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It is known that viscoelastic fluids exhibit elastic instabilities in simple shear flow and flow with
curved streamlines. During flow through a straight microchannel with pillars, we found strikingly
strong hydrodynamic instabilities characterized by very large transversal excursions, even leading to
a complete change in lanes, and the presence of fast and slow moving lanes. Particle image velocimetry
measurements through a pillared microchannel provide experimental evidence of these instabilities
at a very low Reynolds number (<0.01). The instability is characterized by a rapid increase in spatial
and temporal fluctuations of velocity components and pressure at a critical Deborah number. We
characterize under which conditions these strong instabilities arise. Published by AIP Publishing.
https://doi.org/10.1063/1.4995371

INTRODUCTION

Non-Newtonian fluids sometimes exhibit time dependent
fluctuations in their flow fields that are reminiscent of turbu-
lence, yet they occur under conditions where Newtonian fluids
(with equivalent viscosity) display steady laminar flow.1–7 The
fluctuations occur when polymers, or other mesoscale objects
present in viscoelastic fluids, are unable to respond sufficiently
fast to changes in the fluid velocity field, leading to an elastic
response. To quantify the flow conditions of viscoelastic flu-
ids, two non-dimensional numbers play a significant role. First
is the Reynolds number defined as Re = ρUD

η , where U is the
average flow velocity, ρ is the fluid density, η is the zero shear
viscosity, and D is a characteristic length scale. In microflu-
idic and porous media flows, the Reynolds number is usually
very small. The other important dimensionless number is the
Deborah number (De), which is the ratio of the (longest) relax-
ation time λ of the polymer and a characteristic time scale of
the flow. This characteristic time scale is usually taken to be
the time needed for the average flow to pass the characteris-
tic length scale, so De = λU

D . Elastic instabilities occur when
the fluid is deformed so fast that spontaneous fluctuations in
the velocity field keep growing instead of regressing back to
zero. This is analogous, but not equal, to high velocity Newto-
nian flow around an object, where inertial instabilities appear
beyond a critical Reynolds number.

A large amount of experimental and numerical work
has been devoted to the study of elastic instabilities. Elastic
instabilities have been observed by Poole et al.1 and Arratia
et al.2 in cross-channel flow, by Pan et al.3 in long straight

a)Author to whom correspondence should be addressed: J.T.Padding@
tudelft.nl

microchannels with obstructions close to the inlet, and even in
simple straight channels as reported by several researchers.4–6

These observations have led to a number of numerical and
theoretical works that try to reproduce or explain the insta-
bilities. For example, Berti et al.7 analyzed the Lyapunov
exponent to characterize elastic instabilities, Morozov and Van
Saarloos8 performed a nonlinear stability analysis for planar
Couette flow, and Pakdel and McKinley9 developed a dimen-
sionless criterion that characterizes the critical conditions for
the onset of elastic instabilities in (two-dimensional) viscoelas-
tic flows. The concept of elastic turbulence in relation with
elastic instabilities for polymeric flow was really put forward
in the seminal work of Groisman and Steinberg.10,11 Burghe-
lea et al.12 showed that at low Reynolds numbers, the chaotic
flow, caused by instabilities in viscoelastic flow through undu-
lating channels, can be used for efficient mixing that is almost
diffusion independent. Pakdel and McKinley13 investigated
viscoelastic lid driven cavity flow and reported conditions for
flow instabilities. The onset of elastic instability in serpen-
tine channels was studied numerically and experimentally by
Zilz et al.14 They showed that the streamline curvature is pri-
marily responsible for three-dimensional elastic instabilities.
McKinley et al.15 experimentally observed viscoelastic flow
instabilities in abrupt contractions, and attempts have been
made to explain the observed nonlinear effects.16,17 Elastic
instabilities also lead to an enhanced pressure drop at high De
numbers, as, for instance, reported for non-Newtonian fluids
in contraction expansion flows.18

Although viscoelastic fluids in simple channel flows
exhibit flow instabilities, the number of pore scale studies on
viscoelastic flow through complex porous media is still lim-
ited. The onset of flow instability in a porous channel after a
critical De number was studied for Boger fluids.19,20 Recently
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Scholz et al.21 reported enhanced dispersion of particles after
a critical De number in a model porous medium using micro
channels. The increase in apparent viscosity for viscoelas-
tic fluids through a porous micro channel and the effect of
elastic instability on residual oil recovery was studied.22–25

