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Continuous Sky View Factor Calculations Using 
a Parallel GPU Workflow 

Max van der Waal(B) and Daniela Maiullari 

Delft University of Technology, 2628 BL Delft, The Netherlands 
m.vanderwaal@tudelft.nl 

Abstract. The Sky View Factor (SVF) is a key parameter in urban climate mod-
elling, which quantifies the fraction of the visible sky from a given point and allows 
for the estimation of incident solar radiation, thermal comfort, and urban heat 
distribution. High resolution in SVF computation is essential for microclimatic 
studies in the canopy layer, where detailed representations of urban environments 
are crucial for understanding variations in heat exposure. Traditional SVF calcula-
tion methods often rely on sequential processing of shadow projections, however, 
these methods are computationally intensive and time-consuming, particularly for 
urban climate analyses at high resolution. 

These computational challenges are further magnified when incorporating 
complex components such as vegetation, where tree crowns exhibit intricate 
geometries, partial transparency, and permit sky visibility from beneath the canopy. 
These properties require detailed modeling to account for light penetration and 
obstruction. This significantly increases the computational cost of Sky View Fac-
tor calculations and extends runtime to hours or even days, depending on scale 
and resolution. 

This study introduces a novel GPU-accelerated ray tracing approach for SVF 
calculation, designed to address the computational limitations of traditional meth-
ods for large-scale analyses. By utilizing NVIDIA GPUs and the CUDA program-
ming framework, the method applies parallel computing to perform ray tracing 
across the full range of azimuth and altitude angles. It estimates SVFs by sys-
tematically weighting blocked rays based on their spatial contributions to the 
hemisphere. 

The accuracy of the developed method is validated through two complemen-
tary approaches. First, modelled SVF values are compared against theoretical 
expectations derived from idealized geometric environments. Additionally, a test 
case on a neighbourhood in Rotterdam is conducted to compare the results of 
the developed method against those obtained using an established SVF estima-
tion technique using a serial approach. In addition to accuracy, computational 
efficiency is evaluated by comparing processing times across different study area 
extents with those of a CPU-based implementation. The proposed GPU workflow 
achieves a 99% reduction in processing time compared to traditional shadow cast-
ing methods performed on a CPU, while maintaining similarly high resolution 
and accuracy. 

Keywords: Sky View Factor · PyCUDA · GPU computing · Ray Tracing · 
Urban Climate Modelling · Urban Form
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1 Introduction 

Urban form strongly influences urban climate at the micro and local scale [1, 2], by 
impacting thermal and aerodynamic processes, contributing to the trapping of solar 
energy and anthropogenic heat, increasing thermal storage, and reducing wind speed and 
evaporative cooling [3]. These mechanisms explain why air and surface temperatures 
are higher in cities than in rural areas, a phenomenon known as the Urban Heat Island 
(UHI) effect. 

In observational and modelling climate studies, a conspicuous number of morpho-
logical attributes and descriptors have been used to better understand these multiple 
relationships with energy and heat exchanges. Among these, vertical openness is a form 
attribute that conveys the degree of the urban fabric’s openness to the sky and deter-
mines the amount of incoming shortwave radiation as well as the amount of long-wave 
radiation returned to the sky [4]. 

The main parameter that describes vertical openness is the Sky View Factor (SVF), 
defined as the proportion of sky that is visible at a given location. In quantitative 
terms, SVF captures the three-dimensional structure of the built environment as a two-
dimensional metric [5], expressed as a unitless value between 0 (completely obstructed 
sky) and 1 (fully unobstructed sky). This parameter effectively quantifies how urban 
morphology modifies incoming radiation fluxes, directly influencing thermal conditions 
experienced in cities. 

