
Mind the Gap: Layerwise Proximal Replay for
Stable Continual Learning

Oskar Hage1

Supervisors: Tom Viering1, Gido van de Ven1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Oskar Hage
Final project course: CSE3000 Research Project
Thesis committee: Tom Viering, Gido van de Ven, Alan Hanjalic

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

Continual learning aims to train models that can incrementally acquire new knowl-
edge over a sequence of tasks while retaining previously learned information, even in the
absence of access to past data. A key challenge in this setting is maintaining stability
at task transitions, where even methods like experience replay can suffer from tem-
porary performance degradation known as the stability gap. In this work, we evaluate
Layerwise Proximal Replay (LPR), a recently proposed optimisation strategy that con-
strains updates at the layer level to preserve internal representations of past data. We
implement LPR on a simple multi-layer perceptron and benchmark it against an incre-
mental joint training baseline on a domain-incremental variant of Rotated MNIST. To
quantify the stability gap, we track accuracy drops immediately following task switches
and compute local minima after transitions. Our results show that LPR consistently
reduces the stability gap across a range of learning rates, with statistically significant
improvements at higher values. However, this improvement comes at the cost of re-
duced performance on later tasks. These findings demonstrate that LPR significantly
mitigates short-term performance degradation at task boundaries while maintaining
high learning rates, offering a practical solution for increased stability in continual
learning.

1 Introduction
Continual learning, also known as lifelong learning, enables machine learning models to
progressively acquire and integrate new knowledge over time while retaining previously
learned information [9, 2]. This paradigm addresses the challenge of training models on a
sequence of tasks or data distributions, often without access to past data and under memory
and computational constraints. A fundamental obstacle in this field is catastrophic forgetting,
where the acquisition of new tasks leads to a significant degradation in performance on earlier
ones [10, 8].

To mitigate catastrophic forgetting, experience replay (ER) is a widely adopted strategy
that involves storing and reusing a subset of past data during training, thereby interleaving
old and new examples during updates [10]. While effective in reducing forgetting, recent
research by De Lange et al. has revealed that ER methods remain susceptible to performance
drops, particularly immediately following task transitions. This phenomenon is defined as
the stability gap, arising from unstable optimisation trajectories [3, 12]. The existence of this
gap has significant implications, especially in safety-critical applications such as autonomous
driving or medical diagnostics, where momentary lapses in predictive reliability can result in
unacceptable outcomes [5]. Moreover, models suffering from repeated instability may require
longer convergence times, increasing both computational cost and energy consumption [4,
14, 6, 11].

Beyond its practical impact, the stability gap also provides insight into suboptimal learn-
ing dynamics. The fact that performance often recovers after a task switch suggests that
the model is capable of reconciling new and old knowledge, but does so through a transient
period of degradation. This implies that the instability arises not from inherent task incom-
patibility, but from inefficient optimisation paths during transitions. Reducing the stability
gap, then, is not an end in itself, but a means of encouraging more direct and robust up-
dates that accelerate convergence and improve retention. An example of this phenomenon
is shown in Figure 1, where the test accuracy on an earlier task drops sharply after each
new task is introduced but gradually recovers over time.

1



Figure 1: Illustration of the stability gap. The plot shows accuracy on Task 1 during baseline
training (learning rate η = 0.1). Red arrows indicate accuracy drops after task switches,
which recover over time, highlighting the temporary instability caused by suboptimal up-
dates.

In this work, we evaluate Layerwise Proximal Replay (LPR), a recently proposed opti-
misation strategy by Yoo et al. designed to enhance continual learning stability [15]. LPR
operates by constraining updates at the layer level, which preserves internal representations
of past data. Unlike methods that alter the loss function or project gradients, LPR functions
as a gradient preconditioning method, updating each layer’s weights using a preconditioner
derived from replayed activations. This mechanism penalises updates that would cause sub-
stantial changes in the model’s activations for past data, aiming to reduce large accuracy
drops without unduly hindering new learning [15].

We implement LPR on a simple multi-layer perceptron and benchmark its performance
against an incremental joint training baseline on a domain-incremental variant of Rotated
MNIST [7]. To quantify the stability gap, we track accuracy drops immediately following
task switches and compute local minima after transitions, focusing on immediate instability
rather than long-term averages. Our findings consistently demonstrate that LPR signifi-
cantly reduces the stability gap across a range of learning rates, with statistically significant
improvements observed at higher learning rates where instability is typically most pro-
nounced. We further investigate the role of the regularising coefficient ω, a key parameter in
the LPR algorithm, hypothesising an optimal intermediate range that balances stability with
the model’s adaptability to new tasks. The results confirm that LPR provides substantial
optimisation stability, improving long-term retention compared to the baseline.

The remainder of this paper is structured as follows: Section 2 provides essential back-
ground on continual learning, catastrophic forgetting, experience replay, and a detailed ex-
planation of Layerwise Proximal Replay. Section 3 discusses the motivation behind studying
the stability gap and outlines our hypotheses regarding LPR’s effectiveness and its inter-
action with learning rates. Section 4 details the experiment methodology, including the

2



Rotated MNIST benchmark, LPR, model architecture, and the methodology for evaluating
the stability gap. Section 5 presents our results, including baseline comparisons, LPR’s per-
formance across various hyperparameters, and statistical analyses. Section 6 discusses the
implications of our findings and outlines avenues for future work. Finally, Section 7 con-
cludes the paper with Section 8 addressing responsible research practices, reproducibility,
and ethical considerations.