They observed that velocity fluctuations at a high De num-
ber can instigate enhanced recovery. Very recently Machado
et al.26 studied viscoelastic flow through a microchannel and
compared the experimental results with a pore network based
model. Numerical simulations have been performed by several
researchers for flow of non-Newtonian fluids through rela-
tively simple and two-dimensional model porous media.27–32

Mostly the simulations in complex geometries are limited to
inelastic shear thinning fluids.33,34 So a detailed understand-
ing of the interaction between the fluid rheology and multiscale
nature of the porous medium is still missing. The critical De
number for the onset of such instabilities also varies signifi-
cantly, which is complicated (or possibly caused) by the fact
that there is no unique choice for the relevant length scale in
the definition of the De number. Further, it is a matter of con-
siderable debate, whether it is the extensional nature of the
polymer or the (shear-induced) normal stress difference that is
responsible for such instabilities in porous media. Our recent
numerical work on viscoelastic flow through model porous
medium shows that viscoelastic normal stress might play
a very important role in instigating elastic instabilities.35,36

Progress in microfluidic research enables us to study these
intriguing flow features at length scales that are of significant
importance in oil recovery, polymer processing, packed bed
flows, blood flow though tissues, medicine, geology, and other
applications.37

To obtain more insight into the rich and complex physics
of viscoelastic fluid flow in porous media, in this paper, we
will experimentally investigate the fascinating interplay of vis-
coelastic effects and pore structure in a pillared microchannel.
Due to successive contraction and expansion caused by the pil-
lars, the polymer molecules get elongated and relaxed repeat-
edly, leading to the buildup and release of elastic stresses. We
observe that after a critical Deborah number (De), the flow
becomes asymmetric, but the instabilities remain localized.
At a higher De, the viscoelastic effects become so strong that
the flow starts to change from one pillar lane to another.
The extreme sideways motion is associated with large non-
linear, non-periodic instabilities. We also observe an increase
in apparent viscosity along with the elastic turbulence that
leads us to believe that these effects must be attributed to a
significant extension of polymer chains. Newtonian solutions
of equal (zero-shear) viscosity do not show such flow fea-
tures. Our observations show that two different De numbers,
one based on pillar diameter and another based on spacing
between the pillars, are crucial to characterize the instability.
Moreover, we try to explain how local spatial and temporal
instabilities eventually lead to nonlocal instabilities with lane
changes and elastic turbulence.

METHODOLOGY

Micro-PIV (particle image velocimetry) experiments are
performed in long (6.6 cm) straight microchannels, with a

FIG. 1. Schematic drawing of the pillared microchannel. Flow is from left to
right (x-direction). Planar walls are present at both sides in the width (y) and
height (z) directions.

width and height of 1 mm and 50 µm, respectively. The model
porous medium is designed by placing an array of cylindrical
pillars in a stretched hexagonal pattern from the beginning to
the end of the channel as shown in Fig. 1. The channel and
cylinders are etched in silicon. The distance along the flow
direction (x) of the two successive pillars (XP) and along the
width (y) of the channel (YP) is shown in Table I for two
different channels. The number of pillars along the x and y
directions (n, m) is 1650 and 16, respectively, for channel 1
and 824 and 8 for channel 2. In this paper, we will mostly focus
our results on experiments performed in channel 1 and use the
other channel results for comparison. All pillars are modified
with a hydrophilic coating and microchannels are fabricated
using photolithography technique. A detailed description of
the manufacturing of microchannel and properties is reported
in the work of de Loos et al.38,39

We investigated the flow of both a Newtonian fluid
and a viscoelastic fluid through the pillared microchannel.
A hydrolyzed polyacrylamide solution (HPAM, 20 MDa) is
used as the viscoelastic fluid. The solution is prepared by
adding 2000 ppm of HPAM 3630S and 0.5 wt.% salt (NaCl)
in deionized water (brine) solution. The zero-shear viscosity
(η0) of the HPAM solution is 0.275 Pa s, as characterized
by a standard strain controlled double gap rheometer (Anton
Paar, MCR302) at room temperature (22 ◦C). The HPAM
solution has a shear thinning rheology as shown in Fig. 2.
At lower shear rates, a plateau region is observed (Newto-
nian like), followed by a shear thinning part. We have fitted
the shear rheology data of the polymer with the Carreau-
Yasuda model.40 The Carreau-Yasuda model describes the
Newtonian plateau and shear thinning behavior of HPAM

TABLE I. Dimensions of different micro channels used in this study.

