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1
With enhanced intuitive knowledge about shell buckling, the designer should
have an improved ability to foresee situations in which buckling might occur
and thus modify a design to avoid it.

D. Bushnell, " Computerized buckling analysis of shells”, Martinus Nijhoff Publishers, Dordrecht,
1985

I
There is still much to do, our knowledge of shell forms other than spherical
and cylindrical is still relatively limited, and the problems of actual loadings,
many of which are not easy to handle either theoretically or experimentally,
need more attention.

E.E. Sechler, The historical development of shell research and design, in Thin Shell Structures,
Edited by Y.C. Fung and E.E. Sechler, Prentice-Hall, Inc., 1974

I

The state-of-the art of all the current shell design manuals still adheres to the
so-called "Lower Bound Design Philosophy” that has already been in use for
over 50 years. ...... As for the design of conical shells, the design codes and
recommendations are usually based on an approximate theory, i.e., the theory
of equivalent cylindrical shells, where the selections of some appropriate
geometries are normally based on engineering judgments that have not been
well-justified on theoretical grounds, due to the fact that conical shells present
more difficulties in both theoretical analysis and manufacturing processes.

G.Q. Zhang and J. Arbocz, Initial postbuckling analysis of anisotropic conical shells, paper
presented in the 34th SDM conference, La Jolla, USA, 1993.

v
Initial results indicate that in order to obtain reliable results for the bifurcation
buckling analysis of anisotropic conical shells, enforcing the boundary
condition rigorously and using the nonlinear prebuckling solution are indeed
a must.

G.Q. Zhang and J. Arbocz, Buckling of anisotropic conical shells, paper presented in the 18th
TUTAM conference, Haifa, Israel, 1992.



A
Anisotropic conical shells are generally imperfection sensitive. Thus to obtain
a reliable result for the stability behavior of anisotropic conical shells it is
necessary to carry out the initial postbuckling and imperfection sensitivity
analyses after the critical bifurcation buckling load has been found.

G.Q. Zhang and J. Arbocz, Initial postbuckling analysis of anisotropic comical shells, paper
presented in the 34th SDM conference, La Jolls, USA, 1993.

VI
Unfortunately, the cone-like coffee beakers are never under such load that
instability could occur. Otherwise the present theory and programs might be
used to provide some design criterion.

VII
There is a great doubt about human being’s intelligence, if one considers the
fact that many intelligent people have been working for years (even life-times)
just pursuing one slightly higher "knockdown"” factor.

VI
The world is simple in the sense of similarity, and complicated in the sense of
variety.

IX
Basically, it is the same to cook a meal and to conduct a technical research. An
experienced "cook" gets delicious "meals".

X
It is known that human being has some unavoidable "moral imperfections” and
the society is "imperfection sensitive”. Thus, to prevent the "collapse” of a
society, everyone has to do his best to keep the "imperfection amplitude” as
small as possible and to avoid some dangerous "imperfection forms".
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SUMMARY

Due to the rapid development of composite materials anisotropic conical shells are widely
employed in aerospace, offshore, chemical, and civil engineering fields as well as in many
other industries. In practice it happens frequently that the loss of stability is one of the
important failure phenomena, thus the stability behavior may dictate the choice of some of
the critical dimensions of the structure. This implies that in the design of anisotropic
conical shells it is imperative to employ an accurate and reliable stability criterion for the
different loading cases. For shells in general all the current design manuals adhere to the
so-called ‘Lower Bound Design Philosophy’ that has already been in use for over 50
years. This criterion recommends the use of an empirical ‘*knockdown’ factor, which is so
chosen that when it is multiplied with the (classical) buckling load of the perfect shell a
‘lower bound’ to all available experimental data is obtained. As for the design of conical
shells, the design codes and recommendations are usually based on an approximate theory
called the theory of equivalent cylindrical shells, where the selection of some appropriate
geometric parameters is normally based on engineering judgment that has not been well-
justified on theoretical grounds. Obviously, weight - critical applications cannot afford
such excessive conservatism. Therefore, there is a practical reason for trying to obtain an
‘Improved Shell Design Criterion’ for conical shells.

Theoretically, to be able to derive an ‘Improved Shell Design Criterion’, a thorough
understanding of the nonlinear stability behavior is crucial, whereby the analysis of some
aspects of the nonlinear behavior of thin shell structures is still one of the main challenges
for both engineers and applied mathematicians.

Finally, compared with what has been done for anisotropic cylindrical shells, less
theoretical and experimental effort has been put into the stability analysis of anisotropic
conical shells, and few results have been published. This is partly due to the fact that
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composite conical shells present more difficulties in both theoretical analysis and manufac-
turing processes. Thus the practical importance, the theoretical challenge and a lack of
available results have prompted the present systematical analysis of the stability behavior

of anisotropic conical shells.

In this investigation, a rigorous treatment of the bifurcation buckling and initial
postbuckling behavior of perfect and imperfect anisotropic conical shells is presented,
which includes the effects of boundary conditions and nonlinear prebuckling deformations.
This analysis is based on nonlinear Donnell-type strain-displacement relations and uses an
extension of Koiter’s initial postbuckling theory.

To carry out the above analysis, the nonlinear Donnell-type anisotropic shell equations in
terms of the radial displacement W and the Airy stress function F are derived via the
stationary potential energy criterion. A complete set of boundary conditions, which

partially or completely satisfies Seide’s geometric constraint, is also formulated in terms of
W and F. By using the perturbation technique proposed by Koiter, three sets of differenti-
al equations governing the prebuckling, buckling and postbuckling problems, and the
corresponding boundary conditions are obtained. Koiter’s initial postbuckling theory is put
into a form suitable for the investigation of initial imperfection sensitivity of anisotropic
conical shells.

To solve the resulting boundary value problems, the nonlinear prebuckling solution is
assumed to be axisymmetric, while the circumferential dependence of the buckling and
postbuckling equations is eliminated by Fourier decomposition. The resulting sets of
ordinary differential equations are solved numerically via the ‘Parallel Shooting Method’,
whereby the accuracy of the solution is controlled by a user chosen round-off error-bound.
Two kinds of shooting schemes are employed in the numerical solution of the buckling
problem. One takes the eigenvalue as one of the unknowns in the iteration step, the other
uses a generalized Stodola-type method. The specific boundary conditions are enforced
rigorously not only in the prebuckling but also in the buckling and postbuckling states. As
an option, rigorous, linear, or membrane-like prebuckling solutions can be used.

Calculations are presented for various truncated conical shells covering a wide range of
geometries. Comparisons with results of other investigations indicate that the present
theory and computer programs can correctly and adequately predict the instability of
conical shells. The effects of different shell geometries, prebuckling solutions, boundary
conditions, material properties, and stacking sequences on the buckling and initial

S
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postbuckling behavior of conical shells are studied.

As a preliminary effort to account for the effect of physical imperfections consisting of
variations of the wall thickness and the stiffness coefficients that occur when laminated
conical shells are made by filament winding, some simplified formulae for equivalent
constant wall thickness and stiffness coefficients are suggested. Numerical studies are
carried out to verify the validity of these formulae.
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SAMENVATTING

Als gevolg van de snelle ontwikkeling van composietmaterialen worden anisotrope
conische schalen vaak toegepast in de lucht- en ruimtevaart, offshore, chemische techniek,
civiele techniek en op vele andere gebieden. In de praktijk is instabiliteit dikwijls een van
de belangrijkste verschijnselen waardoor de constructie kan bezwijken, waarmee het
stabiliteitsgedrag de keuze van kritieke afmetingen van de constructic kan bepalen. Om
deze reden is het in het ontwerp van anisotrope conische schalen noodzakelijk om een
nauwkeurig en betrouwbaar stabiliteitscriterium voor de verschillende belastingsgevallen
toe te passen. De huidige ontwerp-handboeken houden voor schalen nog steeds vast aan de
zogenaamde ‘Lower Bound Design Philosophy’ die al meer dan 50 jaar in gebruik is. Dit
criterium beveelt het gebruik van een empirisch bepaalde ’knockdown’ factor aan, die,
vermenigvuldigd met de (klassieke) kniklast van de perfecte schaal, een ondergrens
aangeeft voor alle beschikbare experimentele resultaten. De ontwerpvoorschriften en
aanbevelingen voor conische schalen zijn gewoonlijk gebaseerd op een benaderingstheorie,
de theorie van equivalente cylinderschalen. Hierbij is de keuze van de geschikte geometri-
sche parameters normaalgesproken gebaseerd op technisch inzicht en ervaring zonder een
goede theoretische rechtvaardiging. Het is duidelijk dat men zich voor toepassingen waarin
een laag gewicht vereist is een dergelijk extreem conservatisme niet kan veroorloven. Het
is daarom van praktisch belang om een verbeterd schaalontwerpcriterium voor conische
schalen op te stellen.

Om dit verbeterde schaalontwerpcriterium te kunnen opstellen, is een zeer goed begrip van
het niet-lineaire stabiliteitsgedrag van cruciaal belang. De analyse van het niet-lineaire
gedrag van dunwandige schaalconstructies vormt nog steeds een belangrijke uvitdaging in
zowel de techniek als de toegepaste wiskunde.



IX

Tenslotte is er voor anisotrope conische schalen minder theoretisch en experimenteel
onderzoek naar het stabiliteitsgedrag gedaan dan voor cylinderschalen, en zijn er weinig
resultaten voor conische schalen gepubliceerd. Dit is gedeeltelijk een gevolg van het feit
dat conische composietschalen moeilijker te fabriceren en te analyseren zijn. Het praktisch
belang, de theoretische uitdaging en een gebrek aan beschikbare resultaten vormden zo de
aanzet voor de systematische analyse van het stabiliteitsgedrag van anisotrope conische
schalen die in dit proefschrift gepresenteerd wordt.

In dit onderzoek wordt een exacte behandeling van het bifurcatie knikgedrag en het initi€le
naknikgedrag van perfecte en imperfecte anisotrope conische schalen gepresenteerd, waarin
het effect van randvoorwaarden en van een niet-lineaire grondtoestand in rekening wordt
gebracht. De analyse is gebaseerd op niet-lineaire rek-verplaatsingsrelaties van het
Donnell-type en maakt gebruik van een uitbreiding van Koiter’s initiéle naknik-theorie.

Om de bovengenoemde analyse uit te voeren, worden de niet-lineaire schaalvergelijkingen
van het Donnell-type voor een anisotrope schaal, met de radiale verplaatsing W en een
Airy spanningsfunctie F als onbekenden, afgeleid via het principe van stationaire potentiéle
energie. Een complete set randvoorwaarden die geheel of gedeeltelijk aan Seide’s
geometrische voorwaarde voldoet, wordt ook geformuleerd in W en F. Door gebruik te
maken van de door Koiter aangegeven perturbatietechniek, worden drie stelsels differenti-
aalvergelijkingen, die de grondtoestand, knik, en het naknikgedrag beschrijven, verkregen,
en tevens de corresponderende randvoorwaarden. Koiter’s initi€le naknik-theorie wordt
omgewerkt tot een vorm die geschikt is om de imperfectiegevoeligheid van anisotrope
conische schalen te onderzoeken.

Om de resulterende randvoorwaarde problemen op te lossen, wordt de niet-lineaire
grondtoestand axiaal-symmetrisch verondersteld, terwijl de afhankelijkheid in omtreksrich-
ting voor de knik- en naknikvergelijkingen wordt ge€limineerd door middel van een
Fourier ontwikkeling. De resulterende stelsels gewone differentiaalvergelijkingen worden
numeriek opgelost via de ‘Parallel Shooting Method’, waarbij de nauwkeurigheid van de
oplossing gecontroleerd wordt via een door de gebruiker gekozen tolerantie voor de
afbreekfout. Twee ‘shooting’ methodes zijn toegepast in de oplossing van het knik-
probleem. De eerste gebruikt de eigenwaarde als onbekende in een iteratiestap, de tweede
gebruikt een gegeneraliseerde Stodola methode. Aan de randvoorwaarden wordt exact
voldaan, niet alleen in de grondtoestand, maar ook in de knik- en nakniktoestand. Naar
keuze kan de exacte, lineaire, of membraan-oplossing voor de grondtoestand worden
gebruikt.
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Berekeningen worden gepresenteerd voor verscheidene afgeknotte conische schalen voor
een breed gebied van geometrieén. Vergelijking met resultaten uit andere onderzoeken
geeft aan dat de gebruikte theorie en computerprogramma’s correct en adequaat het
instabiliteitsgedrag van conische schalen kunnen beschrijven. Het effect van verschillende
schaalgeometrieén, oplossingen voor de grondtoestand, randvoorwaarden, materiaaleigen-
schappen en laminaatopbouw op het knikgedrag en het initi€le naknikgedrag zijn bestu-
deerd.

Als een eerste poging om het effect in rekening te brengen van een fysische imperfectie,
bestaande uit variaties van de wanddikte en van de stijfheidscogfficienten, die optreden
wanneer gelamineerde conische schalen worden gewikkeld, worden enige simpele formules
voor een equivalente constante wanddikte en equivalente constante stijfheidscoéfficienten
voorgesteld. Numerieke studies zijn uitgevoerd om de geldigheid van deze formules te

verifiéren.



NOMENCLATURE

X1

In the following some common symbols used in this dissertation are listed. To keep the

symbols close to the international conventions, some of them may have different meanings

in different chapters. In that case they are explained as they appear.

a,b

1:(0), F(l)’ F(l)
G

M, M, M,,
Ms' MG’ MsO
o

N, Ny, N,
Ns’ NS’ Nse
p

Initial postbuckling coefficients defined by Egs. (7.12) and (7.13)

Semi-inverted extensional stiffness matrix
Semi-inverted bending-stretching coupling matrix

= 3(1-v%)

Semi-inverted flexural stiffness matrix

Arbitrarily chosen reference Young’s modulus

Young’s modulus in meridional direction

Young’s modulus in circumferential direction
Prebuckling Airy stress function defined by Eq. (3.50)
Buckling Airy stress functions defined by Eq. (3.59)
Postbuckling Airy stress functions defined by Eq. (3.69)
Airy stress function defined by Eqs. (3.10)

Transformed Airy stress function defined By Egs. (3.32)
Zero™ order, first order and second order fields, respectively
Shear modulus

Moment resultants of cylindrical shells

Moment resultants of conical shells

Number of full waves in the circumferential direction
Stress resultants of cylindrical shells

Stress resultants of conical shells

Hydrostatic pressure



WO, WO, W

zZ,

%o

o B

B

&;

€, &g, Yo

Xs> Xo» Xso
€0 €y Yay

Xxo Xoy» Ky

<D

>

>

Nondimensional hydrostatic pressure (§ = pes, sine/(Et’cos’at,))
Axial compression load

Specially orthotropic lamina stiffness matrix

Generally orthotropic lamina stiffness matrix

Radius at the small edge of the conical shell

Radius at the large edge of the conical shell

=Mp

Coordinate in meridional direction

Distance from the vertex to the small edge of the conical shell
Distance from the vertex to the large edge of the conical shell
Shell wall-thickness

Thickness of the k'™ layer

Volume fraction of the matrix

Volume fraction of the fiber

Prebuckling radial displacement function defined by Eq. (3.49)
Buckling radial displacement functions defined by Eq. (3.60)
Postbuckling radial displacement functions defined by Eq. (3.68)
Radial displacement (positive inward)

Transformed radial displacement defined by Eq. (3.32)

Initial radial imperfection (positive inward)

Shape of the initial imperfection defined by Eq. (7.33)

Zero™ order, first order and second order fields, respectively

= In(s,/s))

Semi-vertex angle of a conical shell

Imperfection form factors defined by Egs. (7.19) and (7.20)
Initial winding angle defined by Eq. (2.11)

Strain components referred to an arbitrary coordinate

Strain components of conical shell

Curvature components of conical shell

Strain components of cylindrical shell

Curvature components of cylindrical shell

= Bsino,,

Nondimensional axial load parameter (A = Pc/(ZnEtzcoszao))
Reliability based ‘knockdown’ factor

Nondimensional variable load factor

Nondimensional variable load factor evaluated at the bifurcation

point
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A Nondimensional variable load factor evaluated at the limit point
p® Eigenvalue estimate

v Arbitrarily chosen reference Poisson’s ratio

13 Perturbation parameter

E Amplitude of the initial imperfection

Ps Normalized variable load parameter (p; = AJA)

¢ =f +f,

P, Thickness variation factor

1
W =W°+W°



Introduction

Conical shells are important structural elements for aerospace, civil, offshore, chemical
and many other engineering fields and industries. In aerospace engineering they are used
as engine frame, adapter sections of multistage rockets and are proposed as truncated-cone
nose cap configuration for planetary re-entry vehicles. In civil engineering they are widely
used as chimney stacks, shafts of overhead tanks and for foundations of tall structures. In
offshore engineering they are used as transition elements of jacket legs between two
cylindrical sections of different diameters. In chemical engineering they are used as
reactors, tanks, silos and end-closures in pressure vessels, etc.. After all, the conical shell
is a primary structural element for many practical applications. In most of the applications,
however, the conical shells employed are thin-walled since these structural configurations
exhibit favorable strength over weight ratios.

The most attractive properties of composite materials are the high strength-to-weight ratio
and the high stiffness-to-weight ratio. Those added to their excellent fatigue strength, ease
of formability, wide range of operating temperature (thermoplastic resins), negative or low
coefficient of thermal expansion, high damping, resistance to corrosion, and their capabili-
ty and flexibility of being tailored for a required application result in materials with
seemingly unlimited potentials. In recent years, due to the rapid development of various
kinds of composite materials, there has been a continuous increase of applications of

[1-4]

composite materials for different shell structures Often encountered among these

applications are anisotropic conical shells.

It has been observed that, as for the cases of other thin shell structures, the loss of stability
by buckling of anisotropic conical shells is one of the important and crucial failure
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phenomena which may lead to a disaster. This implies that the stability behavior may
dictate the choice of some of the critical dimensions of the structures. Therefore, in the
design of anisotropic conical shells it is imperative to employ an accurate and reliable
stability criterion for the different loading cases.

While considering the design criteria for buckling of shell structures, one observes that all
the current design manualst®! adhere to the so-called ‘Lower Bound Design Philosophy’
that has been in use for over 50 years. This criterion recommends the use of an empirical
‘knockdown’ factor, which is so chosen that when it is multiplied with the (classical)
buckling load of the perfect shell, a ‘lower bound’ to all available experimental data is
obtained (see Fig. 1). As for the design of conical shells, the design codes and recommen-
dations are usually based on an approximate theory!”! called the theory of equivalent cylin-
drical shells, where the selection of some appropriate geometries is normally based on
engineering judgment that has not been well-justified on theoretical grounds. Obviously,
weight - critical applications cannot afford such excessive conservatism. Therefore, in
recent years much effort®!% has been spent on the development of ‘Improved Shell

Design Criteria’.

Unfortunately, most of the effort so far has been directed to cylindrical shells, and less
theoretical and experimental effort has been addressed to the stability analysis of anisotro-
pic conical shells. This is partly due to the fact that anisotropic conical shells present more
difficulties in both theoretical analysis and manufacturing processes. However, it is felt
that a design criterion for anisotropic conical shells should be included in ‘Improved Shell

Design Criteria’.

Therefore, the central goal of present investigation is the development of ‘Improved Shell
Design Criteria’ for the buckling sensitive anisotropic conical shells, by carrying out a
systematical study of their buckling and initial postbuckling behavior.

To set up ‘Improved Shell Design Criteria’ one must have a thorough understanding for
the buckling phenomena of thin-walled shell structures, and distinguish between collapse
at the maximum point in a load versus deflection curve and bifurcation buckling. To
obtain the critical load levels one can carry out an asymptotic analysis or a general
nonlinear analysis.
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Fig. 1 Knockdown factors for conical shells subjected to axial compression

obtained at different institutest®®!

As explained by Arbocz®!, applying the asymptotic analysis to an axially compressed
perfect anisotropic shell, initially the buckling displacement W, will be identically zero
until the bifurcation load A, at point B has been reached (see Fig. 2). Following bifurcati-
on the initial failure of the perfect structure will be characterized by a rapidly growing
asymmetric deformation along the path BD with a decreasing axial load A.

On the other hand, if one employs the general nonlinear analysis the axially compressed
perfect anisotropic shell deforms axisymmetrically along the path OA (see Fig. 3) until a
maximum (or limit) load Ay is reached at point A. However, here a bifurcation point B
lies between O and A. Thus, once the bifurcation load A, has been reached, the initial
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failure of the perfect structure will be characterized by a rapidly growing asymmetric
deformation along the path BD with a decreasing axial load A. Thus, in this case, the

collapse load of the perfect structure A; is of no engineering significance.
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In the case of real shells, which contain unavoidable initial imperfections, for both
approaches the structural response will follow a fundamental path OEF, with failure
occurring as a "snapthrough" at point E at the limit (collapse) load A,. In this case there
are no bifurcation points between O and E. However, considering Figures 2 and 3, one can
state that if there are no significant prebuckling load redistributions then the bifurcation
model often leads to a good approximation of the failure load and mode, especially in the
cases involving significant pre-bifurcation symmetries.

If one considers the stability analysis of conical shells, some comprehensive reviews
concerning the buckling behavior of various conical shells can be found in the literature.
Seide!®!] has examined the state-of-art for isotropic conical shells of constant thickness and
concluded that there were still numerous unanswered and bypassed questions. Kobayas-
hit? has tabulated and summarized some existing formulae and solutions of buckling of
conical shells from eighty-three published papers and reports. Singer!® has summarized
the extensive work on stiffened and unstiffened conical shells performed at Technion,
Israel Institute of Technology. The Column Research Committee of Japan(?*) has presented
about thirty-five results on the solutions of different kinds of conical shells under different
loading cases, based on more than ninety references. Their results cover stiffened and
unstiffened, orthotropic and sandwich conical shells. Singer and Baruch®! have reviewed
many of their contributions on the use of stiffeners to carry out structural optimization for
elastic stability of conical shells. Schliinz!®®! has presented 300 references with abstracts
for the stability of thin conical and spherical shells covering the time interval mainly from
1961 to 1970. Ellinas et al.*”! have summarized some results of buckling of isotropic
conical shells from several design codes and recommendations. Esslinger et al?! have
summarized many experimental results obtained at DFVLR for the stability of isotropic
conical shells. Weingarten and Seidel” have recommended practices for predicting
buckling of uniform stiffened and unstiffened conical shells under various types of static
loadings, and suggested procedures that yield conservative estimates of buckling loads.
Sullins et al.'®! have presented some design recommendations for the general instability of
truncated sandwich conical shells. Other reviews for the stability analysis of conical shells
may also exist.

Despite of the existence of many published results for the stability analysis of conical
shells, most of the results are for isotropic conical shells with greatly simplified theoretical

treatments.

The earlier investigators were inclined to ignore the nonlinear terms of the strain and
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displacement relations, which leads to the approximate theories such as those of Hoff*%,
Mushtari and Sachenkov®!), Seide®3], Schnell®®! and others. Employing these linearized
forms of the strain-displacement relations, as is usual for the stability analysis of other thin
shells, one obtains theoretical results which are in qualitative, but not quantitative,
agreement with experimental results, especially in the case of axial load and inner pres-
surel?1-%637 Sometimes these theoretical predictions bore little relationship to the behavior
of the actual structural configuration or even yield erroneous results. This initial general
approach for the buckling analysis of conical shells is known as the classical stability
theory. At first, the discrepancy between the theoretical predictions based on the classical
stability theory and the experimental observations was attributed to the inelastic behavior
exhibited by the materials from which the real structures were constructed. Further study
showed, however, that inelastic behavior was only one of several possible causes of the
deviation between theory and experiment. In some cases it was discovered that certain
nonlinear terms in the strain and displacement relations should be retained since the
buckling process inherently involves moderately large displacement. Later, extensive
investigations have been carried out based on various kinds of nonlinear strain and
displacement relations. Seide*®*! developed a more accurate Donnell-type theory by
retaining certain terms omitted by Hoff and Singer” in the strain and displacement
relations. This Donnell-type theory has been widely used by many investigators, such as
Seide™], Arbocz!i?), Singer and Baruch®?, Ender*!) and others, and yielded improved

theoretical results.