2 Background
This section provides the necessary context for our study. We first introduce the contin-
ual learning setting and the specific challenges it presents, particularly the phenomenon of
catastrophic forgetting and the recently defined stability gap. We then review experience
replay as a common mitigation strategy and describe our experimental setup based on the
Rotated MNIST benchmark. Finally, we present Layerwise Proximal Replay (LPR), the core
method evaluated in this work, and outline its mechanism for improving training stability
across sequential tasks.

2.1 Continual Learning
Continual learning refers to the ability of machine learning models to continuously acquire
and integrate new knowledge over time while retaining previously learnt information [9].
It addresses the challenge of learning from a sequence of tasks or data distributions, often
without access to past data and under constraints on memory and computation [2].

We focus on the domain-incremental setting, where each task introduces data from a
different input distribution while the output label space remains fixed, and no task identity
is provided at test time [13].

A core challenge in continual learning is catastrophic forgetting, the phenomenon where
learning new tasks causes performance degradation on earlier ones [2]. One approach to
mitigate forgetting is experience replay (ER), which stores and reuses a subset of past data
during training [10]. ER can significantly reduce forgetting by interleaving old and new
examples during updates. However, recent work by De Lange et al. [3] demonstrates that
ER is still susceptible to performance drops, particularly just after task switches. This
phenomenon, called the stability gap, arises from unstable optimisation trajectories even
when forgetting is controlled.

We evaluate models on a domain-incremental variant of Rotated MNIST, where digit
images are rotated by fixed angles [0◦, 60◦, 120◦, 180◦] across tasks. This setup changes the
visual appearance of the inputs while keeping the output label space unchanged, requiring
the model to adapt without explicit task identity. Implementation details are provided in
Section 4.3.

While LPR’s design suggests potential benefits for optimisation stability, its empirical
evaluation has largely focused on long-term retention and final accuracy. In contrast, our
study focuses on short-term stability immediately after task switches, specifically examining
how it is influenced by the learning rate and the regularisation parameter ω, which is defined
in the next subsection.

3



2.2 Layerwise Proximal Replay
To address the stability gap, that persists even with ER, we investigate LPR, a recently
proposed optimisation strategy by Yoo et al. [15]. LPR improves continual learning stability
by preconditioning each layer’s gradient updates to preserve internal representations of past
data.

Rather than modifying the loss function or projecting gradients, LPR constructs a per-
layer preconditioner matrix from replayed activations, penalising parameter changes that
would disrupt these activations. This allows the model to suppress disruptive updates
without entirely preventing learning. A key element of LPR is ω, which controls the strength
of the regularisation by scaling the penalty on activation changes; higher values enforce
greater stability at the cost of flexibility. The implementation details of this mechanism are
described in Section 4.2. In the next Section we hypothesise how changing ω could affect
the trade-off between preserving prior knowledge and adapting to new tasks.

We reproduce the original algorithm by Yoo et al. in Appendix A for completeness.
However, our implementation deviates in several key ways to simplify integration with our
experimental setup, mainly for performance related reasons. The adapted procedure used in
our experiments and a comparison to the original implementation is presented in Section 4.3.

3 Motivation and Hypothesis
This section outlines our motivation for studying LPR and its effect on the stability gap,
and then presents the hypotheses that guide our experimental investigation.

3.1 Motivation
Despite the effectiveness of ER in mitigating catastrophic forgetting, recent work by De
Lange et al. [3] has revealed a persistent issue: the stability gap, a temporary drop in
performance immediately after task transitions. This phenomenon persists even under ideal
replay conditions, such as incremental joint training, and suggests that the instability arises
not from forgetting, but from poor optimisation trajectories during transitions.

Yoo et al. [15] proposed LPR to address this gap by preconditioning gradients at the layer
level using replayed activations. While their results suggest improved retention and overall
performance, their evaluation focused primarily on final accuracy and qualitative evidence
of stability. In contrast, our work provides a more granular and quantitative assessment of
LPR’s ability to reduce short-term instability, using the stability gap metric introduced by
De Lange et al. Furthermore, we examine LPR’s interaction with learning rate, an aspect
that was not explicitly explored in the original LPR study.

3.2 Hypothesis
We hypothesise that LPR could mitigate the stability gap by penalising updates that inter-
fere with internal representations learned from earlier tasks. The strength of this penalty
would be governed by the stability coefficient ω, which controls how strongly LPR regularises
each layer’s gradient.

We anticipate the following effects:

4



1. When ω is very large, LPR will aggressively preserve previous representations,
suppressing instability but also reducing the model’s ability to adapt. In this regime,
we expect low stability gaps but poor learning on new tasks due to over-regularisation.

2. When ω is very small, LPR becomes nearly equivalent to standard SGD. Here, we
expect little effect on the stability gap or performance, as regularisation is negligible.

We therefore hypothesise the existence of an intermediate ω range that balances stability
and adaptability.

3.3 Interaction with Learning Rate
We further expect the benefits of LPR to be modulated by the learning rate η. At higher
learning rates, gradient steps are more aggressive, increasing the likelihood of overshooting
and destabilising prior knowledge. In such settings, LPR should be especially beneficial by
tempering updates in sensitive directions. At lower learning rates, gradient descent behaves
more conservatively, which may already provide some stability and thus reduce the benefit
of LPR.

Therefore, we predict that:

1. LPR will offer the greatest improvements in stability when used with higher learning
rates.

2. The optimal ω will likely shift depending on η, highlighting a potential interaction
between the two hyperparameters.

In summary, our investigation seeks to explore the trade-off between stability and adapt-
ability in LPR by varying both ω and η, and to assess whether this method can offer an
improvement to continual learning systems.

