now has been through scripts, and adapting web
applications for partial navigation by traditional crawlers. Static approaches for analyzing
the server side code have been proposed, but these techniques cannot reproduce complex
runtime behavior [7].

7.2.1 Tools Panorama

We present a description of the characteristics of some of the most used web testing tools,
together with CrawlMan. We are interested here in test and scripting automation for AJAX,
and tools that involve the end users by avoiding the need of programming knowledge, and
we include scripting beyond AJAX tools which share some aspects with the project.

HTMLUnit

HTMLUnit [42] is a Browser Simulator in Java, modeling HTML documents and providing
API to deal with them. It has a good JavaScript support, so that it can emulate Firefox or
Internet Explorer. It is meant for use in another testing frameworks, and it presents no GUI
to the user so that it can be used as a browser in headless environments. It supports XPath
recognition, a feature shared by Selenium, which makes use of HTMLUnit.

HttpUnit

HttpUnit [43] is a Browser Simulator written in Java. As all simulators, it does not fully
support JavaScript. It neither supports, and there is no plan to support, browser-specific
JavaScript, meaning it does not emulate specific browsers. Its use can be easily integrated
in testing frameworks such as JUnit. Its main difference from HTMLUnit is that it models
the HTTP protocol instead of the returned document.

Imprimatur

Imprimatur [44] is a Browser Simulator tool, implementing the HTTP request and response
as we have seen in HttpUnit. It does not offer support for JavaScript or other languages.
The only thing Imprimatur does is validation of the response content using regular expres-
sions. Test cases are written in XML and can be executed from the console or within Ant.
Imprimatur is an open-source project written in Java.

MaxQ

MaxQ [45] is an open-source Browser Simulator tool with Capture&Replay capabilities. It
works as a proxy between browser and server, recording requests and responses to create a
script of the session. Scripts are written in XML or Jython, Java for Python, so that they are

69

7. RELATED WORK

easy to understand and modify, but can also work in a Java environment such as JUnit. The
project itself is written in Java to be cross-platform, and can be run from the command line.
It can be used with any browser which can be configured to use a HTTP proxy.

Sahi

Sahi [46] is an open-source tool written in Java and JavaScript. It works with any operating
system and browser, being a proxy between client and server. Similarly to MaxQ [45], it can
record a user session for later replay. It offers automatic proxy configuration for the browser,
easy creation of checks on web elements and an intuitive interface. Sahi script is JavaScript
based, and is injected directly in the visited page for interaction. Sahi is maintained by Tyto
Software, offering also an advanced, paid version with customer support. It is a reliable
choice, adopted by many companies such as Oracle, Accenture, and Deloitte.

Selenium

Selenium [47] is the name of a suite of tools pertaining to the category of Browser Drivers.
Part of the suite are the Selenium Web Driver libraries, allowing to drive instances of Inter-
net Explorer, Mozilla Firefox, Chrome, Safari, Opera, HTML Unit and browsers on remote
servers. The remote servers can be created with Selenium Grid, also part of the suite. Web
Driver libraries are cross-browser, cross-language and cross-system, as it is possible to use
them with Java, C#, Ruby, Python, PHP and Perl on Windows, Linux, Solaris and OS X.
Projects making use of the Web Driver libraries, for example Crawljax, usually take advan-
tage of these possibilities, making them cross-browser and cross-system as well.

Selenium also offers a Firefox extension which acts as a Capture&Replay tool, the
Selenium IDE. The environment allows recording, editing and debugging of tests written in
Selenese, which is easy for non-programmers to learn, as it reflects the actions executed on
the browser. The IDE and the other Selenium tools are open-source.

SlimDog

Slimdog [48] is an open-source Scripting tool, based on HttpUnit and written in Java. It
uses its own set of commands, similar to Selenese (Section 7.2.1) and easy to understand
for non-programmers. A test case is a text script, and multiple scripts can be part of a test
suite by reuniting them in a folder. Tests are executed from the console or as an Ant task.
Result reports are written to the console or to a file. Slimdog commands can be used in
JUnit test cases.

70

Web Interface Testing Tools

Squish

Squish by FrogLogic [49] is a proprietary Eclipse based testing framework for GUI and Web
interfaces. It is a Capture&Replay and Scripting tool, supporting Internet Explorer, Mozilla
Firefox, Chrome, Safari, Opera on Windows, Linux, Unix and Mac OS X platforms. It
offers its own scripting language and supports Python, JavaScript, Perl and Tcl. Like Sele-
nium and HTMLUnit, it supports the use of XPath element definition. It can be considered a
proprietary version of Selenium, with the advantage of offering customer support. It is cur-
rently used by many different companies such as Google, Intel, Siemens, Ericsson, Shell,
Disney, Vodafone, Boeing and Mercedes-Benz, only to name a few.

VeriWeb

VeriWeb [50] is a tool very much like CrawlMan, crawling a web application to perform
checks on basic correctness and functional and regression tests. It scans the DOM of a
page in search for “active objects”, elements of the page which usually have an associated
action such as links, buttons, items in select boxes and form fields. When a list of possible
actions is identified by the ChoiceFinder, a decision on the direction to follow is taken by
the underlying VeriSoft implementation. VeriSoft [51] is a tool for systematic exploration
of application space states. Unlike Crawljax, VeriSoft recognizes different states of a web
application only if they correspond to different pages, which makes VeriWeb not fully AJAX
compatible despite the ability to navigate through dynamic components.

The VeriWeb project has been terminated, so we could not perform an actual verifica-
tion of its capabilities. VeriWeb uses a component called Web Navigator for driving existing
browsers, but a list of supported browsers was not found as this element remained in a proto-
typing phase. Scenarios can be saved for later visualization and replay using WebVCR [52],
but not for editing.

Watir

Watir [53], Web Application Testing in Ruby, is a set of Browser Driver libraries written
in Ruby. By itself, Watir only supports Internet Explorer on Windows, but it becomes
cross-browser and cross-platform by extending Selenium Web Driver libraries. Watir tests
are easy to read and modify thanks to the Ruby language, so that Watir libraries are often
extended by other tools using Ruby, such as Acceptance Testing frameworks like Cucumber.
Watir is already cross-language, but there are also many tools similar to Watir, written in
different languages as Java (Watij), .NET (WatiN), Perl (Win32-Watir), presenting the same
capabilities. Watir is already used by major companies like HP, Oracle, SAP, Yahoo and
Facebook.