As the knowledge of stability theory grew, one discovered that the influence of boundary
conditions on the buckling loads of shell structures can be also important!*>*). Singer™
studied the effect of axial constraint on the stability behavior of conical shells under
hydrostatic pressure. His results suggest that the effect is usually small. Later, Singcx””
presented results for a clamped isotropic conical shell under hydrostatic pressure, which
can be compared with results for a cone with simply supported edges. The difference in
the boundary conditions for the two cases is that simply supported edges impose no res-
traint against rotation or displacements in a direction parallel to the generator, while clam-
ped edges impose infinite restraint against these displacements. The results presented
indicate increases in buckling pressure of approximately 50 percent or more, as compared
to cones with simply supported boundary conditions. Thurston!®? presented limited results
which show that replacing N; = 0 by u = 0 in the boundary conditions the buckling load
will increase roughly 45 percent. Refs. [34,53] presented experimental data that suggests
edge rotation can be significant. Baruch et al.l’4 systcmaﬁcally studied the effect of four
sets of in-plane boundary conditions on the buckling behavior of isotropic conical shells
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under hydrostatic pressure. In their analysis, the first two stability equations are solved by
the assumed displacements, while the third is solved by the Galerkin procedure. The
boundary conditions are satisfied with four unknown coefficients in the expressions for u
and v. It was found that, as in the cases of cylindrical shells, the effect of axial constraint
is of primary importance for conical shells under hydrostatic pressure, whereas the circum-
ferential restraint has little influence. The effect of the four possible in-plane boundary
conditions on the buckling behavior of isotropic conical shells under axial compression,
was also studied by Baruch et al.>! using a method similar to the one used in Ref. [54]. It
was found that under axial compression both circumferential and axial restraints are of
primary importance. In the cases SS1 (N, = N, = 0) and 883 (v = N = 0), axisymmetric
buckling mode dominates and A = 0.5. The axisymmetric buckling mode in the SS3 case
involves large axial translations. When these are prevented, only the classical modes with
A =1 can occur. In the SS2 case (N, = u = 0) an asymmetric buckling mode occurs and
A = 0.5. In the SS4 case (v = u = 0) the buckling mode is again asymmetric but with A =
1.

So far most of the results obtained for the stability analysis of isotropic conical shells are
still limited to the simplified theoretical treatment, because in all the analyses the membra-
ne-like prebuckling solution was normally used to search for the buckling solutions. It has
been found that the accuracy of solutions is often questionable if one uses the membrane-
like prebuckling solutions. For cylindrical shells using membrane prebuckling solutions
implies that one relaxes completely the supports in the prebuckling range and thus

[49.36]  For most

assumes that the prebuckling stresses and deformations are constant
practical cylindrical shell structures, however, some measure of radial support is present
from the beginning of loading so that, prior to buckling, complicated axisymmetric
deformations and stresses are present which modify the loading-shortening behavior of the
cylinder and influence its buckling load. This influence is especially noticeable for cylin-
drical shells in axial compression and for short cylindrical shells under external lateral
pressure. Unfortunately, compared with what has been known for cylindrical shells, only a
few results can be found in the literature where the influence of prebuckling solutions on
the buckling behavior of isotropic conical shells is considered. Famili®! studied the
asymmetric buckling behavior of truncated and complete conical shells under uniform
hydrostatic pressure by means of finite difference analysis, taking into account the large

deformation in the prebuckling state. Kobayashil>®!

carried out an analytical investigation
to determine the effect of prebuckling deformation on the compressive buckling load of
truncated conical shells with clamped boundary conditions by using a finite difference

approach. His limited results indicate that the decrease in the buckling load from the
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classical result due to prebuckling deformation is somewhat greater for conical shells than
for cylindrical shells.

Besides the above explanations for the discrepancies between theoretical and experimental
results, there is now a general agreement that initial imperfections, i.c., small accidental
deviations from the assumed initial shape of the structures, are the principal cause of the
disagreement. Moreover, it was pointed out by Masur and Schreger'™! that even if the
structure is ‘perfect’ in its initial unloaded state, the loading process itself may cause
deformations which in their effect on the stability are similar to initial imperfections. A
major contribution to the present understanding of the role of initial imperfections was
made by Koiter®*®'!. Excellent reviews of Koiter’s theory and of the many applications of
it to buckling of monocoque and stiffened elastic and elastic-plastic shells are given by
Hutchinson and Koiter!®, Tvergaardm], and Budiansky and Hutchinson!®. The theory
itself is reiterated in some detail by Budiansky!®%), Seide!®), and Arbocz!®"! and extended

to dynamic buckling by Budiansky and Hutchinson!®®!,

The purpose of Koiter’s theory is twofold: determine the lowest bifurcation point on the
equilibrium path and ascertain the sensitivity of the maximum load-carrying capacity of
the structure to initial geometric imperfections. This approach focuses attention on initial
postbuckling behavior and provides a theory that is exact in the asymptotic sense, i.e.,
exact at the bifurcation point itself and a close approximation for postbuckling confi-
gurations near the bifurcation point. When the initial portion of the secondary path has a
positive slope, considerable postbuckling strength can be developed by the structure, and
loss of stability on the primary path does not result in structural collapse. When the initial
portion of the secondary path has a negative slope, on the other hand, the buckling is
precipitous and the magnitude of the critical load is subject to the influence of initial
imperfections.

Since Koiter first presented his theory, numerous results of applications of his theory to
various kinds of shell stability problems have been published. Most of the results,
however, are for different kinds of cylindrical and spherical shells!®”, few attention has
been paid to the conical shell problems, even for isotropic conical shells. Among the few
research effort and results, Akkas!™ studied the buckling and initial postbuckling behavior
of isotropic spherical and conical caps under axisymmetric ring loads and uniform pressure
with clamped boundary conditions, based on the formulation of Fitch!”!). His results show
that the conical caps under the types of loads considered are generally imperfection-
sensitive. Later, Akkas!”! extended his previous theory to the buckling and initial
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postbuckling problems of shallow spherical and conical sandwich shells. The correspon-
ding numerical results show that the buckling and initial postbuckling behavior of the
sandwich cap is similar to that of the isotropic cap. The influence of initial imperfections
on the stability behavior of conical shells has also been studied by some investigators
using different theories and methods. Arboczl™! did some experimental investigations for
the buckling load of isotropic conical shells, where the effect of an initial imperfection

(7] carried out

with an axially symmetric shape was also investigated. Arbocz and Klompe
some initial imperfection surveys on conical shells at the HOECHST AG in 1983. Cooper
and Dexter!”! presented some results for the effect of local imperfections on the critical
buckling load of an axially compressed isotropic conical shell. Their results show that the
buckling load obtained from a bifurcation buckling analysis is highly dependent on the
circumferential arc length of the imperfection type studied there. As the circumferential
arc length of the imperfection is increased, a reduction of up to 50 percent of the buckling
load of the perfect shell can occur. Shiau et al.l”® presented some results on the dynamic
stability of a truncated isotropic conical shell with some geometric imperfections under a
wide variety of dynamic loading conditions. It was found that conical shells are less
sensitive to initial imperfections than the cylindrical shells. Vandépitte et al."! presented
some results of an experimental investigation of the buckling of hydrostatically loaded
isotropic conical shells. In their investigation the initial imperfections were measured, and
the safety factor accounting for the imperfection sensitivity was suggested. Bermus et
al.”™® studied the influence of initial imperfections on the buckling of orthotropic truncated
spherical and conical shells under axial compression. The few results presented there show
that the small imperfections can lower the buckling loads of perfect shells.

Since weight is of critical importance in aerospace applications, there is considerable
interest in the design of conical shells utilizing some forms of stiffening, such as rings and
stringers. As a consequence, several investigations have been carried out for the stability
analysis of stiffened conical shells. Singer et al.’®] studied the buckling of conical shells
stiffened with rings and stringers by treating the stiffened shells as equivalent orthotropic
shells. However, since the effect of the eccentricity of stiffeners cannot be studied by the
classical orthotropic approach, and in the case of longitudinal stiffening the classical
orthotropic approach is limited to stringers whose effective moment of inertia is proportio-
nal to the distance from the vertex, a more accurate method which considers the separate
distributed stiffness of the rings and stringers was suggested by Baruch and Singer(8%-8!).
The results obtained by using this method reveal that stiffener eccentricity may be
significant, and external stringers yield higher critical pressure than internal stringers.
Baruch et al.® further extended the previous method to conical shells with non-uniformly
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spaced stiffeners. Theoretical results indicate that for hydrostatic pressure loading, rings
are the most efficient stiffeners. On account of the cone geometry, equally spaced rings
divide a conical shell into ’sub-shells’ of unequal local buckling strength, while unequal
spacings may result in ’sub-shells’ of equal local buckling strength. By changing the ring
spacings and the stiffener cross-sections structural optimization can be achieved.
Samuelson'® suggested an approximate method for the analysis of stiffened conical shells
by defining some equivalent cylindrical shells for stiffened cones. More recently, Baruch,
Arbocz and Zhang®! suggested the geodesic stiffening and other non-traditional stiffener
arrangements for the stiffening of conical shells. At about the same time, Gendron et al.18%!
considered the geodetically stiffened composite cylindrical shells. The motivations to
present the non-traditional stiffening concept are mainly due to structural optimization and
the rapid development of composite material techniques which provide the possibilities for
the realization of this concept. However, more effort is needed to study the effect of non-
traditional stiffeners on the stability behavior of conical shells.

The number of theories and results for the stability analysis of orthotropic conical shells
are limited. Serpico®! and Singer®! derived the Donnell-type goveming equations for
classical orthotropic conical shells by assuming that the orthotropic character of the shell
is described by only distinguishing between Young’s moduli and Poisson’s ratios in two
mutually orthogonal directions. Singer et al.™' studied the buckling behavior of classical
orthotropic conical shells under external pressure by satisfying slightly relaxed boundary
conditions. Dixon!®! considered the buckling of classical orthotropic truncated conical
shells with elastic edge restraint subjected to lateral pressure and axial load. Schiffner’®!
carried out perhaps the most elegant theoretical investigation for the buckling of classical
orthotropic conical shells, at that time. In his analysis, besides using membrane-like
prebuckling solution, he also presented results where the axisymmetric prebuckling
solution was first solved rigorously by a finite difference method, and then substituted into
the buckling equations which were also solved by the finite difference method. In the
solutions of both prebuckling and buckling states two sets of boundary conditions were
rigorously satisfied. What is more, the effect of a specific kind of axisymmetric imper-
fection on the buckling load was also studied, and the results showed a decrease of
buckling load of isotropic conical shells under combined axial load and inner pressure due

11901

to the present of the geometric imperfection. Dumir and Khatri'™ presented results for

axisymmetric static and dynamic buckling analysis of classical orthotropic truncated
shallow conical cap with a clamped edge. More recently, Zhang, Baruch and Arbocz®1%2
investigated the possibilities of producing classical orthotropic conical shells by the

different manufacturing processes currently available. As distinguished from the classical
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orthotropic conical shells, a so-called quasi-orthotropic conical shell and its corresponding
constitutive relations are presented, which are more representative for some manufacturing
processes. For mainly academic interest the buckling loads of classical orthotropic conical
shells under axial compression are calculated. Buckling loads lower than those obtained
from another literature source!®®! are found.

There are some results for the stability analysis of sandwich conical shells. Among the
existing results are those of Akkas!®, Seide®, Cohen®*%), Bert et all®], Struk®”,
Anderson et al.®® and others. Since the present analysis is not going to cover the
sandwich conical shells, no detailed reviews for the buckling of sandwich conical shells
will be presented here.

There are a few theories and results for the stability analysis of anisotropic conical shells
published in the open literature, while numerous studies have been performed and
published on anisotropic cylindrical shells. Shul’ga et al.”®! studied the buckling problem
of multilayer orthotropic conical shells under axial compression by employing the
membrane-like prebuckling solution. Limited results presented there show that the
buckling mode is asymmetric, and using the C1, C2, SS1 and SS2 boundary conditions
will lead to considerable reduction (about 50%) for the buckling load compared with using
the C3, C4, SS3 and SS4 boundary conditions. Other investigations for anisotropic,
especially for laminated conical shells are confined to the vibration analysis by employing
the linear strain and displacement relations!%1%). No results have been published for the
initial postbuckling behavior and imperfection sensitivity of anisotropic conical shells, as
far as the author knows.

Thus the practical importance, the theoretical challenge and a lack of available results
prompted the present work involving a systematic analysis of the stability behavior of
anisotropic conical shells.

As part of the effort concerning the development of ‘Improved Shell Design Criteria’, in
the following a rigorous treatment of the bifurcation buckling and initial postbuckling
behavior of perfect and imperfect anisotropic conical shells is presented. This analysis
includes the effects of boundary conditions and nonlinear prebuckling deformations, based
on nonlinear Donnell-type strain-displacement relations and an extension of Koiter’s initial
postbuckling theory. To carry out the above analysis, the nonlinear Donnell-type aniso-
tropic shell equations in terms of the radial displacement W and the Airy stress function F
are used. A complete set of boundary conditions, which partially or completely satisfies
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Seide’s geometric constraint, is also formulated in terms of W and F. By using the
perturbation technique proposed by Koiter, three sets of differential equations governing
the behavior of the prebuckling, buckling and postbuckling problems, and the
corresponding boundary conditions, are obtained. Koiter’s initial postbuckling theory[®'%]
is rederived and cast into a form suitable for the investigation of initial imperfection
sensitivity of anisotropic conical shells. In searching for the solutions, the prebuckling
state is assumed to be axisymmetric, while the circumferential dependence of the buckling
and postbuckling equations is eliminated by Fourier decomposition. The resulting sets of
ordinary differential equations are solved numerically via the ‘Parallel Shooting
Method’(195197) whereby the accuracy of the solution is controlled by a user chosen
round-off error-bound. Specific boundary conditions are enforced rigorously not only in
the prebuckling but also in the buckling and postbuckling states. As an option, rigorous,
linear, or membrane-like prebuckling solutions can be used.
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Chapter 1
Kinematic Relations

1.1 Introduction

Since shell configurations of different wall constructions have been widely used as
structural elements, various geometrically linear shell theories, which can be used to solve

these shell problems, have been extensively investigated and widely employed198-119],

However, there still exist many other shell problems, such as the problems involving large
displacements and rotations, loss of stability, dependence of external forces on deformati-
on, in which it is currently recognized that the nonlinear effects play an important role and
must be taken into account by using geometrically nonlinear shell theories instead of the
linear theories. Therefore, much attention has been devoted to setting up various geometri-
cally nonlinear shell theories!!!'"1"%], and a vast number of numerical applications based on
these theories have proven their validity within the bounds given by the respective under-
lying assumptions.

In the following, both linear and nonlinear thin shell theories based on Kirchhoff-Love
assumptions are reviewed and discussed. This effort is not motivated by an inability of the
existing theories to solve the present problem, but rather by a desire to define and to
choose a theory that is characterized by simplicity, consistency, clarity and accuracy for
the stability analysis of anisotropic conical shells.
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1.2 General Kinematic Relations

According to the three dimensional elasticity theory, the strain components referred to an
arbitrary orthogonal coordinate system (0, 0y, 0;) can be written as''1?):

1. 2 1 1 2
€ =€ * ilen + (7e12+m3)2 + (7613—0‘)2) ]

1, 2 1 1
en = & *+ 5 len + (501-0y)" + (Gen+0)]
833 = C33 * l["323 + (lcm*‘mz)2 + (—l-eza“”l)zl
2 2 2
1.1)
1 1 1 1
€12 = €y + &3(5813-03) + ex(5€15+03) + (1370 (x5 +0))
2 2 2 2
€, = €, + € (le +0,) + € (..l_e —a))+(le +(n)(le -,)
13 = C13 * Enl5013+@0) * €55(5€1370; 5012+ 03) 52370,
1 1 1 1
€y = €33 + €x(=€x-0) + E35(=yy+®)) + (5€1,-03)(5€13+0)
2 2 2 2
Here the parameters e;; and @; are given by
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" H9a, HHJa, HH,oo,
d d
enzlav+ 1 H2w+ 1 9H,
H,da, H,H, do, H,H, Ja,
1 ow 1 oH, 1 oH,
633 = + u + v
H;da;  HH, oo, H,H, da,
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H
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3 1 9% 12)
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H,da, Hy' Hydo, H,
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1 ] d

20, = — [Z -9

o, - [ aaz (H,w) % HY)]
1 0

20, = -2 H
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1

20, = " —
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where the Lame coefficients H;, H,, and H; are

)

H, = ._2 L
1 \( ) (a) (ao('1

H, = (_)2 ( LA <_)2 -
N da, dot,

H, = LI ( Yy . 22y

A\ 00y da, 00y

To derive the theory of deformation of thin shells, one can use the coordinate system
shown in Figure 1.1. The coordinates &, &, and z form a triply orthogonal system.

Fig. 1.1 An arbitrary triply orthogonal coordinate system
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The positions of points on the middle surface of the shell are determined by the Gaussian
curvilinear coordinates o, and o, of the surface. The Lame coefficients corresponding to
this curvilinear system are denoted by A, and A,, and the principal radii of curvature by
R, and R,.

Thus the Lame coefficients of above triply orthogonal system are simplified as

H, = A(1+2
1 W Rl)

(1.4)

H, = Aj1+2)

R,
H -1
where A,, A,, R, and R, must satisfy the Gauss-Codazzi relations of surface theory:
3 Ay 1M
%a, R, R, doy
da, R, R, da,
d (13A2 , 0 (laAl =_A1A2
oo, A, do,  do, A, da, RR,

Substituting Eqs. (1.4) into Egs. (1.2), one obtains, with the help of Egs. (1.5), the
relations

1 1 du 1 %A w
ey = ( + + )
1.2 Ajd0; AA,da, R
1
0A
ey = 1 (l av+ 1 z"+_w_)
142 A, da, AA 00, Ry
1 .1 av 1 9A 1 .1 du 1 0A,
€5 = ( - u) + - v
L2 Ao AA, o, 122 A00,  AA, da,

1 R2
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€, = — + e (e - e
1z %z 1.2 Al oo, Rl) (1.6)
R,
. = ov 1 (1 ow v
% [z Ad, R
_ow
= T
2(1)1=-i+ 1 (L_Q.Y.V_—L)
dz .z Aydn, R,
R,
20, = ou 1 1 ow _ uy
* o [z Ado, T
1
oA oA
20, = l(lav_ 1 Ty - l(lau_ 1 24)
1.2 Ao AA; oo, 1.2 Ap00,  AA; duy
R, R,

Here u, v, w are displacements of an arbitrary point in the directions of o, a,, and z,
respectively.

Equations (1.1) and (1.6) form the general kinematic relations of thin shells which,
however, may be too complicated to be used directly for the solutions of some specific
shell problems. Nevertheless, they establish the foundations for the following simplificati-
ons which will lead to many practical and well-known linear and nonlinear shell theories.

1.3 Some Linear Thin Shell Theories

By summarizing certain aspects of the widely used linear thin shell theories based on
Love’s first approximation, and analyzing where the differences originate, one expects to
obtain better understanding of the nature of various nonlinear thin shell theories.

Love’s first approximation

Love suggested four assumptions for the derivation of the classical thin shell theory of
small displacement. They are
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- The thickness of the shell is small compared with the other dimensions, for
example, the smallest radius of curvature of the middle surface of the shell. This
defines what is meant by ‘thin shells’.

- Strains and displacements are sufficiently small, so that the quantities of second
and higher-order magnitudes in the strain-displacement relations may be neglected
in comparison with the first-order terms. This permits one to refer all calculations
to the original configuration of the shell, and ensures that the differential equations
will be linear.

- The transverse normal stress is small compared with the other normal stress

components, and may be neglected.

- Normals to the undeformed middle surface remain straight and normal to the
deformed middle surface and suffer no extension.

More explanations of these assumptions can be found in Refs. [109,110].
General linear kinematic relations - the relations of Fliigge and Novozhilov
According to the second assumption of Love’s first approximation, the linear kinematic

relations can be obtained by neglecting all the nonlinear terms in Egs. (1.1) under the
additional restriction that the rotations of material fibers be also small everywhere. They

are given as
nh = °n
€y = €
e, =€

12 12

(1.7)

€y = clz
€y, = e2z
ell = eZZ

where e;; can be found in Egs. (1.6).
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Further, to satisfy the Kirchhoff hypothesis, the class of displacements is restricted to the
following linear relations

u(oy, 0y, z) = 0oy, o) + zx(y, o)

v(Qy, 0, 2) = Vo, o) + Zy(ey, 0,) (1.8)

w(aly a29 Z) = W(al’ az)

where i, ¥ and Ware the components of displacements at the middle surface in the o, 0,
and normal directions, respectively; ¥ and \ are the rotations of the normal to the middle
surface during deformation about the ¢, and o, axes, respectively, i.e.,

ou(o,, a.,, z)

oz (1.9)

_ ov(e,, @y, 2)
dz

Substituting Egs. (1.8) into €,,, &,,, and €,, and letting €, = 0, &, = 0, ¢, = 0, one

obtains
i 1 ow
*TR Ao
(1.10)
\ 1 oW
VIR TR,

Thus the behavior of a thin shell can be described with sufficient accuracy by the behavior
of the shell middle surface.

Substituting Egs. (1.8) into Egs. (1.7a, b, c¢) yields

&y = &y + 2Xp0)

(1+-2)
R1



20

1
1+2)
R,

(€5 + 2Xp) (1.11)

1

z z
a +E)(1 +=)

where &, &,, and &,, are the normal and shear strains in the middle surface (z = 0)

2
[(1-R?Rz)ta12 + z(1+2;1 +%)x,2]

"

€2

given by

PO U B A .
A%, AA,0a, R,

s~ A - N
£y = i 2, 1 N L v (1.12)
AA, 00, A,d0; R,
Ad

a A ~
&y 29 (9

12 ° 5 —\—
Ayoa, A" A du, A,

and %;, and ¥,, are the mid-surface changes in curvature and ), is the mid-surface twist,
given by

o = 1 9 . 1 9A
1" A%, AA,d0,
Xy = LY, 1 %A (1.13)
A,do, A, do,
g, =Md xy, M2 oy 1 1A v
N 200, A Ado A R A0m, AA; o
1,1 99 & 9A

)

R, A, oo, ) AA, do,

Equations (1.11) are the general linear kinematic relations used by Fliigge, Novozhilov and
others.
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Relations of Love and Timoshenko

If in Eqgs. (1.11) the terms z/R,, z/R, and their products are neglected as compared to
unity, one obtains

€1 = & + ZAn

€ = € + Uy (1.14)
€2 = & + 2y

where &; and y;; have the forms given by Egs. (1.12) and (1.13).

Equations (1.14) are the ones used by Love and Timoshenko.