4 Methodology
This section outlines the methodology used to evaluate the effectiveness of LPR in re-
ducing the stability gap during continual learning. We begin by describing the baseline
method, which serves as a comparative benchmark. We then detail our implementation
of LPR, including its integration into a simple Multilayer Perceptron (MLP) architecture.
Next, we present the experimental setup, including the domain-incremental Rotated MNIST
benchmark, model specifications, and training procedures. Finally, we define our evaluation
protocol.

4.1 Baseline Methods
As a baseline, we implement incremental joint training, where at each task the model is
trained on the cumulative dataset from all previously seen tasks. This setup assumes full
access to past data and thus corresponds to a form of perfect replay. Although this is
not memory-constrained like typical experience replay methods, it provides a strong upper-
bound baseline to isolate instability effects unrelated to forgetting. The goal is to create a
benchmark on performance stability, highlighting how this idealised baseline handles task
transitions in the absence of memory constraints or regularisation.

5



To assess learning stability, we measure the test accuracy on each task throughout train-
ing. In particular, we track the accuracy of Task 1 after each subsequent task is introduced,
using the local minimum after each task switch to quantify performance degradation.

Figure 2 illustrates the stability gap that occurs in the baseline setup following each task
transition. The plot tracks the test accuracy on Task 1 throughout training with a learning
rate of 0.5. The vertical dotted lines indicate task switch points, after which the model
begins learning from new rotated tasks.

As shown, accuracy on Task 1 declines sharply immediately after each transition, despite
the model having access to data from all previous tasks, demonstrating the instability of
incremental joint training. This instability is especially pronounced at higher learning rates,
as is illustrated in the Appendix in Figure 6 .

Figure 2: Task 1 accuracy on baseline experiment with Learning Rate 0.5. Note the sudden
and large drops in accuracy after task switches.

4.2 Implementation of Layerwise Proximal Replay
We implemented LPR on top of a simple MLP architecture with three fully connected layers.
The key mechanism in LPR is a layer-wise preconditioning of gradients using information
derived from a replay buffer containing activations of previously seen data. After each task
is trained, a subset of examples is stored in the buffer, and the corresponding hidden layer
activations are used to construct positive-definite preconditioner matrices. These precondi-
tioners are then used to modify the direction of incoming gradients for subsequent tasks,
limiting abrupt changes to internal representations.

Our implementation follows the structure outlined in Algorithm 1 and is based on the
method originally proposed by Yoo et al. [15]. However, several modifications were made to
simplify integration with our experimental setup. Most notably,for computational efficiency,
we use a fixed-size replay buffer per task (500 examples) and recompute preconditioners only
once per task instead of at a fixed interval. We also apply the preconditioner only at the
first and second hidden layers (fc1 and fc2), rather than across all layers. For completeness,
the original algorithm from Yoo et al. is reproduced in the Appendix as Algorithm 2.

6



Algorithm 1 Training with Layerwise Proximal Replay
1: Initialise model fθ and empty replay buffer M
2: for each task t = 1, 2, . . . , T do
3: Train model on joint data from tasks 1 to t
4: if t > 1 then
5: Compute preconditioner matrices P−1

ℓ fromM for each layer ℓ
6: end if
7: for each training iteration do
8: Sample minibatch (x, y)
9: Compute forward pass and loss LCE

10: Compute gradients ∇L by backpropagation
11: if t > 1 then
12: Precondition gradients at fc1 and fc2: g ← P−1

ℓ g
13: end if
14: Update weights with SGD
15: Periodically evaluate accuracy on all tasks seen so far
16: end for
17: Store a fixed number of examples from task t into bufferM
18: end for

The replay buffer stores up to 500 examples per task. Activations at key layers (input,
first hidden, second hidden) are cached and used to compute the layer-specific precondition-
ers P−1

ℓ =
(
I + ωZ⊤Z

)−1, where Z is the matrix of hidden activations from replay data,
and ω is a regularisation strength. When ω = 0, the preconditioner reduces to the identity
matrix, i.e., P−1

ℓ = I, meaning that gradients are left unmodified and standard stochastic
gradient descent (SGD) is recovered. In this regime, no stabilising effect is applied, and the
model is free to make large representational shifts. As ω increases, the term ωZ⊤Z grows
in influence, and the preconditioner increasingly penalises updates that would significantly
alter the layer’s response to previously seen data. Thus, ω dictates the trade-off between
stability (preserving past internal representations) and plasticity (adapting to new inputs).
Preconditioners are applied directly to gradient vectors at each layer prior to the weight
update step.

This implementation allows the model to adapt to new tasks while maintaining repre-
sentational consistency for old tasks, thereby reducing the stability gap and catastrophic
forgetting.

4.3 Experimental Setup
We built our experiments on top of the continual-learning codebase by Gido van de Ven1,
which provides a modular framework to evaluate continual learning strategies. We adapted
the codebase to suit our experimental design and implemented a custom training script for
applying LPR to a multi-layer perceptron. Our implementation, including all experiments
and logging utilities, is publicly available on the author’s GitHub repository2.

We evaluate the effect of LPR on the stability gap in continual learning using a domain-
incremental variant of the Rotated MNIST benchmark. In this benchmark, each task

1https://github.com/GMvandeVen/continual-learning
2Oskar Hage’s Github: https://github.com/kingossi

7

https://github.com/GMvandeVen/continual-learning
https://github.com/kingossi


presents the original MNIST digit classification dataset 3 with a fixed image rotation,
while the label space remains unchanged. We define four tasks with increasing rotations
of [0◦, 60◦, 120◦, 180◦].