71

7. RELATED WORK

WebUI

WebUI [54] is a proprietary Recorder tool by Telerik, for both desktop and web applica-
tions. It comes in two flavours, a stand-alone version or a plugin for Visual Studio devel-
opers. WebUI is only for Windows, but it can support various browsers: Internet Explorer,
Mozilla Firefox, Chrome and Safari. Tests are scripted in C# or VB.NET, but using the
Capture&Replay interface does not require programming knowledge.

Windmill

Windmill [55] is a Browser Driver, open-source testing environment with Capture&Replay
capabilities, very similar to Selenium. Just like Selenium, it supports Internet Explorer,
Mozilla Firefox, Chrome, Safari and Opera, but it is written in Python. Windmill tests can
be written and generated not only in Python, but also in Ruby and JavaScript. Windmill
also employs XPath for identifying DOM elements.

7.2.2 Comparative Analysis

The tools we have described fairly represent the present panorama of (AJAX) web testing
tools. This section is intended to analyze the differences between the tools, and highlight
the contribution brought in by CrawlMan. Table 7.1 summarizes the main aspects of the
tools.

The implications of Table 7.1 are as follows. First of all, CrawlMan is currently the only
AJAX testing tool employing crawling techniques. Web automated testing is often referred
to as crawling, because a tool crawls through a website following a script listing the steps to
execute on its pages, but we refer here to crawling as the action of a web crawler, a software
program which can autonomously and systematically explore a web application, in our case
Crawljax. The most similar tool is VeriWeb, but the project is actually unavailable, and there
is no documentation of successful utilization of VeriWeb on an AJAX web application.

Some aspects of Browser Simulators must be clarified. As we said, they lack reliable
support for JavaScript, which is a point in favor of Browser Drivers. HTMLUnit seems the
most valid simulator on this point, being able to emulate Firefox and Internet Explorer as
pointed in the table. Other simulators, like Imprimatur and MaxQ, do not even exercise
the page and its elements, just the HTTP request and response. The suitability of these
tools depends on the tests to be performed, for example they can easily execute file uploads,
but drivers are rapidly integrating these possibilities. We can affirm that simulators are
generally satisfactory for exercising a web server, but not the client interface itself, which
often presents a complicated dynamic behavior in case of AJAX applications.

Regarding Browser Drivers, there are some of them, Watir and CrawlMan itself through
Crawljax, which make use of Selenium Web Driver libraries. These share the same pos-
sibilities. Selenium and SlimDog are both indicated as Browser Drivers, considering their

72

Web Interface Testing Tools

Web Interface Testing Tools
AJAX Simulator/

Driver
Script/
Record/
Crawl

Open
Source

Cross
Browser

Cross
System

Scripting Language

CrawlMan yes driver crawl yes IE FF CH
HM

yes XML

HTMLUnit yes simulator script yes IE FF yes Java
HttpUnit yes simulator script yes no yes Java
Imprimatur yes simulator script yes no yes XML
MaxQ yes simulator record yes no yes Jython XML
Sahi yes simulator record yes yes yes JavaScript
Selenium yes driver script yes IE FF CH

HM
yes C# Groovy Java Perl

PHP Python Ruby
Selenese

SlimDog yes driver script yes HP yes SlimDog
Squish yes driver record no IE FF CH

SF OP
yes JavaScript Perl Python

Squish Tcl
VeriWeb no driver crawl no yes LNX SOL Tcl DTD XML
Watir yes driver script yes IE FF CH

HM
LNX MAC
WIN

Cucumber Ruby

WebUI yes driver record no IE FF CH
SF

WIN C# VB.NET

Windmill yes driver record yes IE FF CH
SF OP

yes JavaScript Python
Ruby

LEGENDA
Web Browsers Operating Systems

CH Chrome LNX Linux
FF Mozilla Firefox MAC Macintosh
HM HTMLUnit SOL Solaris
HP HttpUnit WIN Windows
IE Internet Explorer
OP Opera
SF Safari

Table 7.1: Web Interface Testing Tools overview.

internal utilization of simulators, HTMLUnit for Selenium and HttpUnit for SlimDog, as
interchangeable with any possible real browser instance. At the moment this possibility is
only available in Selenium and projects inheriting it.

The most interesting tools, and especially Browser Drivers, are the Capture&Replay
tools which can act cross-system and cross-browser, helping the user create a basic test to
modify and replicate. The category includes just two of the examined tools: Squish and
Windmill. Some of the strong features of these tools are the clear depiction of test success
or failure, ease of creating and modifying the tests, and intuitive definition of verification
points. As those tools replicate a recorded session, it is relatively easy to verify if the
session was correctly repeated. This is not the case of crawling tools, whose result can be
different from time to time if a generic or random description of the elements to exercise is
provided. It is important to emphasize these concepts in CrawlMan, to ensure valid testing
capabilities.

73

7. RELATED WORK

Considering scripting languages, recording tools make it easy to modify the scripts
by clearly showing to the user which action corresponds to every command. In addition
Squish and Windmill both support scripting in JavaScript and Python. It is interesting how
the scripts could be easily converted in other more user-friendly formats, for example using
Cucumber [56], as Watir already does. In CrawlMan, it is possible for the user to save
his session in XML and later reload it into the application. If the user really wants, it
is possible for him to manually modify the script, but the use of the application and its
dynamic suggestions is encouraged.

All tools use some means for identifying elements of the web pages, or widgets, by
name, id, text or xpath. Claims on what is the best method vary, as the more stringent the
definition of an element, the easier the test is going to fail when performed on a different
version of a page containing that element. Especially the use of XPath directly connects the
identification of an element with its position inside the DOM. Most tools, including Crawl-
Man, give the possibility to use XPath to refine the definition of elements. The possibility
CrawlMan is adding is defining elements with a very general description, for example all
tags of a certain type, which is not implemented by non-crawling tools. VeriWeb is partially
implementing this feature by simply clicking every web element which is usually employed
to fire an event.

74

Chapter 8

Conclusions

We present in this chapter an overview of the project’s contributions. The possibilities
of CrawlMan are discussed and what differentiates it from other web testing frameworks.
Finally we describe possible future additions to improve the project.