In urban climate studies, spatially explicit representations of SVF values across an 
entire urban area are critical to modelling urban microclimate and to better understand 
the distribution of heat exposure. These continuous SVFs are calculated for each pixel 
within the study region, creating a continuous map of values. Unlike discrete point mea-
surements, these maps reveal patterns of sky view obstruction throughout the modeled 
environment. By capturing this spatial continuity, researchers can identify patterns and 
relationships between urban form, climate, and sky view obstruction that would not 
be apparent from isolated point measurements. This comprehensive spatial perspective 
helps urban planners and designers make informed decisions about urban compositions, 
street orientation, and public space design to optimize thermal comfort and mitigate 
urban heat island effects. 

However, the generation of continuous SVF datasets at large scales proves to be com-
putationally expensive and remains a critical challenge in urban climatology. Calculating 
the SVF for a single location is computationally demanding, as it involves aggregating 
shadow determinations across a range of azimuth and altitude angles to evaluate sky 
visibility. This demand increases substantially when the process is scaled to every pixel 
in a study area to generate continuous SVF maps [6]. High-resolution SVF calcula-
tions often require hours of processing time due to the large number of computations 
involved. This issue limits the integration of SVF-driven analyses into iterative urban 
design workflows and constrains the spatial extent of heat island studies to localized 
areas rather than city-wide or regional scales [7]. 

This study addresses the challenge of reducing the processing time of continuous 
SVF estimations by proposing a novel GPU-accelerated ray tracing approach. The paper 
begins with a concise review of existing SVF estimation techniques, outlining their
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respective benefits and limitations. It then describes the implementation of the pro-
posed GPU-based workflow, along with 3 methods to assess its computational perfor-
mance. The outcomes of these evaluations are used to demonstrate the method’s accu-
racy and efficiency, followed by a discussion of its practical implications and potential 
applications. 

1.1 Methods for Estimating SVFs 

Over the past decades, efforts to quantify the visible sky from urban surfaces have led to 
a wide array of methods. Traditional techniques such as shadow-casting and ray tracing 
have laid the groundwork for computational SVF estimation, while newer approaches, 
such as synthetic fisheye algorithms, offer alternative perspectives that leverage advances 
in rendering and image-based analysis. 

Following the shadow casting method, the SVF is estimated by simulating the 
obstruction of virtual light sources distributed across a hemispherical dome [8, 9]. Using 
high-resolution digital elevation models (DEMs), this method projects light rays from 
predefined azimuth and altitude angles to determine sky visibility. CPU-based imple-
mentations are computationally intensive, as they require iterating through thousands of 
light positions and calculating shadows for each DEM cell. Processing a 1 km2  urban  area  
at 1-m resolution can take hours on standard CPUs, limiting scalability for city-wide 
analyses. Despite these constraints, shadow casting remains valued for its geometric 
accuracy and compatibility with coarse-resolution DEMs. 

Ray tracing methods estimate SVFs by tracing a multitude of imaginary rays from 
ground points to the sky dome and calculating the fraction of unobstructed rays. This 
method, exemplified by tools like HORAYZON [10], processes high-resolution results 
by iteratively checking intersections between rays and elevations of 3D features. While 
highly accurate, CPU-based applications struggle with memory management for large 
datasets, often resorting to terrain simplification or subsampling to reduce computational 
load [10]. Despite these challenges, ray tracing on CPU achieves sub-0.05 RMSE in 
validation against fisheye photography [11], making it one of the most reliable methods 
for estimating continuous SVFs. 

Since the introduction of platforms such as Google Street View, the amount of data 
and access to street-level imagery has grown exponentially. Synthetic fisheye methods 
generate SVF estimates by creating (artificial) hemispherical views using fisheye pho-
tographs, 3D urban models, or satellite data [12]. This approach automates the production 
of fisheye-like images at arbitrary spatial resolutions (e.g., 5-m grids) and computes SVF 
through equiangular projection, which corrects distortions inherent in traditional fisheye 
photography. A key advantage is its reliance on widely available geospatial datasets, 
eliminating the need for fieldwork. Validation studies comparing synthetic results to 
ground-truth street view imagery show strong correlations (e.g., R2 > 0.85) [13], though 
vegetation occlusion remains a persistent limitation.
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1.2 Study Objective: Parallel Computing Using CUDA 

This study aims to develop an approach and related workflow for GPU-accelerated 
continuous SVF estimation. Parallel computing using GPU acceleration has revolution-
ized data-intensive fields by leveraging massively parallel architectures to process large 
datasets faster than traditional CPU-based methods. This approach is particularly inter-
esting for raster data processing and geospatial analyses, where operations on grid-based 
geospatial arrays benefit from the GPU’s ability to execute data-parallel tasks through 
SIMD/SIMT (single instruction, multiple data/thread) architectures. 