For all experiments, we use a three-layer fully connected network MLP with ReLU acti-
vations and 400 hidden units per layer. We evaluate model performance across four different
learning rates η ∈ {0.01, 0.1, 0.5, 1.0} to examine how sensitivity to learning rate affects sta-
bility, both with and without LPR. All models are trained using stochastic gradient descent;
furthermore, each experiment was run 5 times to ensure consistency and reliability of the
results.

4.4 Evaluation and Visualisation
We define the stability gap as the difference between the test accuracy immediately before
and the local minimum immediately after a task switch. This metric captures short-term
degradation in previously learned tasks when the model begins learning new ones. It is
not equivalent to the average minimum accuracy proposed by De Lange et al. [3], which
averages the lowest accuracy over all subsequent training steps. Instead, we focus on local
minima near each task transition to capture immediate instability. It also allows us to
capture multiple drops in performance, as we take into account every task switch. We do
this because the accuracy drop directly reflects the impact of task switches on optimisation
dynamics, independent of long-term forgetting. By isolating the immediate response of the
model after a task switch, our stability gap provides a measure of short-term instability.
Moreover, this allows us to quantify the stabilising effect of methods like LPR, which aim
to reduce abrupt representational drift without necessarily improving long-term averages.

The procedure to calculate the stability gap is shown in Algorithm 3 in Appendix D.

5 Results
In this section, we present our empirical evaluation of LPR on a domain-incremental variant
of Rotated MNIST. Our analysis addresses three key aspects of continual learning perfor-
mance.

First, we examine the stability gap, defined as the short-term drop in accuracy that
occurs immediately after a task switch. Second, we investigate task-level retention, with a
focus on the model’s ability to preserve accuracy on earlier tasks, particularly mid-sequence
ones, over time. Finally, we evaluate the average final accuracy at the end of training across
all tasks, which reflects the cumulative effect of both forgetting and adaptation throughout
the learning process.

5.1 Stability Gap Analysis
We first investigate how the stability gap varies with learning rate, both with and without
LPR. The stability gap is defined as the drop in accuracy immediately after a task switch,
as described in Section 4.4.

3http://yann.lecun.com/exdb/mnist

8

http://yann.lecun.com/exdb/mnist


5.1.1 Visual Evidence of Stability Improvement

In Figure 3, the baseline (red curve) shows sharp accuracy drops on Task 1 following each
task switch, with the most pronounced degradation occurring at the final transition. In
contrast, LPR (shades of blue) maintains significantly more stable performance across task
boundaries. This stabilising effect is especially evident for lower ω values (e.g., 0.01 and
0.1), which allow the model to adapt while still preserving prior knowledge. These visual
trends support the hypothesis that LPR effectively mitigates short-term instability during
continual learning.

Figure 3: Task 1 accuracy over time for the baseline (in red) and LPR variants (in shades
of blue) at learning rate η = 0.1. Lighter lines correspond to higher values of ω. While
the baseline achieves higher peak performance, it also exhibits larger drops in accuracy
immediately following task switches. In contrast, LPR reduces the severity of these drops
in a ω-dependent manner. Dashed vertical lines indicate task transitions. Note the y-axis
starting at 70% accuracy and Task 1 dropping to below 70 after Task switch 3 (49.60%).

5.1.2 Quantitative Stability Gap Measurements

To confirm these visual trends, we compute the average stability gap over five independent
runs at each learning rate using Algorithm D found in Appendix 3, both for the baseline
and the best-performing LPR configuration.

Baseline Results. Table 1 reports the mean and standard deviation of the stability gap
for Task 1 on the baseline, computed over 15 samples per learning rate (3 task switches x 5
runs). As expected, higher learning rates lead to greater instability.

9



Table 1: Stability gap for training baseline, averaged over 15 samples per learning rate.
Lower is better. Higher learning rates introduce a lot of instability.

Learning Rate Mean Gap (%) SEM (%)

0.01 0.22 0.07
0.10 14.71 4.55
0.50 48.12 5.61
1.00 46.37 6.50

LPR Results. Table 2 shows the corresponding results for the best LPR configuration
(i.e., the lowest mean gap) at each learning rate. LPR substantially reduces the stability
gap at all tested learning rates, in some cases by over 45 percentage points.

Table 2: Best LPR configuration per learning rate. Values reflect mean ± SEM over 5 runs.
The last column reports the absolute reduction in stability gap relative to the baseline.
Lower is better.

Learning Rate Best ω Mean Gap (%) SEM (%) Reduction (p.p.)

0.01 1.0 0.09 0.20 0.13
0.10 0.01 1.38 1.64 13.33
0.50 0.01 0.65 0.55 47.47
1.00 0.01 0.63 0.61 45.74

These quantitative results confirm that LPR offers robust regularisation against insta-
bility, even in high learning-rate regimes.

5.1.3 Statistical Significance

To assess whether the observed reductions are statistically reliable, we conducted one-tailed
Welch’s t-tests between the baseline and best LPR configurations at each learning rate.
The differences were statistically significant (p < 0.05) for learning rates η ∈ {0.1, 0.5, 1.0},
with the strongest result at η = 1.0 (p = 0.0015). At η = 0.01, the result was borderline
(p = 0.050), likely due to the already low gap in the baseline condition.

5.2 Task-Level Retention: Study on Task 2
To complement the stability gap analysis, we performed a focused evaluation of Task 2
accuracy throughout training. This provides insights into how well the model retains per-
formance on a mid-sequence task, which is especially sensitive to interference from both
earlier and later tasks in the sequence.