Channel
Pillar diameter (µm) X-pitch (µm) Y-pitch (µm)

(DP) (XP) (YP)

1 6 34 28.6
2 12 68 57.2
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FIG. 2. Shear rheology data of HPAM.

accurately,

η
( .
γ
)
− η∞ = (η0 − η∞)

[
1 +

(
λ

.
γ
)a] (n−1)

a , (1)

where λ represents the relaxation time, η∞ is the infinite shear
viscosity, n is the power law index, and a is a parameter describ-
ing the range of the transition from the Newtonian plateau to
the power law region.

The parameters obtained from the fit are a = 0.88 ± 0.06,
n = 0.497 ± 0.006, and λ = 1.00 ± 0.05 s. The low value of n
(relative to n = 1 for a Newtonian fluid) shows the highly shear
thinning nature of this polymer solution.

The rheological characterization of similar HPAM solu-
tion has been done in detail in the recent work of Howe et al.23

For all our experiments, we have kept the Reynolds number
Re = ρUDP

η less than 0.01 (even when η is taken to be η∞,
the water viscosity), so any inertial effects can be neglected.
Here DP is the pillar diameter. We will introduce two differ-
ent De numbers based on two relevant length scales. The De
number with regard to the pillar diameter as the characteris-
tic length is defined as DeP =

λU
DP

, and the De number with
respect to the pillar-to-pillar distance (X-pitch) is defined as
DeL =

λU
XP

. Both De numbers are relevant because the poly-
mers experience curved and contraction-expansion flow when
passing each single pillar, which has a large influence on the
polymer conformation if Dep is sufficiently large, while the
polymers have time to relax their conformations during their
flow in between the pillars if DeL is sufficiently low.

In our microchannel experiments, we investigate different
De numbers by slowly changing the flow rate of the injected
HPAM solution using a KR Analytical syringe pump. This
pump can provide a very low steady flow rate, so the Reynolds
number is kept low. A Sensor Technics micro pressure sen-
sor (Puchheim, Germany) is connected to the channel so the
pressure drop over the channel can be measured. The range
is 0-2 bars, with a temporal resolution of 1 ms. At low flow
rates, it is possible to reach a steady pressure. At higher flow
rates, the pressure signal has much more fluctuations. When
this happens, we wait until the statistical characteristics of the
pressure fluctuations become constant (i.e., when a statistical

steady state is achieved) before performing other measure-
ments. A statistical steady state is defined when the statistical
characteristics (a windowed average and standard deviation)
of the fluctuations become constant.

The pillared microchannel is placed on a Zeiss Axio
Observer D1, which is an inverted microscope. To visual-
ize the flow, the fluid is seeded with 1 µm fluorescent tracer
particles (Nile red, Molecular probes, Invitrogen, density:
1055 kg/m3, excitation range 535–575 nm, 0.02 wt.%). In our
experiments, tracer particle concentration of 0.02 wt.% was
found to be optimum as larger particle concentrations lead
to agglomeration issues. Images are captured using a Redlake
Motion Pro X-4 camera mounted on the top of the microscope.
The experimental setup is similar to the setup described in the
work of Sousa et al.41 The depth of the field of the microscope
was calculated to be 10% of the height of the microchannel.
We visualize the path lines in a focal plane in the central plane
between the top and bottom walls to decrease any effect of
out of plane velocity gradients, laterally in a square section
(around 66% of the channel width) close to the middle section
along the channel, to decrease any effects of the side walls and
inlet and outlet. Bright field images are captured at a frame
rate of 30 fps, which is much faster than the time scale of
the fluid flow. However, for higher flow rates at De > 1, a
higher frame rate of 60 fps is used. We use a high intensity
directed light source to excite the tracer particles. A green filter
(500–600 nm) is used to filter any other light except the light
from the particles.