8.1 Contributions

CrawlMan is a framework for Automated Exploratory Testing of Web2.0 websites. It is,
at the moment we write, a framework unique in its genre, using an AJAX crawler to auto-
matically explore web applications, and being itself an AJAX web application. This is the
original contribution of CrawlMan.

CrawlMan extracts the state flow graph constructed by Crawljax to present it to the
user, together with the collected information about nodes and edges, in an orderly way.
Crawljax is the only existing crawler capable to process AJAX web applications because
it can reconstruct the succession of different states. CrawlMan takes advantage of this
aspect by using the resulting data to build an interactive model for the user to inspect. The
model helps the user understand the result and the application suggests new settings to the
user through the model itself. This aspect makes CrawlMan a framework for Exploratory
Testing, because the execution of a test is used to improve the test itself. The tests are
performed in an Automated way.

It may seem a secondary aspect, but being a web application CrawlMan does not need
installation. The crawling process is performed on the server side, so that the resources
of the user computer are untouched. The load on the client side of the application has
been lowered to the minimum, by having the user enable the more computational intensive
features only when he needs them. CrawlMan does not require installation, so that the tests
do not depend on the user machine and are performed in an independent environment.

75

8. CONCLUSIONS

8.2 Research Questions Revisited

Here, we answer the questions raised by this project (Section 1.2), establishing if the goals
of the project were successfully met.

First, it is possible for a common user to set CrawlMan to reproduce a specific web
application behavior and understand the result. Tests were performed with chosen users
with no experience of programming or HTML to demonstrate this aspect. The tests also
showed that insight on the working of Crawljax can help the user in the process.

Second, the user tests also demonstrated that CrawlMan can be used to bring an appli-
cation in the desired state. The report implemented in CrawlMan to analyze the result has
proved useful to indicate potential faults, pointing the user in the right direction to correct
his settings.

Finally, CrawlMan is useful for automated exploration of a web application. It cannot
substitute other testing tools, but it can offer an interesting and diverse point of view of a
website functionalities. CrawlMan represents a possibility that did not exist before, opening
new testing panoramas for web developers as well as end users.

8.3 Reflection

The capabilities and ease of use of CrawlMan were demonstrated during the evaluation
tests of Chapter 6. The tests also showed that the usefulness of CrawlMan depends on
the understanding of the settings and the result by the user. We observed that knowledge
about the working of Crawljax and the crawling process itself helps the user interpret the
result, and appropriately modify the settings. As the information given during the tests was
sufficient for unexperienced users to successfully use CrawlMan, we decided to include
Crawljax-related information and the evaluation tests inside the CrawlMan website.

CrawlMan offers Automated Exploratory Testing of AJAX web applications, which
means it offers a point of view different from other tools to web testers. It can be used like
a ‘Capture & Replay’ tool, but only if the user is able to define very specific settings, in
which he is helped by the result suggestions. The same test can be repeated on different
browsers, and possibly on different operating systems taking advantage of the possibilities
of Selenium libraries. Unfortunately, the capabilities of CrawlMan have limitations. It is
more complicated to use than a ‘Capture & Replay’ tool, where everything a user is asked
to do is perform a sequence of actions inside his browser, to have these actions repeated
whenever they are needed. In CrawlMan, the user mostly gives a direction for the test
to follow. Building a sequence of definite actions to repeat is done by executing various
crawling attempts, which considerably lengthens the time needed to build an articulated
test.

Even if the user can successfully define a complicated test involving a sequence of
definite actions to perform on a website, the outcome of these actions cannot be verified in

76

Future work

a direct way as in ‘Capture & Replay’ tools. The settings of CrawlMan are description of
HTML elements, so that every time the same description is encountered, the corresponding
setting is applied. There is a one-to-multiple relationship between the settings of CrawlMan
and the resulting data, instead of a one-by-one relationship as it happens for other tools.
This leaves the interpretation of the result open to the user, who is required to know and
understand the website under test.

Contrary to other tools, CrawlMan cannot execute a suite of tests, but every test must
be executed independently. The functionality can be easily added, but it was decided to
momentarily leave out such a feature because it would enormously augment the load on
the hosting server. Furthermore, CrawlMan cannot be used to test file upload and down-
load functionalities, as the file should be positioned on the server itself. Due to Crawljax
limitations, it also cannot currently crawl IFrames.

8.4 Future work

We discussed in Section 8.3 how CrawlMan could be expanded with the possibility of ex-
ecuting a suite of tests. In this case it would be also useful to provide a printable report,
maybe even incorporating the log produced by Crawljax. The addition of these features
would require observation on the utilization of CrawlMan by real users, collecting impor-
tant data as the server load to ascertain the features feasibility and benefit.

CrawlMan is hosted by the SPCI server of the EWI faculty of TU Delft. The server runs
an Ubuntu operative system, so that the crawling process takes place only in an Ubuntu
environment. Crawljax, through the Selenium libraries, offers the possibility to perform the
crawling on a remote server which runs the actual browser instances. It would be interesting
to have other servers available, running different OSs, to offer the user the possibility to
perform the same test not only on different browsers, but also different environments.

Only limited stress tests were performed, as for extensive stress testing a pool of many
more users should have been involved. Monitoring the user activity on the server could
indicate other directions for expanding. Also, security tests should be performed to ensure
the safety of the server. Google Web Toolkit already enforces correctness of requests and
other simple security measures. Other necessary aspects, such as escaping HTML input
and validation of inserted URL, Max States and Max Time were implemented. A form of
avoiding an infinite loop where the user tries to use CrawlMan to crawl CrawlMan itself was
also integrated in the project, but more specific security tests in different directions should
be conducted.

We talked about the possibility of adding existing plugins offered by Crawljax to the
project (Section 3.1.1). The plugins were not added as they were not needed for the aim
of the project, still some functionalities they offer could be adapted to CrawlMan’s use.
For example, the possibility to create a JUnit test from a crawling session for the user to
download is particularly interesting, but it was not considered at the moment because the
project was especially intended for use by non-programmers.

77

8. CONCLUSIONS

78

Bibliography

[1] S. Lenselink, “Concurrent Multi-browser Crawling of Ajax-based Web
Applications,” MSc Thesis, SERG, TU Delft, 2010.

[2] Crawljax: Writing Plugins. Delft, NL: SERG, TU Delft.
http://crawljax.com/documentation/writing-plugins/, July 2009.

