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IfI'm going to fall, I don’t want to fall back on anything except my faith. I want to fall
forward. I figure at least this way, I'll see what I'm going to hit.

Denzel Washington



PREFACE

N the realm of micro- and nano-mechanics, a world unfolds where minuscule entities
I wield substantial influence. This innovative field of mechanics intricately explores the
behaviors of materials and devices at micro- and nano-scales. Within this thesis, a jour-
ney commences through the realms of micro- and nano-mechanics, aiming to unveil
novel insights into the enthralling domain of nonlinear dynamics. The study of this field
is both exciting and promising, offering boundless opportunities to unravel previously
unknown mechanical properties and phenomena that hold the potential to revolution-
ize the methodologies of design and creation.

This thesis aims to explore various questions, delving into the complexities of nonlin-
ear dynamics and endeavoring to unearth answers that might lead to new discoveries.
As you delve into this thesis, I hope that you, the reader, will find yourself captivated
by the enthralling world of nonlinear dynamics, much like I have been throughout this
research endeavor. I firmly believe that the concepts and principles articulated in this
thesis bear the potential to propel our comprehension of nonlinear dynamics forward,
and I am enthusiastic about sharing this journey with you.

Mehrdad Nasirshoaibi
Delft, November 2023
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INTRODUCTION

O VER the last three decades, the field of micro- and nano-scale systems and tech-
nology has undergone substantial growth, drawing increased attention due to its
potential applications and the observation of novel physical phenomena at this small
scale.

Researchers have dedicated their efforts to the synthesis of materials and the devel-
opment of microscopic and nanoscopic devices, unveiling a range of mechanical fea-
tures that challenge conventional understanding. The discovery of these extraordinary
mechanical features has sparked the curiosity of researchers, driving them to explore
new frontiers in the field of micro- and nano-mechanics. These novel features necessit-
ate more profound explorations through a combination of experimental and theoretical
investigations.

In the realm of micro- and nano-scale experiments, advancing in experimental mech-
anics poses a substantial challenge in comparison to theoretical analyses and numerical
simulations. This challenge arises since these small-scale experiments require not only
a profound understanding of measurement principles and concepts but also the applic-
ation of advanced measurement techniques and testing platforms.

Thinness results in very low bending rigidity, requiring only minimal energy for bend-
ing. This means that a small amount of mass or pressure can easily deform the device
since it doesn’'t require much energy. It can also undergo significant bending with ease,
and when subjected to large deformations, the device enters a nonlinear regime.

The inherent nonlinearity in the dynamics of micro- and nano-scale systems can signi-
ficantly impact device performance and functionality. It can be both advantageous and
challenging. Understanding and controlling nonlinear dynamics are essential for optim-
izing micro- and nano-scale devices, maximizing benefits while minimizing drawbacks

While nonlinear phenomena in mechanical systems are well understood, strategies for
systematically designing structures with nonlinear responses have received little atten-
tion. Researchers are continually working to develop innovative techniques for modeling
and optimizing these systems, paving the way for their expanded utility in a wide range
of fields. In recent years, there has been a growing interest in using optimization tech-
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niques to fine-tune the linear and nonlinear dynamics of small-scale systems [1]. These
techniques involves the optimization of a system’s parameters to achieve a desired non-
linear response.

Design optimization is a systematic and iterative process aimed to improve the per-
formance and efficiency of a system. It involves exploring various design choices and
parameters to find the best possible solution that meets specific criteria or objectives,
such as maximizing performance. This process often employs mathematical models,
simulations, and algorithms to analyze and refine designs. The use of design optim-
ization techniques for tuning nonlinear dynamics has important implications for the
development of micro- and nano-scale devices, such as sensors, actuators, and signal
processors [2]. By optimizing the nonlinear response of these devices, it is possible
to achieve enhanced performance, improved energy efficiency, and better control over
their behavior.

To reduce the computational burden associated with high-dimensional problems and
make it more feasible to analyze, control, or optimize large-scale systems in real-time or
with limited computational resources, Reduced Order Models (ROMs) can be employed.
ROMs are powerful computational techniques utilized in various fields to simplify com-
plex systems and simulations while retaining essential information. They achieve this
by reducing the dimensionality of the problem space and the governing equations of
motion.

In the design optimization process for real-world problems, the number of design vari-
ables can often be substantial. To effectively address these complex and high-dimensional
optimization tasks, the use of advanced algorithms is crucial. Modern techniques such
as Stochastic algorithms have emerged as valuable tools in this context. Their ability to
navigate complex, high-dimensional search spaces has made them a popular choice for
tackling real-world optimization challenges with numerous design variables.

In this thesis, a novel methodology has been devised that empowers the optimization
of the nonlinear vibration characteristics of devices featuring intricate geometries. The
innovation extends to the development of a versatile routine capable of defining com-
plex geometries and facilitating design within a Finite Element Method (FEM) frame-
work. This routine operates in tandem with optimization algorithms, enabling us to
identify and refine the most optimal designs. This approach not only streamlines the
process but also offers the flexibility needed to tackle complex geometrical configura-
tions, making it a powerful tool for enhancing the performance and efficiency of devices
subjected to nonlinear vibrations.

To address a specific problem, a design challenge is introduced, involving a clamped
circular membrane (drum). Circular voids of various radii and positions are incorpor-
ated within this membrane. The goal is to discover the arrangement that optimizes
the nonlinear stiffness, whether it involves maximizing or minimizing it. The critical
design parameters under consideration include the positions and radii of these circular
voids. Additionally, specific constraints within the problem are established and defined
to guide design choices.
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Within this thesis, my approach involves the application of the Stiffness Evaluation
Procedure (STEP) method as a Reduced Order Model (ROM) for constructing a nonlin-
ear reduced-order model. This technique allows us to effectively reduce an infinite num-
ber of degrees of freedom (DOF) down to a single DOF, making complex systems more
manageable. A parametric study is conducted to enhance the understanding of how the
nonlinear stiffness of a circular membrane is influenced by the addition of circular voids
with varying radii and positions. The Particle Swarm Optimization (PSO) algorithm is
utilized for optimizing the design, enabling the control and fine-tuning of design para-
meters to identify the most optimal configuration. This integrated approach enables a
streamlined process for achieving the best possible design, even in scenarios involving
intricate and nonlinear systems with numerous degrees of freedom.

The central focus of this thesis is to introduce particle swarm optimization as an innov-
ative methodology for nonlinear dynamic design optimization, with the goal of achiev-
ing precise identification of the optimal design. This research is guided by two primary
objectives: the first is to assess the impact of introducing circular voids on the nonlinear
stiffness of circular membranes, and the second is to pinpoint the optimal design with
accuracy by utilizing particle swarm optimization.

1.1. RESEARCH QUESTIONS

This thesis is mainly focused on the following research questions:

* How does the presence of voids in circular membranes impact their nonlinear stiff-
ness characteristics?

* How can design optimization techniques efficiently enhance the nonlinear dynam-
ics and performance of dynamic systems?

1.2. THESIS OUTLINE

This study takes a systematic approach to investigate the research problems outlined
earlier. The following sections delve into the research process, offering a comprehensive
exploration and structure of our inquiry.

This thesis is organized into five main chapters. Chapter 1 serves as the introduction,
offering insights into the subject’s motivation and the research questions. In Chapter
2, the focus shifts to the literature review, covering nonlinearity and its sources, cur-
rent research on nonlinearity tuning methods, and relevant design optimization pro-
cesses. The introduction of various optimization algorithms and their respective cat-
egories also takes place in this chapter. Chapter 3 delves into problem definition and
modeling, outlining the problem addressed in the thesis and detailing the creation of a
simplified nonlinear model using the Stiffness Evaluation Procedure (STEP) method. It
also explores the use of the Particle Swarm Optimization (PSO) algorithm for tuning non-
linear stiffness. Moreover, it discusses strategies to handle constraints within the PSO
algorithm. Moving on to Chapter 4, the results obtained from the analysis conducted in
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this study are presented and discussed in depth, offering a comprehensive understand-
ing of their significance and their connection to the research objectives and broader con-
text. Finally, Chapter 5 serves as the conclusion, summarizing the findings, highlighting
achievements, and suggesting potential areas for future research.



LITERATURE REVIEW

HIS chapter will investigate the concept of nonlinearity and its origins. The discus-
T sion will emphasize the dual nature of nonlinearity, demonstrating both its potential
negative and positive effects. In addition, the significance of nonlinearity tuning will be
examined, along with an overview of various tuning procedures. Following that, an in-
depth analysis of design optimization and the accompanying optimization techniques
will be performed. This analysis will divide optimization algorithms into two categor-
ies: gradient-based and stochastic optimization techniques. The latter will be further
categorized, with each group receiving a thorough explanation.

2.1. GENERAL FEATURES OF MICRO- AND NANO-SCALE
STRUCTURES

Micro- and nano-scale devices have emerged as invaluable tools with a wide array of
applications across diverse industries. These devices, typically ranging from nanomet-
ers to micrometers in size, offer a host of advantages. In fields such as electronics [3, 4],
healthcare [5, 6], and materials science [7, 8], they have revolutionized the way we inter-
act with and manipulate the physical world. From high-precision sensors and actuators
[9, 10] to compact signal processors [11, 12], these devices have proven their worth, often
outperforming their macro-scale counterparts. Their compact size, existence of surface
tension effects [8], having a molecular construction other than a bulk continuum struc-
ture and atomic effects [13], electrical properties, precision, and mobility [14] contribute
significantly to their relevance in modern technology.

Micro- and nano-scale devices encompass a wide range of applications, including ac-
celerometers for airbag sensors [15, 16], inkjet printer heads [17, 18], gyroscopes [19, 20],
computer disk drive heads [21], projection display chips [22], blood pressure sensors
[23], optical switches [24], microvalves [25], and numerous others produced in large com-
mercial quantities.

To harness the full potential of micro- and nano-scale devices, a comprehensive un-
derstanding of their mechanical and dynamical behavior is paramount for designing
devices in these scale. Without a grasp of these intricacies, it’s challenging to exploit
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their advantages fully. This understanding serves as the foundation for making these
devices more reliable, efficient, and tailored to specific applications. Characterizing and
controlling their dynamic behavior can also have significant applications in fields like
medicine [26] , biology [27], and energy [28].

Modeling and optimization techniques play a pivotal role in realizing the potential
of micro- and nano-scale devices. Through sophisticated simulations and mathemat-
ical models, engineers and scientists can predict device behavior, identify limitations,
and fine-tune designs. By optimizing parameters such as material composition and geo-
metry, these devices can be tailored to meet specific requirements and achieve unpre-
cedented levels of performance. Modeling and optimization, therefore, are the keys to
unlocking the full potential of micro- and nano-scale devices in our increasingly mini-
aturized world.

Two-dimensional (2D) materials and membranes have gained substantial attention in
recent years for their unique and promising properties. These atomically-thin structures,
often composed of a single layer of atoms, exhibit remarkable mechanical, electrical, and
thermal characteristics that set them apart from their bulk counterparts [29]. Graphene,
the poster child of 2D materials, possesses exceptional conductivity, strength, and flex-
ibility [30].

Graphene finds applications in a variety of fields. In materials science, graphene serves
as a reinforcement material in composites, enhancing their strength and durability [31].
Moreover, its high surface area and exceptional gas barrier properties enable its use in
applications such as sensors [32], and energy storage systems [33], further illustrating
its versatility and potential in numerous industries. In a recent study [34], the authors
proposed a novel method for measuring the nanomotion of individual bacteria in their
aqueous growing environment, using drums composed of ultrathin bilayer graphene.
They showed that graphene drums can be used for antibiotic susceptibility testing with
single-cell sensitivity, by monitoring changes in nanomotion in response to the adminis-
tration of antibiotics in real time.

In the realm of micro- and nano-scale devices, the rapid emergence of nonlinearity
stands as a remarkable and distinguishing feature. As these devices continue to shrink
in size, their behavior deviates significantly from the linear, predictable patterns ob-
served in macro-scale systems [35]. Nano and micro-scale devices more readily trans-
ition into the nonlinear regime due to factors like increased surface area-to-volume ra-
tios, reduced dimensionality, and the dominance of surface forces. These factors collect-
ively make nonlinear behavior more pronounced and lead to a rapid onset of nonlinear
effects in small-scale systems. This phenomenon can be attributed to the intimate inter-
play between physical forces and material properties at the micro- and nano-scales.

2.2. LINEARITY VS. NONLINEARITY
2.2.1. LINEARITY

In the mathematical realm, linearity is a fundamental concept that extends its influence
across various disciplines, including mechanical engineering. A system is deemed linear
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when it adheres to the principles of superposition and homogeneity. In simpler terms,
linearity implies that doubling the input produces a twofold increase in the output, and
the system’s response to a combination of inputs is the sum of its responses to each input
individually. In fact, superposition means that if we have a linear system that responds
to inputs x and y with outputs f(x) and f(y), then it will respond to the sum of inputs
x + y with the sum of outputs f(x) + f(y). Additionally, homogeneity means that if we
have a linear system that responds to input x with output f(x), then it will respond to a
scaled input ax with a scaled output a f(x), where a is a constant.

Translating this mathematical notion to the field of mechanical engineering, linearity
manifests itself in the behavior of materials and structures. The foundation of many lin-
ear systems in mechanics is laid upon Hooke’s Law, which posits a direct proportionality
between the applied force and the resulting deformation. This adherence to proportion-
ality simplifies the mathematical modeling of mechanical structures, as it allows engin-
eers to employ linear algebraic equations to predict and analyze the system’s response
under different loading conditions.

Linear systems are characterized by a predictability and simplicity that greatly facilit-
ates analysis. The application of linear models becomes especially valuable in the prelim-
inary design and analysis phases, providing engineers with a straightforward framework
to assess the performance of structures.