CUDA and PyCUDA showed great potential for accelerating raster data pro-
cessing through data parallelism. CUDA (Compute Unified Device Architecture) is 
NVIDIA’s parallel computing platform that enables developers to harness GPU acceler-
ation for general-purpose processing. PyCUDA allows direct GPU programming within 
Python environments. This combination enables parallel computations that significantly 
outperform CPU-based approaches. 

To minimize the shared memory contention, data partitioning is applied to match 
the data to the GPU block sizes. As the capability of GPUs to do conditional logic is 
limited due to thread divergence, a hybrid CPU-GPU workflow is needed, where logic-
heavy tasks should be performed by the CPU, whereas the matrix operations should be 
offloaded to the GPU for faster processing. 

2 Methodology 

2.1 Workflow Development 

The workflow is structured into four distinct phases, each designed to streamline the 
process and enhance scalability across large spatial domains. 

The first phase involves reading and initializing input parameters. This method relies 
on ray tracing to assess urban form and vegetation using a set of 2D raster-based elevation 
models in GeoTIFF format, which are widely available for most locations globally. By 
utilizing raster elevation data rather than full 3D models, the approach increases both 
accessibility and computational efficiency. 

The workflow is centered on three key elevation datasets: 

• Digital Surface Model (DSM): The topographic surface height, including buildings 
and other anthropogenic structures. 

• Canopy Digital Surface Model (CDSM): The height of the vegetation canopy relative 
to ground level. 

• Trunk Digital Surface Model (TDSM): The base height of the vegetation canopy. A 
point cloud was used to approximate this data. Cloud points resembling vegetation 
were isolated, clustered, and the 5th percentile of height values within each cluster 
was selected to represent the canopy base. 

Processing parameters such as trace radius and angular interval are defined to balance 
precision and performance. The trace radius determines the maximum search distance 
for obstructions, with higher values improving accuracy at the cost of computational 
time. Similarly, smaller angular intervals produce finer angular resolution but increase
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processing time. For this study, the maximum trace radius is set to 400 pixels, with an 
angular interval of 5 degrees. 

In the second phase, the CUDA kernel configuration is established. The block size is 
set to match the GPU thread block structure, and the grid size is calculated accordingly 
to enable efficient data partitioning. The input data is then transferred from the CPU to 
the GPU, and GPU memory is allocated for the output arrays. 

In the third phase, the core ray tracing routine is performed within the GPU kernel. 
For this, two nested loops were used: the outer loop iterates over altitude angles, and 
the inner loop over azimuth angles. These angles are used as directions for the rays to 
be traced. For each altitude angle, a corresponding weight is computed to represent its 
contribution to the hemispherical SVF. 

Altitude weights are computed using the following expression: 

Aweighted = cos(α) · �α ·
[
cos

(
α − 

2�

α

)
− cos

(
α + �α 

2

)]
(1) 

Here, cos(α) serves as the altitude weighting, reflecting the influence of radiative flux 
from different sky regions. The remainder of the expression calculates the surface area 
on the hemisphere associated with a given altitude band and angular interval. 

During each iteration of the azimuth loop, rays are traced from each pixel on the 
DSM, advancing stepwise in the direction defined by the current azimuth and altitude. 
At each step, the ray’s x, y, and z coordinates are updated based on the azimuth, altitude, 
and current ray length. The ray height is compared against the elevation values from 
the DSM, CDSM, and TDSM at the corresponding x,y position to determine if any ray 
obstruction is encountered. If the ray’s z-value at that point does not exceed the height 
of the elevation model, the ray is considered obstructed. If the ray’s z-value is higher, it 
contributes to the SVF based on its computed weight. 