[3] T. O’Reilly, “What is web 2.0: Design patterns and business models for the next
generation of software,” in Communications and Strategies, vol. 65, p. 17, ITS
Communications and Strategies, 2007.

[4] J. J. Garrett, AJAX: A new approach to web applications. San Francisco, CA, USA:
Adaptive Path. http://adaptivepath.com/publications/essays/archives/000385.php,
February 2005.

[5] A. Mesbah, E. Bozdag, and A. van Deursen, “Crawling AJAX by Inferring User
Interface State Changes,” in Proceedings of the 8th International Conference on Web
Engineering (ICWE’08) (D. Schwabe, F. Curbera, and P. Dantzig, eds.), pp. 122–134,
IEEE Computer Society, July 2008.

[6] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling Ajax-based Web
Applications through Dynamic Analysis of User Interface State Changes,” in ACM
Transactions on the Web (TWEB), ACM, 2011.

[7] A. Mesbah and A. van Deursen, “Invariant-Based Automatic Testing of AJAX User
Interfaces,” in Proceedings of the 31st International Conference on Software
Engineering (ICSE’09), Research Papers, pp. 210–220, IEEE Computer Society,
2009.

[8] A. Mesbah, A. van Deursen, and D. Roest, “Invariant-Based Automatic Testing of
Modern Web Applications,” in IEEE Transactions on Software Engineering (TSE),
vol. 37 issue 6, pp. 1–37, IEEE Computer Society, 2011.

79

BIBLIOGRAPHY

[9] A. Mesbah and A. van Deursen, “An Architectural Style for AJAX,” in Proceedings
of the 6th Working IEEE/IFIP Conference on Software Architecture (WICSA’07)
(D. Paulish, I. Gorton, J. Tyree, and D. Soni, eds.), pp. 44–53, IEEE Computer
Society, 2007.

[10] A. Mesbah and A. van Deursen, “A Component- and Push-based Architectural Style
for Ajax Applications,” in Journal of Systems and Software, vol. 81, no. 12,
pp. 2194–2209, Elsevier, 2008.

[11] Facebook. Palo Alto, CA, USA: Facebook Inc. http://www.facebook.com/, February
2004.

[12] Gmail: Email from Google. Mountain View, CA, USA: Google Inc.
http://mail.google.com/mail/, April 2004.

[13] Wikipedia - The Free Encyclopedia. San Francisco, CA, USA: Wikimedia
Foundation Inc. http://www.wikipedia.com/, July 2004.

[14] Ebay. San Jose, CA, USA: Ebay Inc. http://www.ebay.com/, September 1995.

[15] Google Web Toolkit - Google Code. Mountain View, CA, USA: Google Inc.
http://code.google.com/webtoolkit/, May 2006.

[16] Google. Mountain View, CA, USA: Google Inc. http://www.google.com/, September
1998.

[17] M. Kobayashi and K. Takeda, “Information retrieval on the web,” in ACM Computing
Surveys (CSUR), vol. 32, pp. 144–173, ACM, 2000.

[18] Yahoo. Sunnyvale, CA, USA: Yahoo Inc. http://www.yahoo.com/, March 1995.

[19] Bing. Redmond, WA, USA: Microsoft Corporation. http://www.bing.com/, June
2009.

[20] Internet Explorer. Redmond, WA, USA: Microsoft Corporation.
http://windows.microsoft.com/en-US/internet-explorer/products/ie/home, August
1995.

[21] Mozilla Firefox. Mountain View, CA, USA: Mozilla Corporation.
http://www.mozilla.org/en-US/firefox/new/, November 2004.

[22] Google Chrome. Mountain View, CA, USA: Google Inc.
http://www.google.com/chrome, September 2008.

[23] HTML & CSS standards. Cambridge, MA, USA: World Wide Web Consortium
(W3C). http://www.w3.org/standards/webdesign/htmlcss, June 2011.

[24] Document Object Model (DOM). Cambridge, MA, USA: World Wide Web
Consortium (W3C). http://www.w3.org/DOM/, January 2009.

80

[25] Software Engineering Research Group (SERG), TU Delft. Delft, NL:
http://swerl.tudelft.nl/bin/view/Main/WebHome, 2009.

[26] XML Path Language (XPath). Cambridge, MA, USA: World Wide Web Consortium
(W3C). http://www.w3.org/TR/xpath/, November 1999.

[27] Eclipse - The Eclipse Foundation open source community website. Ottawa, ON, CA:
Eclipse Foundation Inc. http://www.eclipse.org/, January 2004.

[28] Apache Maven Project. Forest Hill, MD, USA: Apache Software Foundation.
http://maven.apache.org/, June 1999.

[29] Alexa Top 500 Global Sites. San Francisco, CA, USA: Alexa - The Web Information
Company. http://www.alexa.com/topsites/global, April 1996.

[30] Top 1000 sites - DoubleClick Ad Planner. Mountain View, CA, USA: Google Inc.
http://www.google.com/adplanner/static/top1000/, June 2008.

[31] PayPal. San Jose, CA, USA: PayPal Inc. http://www.paypal.com/, December 1998.

[32] Mediafire - Free File Sharing Made Simple. Harris County, TX, USA: PayPal Inc.
http://www.mediafire.com/, October 2006.

[33] WordPress.com - Get a Free Blog Here. San Francisco, CA, USA: WordPress
Foundation. http://wordpress.com/, May 2003.

[34] ISO, ISO/TR 16982:2002 - Ergonomics of human-system interaction – Usability
methods supporting human-centred design. ISO, Apr. 2005.

[35] J. Nielsen, Usability Engineering. Interactive Technologies, San Francisco, CA,
USA: Morgan Kaufmann, September 1993.

[36] J. A. Whittaker, Exploratory Software Testing: Tips, Tricks, Tours, and Techniques to
Guide Test Design. Boston, MA, USA: Addison-Wesley Professional, September
2009.

[37] J. Bach, “Exploratory testing explained,” in The Testing Practitioner, (Den Bosch,
NL), pp. 253–265, UTN Publishers, 2002.

[38] A. Zylberman and N. Shenar, White Paper: Exploratory Automated Testing.
Norwalk, CT, USA: QualiTest Group.
http://www.qualitestgroup.com/Automated Exploratory Testing.html, October 2003.