A mechanical system can be modeled as a mass and spring system (see Figure 2.1a),
where a linear spring is used for simplicity. Hooke’s law states that the force required to
extend or compress a spring by a certain distance x is linearly related to that distance,
given by F = k;x. Here, k; denotes the linear stiffness of the spring, and x is assumed
to be relatively small. This translates that the force and displacement are directly pro-
portional to each other. In the Figure 2.1b, we observe a plot depicting the relationship
between force and displacement for a linear system. This plot shows that any changes
in the input (displacement) are directly proportional to changes in the output (force).
In other words, as we increase or decrease the displacement, the force responds in a
predictable and linear manner, resulting in a straight-line graph. This characteristic of
linearity is a fundamental property of the system, where the slope of the line represents
its stiffness or compliance.

a) b)

F

ky
Y

Figure 2.1.: Linearity in mechanical systems. a) Schematic of a mass-spring system featuring a
linear spring. b) Force-displacement curve of a linear system shown in Figure 2.1a.
Here, any changes in force are directly proportional to changes in displacement.
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The equation of the motion for a linear mass-spring system can be written as

mi+kx=F 2.1)

where m represents mass of the system and over-dot denotes differentiation with re-
spect to time ¢.

However, it’s crucial to acknowledge that linearity has its limitations, as real-world ma-
terials and structures can deviate from linear behavior and exhibit nonlinearity under
specific conditions.

Yet, as we explore more demanding applications, acknowledging and addressing non-
linearities becomes imperative for a comprehensive and accurate understanding of mech-
anical behavior. This sets the stage for a discussion on nonlinear systems and their
unique characteristics and challenges in the realm of mechanical engineering.

2.2.2. NONLINEARITY

A system is categorized as nonlinear when it departs from the principles of superposition
and homogeneity. In more specific terms, nonlinearity arises when the system lacks
proportionality between input and output. For example, doubling the input does not
lead to a straightforward doubling of the output.

In a mechanical context, nonlinearity manifests as a departure from Hooke’s Law. This
means that changes in displacement are not directly proportional to changes in the in-
puts, underscoring the system’s nonlinear behavior (see Figure 2.2b).

The nonlinearity inherent in many physical systems presents a significant challenge
in their behavior. It results in various practical implications, including complex and un-
predictable system responses such as chaotic behavior in dynamic systems [36, 37], the
onset of resonance [38, 39], difficulties in control and stability analysis [40, 41], and a
demand for specialized modeling and analysis techniques to precisely characterize and
forecast system behavior [42].

In order to enhance the precision of modeling a nonlinear system, one can introduce a
nonlinear spring k;,;, as illustrated in Figure 2.2a. Unlike a linear relationship, which res-
ults in a straight line on a graph, a nonlinear relationship produces a curve, as depicted
in Figure 2.2b. The dotted line is associated with a linear system, while the non-dotted
line represents a nonlinear system. The deviation from the linear curve is a consequence
ofintroducing nonlinear stiffness (k,;), which amplifies the overall system stiffness, lead-
ing to an augmented slope in the tangent line on the curve.
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Nonlinear

Linear
kl knl

E

»

Figure 2.2.: Nonlinearity in the context of mechanical systems. a) Schematic of a mass-spring sys-
tem that comprises both linear and nonlinear springs. b) Force-displacement curve of
anonlinear system as shown in Figure 2.2a. The deviation from the linear curve results
from the introduction of nonlinear stiffness k,,;, which enhances the overall system
stiffness, manifesting as an increased slope of the tangent line on the curve.

In most applications, a nonlinear mechanical system can often be simplified by the
following equation:

mi+kjx+kyx>=F 2.2)

It signifies that the resistance to deformation in the system is nonlinear and propor-
tional to the cube of the displacement x. In other words, as the system is displaced from
its equilibrium position, the force required to deform it further is not directly propor-
tional to the displacement but rather increases cubically. This cubic term accounts for
the nonlinear behavior of the system and can capture phenomena where the stiffness of
the system varies significantly with the magnitude of deformation.

It’s important to note that nonlinearity in mechanical systems cannot always be solely
represented by the term x® as shown in Equation (2.2). In practice, nonlinearity can
take various forms, such as cubic, quadratic, or other functional relationships [43, 44].
To accurately capture the system’s behavior, these variations may necessitate alternat-
ive modeling approaches. This flexibility in modeling is essential for addressing a wide
range of nonlinear phenomena that may arise in different applications.

Micro- and nano-scale devices exhibit linear behavior at low vibrational amplitudes.
However, as the amplitude increases, nonlinear effects become prominent, causing these
devices to enter a nonlinear regime where a linear approximation is no longer suitable.
Nonlinearity is a common feature of tiny structures and has significant implications
for device performance and design, especially in the context of micro- and nano-scale
devices.

Recognizing and understanding nonlinearity in micro- and nano-scale systems is pivotal
for accurate modeling and analysis, as it necessitates distinct approaches and tools to
describe and predict their behavior. As a result, a clear understanding of nonlinearity is
essential for effectively using micro- and nano-scale structures.
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2.3. NONLINEARITY SOURCES

Nonlinearity can be attributed to various system characteristics, including geometry, ma-
terial, boundary, and loading.

A brief description of nonlinear sources is provided as follows.

* Geometrical Nonlinearity: This type of nonlinearity occurs when a structure un-
dergoes significant deformations under external load. For example, a thin-walled
structure that experiences substantial bending may exhibit nonlinear behavior
due to these geometric changes [45].

* Material Nonlinearity: Materials frequently exhibit nonlinear behavior, which is a
crucial aspect of material science and engineering. This nonlinearity arises when
a material’s response to external forces deviates from a linear, predictable pattern
[46]. For instance, metals can endure plastic deformation beyond their elastic
limit, meaning that when subjected to substantial stress, they change shape per-
manently. This plasticity introduces material nonlinearity, causing shifts in stiff-
ness and behavior [47]. Beyond plasticity, other factors can contribute to mater-
ial nonlinearity, such as strain hardening, where a material becomes harder as it
deforms [48], or viscoelasticity, where materials display both viscous and elastic
properties, resulting in time-dependent responses [49].

* Boundary Conditions: Kinematic or geometric constraints at the structure’s bound-
aries can induce nonlinear behavior [50]. For example, a flexible cable under ten-
sion may exhibit nonlinear behavior as it approaches a critical tension point. This
nonlinearity can be attributed to constraints imposed at its endpoints, including
the possibility of cable slippage. Likewise, a beam can undergo nonlinear deform-
ation when subjected to special imperfect boundary conditions [51].

* Loading Conditions: Differentloading conditions, ranging from mechanical forces
to thermal gradients, can lead to intricate and nonlinear responses in structures
and materials. For instance impact loading, can lead to nonlinear behavior in
a structure [52]. When a structure is subjected to impact loading, it experiences
rapid, high-energy forces or impulses that deviate significantly from gradual, steady-
state loading [53]. This sudden and intense force application can induce nonlinear
responses in the structure, often resulting in dynamic deformations and stress dis-
tributions that differ from what would be expected under more gradual loading.

When these sources of nonlinearity are present in a structure, the system’s behavior
deviates from linearity. In summary, both geometric nonlinearity and nonlinear material
behavior are vital considerations in mechanical engineering and the dynamics of micro-
and nano-scale structures.

Understanding and accurately modeling these sources of nonlinearity is essential for
the design and analysis of many mechanical systems. In the following sections, we will
delve into further detail on geometric and material nonlinearities.
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2.3.1. GEOMETRIC NONLINEARITY

Geometric nonlinearity arises whenever the magnitude of displacements significantly
influences the response of a structure. This phenomenon occurs when deformations,
either in the form of large deflections or rotations, reach a point where they can no
longer be neglected. In such cases, the traditional linear assumptions about the relation-
ship between loads and deformations are no longer valid, and the structural response
becomes inherently nonlinear. Geometric nonlinearity is a critical consideration in the
analysis and design of various structures, particularly in scenarios where deformations
cannot be approximated as small.

When the stiffness of the part significantly changes during the deformation process
due to alterations in geometry, one must consider geometric nonlinearity from the per-
spective of stiffness. In such cases, the response of the structure deviates from traditional
linear assumptions, leading to geometric nonlinearity. This geometric nonlinearity can
manifest in two distinct ways: softening or hardening behavior.

In cases of softening behavior, as a structure deforms, it becomes less resistant to ad-
ditional deformation (see Figure 2.3). This is often observed in structures that loosen or
exhibit a reduction in stiffness as they deform. Softening behavior can lead to instability
and even structural failure if not appropriately addressed.

On the other hand, hardening behavior occurs when a structure becomes stiffer as it
deforms (see Figure 2.3). This phenomenon is typically associated with structures that
possess elements or features that stiffen or become more resistant to deformation as they
experience greater loads or displacements. Hardening behavior can be advantageous
in certain applications, such as in energy-absorbing structures designed to withstand
impact forces [54].

Understanding whether geometric nonlinearity results in softening or hardening be-
havior is crucial for accurate structural analysis and design. It plays a vital role in as-
sessing the stability and safety of structures, especially when they experience significant
deformations.

Hardening

F

Softening

Figure 2.3.: Force-displacement curve in a mechanical system with geometric nonlinearity. Here,
when the nonlinear stiffness in Equation (2.2) is positive, a hardening curve manifests,
while negative nonlinear stiffness leads to softening effects. The dashed line corres-
ponds to the force-displacement curve for a linear system.
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2.3.2. MATERIAL NONLINEARITY

Material nonlinearity is a crucial aspect in understanding the behavior of structures and
systems, particularly in the field of mechanics and materials science. Material nonlin-
earity can be directly related to the molecular structure of a material [55]. The molecular
structure and arrangement of atoms within a material significantly influence its mech-
anical behavior. Material nonlinearity refers to the situation where the response of a
material does not follow a linear relationship between stress (applied force) and strain
(resulting deformation). Instead, material nonlinearity signifies that the stress-strain re-
lationship deviates from Hooke’s Law, which describes the linear behavior of elastic ma-
terials.

Nonlinear material behavior can be described using stress-strain curves, illustrating
the relationship between stress and strain for a specific material (see Figure 2.4). These
curves are used to determine essential mechanical properties of the material, including
yield stress (0y,) and ultimate stress (o). In Figure 2.4, the material exhibits linear beha-
vior up to the yield stress point, commonly referred to as the elastic deformation region.
During this phase, the material behaves predictably and responds proportionally to ap-
plied loads. However, beyond the yield stress point, the material undergoes a transition
into a nonlinear regime. In this nonlinear range, the material’s response becomes in-
creasingly complex, and its behavior no longer adheres to the linear principles observed
during elastic deformation. Here, the material might exhibit various nonlinear effects,
such as plastic deformation, strain hardening, or other forms of nonlinearity, which are
associated with changes in its microstructure and properties.
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Figure 2.4.: The stress-strain curve of a mechanical system with material nonlinearity. The mater-
ial exhibits linear behavior in the elastic deformation region up to the yield stress point.
Beyond this point, a transition occurs, leading to nonlinear behavior in the material’s
response, and a departure from the linear principles observed during elastic deforma-
tion.

In summary, material nonlinearity is a fundamental aspect of structural mechanics.
Its presence in materials can significantly impact how structures respond to forces and
deformations, making it a critical consideration in various engineering and design ap-
plications. Engineers and researchers employ specialized testing, analysis, and model-
ing techniques to account for material nonlinearity and ensure the safety and reliability
of structures and components in practical scenarios.



2.4. DIFFERNET ASPECTS OF NONLINEARITY 13

2.4. DIFFERNET ASPECTS OF NONLINEARITY

Nonlinear systems can exhibit complex and intriguing behaviors, including chaos and bi-
furcation. Chaos, exemplified by its unpredictable dynamics, can introduce challenges
and opportunities in various applications, as shown in recent studies [56]. Bifurcation
represents a fundamental shift in a system’s behavior as a control parameter varies, res-
ulting in the emergence of new stable or oscillatory states, as demonstrated in related
research [57]. Therefore, the analysis of nonlinear systems is pivotal for advancing know-
ledge and applications in these domains.

Initially, engineering research on nonlinearities primarily focused on nullifying or mit-
igating their effects [58]. However, recent research in this field explores the use of non-
linearity to enhance performance [59] .

The central inquiry revolves around the dual nature of nonlinearity, encompassing
both advantageous and detrimental attributes. Nonlinearity may be deliberately selec-
ted for its beneficial qualities or strategically employed to alleviate its drawbacks.

Nonlinearity introduces a spectrum of challenges and limitations. In this context, at-
tention will be directed towards elucidating two noteworthy aspects of its influence.

* Uncertainty: Nonlinearity in a system leads to uncertainty, as changes in the in-
puts don't result in proportional changes in the outputs. Consequently, the sys-
tem’s behavior becomes unpredictable [60, 61].

* A-F Effect: Many micro- and nano-scale structures must operate at specific res-
onant frequencies, crucial for functions like timing devices [62], filter frequencies
[63], and resonant accelerometers [64]. These frequencies depend on the device’s
amplitude. In reference [65], the authors explored the nonlinear free vibration of
a prestressed orthotropic membrane at large amplitudes. They derived an approx-
imate analytical expression indicating that frequency is proportional to the square
of the amplitude. Therefore, even slight changes in amplitude can result in signi-
ficant frequency fluctuations.

On the contrary, nonlinearity is accompanied by numerous benefits. Within this frame-
work, two primary facets of its influence will be explained.

° Amplitude Stabilization: Nonlinear coupling of resonant modes within a single
structure can stabilize the amplitude and, consequently, the frequency at a desired
mode. In a study by Defoort et al. [66], researchers examined a nanomechanical
self-sustained oscillator synchronized with an external harmonic drive. Their res-
ults provide insights into unexplored aspects of synchronization phenomena and
propose a novel method for enhancing amplitude stability in oscillators.

* Determining Mechanical Properties: Davidovikj et al. [35] demonstrated the use
of the nonlinear response of a suspended 2D material membrane to determine
Youngs modulus. This method is rapid, non-invasive, and provides a foundation
for evaluating the mechanical properties of 2D materials at high frequencies.
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In a nutshell, the capacity to adjust and optimize nonlinearity effects can improve
system performance while also alleviating the constraints of designing structures at the
micro- and nano-scale.

2.5. TUNING NONLINEARITY

Tuning Nonlinearity refers to the deliberate adjustment or manipulation of nonlinear
behavior within a system. This process involves modifying various parameters or char-
acteristics to achieve specific desired nonlinear effects or responses [67]. Nonlinearity
tuning can be used to optimize system performance [68], control chaotic behavior [69],
enhance energy transfer [70], or achieve other tailored outcomes, depending on the ap-
plication and objectives. Nonlinearity can be tuned or controlled using various methods
based on the system’s specific characteristics. Here are two general techniques:

* Using External Forces (Fields): Altering certain material or system properties by
applying external fields. For example, applying an electric field can modify a ma-
terial’s electrical conductivity, and a magnetic field can change its magnetic prop-
erties.