In continual learning, even when using incremental joint training that includes data from
all previously seen tasks, performance can still degrade as the model adapts to new input
distributions. To assess this degradation, we track Task 2 accuracy at three critical moments
during training: first, immediately after Task 2 concludes but before Task 3 begins (i.e., at
iteration ≤ 1250); second, following the completion of Task 3 (iteration ≤ 2250); and finally,
after training on all tasks has concluded (iteration ≤ 3500).

10



Visually we present in Figure 4 the accuracy of Task 2 throughout training. The red
curve shows the baseline performance without LPR. The blue curves show the performance
with LPR across different ω values. The baseline achieves higher accuracy overall, but
exhibits greater volatility at task transitions, particularly after the second task switch. The
quantitative results are summarised in Table 3, comparing baseline and LPR performance
across various ω values. We report accuracy immediately before each task switch as opposed
to our previous technique of calculating stability gaps. As we shift our focus to the model’s
ability to learn new tasks, we change the focus to the achieved accuracy on tasks.

Figure 4: Task 2 accuracy over time with learning rate 0.1. The red curve shows baseline
performance , while the blue curves show performance with LPR across different ω values.
Task 2 begins at iteration 500, marked by the first vertical dashed line.

Table 3: Accuracy (%) immediately before each task switch at learning rate 0.1. Values are
the mean ± SEM over five runs; bold figures mark the highest mean per column.

Method Before Switch 1 Before Switch 2 At the final iteration

LPR ω = 0.01 92.11 ± 0.06 87.70 ± 0.08 88.84 ± 0.05
LPR ω = 0.1 92.09 ± 0.14 81.77 ± 0.12 84.02 ± 0.14
LPR ω = 0.5 91.87 ± 0.21 77.16 ± 0.12 77.82 ± 0.16
LPR ω = 1.0 92.23 ± 0.08 75.23 ± 0.24 73.93 ± 0.13
LPR ω = 10.0 92.29 ± 0.09 70.02 ± 0.34 66.12 ± 0.33

Baseline (no LPR) 91.94 ± 0.04 92.37 ± 0.05 93.49 ± 0.09

Interpretation. Compared to the baseline, LPR slows down learning in later stages.
While all LPR variants begin with competitive accuracy before the first task switch, their
performance declines markedly by the second switch and final iteration, especially at higher

11



values of ω. The baseline, in contrast, maintains stable and even improving accuracy
throughout, achieving the best final performance overall.

This suggests that while LPR can regularise initial learning effectively, it may overly
constrain adaptation to new tasks, particularly at larger ω. Among LPR variants, smaller
values of ω (0.01-0.1) better preserve short-term learning while limiting forgetting, but even
these fall short of the baseline in final accuracy. Thus, although LPR manages to reduce
the stability gap, it does so at the cost of long-term performance.

5.3 Final Accuracy Across Tasks
While stability gaps and mid-sequence retention provide valuable insight, in the context of
continual learning it is also important to evaluate end-of-training performance. In this sub-
section, we compare the average final test accuracy achieved by the baseline and LPR across
a range of learning rates and regularisation strengths across all tasks. Table 4 presents the
average and standard error of the mean (SEM) of the final test accuracy over 5 runs for
both the baseline and LPR across a range of learning rates and, for LPR, different regu-
larisation strengths (ω). For the baseline, performance improves with increasing learning
rate up to 0.5, but degrades sharply at LR = 1.0, likely due to high instability. In contrast,
LPR demonstrates more stable and competitive performance across learning rates, partic-
ularly for lower values of ω. Notably, at higher learning rates (e.g., 1.0), LPR significantly
outperforms the baseline, which struggles with instability.

Table 4: Final test accuracy (%) across learning rates for the baseline and LPR with different
ω values. Values are reported as mean ± SEM over 5 runs. Best result per learning rate is
bolded.

LR Baseline ω = 0.01 ω = 0.1 ω = 0.5 ω = 1.0 ω = 10.0

0.01 71.66 ± 0.16 60.05 ± 0.19 50.31 ± 0.15 47.64 ± 0.12 46.90 ± 0.27 44.44 ± 0.26
0.10 94.74 ± 0.03 90.57 ± 0.05 86.76 ± 0.07 83.27 ± 0.07 81.29 ± 0.12 75.09 ± 0.30
0.50 96.51 ± 0.05 96.10 ± 0.03 94.66 ± 0.02 93.13 ± 0.07 92.69 ± 0.04 89.79 ± 0.13
1.00 78.86 ± 15.46 96.26 ± 0.15 94.58 ± 0.49 93.77 ± 0.47 93.10 ± 0.39 89.36 ± 3.43

Interpretation. LPR improves over the baseline in high learning rate settings, where the
baseline suffers from catastrophic forgetting and optimisation instability. The configuration
ω = 0.01 yields the best trade-off across all learning rates, achieving both high final accuracy
and low variance for all learning rates, except for when the LR is 0.01. As ω increases,
performance gradually degrades, suggesting over-regularisation. At higher learning rates
this degradation is much smaller, which implies that the strict regularisation imposed by
large ω values may be compensating for the instability introduced by aggressive updates.

These results reinforce the earlier findings: LPR not only stabilises learning after task
switches but also supports stronger overall performance in regimes where the baseline breaks
down due to instability. However, at lower learning rates, it does so at the cost of learning
future tasks.

5.4 Discussion of Results
Our results demonstrate that LPR is effective at improving optimisation stability in domain-
incremental continual learning. Specifically, LPR significantly reduces the accuracy drops

12



that occur immediately after task switches. These improvements are consistent across a
range of learning rates and are most pronounced at higher values, where baseline models
are especially variable.