[39] H. Buwalda, Key Success Factors for Keyword Driven Testing. San Mateo, CA, USA:
LogiGear Corporation. http://www.logigear.com/resource-center/software-testing-
articles-by-logigear-staff/389–key-success-factors-for-keyword-driven-testing.html,
November 2007.

[40] B. Pettichord, “Homebrew Test Automation - a One-Day Seminar,” (Austin, TX,
USA), http://www.pettichord.com/homebrew automation.html, September 2004.

81

BIBLIOGRAPHY

[41] G. Gheorghiu, “Agile testing: Web app testing with Python part 1: MaxQ,”
http://agiletesting.blogspot.com/2005/02/web-app-testing-with-python-part-1.html,
February 2005.

[42] M. Bowler, “HTMLUnit.” http://htmlunit.sourceforge.net/, May 2002.

[43] R. Gold, “HttpUnit.” http://httpunit.sourceforge.net/, May 2000.

[44] T. Locke, “Imprimatur.” http://imprimatur.wikispaces.com/, July 2006.

[45] J. Cooper, “MaxQ.” http://maxq.tigris.org/, February 2003.

[46] N. Raman, “Sahi.” http://sahi.co.in/w/, November 2005.

[47] G. Gheorghiu, “Tool Look: A Look at Selenium,” in Better Software (H. Shanholtzer,
J. McAllister, and L. Copeland, eds.), vol. 7, p. 38, Software Quality Engineering,
October 2005.

[48] A. Mecky, “Slimdog.” http://slimdog.jzonic.org/, November 2004.

[49] FrogLogic, “Squish - the cross-platform GUI test automation tool.”
http://www.froglogic.com/index.php, November 2003.

[50] J. Freire, M. Benedikt, and P. Godefroid, “Veriweb: Automatically testing dynamic
web sites,” in Proceedings of the 11th International World Wide Web Conference
(WWW2002), pp. 654–668, ACM, May 2002.

[51] P. Godefroid, “Model Checking for Programming Languages using Verisoft,” in
Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pp. 174–186, ACM, January 1997.

[52] V. Anupam, J. Freire, B. Kumar, and D. Lieuwen, “Automating Web Navigation with
the WebVCR,” in Proceedings of the 9th International World Wide Web Conference
(WWW2000), pp. 503–517, ACM, May 2000.

[53] B. Pettichord, P. Rogers, and J. Kohl, “Watir: Web application testing in ruby.”
http://watir.com/, January 2005.

[54] Telerik, “Webui test studio.” http://www.telerik.com/automated-testing-tools.aspx,
February 2009.

[55] A. Christian, A. Goucher, and T. Riley, “Web application testing with Windmill,” in
Beautiful Testing: Leading Professional Reveal How They Improve Software, p. 352,
O’Reilly Media, October 2009.

[56] M. Wynne and A. Hellesøy, The Cucumber Book: Behaviour-Driven Development
for Testers and Developers. Lewisville, TX, USA: The Pragmatic Bookshelf, January
2012.

82

Appendix A

Introduction to CrawlMan

This appendix contains a small introduction on the use of CrawlMan, and the necessary
basic information on dynamic web pages and HTML elements. CrawlMan settings use
this information, as the crawling and the construction of a tree graph is done by analyzing
differences in the HTML code of the visited pages.

A.1 Dynamic Pages

During the first era of the Internet, later denominated Web 1.0 [3], the World Wide Web was
a collection of hypertexts, pages connected through each other by links and offering static
information. The structure of a traditional website can be represented with a tree graph,
where the homepage, or index, is the root of the tree, the other pages represent the nodes
of the tree and the links between them are the edges of the tree. An example is shown in
Figure A.1.

Figure A.1: Traditional website representation: every node corresponds to a different page.

83

A. INTRODUCTION TO CRAWLMAN

Modern websites are instead composed by dynamic pages, changing their behavior ac-
cording to the user actions, presenting content without the necessity of reloading. They
more and more resemble desktop software, that is why we speak of web applications and
Web 2.0 [3]. As new content does not correspond to different pages, we are forced to aban-
don the previous representation of websites. Web applications can still be imagined as tree
graphs, where the root is the homepage, but the other nodes do not correspond to static
pages, with different URLs. The nodes instead represent now states of the application, and
the edges between them are the user actions which make the application change, as shown
in Figure A.2.

Figure A.2: Web application representation: the nodes are different states assumed by the
application.

Contrary to other web testing tools, CrawlMan is able to present to the user a graph
representation of the states of a web application, extracted by Crawljax [5, 7, 9]. This gives
the user a clear idea of the working of the application, which is instead represented by other
tools as a simple sequence of user actions, ignoring the fact that different actions bring the
application in different states. The result of a crawling session is presented in CrawlMan as
a tree graph, and information about the retrieved states is visualized when selecting a node.

A.2 HTML Fundamentals

A web page, as any person sees it when navigating through the Internet via a web browser,
is a collection of data - text, active elements and multimedia content. Figure A.3 shows an
example of web page.

84

HTML Fundamentals

Figure A.3: Wikipedia web page describing web pages.

In reality, the page we see through a browser is the browser representation of the HTML
code formatting of the data content, plus CSS styles and embedded functions. The represen-
tation follows a standard, so that a developer expects the code to be represented and behave
the same way in every browser, but that is really up to the browser implementation. This
means that elements we see on the page are actually HTML elements. For example the code
for a button appears as in Figure A.4.

<button id="buttonId" type="submit">button text</button>

Figure A.4: HTML code for a button.

Every HTML element is formed by a tag (in this case ‘button’), element attributes (‘id’
and ‘type’ in the example), and some content, which can be text or other HTML elements.
The same HTML page is a HTML element, with tag ‘html’, and containing the ‘head’ and
‘body’ elements. The head of the document contains title, styles and functions, while the
body contains all the other content we actually can see when visiting the page. Figure A.5
shows the code for a web page containing the previous button.

85

A. INTRODUCTION TO CRAWLMAN

<html>
<head>
<title>My page</title>

</head>
<body>
<button id="buttonId" type="submit">button text</button>

</body>
</html>

Figure A.5: HTML code of a page containing a button.

Given the structure of HTML code, the page source can be itself represented as a tree,
whose nodes are HTML elements. Figure A.6 is a tree representation of the previous code.