Images from the camera were processed using Davis (ver-
sion 8.2.0) and Matlab software (version R2015a) packages.
Vector plots were created from the image sets using PIV
time series sum of correlation, after subtracting the average
to remove any stagnant particles from the image. A mask was
created from a picture of the channel using visible light. This
mask was then applied to the image sets, and velocity vectors
were calculated. We have performed a series of experiments
to verify the reproducibility of the experimental data points.

RESULTS

Figures 3(a) and 3(b) show the time averaged and spa-
tial averaged standard deviation of velocity along the flow
direction (x) for different Deborah numbers, expressed in
terms of DeL. The first standard deviation characterizes spa-
tial fluctuations of velocities, while the second one charac-
terizes the temporal fluctuations. For each time frame, we
first determine a time-dependent spatial standard deviation

σv (t) =

√
v2(t) − v (t)

2
characterizing the spatial variation of

velocities (the overbar signifies spatial averaging). Then we
perform a temporal averaging 〈σv (t)〉 of the obtained standard
deviations for each De number (angular brackets signify tem-
poral averaging). Note that the velocity field is always spatially
inhomogeneous, even for a Newtonian fluid. However, for a
Newtonian fluid in the creeping limit, the spatially dependent
velocity field scales linearly with the overall (average) flow
velocity. Therefore, to highlight non-Newtonian features, we
divide the measured standard deviation by the average flow
velocity.
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FIG. 3. (a) Time-averaged spatial standard deviation of the velocity normalized by the average flow velocity vs. Deborah number DeL ; (b) spatially averaged
temporal standard deviation of the velocity normalized by the average flow velocity vs. Deborah number DeL .

In the second case, for each point in the flow domain,
we first determine a spatially dependent standard deviation

σv (x, y) =
√〈

v2 (x, y)
〉
− 〈v (x, y)〉2 characterizing the tempo-

ral fluctuations of velocities at that location. Then we perform
a spatial averagingσv (x, y) of the obtained standard deviations
for each De number. We divide this standard deviation also by
the average flow velocity.

Figure 3(a) shows that the time-averaged spatial velocity
standard deviation normalized by the average flow velocity
is constant (within error bars) up to DeL = 1.5. This indi-
cates the amount of “base” fluctuations that are present in the
system for (near-)Newtonian flows, as detected at the level
of the interrogation areas used in our PIV method. How-
ever, for DeL = 3.0 and higher, we find that the fluctuations
grow faster than would be expected for a Newtonian fluid.
Figure 3(b) shows that the spatially averaged temporal veloc-
ity standard deviation normalized by the average flow veloc-
ity similarly changes from constant to growing at a similar
De number.

The above observations show that the velocity fluctu-
ations in the pillared microchannel are both temporal and
spatial in nature and that they change in character at a crit-
ical (pitch-based) DeL number between 1.5 and 3. This is also
clearly observed in time sequences of ourµ-PIV images, where
the onset of a flow asymmetry is clearly visible as the flow
lines start to deviate from a regular laminar profile beyond
DeL = 1.5. After DeL = 1.5, we observe strong flow asym-
metries, ultimately accompanied with crossover of flow into
neighboring channels (explained later).

Note that no such instabilities occur in Newtonian flu-
ids for both channels at comparable flow rates; the normal-
ized velocity fluctuations remain at a constant low level,
independent of flow rate.

Next we investigate the evolution of the standard devi-
ation of streamwise velocity components, as a function of
the position along the channel length. To this end, we divide
the whole flow domain under consideration into 100 consec-
utive areas and determine the time-averaged spatial velocity

fluctuations for each area. Normalizing for each flow rate by
the time averaged standard deviations at the entrance of the
observation region, we can assess whether the velocity fluctu-
ations remain constant or increase as the fluid flows through
the channel.

Figure 4 gives a measure about the typical number of pil-
lars (along the x-direction), around which the flow undergoes
a continuous contraction–expansion, to develop such instabil-
ities after the critical De number is reached. The long time
averaged pressure profiles obtained in our experiments also
supports these velocity fluctuation observations.