Relations of Reissner and Naghdi

If in Eqgs. (1.7) terms like z/R, and z/R, are neglected as compared with unity, one obtains

_ 1 odu 1 04
L W T W W
1 9% 1932 00,

w
+ —
Rl

1 ov 1 0A,
+

w
€, = w2 (1.15)
A, 90, AA,9a; R,
oA dA
elzz(l ov 1 ay + (L du 1 2v)
A da, A, do, A,da, AA; do,

Then, substituting Eqs. (1.8) into Egs. (1.15), one obtains the total strains expressed by the
mid-surface parameters, which differ from Eqgs. (1.14) only in that ,, is given by

= 18y, 2D v, (1.16)
A, da, A, Al do, A,

~

These are the kinematic relations used by Reissner and Naghdi.
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Relations of Donnell and Mushtari

If in Egs. (1.14), the &; are still given by Eqs. (1.12), while in the expressions for X
given by Egs. (1.13) the tangential displacements and their derivatives are neglected, then
the Donnell and Mushtari kinematic relations are obtained. They are

g oo L (10%, 1 %A aw
11 ~ \
A, da, A, do, AAl do, oo,
1 9,1 3w 1 9A; 9w
= - ( - 1.17
X2 A, dua, A, aaz) AZA, do, do, 1
xn=_A28(la€v Ay 9 1 3w

Ajda; A2 o0, A, 00, A2 00,
Relations of Vlasov

Noticing that for a thin shell Z/R; (i = 1, 2) is always less than unity, 1/(1+z/R;) can be
expanded into a geometric series; i.e.,

1 _ Sy, i-12

Q1 +i) n=0 B

(1.18)

Substituting Eqs. (1.8) and (1.18) into Eqgs. (1.7a,b,c), and neglecting the second and
higher-order terms of z, one obtains kinematic relations similar to Eqgs. (1.14) except that

the ones for x;; become
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N ~ DA -
xu=1ax+\y3A1__1_(1au+ ' LA
Ajda, AA,da, R, Adxy, AAda, R
yp= L2V 1 M 1L 1® 4 Oh 4, (119)
A,da, AA,0dn, R, Ada, AA,da R,
1 1 A9 @ A 9
R R A R A,
Ao 1 ow, A9 1 aw

" A, oa, “AZ0a, A, da, A2 0

whereas the & are the same as those given by Egs. (1.12).

3]

Relations of Sanders

Sanders’ kinematic relations can be obtained by adding the correction factor

(1 1, 1 (BAZ\‘/ aAlﬁ)
R, R, 2AA, da, da,

to the y;, expression of Reissner et al.. This addition is needed in order to eliminate the

non-zero ;, arising from rigid body rotation.

Modified Donnell relations

In Ref. [119] modified Donnell-type relations are suggested by neglecting the tangential

displacements and their derivatives in the mid-surface changes in curvature and twist from

Vlasov’s theory. Thus

gy = - L9 (1% 1 9A; 9w
A, da, A, du, A,AZ 90, da,
tyy = - L3 (L% 1 9A; oW
A, da, A, da, A12A2 do; doy,

~
3

1
o2
1

1

b2

(1.20)

~

2
2

where &; and y;, are the same as those of Donnell’s relations.
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Discussions

- Because of the linearization of Egs. (1.1), it is possible to express Kirchhoff
assumptions by Egs. (1.8).

- In all the results discussed above, there are two types of expressions representing
the total strains. They are summarized in Table 1.1.

Table 1.1 Total strains at any point of a shell

Theory €y 4 Ep €12
Fligge, | A 1 2% | .
. (& + 2X19) [(- ) &,
Novozhilov a +i_) a+ z )1+ z ) R|R,
1 1 2
1 (85 + ZXyp) +2z(1+ z +._Z_)x12]
(1+2) R, 2R,

Love, Timoshenko,
Reissner, Naghdi, &, + 2y élz + 2y
Sanders, Vlasov, &, + 71
Donnell, Mushtari, 2
Modified Donnell

It can easily be seen that the expressions for the mid-surface strains éij are the
same according to all the theories presented above. They are given by Egs. (1.12).

- The changes in curvature and twist of the mid-surface are summarized in Tables
1.2 and 1.3 respectively.
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Table 1.2 Changes in curvature of the mid-surface

Theory X X22

Fliigge,

Novozhilov,

Love, 13x+ y 0A la\p+ y 9A;

Timoshenko, | A, do;  AjA, da, Aydo, AA, do

Reissner,

Naghdi,

Sanders

Viasov 1o ., v 0A, 1oy . x 0A,
A oo,  AA,da, A,da, AA, 00,

10 G 0A, LW
A, 00, AA 00 K

+ =) - = )

1.1 1
— + —
R, A doy, AA, 00, R R,

Donnell, 1 d (1 aﬁ/) 1 d (1 a\TV)
Mushtari A, do; A do A, do, A,oda,
1 Mo 1 o
AA; 90, 90, AlA, day; doy,
Modified 1o ,1 d%w 19 ,1 oW
— e __) IR (A
Donnell A, aa] A aal A, aa2 A, aa2
R 1 %w 1o
AAZ 00, 00, R? AZA, 90, 00, R’
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Table 1.3 Change in twist of the mid-surface

Theory X12
Fliigge, A (x) 23 v, Lan ¢ s,
Novozhilov, A, aaz . o, A, R, Ao, AA,doy
Timoshenko,
5 & 0A

Love N i( 1 o¢ i 0A

R, Ajox; AA, du,
Rei : A A
clssnet Mo xy, D29 (v,
Naghdi A, do, A, A, da, A,
VI A i
oY (LDt (L - 20 ()

1 1
R R

A9 1 aw, A3 13w

A aal AZde," A da, o200,

Sanders A9

1 1 1. 0A v JdAjl

Mushtari,
Donnell, A, 9 (1 ow Al g 1 ow
Modified A, aa, A2 oo, A, aa2 A2 da,
Donnell

It is found that there is a partial agreement among the different theories for the
expressions of the mid-surface curvature changes X;;, X, The exceptions are the
Donnell-type expressions which differ from others because of neglecting terms
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containing the tangential displacements & and v, and Vlasov’s expressions differ
from the others because of replacing 1/(1+z/R;,) by its series expansion in the
derivation.

However, there is a widespread disagreement concerning the proper form for the
mid-surface change in twist X;,. The Donnell-type expression differs from the
others for the same reasons given in the discussion of ¥;; and ¥,,. The Reissner-
Naghdi expression differs from the others because of neglecting z/R; compared
with unity at an earlier stage in the derivation than the Fliigge et al.’s derivation.
Sanders’ expression is derived through modifying Reissner-Naghdi formula by
adding a term to eliminate the non-zero X, arising from rigid body rotation. All
these theories except those of Donnell and Reissner-Naghdi give no deformation
due to rigid body motion.

All the above theories are based on Love’s first approximation. But in many cases,
these assumptions may not yield satisfactory results. In such cases some of them
must be discarded. For example, to broaden the scope of the theory by including
the effects of transverse normal and shear deformations, the assumptions 3 and 4
must be discarded. The thin shell theories without Love’s first approximation will
not be discussed here despite their importance for certain applications. Neverthe-
less, all the theories discussed before are linear and they can only be applied to
some particular class of shell problems, while the nonlinear theories, which
embrace all elastic deformation problems, will be discussed below.

Some Nonlinear Thin Shell Theories

Up to now, the search for appropriate geometrically nonlinear small strain Kirchhoff-Love

type theories, which are able to describe the large deflection and stability behavior of thin

elastic shells, has already led to many successful formulations. Some of them are

presented in Refs. (111-119]. In the following, the Novozhilov, Sanders and Donnell-type

nonlinear thin shell theories are rederived from the three dimensional elasticity formulati-

on, and their differences are reviewed. As mentioned earlier, this effort is not motivated

by an inability of the existing theories to solve the present problem, but rather by a desire

to choose a theory that is characterized by simplicity, consistency, clarity and accuracy for

the present investigation.
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Kirchhoff assumptions

According to Egs. (1.1) and (1.6), the Kirchhoff hypothesis &, = &, = €, = 0 can be

formulated analytically as follows;

du 1 1 ow u 1 1 ou 1 94
elz=a_+_(__-__+ 3 +AAa v +
z .z A,da;, R, 1+.2 A, doy, 1A, do,
R, R,
L L (1B 1 9% v 1 13w uydw
1+_z_\A2 do, AA,do; oz 1.2 Ajda;, R, oz
2 R,
_ov 1 1 ow v 1 1 ov 1 0A,
' T R R’ ‘Ao, | AA 0,
z  ,% Ajda, Ry 142 A0, 1932 904
2
+ L. gn _ _1 asz).a_u + .__1 (L..al. - _V_)_aﬁ =
122 Agdo,  AAda 0z |z Ajdo, R, oz
R,
ow 1 _.duy  ,dv, 0w,
= — pRinis — [, =0
== " 2[(82) +(Bz) +(az)]

Meanwhile one can expand the displacement components into power series;

2 1 0

u = u(oy, &, 0) + (a—:)oz . 5(_82_‘;)0 22+ ..
0 1,0%

v = v(oy, oy, 0) + (_a%)oz + _2.(5_2_5)0 2%+ ..
d 1,9

w = w(a,, o, 0) + (a_vzv)oz + _2_(_2.).2_‘;)0 2?2+ ..

w)au

%

w, oV

R, %

(1.21)

(1.22)
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Retaining in the series only the first two terms and introducing the notations

uoy, 0y, 0) =8, viay, a, 0) =9, w(o, a, 0) =W

(1.23)
du, _ ov, _ ow, _
(E)° =% (52)0 v, (E)" =0
one obtains the following expressions for the displacements
u = (o, o) + zx(o,, o)
v = (o, o) + Zy(a, O,) (1.24)
w = w(a, o) + zd(o, )

Notice that Eq. (1.24c) differs from Eq. (1.8c) because of using the nonlinear relations of
Eqgs. (1.21).

Substituting Eqs. (1.24) into Egs. (1.21) and ordering by powers of z, one obtains five

equations, two of them, however, are implied by one of the other three. Hence, just three

equations are independent, namely

xz + 1|12+(1+¢)2 =1

A 3 A
(1) (=¥ - Dy, (L2 L gy
A do, R A,da, AA, do,
(1.25)
N R 1% Fyx=0
Alda,  AA, da, R,

1% ¢ 1 1 9A;
1+g) (L% _ ¥ _
EARAY- v~ S Y Wl w v
N a "
+ (1 + 1 aV 1 2ﬁ l)w = O
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Simultaneous solution of the last two equations yields

X = B(14g)
Os5 (1.26)
83,
V= —(1+¢)
033
where
Oy = - &5(1+8p) + €38y,
Oy = - &x(1+8;y) + &38y a.2n
O3 = (14+€;))(1+€5) - &8
with
s o 1 00 1 0A W
1A %a, AAO0, R
o o 1 1 0A W
2 A%, AA0n; R,
6 = 1 o 1 0A,
21 = -
A, da, AA,d0 (1.28)
e - 1o% 1
-
s _ 130 1 9

€., =
2 K90, AA,dq

s . 10w
® A%,

Substituting Egs. (1.26) into the first of Egs. (1.25), one obtains

(1.29)
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Here it must be mentioned that{112

Jo& + v oy =LY (1.30)
1+ E;

where V is the relative change in volume and E; is the relative elongation of a line
element of the shell after the deformation.

Substitution in the above equation of &; for a;, which corresponds to the replacement of
u, v, w by i, ¥, W, is equivalent to considering V and E; on the mid-surface of the
shell. Hence, if the shears and elongations are neglected in comparison with unity, one
obtains

2 2 2 (1.31)
‘/aal + 03 + 033 =1
Thus
O =Gy -1 =8 + &, + &8, - &8, (1.32)
Substituting Eq. (1.32) into Eqs. (1.26), one obtains
X = - €,3(1+8,,) + €5,

13 22 23%12 (1.33)

Vo= - (148 + €58y

Equations (1.32), (1.33) and (1.24) express the displacements of an arbitrary point of the
shell in terms of the displacements of the corresponding point of the mid-surface, which
will serve as the basis for the following derivations.
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Relations of Novozhilov
Substituting Egs. (1.4) and (1.5) into Egs. (1.1), one obtains

JA
l{lau+ 1 1v+w)

e = ¢ —
"z Ajda, AAdx, R
Rl
A
L1 1t 1 31V+1)2
2.2y Aox  AAOm, X
Rl
dA
+(18v_ 1 1“)2+(1aw__l1-)2]
A/ da, AA, da, A da, R,
1 ov 1 9A, w

322 = ( 1 + U+ e—
15,2 Az 00y A da, R,

1 1 1 du 1 0A, ,
+ [( - v
2 (1+iz_)2 A,d0, AA,da,

2

1 ov L %, My, (LOw Yy

+ +
(A2 da, AA, du R, A,d0, R,

1, 1av _ 1 9A 1 13 1 9
1+.2 A0o  AA; da, 1.2 A0, AA, 0o

R,

gy =

. 1 (Lo, 1 9A

a+2ya+2)
Rl RZ

v+ w)(l ou 1 0A,
Ajda,  AA,da, R, A,da, AA,;dx

1 ov 1 aAln)(l v 1 9A, 2

+ ( - + —_
Ajda, AA,du, A,ox, AA,dq R,

u)(law v)]

+(__1_aw—_
Ajda, Ry A0, R,

(1.34)



33

In the case of thin shells, one can set 1+z/R; = 1. Further substituting Eqs. (1.24) into Egs.
(1.34), one obtains the Novozhilov nonlinear kinematic relations as

g 2
€y = €y +ZYyy *ZPyy

=&y + 2y + 2Py (1.35)

[
S
[

_ s 2
€12 * ZYyy Y ZP2

[\
—
N

I

where éij are the elongations and shear of the mid-surface of the shell. They are given by

R A2 a2
[€) + €&, + &3]

n 1. .2 ~2 ) (1.36)
€ = Cp + 5[521 + & + &3]

€12 = € ¥ € + Ci€y + Cfyp * €38y

The parameters ¥y, X,z and ;5 which characterize the variations of the curvature and the
twist of the mid-surface induced by the deformation, are given by

X = (1+&)kyy + €5k, + &3k,

Xy = (L+8ky, + Exky + E5kyg (1.37)

X1z = Ky (1+8))) + kyp(14€55) + ki€ + kypfyy + kys€yy + kyglyy

where
1 oy .V 0A,
A, da,  AA, da,

ky, = L v - i +
A,dn, AA,da,

k) = 1 %X - Y aA2
A,odn, AA, da,

-

7le




(1.38)

=

0
I
—
>4
tad

(23

>

The above Novozhilov theory is valid for the problems with small strains and arbitrary
rotations. The presence of the parameters p;;, P, and Py, in Egs. (1.35) indicates that the
linear law of variation of displacements through the thickness of the shell can result in a
nonlinear variation in the strain components. However, for small elongations and shears
Pi» Py and Py, are always negligible. Thus, it is not necessary to present the detailed

expressions for p;;, Py and Py,
Relations of Sanders

Sanders’ nonlinear kinematic relations can be obtained by neglecting some second-order
terms from Egs. (1.36), and also retaining only the linear terms of Eqgs. (1.37). They are

8 =&, + 162
= &5
1 11 2 1

a ” 1. (1.39)
€y = Cpp t 5323

812 = &5 + €y + €58

and

o= L& v 9

1A%, AA,0q,

o = 1 9y . X dA, (1.40)
2 A, 90,
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(1.41)

The above Sanders’ relations corresponds to small strains, moderate rotations about in-
plane axes and small rotation about the normal.

Relations of Donnell

Equations (1.39)-(1.41) can be further simplified so as to yield the so-called Donnell-type
equations for quasi-shallow shells. The simplifications are based on the consideration that
the terms containing & and ¥ in Egs. (1.41) are of negligible influence for shell segments
that are almost flat and for shells whose displacement components in the deformed
configuration are rapidly varying functions of the shell coordinates. Neglecting 1 and V in
Egs. (1.41) yields

2 1 ow
= - € = -
' v (1.42)
a 1 ow
= - £ = v e
M 2 A, da,

Substituting Egs. (1.42) into Eqgs. (1.39)-(1.41) yields the widely used expressions for the
quasi-shallow shells. The nonlinear Donnell-type kinematic relations are perhaps the most
popular theory for many engineering analysis of shells. Most of the published results for
the stability analysis of conical shells are based on the Donnell-type theory. Many
previous results obtained by using this theory and the comparisons with those from other

theories! 120

show that the Donnell theory can provide sufficiently accurate results for
many engineering applications. The main reason for the wide employment of the Donnell-
type theory is that a stress function can be introduced, which leads to a reduction in the
number of dependent variables in the analysis. Thus high computational efficiency can be
achieved. However, one must keep in mind that the Donnell-type theory is not accurate

enough when applied to shells which buckle in an almost inextensional mode.
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1.5 Discussions and Conclusion

In this chapter, both the linear and the nonlinear thin shell theories based on Kirchhoff-
Love assumptions are reviewed and discussed. As mentioned earlier, this effort is not
motivated by an inability of the existing theories to solve the present problem, but rather
by a desire to choose and to define a theory that is characterized by simplicity, consis-
tency, clarity and accuracy for the stability analysis of anisotropic conical shells.

As suggested by Naghdil"*® and Bushnell'™®, the differences attributable to retention of
z/R; are of little importance for most engineering problems, and it is best to choose the
simplest theory in this regard.

All the simplifications and assumptions used in the derivation of the kinematic relations
should be kept consistent with those which will be used in the derivation of constitutive

relations.

For the nonlinear theories of Sanders and Donnell, the nonlinear terms are only retained in
the strain-displacement relations, but not in the curvature-displacement relations. The
physical explanation for this simplification is given by Bushnelll®!} as follows: If a thin
shell deflects a large amount, let us say with an amplitude many times the thickness, the
strains are usually small even though the deflections are rather large. Hence, the linear
terms in the strain-displacement relations will tend to cancel each other, and the nonlinear
terms will become significant for much smaller displacements than they would have if the
linear terms had not been canceled. The linear terms in the expressions for the change in
curvature, however, do not tend to cancel, and the wall rotations must be large indeed
before nonlinear terms have to be included in these expressions.

Many previous results obtained by using the nonlinear Donnell-type theory and the
comparisons with those from other theories!®” show that the Donnell theory can yield
sufficiently accurate results for many engineering applications, including the case of
conical shells. Besides, compared with other nonlinear theories, one can see that the
Donnell theory is the simplest one. Therefore, it is decided to use the nonlinear Donnell-
type theory in the present stability analysis of anisotropic conical shells.
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Chapter 2
Constitutive Relations

2.1 Introduction

In recent years, with the rapid development of various types of advanced composite

(1221251 there has been a

materials and their corresponding manufacturing techniques
continuous increase of applications of composite materials for different shell structures.
Often encountered among these applications are various kinds of conical shells with
different wall constructions. Whereas it is known that the successful employment of
composite materials depends on many factors, two of them, the manufacturing process and
the method of analysis can be pinpointed as the principal ones. However, while the impor-
tance of fabrication process and method of analysis is well recognized, few verifications
can be found in the open literature for correlations between the specific manufacturing
process and the corresponding method of analysis. In other words, many analyses were
based on rather rough modelling and simplifications, some of them have even been perfor-
med on the idealized structures which cannot be practically realized. As an example, most
of the published theoretical results for the stability analysis of laminated conical shells are
based on the simplification of using classical lamination theory without considering the
specific techniques by which the conical shells are built®). The reasons for this inconsis-
tency between manufacturing processes and methods of analysis are mainly due to the
difficulties of deriving a theoretical model for certain manufacturing processes and the

indifference of some theoretical analyses as to the real manufacturing processes.
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In an effort of trying to correlate the specific manufacturing processes with appropriate
methods of analysis and to obtain more accurate modelling and analysis results for real
structures, in the following the constitutive relations of conical shells with different wall
constructions are reviewed, derived and discussed for some commonly used manufacturing
processes”!,

2.2 Orthotropic Conical Shells

Among various kinds of anisotropic materials and structures, the cases with orthotropic
behavior take a special place for both manufacturing processes and theoretical analysis.
The literature connected with the orthotropic plates and cylindrical shells is enormous and
will not be cited here. Some results for the behavior of ‘orthotropic’ conical shells have
also been published, see Serpico®), Singer® 787, Dixon!®), Schiffner®], Dumir et al.Po
Librescul’?1%7), Weingarten and Seide!”! and more recently Tong, Tabarrok and Wang[93].
Despite the continuous interest for the analysis of ‘orthotropic’ conical shells, it is found
that there are some gaps between the theoretical analysis and the possible manufacturing
processes. Some basic questions, such as, "what is an orthotropic conical shell" or "how
could one build it" are still not clearly answered. In the following some ‘orthotropic’
constitutive relations of conical shells are presented, and the attention is addressed to the

relations of these constitutive equations with the possible fabrication processes in practice.
2.2.1 Classical definition of orthotropic conical shells

Before considering the orthotropic constitutive relations of conical shells, let us first recall
the definitions for the orthotropic cylindrical shells. Generally speaking, there exist two
kinds of orthotropic cylindrical shells. One of them is the classical orthotropic cylindrical
shell, its constitutive equations!'®'%! are formulated as Egs. (2.1). Another is called
modified orthotropic cylindrical shell, its constitutive equations®!®! are given as Egs.
2.2).
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c, C, 0 0 0 o
C,Cp 0 0 0 0
0 0C, 0 0 0
0 0 0 CpCpy O
0 0 0 CyCy 0
0 0 0 0 0Cy
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resultants are shown in Figures 2.1 and 2.2.

P

y

Notation and sign convention of cylindrical shell
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2.n

(2.2)

where the notation and sign convention of the cylindrical shell and its force and moment
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My ™ Myx
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Fig. 22 Definition of stress and moment resultants of cylindrical shell

It can be seen that the constitutive relations of modified onhotrdpic cylindrical shells
differ from the classical ones by including the coupling terms between extensional forces
and curvature change and between bending moments and extensional strain in its formula-
tion. Thus, the modified orthotropic cylindrical shells have more general meanings than
the classical one. One must emphasize, however, that in Egs. (2.1)-(2.2) the coefficients

C,; are usually assumed to be constants.

The classical orthotropic cylindrical shells can be built by using some kind of single layer
homogenous orthotropic materials, or by using some laminate exactly symmetric about its
mid-surface!'), while the modified orthotropic cylindrical shells cover cylindrical sheets
stiffened by closely-spaced circular rings or longitudinal stringers, fiber-reinforced shells,
corrugated-skin constructions, etc.'”), That is to say, different manufacturing processes
lead to different formulations of the constitutive relations. Therefore, it is necessary to
know the specific manufacturing process in order to choose the appropriate constitutive
relations.

For conical shells the situations are much more complicated. From a literature study it was
found that in most of the theoretical analyses of orthotropic conical shells little attention
has been paid to the relation between the modelling of constitutive relations and the real
manufacturing processes used to build the shells. There is even no clear definition for the

-
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‘orthotropic’ constitutive relations of conical shells which are properly related to certain
manufacturing processes in practice. The constitutive equations(®782126-1281 of the classical
orthotropic conical shells are given as Eqgs. (2.3). Here again, the C; coefficients are

assumed to be constants.

The corresponding notation and sign convention, and the stress and moment resultants are

shown in Figures 2.3 and 2.4.