Figure A.6: Tree representation of HTML code.

HTML elements can be referenced by their tag, important attributes as id or name,
or their position inside the HTML page. The standard language for defining elements by
their position, and the one used by CrawlMan, is XPath. XPath takes advantage of the tree
like structure for referencing elements. For example, the button in the previous code is
referenced as shown in Figure A.7.

/html[1]/body[1]/button[1]

Figure A.7: XPath description of button.

86

Using CrawlMan

The xpath of the button describes it as the first HTML element with tag ‘button’, inside
the first element with tag ‘body’, inside the first element with tag ‘html’, although there
cannot be more than one html and body elements inside the page. XPath also allows more
general descriptions, like referencing all the buttons in a page, or at a certain level inside its
tree representation, and it can even directly point to element attributes.

A.3 Using CrawlMan

Now that we know the basics of HTML pages and XPath, we are ready to use CrawlMan. Is
it that simple? Of course, building complicated behavior will require more specific exper-
tise, and some knowledge of JavaScript, a language used for embedding functions in web
pages, could result useful, but CrawlMan is designed to guide you into your web explo-
ration, so that an open, inquisitive mind should be all that you need for the moment.

First of all, CrawlMan comes with many different settings, but it is ready for use with
default settings which are normally good for every website you would like to explore. For
example, it is set to click on every button and link it finds, and to fill every input field with
random data. In order to rapidly produce a result, a maximum size for the result and a
maximum time to produce it are also set. The default browser to use is HTMLUnit, not
a real browser but a browser simulator, which further reduces the crawling time. These
settings can be modified in the ‘Basic Settings’ page, but it is advised not to modify them
before receiving a first result.

Figure A.8: CrawlMan’s homepage.

In order to start using CrawlMan, load its homepage, shown in Figure A.8, insert the de-
sired URL, starting with ‘http’ or ‘https’, in the appropriate text box, then press the ‘crawl’
button. After a certain time, depending on the settings and the amount of data inside the

87

A. INTRODUCTION TO CRAWLMAN

crawled pages, a result is returned. To visualize the result press the ‘result’ button, which
should now be enabled. Figure A.9 shows the ‘Result’ panel when crawling Google’s home-
page. The result is presented as a tree, whose nodes can be clicked to visualize the relative
information. A double click on a node makes the relative subgraph representation fold or
unfold.

Figure A.9: CrawlMan ‘Result’ page for URL http://www.google.com/webhp.

As explained in Section A.1, edges between the nodes represent events which brought
the application in the different states, as the clicking of a button or the changing of a variable.
In the tree, the user can see only one edge connecting two nodes, but there actually can be
more than one, and they can be directed from a child node to a parent node, if an event
makes the application return to a previous state. The only way for a user to know the events
connecting the states is inspecting node information. When a node is clicked, the following
data is presented:

• URL address relative to the state.

• HTML DOM representation.

• A screenshot of the state, in case CrawlMan was set to use Firefox in the ‘Basic
Settings’ page.

• A set of Incoming Edges, describing click and input field events which brought into
the state.

• A set of Outgoing Edges, describing click and input field events which brought out-
side of the state.

• A set of Other Edges, representing clickables which were not clicked or did not fire
an event when clicked.

88

Using CrawlMan

As Crawljax can only perform click actions, the edges describe HTML elements that
were clicked, with their tag, text, attributes and xpath. For every edge description, buttons
appear to create corresponding Click and Don’t Click settings to replace the default settings.
Other buttons allow to create Set Values Before Click settings, using the retrieved informa-
tion about input fields in the page. This setting type allows to enter some value in an input
field before clicking on a certain element. For input fields like check boxes and radio boxes,
the user can insert boolean values like ‘true’ or ‘1’, and ‘false’ or ‘0’. Apart from simple
click settings, CrawlMan uses the result to suggest:

• Click When settings, to click a HTML element when the specified condition is true.

• Oracle Comparator settings, to ignore specific parts of pages.

• Crawl settings, to crawl a page only is the specified condition is true.

• Invariant settings, to verify a condition on every state - the outcome is presented when
clicking on the ‘check result’ button.

• Wait For settings, to wait for an element to be loaded or become visible on the speci-
fied URL.

Suggested conditions are relative to the selected state, but during the crawling are veri-
fied against all of the states. In fact, applied settings can only direct the crawling, and there
is no assurance that the crawling session will be repeated the same over and over. Settings
describe a desired behavior, for example a Click setting will cause the application to click on
every element corresponding to the description, not just the element we took the description
from. If we want the click to be executed on just one particular element, we can restrict the
description with xpath and conditions.

When the behavior we want to reproduce is well described by the created settings, it is
better to uncheck the Click Default and Random Input settings in the ‘Basic Settings’ page.
The Random Input setting could in fact conflict with eventual other settings which fill input
fields, and Click Default could interfere with other Click settings. This last setting in fact is
comparable to adding two general click settings, one for clicking all buttons (all elements
with tag ‘button’) and one for clicking all links (also called anchors, all elements with tag
‘a’). The only reason why anchors and buttons appear in the result is the enabling of this
default setting. The same is valid for all other possible clickables. For example, if we need
the application to click on every image it finds and present all image HTML elements in the
result, we will have to add a setting to click on every element with tag ‘img’.

In case one of the selected setting in the result would cause a state not to be reached
anymore during the next crawling, the node gets separated from the rest of the tree. As it
is necessary for the crawler to reach a state before executing actions on it, CrawlMan also
creates the necessary settings to reach the selected state when adding some of the suggested
settings. The created settings can be confirmed in the result page, then modified in the
relative pages. As the same settings could already be present, it is up to the user to select
only the settings he really needs.

89

A. INTRODUCTION TO CRAWLMAN

A.4 Crawling Process

Figure A.10: Crawljax decisional flowchart.90

Crawling Process

When a crawling request is sent through CrawlMan, the request is converted to commands
to a crawler, Crawljax, present on the server. Crawljax opens a browser instance to load
the initial URL, then it starts crawling. First of all, the initial URL must correspond to a
valid address, of a website which can be reached online. If a new state is detected, the state
information is saved for more processing. Invariant settings are checked against the new
state, then Crawljax decides to continue crawling or not on the base of the limiting settings,
Max States and Max Time. Based on Max Depth and Crawl settings, Crawljax decides to
proceed with the newly discovered state or a previous state which still has clickables which
where not clicked. If the new state is processed, Click settings are applied to look for new
clickables. The clickables found are saved and exercised one-by-one, until all clickables
have been tried or a new state is found. The crawling process stops when the crawling
constraints are reached or all the compliant clickables of all the suitable states are exercised.