* Design Optimization (Mechanical Design): Design optimization is a systematic
process employed in various fields, including engineering, to identify the optimal
design or solution that aligns with specific criteria and objectives while taking into
account various constraints. This process leverages mathematical and computa-
tional techniques to explore and assess various design alternatives, enabling the
adjustment of design parameters and informed decision-making to optimize a
product or system’s performance, efficiency, and other desired attributes. The be-
nefits of design optimization extend to improved designs, cost savings, reduced re-
source utilization, and enhanced product functionality, ultimately leading to more
efficient and effective solutions across diverse applications [71, 72].

In the following sub-sections, the complexities of tuning a system using external forces
and design optimization (mechanical design) will be delved into.

2.5.1. TUNING THROUGH EXTERNAL FORCES (FIELDS)

There are various techniques for applying external fields to a system, depending on the
system’s nature and the type of field involved. For instance, electric fields [73] can be
generated by applying voltage across a material, while magnetic fields can be produced
using magnets or coils of wire. In reference [67], the authors explored an electrostatic
method for expanding the dynamic range of nanomechanical resonators used as sensors
by moditying their nonlinearity.

The advantages of tuning with external fields include the ability to control a system’s
properties without physically altering it and achieving precise and reversible changes in
the system’s behavior. However, this approach may be constrained by the strength and
range of the external field and the system’s sensitivity to external perturbations.
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2.5.2. TUNING VIA MECHANICAL DESIGN

Mechanical design is making adjustments to system components, such as springs and
mechanical parts, to optimize their behavior and achieve desired performance. The goal
is to maximize performance while minimizing energy losses, vibrations, and other neg-
ative effects.

In mechanical design, tuning involves a comprehensive analysis of the system’s beha-
vior, the identification of factors influencing its performance, and the implementation
of appropriate adjustments to mechanical components. These techniques may include
alterations to component size, shape, or other parameters to enhance overall system per-
formance [74].

The advantages of tuning through mechanical design include optimizing system per-
formanceand achieving precise control over the system’s behavior. However, this ap-
proach may require specialized knowledge and equipment [74]. Overall, mechanical
design for tuning proves to be a valuable tool for enhancing the performance of mechan-
ical systems and finds widespread applications across various fields.

Every system has a set of inputs, which are the variables or unknowns of the problem.
Changing or tuning these inputs allows us to maximize or minimize the system’s output.
Another critical aspect is the set of constraints, which limit the system. Constraints can
be considered as secondary inputs, but their impact differs from primary inputs. They
define the system’s limits and help identify feasible solutions. Constraints determine
which input setups are valid and which are not. The objective can be calculated for any
input set.

After identifying the inputs, outputs, and constraints, the next step is to formulate the
system as an optimization problem. To achieve this, we employ optimization algorithms,
which are mathematical models or computer programs designed to find the optimal
values for the problem’s variables. These algorithms aim to maximize or minimize the
output while adhering to the defined constraints. In essence, optimization algorithms
explore the vast solution space, searching through all possible combinations of inputs.

Designing with optimization algorithms offers the advantages of rapid modeling, auto-
mated simulation, and error reduction in the design process. However, the primary chal-
lenge lies in the requirement of a complex optimization algorithm capable of efficiently
identifying the optimal design.

Two common categories of optimization algorithms are:

* Conventional Optimization Algorithms (Gradient-Based)

* Modern (Stochastic) Optimization Algorithms

In the following sections, each of these optimization algorithms will be explored in de-
tail. Additionally, the advantages and disadvantages of each approach will be discussed.
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2.5.2.1. CONVENTIONAL OPTIMIZATION ALGORITHMS (GRADIENT-BASED)

One of the most widely recognized conventional optimization algorithms is known as
gradient descent. The gradient, in this context, is a function that points in the direction
of the steepest increase in the landscape [75, 76]. It iteratively moves from one point to
the next, considering the negative value of the gradient. In simpler terms, it gradually
converges towards the minimum of the search landscape, especially in unimodal land-
scapes, where any starting point eventually leads to the global minimum when using the
gradient algorithm (see Figure 2.5).
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Figure 2.5.: Three unimodal landscapes. It is evident that all the points in these three plots con-
verge to the global minimum.

In a multimodal landscape (see Figure 2.6) characterized by multiple local solutions,
the gradient descent algorithm often leads to a local minimum. Unfortunately, this im-
plies that the algorithm assumes a local solution is the best global solution, a phenomenon
known as "local optima stagnation" or "local optimal entrapment” in the field of optim-
ization.

The efficiency of the gradient descent algorithm is highly dependent on the initial start-

ing point. To address this issue, one approach to improve its efficiency is to run the al-
gorithm multiple times with random initial solutions.
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Figure 2.6.: Three multimodal landscapes, where all the points in these plots exhibit multiple local
minima, posing a challenge in locating the global optimum.
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Imagine the time-consuming process of running the gradient descent algorithm mul-
tiple times with different initial positions, which can be especially burdensome when
tackling complex problems with numerous design variables and constraints, resulting in
a significantly larger design space (see Figure 2.7).

uonauny K3/G0

Design parameter 1

Figure 2.7.: Example of design space for a problem with two design variables. Even with just two
design variables, we can encounter a challenging design space, which makes finding
the global optimum a formidable task.

Extensive research has been conducted in the field of structural optimization utilizing
gradient-based optimization methods [77, 78]. Shaw et al. [79] introduced an innovative
gradient-based optimization method for tailoring the nonlinear behaviors of a clamped-
clamped beam. They demonstrated a computational approach enabling systematic ma-
nipulation and optimization of nonlinear responses in mechanical structures. Structural
optimization was applied to modify the parameter that most accurately represents the
core nonlinearity of the reduced-order model.

It should be noted that the solutions obtained in their study depend on the initial
design, and there is no guarantee that they represent global optima. However, multiple
optimization iterations demonstrate that the approach is relatively stable, and any po-
tential performance gains from redesigning the structure are expected to be minimal at
best.

In a nutshell, gradient-based optimization techniques offer reliability in consistently
finding the same solution in each run and fast convergence. However, these methods
suffer from issues such as local optima stagnation, low probability of finding the global
optimum in real-world problems, dependence on the initial solution, and the need to
calculate the gradient, which might be unknown or ill-defined when solving real-world
problems. Because of these limitations, I have introduced another method, which is a
modern (stochastic) optimization algorithm.

2.5.2.2, MODERN (STOCHASTIC) OPTIMIZATION ALGORITHMS

Stochastic optimization algorithms are a class of techniques designed to address com-
plex real-world problems characterized by uncertainty and randomness. The modern
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optimization algorithms are equipped with random components and find different solu-
tions in each run, even when the starting point is similar [80]. Stochastic optimization al-
gorithms are normally run multiple times, and in each run, they search for the global op-
timum until the satisfaction of an end condition. This condition might be a pre-defined
maximum number of steps or when the algorithm finds a reasonable objective value that
we expect.

In reference [81], the authors introduced a specialized stochastic method designed
for the mechanical dimensioning of overhead power distribution lines. This innovative
approach serves the specific purpose of determining the mechanical dimensions of such
power lines, showcasing a tailored solution for this particular task.

The advantages of stochastic algorithms are high local optima avoidance, high prob-
ability of finding the global optimum, low dependency on the initial solution , and the
gradient-free mechanism. However, the search speed are lower than deterministic al-
gorithms and they find different answers in the run. Undoubtedly, the benefits of em-
ploying stochastic algorithms far surpass any drawbacks they may have. I intend to cat-
egorize stochastic optimization algorithms in the upcoming discussion.

CATEGORIES OF STOCHASTIC OPTIMIZATION ALGORITHMS

In the most well-regarded classification, stochastic optimization algorithms are di-
vided into two classes. If one particle searches for the global optimum, the entire search
process is individual-based. If more than one particle look for the global optimum, how-
ever, the search process is population-based [82].

The advantage of individual base algorithm is the need for the minimum number of
function evaluations. The number of function evaluations is equal to the number of it-
erations. However, such techniques suffer from local optimal stagnation or premature
convergence. This is because a single solution is very likely to be trapped in local solu-
tions because there is a lot of local solutions when solving real-world problems.

By contrast, population-based techniques benefit from high exploration of the search
space and low probability of local optimal entrapment. If a candidate solution goes in-
side the local optimum, other solution will assist to avoid it in the next iteration. As
drawbacks, such algorithms require more function evaluations and are computationally
more expensive [83].

There is no doubt that the advantages of population-based algorithms outweigh the
drawbacks. High local optima avoidance and exploration make population-based al-
gorithms a better solution to real-world problems as compared to the individual-based
algorithms.

Population-based algorithms can be categorized into three classes: evolution-based,
physics-based, and swarm-based methods. In the upcoming section, brief descriptions
of each of these classes will be provided. Subsequently, a comparison will be made to
determine which one is better suited for addressing the specific problem presented in
this thesis.
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Evolution-based methods are inspired by the laws of natural evolution. The search
process starts with a randomly generated population which is evolved over subsequent
generations. The strength of these methods is that the best individuals are always com-
bined together to form the next generations of individuals. This allows the population to
be optimized over the course of generations. The most popular evolution-inspired tech-
nique is Genetic Algorithms (GA) that simulates the Darwinian theory of Evolution [84,
85].

Physics-based algorithms refer to methods that incorporate principles from physics or
other natural phenomena into the optimization process or simulation. These algorithms
often leverage physical laws and principles to guide the search for optimal solutions or
to model complex systems accurately [36, 87].

Swarm-based techniques mimic the social behaviors of groups of animals. Popular
and most well-regarded techniques in this class are: Particle Swarm Optimization (PSO)
and Ant Colony Optimisation (ACO) [88, 89]. Particle Swarm Optimization algorithm
has been widely applied to various optimization problems. It’s a popular and efficient al-
gorithm that can often find good solutions in complex, high-dimensional search spaces.

Highlighting the advantages of Particle Swarm Optimization (PSO) algorithms over
Evolutionary-Based Algorithms, PSO is notably recognized for its ease of implementa-
tion and efficiency. Compared to many Evolutionary-Based algorithms like Genetic Al-
gorithms (GAs), PSO is relatively easier to implement and has fewer parameters to tune.
This simplicity can save time in setting up and running experiments. Furthermore, PSO
is often more computationally efficient, as it requires fewer function evaluations than
GAs, making it a faster optimization method.

Emphasizing the benefits of Particle Swarm Optimization (PSO) algorithms over Physics-
Based methods, a notable advantage of PSO lies in its independence from explicit phys-
ical models. Unlike Physics-Based methods, which rely on a comprehensive understand-
ing of the physical processes and governing equations, PSO is applicable to a broader
range of problems where the underlying physics may not be well understood or involves
intricate interactions. Additionally, PSO exhibits less sensitivity to parameterization com-
pared to Physics-Based methods, where fine-tuning parameters can be a more challen-
ging and time-consuming task. This characteristic further underscores the versatility
and efficiency of PSO in addressing problems with varying degrees of complexity.

Therefore, PSO’s efficiency, global optimization capabilities, and ease of implementa-
tion make it a well-suited choice for addressing the specific challenges and objectives of
my thesis.

EXPLORATION VS. EXPLOITATION

To solve optimization problems, algorithms employ two conflicting and fundamental
phases: exploration and exploitation. These two phases are essential to find an accurate
estimation of the global optimum for any given optimization problem [90, 91].

In the exploration phase, an algorithm abruptly changes the candidate solutions to
ensure that they explore different regions of the search landscape.
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In the exploitation phase, the magnitude of changes in the solutions is much lower
than that in the exploration phase. In other words, the search is done locally around the
most promising solutions found in the exploration phase.

What makes the process of designing and utilizing population-based algorithms diffi-
cult is that the exploration and exploitation phases are in conflict. A mere exploratory
behavior mostly results in finding very poor solutions. By contrast, more exploitative be-
havior results in trapping local solution because the algorithm never get the chance to
change the solution abruptly.



METHODS AND PROBLEM
DEFINITION

HIS chapter provides an in-depth exploration of methodologies employed in the op-
T timization of micro- and nano-scale devices. To facilitate this, the Reduced Order
Model (ROM) is initially introduced as a crucial tool for simplifying systems with infin-
ite Degrees of Freedom (DOF) to a single DOF, enhancing manageability and analytical
capabilities. Subsequently, the STEP method, a specialized ROM, is presented for con-
structing nonlinear ROM models and determining the nonlinear stiffness. The optim-
ization of a simplified single DOF system necessitates the application of an optimiza-
tion algorithm capable of handling the procedure. In this context, the Particle Swarm
Optimization (PSO) is employed, as conventional gradient-based methods prove inad-
equate when dealing with a large number of design parameters. Furthermore, Discrete
Particle Swarm Optimization (DPSO) and Binary Particle Swarm Optimization (BPSO)
are introduced for problems involving discrete and binary design parameters, respect-
ively. Moreover, considering that various problems may encounter different limitations
and constraints, the penalty function is introduced as an effective method for addressing
constraints within the scope of this thesis.

To integrate these methods into a unified framework addressing a defined design prob-
lem, the optimization of the nonlinear stiffness of a circular membrane is pursued by
introducing circular voids. This process involves using the STEP method to transform
a complex geometry into a Single Degree of Freedom (SDOF) mass-spring system. Sub-
sequently, the Particle Swarm Optimization (PSO) algorithm is employed to iteratively
adjust the geometry parameters, implementing optimization logic to identify the op-
timal design that either minimizes or maximizes the nonlinear stiffness of the device.

3.1. REDUCED ORDER MODELLING

In real-world scenarios, challenges arise with the presence of infinite degrees of freedom
(DOF) in problems, complicating the prediction of structural behavior. To address this
challenge, the reduction of DOF is achieved through various approaches. The process of

21
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simplifying a complex system by decreasing its degrees of freedom to a smaller number
is also denoted as Reduced Order Modelling (ROM).