The power spectrum profiles corresponding to the stream-
wise and lateral velocity fluctuations are shown in Fig. 5. We
observe that both power spectra are relatively flat at lower

FIG. 4. Streamwise standard deviation of the velocity, normalized by stan-
dard deviation at the entrance of the observation region (x = 0) as a function
of position (normalized by the x-pitch) along the channel length. Different
colors correspond to different Deborah numbers (DeL).
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FIG. 5. (a) Power spectrum of stream-
wise velocity fluctuations. (b) Power
spectrum of lateral velocity fluctuations.

De numbers (Newtonian regime) but shift up after a certain
critical De number. This shift is most clearly visible for the
lateral velocity fluctuations at low frequencies. Although the
data are too noisy to make definitive measurements of power
law exponents, we find that the spectra at higher De numbers
are consistent with power law behavior for high frequencies
with an exponent of around�3, in agreement with observations
in the recent literature.3,42 This power law dependence in such a
broad range of spatial and temporal frequencies means that the
fluid motion is excited at different spatial and temporal scales.
A high power indicates the presence of strong low frequency
fluctuations. Interestingly, the exponent is much larger than
the Kolmogorov exponent of �5/3, found for velocity spectra
of high Re inertial turbulence. This means that the nature of
the fluctuation is essentially different.

We note that the apparent increase in power occurring at
the lowest frequency is probably erroneous. This lowest fre-
quency equals 1/T, where T is the total measurement time
of the experiment. Since the sine wave corresponding to that
frequency is only sampled once, the accuracy of the Fourier
transform at this lowest frequency is very poor. Neglect-
ing this first point, in Figs. 5(a) and 5(b), we observe a flat
spectrum over almost the entire frequency range for low De
numbers.

Experiments have also been performed in micro channels
with a larger X-pitch (68 µm), which thus have larger poros-
ity compared with the previous channel of 34 µm. We again
observe a non-monotonous response of the velocity fluctua-
tions to flow velocity; however, now the response is shifted
to larger flow velocities. Figure 6 shows that if we represent
the time averaged velocity fluctuations (total standard devi-
ation normalized by the average flow velocity) versus the
De number with respect to the pitch, DeL, then the onset
of instability occurs at the approximately same critical DeL

between 1.5 and 3.0. This is related to the fact that the pil-
lar to pitch ratio is kept constant in both the microchannels
(Table I).

In both micro channels, we find that below the critical
Deborah number between 1.5 and 3.0, the fluid flow is still
relatively stable, in the sense that the flow is keeping to its own
lane through the pillar geometry. Figure 7 shows time-averaged
velocity fields (averaged over 100 successive images) for De
numbers below and above this critical number. Figure 7(a)
shows that the time averaged velocity vectors for DeL 0.5

are nearly uniform. Figure 7(b) shows a non-uniform flow
field from lane to lane at DeL 2.0. The appearance of a slow
and fast co-moving flow field is clearly observed in Fig. 7(c)
(DeL 3.0). At DeL around 10 [Fig. 7(d)], two phenomena
are observed. Along with the slow and fast moving lanes,
a sideways crossover of flow from one to another channel
occurs. These crossover flows are transient and appear (and
disappear) in a non-periodic way at apparently random loca-
tions. The fact that one of these transversal flows is visible
even in the time averaged velocity fields [boxed in Fig. 7(d)]
shows that these fluctuations can have a very low frequency
of appearance and disappearance. The reader is referred to
the videos in the supplementary material for an impression
(note that because of the imaging system, the flow appears
to move from right to left in the videos). Recently, Scholz et
al.21 and Machado et al.26 reported asymmetric streamlines
at high viscoelasticity in the flow through microchannels that
have a different flow configuration. However, in our case, the
instability arises at a much lower De number, with very strong
lateral migration and spatio-temporal fluctuations not reported
earlier.