91

Appendix B

Crawljax Modifications

B.1 Scope of the Document

This document is a technical report, related to the CrawlMan’s project. Here we list the
modifications applied to the libraries of Crawljax. Crawljax is an open-source project,
developed in Java. Crawljax’s source code is available online for anyone to download, use,
and modify, at the address http://code.google.com/p/crawljax/. The modifications
we applied were necessary to adapt Crawljax to the use intended in the CrawlMan’s project.
The modifications can be divided in three groups:

• Adaptations for CrawlMan’s necessities.

• Improvements on the code reliability.

• Addition of other functions.

B.2 Adaptations for CrawlMan’s necessities

Google Web Toolkit, used for CrawlMan’s development, requires the source code of the
inherited libraries. The line of Crawljax’s POM file shown in Figure B.1 had to be uncom-
mented.

<resource> <directory>src/main/java</directory> </resource>

Figure B.1: POM setting for including the Java sources in the packaging of a Maven project.

One modification to Crawljax was really necessary because it hindered the possibility
to use Crawljax in a web environment, as needed by CrawlMan. In the original version

93

B. CRAWLJAX MODIFICATIONS

of Crawljax it is not possible to use plugins to collect data at runtime when using two
different instances of Crawljax in parallel (Section 5.2.2). The problem appears when the
data collected during the crawling is used outside the plugins, as opposed to the traditional
way of using plugins which is saving the data through a GeneratesOutput plugin during the
execution of Crawljax (Section 2.4.12), at the end of the crawling process.

In CrawlMan, a user sends a crawling request from his browser to the server hosting
CrawlMan. Every request in a web server is serviced by a different thread, which is instance
of a web service. This thread adds a plugin to Crawljax in order to collect the result data,
then calls Crawljax to execute the crawling. At the end of the crawling, the thread gets the
result from the plugin and sends it back to the user.

private static final List<Plugin> PLUGINS = Lists.newArrayList();

/**
* Set the Plugins, first removes all the currently loaded
* plugins and add the plugins supplied.
*
* @param plugins
* the list of plugins,
* if plugins is null no plugins are added.
*/

public static void loadPlugins(List<Plugin> plugins) {
PLUGINS.clear();
if (plugins == null || plugins.size() == 0) {
LOGGER.warn("No plugins loaded because "

+ "CrawljaxConfiguration is empty");
return;

}
CrawljaxPluginsUtil.PLUGINS.addAll(plugins);
for (Plugin plugin : CrawljaxPluginsUtil.PLUGINS) {
/**
* Log the name of the plugin loaded
*/

LOGGER.info(plugin.getClass().getName());
}

}

Figure B.2: CrawljaxPluginsUtil’s loadPlugins(List <Plugin> pluginList) method.

The plugins are added to Crawljax through a static class, called CrawljaxPluginsU-

94

Adaptations for CrawlMan’s necessities

til. The plugins are loaded by the method loadPlugins(List <Plugin> pluginList), which
first removes all the currently loaded plugins from the static list PLUGINS, as shown in
Figure B.2.

When two or more request are sent to the server in parallel, two or more threads add
plugins to Crawljax, so that every request deletes the plugins added by the previous request.
When the threads try to extract the result from the added plugin, they find the result to be
null, because it has already been deleted by the requests after them. Only the last request
of all, given that no request has been sent after it, would receive a result. The problem also
appears when calling two instances of Crawljax as two threads inside a class, then waiting
for their resolution through a semaphore and verifying the presence of the result collected
through a plugin.

Two solutions were explored:

• Removing the line ‘PLUGINS.clear();’. The plugins would be instead eliminated at
the end of the crawling process.

• Making possible to instantiate the class CrawljaxPluginsUtil.

The clear downside of the first solution is that every program which uses Crawljax
should be modified to accommodate the change. Another downside is that in presence of
serious errors it is possible that the plugins would not be removed, so that the class would
accumulate outdated data.

The second solution was applied. It has not been studied the influence of the changes on
the usage of Crawljax’s Thread settings, for which the CrawljaxPluginsUtil class was made
static in the first place. This is due to the lack of an example showing the intended usage of
the Thread settings together with plugins, and to the fact that the Thread settings are out of
the scope of the CrawlMan’s project. It can be however assured that Crawljax passes all the
provided functional tests after the change.

Given the change to the class CrawljaxPluginsUtil, many other classes had to be changed
in order to use an instance of this class instead of its static version. Overall, the change
comported modifications of six core classes (CrawljaxPluginsUtil, Crawler, InitialCrawler,
CrawljaxController, StateMachine, BrowserPool) and four test classes (PluginTest, On-
FireEventFailedPluginTest, StateMachineTest, BrowserPoolTest).

B.2.1 CrawljaxPluginsUtil

The non instanceable constructor of this class was removed, and the static list of plugins
was changed to a traditional list, as shown in Figure B.3.

95

B. CRAWLJAX MODIFICATIONS

private final List<Plugin> plugins = new ArrayList<Plugin>();

Figure B.3: List of plugins in class CrawljaxPluginsUtil.

The instructions using the list were changed accordingly.

B.2.2 CrawljaxController

Instructions were added in the class to create an instance of CrawljaxPluginsUtil in its con-
structor. The instance can be requested by other classes through the added method ‘getPlu-
ginsUtil()’, shown in Figure B.4.

private final CrawljaxPluginsUtil pluginsUtil;

/**
* Return the pluginsUtil.
*/

public CrawljaxPluginsUtil getPluginsUtil() {
return pluginsUtil;

}

Figure B.4: CrawljaxController’s getPluginsUtil() method.

Given the modifications applied to the BrowserPool class, the constructor of Crawljax-
Controller ends with the lines shown in Figure B.5.

96

Adaptations for CrawlMan’s necessities

public CrawljaxController(final CrawljaxConfiguration config)
throws ConfigurationException {
[...]
pluginsUtil = new CrawljaxPluginsUtil();

workQueue = init();

browserPool = new BrowserPool(workQueue, configurationReader,
pluginsUtil);

}

Figure B.5: CrawljaxController’s modifications.