Consider a circular membrane with an infinite DOFs (see Figure 3.1a). The invest-
igation of this system’s behavior and the resolution of the corresponding equations of
motion pose challenges due to the infinite DOFs. To address this, the equations of mo-
tion for the membrane can undergo discretization using methods like the finite element
method (FEM). This discretization process reduces the infinite dimensionality of the
equations to a finite yet substantial number of DOFs (see Figure 3.1b). However, when
dealing with an optimization problem requiring numerous system evaluations, even this
finite DOFs model may involve solving for less crucial, time-consuming details. Hence,
further simplification becomes necessary. Consequently, utilizing a mass-spring system
as a model for the system, capable of effectively capturing the fundamental mechanical
features, presents significant advantages (see Figure 3.1c).

Figure 3.1.: Schematic of a reduced order model for a circular membrane: a) A circular membrane
with an infinite number of degrees of freedom. b) A meshed model of the membrane
(as shown in Figure 3.1a) with a finite number of degrees of freedom. c) A simplified
model (based on Figure 3.1b) representing the membrane as a mass and spring system,
comprising both linear and nonlinear springs.

The vibration behavior exhibited by continuum structures, arising from the inherent
infinite Degrees of Freedom (DOF) in the system, entails intricate mechanical phenom-
ena necessitating analytical solutions for optimal accuracy. However, the applicability of
these analytical solutions is contingent upon various factors, including geometry, type
of loading, and other specific characteristics inherent to the problem at hand. Practical
implementations often reveal that only a limited subset of the infinite vibrational modes
of a structure proves influential in predicting its dynamic behavior, as demonstrated in
references [92, 93].

Eigenmodes represent characteristic vibration patterns at specific frequencies. In modal
analysis, the careful selection of eigenmodes is significant, as each mode corresponds to
distinct vibrational frequencies. Leveraging these eigenmodes enables the creation of
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a linear reduced-order model, facilitating computational efficiency in solving complex
structural dynamics problems. This methodology is notably efficacious in the realm
of linear systems. However, its application becomes more intricate when confronted
with nonlinear systems, necessitating a nuanced consideration of nonlinear behavior.
Consequently, modal analysis emerges as a valuable tool for systematically reducing the
number of Degrees of Freedom (DOFs) and extracting essential insights into the struc-
tural dynamics.

In the formulation of a nonlinear reduced-order model, the incorporation of nonlinear
terms into the simplified equations becomes imperative. Quadratic and cubic terms are
frequently favored owing to their adept approximations achievable through the Taylor
series, as noted by Shaw [93]. The derivation of nonlinear terms in the reduced equa-
tions involves extracting them from the comprehensive set of equations representing
the entire system. Subsequently, the computation of nonlinearities for each eigenmode
becomes a crucial step in developing an accurate representation of the nonlinear struc-
tural response.

Various techniques exist for reducing the Degrees of Freedom (DOFs) of a system and
identifying nonlinear stiffness in the modal domain. These techniques encompass ana-
lytical approaches and Finite Element Method (FEM)-based approaches.

3.1.1. ANALYTIC APPROACHES

Structures that can be represented using continuous mathematical functions can be ana-
lyzed through analytical methods. In theoretical terms, the displacement field of a struc-
ture can be approximated by incorporating contributions from all of its infinite mode
shapes. Nevertheless, it has been demonstrated that for the majority of dynamical prob-
lems, only a limited number of mode shapes are necessary to faithfully reproduce the
displacement field behavior [94-97]. Utilizing a reduced number of modes significantly
diminishes the Degrees of Freedom (DOFs) of the system. These methods offer the ad-
vantage of providing a mathematical governing equation for the dynamics of the system,
which, in specific cases, can be solved analytically, yielding an analytical relationship for
the problem.

In instances where an analytical solution is not feasible, the analytical governing equa-
tion still provides insights into certain behavioral aspects of the structure with minimal
effort. Nevertheless, when dealing with a complex structure, the extraction of mode
shapes becomes a challenging task and, in many instances, analytically unattainable.
Consequently, this method is severely restricted to simple geometries and limited ap-
plications.

3.1.2. FEM-BASED APPROACHES

On the contrary, for complex structures, the recommended approach is to use a finite ele-
ment method (FEM)-based method. Finite Element Method (FEM)-based approaches
are numerical techniques widely employed for analyzing and simulating the behavior of
structures. The fundamental logic behind FEM involves subdividing a complex structure
into smaller, simpler elements that are interconnected at nodes. By applying governing




24 3. METHODS AND PROBLEM DEFINITION

equations to each element, the overall behavior of the entire structure can be systematic-
ally approximated. FEM allows for the examination of intricate structural details, making
it a versatile tool in engineering analysis.

Several FEM-based methods exist, each with its specific applications and advantages.
Notable methods include the Direct Stiffness Method (DSM), Substructure Method, and
the Stiffness Evaluation Procedure (STEP) method. The DSM directly assembles the stiff-
ness matrix of the entire structure [98, 99], while the substructure method breaks down
a complex structure into substructures, solving them individually before assembling the
results [100, 101].

In the context of this research, the STEP method is selected as a versatile and potent
analytical tool, tailored for the examination of structural dynamics. This method serves
as a robust platform for the investigation of nonlinear stiffness in structures, offering
comprehensive insights into the intricate mechanical behavior of the system under con-
sideration. The subsequent subsection delves into the specifics of the STEP method and
its application in this parametric study.

3.1.2.1. STIFFNESS EVALUATION PROCEDURE (STEP)

The STEP method involves a systematic series of steps aimed at simplifying the dynamic
analysis of a complex structure into a single-degree-of-freedom (SDOF) mass-spring sys-
tem. A comprehensive overview of the sequential steps of this method is provided in Fig-
ure 3.2. Initially, a linear ROM is constructed based on the full nonlinear model, neglect-
ing the system’s nonlinearities. After defining the linear ROM, STEP utilizes information
from the full nonlinear model to establish the nonlinear Reduced Order Model.

In essence, when the structure is linearized, the nonlinearities are not considered; in-
stead, STEP employs information from both the linear and full nonlinear models (as in-
dicated by the red lines in Figure 3.2) to construct a nonlinear reduced order model. Fol-
lowing the construction of the nonlinear reduced order model, the system’s nonlinear
stiffness can be determined.



3.1. REDUCED ORDER MODELLING 25

Reality Interpretation

Physical Model Physical
Solution

Discrete Model *
(Nonlinean Nodal Solution
Linear Model \

Linear Reduced Regluogeligeoarrd .
— STEP L
e Model (NROM)

(ROM)

Figure 3.2.: The framework of the STEP approach for modeling nonlinear dynamics involves the
utilization of both a linear reduced-order model and the nonlinearities extracted from
the full nonlinear model to construct a comprehensive nonlinear reduced-order model
[102].

The subsequent section offers an in-depth exploration of the STEP method, as detailed
in reference [103]. It provides comprehensive insights into the framework, implementa-
tion in problem-solving scenarios, and mathematical underpinnings of the method.

In many problems, the fundamental mode governs the motion, allowing for the as-
sumption that the structure can be approximated by its fundamental mode. Mathem-
atically, it can be demonstrated that relying solely on the fundamental mode results in
a Single Degree of Freedom (SDOF) mass-spring system (see Figure 3.3a). However, in
reality, each mode has a nonlinear stiffness associated with it (see Figure 3.3b). When
the structure is linearized for modal analysis, this critical information is lost. To obtain
the nonlinear stiffness (as shown in (see Figure 3.3c)), we can solve the system static-
ally by imposing a constant velocity, zero acceleration and prescribing a displacement
Ax. Then, we assess the required force F,. This solution can be used to calculate the
nonlinear stiffness coefficient k,;.

a) b) c)

Fy =kx F =kix Fp = kyx® F, =kx Fy = loyx®

1, "

ke
mé—+kx=0 m¥ 4+ kpx + kgx® =0 kmAx® = F, — kAx

Figure 3.3.: STEP method: a) Linear uncoupled system obtained from modal analysis. b) In reality,
nonlinear stiffness is present. ¢) The nonlinear stiffness can be identified by prescrib-
ing a modal displacement and evaluating the modal force.
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Building upon the conceptual foundation laid out in the preceding discussion of the
STEP method and its operational flowchart, the mathematical formulation is now ex-
plored. The equation of motion for a system characterized by multiple degrees of free-
dom, featuring both geometric nonlinearity and viscous damping, can be expressed as
follows:

MX(H)+CX()+KX(@)+T(X(1) =F(p) (3.1

In the given equations, the displacement response vector is represented by X, the force
excitation vector by F, the mass matrix by M, the proportional damping matrix by C, and
the linear stiffness matrix by K.

The nonlinear stiffness force vector I' comprises second and third order terms in X,
which means it includes components that are proportional to the squares and cubes
of the displacement vector X. These nonlinear terms become significant when the dis-
placements are not small, and they are often encountered in systems exhibiting geomet-
ric nonlinearity. However, for small displacements, such as those in linear analysis, these
nonlinear terms become negligible and can be approximated to be zero.

To streamline the analysis, an initial step entails the application of a modal coordinate
transformation. This transformation aids in reducing the system’s complexity by gen-
erating a set of modal equations. These interconnected modal equations exhibit fewer
degrees of freedom compared to the original system. This methodology enhances the
manageability and efficiency of the analysis for subsequent investigations. The modal
coordinate transformation is executed as follows:

X=dgq (3.2)

Here, ® represents the eigenvectors obtained from Equation (3.1) without C, and g
denotes the vector of modal coordinates. The following equations are derived by substi-
tuting Equation (3.2) into Equation (3.1).

Mg+Cq+Kq+ku(q, 42, ... ) =F (3.3)
M=o"M®=(1 3.4)
C=aoTCco=[20,0,] (3.5)
K=0"K®=[0?] (3.6)

ki =®'T 3.7)

F=o0oTF (3.8)
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In the presented equations, the symbol ~ designates a transformed version of a mat-
rix. The matrix [I] represents the identity matrix, while ®’ denotes the transpose of the
matrix ©.

In general, the solution includes a subset of L eigenvectors. Here, q1, qo, ..., g1 are the
components of the vector g, and w, denotes the undamped natural frequency. Addition-
ally, ¢, represents the damping ratio associated with a mode.

By expressing the nonlinear force vector in the following form

L

L L L L
knt(qu, @2, qr) =Y Y @ diqe+ ). Y Y biyaiarqn, r=12,..,L (3.9)
J=1k=y i=lk=jl=k

the challenge of determining nonlinear stiffness, which initially involved solving a vast
set of simultaneous nonlinear equations, has been transformed into a problem charac-
terized by straightforward algebraic relationships. To evaluate it, one must employ a
novel method for solving for the coefficients a;r and bjy;.

The method for both linear and nonlinear static solutions relies on specifying nodal
displacements to recover the applied forces at each node. In physical coordinates, the
total forces at all nodes, denoted by Fr, can be represented as follows:

Fr=Fp+Fn. =KXc+T(Xc) (3.10)

where X¢ is a prescribed physical displacement vector at the node, and F; and Fyy,
are the linear and nonlinear components of the total force at the node, respectively. After
obtaining the linear static solution, Fy is achieved by prescribing X¢. Thus, by making a
prescription for X¢ in the nonlinear static solution, Fr may be produced. After all, the
nonlinear contribution Fy is determined by deducting Fy from Fr, or

Fnp=T(Xc)=Fr—-Fp (3.11)

3.2. PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM

Particle Swarm Optimization (PSO) algorithms are crucial in optimization for their sim-
plicity, requiring fewer tuning parameters than some alternatives. They are known for
quick convergence, especially in well-behaved optimization problems, and exhibit ver-
satility by handling both continuous and discrete search spaces. The swarm intelligence
inherent in PSO, inspired by the collective behavior of social organisms, sets it apart
from traditional optimization algorithms. The collaboration among particles, akin to
entities in a social group, enables PSO to navigate complex search spaces efficiently.
These distinctive features make PSO a valuable tool in optimization tasks, offering a
unique approach that complements and, in some cases, outperforms other optimiza-
tion algorithms.

In PSO, a population of candidate solutions, referred to as particles, iteratively moves
through a search space to find the optimal solution. Each particle represents a potential
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solution and possesses both a position and velocity. The movement of particles is influ-
enced by both their individual experiences and the experiences of neighboring particles.

The fundamental principles, serving as key strategies that guide the behavior of particles
within PSO algorithms, can be categorized into three key principles [104]. The initial
principle, Personal Best, dictates that each particle maintains a record of the best loca-
tion it has discovered thus far as its personal best. This involves the preservation, reten-
tion, and documentation of the best value identified up to the present moment. The sub-
sequent principle, Global Best, mandates that particles engage in communication with
each other before initiating any movement to update the global best location identified
by the entire swarm. This ensures a collective identification and updating of the best
position discovered by the entire swarm up to the current instant. The final principle,
Current Direction, necessitates that each particle is cognizant of its present direction,
which may differ from other particles. This knowledge is crucial as particles leverage
it to determine their subsequent location. In the following discussion, a thorough ex-
amination of the advantages and disadvantages associated with PSO algorithms will be
presented.

One notable advantage is the ease of implementation; PSO is known for its relatively
straightforward implementation and comprehensibility, necessitating fewer tuning para-
meters in comparison to some alternative optimization methods. Another advantage is
versatility; PSO exhibits effectiveness in handling both continuous and discrete (binary)
search spaces, showcasing its versatility across diverse applications. Additionally, PSO
is characterized by quick convergence, particularly in well-behaved optimization prob-
lems, owing to its adeptness in balancing exploration and exploitation through velocity
updates and particle interactions.

One of the drawbacks is that PSO may face challenges arising from the curse of dimen-
sionality, as the increasing number of dimensions leads to a significantly larger search
space, potentially impeding the effectiveness of PSO. Another disadvantage lies in the
fact that PSO’s performance is contingent on appropriate parameter tuning. Therefore,
meticulous parameter selection is essential to fully leverage PSO’s potential in various
optimization tasks.

3.2.1. THE MATHEMATICAL FRAMEWORK FOR PSO

To enhance comprehension, a visual representation of the Particle Swarm Optimization
(PSO) algorithm is provided through a flowchart, as illustrated in Figure 3.4. Commen-
cing with the initialization phase, the PSO algorithm randomly assigns velocity and loc-
ation to each particle, instigating the exploration of the design space. The number of
particles involved in this exploration is determined by the specific optimization prob-
lem. Following this, the algorithm evaluates the fitness of each particle by employing an
objective function, obtaining values based on this function.