[ N ] e, c, 0 0 0 ofe,]
N, C,Cp 0 0 0 0fle,
N, 0 0C, 0 0 0|y,
M, | |0 0 0C,Cs 0lx
M, 0 0 0 Cps Cs5 01i%

Mo Men] [0 0 0 0 0 Cy |k

Ry

ZNTh

Fig. 23 Notation and sign convention of a conical shell

(2.3)
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Fig. 24 Definition of stress and moment resultants of a conical shell
2.2.2 Modifications of the constitutive relations of classical orthotropic conical shells

Equations (2.3) are employed by nearly all researchers for the analysis of orthotropic
conical shells. In some of the analyses the orthotropic character of the shell was described
by only distinguishing between Young’s modulus and Poisson’s ratio in two mutuaily
orthogonal directions without considering the practical possibilities to build the
shells"6%3] while in other analyses the orthotropic character was described by some
greatly simplified modelling of stiffeners!®-%), Hence, one can conclude that the constituti-
ve relations of classical orthotropic conical shells expressed by Egs. (2.3) have only acade-
mic value, which can hardly be achieved in the real manufacturing environment. Therefo-
re, it is imperative to modify the above unrealistic orthotropic constitutive relations and to
define an alternative one which is closer to the manufacturing processes used.

The first modification was suggested by Baruch, Singer and Harari(® for ring and stringer
stiffened isotropic conical shells. Later, it was rewritten in the matrix form by Baruch,
Arbocz and Zhang(® as
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[ N | [a, A, 0B, 0 o]fe,]
Ng Ap Ap 0 0 By 0jle
No | |00 Ag 0 0 0y, 24
M, B, 0 0 Dy, Dy, Of|x
M, 0 By 0 Dy Dy 0%,
MoMR2| [0 0 0 0 0 Dglx,]
where
A, = Eh(1-v®) + (s,/5) (E,A /b)) = A (5)
Ay, = A, = VEh/(1-v?)
Ay = EW(1-v) + (5/5)° (B A a) = Ay(s)
Ag = Eh2(1+v)
By = (5/5) E,Ae)/by) = Byy(s) @2.5)
By, = (6/5))° (BrAeya)) = By(s)
Dj; = D + (8,/9) (Ejlgy/by) = Dyy(s)
Dj; = Dy =vD
D,, = D + (s/s)® (E,Ipy/a;) = Dyls)
Dy, = D(1-v)/2 + (1/8)[(s,/) (G, I /b;) + (5/5)° (G,1,/a,)] = Dy(s)

where A, and A, are the cross-sectional areas of the stringers and the rings respectively;
a, is the distance between the rings at s;; b, is the distance between the stringers at s,; €;
is the distance of the centroid of the stringer cross section from the shell mid-surface; ¢, is
the distance of the centroid of the ring cross section from the shell mid-surface. E, E;, and
E, are the moduli of elasticity of the sheet and the stiffeners respectively; G, and G, are
the shear moduli of the stiffeners and h is the thickness of the sheet. I; and I, are the
moments of inertia of stringer and ring cross sections, respectively, about the line of
reference; I; and I, are the torsion constants of the stiffener-cross sections; v is the
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Poisson’s ratio of the sheet; and 8 is a parameter introduced in Ref. [82] for optimization
purposes (see also Fig. 2.5).

The description for the stiffeners is shown in Figure 2.5.

detail of rings detail of stringers

Fig. 25 Description of stiffeners on the surface of a conical shell

Following the definition for the modified orthotropic cylindrical shell, the material
properties of the stiffened isotropic conical shells with constitutive relations given by
Equations (2.4) are also orthotropic. Considering the fact that the stiffness coefficients of
the stiffened conical shell are functions of the longitudinal coordinate s, which is not
necessarily the case for stiffened cylindrical shells, one can classify the constitutive
relations which have the form similar to Eqgs. (2.2), but with variable stiffness coefficients,
as quasi-orthotropic. However, if the shell is short or the semi-vertex angle is small, the
variable stiffness coefficients can be taken as constants, approximately.

Further modification for the orthotropic constitutive relations of conical shells is presented
by Baruch, Arbocz and Zhang!®! via studying the constitutive relations of laminated
conical shells made by filament winding. According to their results, the additions to the
stiffness coefficients [A], [B] and [D] due to the stiffeners of a non-traditionally stiffened
conical shell can be written as
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[A], = 2a,],
[B], = 2b,,J, (2.6)

[D], = 2d,,J, + 2dgl,

where

ay; = EA D

bll = EsrAstc/b

dll = Estlost/b
des = (1/4)Gyl, /b

2.7

and G is the shear modulus of elasticity of the stiffener; A is the cross-section area of
the stiffener; e is the distance of the centroid of the stiffener cross-section from the surface
of reference; I is the moment of inertia of the stiffener cross-section about the reference
line; I, is the torsion constant of the stiffener cross-section; b is the distance between the
stiffeners at s.

The balanced matrices J, and L, are given by
c* ¢ o0

I, = |C?%? sS4 0
0 0 C%?

(2.8)
4C%s? - 4C2%s? 0
L, = [-4C?s? 4C2%s? 0
0 0 (C2-8%?
where
C =
cosP 29

S = sinf
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Notice that if the inclination angle P of the stiffener is a function of the coordinate s, then
the stiffness coefficients of a non-traditionally stiffened conical shells are also functions of
the coordinate s. Therefore, the corresponding constitutive equations of this kind of
structure are also quasi-orthotropic. However, as suggested by Ref. [84], if a;;, by, dyy
and P are made to be constants, a classical orthotropic behavior can be expected.

Based on the same idea of using non-traditional stiffeners, the orthotropic conical shells
can also be built in a thermoplastic composite by non-geodetic filament winding. The fila-
ment winding method and its application for conical shells will be discussed in the next
section.

Van Rijn suggested another method, called prepreg cone segment method, for the
manufacturing of an orthotropic conical shelll™. His basic idea consists of assembling a
cone out of several prepreg segments. The segments with variable fibre angles are
produced and placed on the mandrel with a small overlap at the joints. The detailed
description for the manufacturing process, productional and computational remarks related
to this method are given in Ref. [130].

2.2.3 Discussions and conclusion

To summarize briefly, the constitutive relations of classical orthotropic conical shells given
by Egs. (2.3) have mainly academic value. Till now, they can hardly be realized by
practical manufacturing processes. The quasi-orthotropic constitutive relations given by
Egs. (2.4) and Egs. (2.6), however, are more representative of the corresponding manufac-
turing processes. The stiffness coefficients in Egs. (2.4) and Egs. (2.6) can be built as
constants in real manufacturing processes by employing some special techniques. Thus the
quasi-orthotropic constitutive equations of conical shells become equivalent with those of
modified orthotropic cylindrical shells.

2.3 Laminated Conical Shells Made by Filament Winding

The rapid development and wide applications of composite materials have generated a
number of possible fabrication processes. A summary of the existing fabrication techni-
ques can be found in Refs. [3,124,125]. Among these fabrication processes filament
winding offers some distinct advantages over other processes. From practical considerati-
ons the primary advantages arel'?*131 Jow cost, highly repetitive nature of fiber place-
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ment, capable of using continuous fibers over a whole component area, suitable also for
large structures and automated production and the possibility for using high fiber volume.
What is more, filament winding provides possibility and flexibility for optimal structural
design upon which the successful implementation of a composite material in a specific
structural application is often hinged. From theoretical point of view, the analysis and
conclusions for laminated conical shells made by filament winding are also valid for the
laminated conical shells made by other continuous fiber reinforcement processes. Therefo-
re, in the following attention is focused on the modelling of constitutive relations of
laminated conical shells made by filament winding.

2.3.1 Filament winding processes and winding patterns

Filament winding is a reinforced plastic process that employs a series of continuous resin
impregnated fibers applied to a rotating mandrel in a predetermined geometrical relation-
ship under controlled tension. Classical filament winding applies a series of reinforce-
ments, roving, drawn through a resin bath mounted on a traversing carriage. While the
mandrel rotates about its central axis, the carriage traverses a number of circuits from end
to end of the mandrel. The desired wall thickness is built up on the mandrel. The
composite is then cured on the mandrel, and at the end of the cure cycle, the mandrel is
extracted from the wound product!™®2. Since it is possible to align the reinforcement along
the direction of high stress, the strength of filaments can be utilized in an efficient manner.
Besides, filament winding offers also a wide variety of materials available to the design
engineers. The simplest form of filament winding is shown in Figure 2.6, the typical
manufacturing flow diagram for filament winding is shown in Figure 2.7 and the possible
winding patterns are summarized in Figure 2.8.

In Figure 2.8 V, is the volume fraction of the matrix, V is the volume fraction of the
fiber, t is the wall thickness of the shell at s, B is the winding angle at s, n is the number
of fibers in one cross-section of the shell.
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Fig. 2.7 Typical manufacturing flow diagram for filament winding!'?!
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From manufacturing considerations the state of art of the filament winding is such that
among these possible winding patterns, geodetic winding is the most favorable onel133-136],
This is due to the fact that the fiber slippage can be automatically prevented if the fibers
are wound along the geodetic lines. However, with the development of filament winding
techniques and advanced winding machines, other non-geodetic pattems are also becoming
possible!37144] 55 as to meet the need for structural optimization. The equations describing
the different winding patterns and the fiber positions on the surface of the conical shell

have been derived in Ref. [84].
2.3.2 Variable wall thickness and modelling of the mandrel

Unlike the case of filament-wound cylindrical shells, where most fabrication processes can
result in nominally uniform wall thickness and constant stiffness properties, for conical
shells the opposite is true. Unless special techniques are employed, the wall thickness and
the stiffness properties of the filament-wound conical shells will depend on the longitu-
dinal coordinate s®®431%6] In the following the thickness of filament-wound conical shells
will be formulated with respect to the general winding pattern, while the change of
winding angles corresponding to different winding patterns has already been derived

systematically by Baruch, Arbocz and Zhang[s‘”.

Variable wall thickness
From Figure 2.9 one can see that
cosp = a/al(ﬁ) (2.10)

nal(ﬁ) = 2R YT 2.11)

where a is the cross-sectional area of an undeformed fiber, a, is the projection of area a in
the circumferential direction at s, B is the initial winding angle at s = s;, R, is the average
radius at s = s;, t; is the wall thickness at s = s;, and n is the number of fibers in one

cross-section of the shell.

For any cross-section of a conical shell at s one has
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na,(B) = 2Rtn (2.12)

where B is the winding angle at s, R is the average radius at s, t is the wall thickness at s.

In the winding process it is assumed that every fiber brings with itself the same amount of
matrix along the fiber direction. This means that V_/V; and the apparent moduli of the
lamina are constants at any cross-section of the shell, while the thickness is variable. Thus
one can further obtain

t = s, 1, cosp/ (s cosp) (2.13)

Equation (2.13) is suitable for any winding pattern except for ring-type winding.

—_—y

)
Z\ ’

7

Y

Fig. 2.9 A fiber wound on the surface of conical shell

Equation (2.13) can be rewritten as
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=49, (2.14)

where the thickness variation factor @, is given by

D, =5 cosP /scosp 2.15)

It is known that for geodetic winding the variable winding angle is given by

B = Arcsin(slsinﬁ/s) (2.16)

Substituting Eq. (2.16) into Eq. (2.15) yields the thickness variation factor for geodetic
winding as

®, = s,cosBAfs? - (5,5inB)? (2.17)

which is shown in Figure 2.10 for given initial winding angle [-3 and s,/s ratios.

Fig 2.10 Thickness variation factor for geodetic winding
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It can be seen that employing the geodetic winding one can expect a dramatic thickness
change along the longitudinal direction of the conical shell for certain initial winding
angles and geometric parameters. For other winding patterns except for the ring-type
winding, thickness variation can also be expected, and the corresponding thickness
variation factors can be obtained by substituting the corresponding f(s) function into
Equation (2.15).

Notice that with the following 3 assumptions

- the mandrel is specially designed as to give a conical-type mid-surface for the
wanted conical shell,

- s is measured along the mid-surface of the cone, and the influence of the changing
thickness on coordinate s is neglected,

- each layer follows the same formula of thickness variation,

one obtains the full thickness of the shell as

N
t=Xt =t (2.18)
k=1

where t, is the wall thickness of the k"‘-laycr at s, and N is the total number of layers.
Modelling of the mandrel

As can be seen from Eq. (2.18), the wall thickness of the conical shell is a function of s.
This thickness variation can be also regarded as an initial geometric imperfection'®. To
minimize its influence on the behavior of the shell the rigid mandrel should be designed as

r, = ssinot, - /2 (2.19)

m

where r is the running radius of the mandrel.

It should be emphasized, however, that during the winding process some additional imper-
fections for the mandrel and the shell may occur due to thermochemical, thermal and
mechanical loads.
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2.3.3 Variable stiffness coefficients

In the previous section the thickness variations of the laminated conical shells made by
filament winding are formulated as functions of the longitudinal coordinate s. In the follo-
wing the variable stiffness coefficients of laminated conical shells will be derived based on
the variable wall thickness.

The constitutive equations for the k™ homogeneous orthotropic lamina are assumed to be

G, Q, Q, 0 €
2.
6| =|Q, Q O g (2.20)
T2 " 0 0 2Q66 (I/Z)le
where
Q1 = E/(1-01,0;)
Qp; = Ep/(1-0,,0,) @21)

Q2 = VHE/(1-01505) = VE/(1-01,05)

st = ze

Notice that there are 4 elastic constants E;;, E,,, v;, and G,,. Since the stiffness matrix
must be symmetrical therefore v;,E,, = v, E,;. Thus the fifth elastic constant v,; can be
expressed in terms of the other constants.

For filamentary materials either with unidirectional fibers or woven fibers, the above con-
stitutive relations can always be used. In other word, macroscopically, the composites are
assumed to be homogeneously idealized orthotropic materials, and thus one does not
account for the details of fiber-resin geometry and interaction.

Normally, the lamina principal axes (1,2) do not coincide with the reference axes of the
shell wall (s,0). Thus the constitutive equations for each individual lamina must be trans-
formed to the shell wall reference axes in order to be able to determine the shell wall (or
laminate) constitutive equations. This transformation yields
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Go| = 612 622 (-226 €q 222

where
611 = Q11C4 + 2(Q12+2Q66)C282 + Q2254

612 = (Q11+Q22"4Q66)C282 + QIZ(C4+S4)

(_222 = Qus4 * 2(Q12+2Q66)C282 + Q22C4

(2.23)

Qg = (Q1;+Q,,-2Q,2Qe)C?S? + Qqg(CH+8%)
616 = (Q)-Q);2Qe)C’S + (Q,,-Qy,+2Qg)CS?
626 = (Qll‘le"zQéﬁ)Cs3 + (Q]z_Q22+2Q66)C3S
and
C =

o (3.24)
S = sinB,

where B, is the variable winding angle of the k'-layer.

The [Q] matrix is now fully populated and it appears that there are 6 elastic constants.
However, Q,4 and Q,¢ are merely linear combinations of the 4 basic elastic constants and
are not independent. Corresponding to different winding patterns, the [Q] matrix will
change along with the change of the winding angles.

Recalling the Kirchhoff-Love hypothesis for a thin shell, one can write the total strains at
any layer in terms of the strains and curvature of the mid-surface as



g g L

Eg = eg + Z Ke (2.25)
Yse Yso Kso
or

[el, = [e] + z[x] (2.26)

Substituting Eq. (2.25) into Eq. (2.22) yields

[+ 611 6]2 616 e 6]1 612 (_216 L

G| =|Qu Qu Q| |e0|+2|Q, Qu Q! [%o (2.27)

Tso 616 (_226 666 Y50 616 625 Qg |, M0

or
[6], = [Ql, [e] + 2[Ql, [x] (2.28)

This expression can be used to compute the stress at any location for any of the k lami-
nae.

Considering the thin-walled conical shell, where /R, can be neglected as compared to 1
according to Donnell-type theory, the stress and moment resultants acting at the shell mid-
surface are obtained by integration of the stresses in each layer (or lamina) through the
laminate thickness as

Ns

N 22

Ne = E f Ga dz ( * 9)
k=1 4

Nsﬂ
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M, o
s
M, N
- Z J' Gy | 2dz (2.30)
M,g+My, = p
3 s0

where N is the total number of laminae, and the position of the k™ lamina is defined by
tk-l <z< tk‘
Substituting Eq. (2.27) into Egs. (2.29)-(2.30) yields

. Qu le le €
k

NS

N - - -
Nofl=X{ f Q, Qp Q| |8 |dz
Nss

el _ _
Qs Qs Q6 Vs 231)
N 611 612 616 K
+ f Q, Q 626 Kq | zdz }
Gea | - -
Qs Qo Qs K0
M [ — - -
£ . Qu le Q16 €
M N Y- - -
° = kzl { Qp Q Q &g | 2dz
(Mse+Mes) ) b | - -
) _le Qy Qes_k s
(2.32)

Qu 612 6]6— K,
N f (_212 622 625 Ko | z2dz }
Qs Qs (_266_k Ko
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Notice that in the above integrations, [€] and [K] are not functions of z, and within any
layer (from t,, to t,) the [Q] matrix is also not a function of z. Thus Egs. (2.31)-(2.32)
can be rewritten as

N, an 612 (_216T e |
N _ - - £y
[ I E:l { Q12 sz Q25 LY f dz
= - - - Y
Neo Qs Qs Qs Yso
B - (2.33)
(_211 612 616 L .
+ 612 622 626 Ko f zdz }
- - - L
_le Qs Q66_h( K5
M [P -— -
¢ Qi Qu Qe e :
N _ - - 'k
(MMeMe’) = k{:l 1Q Qp Qs € :! zdz
s9t - - - -1
- Qs Qs Qs Yso
2.34)

_(_211 Q. Qe |x
+ (-)12 (-222 626 Kq f z%dz }
_616 Qp Qs [0

Furthermore, since [€] and [x] are not functions of z, Egs. (2.33)-(2.34) can be reduced to
the following forms

Ay A Aglle B;; B;, Byllx

Ns

2.35
No|=|A;z Ay Axlleg|+|Bz Bn Byll%s (2.33)
Nsa

A Ay Ag||Yw| [Bis Bas Bes||Ke




or

[N] = [Alle] + [B][x]

: By By Bygl|e Dy,
M,

=Bz By Byllee |+ |Dr2

MSO;MOs Bis By Beg||Yse| [DPis

or

M] = [B] [e] + [D][x]

where

611 612

(—216

N |_ _ -
(Al = kzl Q. Q2 Q| -ty

(_216 (_226
_(_211 (—212
1 315 5
Bl ==X Q. Q
2 k=1
_Qns Qy
an 612
1315 &
D] =_ X Q. Qp
3 ka1
_Qm Q%

After partial inversion, Egs. (2.35) and (2.37) become

Qs
6l 6-
626
Qg
Q]
Qs

3,

2 2
(te—ty)

3 3
(-t y)

DlZ
D22

D26
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(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(241)
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€ - A* B*||N (242)
M C* D*{|x

where
[A"] = [A]!
L3 . -1
(B*] [A]™ [B] (2.43)
[C] = - BT
[D*] = [D] - [BI[A][B]

It is seen that the [A] matrix is the extensional stiffness matrix relating the in-plane stress
resultants (N’s) to the mid-surface strains (€’s) and the [D] matrix is the flexural stiffness
matrix relating the moment resultants (M’s) with the curvatures (x’s). Since the [B] matrix
relates M’s to €’s and N’s to «’s, it is called the bending-stretching coupling matrix. It
should be noted that a laminated structure can have bending-stretching coupling even if all
laminae are isotropic, for example, a laminate composed of one lamina of steel and
another of polyester. In fact, only when the structure is exactly symmetric about its mid-
surface are all of the [B] components equal to zero, and this requires symmetry in laminae
properties, orientation, and location from the mid-surface.

Besides, stretching-shearing coupling occurs when A, and A, are non-zero. Twisting-
stretching coupling and bending-shearing coupling occur when B, and B, terms are non-
zero, and bending-twisting coupling comes from non-zero values of the D, 4 and D4 terms.
Usually the 16 and 26 terms are avoided by proper stacking sequences, but there could be
some structural applications where these effects could be used as an advantage, such as in
aeroelastic tailoring.

Finally, it should be emphasized here that unlike the case of laminated cylindrical shells,

where winding angle B, and the resulting wall thickness can be taken as constant within

one lamina, the winding angle and wall thickness of laminated conical shell usually de-

pend on the winding processes used and will vary with the longitudinal coordinate s. This

variation is caused by the inherent geometry of a conical shell. This special conical geo-

metry dictates the reinforcement trace in which the fiber orientation relative to the cone
| axis changes as the fiber is wound. Therefore, the [A], [B] and [D] matrixes are functions
| of s.

o
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By substituting the variable winding angle and the variable wall thickness of certain win-
ding pattern into Egs. (2.39)-(2.41), one obtains the variable stiffness coefficients of a
laminated conical shell made by filament winding.

2.3.4 Equivalent wall thickness and stiffness coefficients

There exists some theoretical and practical interest for the non-geodetic winding processes
in recent yearst"*1*) from optimization considerations. However, up till now, geodetic
winding is still the most favorable process because of ease of manufacture. As mentioned
earlier, for laminated conical shells made by geodetic winding process, the wall thickness
and the stiffness matrixes [A], [B] and [D] are functions of the shell coordinates. With
some special manufacturing constraints, they can be made functions of the longitudinal
coordinate s only.

Generally speaking, there are two ways to calculate the stiffness coefficients and the wall
thickness of laminated conical shells made by geodetic filament winding, i.e., the exact
method and the approximate method. For the exact method, the stiffness coefficients and
wall thickness are calculated by employing the actual variable winding angle. Hence the
resulting stiffness properties and wall thickness will be functions of the longitudinal coor-
dinate s. This, finally, will lead to a set of rather involved differential equations governing
the stability behavior of laminated conical shells. For the approximate method, the variable
stiffness properties and wall thickness are approximately taken as constants, as it was
always done in the open literature. However, the constant stiffness properties and wall
thickness are not randomly chosen, but are based on some kind of averaging method. This
approximation will result in a great simplification of the stability analysis, and moreover,
makes it possible to obtain some design formulae for engineering reference within the
required error bound.

Equivalent cylindrical mean

Taking the conical shell as an equivalent cylindrical shell, one can obtain the average
radius for the equivalent cylindrical shell as!®"}

R, = R, + R)/2cosq, (2.44)
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For the equivalent cylindrical shell geodetic winding will yield constant winding angle as

B,, = Arcsin((2s,cosar, sinB)/(s, + s,) (2.45)

thus the constant wall thickness will be

-~
|

'y = sltlcos'B-/ (S4yc08B,,) (2.46)

2tlcos[—3cosa0/ﬁ + 5y/8,)% - (2cosa, sinB)?
Geometric mean

By taking the average thickness as the geometric mean of the thicknesses at the two ends
of the shell, one obtains

- - 2.47
t, = \/E‘: = tl\J(s,cosB)/vsz2 - (s,5inB)? @47

and the average s,, is

Sp = s,‘/(tlcosﬁ /L) + sin®B (2.48)

thus the average winding angle is
- (2.49)
B,, = Arcsin (14{1+ (t, cotB/t,)? )

Once the equivalent constant wall thickness and constant winding angle are known, one
can calculate easily the stiffness coefficients according to Egs. (2.39)-(2.41).




63

2.3.5 Discussions and conclusion

The state of art of the filament winding is such that the fibers are usually positioned on
the geodetic paths of the conical shell. For the purpose of optimization, other non-geodetic
windings are also theoretically interesting and becoming practically possible. For all these
cases, however, the stiffness coefficients and wall thickness obtained for conical shells are
at least functions of the longitudinal coordinate s. This fact must be taken into account in
the analysis of laminated conical shells made by filament winding.