This outcome aligns well with our original hypotheses: small to moderate values of the
stability coefficient ω (e.g., 0.01-0.1) strike a good balance between preserving past represen-
tations and allowing new learning. Larger ω values, in contrast, lead to over-regularisation,
which manifests as underfitting on later tasks.

Importantly, LPR achieves these benefits without requiring a reduction in learning rate.
This is notable because many continual learning methods rely on conservative learning
schedules to maintain stability. In contrast, LPR maintains robustness even under aggressive
gradient steps, making it compatible with fast training setups.

Overall, the empirical findings confirm our expectations and hypotheses: LPR reduces
instability at task switches, especially for higher learning rates, and exhibits a predictable
regularisation trade-off controlled by ω, balancing stability against plasticity in learning.
These results validate both our experimental design and the underlying mechanism of LPR
as these trends are also broadly consistent with the findings reported by Yoo et al. [15], who
proposed LPR and observed similar trade-offs between stability and plasticity. While not
surprising, they offer a clear and replicable contribution to the growing body of work on
continual learning stability.

6 Discussion & Further Work
This work demonstrates the effectiveness of LPR in reducing the stability gap in continual
learning settings, particularly within a domain-incremental Rotated MNIST benchmark.
Our experiments show that LPR consistently reduces the accuracy drops observed after
task transitions, especially at higher learning rates. This aligns with findings from Mirzadeh
et al. [8], who observed that training regimes significantly affect stability and plasticity
in continual learning. The statistical significance of these reductions, as shown in 5.1.3,
especially for learning rates of 0.1, 0.5, and 1.0, underscores LPR’s effectiveness as an opti-
misation strategy.

A key finding is the existence of an optimal range for the regularisation parameter ω.
While small to moderate values of ω (e.g., 0.01-0.1) effectively balance short-term perfor-
mance and long-term retention, excessively large values can lead to over-regularisation, po-
tentially hindering the model’s ability to adapt to new tasks and resulting in underfitting on
later tasks. This highlights a trade-off between stability and plasticity, where overly aggres-
sive constraints on parameter updates can compromise the model’s capacity for continued
learning.

Another important implication of our results is that LPR achieves these stability im-
provements without necessitating a reduction in the learning rate. This is particularly
important because high learning rates are known to accelerate convergence in deep net-
works [1], and being able to retain these benefits while maintaining stability makes LPR a
practically attractive solution for continual learning.

One limitation of this study is the relatively simple experimental setting: we evaluated
LPR on a small-scale domain-incremental benchmark (Rotated MNIST) using a shallow
multi-layer perceptron. While this choice made it easier to isolate the effect of LPR, it limits
the generalisability of our findings to more complex datasets or architectures. In addition,
our evaluation focuses on short-term stability (i.e., accuracy drops after task switches), and

13



does not quantify other aspects such as memory efficiency, training time, or the time needed
to recover fully from the stability gap.

Despite the promising results, several avenues for further work exist. One area is to
explore the interaction between LPR and different experience replay strategies. While LPR
is evaluated in conjunction with incremental joint training in this study, investigating its
performance with more advanced or adaptive replay buffer management techniques could
yield further improvements. Additionally, future research could focus on theoretically un-
derstanding the optimal ω range and how it scales with network depth, batch size, and or
even introduce an adaptive ω similar to research regarding learning rates[16].

Another direction involves evaluating LPR on more complex and diverse continual learn-
ing benchmarks, including class-incremental or task-incremental scenarios with larger datasets
and more varied task distributions. This would help assess the scalability and generality of
LPR beyond the Rotated MNIST setting. Finally, exploring the computational overhead
associated with the periodic recalculation of preconditioners and investigating methods to
optimise this process for online applications would be valuable.

7 Conclusion
Our experiments, conducted on a domain-incremental Rotated MNIST benchmark, demon-
strate that LPR consistently reduces the stability gap, particularly at higher learning rates
where instability is typically more pronounced. Statistical analysis confirmed these reduc-
tions are significant for learning rates of 0.1, 0.5, 1.0, and borderline for 0.01. A key finding
is the existence of an optimal range for the stability coefficient ω, which balances short-term
performance and long-term retention. Our results establish a critical trade-off: while small
to moderate ω values are beneficial, excessively large values can lead to over-regularisation,
hindering adaptation to new tasks and causing underfitting.

LPR achieves these stability improvements without necessitating a reduction in the learn-
ing rate, preserving the model’s responsiveness to novel inputs. This balance makes LPR
a practical method for continual learning scenarios. Furthermore, although LPR generally
achieves lower final accuracies, it demonstrates superior long-term retention compared to
the baseline, maintaining significantly lower variance in final accuracy on earlier tasks at
the final iteration of training.

Future work can explore the interaction of LPR with various experience replay strategies,
theoretically and empirically investigate the optimal ω range and its interaction with learn-
ing rate, and evaluate LPR on more complex and diverse continual learning benchmarks.
Additionally, optimising the computational overhead associated with preconditioner recal-
culation for online applications would be valuable. Overall, LPR offers an effective solution
for improving stability in continual learning.

8 Responsible Research

8.1 Reproducibility and Open Science
All experiments described in this paper were conducted using publicly available datasets
and openly shared code. To ensure full replicability, the training scripts, models, and evalu-
ation tools, including our implementation of Layerwise Proximal Replay (LPR), are publicly
accessible on the author’s GitHub repository: https://github.com/kingossi. This reposi-

14

https://github.com/kingossi


tory includes instructions for reproducing all experimental results, including hyperparameter
configurations and logging outputs.