Subsequently, a comparative analysis of the fitness values among individual particles
is conducted. If the evaluated values for a particle surpass others, its value is updated;
otherwise, the PSO algorithm retains the obtained value and designates it as the Global
Best (GBEST) for the entire swarm, essentially assigning the PBEST as GBEST. If the pre-
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defined stopping criteria are met at this stage, the optimum solution is deemed found.
These stopping criteria may involve a specific number of iterations or achieving a prede-
termined value, depending on the nature of the problem. If the stopping criteria are not
satisfied, the PSO algorithm proceeds to update the velocity and location of the particles.
The particles, now possessing updated velocity and location, undergo the evaluation
function once again in this iterative process. This iterative process continues until the
specified conditions for convergence or a predefined number of iterations are reached.

Initialize particles with random
position and velocity

Evaluate PBest
for each particle

Current position is
better than PBest?

Assign PBest

to GBest

Updat PBest

Keep PBest

Are the
stopping
criteria
satisfied
?

Optimal
soulution

Update particles positions

+1 +1

X=XV K

Compute the velocity of eah particle

7:*' - WI7"+L‘M‘, (E—E)“‘EG (6_/\7:)

Figure 3.4.: The flowchart provides a visual representation of the PSO algorithm’s dynamic of the
search space.

In order to update the position of each particle, two vectors are considered: a position
vector representing the particle’s location in the landscape, and a velocity vector indic-
ating the direction and magnitude of its movement. These vectors are updated in each
iteration using the following equations [105]:

X = x4y (3.12)
Vi = wyf + e (PL-x!)+ er (6" - X{) (3.13)

Each particle defines its position with a vector denoted as X;. To update the posi-
tion vector, the movement direction and speed are determined using the velocity vector
(Equation (3.13)).

The variable t, represents the current iteration, and i denotes the particle number i.
The current velocity vector (Vlf ) undergoes scaling by the inertia variable (w). Addition-
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ally, ¢; and ¢, pertain to the last two components in the velocity vector. The resultant
vector Vl.“rl represents the velocity on the next iteration.

The velocity vector comprises three components: current velocity, a tendency towards
the personal best (PBEST), and a tendency towards the global best (GBEST). For simpli-
city, GBEST is referred to as the best solution found by the entire swarm. The determ-
ination of the second and third components involves calculating the distance to PBEST

(P}~ X!) and GBEST (' - ] .

Each component of the velocity vector has specific terms associated with it. The first
term is referred to as the inertia component, as it maintains the current velocity and
direction of movement. The second component is known as the cognitive or individual
component because each particle considers the distance between its PBEST and its cur-
rent location, reflecting its individual performance. Conversely, the third component is
termed the social component, as particles calculate the distance between their current
position and the best position found by the entire swarm (GBEST).

The stochastic nature of the Particle Swarm Optimization (PSO) algorithm arises from
the random component introduced into the particle’s movement. Instead of moving a
fixed distance in each iteration, the particle varies its distance by a factor of r, where r
falls within the interval [0, 1] [106]. Indeed, each component is scaled by r to introduce
random variations in its impact. This random search component facilitates the explora-
tion of various locations within the design space by the particle.

The influence of cognitive and social components on particle movement can be adjus-
ted by tuning the coefficients ¢; and c,. The inertia weight regulates the balance between
exploration and exploitation. Typically, it is linearly decreased from 0.9 to 0.4 or some-
times even to 0.2. This reduction corresponds to the distance that particles travel each
day.

Assessing the influence of control parameters on the performance of the PSO algorithm
involves examining the impact of varying values for the inertia weight (w), ¢; and ¢,

Setting the inertia weight to zero minimizes exploration, while a value of one maxim-
izes it [107]. Suppose the inertia weight undergoes a linear change from 0.9 to 0.4. The
adjustment of the inertia parameter during optimization is recognized for its role in bal-
ancing exploration and exploitation, proving to be a valuable mechanism in the quest
for the global optimum in real-world problems [107].

Exploring the impact of ¢; and ¢, on the algorithm’s performance, two scenarios are
considered. In the first scenario (c; = 0 and ¢, = 1), particles focus solely on the best
solution found thus far (GBEST), resulting in rapid convergence towards a specific point,
which may be a local optimum [108]. In the second scenario (¢; = 1 and ¢, = 0), each
particle concentrates on exploring a specific portion of the search landscape, eliminating
the need for information exchange among particles as they do not require knowledge of
GBEST’s location [108].

Alternatively, when ¢; = 0, and ¢, = 1 the exploration is minimized while the exploit-
ation is maximized. Conversely, with ¢; = 1 and ¢, = 0, exploration is maximized while
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exploitation is minimized. Achieving a balance between exploration and exploitation is
realized by appropriately tuning c; and c».

3.2.2. DISCRETE AND BINARY PARTICLE SWARM OPTIMIZATION (DPSO
AND BPSO) ALGORITHMS

Discrete Particle Swarm Optimization (DPSO) and Binary Particle Swarm Optimization
(BPSO) are variants of the PSO. While traditional PSO is best suited for continuous optim-
ization problems where variables can take any real value within a defined range, DPSO
is tailored to handle problems with discrete variables, which can include integer values
or binary values. On the other hand, BPSO is specifically designed to handle problems
with binary values.

One of the challenges of using DPSO and BPSO is the need to adapt the velocity and
position update equations to accommodate the discrete and binary nature of the vari-
ables. Depending on the specific problem, different update strategies may be employed,
such as integer rounding or binary operations [109].

In Equation (3.12) and Equation (3.13), the update mechanisms for the position and
velocity of particles in the PSO algorithm have been addressed. The utilization of velo-
city to facilitate continuous movement within a search space is demonstrated in Equa-
tion (3.13). However, in specific optimization scenarios, particularly those involving dis-
crete and binary variables, particles are required to make discrete or binary choices.

Hence, in this context, particles cease to navigate smoothly through a continuous
search space and instead make discrete decisions. The shift from continuous to discrete
movement warrants exploration and understanding, particularly in the context of a bin-
ary search space within PSO. In essence, the challenge lies in determining the applica-
tion of velocity vectors when particles are compelled to make binary choices, diverging
from the continuous variation of values within a range.

To address this challenge, a transfer function has been introduced to map the velocity
vector to a probability vector. This probability vector is then utilized to update the pos-
itions of the particles [110]. The transfer function is represented by a Sigmoid function,
which can be described as follows:

— 1 ifr<T|vit!
t+1 _
X! = ' (_,’Hl) (3.14)
0 ifr= T(Vi )
. )
T(ViHl) =— (3.15)
1+e Vi’

As shown in Figure 3.5, the Sigmoid function yields a value of 0.5 when the velocity is
zero. At this juncture, the probability of altering a variable is at its maximum. In contrast,
as velocity values approach positive or negative infinity, the Sigmoid transfer function
converges to values close to zero or one. As a result, particles are compelled to adopt
values of either zero or one for a given parameter.
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Figure 3.5.: Sigmoid function. It exhibits a distinctive S-shaped curve. The function’s characteristic
of producing an output of 0.5 when the input is zero makes it valuable for tasks like
discrete and binary problems.

3.2.3. CONSTRAINT HANDLING STRATEGIES WITHIN PSO

It is imperative to acknowledge that every search landscape is inherently bounded, and
we can employ constraint sets to emulate these boundaries. These constraint sets de-
lineate the upper and lower bounds for all parameters within the optimization problem.
Optimization algorithms must incorporate effective mechanisms to reposition solutions
that overshoot the boundary, ensuring they reside within the feasible regions of the land-
scape.

Areas where constraints are violated resemble gaps, which an optimization algorithm
should aim to avoid in order to find a global optimum. These constraints effectively
divide the search landscape into two categories: feasible and infeasible.

The term "infeasible" indicates that it is possible to obtain a solution that violates the
constraints, but this is undesirable and should be circumvented. In cases with a large
number of constraints, the landscape may be divided into multiple isolated regions. Con-
sequently, the solutions generated by an optimization algorithm are more likely to fall
within the infeasible regions. To address such highly constrained problems, an optim-
ization algorithm should possess the capability to identify these isolated regions and
distinguish the promising ones.

Let’s consider the minimization of a function described below:
f(xl)x2!x3’---rxn—l;xn) (316)

The x3, x2, X3, ..., Xn—1, X, represent the variables involved in the function. The follow-
ing formulation reveals the presence of two types of constraints: equality and inequality.

hi (xl!x27x3)---vxn71rxn) = Or i= 1v2y31---yp (317)

gi(x1,%2,X3,.., Xp—-1,X2) 20, i=1,2,3,...,m (3.18)
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Equation (3.17) represents an equality constraint, while Equation (3.18) represents an
inequality constraint. Additionally, the variable x; is subject to lower and upper bounds
as follows.

Ib; < x; < ub; (3.19)

When utilizing an optimization algorithm, the handling of these constraints becomes
a crucial aspect. Numerous techniques are documented in the literature, with one of the
simplest approaches known as the penalty function method [111, 112].

In general terms, a penalty function converts a constrained objective function into an
unconstrained one. Incorporating the constraints directly within the objective function
is facilitated, eliminating the necessity for modifications to any algorithm. It remains
entirely algorithm-independent. A penalty function is defined as follows:

fx)+0P(x) (3.20)
where,
0 ifxeS
P(x)—{ +o0o0 otherwise 3.21)

o represents a scalar or constant. It is used to scale the penalty term P(x) in the object-
ive function f(x) + oP(x). The penalty function returns a value of zero if the solution
is feasible; in such cases, there is no penalty applied. However, if x is not a feasible
solution and violates the constraints, the penalty function penalizes it by assigning a
greater objective value than what it should normally return. When a penalty function
returns a very large value, it is referred to as a barrier function, and instead of gaps, sud-
den peaks are encountered.. If a search engine of an optimization algorithm encounters
any of these peaks, the algorithm considers it the worst solution due to the very poor
objective value. Consequently, this solution is ranked last in the next iteration, and the
algorithm attempts to improve it just like any other solutions, without requiring any al-
gorithm modification.

The main drawback of this technique is that it assigns the same penalty value regard-
less of the number of constraints violated. This uniform penalty may not adequately
address the severity of constraint violations in a highly constrained landscape.

3.3. PSO-STEP INTEGRATION

The collaboration between the PSO algorithm and the STEP method is illustrated to high-
light the intricacies of their interaction. A flowchart, as depicted in Figure 3.6, has been
devised to streamline the description of this collaboration. (For a more detailed version
of Figure 3.6, refer to Appendix A.)
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Figure 3.6.: Flowchart of the integrated PSO-STEP algorithm. This procedure includes PSO vari-
able initialization, the generation of different configurations, subsequent calculation
of the nonlinear stiffness for each configuration, and finally, finding the optimum solu-
tion if all the requirements are satisfied.

Initially, the algorithm initializes its variables based on the specific problem’s paramet-
ers, setting the stage for the subsequent exploration of the design space. Through the
generation of diverse geometries and the assistance of the STEP method, the algorithm
calculates the nonlinear stiffness for each configuration, capturing the nuanced inter-
play of variables in the pursuit of optimal designs. These calculated stiffness values,
forming a vector, serve as indicators of the system’s performance under various config-
urations.

The iterative nature of the process is notable, as the algorithm continually refines its
search based on the evolving understanding of the design space. The termination cri-
teria, which may include considerations such as the number of particles, iteration count,
or specific constraints, determine when the algorithm has converged to an optimal solu-
tion or when further exploration is required. This systematic approach, coupled with the
adaptability of the PSO algorithm, positions it as a valuable tool for navigating complex
design spaces and optimizing configurations to meet specific criteria.

In conclusion, the integrated approach of using the PSO algorithm in conjunction with
the STEP method, considering constraints, and employing a penalty function provides a
systematic and effective means of determining nonlinear stiffness. This approach signi-
ficantly contributes to the optimization of our design process.



RESULTS AND DISCUSSION

His chapter discusses the application of the methods introduced thus far to the

design problem defined in Chapter 3. Firstly, the STEP method is incorporated with
the COMSOL Finite Element Method (FEM) package, and the validation is performed
using reference [35]. The results demonstrate a close agreement between the obtained
values for nonlinear stiffness and my incorporated code. Subsequently, a parametric
study is conducted to deepen our understanding of the impact of adding circular voids
(holes) with varying radii and locations on the nonlinear stiffness of the circular mem-
brane. Finally, the Particle Swarm Optimization (PSO), Discrete Particle Swarm Optimiz-
ation (DPSO), and Binary Particle Swarm Optimization (BPSO) algorithms are employed
alongside the STEP method to determine the optimal design for several special cases.

Proceeding with my analysis, the initial consideration involves a circular membrane
with five potential void locations, corresponding to 5 design variables. In this configur-
ation, the radius of the voids remains constant, and only the presence of the voids is
subject to variation. Due to the specific nature of the problem definition, the BPSO al-
gorithm is implemented to determine the configuration with the minimum nonlinear
stiffness. Following this, the performance of the PSO algorithm is validated within this
simplified scenario by incorporating the STEP method to ensure its efficacy.

Expanding the scope of the investigation, the PSO algorithm, encompassing both Bin-
ary PSO (BPSO) and Discrete PSO (DPSO) variants, is applied to a more extensive design
space. Specifically, the analysis involves problem instances with 30 design variables (rep-
resenting the number of potential voids locations) using BPSO and 31 design variables
(also signifying the number of potential voids locations) with DPSO. Furthermore, the
PSO algorithm is implemented for a problem with two design variables, denoted as x
and r, representing the location and radius of the voids, respectively. This is carried out
to identify configurations with both minimum and maximum nonlinear stiffness.

4.1. STEP METHOD VALIDATION

The validation of the STEP method holds paramount importance in ensuring the accur-
acy and reliability of the computational results in this thesis. By comparing the outcomes
of the STEP method with the established reference [35], the fidelity of the computational

35
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model is intended to be verified. This validation process not only instills confidence in
the accuracy of the results but also establishes the credibility of the employed methodo-
logy. It ensures that the subsequent analyses and optimization efforts conducted using
the STEP method are built upon a robust foundation, enhancing the overall validity and
trustworthiness of the research findings.

In reference [35], the authors presented a technique for obtaining Young’s modulus of
suspended 2D material membranes by analyzing their nonlinear dynamic response. The
material properties utilized in their study, along with the circular membrane dimensions
they employed, are provided in Table 4.1. They achieved the nonlinear stiffness of k,; =
1.35x 101 Nm™3.