In the fourth phase, the SVF at each pixel is calculated as: 

SVF =
∑

(unobstructed ray weights)∑
(all ray weights) 

(2) 

When calculated across all pixels, these values yield a continuous SVF map. 
This method improves upon traditional SVF estimation techniques by integrating 

multiple elevation layers and incorporating vertical vegetation structure. The inclusion 
of the TDSM enables the calculation of SVF beneath tree canopies, thereby capturing 
visibility at street level—an aspect often overlooked in standard methods that either 
assess from treetop level or disregard vegetation entirely. 

2.2 Assessment Methods 

To prove the use of the novel workflow and assess its usability, three additional 
assessment methods were employed in this study. 

Comparison to Theoretical SVF Values 
To evaluate the accuracy of the proposed sky view factor (SVF) estimation method, 
results were systematically compared to theoretical benchmarks derived from idealized
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geometries. Infinitely long street canyons (height-to-width ratios: 1:2, 1:1, 2:1) and 
circular basins (height-to-radius ratios: 1:2, 1:1, 2:1) were analyzed, with theoretical 
SVF values calculated using geometric principles. The circular basin represents a circular 
urban canyon, where obstructions of uniform height are positioned equidistantly at all 
angles around the midpoint. 

Computed SVF values from the proposed method were compared to theoretical 
benchmarks, with absolute errors quantified as their numerical differences. This analysis 
provides a controlled framework to verify accuracy, establishing baseline performance 
metrics for reliable application in real-world environments. The formulae below are 
used to calculate the SVF value for the mid-points of infinitely long canyons (Eq. 3) and 
circular basins (Eq. 4), based on their H: W-ratio. 

Infinitely long canyons: 

SVFmid−canyon = cos
(
tan−1(2 ∗ H/W)

)
(3) 

Circular basin: 

SVFmid−basin = cos2(β) (4) 

Comparison Against UMEP in a Real-world Test Case 
The second assessment evaluates the proposed GPU-accelerated workflow against the 
established Urban Multi-scale Environmental Predictor (UMEP) Processing plugin in 
QGIS [9], using a 1,650 × 1,400-pixel study area (total of 2,310,000 pixels) in Rot-
terdam’s Blijdorp neighborhood. Two SVF calculations were performed with the two 
methods using the same input data sources, such as elevation data from the AHN1 and 
BGT2 . The absolute error between the two results was calculated. 

Computational Time 
To evaluate the computational performance of the method across varying input sizes, 
nine synthetic test environments were created, ranging from 400 × 400 to 2000 × 2000 
pixels. Each environment was composed of repeated 200 × 200-pixel tiles featuring a 
standard geometric pattern: urban canyons with 20 m-high buildings spaced 100 m apart, 
and 10 m-high trees placed every 10 m along the streets, with a canopy base height of 
2.5 m. For each extent, corresponding DSM, CDSM, and TDSM layers were generated 
to ensure full algorithmic load. 

A continuous SVF was estimated using both the proposed method and the UMEP 
Processing Plugin for QGIS, a widely used CPU-based tool for SVF calculation. For 
each raster extent, processing times were recorded, and computational performance was 
evaluated by calculating the average number of pixels processed per second for each 
extent. This metric provides a comparative measure of efficiency across different spatial 
resolutions.

1 Actueel Hoogtebestand Nederland.
2 Basisregistratie Grootschalige Topografie.
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3 Results 

3.1 Comparison to Theoretical SVF Values 

The comparison between the SVF generated for generic canyons with the developed and 
theoretical methods shows absolute errors ranging from 0.000 to 0.003. The script is run 
with an angular interval of 5.0 degrees and a maximum trace radius of 400 pixels. These 
minor deviations are likely due to the angular interval settings. Reducing the interval size 
would improve the accuracy of the obstruction height determination, leading to more 
precise SVF values (Table 1). 