8.2 Use of Large Language Models
Large Language Models (LLMs), specifically ChatGPT, were used to assist in drafting some
parts of the final paper, such as text refinement, LaTeX formatting, and summarisation.
The technical content, code, and experimental results were independently designed and im-
plemented by the author but often improved and/or debugged with the help of ChatGPT.
Examples of LLM-assisted prompts and outputs are provided in the appendix B for trans-
parency.

8.3 Data and Licensing
All experiments use the Rotated MNIST benchmark derived from the original MNIST
dataset [7], which is freely available for academic research. No proprietary data, restricted
software, or paid frameworks were used in this project.

8.4 Ethical and Societal Considerations
This work investigates algorithmic improvements in continual learning using a digit classifi-
cation task. As such, it does not involve human subjects, biometric data, or decision-making
systems deployed in sensitive domains. While this work constitutes fundamental research
in machine learning, we acknowledge that continual learning techniques may eventually find
application in real-world systems. We explicitly distance ourselves from any use of this
research in the development of weaponry, surveillance infrastructure, or technologies that
contribute to environmental harm.

References
[1] Hengjie Cao, Yifeng Yang, Mengyi Chen, Ruijun Huang, Fang Dong, Jixian Zhou,

Mingzhi Dong, Yujiang Wang, Dongsheng Li, David A. Clifton, Robert P. Dick, Qin
Lv, Fan Yang, Tun Lu, Ning Gu, and Li Shang. Large learning rates without the
agonizing pain: Dispelling the curse of singularities in deep neural networks, 2024.

[2] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš
Leonardis, Gregory Slabaugh, and Tinne Tuytelaars. A continual learning survey:
Defying forgetting in classification tasks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 44(7):3366–3385, 2022.

[3] Matthias De Lange, Gido M. van de Ven, and Tinne Tuytelaars. Continual evaluation
for lifelong learning: Identifying the stability gap. In International Conference on
Learning Representations (ICLR), 2023.

[4] Sujan Harun, Kashif Zafar, Kamran Siddique, Arif Rahman, and Shah Hossain. How
efficient are today’s continual learning algorithms? In ResearchGate, 2023.

[5] Tim Hess, Tinne Tuytelaars, and Gido M. van de Ven. Two complementary perspectives
to continual learning: Ask not only what to optimize, but also how. In Proceedings of

15



the 1st ContinualAI Unconference, volume 249 of Proceedings of Machine Learning
Research, pages 37–61. PMLR, 2023.

[6] Byungmin Kim, Kwangmin Jeong, Seungwoo Ryu, Jaehong Park, Hwalsuk Kim,
Youngmin Lim, Changbin Hwang, and Kwangjun Lee. Energy-efficient and timeliness-
aware continual learning management system. Energies, 16(24):8018, 2023.

[7] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[8] Seyed Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pascanu, and Hassan
Ghasemzadeh. Understanding the role of training regimes in continual learning. In
Advances in Neural Information Processing Systems, volume 33, 2020.

[9] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter.
Continual lifelong learning with neural networks: A review. Neural Networks, 113:54–
71, 2019.

[10] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P. Lillicrap, and Greg Wayne.
Experience replay for continual learning. In Advances in Neural Information Processing
Systems (NeurIPS), volume 32, 2019.

[11] Andrea Sorrenti, Matthias De Lange, Rahaf Aljundi, and Tinne Tuytelaars. Selective
freezing for efficient continual learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops (ICCVW), pages 4119–4127, 2023.

[12] Gido M. van de Ven. Stabilitygap – continual learning repository. https://github.
com/GMvandeVen/continual-learning/tree/master/StabilityGap, 2023.

[13] Gido M. van de Ven, Tinne Tuytelaars, and Andreas S. Tolias. Three types of incre-
mental learning. Nature Machine Intelligence, 4:1185–1197, 2022.

[14] Peng Wang, Chengyu Fan, Feng Zheng, Jing Jiang, Xinlong Pan, and Xudong Liang.
Cost-efficient continual learning with sufficient exemplar memory. arXiv preprint
arXiv:2502.07274, 2025.

[15] Jason Yoo, Yunpeng Liu, Frank Wood, and Geoff Pleiss. Layerwise proximal replay:
A proximal point method for online continual learning. In Proceedings of the 41st
International Conference on Machine Learning (ICML). PMLR, 2024.

[16] Matthew D. Zeiler. Adadelta: An adaptive learning rate method. CoRR, abs/1212.5701,
2012.

A Appendix A. Original LPR Algorithm
For completeness, we include Algorithm 1 as proposed by Yoo et al. [15], which serves as the
conceptual basis for our implementation. Note that our actual procedure differs in several
respects, as described in Section 4.2.

16

https://github.com/GMvandeVen/continual-learning/tree/master/StabilityGap
https://github.com/GMvandeVen/continual-learning/tree/master/StabilityGap


Algorithm 2 Layerwise Proximal Replay (reproduced from Yoo et al. [15])

1: Input: network parameters θ, learning rate η, per batch gradient steps count S, pre-
conditioner update interval T , layerwsie stability hyperparameters ωℓ

0

2: Output: trained parameters θ
3: Initialise replay buffer: M← {}
4: Initialise preconditioner inverses Λℓ ← I for all ℓ
5: for τ ∈ {1, . . . ,∞} do
6: Obtain batch Dτ

7: for s ∈ {1, . . . , S} do
8: Compute loss L(θ) using Dτ and M
9: Compute gradient ∇L(θ)

10: for each layer ℓ ∈ {1, . . . , L} do
11: Θ(ℓ) ← Θ(ℓ) − ηΛℓ∇Θ(ℓ)L(θ)
12: end for
13: end for
14: UpdateM with Dτ