Nevertheless, as an approximation equivalent constant stiffness coefficients and wall
thickness can be obtained from some kind of averaging method. Two of them are
suggested here, the equivalent cylindrical mean and the equivalent geometric mean, which
will be used for the stability analysis of laminated conical shells. Besides, it should be
noted that in the present analysis the classical laminate theory, i.e., no transverse shear
deformation or transverse normal stress, is employed.

The formulae derived to calculate the stiffness coefficients of laminated conical shells
made by filament winding are also valid for other manufacturing processes which are
based on continuous fiber reinforcement.
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Chapter 3
Governing Equations of Anisotropic Conical Shells

3.1 Introduction

Based on the considerations described earlier it is decided to use the nonlinear Donnell-
type strain-displacement relations and the constitutive equations of classical laminate
theory for the stability analysis of anisotropic conical shells. In the following the nonlinear
Donnell-type governing equations of anisotropic conical shells in terms of the radial
displacement W and the Airy stress function F are derived via the stationary potential
energy criterion!*"). The resulting nonlinear partial differential equations with variable
coefficients are transformed to some simpler forms via the transformation suggested by
Mushtari and Sachenkov®'), By using the perturbation technique proposed by Koiter!s!),
three sets of partial differential equations governing the behavior of the prebuckling,
buckling and postbuckling problems, are obtained. Further, by assuming axisymmetric
solutions for the prebuckling equations and employing Fourier decomposition for the
circumferential dependencies of the buckling and postbuckling equations, the three sets of
partial differential equations can all be reduced to ordinary differential equations.

3.2 Original Governing Equations
In the following the governing equations, i.e., the equilibrium equation and the compatibi-

lity equation in the conventional coordinate system (s and 0) are derived. Next the correct-
ness of these equations is verified.
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321 Equilibrium equations

Substituting o, = s, &, = 6, R; -> o0, Ry = s tane,, A, = 1, and A, = s sing, into Egs.
(1.39)-(1.40) and (1.42), and including the initial geometric imperfections W, one obtains

the Donnell-type kinematic relations of imperfect conical shells ag!®147.148]

e, =u, + (W,)%2 + W, W,

(-Weotar))/s + vig/s + (W,5)2/2s% + W»EW’E/ s?

Yo = Vog - V/s + ugls + W, W/s + (W,gw,s + V_V,SW,g)/S

kK =-W

- (W, /s + Wg5/s)

&
[}

Ko = - 2(W,g/s - Wg/s?)

3.1

3.2)

~ . byl .
where u, v, W are the displacements along s, 6 and z directions respectively, W is the

initial geometric imperfection, and 8 = @ sinc,,.
The total potential energy of a conical shell is given by

I_I=1']1+l'lz+l'13+l'],4

where the strain energy is

[Nee, + Ngeg + Ngy,e + Mk, + Mgk, + Msel(se]sdsdé

v
—

)
n-f

the work done by the edge loads at the edges s = constant is

02
- - - . - . R
I = - [ts(Na + Ngv + MW, + MgWg/s + QW)) |8
9, St

3.3)

(3.4)

(3.5)



67

the work done by the edge loads at the edges @ = constant is

5 _ _ - _ _ 6,
I = - [(Ngv + Ngu + MWig/s + MgW,, + QW) Jds (3.6)
5

1

and the work done by external pressure is

6, s

I, = - fprsdsdé (3.7

8, s

The equilibrium equations can be established by minimizing the above total potential
energy of the conical shell. Namely, by taking the first variation of the potential energy
expression, eliminating variations of derivatives of the displacements by integration by
parts, regrouping and letting the first variation of potential energy vanish, one obtains the
following equilibrium equations

NG - Nse’§ - (SNs)’s =0
Nse + N9’§ + (SNSS)’s =0
[SN (W, +W,) + Ng(W5+W,5)l,, + [Ng(W,5+W 5)/s (3.8)

+ NSO(W,S+V_V,S) lg + Ngcotor, + (M), - Mg, + (My/)535

+ [(M+Mg)igls + Mg+ Mg),5 + ps = 0

with boundary conditions at the edges s = constant;

N =ﬁs or du =0

Ny, = Ng or dv =0

M, =M, or 8W, =0 (39

N(W,+W,)s + NgW5+W,5) - My + (Ms),,

+ (M65+Mse)’§ = Si.25 + I‘_Asa.é or W =0
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For the closed conical shell (0 < 6 < 2msinc,,), which is the case here, the boundary
conditions at the edges © = constant are replaced by the periodicity condition with the
period of 2rwsinc,.

The Airy stress function for the solution of the conical shell problem can be defined as

1= 1=

Ns = ? s ¥ S_2 90

N, =F, (3.10)
1= 1l

Nsﬂ = ;2" g ';F’as

Substituting Egs. (3.10) into Egs. (3.8), the first two of Eqs. (3.8) are identically satisfied.
With the help of Egs. (2.42) the third one (the out-of-plane equilibrium equation) becomes

Ly:(F) + Lpo(F) - LpuW) = Ly (F, W + W) + s°F, cotor, + ps* G.11)

’ss
where the linear differential operators are

LB;( ) = BZ‘I( )’ssss S4 + (2B;6'B6.])( )’sssa 83 + (B;l +}32‘2-2B6‘.6)( )’ss55 82

* * »* » * (3'12)
+ (2B1s-Be)( D555 + B )5555 + (Ba-2Bi)( )igas
- BI‘Z( )’ss 52 + B]‘2( )’ss
LB;( ) = (2B;1+B;1’B;z)( ),35383 + (ZB;6+2B1'6+Bgl+Bg2)( sss st
+ 2(B6‘6“B;])( )as§§S + Z(Bl‘] _B6‘6+B].2)( )’55 (313)

- 2(Bg+Bg)( )gs + 2 (Bg*Bg))( )5
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1"D‘( ) = - Dl‘]( )’ssss S4 - 4D;6( )’sss§ 53 - 2(2D(:6+D;2)( )’ssaa 52

- 4D ),5555 - Dp( )gaas - 2Dn( gss8” + 2(2Dgg+D)( )55 S

(3.14)
+ 4Dx( )55 - 4 Da+Di( )5S - Dyl )iy 52
- 2(2Dgs+Dp+Dp)( g5 + 4(Dz6+Digd )ig ~ D )8
and the nonlinear differential operator is
Ly (XY) = s [X, (Y., + Y555 + Y, (X, + Xi5/5) 515)

- 2AsX,,5- Xip) (Y5 - Y5/ 5% ]

Commas in the subscripts denote repeated partial differentiation with respect to the
independent variables following the comma.

3.2.2 Compatibility equation

To obtain the second partial differential equation involving the dependent variables W and
F one uses the necessary and sufficient conditions for the existence of valid solutions of
anisotropic conical shells. That is, the compatibility condition!'?1%), which guarantees that

the mid-surface of the shell remains continuous after deformation.

Eliminating u and v from Eqgs. (3.1) one obtains

_ - _ —_— _ o2
SYse.es + Yse,G es,ee + ses,s 2589.5 § e(-),ss

= W,E(ZW,ES/S + ZW,ES/S - \i’,g/s2 - 2W,§/S2) + ZW,5W,§S/S
(3.16)

+ SW’s(W’ss*'\X/’ss) + SW’ssw’s * W’(—)§ (W’ss'{'w’ss)

B0 s W’sa(w’s§+zw’s§) + SW

<l

+ coto

’ss

Notice that since Eq. (3.16) is exclusively deduced on kinematic considerations, the
compatibility equation is independent of the anisotropic character of the structure material.
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Further, substituting Egs. (3.2), (3.10) and (2.42) into the left hand side of Eq. (3.16) one
obtains

Ly - Lys(W) - Lys(W) = - Ly (W, W + 2W)/2 - s* W,,, cota, 317
where the two new linear differential operators are

LA’( ) = A2'2( )’ssss s - 2A{6( )’sssas3 + (A6.6+2A1‘2)( )’ssaa 82

- 2A0( )ii558S + AN)555 *+ 285 Dsss® — RAN+AGD()i55S

(3.18)
+ 2A760 0555 - 2(As+tArd( )gs — AN( )y, 82
+ (A6'6+2A1'2+2A1‘1)( ),55 + Z(A';s*A;s)( ),§ + A]'l( ),ss
Lp( ) = (@Bj1-B[1+B5)( gy, ° - (2B3+2B B +B)( )58
(3.19)

+ 2(B6‘6‘B2‘2)( 558 * 2(B2'2-B6'6+B1'2)( )55

+ 4(By+Bi)( )58 - 4 (Bys+Bro)( )ig

Equations (3.11) and (3.17) are nonlinear partial differential equations with two unknowns
W and F. These equations, together with the appropriate boundary conditions, govern the
behavior of the imperfect anisotropic conical shells

- In the prebuckling stress and deformation state.

- At the bifurcation point or limit point (if there is one).

- In the postbuckling stress and deformation state.

3.2.3 Checking the correctness of the governing equations
The correctness of Egs. (3.11) and (3.17) can be verified by the following considerations.
Degeneration to anisotropic cylindrical shells

By letting the cone semi-vertex angle o, approach zero, and the distance from the vertex s
approach infinity, while the projection of this distance on a plane perpendicular to the
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cone axis (s sinct,) approaches a constant value R, Eqs. (3.11) and (3.17) reduce to the
following equations

Ly(F) - Lp(W) = - W, /R - Ly (W, W + 2W) /2 (3.20)
Ly(F) + Ly (W) = By /R + Ly (W, W+ W) +p (3.21)

where the differential operators are

LA;( ) = A;Z( )’xxxx - 2A2‘6( )’xxxy + (2A1.2+Ag6)( )’xxyy

(3.22)
- 2A5( Dxyyy * An( Dyyyy
LB:( ) = B2.l( )’xxxx + (2B;6_Bg1)( )’xxxy + (B1‘1+B;2_2Bg6)( )’xxyy
(3.23)
+ BB nyyy *+ B gy
LD:( ) = Dl'l( )’xxxx + 4D;6( )’xxxy t 2(2D6¢6+D1.2)( )’xxyy (3.24)
+ 4Dy * Dl dyyyy
Ly (ST) = S, Ty = 28, T + ST,y (3.25)

It is easy to verify that Eqs. (3.20)-(3.25) are the governing equations of an anisotropic
cylindrical shell of radius R derived by Arbocz!"®.

Degeneration to orthotropic conical shells

By setting the stiffness coefficients [B] and A A, Dy, and Dy equal to zero, Eqgs.
(3.11) and (3.17) become

L,.(F) = - Ly (W, W + 2W)/2 - s*W,_ cotor, (3.26)

’ss
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Lp:W) = - Ly W + W) - s°F, cota, - ps* (3.27)
where the differential operators are

LA:( ) = A2.2( )’ssss 54 + (A6.6+2A1‘7)( )’535582 + Al‘l( )'-9553

+ 285 Dy S® - CALYALD( )55 (3.28)
- An( Dags s? + (Ags+2A1,+2A,)( )55 * An( D S
Lp:() = = Dfi( e 8* = 2(2Dge+D)( i35
(3.29)

- D;Z( )’6553 - 2D;]( )’55553 + 2(2D6‘6+D;2)( )’5565

+ Dyl )iy 8 = 2(Dge+Dyp+DR)( )5 - Dyl )y s

Notice that Eqs. (3.26)-(3.29) are exactly the same as the governing equations of the
classical orthotropic conical shells given by Schiffner(®).

Checking by the Reduce-based package GEACS

By using the Computer Algebra system REDUCE, a symbolic package GEACS1, Genera-
ting Equations for Anisotropic Conical Shells, was written to derive the governing
differential equations of anisotropic conical shells (see Appendix Al.l for the source
program). The computer generated equations (see Appendix Al.2) are exactly the same as
Eqgs. (3.11) and (3.17) derived by hand.

3.2.5 Discussions

Some observations show that

- Unlike the case of anisotropic cylindrical shells where there exists only one linear
% differential operator Ly.( ) related to the stiffness coefficients [B], there exist three

different linear differential operators, LB;( ) LB;( ) and Ln;( ) in the governing
I equations of anisotropic conical shells. However, one can see that before introdu-

o
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cing the anisotropic constitutive relations, the linear part of the compatibility
equation does have the same form as the linear part of the out-of-plane equilibrium
equation, i.e.,

L(A,B,C) = (sAg), - (s*B,),, - Ciz5 + sC,y (3.30)

Substituting A = ¥,5, B = € and C = g, into Eq. (3.30) yields the linear part of
the compatibility equation, while substituting A = (M, + Mg), B = - M; and C
= - M, into Eq. (3.30) yields the linear part of the equilibrium equation.

Therefore, the anisotropic characteristics and the geometrical properties are the
reasons for the differences of relevant linear differential operators between the
cylindrical shells and conical shells.

It can be seen that the resulting governing equations for anisotropic conical shells,
which are nonlinear and also have variable coefficients, are more complicated than
those of cylindrical shells, although the relatively simple Donnell-type kinematic
relations and constant stiffness coefficients are employed. It is also seen that if one
employs the constitutive equations with variable stiffness coefficients in the deriva-
tions instead of the constant ones, the resulting governing equations will be very
involved leading to extreme complications even for numerical solutions. Thus it
was decided to use the constant coefficient constitutive equations. In Appendix
Al.3 the governing equations expressed in terms of W and F are derived for
anisotropic conical shells with variable stiffness coefficients via the REDUCE
based package GEACS1. The governing equations expressed in terms of the
displacements u, v, W for anisotropic conical shells with variable stiffness coeffi-
cients can be obtained via the REDUCE-based package GEACS2 (see Appendix
Al.4 for the source program). It is known that there exist 81, 72 and 339 terms
involved in the resulting three equilibrium equations respectively, and they will not
be presented here. The correctness of these equations can be verified by comparing
them with those obtained via other Computer Algebra systems, such as MAPLE
and MATHEMATICA[!50-152]



74

3.3 Transformed Governing Equations for Perfect Shells
To simplify the rather complicated nonlinear governing equations with variable coeffi-
cients, one can employ the following transformation suggested by Mushtari and Sachenk-

ovB! and followed by von Ender!*], Dixonlss], Schiffner‘sg], and others, namely

s =5 e’ (3.31)

and

F(z,0) = e %F(s,0)

(3.32)
W(z,8) = e *W(s,0)
Notice that s = s, corresponds to z = 0, and s = s, corresponds to z = In(s,/s;)) = z,.
The following nondimensional stiffness parameters are also used
A _ * . Rt o * . Rx 2 A 3.33
A = BtAj ; B = (2c)B] ; D; = (4c”/Et)Dj (3.33)
where
c? = 3(1-vd) (3:34)

By carrying out the above transformations and eliminating the geometric imperfections,
Egs. (3.11) and (3.17) become

LgiB) - Lgs(F) - Lgs(W) = Ly (B W) + s,e 0ot (F,,+F,,) + e%s)p (3.35)
Lz-(F) - Lg:(W) - Lg:(W) = ~Lyy (WW)/2 - 51 "cotar(W,,,+W,) (3.36)

where the linear differential operators are



LK‘( ) = [A2‘2( )’zzzz_2A2.6( )’zzz§ + (2A1‘2+Ag6)( )’zzaﬁ
- 2A0( 555 * AnO)gsss - An+ANOhy
- 2A%0)n5 + 285,()i55 + AjONE
Lg() = tBB30)gs + @B3-Be)Ongss + B+BL-2B( ).yiss
+ (2B1‘6_Bg2)( )38 * I§1‘2( )5558 ~ (B1'2+§';1)( Dz

+ (2Bjs-Bg)( )5 + 2B )gg + Biy()1/ 2

L:() = tIB-BH)( )y - (2B+2B 4B B ).ys

+ (Bfy-B;)( )55 + (Bi-B1)(),1/2

Lﬁ_( ) - Et3[ _I')'l-l(),zzzz _ 4]3;6( )’zzz§ - 2(21_)6‘64'5;2)( )azz§§
- 4D3( ).y555 - Dl )g555 + O11+D3)( )rgy

- 4D5( )5 - 2D5( )5 - Dp()1/4c
and the nonlinear differential operators is

’zz(Y’z +Y’§§+Y) + Y’zz

LNLz(X,Y) =e’[X

+ Y (X4 X5p) + 2X,Ys, - 2X,5Y 5]

(X,,+X55+X) + X, (Y+Y 53

75

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

The advantages of introducing Eqs. (3.31) and (3.32) are obvious. First of all, the variable
coefficients on the left hand sides of Egs. (3.11) and (3.17) become constants. Secondly,

the linear differential operators LB;( ) and LB;( ) have combined to one as LE{( ). These

transformations have led to some significant simplifications for the original governing

equations of anisotropic conical shells, thus making it easier to carry out the classic

linearized small deflection analysis of anisotropic conical shells. Therefore, Eqs. (3.35) and

(3.36) will be used in the following analysis.
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Further, assuming that the eigenvalue problem for the buckling load will yield a unique

buckling mode W with the associated stress function FV, a solution, to be valid in the

initial postbuckling regime, is sought in the form of the following asymptotic expansi-
[15]

ons

A/A=1 + a€ + bE? + ...
W =W gw(l) + gzw(z) . (3.42)

F  =FO® +E(FO + eFD o

where € is a scalar parameter which tends to zero when A approaches the buckling load
A, WO will be normalized with respect to the shell thickness t and W® is orthogonal to
W@ in some appropriate sensel”"!,

A formal substitution of this expansion into the nonlinear governing equations (3.35) and
(3.36) generates a sequence of equations for the functions appearing in the expansions.

Governing equations of the 0" -order state (Prebuckling problem)

L5:(F®) - Lg:(F®) ~ L:(W®)

(3.43)
= Ly, (F9, W) 4+ sie%cota, (F + F) + e¥s)p
~(FOYy _ - ©ON _ 1 (0)
Li(F®) - LzW®) - Lz.(W®)
(3.44)
= - Ly (WO, WO)/2 — secota, (W, + W0
Governing equations of the 1"-order state (Buckling problem)
Lﬁ;(F(l)) _ Lﬁi(F(l)) - LB.(W(I))
(3.45)

= Ly, (FO, WD) + Ly (WO, FO) 4+ 5 ecotar, (R + F)
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LpFD) - Lz:Wh) - Lg.(w®)

(3.46)
= - Ly (WO, W) - 5 eZcotar, (W) + W.00)
Governing equations of the 2-order state (Postbuckling problem)
L5.FP) - L5.F?) - Lz.(W®)
- LNLz(F(O)’ W@y . LNLZ(W(O)’ F@) . LNLZ(F(I)’ w®) 3.47)
+ sle’cotao(F,iz) + F,ﬁ))
Li-F?) - Li:(WD) - L. (W®)
= _ LNLZ(W(O)’ W)y _ LNLz(Wa)’ w®y/2 (3.48)
- s, e*cota, (W,f') + W,fz))

The correctness of Egs. (3.35)-(3.36) and (3.43)-(3.48) is confirmed by comparing them
with those obtained via the REDUCE-based package GEACS3 (see Appendix AL.5 for the
source program).

Equations (3.43)-(3.48) are the governing partial differential equations. Together with
some appropriate boundary conditions, they determine the behavior of anisotropic conical
shells in the prebuckling, buckling and postbuckling states, respectively.

3.4 Reduction to Ordinary Differential Equations

All the governing equations derived in previous sections are partial differential equations.
To search for the solutions of these equations one can use one of the standard two-
dimensional discretization methods. However, these two dimensional discretization
methods often lead to a large set of equations and need long computing times, especially
if accurate results are required. Based on some existing experimental and theoretical
observations it is known that the original partial differential equations considered here can
be further reduced to ordinary differential equations. This will lead to a much smaller set
of equations than that of the standard two dimensional methods.
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3.4.1 Ordinary differential equations for prebuckling problem

Since we are considering the conical shells with axisymmetric loading and boundary
conditions, the prebuckling deformation is also axisymmetric. The condition of axisymme-
tric stress distribution indicates that the prebuckling Airy stress function must be also a
function of z alone (see Egs. (3.10)). Thus one can assume

W(°)(z,-é) = tw,(2) (3.49)

FO(z,8) = (Et’,sina/o)f (2) (3.50)

Substituting Egs. (3.49) and (3.50) into Eqgs. (3.43) and (3.44) and regrouping yields

ALEY - (AN+ALE + AL, + (t/2s;sina ) Biwl + B -Bypw.

+ Bpy+Bywl + (By,-Biw, - Biw,] (3.51)

. 1, " / / ”
(-e %c/sino )l cotor (W) +w/) + (Us)[Wg (Wo+wg) + wowg + Wy 1)

(].-;’1‘1 'ﬁz‘z)f;” - (§1.2+§2‘1)f;/ * (].32‘2’]—31'1)&1 + ﬁl‘Zfo

(o]
Ny
&

+

+

(t/2ssine ) [Dyw - (D}, +Dpw’ + Dow,]
1 o 1170 11 22’7 o 2270 (3.52)

= (2eZcscoto JOET+ED) + 2etclfiworw)) + WE,+,)
+ flw, + wlf, + 2wifl] + 2¢¥Pes,cot’a/(tsino.,)
It can be seen that the above axisymmetric prebuckling equations are coupled, nonlinear

ordinary differential equations. This is unlike the case of anisotropic cylindrical shells,
where the prebuckling governing equations are linear!®”.,

3.4.2 Ordinary differential equations for buckling problem
It is known that when the conical shell is supporting the critical load (at the bifurcation

point) there exist at least two equilibrium positions: one axisymmetric (identical with the
prebuckling stress and deformation state) and one or more asymmetric (beginning of
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buckling). At the bifurcation point infinitesimal external disturbances will make the
prebuckling state unstable and the shell snaps over into an asymmetric equilibrium state.

Since the coefficients of Egs. (3.45) and (3.46) are functions of z only, a solution is
possible by means of separation of variable, whereby

F,(,l)(z,.é) = (Etzslsinao/c)fn(z) ¢in® (3.53)

- - (3.54)
W,(,D(z,e) = tw,(2) ein®

where n = n,/sina,, ¢ = 3(1-v?), and n, is the number of waves in the circumferential
direction.

Equations (3.53) and (3.54) satisfy the continuity requirement, that is,

Fz, 0) = F(z, 8+2nsina) , Wz, 8) = W(z, 8+2nsinat,)

Without any loss of generality, these orthogonal solutions can be normalized and hence
constitute a complete set of eigenfunctions for the problem. Therefore, the solution of Egs.
(3.45) and (3.46) can be represented by the following expansions

F(])(Z,-é) = E F,(ll)(z,é) (3.55)
n=0

WD) = ¥ Wz9) (3.56)
n=0

However, only real solutions are of interest. The real parts of the solutions for F,(" and
WD are then

F,(ll)(z,é-) = (Etzslsinaolc)[f,n(z)cosné + £, (2) sinné] (3.57)

Wl(ll)(z,§) = t[wln(z)cosné + w2n(z)sinn6] (3.58)
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To simplify notations, the n'® buckling mode is denoted as

F® = (EBt%;sina, /c)[f;(z)cosnB + f,(2) sinn@) (3.59)

w = t[wl(z)cosné + wz(z)sinnél (3.60)

The buckling mode shape given by the above equations corresponds to a skewed buckling
pattern.

Substituting Egs. (3.59) and (3.60) into Eqs. (3.45) and (3.46), regrouping and equating the
coefficients of like trigonometric terms result in the following system of 4 linear homoge-
neous ordinary differential equations with variable coefficients in terms of f;, f;, w; and
w, for each value of n.