Table 1. Validation of SVF-calculation based on theoretical SVF-values for different test cases. 

Theoretical SVF Calculated SVF Absolute Error 

Canyon H:W 1:2 0.8944 0.896 0.003 

Canyon H:W 1:1 0.4472 0.766 0.001 

Canyon H:W 2:1 0.2425 0.244 0.001 

Basin H:R 1:2 0.8000 0.800 0.000 

Basin H:R 1:1 0.5000 0.500 0.000 

Basin H:R 2:1 0.2000 0.201 0.001 

3.2 Test Case – Rotterdam Blijdorp 

The SVF values calculated for a sample urban area using the developed workflow show 
strong agreement with those from UMEP, with a mean difference of − 0.0012 and a 
mean absolute error below 1%. The spatial discrepancy pattern shows a slight SVF 
underestimation at building roofs and overestimation in densely obstructed areas. This 
corresponds to anisotropic errors observed in shadow-casting algorithms when resolv-
ing complex vertical structures. The minor deviations fall within empirical tolerances 
established for urban radiative exchange modelshttps://centaur.reading.ac.uk/85498/1/1-
s2.0-S2212095519300604-main.pdf [14], suggesting the method’s reliability for urban 
climate studies (Fig. 1). 

3.3 Processing Time 

When comparing computing time across the geometrically generated test setups with 
varying spatial extents, the developed workflow significantly outperforms the CPU-based 
alternative. While the UMEP Processing Plugin’s shadow-casting algorithm exhibited 
exponential time complexity (68.2 s at 400 × 400 vs. 6,000 s at 2000 × 2000), the 
GPU implementation maintained near-linear scaling (4.6 to 44.3 s), a 135 times speedup 
at the largest tested extent. At 2000 × 2000 resolution (4 million pixels), the GPU’s 
44.3-s runtime translates to an effective throughput of 90,293 pixels/second compared

https://centaur.reading.ac.uk/85498/1/1-s2.0-S2212095519300604-main.pdf
https://centaur.reading.ac.uk/85498/1/1-s2.0-S2212095519300604-main.pdf
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Fig. 1. Differences in SVF values between the CPU-based and proposed SVF estimation method. 

to UMEP’s 666 pixels/second. For urban climate modeling workflows requiring con-
tinuous SVF mapping across city-scale domains (>10 km2), the method eliminates 
computational bottlenecks inherent to CPU-bound radiative transfer models, enabling 
simulations previously constrained by hardware limitations (Fig. 2). 

Fig. 2. Processing times of the UMEP Processing plugin for QGIS versus the proposed GPU-
accelerated method. 

3.4 Workflow Development and Discussions 

The accelerated computing capacity enabled by GPU implementation allows for more 
sophisticated calculations that differentiate between vegetation and building obstruc-
tions. This distinction permits more accurate modeling of street-level thermal conditions, 
particularly in areas with significant tree canopy coverage. The ability to calculate SVF 
values at the street level underneath tree canopies better represents the actual thermal 
experience of street users. 

The computational efficiency gained through GPU acceleration permits the process-
ing of high-resolution input data (up to resolutions as small as 0.25 m), which was
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previously impractical. This advancement is significant because the accuracy of SVF 
calculations is heavily dependent on the resolution of the underlying elevation data. By 
processing higher resolution data, GPU-accelerated methods produce more accurate rep-
resentations of the urban environment, capturing nuanced variations in its surroundings 
that significantly influence radiation exchanges. 

Furthermore, GPU acceleration enables the implementation of ray tracing-based 
algorithms, which have shown greater efficiency improvements compared to shadow 
casting-based algorithms. The ability to process larger geographic areas with high-
resolution data addresses a fundamental limitation in previous approaches, where SVF 
applications were often restricted to small urban areas due to computational constraints, 
facilitating comprehensive urban-scale analyses that were previously unfeasible. 