Table 4.1.: The properties of the material used for a graphene nanodrum, as detailed in reference
[35], along with the dimensions of the circular membrane.

Poi i Young'’s Thi P
oisson’s g e (9] Radius (R) ickness restress

Ratio (v) modulus (h) (2]

(E)
0.16 594e9[N/m?]  2330[Kg/m3]  2.5e-6[m] 5e-9[m] 1e7[N/m?]

The material properties and dimensions outlined in their paper are utilized to determ-
ine the identical nonlinear stiffness that was previously employed in their research for
a circular membrane. The results obtained are subsequently presented in Table 4.2. As
observed, the obtained results align consistently with those reported in the study by Dav-
idovikj et al. [35]. To enable a thorough examination of relative quantities, the equations
are transformed into their dimensionless form. The specifics of the nondimensional-
ization process are elaborated upon in Appendix B. For reference, the nondimensional

—_ 2
nonlinear stiffness is k,; = k”,f;lh

Table 4.2.: The values obtained for nonlinear stiffness of a circular membrane in both [35] and this
thesis are accompanied by the dimensionless form of nonlinear stiffness.

ref. [35] This thesis

k,; (Nonlinear Stiffness) 1.350 x 1015Nm~3 1.3598 x 101 Nm~3
k_nl (Nondimensional Nonlinear Stiffness) = 1.0091

Please note that from this point forward, whﬂ referring to nonlinear stiffness, it is
specifically meant in its nondimensional form ( k).

Upon validating the STEP results, the subsequent step involves conducting a paramet-
ric study to gain a deeper understanding of the impact of adding circular voids on the
nonlinear stiffness of a circular membrane.



4.2. PARAMETRIC STUDY 37

4.2. PARAMETRIC STUDY

In this section, the objective is to gain a deeper understanding of the effects of adding
voids to the circular membrane on its nonlinear stiffness. To achieve this, various voids
are introduced with different radii at distinct locations. In conducting a systematic para-
metric study, an investigation is carried out to discern the impact of location, perforated
area (the total surface area deducted from the circular membrane), and the number of
voids. It is noteworthy that the perforated area is directly related to the radii of the circu-
lar voids. Each parametric study involves fixing two of the parameters while varying the
third, enabling the observation of that parameter’s specific impact.

4.2.1. PERFORATED AREA VARIATION WITH FIXED VOID LOCATION AND
NUMBER

In the initial parametric study, the focus is on a singular void positioned between the cen-
ter of the circular membrane and the membrane’s edge, precisely at coordinates (1.25e-
6, 0), with varying radii illustrated in Figure 4.1. This study exclusively involves altering
the perforated area (the deducted surface area) of the voids while maintaining constant
the location and number of voids. The adjustment in the area deletion corresponds to
a modification in the radii of the circular voids. For each configuration, the nonlinear
stiffness is determined using the STEP method.

Figure 4.1.: Membrane with void a singular void positioned at the midpoint between the center
and the edge with varying radius. As can be seen in Table 4.3, an increase in the void’s
radius leads to a significant reduction in nonlinear stiffness.

As depicted in Table 4.3, a substantial reduction in nonlinear stiffness emerges when
the void is situated between the membrane’s center and its edge, and the radius of the
void is increased. Put differently, as the void is positioned between the membrane’s cen-
ter and its edge, and the perforated area is increased, the nonlinear stiffness experiences
a notable decrease. Notably, in case (e), the nonlinear stiffness diminishes by approxim-
ately 50 percent compared to a circular membrane without voids.
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Table 4.3.: Acquired values of nonlinear stiffness by placing a single void at the midpoint between
the center and the edge of the membrane and varying radius as depicted in Figure 4.1.

a) 0.8987
b) 0.8549
c) 0.7804
d) 0.6558
e) 0.5672

4.2.2. SINGLE VOID POSITION VARIATION WITH CONSTANT PERFORATED
AREA

In the subsequent scenario, the positions of circular voids are exclusively varied, as de-
tailed in Table 4.4. All circular voids maintain a radius of R/5 and are positioned solely in
the +x direction, with a constant y-coordinate of 0. The center of each void is denoted
by the coordinates (0,0) for reference. In this configuration, the sole variable subject to
alteration is the voids’ positions, while the perforated surface area remains consistent
across all configurations. The resulting nonlinear stiffness values for each configuration,
accompanied by their respective locations (x, y), is provided in Table 4.4.

As indicated in Table 4.4, the relocation of the void towards the edge of the circular
membrane correlates with an increase in nonlinear stiffness. It is noteworthy that, in all
instances, the movement towards the edge leads to an elevation in nonlinear stiffness.
However, this increase does not surpass the nonlinear stiffness observed in a circular
membrane without any void.

Table 4.4.: Obtained values of nonlinear stiffness for a membrane with one void positioned solely
in the +x direction (y = 0), gradually moving towards the edge in various cases.

a) (0.5e-6, 0) 0.7375
b) (le-6, 0) 0.7978
c) (1.2e-6, 0) 0.8420
d) (1.5e-6, 0) 0.9133
e) (1.8e-6, 0) 0.9839

To gain a clearer visualization of the voids’ locations on the circular membrane, please
refer to Figure 4.2, which illustrates the configurations for all cases.
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Figure 4.2.: Membrane with one void positioned solely in the +x direction (y = 0) for different
cases. The nonlinear stiffness tends to increase as the voids approach the membrane’s
edge, while maintaining a constant perforated area, as depicted in Table 4.4.

4.2.3. VARYING NUMBER OF VOIDS WITH CONSTANT PERFORATED AREA
AND VOID LOCATIONS

In another parametric study, the objective is to investigate the effect of increasing the
number of voids while maintaining a constant perforated area (see Figure 4.3). In each
case presented in Figure 4.3, the number of voids increases while the perforated area re-
mains consistent across all configurations. In case (a) presented in Figure 4.3, the radius
of the void is R/2.2, and its location is (1.25e-6, 0).

Figure 4.3.: All configurations maintain identical perforated areas. The increase in the number of
voids does not lead to a significant alteration in the value of nonlinear stiffness.

For each configuration, the nonlinear stiffness obtained by the STEP method is provided

in Table 4.5. As we can see, increasing the number of voids while keeping the perforated
area constant does not have a drastic effect on the value of nonlinear stiffness.

Table 4.5.: Obtained values of nonlinear stiffness for all cases as illustrated in Figure 4.3.

a) 0.5167
b) 0.4943
c) 0.5033
d) 0.4989
e) 0.5063

In conclusion, it is crucial to underscore the intricate and interrelated relationship
among the location of voids, perforated area, and the number of voids. These three
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factors collectively play a pivotal role in shaping the behavior of the circular membrane
and its nonlinear stiffness. Their impact on the mechanical properties of the membrane
isnotisolated but rather interwoven, posing a complex challenge in predicting nonlinear
stiffness.

Given the interconnected relation involving void placement, their radii, and the num-
ber of voids, it becomes apparent that finding a single configuration for achieving min-
imum or maximum nonlinear stiffness is a complex challenge, as it does not rely on a
single variable but rather the collective interaction of these parameters. Therefore, un-
derstanding and optimizing these design parameters is pivotal to achieving the desired
mechanical performance of the circular membrane.

In this context, the application of optimization algorithms emerges as a valuable av-
enue for navigating this intricate design space effectively. Optimization algorithms can
serve as a highly effective approach for exploring the optimal design configurations. The
Particle Swarm Optimization (PSO) algorithm, in particular, appears to be a valuable
tool in this context. The ability of PSO to efficiently navigate complex design spaces and
adapt to nonlinear stiffness variations, as observed in this parametric study, can be a
promising approach.

4.3. PSO ALGORITHM IMPLEMENTATION AND VALIDATION

In this section, the implementation of the PSO algorithm to discover the optimal solution
within a limited design space is targeted, utilizing the material properties and dimen-
sions presented in Table 4.1. The primary focus is on implementing and subsequently
validating the PSO algorithm.

The exploration of potential circular void locations within the circular membrane is
initiated, as illustrated in Figure 4.4. A grid comprising five points on the circular mem-
brane, denoted by the red-colored voids, has been established. Each of these potential
voids has the same radius of R/5. All voids, except for the central one, are positioned at
the midpoint between the center and the edge of the circular membrane. For the optim-
ization process, the Binary Particle Swarm Optimization (BPSO) algorithm is employed,
selected based on the binary nature inherent in this problem (0 or 1). To clarify, within
this circular membrane, a void is represented as 1, and its absence as 0. The void loca-
tions and radii remained fixed, with only their presence changing. This leads in a total of
2% =32 possible configurations (5 design varaibles) in the design space. Each configura-
tion represents a unique combination of void presence or absence at those locations.

Figure 4.4.: Membrane with a grid of 5 potential void locations. The red-colored voids indicate the
possible locations of the voids within the membrane.
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Commencing with three particles and conducting ten iterations of the BPSO algorithm,
the configuration with the lowest nonlinear stiffness was identified using the BPSO al-
gorithm, as illustrated in the flowchart in Figure 3.6. This configuration is visually rep-
resented in Figure 4.5.

Figure 4.5.: The configuration with minimum nonlinear stiffness found by the BPSO algorithm.

The obtained nonlinear stiffness for each iteration is presented in Table 4.6. The BPSO
algorithm identified the minimum nonlinear stiffness in the 9th iteration, which was
0.5933.

Furthermore, it is noteworthy that within my PSO, DPSO, and BPSO codes, code lines
have been implemented to display the obtained configurations; for instance, for the ob-
tained configuration, it is shown as [1, 1, 1, 1, 1], where the first number indicates the
presence of the void at the center, the second indicates the presence of voids along the
+x axis, and the third, fourth, and fifth represent the presence of voids along the +y, -x,
and -y axes, respectively. So, this configuration [1, 1, 1, 1, 1] means that there are voids at
all five locations.

Table 4.6.: The nonlinear stiffness obtained for each iteration by the BPSO algorithm.

Nonlinear

. 0.9877 0.9877 0.8549 0.8549 0.8549 0.6615 0.6615 0.6615 0.5933 0.5933
stiffness

The BPSO algorithm has been implemented multiple times, revealing that it identified
the optimal configuration in various iterations. This behavior aligns with the intrinsic
stochastic nature of particle swarm algorithms, which yield diverse outcomes in each
run. Nevertheless, upon conducting multiple runs, a confident conclusion can be drawn
that this particular configuration consistently represents the optimal one with the min-
imum nonlinear stiffness.

To validate the optimality of the solution obtained through BPSO and ascertain its rep-
resentation of the global optimum, the nonlinear stiffness is computed for every con-
ceivable configuration exclusively through the STEP method. As mentioned earlier, with
5 potential void locations, there are 32 possible configurations. However, as shown in
Figure 4.6, some configurations have the same pattern, allowing us to ignore duplicates.
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Figure 4.6.: Configurations with the same pattern. Therefore, emphasis is placed on a single rep-
n resentative configuration.

In conclusion, a total of 11 distinct configurations were identified, as depicted in Fig-
ure 4.7.

Figure 4.7.: Visualization of 11 distinct configurations out of a total of 32 for calculating nonlinear
stiffness using STEP.

The nonlinear stiffness for each configuration in Figure 4.7 is shown in Table 4.7, ob-
tained using the STEP method.
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Table 4.7.: Obtained nonlinear stiffness for each configuration in Figure 4.7 using STEP method.

a) 1.3844
b) 0.8549
c) 0.9877
d) 0.8787
e) 0.7912
f) 0.7011
) 0.6058
h) 0.7430
i) 0.7471
i 0.6615
K) 0.5933

The minimum nonlinear stiffness, found using the STEP method, corresponds to case
(k) and perfectly matches the configuration discovered by the BPSO algorithm, ensuring
the algorithm’s accuracy.

It is evident that the initial design space is constrained and comparatively straight-
forward. To address this limitation, steps are taken to expand the design space. To
enhance its complexity and comprehensiveness, the decision is made to broaden the
design space by investigating five potential void locations along the direction of the
membrane radius (R). In total, 30 potential void locations are considered (31 if the mem-
brane center is included).

Additionally, given the potential for experimental validation of the results presented
in this thesis, I opt to switch the material to Silicon Nitride ( Si3zN4) and modify the di-
mensions accordingly. One of our experts in experimental methods has outlined the
following parameters and fabrication setup limitations.

The constraints are outlined as follows: The thickness of the circular plate is required
to be a minimum of 100 um. The radius of the circular plate should not surpass 1cm.
The distance between the margins of the voids must be at least 500 pum. The minimum
allowable radius for the holes is 100 um.

The properties of the new material and its dimensions are detailed in Table 4.8. It is
worth mentioning that the nondimensional nonlinear stiffness for a circular membrane
with these material properties and dimensions is 0.9785.
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Table 4.8.: The properties of the material used for a Silicon Nitride ( SigN4) circular membrane,
along with the dimensions of the circular membrane.

0.28 170e9[N/m?]  2329[Kg/m®]  1le-2[m] 0.le-3[m]  2e6[N/m?]

Following calculations based on the distance between the margins of the voids and
the minimum radius of the voids, the following potential radii for the voids have been
identified: [0.1e-3, 0.2e-3, 0.3e-3, 0.4e-3, 0.5e-3, 0.6e-3, 0.7e-3].

As previously stated, PSO algorithms exhibit stochastic behavior, which can lead to dif-
ferent optimal results in each run. To fortify the robustness of our findings, multiple it-
erations of the PSO, DPSO, and BPSO algorithms are conducted, and the outcomes from
their respective final runs are presented.

4.4, MINIMIZING NONLINEAR STIFFNESS: 30 DESIGN
VARIABLES (BPSO)

In this section, consideration is given to 30 potential void locations, excluding one at
the center of the circular membrane (see Figure 4.8). All these voids share a common
radius of 0.4e-3. Furthermore, the analysis focuses solely on the presence of the voids
without alterations in their radius. Given the nature of the problem, the Binary Particle
Swarm Optimization (BPSO) algorithm is implemented for this specific case. As pre-
viously elucidated regarding the BPSO algorithm, the approach is confined to binary
design parameters: 0 denotes the absence of a void, and 1 signifies the presence of a void.
Consequently, the design space encompasses 23° possible configurations. A pivotal con-
straint is imposed, wherein the final configuration, following the addition of voids, must
not exceed the removal of more than 30 percent of the membrane’s surface area. It is
noteworthy that a penalty function is employed as an effective strategy for constraint
management, obviating the necessity for extensive modifications to the algorithm.