These interesting observations can be explained as caused
by elastic instabilities, if we take into account both the time

FIG. 6. Time averaged velocity fluctuations vs. Deborah number DeL total
fluctuating magnitude normalized by the average flow velocity for 34 and
68 µm channel.

ftp://ftp.aip.org/epaps/phys_fluids/E-PHFLE6-29-043710


113102-6 De et al. Phys. Fluids 29, 113102 (2017)

FIG. 7. Time averaged velocity profiles (normalized) at (a) DeL 0.5, (b) DeL 2.0, (c) DeL 3.0, and (d) DeL 10.0 (arrows show the flow direction in the domain,
blue to red code shows the lowest to highest normalized velocity magnitude). Average is over 100 successive images.

scales of flow across a single cylinder (DeP) and across the
pitch (DeL). According to Table I, channel 1 has the highest
confinement. At lower flow rates (<0.2 µl/min), the polymer
intrinsic relaxation time is less than both these flow time scales.
Hence the polymers can easily relax while flowing between
two successive pillars. At a critical flow rate of 0.2 µl/min,
the DeP becomes of the order of 10, but DeL is still less
than 2. Thus, the polymers cannot fully relax while crossing
the pillars, but nevertheless they can relax between two con-
secutive pillars. The local viscoelastic stresses that develop
near the pillars may cause short lived instabilities, causing
flow asymmetry. However, when the flow rate is more than
0.9 µl/min, both DeP and DeL become larger than 2.5.
In that case, the viscoelastic stresses become long lived
and nonlinear (both spatially and temporally), and elastic
turbulence sets in. This stress imbalance creates a certain
flow resistance in the flow paths, forcing the polymers to
change to a less resistance (sideways) path. Unlike Kawale
et al.,43 we observe a very strong lateral migration with
spatio-temporal fluctuations as discussed in the earlier sec-
tion, with the simultaneous presence of fast and slow moving
lanes.

As mentioned, the observed sideway crossover is non-
periodic in nature and occurs far away from the walls. Also,

the elastic instability is accompanied by an increase in apparent
relative viscosity, defined as the ratio of the pressure drop and
flow rate for the viscoelastic fluid compared with that ratio for
a Newtonian fluid of the same zero shear viscosity. Although
from bulk rheology measurement we confirmed that our fluid
is shear thinning at all measurable rates, we see an increase
in apparent viscosity in both the channels when the Deborah
number is around 10, as shown in Fig. 8. A plateau of appar-
ent relative viscosity is expected at a low De number. The
plateau and the onset of instability at a critical De between
1.5 and 3.0 is not captured by the pressure drop measure-
ments as they occur at relatively lower flow rates and is in
the lower limits of the pressure sensors to measure accurately.
However, at around De 10, when strong elastic instability
associated with a change in flow lanes sets in, the apparent
viscosity starts to increase. Due to the stronger confinement
effects, we observe that the rate of shear thinning of the poly-
mer is faster in the 34 µm channel compared with the 68 µm
channel.

In our pillared microchannel, the polymer undergoes
continuous contraction and expansion. At higher viscoelas-
ticity, the polymer does not get sufficient time to relax. So
the viscoelastic stresses build up. These normal stresses and
especially the 1st normal stress difference (N1) might play
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FIG. 8. Plot of normalized pressure drop across the pillared channel as a
function of a DeL number for 34 µm and 68 µm channel.

a very important role in driving the strong spatio-temporal
fluctuations, leading to elastic instabilities.35,44

CONCLUSION AND OUTLOOK

In summary, this experimental work shows evidence that
placement of pillars in a straight microfluidic channel, even
at relatively high porosity, has a strong effect on the develop-
ment of elastic instabilities. We observe very interesting flow
structures with increased viscoelasticity having both temporal
and spatial fluctuations, with strong crossflow motion and the
presence of fast and slow co-moving lanes. Such strong cross-
flow motion can be used to enhance mixing, which without the
pillars is very cumbersome for such generally highly viscous
fluids. Other snakelike microchannels have also been used to
enhance mixing, but these channels have a higher surface to
volume ratio, leading to an even higher pressure drop. We also
showed that two different De numbers, one based on pillar
diameter and another based on pitch, are required to character-
ize the flow instability. However, the De number based on the
pitch overall seems to be the best to indicate large scale insta-
bilities. A detailed flow analysis shows that these instabilities
are significantly different from instabilities observed in simple
shear flow, which appear at relatively larger De numbers3 com-
pared with our findings. This work provides an outlook to study
flow and mixing through complex, random, and real porous
media.

SUPPLEMENTARY MATERIAL

See supplementary material for videos of viscoelastic flow
through a micropillared channel at DeL 0.25, 7.5, and 15,
respectively. Note that because of the imaging system, the flow
in these videos is from right to left.
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