The enhanced computational efficiency of GPU-accelerated SVF calculations funda-
mentally alters how these climate parameters can be incorporated into urban design and 
planning workflows. Traditionally, SVF calculations are primarily utilized as post-design 
assessment tools rather than active design instruments. The extended calculation times 
meant that SVF analysis was typically performed after design decisions had been final-
ized, serving as a validation mechanism rather than informing the design process itself. 
With this workflow, thermal comfort assessments can now be completed within minutes. 
Further acceleration and parallelization of related processes could enable near-instant 
thermal comfort simulations, offering the ability to evaluate design options in real time 
and integrate microclimate performance directly into iterative design decision-making. 

Despite the significant advancements in SVF calculation methodologies, several 
methodological considerations warrant attention. The accuracy of SVF calculations 
remains dependent on the quality and resolution of input data and processing settings. 
The resolution and accuracy of the SVFs are dependent on the angular resolution and 
search radius of the rays. While GPU acceleration enables the processing of higher res-
olution data, the acquisition of detailed urban geometry information, particularly for 
vegetation structures, presents an ongoing challenge. Additionally, the GPU memory 
has practical limitations in handling extremely large raster datasets. Most consumer-
grade GPUs are equipped with 8 to 24 GB of VRAM, placing an upper bound on the 
maximum raster extent that can be processed in a single pass. For high-resolution inputs 
(e.g., 0.25 m), this generally allows for computation of areas up to km2. Beyond that, 
memory overflow or allocation failures may occur, requiring raster tiling. 

4 Conclusion 

This study demonstrates the reliability and advantages of GPU-accelerated SVF estima-
tion through validation against theoretical models and established computational meth-
ods. The proposed workflow achieves high computational efficiency while maintaining 
the accuracy required for urban climate modeling applications. 

The GPU-based method exhibited strong agreement with theoretical SVF values 
across fictional urban geometries, showing absolute errors ≤ 0.003 when compared to 
Oke’s radiation-based models for infinite canyons and circular basins [5]. The valida-
tion against UMEP’s shadow-casting algorithm in a real-world urban context (Blijdorp,
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Rotterdam) further demonstrated a mean absolute error < 1% across 2.31 million spa-
tial units. Spatial error patterns aligned with known anisotropic limitations of raster-
based SVF estimation, particularly in complex geometries where roof edges and dense 
vegetation introduce micro-scale uncertainties [9]. 

The computational performance analysis revealed substantial efficiency improve-
ments with the GPU-accelerated implementation. The GPU processed 4 million pixels 
in just 44.3 s, while the UMEP required 6,764 s for the same task at 2000 × 2000 reso-
lution, representing a 135-fold increase in processing speed. The parallelized workflow 
demonstrates near-linear time complexity, which provides a fundamental advantage over 
the exponential scaling observed in traditional CPU-based methods. This computational 
efficiency enables city-scale SVF mapping on standard consumer hardware. The pro-
posed method achieves processing rates of 90,293 pixels per second compared to merely 
666 pixels per second with serial CPU processing. 

These findings suggest that GPU acceleration effectively removes computational bot-
tlenecks in continuous SVF estimation. This is particularly the case for high-resolution 
urban climate models requiring frequent radiative exchange updates. The method’s val-
idation across theoretical and empirical test cases supports its integration into oper-
ational urban planning workflows, where rapid SVF mapping could enhance heat 
mitigation strategies and microclimate simulations. Future research directions should 
investigate optimal angular sampling intervals for specific application contexts and 
extend the parallelization framework to multi-GPU architectures for metropolitan-scale 
deployments. 

Code availability. The source code developed and used in this study is openly 
available at https://github.com/Maxvdwaal/svf_GPU. The repository includes all scripts 
necessary to reproduce the main analyses and figures presented in the paper, along with 
documentation and usage instructions. The code was released under the MIT License, 
encouraging reuse and adaptation for related research purposes. 
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