ALE"-[022A0+AL) + AL+AIE + n2-1)?A%,

- 0ALEY" + 2n(mP-DALE - (V2s,sin0)[(Byw," + (B,-Biw,"
+ (2n2§gé—n21-3;2—n2§,'1-§2‘1—1-31'2)w1” + (l—nz)(ﬁfl—ﬁz'z)wll 6
+ 2-12Bw, + n(By-Bo)w.” - n(2B;+2B +Bey+Bg)w,

+ n(1-nH)(2B;,-Byw;] + (e % cotor fsinar )(w; +w;)

+ (e % s sino ) wy y+wi(y'+y) +(1-nDw,y'] = 0

ALEY - @02ALn2A A AL + (2-12ANE, + 20A5f,"
+ 2n(l—n2)K1'6f,/ - (UZs,sinao)[]—B;,w;" + (§2'2—§1")w2”/
+ (2n2Bg-n?B;,-nB;,-B},-Bw, + (1-n%)(B;,-Bjw,

(3.62)
+ (2-12B,w, + n(Bg-2B;w]" + n(2By+2B+Bey+Bo)w,’

+ n(nz—l)(2§;6—§6'2)w1/ 1+ @E% cotac/sinao)(w2”+w2’)

+ (e% t/slsinoco)[wz’/w+w2'(\|f’ +y)+(1-n z)wzw' 1=0
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D;yw;" - 2n%D;,+4n?D+D;,+Dw, + (n2-1)?Dyw, + 4nDjew;”
+ 4n(1-n)Dgw, + (2s;sino /)[Byf" + (B} -B)f,

+ (21121—36'6‘“21_?’2.2'"%1‘1‘]32.1 _ﬁl‘z)fll/ * (“2‘1)(}—3-1‘1'1—32.2)1‘1/

(3.63)
+ (2-1)*Bf, + n(2By-BJ)f," + n(2B+2B+Bg+B)fy
+ n(n2-1)(Bg,-2BHfs] - (4ce *s,sinat /O[(s,cotar /(] +f})
+ Wl + wi(@/+@) + (1-ndw,0’ + fiy + fi(y'+y) + (1-nDfy'] = 0
ﬁl'lwziv - (2nzf)l"2+4n21-56"6+I_)]"l +]32'2)w2” + (n2~1)21—)2'2w2 - 4n]31'6w1/”
+ 4n(n2-1)Dyw; + (2ssine /O[B}E," + (B],-Byfy"
+ (2n%B}-n?B;,-n?B;,-B;,-B)f) + m2-1)(B;,-B)f;
(3.64)
2 20 * D * o * e/ — B* D*  o* el
+ (n2-1)?Bf, + n(B-2B)f" - n(2B,+2B +B,+BJ)f!
+ n(n?-1)(2B-Bof] - (dce s, sinct /Ol(s,coter, /O(E; +£5)
+ W e+ wy(@+@) + (1-ndw,0’ + v + fi(y+y) + (1-ndEY'] = 0
where
/
o =f +f 365
Y = W, + wcl,

3.4.3 Ordinary differential equations for postbuckling problem

Substituting Egs. (3.49)-(3.50) and (3.59)-(3.60) into Egs. (3.47) and (3.48) yields
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L5(F®) - L5:F®) - L W?)
= e [ Y/(F® + F,f)) + \V(F,g) + F,iz)) + F,%z-)é\y’ ] + es,cota, (F:izz) + F,g))
+ (e Etssino /o) [/ (WP + WD) + g WD + w2+ o'W
+ (e %Bt3s,sina /2c) [wi'(F]-n%, +£,) + wi(f] +2f{-n’f, +£, -2n%f))
+ WEl-n2,4£,) + wy(fy -2n%;+2f;-n’f,+f))
+ (1-ndw, E+£)) + (1-ndwy(f) +))] (3.66)
+ (e Bt3s sina /2¢) { [wy(E]-n?f, +£,) + wi(f] +2nf; +2f]-n’f, +f,)
- wilEl-n26,+£,) - wi(E) +202f; +2f,-n’f,+f,)
+ (1-n)w, (] +£]) + (*-1)w,(f; +f,)]cos2nB
+ [w{(E)-n2,+£,) + wi(f; +2n %, +2f;-nf,+f)
+ wilE]-n%, +£,) + wi(f] +2nf] +2f] -n%f, +f))

+ (1-nAwy(E]+£]) + (1-nDw,(f; +£;) 1 sin2nB }

L;-F®) - Lﬁl-(w(z)) - Lg;(W @)
= e Y (WP s W2 w2y s yw D - W)
- e’slcotao(w,g) + W e Zt2/2){[w{’(w,’—nzwln»w])
+ (l—nz)(wlﬂ wh) + (1-n%)(wiw, +Waw,) + Wy (Wy-nwy+w,) ] (3.67)
+ [w]”(wl’—nzw] +W;) + (1+n2)(w1/2—w2ﬂ)
+ (1-nd)(wiw, -waw,) - wj(ws-nw,+w,) Jcos2n8

+ [wl”(wé-nzw2+w2) + w,'(wé/ +2n2w2'+2w2’)

+ (1-ndw,w] +(1-nDw,(wj +w3) ] sin2n8 )

These equations admit separable solutions of the form




W tiw,(z) + wp(z)cos2n§ + w.,(z)sin2n_9']

F® = (Bt?s;sin0 fo)lf,(z) + fy(z)cos2n@ + f,(2)sin2nb]
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(3.68)

(3.69)

Substituting, regrouping and equating coefficients of like trigonometric terms yields the

following system of 6 linear inhomogeneous ordinary differential equations with variable

coefficients
Bifa + BBty - BL+Bof + BB, + B,
- (2ssina) [ ‘1_)1.1“’:, + (61.1 +I_)2‘2)w;’ - 6;2Wu]
= eTC[ 2Y/(E, 1) + 20/ (whaw,) + 20(wlrwl) + 2y(f]+£))
+ wllE]-n2,+£,) + wif] 2026 +2f]-nf, +f))
+ WiEL-n,+f)) + wo(fy -2n7f,+26,-nf,+f,)
+ (L-ndw, (7 +£)) + (1-nDw,(fy +f))

+ (2s,cotar 1) (£ +£) ]

Bjfy' + Bj,-By)fy’ + (8n%Bg-4n?B;-4nB,,-B;,-B)fy
+ (4n?B],-4n%By,-B;+B)fy + (1-4n22B))fy
+ (2B -Be)f," + 2n(Bg+Bgy+2B [ +2Bf,
+ 20(2B.s-Bg,-8nB s +4n’B)f,
- (W2s;sina) [ - Dfywy" + (D, +D;,+8n2D;,+16n*Dggw;’

- (1-4n%?D,w, - 8nDjew,”

+ 8n(4n?-1)Djew, |
= e7%c [ 2y(ff +fp) + 2y/(fy+E5-4n>fg) + 20 (wy +wp)+20 (wy +wy —4nwp)
+ wi(f] -2, +f)) + wi(f, +20%]+2f, -n’f, +f,)

+ wiln2,-f,-£)) + wi(n?f,~f,-2f,-2n%,-f;)

+ (1-n)(f]w, +f{w, £y w,~fyw,) + (2s,cotet /) (5 +£5) ]

370

3.71)
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B, + (B}, -Bof)” + (8n%Bg-an?B;,-4nBy,-B;, B!
+ (40%B})-4n%B;,-B) +B ), + (1-4n)? B,
+ 2n(Bg,-2B;0fy" - 2n(Bg, +Bg, +2B+2B,0fy
+ 2n(Bg,-2B +8n?B -4n?Bg)fy
- (/2s,sine ) [ - l_)l'lwyiv + (l_);l+l-52'2+8n21_);2+16n2135'6)w;/ 372
- (1-4n?2Dy,w, + 8nDjewy” - 8n(4n?-1)Dsew; ]
= e [29(f)+fy) + 2y/(E, +fy-4n’) + 20(w, +w,)+20 (W) +w, ~4nw,)
+ wy(Ey-n%,+E)) + wi(fy +2n%]+2f,-n2f,+f,)
- wy (%, -f,-f)) - wi(n®f,-f,-2f] -2n%f] -£])

+ (10w, +Ew, +f Wy +f{w,) + (25,cota /1) (£)'+£) ]

g2'2feizv - (A ARG + AN, + (2s,sino) [ -Bjiw,' + (By-Bw,

+ (§1‘2+1_32‘1)wé’ + (EZ'Z-EI.I)W(: - }_31'2‘”:1]
= (~e%et/2s;sina) [ 2y(w)+w)) + 2ylwl+w,) + wi(w]-n w,+w,) (3.73)

/ / / / /
+ Wi(1-n2)(wy+w,) + Wy (Wi-n2wyew,) + wi(l-n?)(wa+w,)

+ 2s,coto /y(w) +w!) ]
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Asfs - (Bn?AL,+an?AL+A +ALN + (1-4n22 AL, - 4nAf)"
+ dn(dn-DAE) + (t/2ssin) [ - Boywg' + (Bfy-Bywy”
+ (4n?B]; +4n7B;, - 8n’Bg+BJ, *]_31'2)“’[;/ + (4B, -4n’B},-B}, +§;2)Wé

- (1-402?Bj,wg + 2n(Bg-2Bjw,” + 2n(Bg +Bgy+2B1s+2B gwy

(3.74)
+ 2n(Bg,+8n2B 5 -2B - 4n"Bgyw, |
= (-eZct/2s, sinao)[Zlv(wé’+w;) + 2\|t’(w£-4n2wb+wb) + w{’(w{-nzw.l +w,)
+ w{(nzw{+w{—n2w1+w]) + w2”(n2w2—w2/—w2) + wzl(—nzwé—wll
+ n?w -W,) + (w”+wl)(28 cota /t) ]
) p +Wp)(2s;cota /
ApfY - (8n7A5+an?AL AT +ALE, + (1-4nD? AL, + 4nAsfy
- 4n(n2-DASfs + (1/2s,sina) [ - Bjw," + (B}, -Bsyw,”
+ (4n2]§1'1+4n2§2"2 - 8n2]_3g6+l—3;1+]§1'2)w;l + (4n2§1'] —4n2]§;2—1-3-1‘1+f_3;2)w;
- (1-4n)?BJw, + 2n(2B-Bg)wy” - 2n(By+B,+2B 1 +2B wy 575

- 2n(B;,+8n?B 2B ~4n’Beywy |
= (-e*ct/2s;sina,) [2\;/(w4l+w;) + 2\|!’(w.:—4n2wy +w7) + wll/(wzl—nzwz»fwz)
+ wi(wy +2n2wi+2wy-n2w +w,) + wy(1-n2)(w, +ws)

+ (wy//+w;)(251cota0)/ t]

The correctness of Egs. (3.51)-(3.52), (3.61)-(3.64) and (3.70)-(3.75) is confirmed by
comparing them with those obtained via the REDUCE-based package GEACS3.

3.5 Discussions and Conclusion
To summarize briefly, the nonlinear governing equations of anisotropic conical shells in

terms of the radial displacement W and the Airy stress function F are derived via the
stationary potential energy criterion, based on the nonlinear Donnell-type strain-displace-
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ment relations. By employing some special transformations, the original nonlinear partial
differential equations are transformed to some simpler forms. Further, using certain
perturbation technique three sets of partial differential equations governing the behavior of
prebuckling, buckling and postbuckling problems, respectively, are obtained. To reduce
these partial differential equations to ordinary differential equations, the nonlinear
prebuckling solution is assumed to be axisymmetric, while based on some existing
theoretical results and experimental observations the circumferential dependencies of the
buckling and postbuckling equations are eliminated by Fourier decomposition.

Two other kinds of governing differential equations for anisotropic conical shells with
variable stiffness coefficients, which are more complicated than the one presented
previously, were also derived with the help of the Computer Algebra system REDUCE.
One is expressed in terms of W and ff‘, and the other in terms of u, v, W. The purpose of
this derivation is to give some impression for the complexity of the corresponding
governing differential equations. It is felt that they will be useful for further investigations.

The tedious symbolic and algebraic manipulations in above derivations make it no longer
reliable to obtain the goveming equations by hand. Thus, the computerized symbolic
computations are needed in order to increase the efficiency of the lengthy derivations and
guarantee the reliability of the results. By means of the REDUCE-based program GEACS1
and GEACS3 all the derivations involved in this chapter can be performed by computer,
and correctness of all these complicated equations is verified by comparing them with
either other known results or computer results calculated via other Computer Algebra

systems.
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Chapter 4
Reduced Boundary Conditions

4.1 Introduction

In many practical situations when dealing with the structural stability problems one must
handle the boundary conditions appropriately if one wants to obtain the correct solutions.
The proper handling of boundary conditions depends on at least two factors: correct
modelling and correct implementation. For correct modelling, first, one has to study
carefully the practical boundary conditions in the real structures, and then establish a
mathematical model for them. This mathematical model should reproduce as close as
possible the corresponding practical boundary conditions. For correct implementation,
specifically when one performs a Koiter-type stability analysis of conical shells, one has to
use consistent boundary conditions in the prebuckling, buckling and postbuckling states,

based on the previously established mathematical model.

As to the boundary conditions imposed on the conical shells, generally speaking, they can
be separated into two groups: requirements of geometric compatibility called displace-
ment boundary conditions, and requirements of force equilibrium called force boundary
conditions. Although the boundary conditions presented by Eqs. (3.9) provide many
possibilities for different combinations of displacement and force boundary conditions,
they are not necessarily the correct modelling for some practical boundary conditions. To
obtain the correct modelling for practical boundary conditions, additional geometric
constraints, such as the one suggested by Seide®?, should be implemented. Besides, before
using the boundary conditions to solve the stability problem of conical shells, it is
necessary to express them in terms of the functions for W and F. In the following the
individual boundary conditions are derived in terms of the assumed functions for the
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prebuckling, buckling and postbuckling states by satisfying the Seide-type geometric
constraint. Then, some appropriate combinations can be chosen, which are known to
constitute some fairly good models for some practical boundary conditions.

4.2 Seide’s Additional Geometric Constraint

Observations of actual experiments show that in addition to the displacement and force
boundary conditions derived by the variational method, there exists always some kind of
geometric constraint in the practical experimental setup. Therefore, to obtain an accurate
model for the real boundary conditions in the experiment, it is necessary to take these
additional geometric constraints into considerations. Seide” suggested the following
geometric constraint which was also adopted by many others(525789153;

u - Weotar, = 0 4.1)

This geometric constraint is based on the fact that the edges of the conical shell are
usually built into some kind of very stiff endplates (or rigid rings) in the experiment.
Equation (4.1) indicates that the total displacement in the horizontal direction vanishes
because of the relatively rigid bulkheads. Thus the end with bulkhead can only deform in
the vertical direction. It is easy to see that for the case of u = W =0 at the edges this
additional geometric constraint vanishes identically. Notice that for cylindrical shells
where o, = 0 it becomes W = 0.

Imposing this additional geometric constraint at the edges indicates also that some of the
boundary conditions given by Egs. (3.9) are no longer independent of each other. By using
u- Wcot(xo = 0 while evaluating the first variation of the total potential energy expression,
one obtains the modified general boundary conditions as

either

u - Weota, =0

Nog=N, or & =0 (42)
M, =M or 8W, =0

H + sNycotor, = H + sN,cot, or 8W =0




89

N, = ﬁse or dv. =0 4.3)
M =M oo 8W,=0

Htano, + sN, = Heanee, + sN,  or  8u =0

where the barred quantities are prescribed force or moment resultants at the boundary, and
H and H are the left and right hand sides of the last force boundary condition of Equations
(3.9), respectively.

4.3 Reduced Individual Boundary Conditions

Recalling that

W(z, 0) = tw(z) + t&[ w,(z)cos no + w,(z)sin n0]
(4.4)

+ tE2[w, (2) + wg cos2n@ + w, sin 2n6]

F(z, 8) = (Et?s;sina /c){f(z) + E[f, (z)cosnB + f,(z)sin 6] “s)

+ B2{f, (2) + fy cos2nd + f, sin2n8 ]}

the individual boundary conditions can be expressed as follows.
1) Boundary condition: v =0
Here one must express the condition v = 0 in terms of the variables W and F.

Substituting the geometric constraint u - VN\'Icotao = 0 into the second of Egs. (3.1), and
considering only perfect shells, one obtains



1 1 2
gg = ;"’5 + —Wg 4.6)

Recalling the fact that if a function Q(x,y) in an orthogonal reference frame x, y satisfies
the condition

Q(x,y) =¢ at x =x 4.7

(4]

where both C and x, are constants then

al‘
yl'

Q(x,y)=0 a X =X (4.8)

o

forr=1,23, ..., one knows that v=0ats = s, (or s = s, ) implies that also

= =0 4.9)

at the shell edges.

Thus Eq. (4.6) becomes

g = — W2 (4.10)

Substituting the semi-inverted constitutive equations and Eqs. (3.2) and (3.10) into Eqgs.
(4.10), and carrying out the z-transformations yields

ByW., + 2ByW.5 + ByWigg + (By + Bp)W,, + BLW @.11)

- » . » * * 2 2
- ApF., + AyFug - ApFgs - (Ap+Ap)F,, - AF + e*W5/2 =0

'zz
Introducing now for W and F the assumed forms of Egs. (4.4) and (4.5), regrouping by
powers of & and equating coefficients of like trigonometric terms yields the boundary
conditions for the



Prebuckling problem
ALo' + Al - (t/2ssin0) (B, y'+Bo,y) = 0
Buckling problem

At + AL+An) T + (1-nDALE, - nAsf,

- (t/2s;sina) [Byw, + (B +Bjw{ + (1-nH)Bo,w, + 2nBjw,] = 0
rry r R N ey
Aty + (AL+A)f) + (1-nDANE, + n AL,
- (t/2s, sinao)[}_?.z',wz” + (]3.2‘1 +}_32'2)w£ + (l—nz)ﬁz‘zw2 - 2n ]32'6W1/ ]=0

Postbuckling problem

Aty + (AL+AnE + (1-4nDAT, - 2nASf) + (t/4s;sina) [ - 2B wy
- 2(B; +Bjwp + 2(4n%-1)Bj,wy - 8nByw. + e%c(n®wi-w)] = 0
Aof) + (ALAnEy + (1-4nDALf, + nAxfy + (t/2s;sina,) [ - Byywy

- (}_32"1+I§2'2)w.; + (4n2—1)l§2‘2wy + 4n§2'6wé +e%n’ww,] =0

ALEY + AL+ALEL + ALE, - (t/4s;sinc) [ 2B, we - 2(B;,+Byw,

o* Zon2 2 2 _
+ 2B,w, + e“cnf(wy+wy)] = 0

(2)  Boundary condition: u - Wcoto, = 0

91

4.12)

(4.13)

(4.14)

(4.15)

(4.16)

4.17)

To express the geometric boundary condition u - \i}cotao = 0 in terms of the variables W

and F one substitutes first u - Weote, = 0 into the second of Egs. (3.1), and eliminates u

and v from Eqgs. (3.1). This yields
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S€os ~ Tead - & = - Wocota, - W2/s2 - W, Waa/s - W2/2 - ugg/s  419)

Recalling the behavior of a function Q(x,y) in an orthogonal reference frame one conclu-
des that u - \Vchotcto = ( at the edges implies that also

uzz - Wiggoota, = 0 4.19)

at the same edges.

Thus Eq. (4.18) becomes

(4.20)
= - W,cotar - W2/s? - W, Wz5/s - W,7/2 - Wggcota/s

Equation (4.20) can be further transformed into an new form by introducing the semi-
inverted constitutive equations and carrying out the z-transformation.

Introducing for W and F in the assumed forms of Egs. (4.4) and (4.5), regrouping by
powers of £ and equating coefficients of like trigonometric terms result in the following
boundary conditions:

Prebuckling problem

A22 £’ (Zl‘l +K]‘2+K2'2)f; - (;1‘1 +‘l—\l‘2)fo

- (t/2s,sino )[B w’” + (B B )w”
1 21 22751 @21)
- (B;;+By, +B;2)W; - (Bp*Byw, ]

= - (eZct/2s,sina)[ w2 + 25, cotal (wl+w )/t + 2w wl + wf]
Substituting the periodicity condition (see Appendix A2.1 for details) and Eqs. (3.65) into

Eq. (4.21) yields an equation which is exactly the same as Eq. (4.12). This indicates that
u- \i"cotao = 0 gives no new boundary condition for the prebuckling problem.
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Buckling problem
Kz‘zflm - (“ZZ‘;2+“2Kg6 + ‘X‘;l *7\1.2*;2‘2){1’ + (“2‘1)(;1.1+Kl‘2)f1
ZK'f” 2 IK'f 2 : ﬁt " §- Ea "
- 2nAyfy + n(n®-DAf, - (t/2s; sina) [ Bywy + (By-Bjw,
+ (2n2§gs-n2§£2—l-31'1—ﬁ;l-ﬁl'z)w{ + (n2~1)(§1'2+1_3;2)w1 (4.22)

+ DBy -Bowy - n (B +By+2B+2Biw; + n(n?-1)Bhw, ]

= - (e*ct/s; sino ) {w,y + Wiy - n?w,y + s,cota, [w,(1-nd) + w{]/t}

Anty - PA54nAL + A +AL+ALE + P-1) (A +A S,
+ 20A5f] - n2-1ALE - (t/2s, sine) [ Byw, + (Bj,-Bw,
+ (2n?Bg-n?B;,-B; -B; -Blyw, + @2-1) (B ,+B)w, (4.23)
- n(2By-Boyw, + n (B +Bo+2B+2B)w, - n(n>-1)B,w, ]

= - (eZct/s; sina ) {wy + way - nw,y + s,cota, [wy(1-n?) + wy]/t}

Postbuckling problem

Ayfy - (4n’A5+an?AL+AT +AL+ALE + (4n2-1)(A], +Af
- anAsf, + 2n(4n?-DASE + (t/2s sino) [ - Bjywy' - (Bj,-Blwy
20 * D* D* D* D* / —
- (8n?Bgg-4n’B,-B;,-B,,-B ywy - (4n2—1)(Bn+B22)wB
(4.24)
- 20 (2By-Bg)w, + 2n (B +B,+2B+2Bjw. - 2n (4n>-1)Bgyw, ]

= - (e®ct/4s, sinao)[wll(w{—2n2wl+2w]) + w2’(2n2w2-w:f—2w2)

+ 4(wy~4nwy +wy) (y+s cotor, /1) + (1-dn>)(w -w;) ]
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r ey 27" 27* . A* . A* . A\ 2 At A"
Azzfy - (4n°A;,+4n A“+A1]+A12+A22)f.r + (4n -1)(A“+An)f_{

+ anAsf) - 20(dn2-DANE, + (/25 sine) [ - Byw," - (B-Biw)

- (8n?Bg-4n’By,-By,-B;, -Bryw) - (4n2-1) Bjy+Byyw,

+ 20 2B3-Bg)ws - 2n (Bg +Bgy+2B s +2B;0w; (4.25)
+ 2n (4n?-1)Bg,wg |
= - (e*ct/2s, sina) [ wi(wi-nPw,+wy) + (1-n)w,w,
+ 2(w,1-4n2w1+w.;) (y+s,cota, /1) + (1-4n?)w,w, ]
e i NS re
Apfe - (Aj+Ap+Apfy - (Ap+Apf,
- /28, sina) [ - Byws - (Bj,-Bjwe
+ (B), +l_32'1 +l—3,'2)w; + (§1'2+§.;2)wa] (4.26)
= ~ (eZct/4s, sino)) [ wi(w]-2n2w, +2w,) - wj(2nPw,-w;-2w,)
+ 4\|I(WB +wé) + (w,2 +w22) + (4s,cota /1) (wé+wa)]
(3)  Boundary condition: W,s =0
Carrying out the z-transformation for \X’,s = () yields
W+W, =0 4.27)
Substituting Eq. (4.4) into Eq. (4.27) yields
Prebuckling problem
(4.28)
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Buckling problem