Figure 4.8.: Membrane with all possible void locations except the center, analyzed using the BPSO
algorithm to identify the configuration with the minimum nonlinear stiffness.

The BPSO algorithm is employed with 30 particles over 10,000 iterations to ascertain
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the optimal configuration that minimizes nonlinear stiffness. Figure 4.9 illustrates the
optimization process conducted by the BPSO algorithm, presenting the nonlinear stiff-
ness values obtained for each iteration. It is noteworthy that the nonlinear stiffness for
iteration 0 corresponds to a configuration with no voids in the circular membrane. The
black dots in Figure 4.9 depict the nonlinear stiffness values obtained by each particle,
with the red dots indicating the best value discovered by the entire swarm thus far. The
green dot in the figure highlights the iteration during which the BPSO algorithm identi-
fied the minimum nonlinear stiffness.
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Figure 4.9.: Overview of the BPSO algorithm process. The minimum nonlinear stiffness was found
in the iteration 40th, exhibiting a nonlinear stiffness value of 0.7989.

Figure 4.10 displays configurations discovered by BPSO during specific iterations. As
illustrated, the configuration in the 40th iteration has the minimum nonlinear stiffness.

@ Iteration 4 @ Iteration 9 @ Iteration 37 @ Iteration 40

Figure 4.10.: The evolutionary process of finding the optimal configuration with the minimum
nonlinear stiffness using the BPSO algorithm.

To facilitate a deeper comprehension of changes in nonlinear stiffness, the nonlinear
stiffness values for specific iterations are presented in Table 4.9. As observed, the min-
imum nonlinear stiffness is found in the 40th iteration. Additionally, the final optimum
nonlinear stiffness, displayed in Table 4.9, exhibits a nonlinear stiffness of 0.7989, rep-
resenting a remarkable 20 percent reduction in nonlinear stiffness. The values found by
each particle in iterations 1, 37, and 40 are provided in Appendix C.
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Table 4.9.: The nonlinear stiffness obtained for a specific iteration by the BPSO algorithm.

Nonlinear

. 0.9785 0.8343 0.8337 0.8219 0.8156 0.8065 0.7989 0.7989 0.7989 0.7989
stiffness

4.5. MINIMIZING NONLINEAR STIFFNESS: 31 DESIGN
VARIABLES (DPSO)

In this segment, consideration is given to 31 potential void locations, including one at the
center of the circular membrane (see Figure 4.11). These voids can have different radii
selected from the range [0, 0.1e-3, 0.2e-3, 0.3e-3, 0.4e-3, 0.5e-3, 0.6e-3, 0.7e-3]. In this
case, the design variable pertains to the radius of the voids, which can assume discrete
values.

Due to the utilization of discrete values for the radii of the voids, the Discrete Particle
Swarm Optimization (DPSO) algorithm is implemented for this particular problem. It
is important to note that when the radius is set to 0, it signifies the absence of a void.
The problem was subject to constraints to ensure the final configuration, post-void ad-
dition, did not result in the removal of more than 30 percent of the membrane’s surface
area. Furthermore, constraints were imposed to prevent interference among the added
voids, mandating the maintenance of specified margins between them, as previously de-
lineated, in accordance with experimental limitations.

Figure 4.11.: Membrane with all possible void locations including the center, analyzed using the
DPSO algorithm to identify the configuration with the minimum nonlinear stiffness

In Figure 4.12, a visual representation of the optimization process conducted by the
DPSO algorithm is presented, showcasing the nonlinear stiffness values obtained during
each iteration. The 12th iteration yielded the minimum nonlinear stiffness, with a value
0f 0.7610.
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Figure 4.12.: Overview of the DPSO algorithm process. The minimum nonlinear stiffness was
found in the iteration 12th, exhibiting a nonlinear stiffness value of 0.7610.

Figure 4.13 showcases three configurations identified by the BPSO algorithm at dis-
tinct iterations. Notably, the configuration attained in the 12th iteration exhibits the low-
est nonlinear stiffness.
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Figure 4.13.: The evolutionary procedure involves identifying the optimal configuration with the
lowest nonlinear stiffness through the implementation of DPSO.

A more detailed representation of the configuration with the minimum nonlinear stiff-
ness is shown in Figure 4.14. Specific numbers have been assigned to each void, and
their corresponding radii are presented in Table 4.10.
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Figure 4.14.: Designated number corresponding to each void for 12th iteration in Figure 4.13. The
radius related to each void is provided in Table 4.10.
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Table 4.10.: The radius value for each designated void in Figure 4.14.

Labeled

Void
Number

Radius [m] 0.1e-3 0.2e-3 0.3e-3 0.4e-3 0.5e-3 0.6e-3 0.7e-3

Table 4.11 clearly indicates that the DPSO algorithm achieved convergence, reaching
the optimal design during the 12th iteration. The ultimate optimal nonlinear stiffness
recorded a value of 0.7610, representing a significant 20 percent reduction in nonlinear
stiffness. Details of the results obtained by individual particles in the first, 11th, and 12th
iterations are provided in Appendix C.

Table 4.11.: The nonlinear stiffness value obtained for specific iterations by the DPSO algorithm.

Iteration (0] 1 11 12 15 22 30 40
Nonlinear
. 0.9785 0.7785 0.7780 0.7610 0.7610 0.7610 0.7610  0.7610
stiffness

4.6. OPTIMIZING NONLINEAR STIFFNESS: 2 DESIGN
VARIABLES (PSO)

In this scenario, a case is considered with only one void, positioned exclusively along
the +x (with its y-coordinate always set to 0). The +x-coordinate of this void is allowed
to vary within the range of 0 to R. Furthermore, the radius of this void can assume val-
ues within the range of [0.1e-3 to 7e-3]. This scenario involves two design variables: x
and r (the void’s radius). Considering the potential to discover an optimal design within
this extensive design space and recognizing the continuous nature of the design vari-
ables, the Particle Swarm Optimization (PSO) algorithm is implemented. The objective
is to identify two configurations: one that minimizes nonlinear stiffness and another that
maximizes it.

4.6.1. MINIMIZING NONLINEAR STIFFNESS

Presently, the objective is to utilize the PSO algorithm to identify the configuration that
results in the lowest nonlinear stiffness. The constraint for this problem dictates that the
created voids must remain within the boundaries of the circular membrane, maintaining
a specified margin from the membrane’s edge.

In Figure 4.15, a graphical representation illustrating the optimization process con-
ducted by the PSO algorithm is provided. This visualization showcases the nonlinear
stiffness values obtained at each iteration. The PSO algorithm successfully identified
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the configuration with the minimum nonlinear stiffness by the 29th iteration. The min-
imum nonlinear stiffness obtained by the PSO algorithm decreased by approximately 70
percent compared to a circular membrane with no void.
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Figure 4.15.: Overview of the PSO algorithm process for finding the minimum nonlinear stiffness.
The minimum nonlinear stiffness was found in the iteration 29th, exhibiting a nonlin-

ear stiffness value of 0.3404.

In Figure 4.16, we can observe the configurations obtained during specific iterations
aimed at minimizing nonlinear stiffness. It is clear that larger voids positioned nearer to
the edge of the circular membrane lead to reduced nonlinear stiffness.

@ Iteration 1 @Iteration 11

@ Iteration 12

@ Iteration 29

COO0OO0

Figure 4.16.: Configurations found by the PSO algorithm for minimizing nonlinear stiffness.

However, discerning the differences in void locations and radii might not be straight-
forward from Figure 4.16 alone. For a more comprehensive perspective, a dedicated
table, labeled as Table 4.12, has been included, presenting the x-locations and radii of

each configuration depicted in Figure 4.16.

Table 4.12.: Detailed x location and r values for each configuration in Figure 4.16.

1 0.35315
11 0.34661
12 0.34286

29 0.34047

0.0015607
0.0025791
0.0025532
0.0029295

0.0069445
0.0068121
0.0068964
0.0069467
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The PSO algorithm has generated values, which are recorded in Table 4.13, for specific
iterations aimed at minimizing nonlinear stiffness.The outcomes achieved by individual
particles during the first, 25th, and 129th iterations have been recorded in Appendix C.
Furthermore, the x-location and radius (r) of each particle found in the first iteration are
provided in Appendix C.

Table 4.13.: The nonlinear stiffness value obtained for specific iterations by the PSO algorithm to
find the minimum nonlinear stiffness.

Nonlinear

. 0.9785 0.35315 0.3522 0.3428 0.3424 0.3404 0.3404 0.3404
stiffness

4.6.2. MAXIMIZING NONLINEAR STIFFNESS

In this section, the focus shifts to implementing the PSO algorithm to pinpoint the con-
figuration with the maximum nonlinear stiffness. In Figure 4.17, we can observe the
optimization process of the PSO algorithm as it seeks the configuration with the highest
nonlinear stiffness. It is evident that the algorithm reaches the optimal design in itera-
tion 17th.
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Figure 4.17.: Overview of the PSO algorithm process for finding the maximum nonlinear stiffness.
The maximum nonlinear stiffness was found in the 17th iteration, exhibiting a non-
linear stiffness value of 1.8133.

The configurations obtained for these specific iterations, along with the optimal con-
figuration with the maximum nonlinear stiffness, are illustrated in Figure 4.18.
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@ Iteration 1 @ lteration 14 @ Iteration 17

Figure 4.18.: Configurations found by the PSO algorithm for maximizing nonlinear stiffness.

Since the differences between the obtained configurations may not be readily discern-
ible, we have provided detailed information for the x-location and radius (r) of each
configuration in Table 4.14.

Table 4.14.: Detailed x location and r values for each configuration in Figure 4.18.

1 1.3257 3.171e-05 0.0022221
14 1.6374 2.4311e-06 0.004897
17 1.8133 0 0.007

Table 4.15 displays the values discovered by the PSO algorithm during certain itera-
tions focused on maximizing nonlinear stiffness. The outcomes derived by individual
particles during the first, 14th, and 17th iterations have been recorded in Appendix C.
Moreover, Appendix C contains information on the x-coordinate and radius for each
particle identified during the initial iteration.

Table 4.15.: The nonlinear stiffness value obtained for specific iteratiosn by the DPSO algorithm to
find the maximum nonlinear stiffness..

Nonlinear

. 0.9785 1.3257 1.4896 1.4896 1.4896 1.6374 1.8133 1.8133
stiffness

The outcomes derived from the Particle Swarm Optimization (PSO) algorithm, de-
signed to minimize and maximize nonlinear stiffness, align remarkably well with the
results obtained through the comprehensive parametric study conducted. This agree-
ment emphasizes the effectiveness and reliability of the PSO algorithm in exploring the
intricate design space.

In essence, the success of PSO algorithms in finding optimal solutions is underscored
by the intricate interplay between the location, radii, and number of voids, all of which
directly influence the deducted surface area. The complex relationships among these
parameters make the PSO algorithms a promising avenue for navigating the design space
and uncovering optimal solutions with enhanced efficiency and precision.
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Moreover, the PSO optimization reveals that a mere random increase in the number
of voids does not significantly alter the nonlinear stiffness. This suggests that the crit-
ical factors influencing the nonlinear stiffness are primarily associated with the specific
locations of the voids and the resulting deducted surface area. The findings emphas-

ize the importance of these factors in determining the substantial changes in nonlinear
stiffness.



CONCLUSION

N this study, the potential of design optimization in fine-tuning the nonlinear stiffness
I of a circular membrane was illustrated. This approach enables a systematic assess-
ment of a wide range of design configurations, pinpointing the optimal design through
the utilization of PSO algorithms, including DPSO and BPSO.

The findings of this research carry important implications for the design of high- per-
formance structures with specific stiffness requirements. By utilizing PSO algorithms,
including DPSO and BPSO, for design optimization, a significant reduction in time and
cost associated with traditional trial-and-error approaches can be achieved. Further-
more, this study provides valuable insights into the fundamental mechanisms governing
the influence of circular voids on the nonlinear stiffness of a circular membrane. The in-
vestigations conducted within this thesis shed light on the interconnected relationship
among void location, radii, and the number of voids, all intricately linked to the altera-
tion of the circular membrane’s surface area. These discoveries have significant potential
to enhance the development of more accurate models and design guidelines.

Moreover, the approach outlined in this thesis introduces a pioneering methodology
for the implementation of PSO algorithms in design optimization, marking a significant
advancement in this field. This methodology proves valuable not only for the design op-
timization of circular membranes but also holds promise for application in other, more
complex structures, such as beams or plates.

In summary, the application of particle swarm optimization algorithms emerges as a
promising tool for optimizing design exploration and revealing the fundamental prin-
ciples governing complex materials and structural behavior. Additionally, this thesis en-
deavors to emphasize the capability of the PSO algorithm in streamlining the design pro-
cess. It is hoped that these findings will act as a catalyst for further research in this cap-
tivating domain, playing a pivotal role in advancing the development of more efficient
and effective design methodologies.

For future work, it is proposed to leverage machine learning as a powerful tool for ex-
ploring the design space, providing a broader understanding of the impact of void loca-
tions and their radii. While machine learning (ML) has found widespread application in
various fields, its adoption in engineering science is still in its nascent stages. Employ-

53
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ing ML models to discern patterns and relationships within the data enables engineers
to develop optimized designs that surpass the performance of initial designs. As data
availability increases and more advanced ML techniques evolve, there is an opportunity
to unlock even greater efficiencies in the design process. Additionally, exploring experi-
mental validation of the obtained results could offer further avenues for investigation.
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PSO-STEP INTEGRATION
FRAMEWORK

An intricate flowchart elucidating the interaction between the PSO algorithm and the
STEP method is depicted in Figure A.1. This meticulous procedure encompasses the
initialization of PSO variables, the generation of various configurations, the subsequent
computation of nonlinear stiffness for each configuration, and the final identification of
the optimal solution upon meeting all necessary criteria.