15: if τ mod T = 0 then
16: Obtain feature tensor Xmem fromM
17: Set Z(1) ← Xmem, n← batch size
18: for each layer index ℓ ∈ {1, . . . , L} do
19: ωℓ ← ωℓ

0/n

20: Λℓ ←
(
ωℓZ(ℓ)⊤Z(ℓ) + I

)−1

21: Z(ℓ+1) ← ϕ(ℓ)(Z(ℓ)Θ(ℓ))
22: end for
23: end if
24: end for

B Appendix B. Example Prompts (LLM Assistance Dis-
closure)

In line with responsible research practices, this project made limited use of a large lan-
guage model (ChatGPT by OpenAI) to assist with technical debugging, visualisation im-
provements, and formatting. The following examples illustrate typical prompts used during
development:

Prompt 1: Visualising Standard Deviation as Shaded Area
I have 5 runs of accuracy over time for each task. How can I plot the mean with
a shaded area showing standard deviation in matplotlib?

Prompt 2: Fixing a Shape Mismatch in a Matrix Operation
I’m trying to precondition gradients using matrix multiplication in PyTorch. I’m
getting a shape mismatch between the preconditioner and the gradient. How do
I fix this error: *Full error statement*

17



Prompt 3: Improving Sentence Clarity and Checking Grammar
Can you check the grammar of this sentence from my paper? It’s too long and
hard to read. How can I split it into two clearer sentences while keeping the
meaning accurate?

Prompt 4: LaTeX Table Alignment
My table columns with SEM values aren’t aligned in LaTeX and the boldness
isn’t showing. How do I make them look clean and centered and have the last
column in bold?

C Appendix C. Full Stability Gap Results
To complement the summary statistics presented in the main text (Table 2), we report the
full stability gap results across all tested configurations. This includes both the baseline
and all combinations of learning rate and regularisation coefficient ω for Layerwise Proximal
Replay (LPR). Each value is computed over n = 15 gap measurements (3 task switches x 5
runs). Bold values indicate the best (i.e., lowest) mean gap per learning rate.

Table 5: Stability gap (mean ± std) for all ω values at each learning rate. Bold values
indicate the lowest gap per group. All results are averaged over n = 15 measurements (3
task switches × 5 runs).

(a) Learning rate η = 0.01

ω Mean ± Std (%)

– 0.22 ± 0.28
0.01 0.14 ± 0.20
0.10 0.10 ± 0.18
0.50 0.27 ± 0.41
1.00 0.09 ± 0.20
10.0 0.15 ± 0.20

(b) Learning rate η = 0.10

ω Mean ± Std (%)

– 14.71 ± 17.64
0.01 1.38 ± 1.64
0.10 1.55 ± 1.86
0.50 1.20 ± 1.74
1.00 1.86 ± 2.25
10.0 1.79 ± 2.29

(c) Learning rate η = 0.50

ω Mean ± Std (%)

– 48.12 ± 21.75
0.01 0.65 ± 0.55
0.10 0.96 ± 0.63
0.50 1.00 ± 0.90
1.00 1.20 ± 0.94
10.0 1.49 ± 0.94

(d) Learning rate η = 1.00

ω Mean ± Std (%)

– 46.37 ± 25.19
0.01 0.63 ± 0.61
0.10 1.44 ± 0.97
0.50 3.05 ± 4.49
1.00 3.36 ± 3.95
10.0 5.23 ± 7.59

Additionally we have added Figure 5 which shows task-wise test accuracy over time
under the baseline incremental joint training setup for four different learning rates.

18



(a) Baseline accuracy, η = 0.01 (b) Baseline accuracy, η = 0.10

(c) Baseline accuracy, η = 0.50 (d) Baseline accuracy, η = 1.00

Figure 5: Task 1 accuracy over time under baseline incremental joint training across four
learning rates. Each line shows mean accuracy per task; shaded regions indicate standard
deviation over five runs.

19



Figure 6: Task 1 accuracy over time under baseline joint training for two learning rates
(η = 0.5 and η = 1.0). The higher learning rates exhibit high volatility, particularly following
the final task switch, where performance degrades sharply and recovers slowly. Shaded
regions indicate standard deviation across runs.

D Appendix D. Stability Gap Algorithm

Algorithm 3 Stability Gap Calculation Procedure
1: for each learning rate lr do
2: for each run r do
3: Load test accuracy history for all tasks
4: for each task switch t (e.g., after Task 1 and 2) do
5: accbefore ← accuracy at iteration before switch
6: accafter ← local minimum after switch within 10 iterations
7: gap← accbefore − accafter
8: Store gap in list for this lr
9: end for

10: end for
11: end for
12: Compute mean and standard deviation of gaps for each lr

20


	Introduction
	Background
	Continual Learning
	Layerwise Proximal Replay

	Motivation and Hypothesis
	Motivation
	Hypothesis
	Interaction with Learning Rate

	Methodology
	Baseline Methods
	Implementation of Layerwise Proximal Replay
	Experimental Setup
	Evaluation and Visualisation

	Results
	Stability Gap Analysis
	Visual Evidence of Stability Improvement
	Quantitative Stability Gap Measurements
	Statistical Significance

	Task-Level Retention: Study on Task 2
	Final Accuracy Across Tasks
	Discussion of Results

	Discussion & Further Work
	Conclusion
	Responsible Research
	Reproducibility and Open Science
	Use of Large Language Models
	Data and Licensing
	Ethical and Societal Considerations

	Appendix A. Original LPR Algorithm
	Appendix B. Example Prompts (LLM Assistance Disclosure)
	Appendix C. Full Stability Gap Results
	Appendix D. Stability Gap Algorithm