/
wp +w; =0

429
Wy + w, =0
Postbuckling problem
/
wg +wg =0
w; tw, =0 (4.30)

(4)  Boundary condition: M, = 0

Here one must first express M, in terms of the variables W and F. Using the correspon-
ding semi-inverted constitutive equation and carrying out the z-transformation one obtains
upon substitution

- * * * * »
ByF... - BeilFo5 + BuFgs + (Bri+By)F,, + BjjF

‘zz

(4.31)

+ D|\W,,, + 2DW, 5 + D,W55 + (Df+Dp)W,, + DLW =0

2z

Introducing for W and F the assumed perturbation expansions (4.4) and (4.5) and
regrouping by powers of & yields

Prebuckling problem

]31’1\4!' + 131‘21;/ + (25, sinaolt)(ﬁz'l(p + ﬁ,"lq)) =0 (4.32)
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Buckling problem

~e__ N e e ] / 2" ~* [/
Djwy + (Dy;+D)w; + (1-n°)Dyyw; + 2nDyew,

+ (2sysinat /0 [BAf) + By +Bydf] + (1-nIBf; - nBgf;] = 0
1-51‘1""2” + (61.1*61.2)"’4 + (1'“2)5;2‘”2 - 2“51.6“’{
+ (2s;sina /1) [BLEY + (B}, +Bypfy + (1-ndBJif, + nBgfi] = 0

Postbuckling problem
Dywy + O +Djws + (1-4n2)D)wy + 4nDjw,

+ @s,sine, /0 [Byfy + Bl +Byfs + (1-4n?)Bfy - 2nBgify1 = 0
Dywy + (D) +Dw, + (1-4n?)Dyyw, - 4nDjwy

+ @sysina, /O [Byf) + By +By)fy + (1-4n)Bf, + 2nBgfy] = 0
~*_ ! e ! ~*
Djywo + (D +Dppdwy + Dypw,

+ 25, sine /1) [ By £ + By +Byfs + Biif,1=0

(5) Boundary condition: H = H

(4.33)

(4.34)

(4.35)

(4.36)

4.37)

For a perfect conical shell, the last natural boundary condition of Egs. (4.2) can be written

as

sNW,, + sNcoto, + NgW5 + (M), - My + 2My5 = s(Q, + Nycotar,)

(4.38)

First substituting the semi-inverted constitutive equations and Equations (4.4) and (4.5)
into Equation. (4.38), then carrying out the z-transformation and regrouping by powers of

E yields the following reduced boundary conditions for the
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Prebuckling problem
— Yl * T* ol Tt n* *o/ ~*
Bufe + (Byy+By =B, + (By;-By-Bfy - By,

. e M =a Nl el =
+ (Y/2s;sino,)) [Djjw, + Diyjw, - Dywy — Dypyw ]

(4.39)
= 2e %o(w +w(E,+f1) + (2e %cs,cota )(E, +L)
+ e¥pcs,cot?o /(tsino ) + 2e“As, ccota, / (tsina,)
Buckling problem
D;w,” + Dyw{’ - (Dy,+n?D,+4n’DiYw, + (n>-1)Dyw,
+ 4nDw; + 2nDw, + 2n(1-n®)Djw,
+ (s, sinoe /O [Byf]" + (B, +Bj-B)f]
1 (] 21°1 11 21 22701
+ (B} +2n°Bg-n’B],-B,,-B)| - n(Bg, -2B0f; (4.40)
+ (B, +2B+2Bf) + 20(1-n9Bf, + (2~DBf ]
= (4e*s,csina, /t) {t[(1-ndyf, + w,0 + w(o + fy]
+ (1-n¥s, cota £, + s, cotaofl’}
I_);lwé” + 131',w2” - (5;2+n21—)1'2+4n2]3;6)w£ + (nz—l)l_)'z'zw2
~*. ! ~* ./ 231 *
- 4nDjew; - 2nDjew; - 2n(1-n°)Dyw,
+ (25, sino, /O [Byfy + (B +Bj-Bofy
1 (] 2172 11 21 227%2
+ (B),+2n?B-n?B;,-B,-Byf; + n(Bg-2Bof,’ (441)

- n(B,+2B+2B)f] - 2n(1-n?B.f, + (n2-1)Bf, ]
= (4e?s,csina, /t) {t[ (1-ndyf, + w,0 + w0 + ¥ ]

+ (1-n?)s, cota £, + s, cotar f)
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Postbuckling problem

= "
Dy wy

= (2ce?

= (2ce?

~=*__
D”Wﬁ

= (2ce?

+ Dywe - Dyw. - Djyw, + (2s;sino/t) [ Byfy’

+ (By+By-Bo)fy + By -B-Bp)fy - B, ]

s, sinct, /1) [ wi(fj-n2f,+£,) + wi(fs-n2f,+f,) 442)
+ (1-n2)(Wyf] +wofy 4w, £ +W,f) + 20(Wo+w,)

+ 29(5+£,) + (2s,cota, /(EL+E,)]

+ Djjwy - (4n?D;, + 16n?Dg + D;)w,

+ (4n*-1)Djw, - 8nDjgwy - 4nDjwy - 4n(dn®-1)Djowg

+ (25, sino, /0 [Byf,” + (B[ +B;-Bf;

+ (B},-B;,-B;,+8n?Bg-4n?B))f; + (4n2-1)§,'2f,

(4.43)
+ 2n(Bg, _2§;6)fé, - 2“(§g2+2§12*2§;6)f£ + 4“(4"2'1)51‘6%]
5, sinaolt)[w,/(le-nzf2+f2) + W;(fll_nzf] +f])
+ (1-nd(w f,+w,f)) + (1+n2)(sz1l+W1f2/) + ZQ(W‘:+WY)
+ 2( fy/ —4n2f7 +fy Wy +s coter, /1) ]
+ I_)l'le” - (4n®D;, + 160D, + B;Z)Wé
+ (4n2-1)132'2W5 + 3n1—)]‘6w;’ + 4n1_)]‘6w7/ + 4n(4n2—1)]-)2'6wy
X Saclll  me ma macll
+ (2Zsysina /1) [ By fg” + (By;+B, -By)fy
+ (Bl -Bry-Br,+8n2BL-an2B )f] + (4n2-1)Bf,
117P127 522 66 11/°p 12°p (4.44)

- 2n(Bg,-2B)f" + 2n(By,+2B +2B19f) - 4n(dn?-DBE, ]
s, sinai, /) [ wi(E]-n%, +£,) - wi(E)-n%f,+£,)
+ (1-nD(wify-wofy) + (Lend)(w,f)-w,f)) + 20 (wp+wy)

+ 2(fy -4’y +£y) (Y +s cotary /1) ]
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(6) Boundary condition: N =0

Expressing Ny by the Airy stress function F and carrying out the z-transformation one
obtains

F;, = 0 (4.45)

Substituting Eq. (4.5) into Eq. (4.45) yields
Prebuckling problem

Since Ny = 0 is identically satisfied for the axisymmetric problem, it will yield no new

boundary condition for the axisymmetric prebuckling state.

Buckling problem
£f=0

(4.46)
f, =0
Postbuckling problem
f, =0

(4.47)
fg = 0

(7)  Boundary condition: N, = N,
While partially satisfying Seide’s geometric constraint, the force boundary condition N =

ﬁs of Egs. (3.9) can still be used® 134, Ns is the known force resultant at the edge of the
shell. For axial compression and hydrostatic pressure it is given as

ﬁs = - (Etzcoszaocotaolc)[(kls) + (Bs/2s12)] (4.48)
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where A = Pc/(21tEt2coszao) and p = pcs,zsinza‘/(Etzcoszao)
It is noticed that ﬁs given by Refs. [148,155] is incorrect.
Expressing N, by Airy stress function F yields

F,, + Fg5 + F + (Et?s, cos’a coto /c) [A + (€**P/2)] = 0 (4.49)

'z

Substituting Eq. (4.5) into Eq. (4.49) and regrouping by powers of £ yields

Prebuckling problem

f) + £, + cose, cot’a, A + e¥cot’a, cosr p/2 = 0 (4.50)

Buckling problem

f{ + (1-n3f, = 0 @s1)

f; + (1-ndf, = 0
Postbuckling problem

fy + (1-4n%fy= 0

£+ (1-4n%f, = 0 (4.52)

(8) Boundary condition: W = const.

To solve for the prebuckling displacement w,, it is necessary to assume that one of the
edges is fixed while another is moveable. Thus one obtains the corresponding boundary
condition as
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W <0 (4.53)

at the fixed edge.

By considering the assumed perturbation expansion (4.4) for W then it follows by
inspection that the reduced boundary conditions are for the

Prebuckling problem
w, =0 (4.54)
Buckling problem
w, =0

(4.55)
w, =0
Postbuckling problem
w, =0
wy = 0 (4.56)
w, =0

All the previous derivations of the reduced boundary conditions show that Seide’s
geometric constraint u - \?"E'Icot(x0 = 0 can only be introduced in the displacement boundary
conditions. It has no influence on the force boundary conditions.

44 Combined Boundary Conditions

Based on the previously derived individual boundary conditions some combinations which
either completely or partially satisfy Seide’s geometric constraint are listed in Table 4.1.
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Table 4.1 Summary of combined boundary conditions

Type Cases Boundary Conditions

1 MSS1 W-utano=0 | M,=0 N,g=0 H=0
2 MSS2 W -utana=0 | M=0 N,=0 W=0
3 MsSS3 (Famil)®™ | W - utano=0 | M,=0 v=0 H=0
4 MSS4 W -utano=0 | M=0 v=0 w=0
5 $s1 W=0 M,=0 N,g=0 N,=0
6 $83 (Schiffner)®! | W=0 M,=0 v=0 N,=0
7 8§3 (Seide) M6 [ W-utana=0 | M=0 v=0 N=
8 MC1 W-utno=0 | W,=0 No=0 H=0
9 MC2 W-utana=0 | W,=0 N,e=0 w=0
10 MC3 W -utano,=0 | W,=0 v=0 H=0
i1 MC4 W -utana,=0 | W,=0 v=0 w=0
12 c1 W=0 W,=0 N,s=0 N,=0
13 C3 (Schiffner)®) w=0 w,=0 v=0 N,=0
14 C3 (Seide)!*1€] W-utano=0 | W,=0 v=0 N=0

In the following, the combined boundary conditions are reformulated in some suitable
forms which can be used directly in the numerical solution process. All the constants in
the reformulated boundary conditions are listed in Appendix A2.2.

44.1 Combined boundary conditions for the prebuckling problem

For all the combined boundary conditions listed in Table 4.1, there exist only two kinds of
independent combinations for the axisymmetric prebuckling problem. One is called simply

supported boundary condition given by
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=B,wvw + B
V=B« By (4.57)
¢’ = Byg + By
the other is called clamped boundary conditions given by

=0
v (4.58)
¢’ = Bsp + Bey/

If the edge is fixed, the additional condition w, = O should be used when solving for the
prebuckling deformations.

4.4.2 Combined boundary conditions for the buckling problem

The boundary conditions which completely satisfy Seide’s geometric constraint are
summarized as follows:

MSS-1:

fl=f,=0
/" / / ”

wy = - Bowy + Bow; - Bgwy - Bysfy - By,f
" / / y

wy = - Bow, + Bggw, + Bgwy - Bosfy - By,f,

" " " /
£ = Igfy + Isofy + Jeofa + Jefy + JeaWi + Jgawy
/ 2 /
+ Joawy + JesWy + € [B33\y(w]+wl) + Byw, o+ Bysw,

+ B36w1/ + Byfiy + B30(p(w1+w1’) + By f ]

m 1 " /
f7 = Iy + Joofy = Jeofi = Jaify + JeaWa + JsWs
- J64w1/ - Jesw + €7 B33\y(w2+w2/) + Byw,y + Byw, (4.59)

+ Bywy + Byof, W + By @(wytwy) + Byfy]
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/{4 / 14 N
W = JegWy + JggWy + JggWy + Jegwy + Tpefy + Jpify

+ J.,2f2” + Joafy + €*[Byfiy + Bso(w1+w,/)q>
+ Byfy + By W(w,+wy) + By, w, ¥ + Bygw, + BSéwll ]

" / / i
Wy = JeeWy + JgqWy - Jegwy - Jeowy + Ipefy + Jpify

- J7zf1” - Ipfy + e*[Byfy + Bso(‘”z““’z’)‘P

/ /
+ Bgfy + By W(w,+wy) + Bs,wp ¥ + Bssw, + Bgew; ]

£l =f=0
" / / "
Wi = - Bgwy - Buw, - Byfy - By,f)
" / / 1/
Wy = - Bgw; + Byw; - Byfy - By, (4.60)

" 1" " / /
fi7 = Jof) + Jafy + Joufy + Bewy + Jsswy + Jgow,
" 2 / /

+ Js-,f] + e (B60 WY+ B59W1 )
" " " / !
£ = Jaf, - Jufy - Jgfy + Bewy + Jsowy - Jgewy

+ Jgfy + e*(Bgwy ¥ + Bygwy)

MSS-3:
f{/ = B7f1l + Bgf, + Bgf; + B4w1’ + Bgw, + B“w2/

B7f2’ + Bgf, - B9f|/ + B4W2/ + Bygw, - BnWI/

Ryl
"

"o / / / /
wy = Bywy + Bigwy + Byyw, + Bofy + Bisfy + Byfy

" / / / /
wy = Biawy + Bygw, - Byywy + By + By, - Byffy
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f{” = Jlf,, + 1f) + J3f2’ + I + sz{ + Jowy + J7w2’ + Jgw,

‘ /
+ €X[ByWf, + By (w,0+w @ +f{y) + By f, + By, f] (4.61)
!
+ Byy (W, W+wy) + Byyw,y + Bygw, + Bygwy]
£ = Nify + Ly = Ly - Lfy + Jgwy + Jgwy ~ w1 = Tgwy
/ /
+ €%[ByyWf, + By (W,0+wWy@+£,y) + By f, + By f)
/
+ By (WW+woy) + By, w, ¥ + Bysw, + Byow;]
Wlm = J9W1/ + Jiowp + anz/ + W, + ‘I13f1/ + Ty + J1sfz: + Jiefz
+ €2[Byf, y + By (w, 0+ +f]y) + Bgf, + Bs,f]
!
+ By (Wl‘l”wll\l’) + Bsyw; ¥ + Bggw; + Bggwy ]
1/ 7 / / /
wy = Jgwy + oWy = Jpwy = Jpwy + sy < T f, - Tisfy - Jighy
+ eZ[Byf, ¥ + By (w,0+wy@+fsy) + Byf, + By, f,
. /
+ By (W +way) + B, w,y + Bggw, + Bggw;)
MSS-4:
W =W, = 0
£ = B,f] + Byf, + Byf; + B,w] + B,,w,
" / 7 / /
f, = Bf, + Bsf2 - Byf; + B,w, - B;;w;
w) = Byyw! + B,wy + Byf] + Bsf;+Byfy
" / / / ! 4.62
w, = Bj,wy - Bywy + Byfy + Bisfy, - Byfy (4.62)

flm = J17f1/ + Jigfy + JIQfZI + Tpofy + B6wlm

/ / ‘ / !
+ Jywyp + Jpowy + o€ (Bgow; +Bgow )
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" "

/ ’

fo7 = Jify + Jigfy - Jiofy = Jpfy + Bewy

/ / 2 / /
+ I Wy - IpWy + € %(Bggw, +Bgyway)

MC-1:
fl=1f=0

/
w; = - W,
WZ = - W2

" " " " 7
Wi = Bywy + Bowy + Bygw, + Bogw, + Byfy + Byfy + Bygf,

+ Byfy + €2 (Byf, ¥ + By f, + Bg,w, ¥ + Bgw;)

" 7, " I "
Wy = Byywy + Byyw, - Bygwy - Bogwy + Bygfy - Bygfy — By,

(4.63)
+ Byl + €*(Byf W + Byfy + Byw, ¥ + Bggw, )
fI”/ = annll + Bpfy + Blsfzﬂ + Byfy + B19Wl” + B20w2” + Bogw,
+ Bygw, + e%(Byw, ¥ + Bgw, + Byf, v + Byif))
fzm = B17fz{, + Bpf, - Blsflll - Byfy + waz{/ - Bzo“’lﬂ + Bysw,
- Bygw, + €*(By,W, ¥ + Bgyw, + Byf, ¥ + Byf,)
MC-2
w, =W, =
fi=f=0
wi=w; =0 (4.64)
£]" = Bgf, + Bty + Beyf, + Bewl” + Begw] + Bgwy

" 1" " /" "
f37 = Bgf, - Besfy ~ Bgyfy + Bgwy + Bgsw, - Bgywy
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MC-3
/—

W = - W
/

w, = - W,

! / /"
fi' = Bgfy + Byfy + By fy + Byywy + Byywy + Byyw,

/ / "
fy = Bgofy + By, - Byfy + Byywy + Byyw, - Byywy (4.65)

" / / i i
£ = Ty + Jpufy + Jpsfy + Togfy + Jpqwy + Jogwy + JpgWy + J3ow,

+ e [Byfiy + Bsofll\l’ + By f) + B32f1/ + Byyw ¥ + Bgywi ]
" / / " "
£ = Ipfy + Tofy — Tosfy = Tofy + Tpgwy + Jogwy = Tpgwy” - Igow,

+ €Z[Byf, ¥ + By foy + By f, + Byfy + Byywy ¥ + Byyw,]

1t " " / /

wio= Tywy o+ Jpwy + Tawy + Tywy + Ty + Tyl o+ Iy + Jgfy

+ e*[Byf ¥ + Byofjy + By f, + By + By w,y + Bygw, |

1" " / '
Wy = Ty Wy o+ Jowy = Jawy - Twy o+ Dosfy + Dol - Jgfy - Jgfy

+ e?[Byf,¥ + Byfiy + Byf, + By, fy + By, w, ¥ + Bggw, ]

MC-4:

w, =w, =0

/ !
w; =w, =0

" / / "
fi' = Bgofy + Byf, + By, fy + Boyw,

" ! / "
f2 = Beofz + Byof, - Byyfy + Byywy (4.66)

"

!
+ J48W2

m / / " /
;7 = Iyofy + Beofy + Jyofy + Jyofy + Bewy™ + Bggw
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" / / m "
£, = Jyofy + Beofy - Joofy = Jufy + Bgwy + Bgswy - JygW

By following Schiffner’s formulation the boundary conditions which partially satisfy

Seide’s geometric constraint are summarized as follows:

f,=f,=0
fi=1f,=0
W1” = - B91W1/ - 392“’2/ - Bgsflu
Wzﬂ == B91W2/ + Bozwll - B«)afz”

w, =w, =0
f) = (n2-1)f,

f; = @2-1)f,

£/ = (1-ndf, + Bgf, + Bw, + B;,w;

£ = (1-ndf, - Bgf, + Byw, -

" / /
wy = Bjwy + Byyw, + Byf)

" /

/
W, = Bpowy - Biawy - Byf,

(4.67)

(4.68)



fi=£=0
fi =f, =
C3:

wl’ =w, =0

/ 2

f] = @2-1),

f, = @%-1)f,

£ = (1-ndf, + Bgf, + Bow;

f, = (1-ndf, - Byf, + Bew,'
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(4.69)

(4.70)

By following Seide’s formulation the boundary conditions which inconsistently satisfy

Seide’s geometric constraint are summarized as follows:

SS-3:
f] = @2-1),

f, = @2-1)f,

" / /
Wi = Bywy + Bygwy + Byyw, + Byf,

n ! /
wy = Bp,w, + Bjgw, - By,w; - Byf)

/" / /
fi = B79f1 + Bgf, + Byw; + B,;w, + Byyw;

" / /
fy = Byf, - Bgf, + Byw, - Byywy + Bygw,

(4.71)
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1"
fl

" / /
= Jofy + Jafy + Bewy + Iywy + Jowy + Jpowy + Jysw,
2 / !
+ € %[ BgyW(w,+w;) + BgsW, ¥ + Bgew, + Bgow, ]
" " / !
£y = Jofy - Jafy + Bewy + Jwy + Jyuwy - Jppwy = Jygwy

+ ez[B60\|l(w2+w2/) + Bggw, y + Bgew, + Bsngl]

C-3:
,—
wy = - W,
,_
Wy = - W,

f] = (n*-D)f,
f; = (n%-1),
£ = (1-ndf, + Byf, + Bgw; + Byyw, + Byw,

£/ = (1-nd)f, - Byf, + Bewy + Bygw, - Byew, “.72)

" m u "

f17 = Jaefy + J‘,-,f2 + Bew; + Bgsw; + Juow; + Jgowy + J5w,
+ e*(BgsWw, + Byyw,)

" " " "

£y = Jogfy = Jafy + BeWy + Begwy + Jygwy - Isgwy - Jgw

+ e%(Bgyw, + Byyw,)

4.43 Combined boundary conditions for the postbuckling problem

Due to the complexity of the combined postbuckling boundary conditions expressed by the
assumed functions W and F, only some of the possible combinations which have been
used in the numerical examples are given in the following:
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MSS-3:

7 _ a3 - 2 2 4
fo = Byfy + Byw, + Byyy(wy+wy)e

=/ _ o= = 2 2 .,
W = Biw, + Bf, - By(wy+wy)e

Bfy + Byosty + Byogfy + Bywy + Bigwy + Byywy + By (wi-wp)

-
W§
n

" / / / /
fy = Byf, - Bysfp + Bygfy + Bywy - Bjgwp + Byyywp - Bjyse wyw,

2 2
wg = Biswy + Bigywy + Biygwy + Byfy + Bifr + Byygfy + Byye (Wi-ws)

! /
v = BiaWy = BigyWp + Byew

Y * Bsz/ - B109fi§ + Bnofy + Bmczwlwz (473)

Y

" / / /
fB = Jlme + J105f|3 + Jl%fy + Jl07fy + Jmst + JIOQWB

/ . 2 2
+ Jpowy + Wy + e T 0w -wy) + T 5w w,

Y
/ 2 / 2 / /
+ B149[(w2+w2) = (wprw )] + B, s(Wiw, -w,ow,) + B]SOWWB
/ / / / /
+ BmwB + Bygwp + By, ywg + Byy(o wg + Yig + ¢ wg) + Byfy

* Bxsz(wllfll‘wzlle) * B153(W1/f1 ‘Wzlfz + wif;-w,f))

' /
+ Bysy(fiwy -fwy) + Byssfy + Blse‘l’fp}

17 / / /
£, = Jioafy + Jiosfy = Jiosfp - Jiofp + JiogWy + 109y
/ 2 2 2

~Jhowp - Jigwp + e 14wy =wy) + Ty wyw,

+ B (w/w'+w/w +w/w) +B (w’w +w/w) +B w
157 (W Wa +W Wy +Wow, 125\ W W + W, W, 150 ¥ Wy

+ Bygw, + B.w! + B w'+B(w’+ £ 4 w)+Bf’
151 Wy 36Wy 33 WV Wy 30l Wy + W1, + @ w, 32ly

* Blsz(wl/f2,+w2’f1/) + B,53(w,/f2+w2/f] + wifyew,f)

+ B154(f1/W2+f2/W1) + Byssfy + BlSéWf«{}
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n / / /
wp = JjeWp + Jn-,wB + Jnswy + Jnng + leofﬂ + JlZlfp

+ Tigfy + Tify, + 2y (wi=wg) + W,

+ Bmg[(w{«rw])2 - (wé+w2)2] - Bm(w{wl—wzlwz) + Bl_%\;lwl5

+ Byggwy + B32wé + Bso\ywé + Bgy(@ wé + \Vfé +Qwp) + Bszfé
NN ! /

+ Bigg(wyfy -wyf)) + Bigy(wif;-wof, + w,f; -w,f))

+ Bipy(fiw, -f5w,) + Byysfy + Bipgwfy)

" /
W= JpewWy + Jppaw

/ /
Y = JgWp - JeWp + Jiofy + Jiaf.