Initialize the PSO particles with

random positions (Xf’) and
velocities (V)

Evaluate the fitness function for particles

O Rduced order Obtain
— (000 —> modelling using —_ Pl  nondimensionalized

STEP method nonlinear stiffness (@)

Translate (X{) into
geometry

Is the current
fitness greater
tha previous
“PBEST"? Keep the previous

Update the "‘PBEST" “PBEST"

Assign the “PBEST" value
of the best particle to the
“GBEST"

Optimal solution

Are the O
stopping OOO
citeria O
satisfied?

Update particles positions Compute the velocity of eah particle

Figure A.1.: The depicted flowchart illustrates the integrated PSO-STEP algorithm, covering the
initiation of PSO variables, the generation of diverse configurations, the subsequent
computation of nonlinear stiffness for each configuration, and ultimately, the identi-
fication of the optimal solution upon fulfilling all specified requirements.
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66 A. PSO-STEP INTEGRATION FRAMEWORK

To comprehend the intricacies outlined in the presented flowchart (see Figure A.1),
the steps can be broken down into a sequential narrative. Initially, the PSO variables
are initialized in accordance with the specifics of the problem, encompassing the num-
ber of variables involved. The PSO algorithm assigns random velocity and location to
each particle, facilitating an exploration of the design space. In other words, N distinct
geometries are generated using these initialized PSO variables.

Following the generation of distinct geometries, the algorithm proceeds to employ the
STEP method to compute the nonlinear stiffness for each initial configuration. This com-
putation results in a vector representing the calculated stiffness values. At this stage, the
algorithm seeks to assign the best PBEST value found thus far as the GBEST for the entire
swarm, updating both PBEST and GBEST in each iteration.

Ifthe stopping criteria are satisfied, signifying the attainment of the final optimal design,
it is presented. However, if the optimal design remains elusive, the algorithm reverts to
the PSO stage. The decision to terminate this iterative process may depend on factors
such as the number of particles, iteration count, or adherence to specific constraints.
This adaptive termination criterion ensures a dynamic and effective exploration of the
design space.

In more detail, when the stop criteria are not satisfied, the PSO algorithm proceeds to
assign new velocity and new locations to each particle (as expressed in Equation Equa-
tion (3.12) and Equation (3.13)). This results in the generation of another set of configur-
ations. Subsequently, these newly generated configurations undergo the STEP method
once again to calculate the nonlinear stiffness for each configuration.



NORMALIZATION PROCESS

The equation, which describes the dynamic behavior of a system subjected to a combin-
ation of linear and cubic spring forces, damping, and an external harmonic force, can be
written as follows:

mi + cx + kyx + kx> = F,cos(w?) (B.1)

Here, m represents the mass of the system, and x is the displacement. X and x repres-
ent the second and first derivatives of the displacement with respect to time ¢, respect-
ively. c represents the damping coefficient and k; is the stiffness coefficient of the linear
spring. The term k3x> denotes the cubic nonlinearity in the spring force. Additionally,
F,cos(wt) represents an external force applied to the system, where F, is the amplitude
of the external force, w is the angular frequency.

Assume:

p= 2 t (B.2)
X=—, T=w .
h n

& = 7 is defining a non-dimensional variable %, which is obtained by dividing the thick-
ness variable h. And 7 = w, t defines a non-dimensional time variable, where w,, is the
natural frequency of the system and ¢ is the time variable.

The first and second derivatives of displacement with respect to time can be written
as follows:

dx _dh% hw,di

R (B.3)
dt den dr
d’x  d’hix  hold’x
Z == = (B.4)
dr? dl= 2 dr?
(&)
By substituting Equation (B.3) and Equation (B.4) into Equation (B.1):
d’x c dx k knih? 4 F, w
o4 —_—+ X+ = cos(—7) (B.5)
dr®  mw, dt  oim~  oim hw?m Wn
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B. NORMALIZATION PROCESS

Now, the following nondimensional variables can be introduced:

c 2 _ ﬁ _ knlh2
2mwy’ Wy = m’ knl -k (B.6)
Q=0 = _% 3 = & q= Fe :
wn’ wih’ wnh’ hw?m
then

"4+ 20% + X+ k2% = g cos(Qr)

(B.7)
is the nondimensional form of the Equation (B.1).



DETAILED PSO ALGORITHMS
RESULTS

F OR a comprehensive understanding of the specific values and configurations dis-
covered by each particle throughout the iterations, detailed information has been
supplied in this appendix.
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70 C. DETAILED PSO ALGORITHMS RESULTS

In Table C.1, the detailed values found by each particle in the BPSO algorithm (refer to
Figure 4.9) for three different iterations are presented. It should be noted that the values
are sorted from maximum to minimum values of nonlinear stiffness.

Table C.1.: Nonlinear stiffness obtained by each particle in BPSO algortihm for iterations 1, 37, and
40 (Sorted from maximum to minimum value of nonlinear stiffness).

0.919753238 0.926796667 0.911414922
0.898916228 0.918470537 0.907991926
0.898383896 0.916288276 0.902764555
0.896844808 0.910248161 0.8990957

0.895142745 0.908814676 0.895830547
0.891884618 0.904079615 0.889891805
0.888058813 0.901254008 0.889636047
0.88670952 0.898109765 0.88959193

0.884841831 0.893943909 0.889285961
0.881929266 0.892107454 0.888402181
0.881564731 0.887582314 0.884888333
0.880580593 0.885377559 0.882857029
0.879634395 0.884115112 0.879711103
0.878839208 0.883476867 0.87909087
0.878011703 0.87662679 0.878920891
0.877765366 0.87278612 0.876073072
0.877241631 0.872187961 0.867976132
0.874634024 0.868551985 0.865010552
0.871979857 0.865443758 0.861398707
0.870945329 0.864486791 0.859589597
0.868008882 0.864126737 0.858877741
0.867343872 0.858854448 0.857447032
0.866714445 0.857204279 0.854960091
0.865046924 0.854498356 0.853958076
0.858908156 0.851346978 0.841275212
0.85704824 0.84780668 0.840776444
0.85272676 0.839411349 0.827629749
0.851326546 0.826960024 0.826924984
0.847653472 0.822677889 0.821675655

0.834346292 0.806507658 0.798986654
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In Table C.2, you can find the intricate values discovered by individual particles in the
DPSO algorithm (as illustrated in Figure 4.12) for three distinct iterations. It's important
to mention that these values have been arranged in descending order, from the max-
imum to the minimum values of nonlinear stiffness.

Table C.2.: Nonlinear stiffness obtained by each particle in the DPSO algorithmfor iterations 1, 11,
and 12 (Sorted from maximum to minimum values of nonlinear stiffness).

1.02214573 1.020612183 0.960013448
0.981156946 0.997804916 0.959918896
0.945252312 0.959855761 0.946417392
0.930273977 0.949591828 0.940792115
0.928049512 0.933474063 0.934045387
0.923651346 0.92021294 0.930557147
0.921719662 0.914353676 0.922329003
0.920653499 0.902694726 0.91856678

0.91702788 0.900907386 0.916287466
0.913980445 0.898288704 0.913312758
0.913093668 0.893969937 0.910438485
0.906904777 0.888964108 0.905025935
0.900416151 0.887526202 0.8878465
0.895127245 0.881152639 0.886838565
0.894658183 0.878841774 0.881347126
0.892701053 0.876447934 0.881330942

0.89194369 0.875297448 0.878209793

0.89190208 0.87492833 0.876223354
0.888189067 0.874091104 0.872243551
0.884371689 0.873978175 0.85942031
0.882784746 0.864138284 0.850797404
0.874823549 0.857602975 0.850003047
0.874371962 0.856665405 0.841936401
0.873750487 0.853165051 0.841532695
0.857195878 0.850889685 0.837175022

0.85283311 0.839964553 0.836776013
0.834910791 0.831319656 0.829343528
0.820741234 0.827820076 0.817833477
0.802547408 0.805829397 0.814270152

0.778510415 0.778038847 0.761092417
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In Table C.3, you can find the intricate values discovered by individual particles in the
PSO algorithm (as illustrated in Figure 4.15) for three distinct iterations. It's important to
mention that these values have been arranged in descending order, from the maximum
to the minimum values of nonlinear stiffness.

Table C.3.: Nonlinear stiffness obtained by each particle for iterations 1, 25, and 29 (Sorted from
maximum to minimum values of nonlinear stiffness).

1.212201763 1.060808336 1.318749431
1.187741745 1.060525733 1.234650637
0.996113527 1.039610717 1.123624011
0.995944128 1.001214147 0.999340115
0.979966324 0.991731458 0.97638418
0.978881464 0.987382295 0.975636687
0.978634707 0.984399654 0.974690042
0.965584047 0.979677051 0.973555001
0.964137496 0.968044265 0.954026744
0.911089656 0.963391743 0.941950043
0.880927443 0.961420822 0.933365102
0.86572717 0.937676151 0.929903455
0.741849416 0.935681953 0.834828191
0.710559696 0.898797955 0.822388236
0.683325944 0.898601506 0.784136887
0.563307442 0.89838328 0.778185333
0.532240132 0.866488796 0.763806696
0.513714081 0.821839081 0.723129621
0.501296215 0.787576023 0.677708148
0.452892033 0.784328985 0.550694693
0.447274608 0.74961679 0.528845417
0.42582857 0.714492211 0.507402266
0.425501036 0.659904073 0.458821122
0.416135703 0.6135286 0.443280472
0.409068329 0.573138815 0.411036627
0.38633872 0.422790143 0.404121191
0.381683623 0.383304573 0.402847684
0.363188751 0.374040179 0.391154318
0.353666909 0.361753186 0.385967044

0.35315342 0.342441575 0.340469394
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Table C.4 illustrates the nonlinear stiffness values acquired by each particle during the
1st iteration, along with their corresponding x-location and radius (r), as depicted in
Figure 4.15.

Table C.4.: x-location and radius (r) for each particle for the 1st iteration (sorted from maximum
to minimum values for nonlinear stiffness)

1.0939e-05 0.0015272 1.2122
0.00015867 0.0020429 1.1877
0.0075645 0.0013474 0.99611
0.0079365 0.001047 0.99594
0.0073938 0.00048868 0.97997
0.0082656 0.00016309 0.97888
0.0047624 0.00012226 0.97863
0.0064603 0.0012098 0.96558
0.0031936 0.0003375 0.96414
0.0028672 0.0008364 0.91109
0.0063402 0.0021601 0.88093
0.0061813 0.0022143 0.86573
0.00016003 0.0055007 0.74185
0.0035308 0.0022154 0.71056
0.0063647 0.0034794 0.68333
0.0056192 0.0039774 0.56331
0.0036907 0.0035711 0.53224
0.0018974 0.003678 0.51371
0.00024264 0.0064121 0.5013
0.001464 0.0048628 0.45289
0.0019846 0.004675 0.44727
0.0023783 0.004986 0.42583
0.0015345 0.0053395 0.4255
0.0021371 0.0052405 0.41614
0.0038097 0.0052954 0.40907
0.0017404 0.0060263 0.38634
0.0020258 0.0060401 0.38168
0.0026768 0.0063674 0.36319
0.0032016 0.0065568 0.35367

0.0015607 0.0069445 0.35315



74 C. DETAILED PSO ALGORITHMS RESULTS

In Table C.5, you can find the intricate values discovered by individual particles in the
PSO algorithm (as illustrated in Figure 4.17) for three distinct iterations. It’s important to
mention that these values have been arranged in descending order, from the minimum
to the maximum.

Table C.5.: Nonlinear stiffness obtained by each particle for iterations 1, 14, and 17 (Sorted from
minimum to maximum values of nonlinear stiffness).

0.398595618 0.378006045 0.367668836
0.429232132 0.416068933 0.375005549
0.434382003 0.483689044 0.420431290
0.473619621 0.512740304 0.497300083
0.475567992 0.555115645 0.518344181
0.486191633 0.606879758 0.559738002
0.509973799 0.655189807 0.573038057
0.595691055 0.677829934 0.6096752

0.709855817 0.704183825 0.619782572
0.742844441 0.790143965 0.680918225
0.743957398 0.803967801 0.687843923
0.772687613 0.853883909 0.862891284
0.782716457 0.896585789 0.876302801
0.819374532 0.944855792 0.885137172
0.908205431 0.94713233 0.886221019
0.913206735 0.949821046 0.914625803
0.926942269 0.95037964 0.914659572
0.965137657 0.951100448 0.921266798
0.969657437 0.961753857 0.921545321
0.971010919 0.966586248 0.937659971
0.971499722 0.969775171 0.954080728
0.972108617 0.973497529 0.966756364
0.973609999 0.976767164 0.980822366
0.976499846 0.977882521 0.981386713
0.980033501 0.980399539 0.983503365
0.980689631 0.981920175 1.000894595
0.988095021 0.988679603 1.001827458
1.002147775 0.989192203 1.061469041
1.003977548 1.004725026 1.637407101

1.325730571 1.6374 1.8133
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In Table C.6, the nonlinear stiffness values obtained by each particle during the 1st
iteration are presented, along with their respective x-location and radius (r), as depicted
in Figure 4.17.

Table C.6.: x-location and radius (r) by each particle for the 1st iteration (sorted from minimum to
maximum values for nonlinear stiffness)

0.0035332 0.0054692 0.3986
0.0021988 0.0049662 0.42923
0.0041686 0.0049168 0.43438
0.0011752 0.0047358 0.47362
0.0010568 0.0048425 0.47557
0.00089769 0.0049097 0.48619
0.0030709 0.003684 0.50997
0.0043865 0.0032497 0.59569
0.0053893 0.0028878 0.70986
0.0051866 0.0022154 0.71056
0.0041261 0.0021957 0.74284
0.0019056 0.0018048 0.74396
0.0056439 0.0025871 0.77269
0.0058241 0.0025987 0.78272
0.0028595 0.0014026 0.81937
0.0015345 0.0013691 0.90821
0.0018773 0.00083275 0.91321
0.0071403 0.0021944 0.92694
0.0035333 0.00045499 0.96514
0.0063483 0.0010196 0.96966
0.0059455 0.00096681 0.97101
0.0011556 0.00029627 0.9715
0.0016618 0.00020711 0.97211
0.0059207 0.00047944 0.97361
0.0064514 0.00080798 0.9765
0.0076269 0.00026778 0.98069
0.009344 0.00049977 0.9881
0.0080449 0.0013494 1.0021
0.0084532 0.0010476 1.004

3.171e-05 0.0022221 1.3257
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