B.2.3 StateMachine

CrawljaxPluginsUtil was added as a parameter to the functions update and checkInvariants.
As a consequence, the call to these functions has been modified in the relative classes -
Crawler and StateMachineTest, as shown in Figure B.6.

public boolean update(final Eventable event,
StateVertix newState, EmbeddedBrowser browser,
CrawlSession session, CrawljaxPluginsUtil pluginsUtil)

private void checkInvariants(EmbeddedBrowser browser,
CrawlSession session, CrawljaxPluginsUtil pluginsUtil)

Figure B.6: Modifications to functions calls.

B.2.4 BrowserPool

CrawljaxPluginsUtil was added as a parameter to the class constructor, as shown in Fig-
ure B.7.

97

B. CRAWLJAX MODIFICATIONS

private final CrawljaxPluginsUtil pluginsUtil;

public BrowserPool(CrawljaxConfigurationReader
configurationReader, CrawljaxPluginsUtil pluginsUtil) {
[...]
this.pluginsUtil = pluginsUtil;

}

Figure B.7: Constructor for class BrowserPool.

B.2.5 Crawler, InitialCrawler, PluginTest, OnFireEventFailedPluginTest

Every usage of ‘CrawljaxPluginsUtil’ was substitued with ‘controller.getPluginsUtil()’.

B.2.6 StateMachineTest

The use of the functions modified in the other classes was changed accordingly, by passing
as parameter to the functions an instance of CrawljaxPluginsUtil, as shown in Figure B.8.

assertTrue(sm.update(c, state2, dummyBrowser,
new CrawlSession(dummyPool), new CrawljaxPluginsUtil()));

Figure B.8: Modification to functions call.

The calls to CrawljaxPluginsUtil were substituted with the call to instances of the class,
as shown in Figure B.9.

CrawljaxPluginsUtil pluginsUtil = new CrawljaxPluginsUtil();
pluginsUtil.loadPlugins(
new CrawljaxConfigurationReader(cfg).getPlugins());

Figure B.9: Call to CrawljaxPluginsUtil’s loadPlugins(List <Plugin> pluginList) method.

B.2.7 BrowserPoolTest

The class was changed to use the new BrowserPool constructor.

98

Improvements on the code reliability

B.3 Improvements on the code reliability

During the testing, we encountered situations which originated irreversible errors during the
execution of Crawljax. After these errors, the control was not given back to the main thread,
CrawljaxController, so that the user was left expecting for a result that would never arrive.
It was necessary to modify the code dealing with these errors to give the control back to
the main thread. The modifications, applied to three classes, are explained in the following
sections.

B.3.1 InitialCrawler

When a browser instance is not obtained, the InitialCrawler is not immediately terminated.
The control is not given back to the CrawljaxController, which results in more errors and a
faulty termination. The problem appears for example in the absence of a display environ-
ment when using a real browser for the crawling process. The solution was to return the
process when the browser is null, as shown in Figure B.10.

public void run() {
try {

browser = controller.getBrowserPool().requestBrowser();
} catch (InterruptedException e) {
LOGGER.error("The request for a browser was interrupted.");

}

/**
* Aborted session.
*/

if (browser == null) {
return;

}

goToInitialURL();

[...]
}

Figure B.10: Terminating the InitialCrawler.

99

B. CRAWLJAX MODIFICATIONS

B.3.2 BrowserPool

A different constructor was added to the class BrowserPool, to include as parameter the
CrawlerExecutor. The new constructor is used in the CrawljaxController in place of the
old one, which is used only in the test classes BrowserPoolTest and StateMachineTest. The
CrawlerExecutor is needed to stop the crawling process when the creation of the browser
cannot be rescued. Figure B.11 shows the new constructor for the BrowserPool class.

private CrawlerExecutor executor;

public BrowserPool(CrawlerExecutor executor,
CrawljaxConfigurationReader configurationReader,
CrawljaxPluginsUtil pluginsUtil) {

this(configurationReader, pluginsUtil);
this.executor = executor;

}

Figure B.11: BrowserPool’s new constructor.

The line to shutdown the executor was added in the run method, as shown in Fig-
ure B.12.

public void run() {
[...]

failedCreatedBrowserCount.incrementAndGet();
LOGGER.error("Could not rescue browser creation!", e);
executor.shutdownNow(true);

[...]
}

Figure B.12: Terminating the CrawlerExecutor.

100

Addition of other functions

B.3.3 FormHandler

The function handleFormElements of this class is used to fill in the input elements of the
web pages. When a Set Values Before Click setting of Crawljax specifies a valid input field
together with an absent one, the method is executed on a null object, resulting in an uncaught
exception. The for statement of the function was modified to the code in Figure B.13.

for (FormInput input : formInputs) {
// Input is null when the specified input does not exist.
if (input != null) {
LOGGER.debug("Filling in: " + input);
setInputElementValue(formInputValueHelper
.getBelongingNode(input, dom), input);

} else {
LOGGER.warn("Input is null.");

}
}

Figure B.13: Modifications to the class FormHandler.

B.4 Addition of other functions

The class StateVertix was modified for adding one function, getUnprocessedCrawlActions().
The function is built on the model of getUnprocessedCandidateElements(), and practically
returns the same result, candidate elements, but taking into account the type of the candidate
elements. In fact, because Crawljax uses at the moment only click actions, the type of the
actions is omitted by the original function. The new function takes the type into account, in
preparation for the future version of Crawljax which will also execute hover actions. This
modification was not indispensable for the well functioning of Crawljax or CrawlMan. The
function, shown in Figure B.14, is employed in CrawlMan’s plugin to collect data about
candidate crawl actions.

101

B. CRAWLJAX MODIFICATIONS

/**
* Return a list of UnprocessedCrawlActions.
*
* @return a list of crawl actions which are unprocessed.
*/

public List<CandidateCrawlAction> getUnprocessedCrawlActions() {
List<CandidateCrawlAction> list =
new ArrayList<CandidateCrawlAction>();

if (candidateActions == null) {
return list;

}
for (CandidateCrawlAction candidateAction : candidateActions) {
list.add(candidateAction);

}
return list;

}

Figure B.14: StateVertix’s getUnprocessedCrawlActions() method.

102