Y Y

! 2

- iofp - Iinfp + e " {J56(W; —wzz) + JipyW W,

. ! '
+ By wyw; + Big(wywyswawy) + Biggyw,

/ ! / / /

+ Blssw7 + Bsﬁw7 + BSO\VWY + By (@ wy + ny + @ WY) + Bszfv

Iol el ! ]
+ Bipo(wify+w,f) + Big (wif,+wyf, + wofi +w,f)

+ Byp(fiw,+fyw,) + Bypf, + By Wt,)

t! = B,f, + B,w,

W = B;a + B,w,

fy = Bwj + Byows + Byfy + Byosf) + Bify (4.74)
" / / / /

f‘i = Bywy - Bjgwp + B.,f.{ - Blosfﬁ + Bl%f?

/
w, = Bpw, -

/ / /
y = BigsWs + Bigsfy - Bioofp + Byyofy
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fy' = Toefp + Toofp + Jaofy + Tgf, + Tgwp + Jggwy + Bgwg

r r
- e*[By3(wy -wy) - Bso‘l’“’é - BS9W[;]

m ! / / "
f.y = J78f7 + J79fy -~ JxofB - JSlfB + Jszwy - 383WB + B6w

2 11 ! /
- € [Byww, - Bggywy - Bygwy ]

C-1:
wa=wé=\71a=0
wB=wé=0

Wy =y =0 4.75)
f, =0
fg=1fy =0
f,=1f, =0

MC-2:

w, =0
w5=wé=0
wy=w.:=0

fg =f, =0

ry s =/
f. = Bf, + Bgw,

" " " "
fB = - Bloof + Bm,f7 szfy + BGWB + Bﬁswﬁ - B103Wy 476)

/3 R / / 2 2
- e “[ By 3wy -wy7) + Byjs(wywi-wywy) + Byy(wy-wy)]
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£ = - Biof, - Bigfy + Byoofy + BeWy + Begwy' + Biggwg
- e’[Bmw,’wz' + Bus(wl’w2+w.‘fw,) + Byyywyw, |

MC-4:

W, =Wy =wy =0

wg = wé =0

!
wy-wY—O

-f_'; = Bs?u + B6\T/0/‘

£ = Begfy - Bgfy + Befl + Bowy @.77)

" / / "
f) = Bsfy - Bogf, - Bgyfy + Bewy

/4 / /! m " 1/
fB = J74fB - BIOOfB + J7sfy + J76f7 + B6WB + Baswa + J.,-,w],

m / / " " /"
£ = 1l - Bioof, ~ Tify - Jpgfp + Bewy + Begwy - Ty

4.5 Discussions and Conclusion

To summarize briefly, the displacement boundary conditions derived by variational method
are modified to account for Seide’s geometric constraint which occurs frequently in
practical experiments. The resulting individual boundary conditions are transformed to
some new forms in terms of the assumed functions W and F. Some appropriate combinati-
ons of the transformed individual boundary conditions are reformulated for the prebuc-
kling, buckling and postbuckling problems, which completely or partially satisfy Seide’s
geometric constraint. These combinations can be directly used in the numerical solution

process.

The correctness of the individual and combined boundary conditions is confirmed by
comparing them with those derived by using some Computer Algebra Systems.

As in the case of anisotropic cylindrical shells, the four simply supported and four
clamped boundary conditions for the prebuckling state have degenerated into two. One is
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for simply supported and the other for clamped boundary conditions. Besides, since the
stresses and deformations in the axisymmetric prebuckling state satisfy the inhomogeneous
boundary conditions, all the derived boundary conditions for the asymmetric buckling state
are homogenous.
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Chapter 5
Simplified Buckling Analysis of Perfect
Anisotropic Conical Shells

5.1 Introduction

It is well-known that the finding of the buckling solutions depends on the knowledge of
the axisymmetric stress and deformation states of the unbuckled configuration, ie., the
prebuckling solutions. It has been also known that unlike the case of anisotropic cylindri-
cal shells, where the governing equations for axisymmetric prebuckling state are linear and
admit a closed-form solution!®”, there is no closed-form solution for the axisymmetric
prebuckling state of anisotropic conical shells, due to the nonlinearity of their prebuckling
governing equations. This conclusion is true even for isotropic conical shells. Hence, the
use of membrane prebuckling stress state and omission of prebuckling deformation terms
have been the general practice in buckling analyses of conical shells?!"28893128] Employ-
ing such simplified prebuckling analysis leads to a significant reduction of the analysis
effort and increases the computational efficiency. However, it must be emphasized that, in
many practical applications, the predictions obtained from the simplified analysis may not
be in fair agreement with experimental results, and they may not be quantitatively accurate
enough for certain practical applications. Nevertheless, the simplified solutions can provide
at least some qualitative references.

The simplified analysis for isotropic conical shells is well knownl®163] The simplified
analysis for classical orthotropic conical shells was presented by Schiffner®! in terms of
the radial displacement W and Airy stress function F. However, no results can be found in
the literature, as far as the author knows, for the simplified buckling analysis of aniso-
tropic conical shells, due to the intractable analytic calculations and algebraic manipulati-
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ons involved in the analysis. Thanks to the development of various Computer Algebra
systems with different sophistication it is possible to carry out the cumbersome algebraic
calculations by computer. In the following the simplified buckling analysis of anisotropic
conical shells is carried out with the help of some Computer Algebra systems. This
simplified analysis is the first step for the rigorous stability analysis of anisotropic conical
shells, and the corresponding solution can be used as the starting values in the iteration
process of rigorous analysis.

5.2 Membrane-like Prebuckling Solutions

In the study of equilibrium of a shell, if all moment expressions are neglected, the
resulting theory is called ‘membrane’ theory of shells. A shell can be considered to act as
a membrane if flexural strains are zero or negligible compared with direct axial
strainsl26128199] 1t js apparent that two types of shells comply with this definition of a
membrane: (1) shells with bending stiffness sufficiently small so that they are physically
incapable of resisting bending and (2) shells that are flexurally stiff but loaded and
supported in a manner that avoids the introduction of bending strains. The state of stress
in a membrane is referred to as a ‘momentless’ state. For an absolutely flexible shell,
since it offers no resistance to bending, only a momentless state of stress is possible. For
shells with finite stiffness, such a sate of stress is only one of the possible stress conditi-
ons, and several supplementary conditions relating to the shape of the shell, the character
of the load applied, and the support of its edges must be fulfilled.

Although the momentless state of stress condition is a desirable feature in the design of
shell structures because it offers the advantage of uniform utilization of the strength
capabilities of the shell material, it cannot be realized for many practical laminated
composite shell structures. Consequently, the membrane solution techniques for homogene-
ous shells do not carry over directly for the general laminated anisotropic shells. Ambart-
sumyan'? presented methods for the membrane stress analysis of certain laminated shells.
However, the type of construction which he considered possesses elastic symmetry about
the mid-surface, thus reducing the laminated shell equations and the solution techniques to
those of equivalent homogeneous shells. In the following a membrane theory will be
presented for laminated anisotropic shells without the restriction of symmetry about the

mid-surface.
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First, let us recall the procedures used to obtain a membrane solution for a homogeneous
shell which were outlined by Gol’denveizer!!%), and followed by Liberescul!®! et al.. They
can be summarized as follows

A determination of the solution of the equilibrium equations in terms of the stress
resultants.

B. determination of the components of the in-plane strain from the stress resultant-
strain equations.

C. determination of the displacements from the strain-displacement equations.

D. determination of the components of the curvature changes with the help of the
displacements obtained in step C.

E. determination of the stress couples from the stress couple-curvature change
equations.

F. determination of the transverse shear resultants from the moment equilibrium
equations.

The first three steps are the primary objectives of membrane stress analysis, ie., to
determine the state of membrane stress, while the remaining steps are performed in order
to assess the validity of the membrane theory by examining the magnitude of the stress
couples and shear stress resultants.

It is noticed that to be able to follow the above procedures the constitutive equations have
to be uncoupled. In order to modify the above method for an arbitrarily laminated shell
with coupled constitutive equations, the assumption that all bending moments vanish
identically must be made. In this way, the membrane strains may be calculated. However,
some generality is surrendered because steps D to F, i.e., an error estimate, cannot be

[157] show that this additional restriction is not

carried out. Some results presented by Dong
overly severe, and the method is applicable to a relatively large class of significant engi-

neering problems.

The determination of the membrane stress resultants for a laminated anisotropic shell is
independent of the material properties used to build the shell, because the problems of
static equilibrium are the same for both homogeneous and laminated shells. For conical
shells under axial compression and hydrostatic pressure the membrane stress resultants are

given asl5589.158]



Z
H

- pstana /2 - P/(nssin2a,)

s
"

- pstano, 5.1

Considering the definition for Airy stress function of a conical shell, one obtains
F® = - ps®uana /6 - Ps/(n sin20,) (52)

Carrying out the z-transformation and introducing the following normalized load parame-
ters

? =pcs? sinar /(Et? cos?ax, ) (53)
A = Pc/(2rEt?cos’a) (5.4)
one can rewrite Eq. (5.2) as

F® = - Et%s,(e%p/6 + M)/(ctanc) (5.5)

where ¢? = 3(1-v2)

With the assumption that the moment resultants vanish identically, the components of the
in-plane strains are related to the changes of curvature through Eq. (2.38):

[x] = - [D]7'[B][e] (5.6)

Substituting Eq. (5.6) into Eq. (2.36) yields

[N] = [A][e] (5.7
where
[A] = [A] - [BI[D]'[B] (5.8)

O
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The inverse of Eq. (5.7) is

[e] = [BIIN] (59
where
(B] = [A]" (5.10)

After the in-plane strain components have been determined through Eq. (5.9), the
remaining step of the membrane analysis is the integration of these strain components to
obtain the displacements via the linear Donnell-type strain-displacement equations. It is
obvious that since two of the membrane stress resultants of a conical shell are functions of
the longitudinal coordinate s, there exist non-constant prebuckling deformations even if no
constraint of deformation is applied at the boundary.

Here, the using of ‘membrane-like’ prebuckling solution for conical shells instead of using
‘membrane’ prebuckling solutions is due to the following considerations: For cylindrical
shells using Donnell-type theory, the so-called ‘membrane’ prebuckling solution consists
of the membrane stress resultants and the constant deflection due to the Poisson effect.
This membrane solution does satisfy the axisymmetric prebuckling governing equations!®’}
and as a whole is introduced in the buckling equations. For the case of conical shells,
however, the situation is different. When talking about using membrane prebuckling
solution in the buckling equation, one usually means only the use of membrane stress
resultants. The non-constant prebuckling deformations due to the membrane stress
resultants are always neglected in the buckling equations. Therefore, as distinguished from
the complete membrane prebuckling solution of cylindrical shells, the term ‘membrane-

like’ prebuckling solution is adopted for conical shells.

Notice that the just defined membrane-like prebuckling solution of conical shells satisfies
neither the axisymmetric prebuckling governing equations nor the appropriate boundary
conditions. Therefore, it is only an approximation for the real prebuckling solution.
Nevertheless, using this approximation, one can simplify the solution of the buckling

governing equations considerably and obtain some preliminary results.
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5.3 Buckling Solutions Using "Membrane-like" Prebuckling Solution

Once the membrane-like prebuckling solution of anisotropic conical shells is known, one
can proceed to solve the corresponding buckling problem.

5.3.1 Analytical solution for critical buckling load

By neglecting the effect of prebuckling deformations for the buckling problem, one can
rewrite Eqs. (3.45) and (3.46) as

Lg:FD) - Lg:FD) - LW
' ’ (5.11)

= Ly FOWD) + 5, %coto (F. +F,p )

ZZ

Lz.(FD) - Lz.(W®) - Lz.(WD)
' : (5.12)

= - slezcotao(W,i’z)JfW,g))
where F is the Airy stress function of the membrane-like solution given by Eq. (5.5).

Equations (5.11) and (5.12) can be solved by Galerkin’s procedure as follows:

- The compatibility equation (5.12) is solved exactly for the stress function FY in
terms of the assumed radial displacement W, This guarantees that a kinematically
admissible displacement field will be associated with the solution of the other
equation, i.c., the condition of equilibrium. The form F") depends on both the form
of W) and the right-hand side of Eq. (5.12).

- The equilibrium equation (5.11) is solved approximately by substituting therein F)
and W and then applying Galerkin’s error minimization procedure.

For the anisotropic conical shells, one can assume a skewed buckling pattern as

W - Ae*sinkz cos(n@—tkz) 5.1%

Ae?] sin(k]z+n§) + sin(k,z -n6)]/2
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where

k = mn/z, (5.14)
n = n,/sino, (5.15)
k, =k -1, (5.16)
k =k + 1, 6.17)

Here n, is the number of circumferential waves, and tk““’] is introduced in order to take
into account the coupling between the changes of curvature and twist in the bending
stiffness matrix [D].

Notice that the above assumed displacement satisfies the prescribed boundary conditions:

W =0 atz=0and z = 2,

Substituting Eq. (5.13) into Eq. (5.12) yields the following linear homogeneous partial
differential equation for F(

L;.(F’m) = sin(klz+n-9-)(c1 +C,e %) + sin(kzz—né)(c3+c4e'z) (5.18)

+ cos(k,z + n§)(cs+c6c'z) + cos(kzz—né)(c7+cse'z)

where the coefficients c; (i = 1 ~ 8) are listed in Appendix A3.2.

Using the method of undetermined coefficients one can obtain an exact particular solution
for Eq. (5.18) as

FO = sin(k,z+n8) (b, +b,e ) + sin(k,z-nB) (by+be ™) 5.19)

+ cos(kyz + né)(b5+bse‘z) + cos(kzz—n§)(b7+b8e'z)

where the coefficients b; (i = 1 ~ 8) are listed in Appendix A3.3.
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Substituting now for F" and W into the equilibrium equation (5.11) and regrouping
yields the ‘error’ as

é(z, ) = sin(k,z + n0) (d,e* + de? + d; + de™)
+ sin(k,z - n0) (de? + de? + d, + dee™
ky s 6e” + dy + dy 5.20)
+ cos(k,z + nB) (dge? + dye? + dy; + dpe™

+ cos(k,z - nB) (dy,e% + dye? + dys + dye™
where the coefficients d; (i = 1 ~ 16) are listed in Appendix A3.4.

Next, the ‘error’ can be minimized with respect to the assumed function by applying
Galerkin’s procedure. This involves the following integral

2xsina z,

[ [&@ Be*tsinGzem) + sindez-nB)}dzdb = 0 .21

For the sake of simplicity the following notation is introduced

2nsino z,

L= [ [CO%(sin(kz+nd) + sink;z-nd)) dz b (5.22)

where C® (i = 1 ~ 16) are the relevant parts of Eq. (5.20) involving the coefficients of d,.
Details of L, (i = 1 ~ 16) are listed in Appendix A3.5.
Finally, back-substituting the integrated L into Eq. (5.21) and regrouping yields the

characteristic equation involving the eigenvalue as a function of m, n and 7, for the
anisotropic conical shells

16
XdL =0 (5.23)

i=l

Notice that d,, ds, dg and d,; involve only hydrostatic pressure, while dj, d;, dy; and d;s

S
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involve only the axial compression.

5.3.2 Applications of Computer Algebra systems

Because of the rather cumbersome analytic calculations involved in carrying out
Galerkin’s method, extensive use is made of Computer Algebra systems. All the symbolic
calculations involved in the derivation of Eq. (5.23) can be carried out by the REDUCE-
based package GMACS, Galerkin Method for Anisotropic Conical Shells. GMACS
consists of five blocks. They are

GMACSO is for the derivation of prebuckling and buckling governing equations.
GMACSI is for the derivation of coefficients in Egs. (5.18) and (5.19).

GMACS? is for the derivation of coefficients in Eq. (5.20).

GMACS3 is for the calculations of the integral L, (i =1 ~ 16).

GMACS4 is a sub-block of GMACS3, and is used to carry out some necessary
trigonometric simplifications.

The flow chart of GMACS is shown in Figure 5.1. The equivalence between the notations
in the text and in GMACS is listed in Table 5.1. The source program of GMACS is given
in Appendix A3.1.

REDUCE
v Y
IN GMACS0$ IN GMACS3$

1 Y
CONT? OUTPUT I
v
NO
[
LET N=1$

Y
CONTS

[
Y i

IN GMACS1$ IN GMACS2$
OUTPUT Ci,Bi OUTPUT Di

Fig. 5.1 Flow chart of REDUCE-based package GMACS
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Table 5.1 Equivalence of notations

In text In GMACS

A’ B D aij  bij dij
M, M, M, mll m22 ml2
N, N, Neo nll 022 ni2
g, € €0 epll ep22 epl2
%e Xe Yso k1l k22 kiI2
w  F© W) F(o)

wh B w(Q) FQ)
0§ « A 5 th a A sl

5.3.2 Checking the correctness of critical load equation

As mentioned earlier, the characteristic equation (5.23) is derived via the Computer
Algebra system REDUCE. The correctness of Eq. (5.23) is confirmed by comparing it
with results obtained by the Computer Algebra system Maple. In the following comparison
will also be made with some known results for classical orthotropic conical shells.

For classical orthotropic conical shells it is found that

C,=¢C =¢ =¢C =0

C1=C3, C5=C7

b, = b, = by =bg =0 (5.24)
b, =b;, bg=1b
7, =0
After substitution, one obtains
d, =d,, =d,, d, = d,,
1 = ds d; = 4, , = dg 5.25)

dg = dy3, dy; = dys, d), = dyg
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Substituting Eqgs. (5.25) into Eq. (5.23) yields

2A,d, + 2Ld, + 2Ld, + 2Ldy + 21,d), + 21,d), + L(d,+dg) = O (5.26)

For pure axial compression, Eq. (5.26) becomes

2Ld, + 2L,d, + 2L,,d;, + 20,4, + L(d,+d) = 0 (5.27)

For pure hydrostatic pressure, Eq. (5.26) becomes
21d, + 21, d, + 2Igdy + 21,d;, + I,(d,+dg) = 0 (5:28)
By substituting the coefficients I, and d; and regrouping, one can rewrite Eq. (5.26) as

Al-e ™5tk zst (k3D (-e ML

+

2 2, =E 2
c (4k*“+1) tano,, 2tano, Y. o 16¢ (5.29)
pE™-1)st[2(k*+2n%) + 1]
2c(4k?+1) tana,
where
- - _n2y2 - -
Voema = D &3-2) + Dj,[1 + (11 ';2) ] + 2(Dy, + 2D )n? (5.30)
+
Voo mn = An(-nD% + (A]) + Agyk? + AZk" + (247, + Agg)n’k? (53D
By imposing the following restrictions used by Schiffner(®!
z, =In(s,/s) 1 , (s,/s) S e (5.32)

and
k2>>1 , n2>>1 (5.33)
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Equation (5.29) becomes

2ctana, 2,57 k?

x’ = - - o — =
(1-e™)s,;t 2tan’o [A]n + (A]+A5)K? + Apk® + 2A+Ag) n°k?]

_ - ™ ﬂ4 N* ]
(1-e %) t2[D,,k2+D22(1+F) +2(Dy, +2Dgg)n*] (5.34)

+

16¢?

P -1)s;t(k>+2n?),

4ck’tano,

which is identical with Eq. (3.16) of Ref. [89].

Notice that the eigenvalues depend on the wave number m, n; and the geometrical
parameters of the given conical shell. The classical buckling load is the lowest of all the
eigenvalues.

Introducing the nondimensional constant R such that R = Mp, then Eq. (5.29) can be
written as

A 4 pe*[2(k?+2n?) + 1] _ RF + pe®[2(k?+2n?) + 1]
2(2k2+1) 2(2k2+1)
(5.35)
@kt uma, -z, s22+) (167 t’?ﬁ.mn]
= + ALY
(1-e7)s,t(2k%+1) 2tan’e, ¥, 16c?

Regrouping yields the critical buckling load
s 1 ¢ (4k%+1) tance, : z,s (k?+1)
T g €CI2AKR20741] (1-e s, t@k%) 2tan’, ¥y

2(2k%+1) (5.36)

(1 - -210) IZ?ED f,m,n

16¢?

+
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For pure axial compression (p = 0), one obtains the critical buckling load as

¢ (4k2+1) tancr, [t2(1-c'2‘=)7§.mn s2z,(1+k?)
L+

A, = E (5.37)
(1-e*)s, t(1+2k?) 16c? 2tan’o, ¥, 0
For pure hydrostatic pressure (A = 0), one obtains the critical buckling load as
2 2 1- -2z, =E 2 2
5 - ¢ (4k“+1) tana, t“(1-e )YD',m.n . 5, 2,(1+k%) (5.38)
(€*-1)s, t[1+2 (k*+2n?) ] 8c? tanot, ¥,

5.3.4 Numerical results for critical buckling loads

To confirm the correctness and to ascertain the accuracy of the present theory, compari-
sons of results from present analysis with those of previous investigations are needed. To
carry out the comparisons, however, the analytic solution of Eq. (5.23) should be
converted to a numerical code so that one can obtain the critical buckling loads for the
different loading cases and shell geometries.

So far the Computer Algebra systems have been used successfully for doing some
involved analytic and symbolic calculations. However, being able to carry out lengthy
symbolic calculations is not their only advantage. Some of the Computer Algebra systems
are also able to generate the numerical codes directly from the final analytic results
obtained from symbolic manipulations, such as, REDUCE and MAPLE can convert the
symbolic expressions to Fortran codes automatically, Mathematica can generate both
Fortran and C codes. With the help of this unique power of Computer Algebra systems,
one can easily obtain some numerical codes without much extra programming work,
although the resulting numerical codes may be not optimized. This capability of combi-
ning some analytic calculations with some numerical computations, not only enlarges the
field of possible applications of Computer Algebra systems, but also creates challenges
and demands for the development of some new algorithms!*5%16%),

A Fortran source program SANAC, Simplified ANalysis of Anisotropic Cones!!®, is
generated for the calculation of critical buckling loads with the help of REDUCE. In the
following some numerical results are presented and compared with other known critical
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buckling loads. Notice that in the following calculations for pure hydrostatic pressure A=
0; for pure axial compression p = 0; for external lateral pressure P = -mps, ’sin’a,; whereas
for combined loading, the nondimensional axial load parameter A is fixed and the lowest
value of p is calculated.

Isotropic Conical Shells

Axial compression

In Table 5.2, some critical buckling loads of isotropic conical shells under axial compres-
sion obtained from the present theory are compared with those obtained by Baruch et

al.%%], As can be seen the results from the present theory agree well with those of Ref.
[55).

T Table 5.2 Classical buckling loads ) of isotropic conical shells under axial
compression (R,/t = 100, v = 0.3)

IR, =02 /R, = 05
%’ Baruch et al.*% Present theory Baruch et al.l55) Present theory
0.5 1005 (7) 1.0002 (1,6) 1.002 (8) 1.0017 (2,8)
1 1005 (7 1.0002 (1,6) 1.002 (8) 1.0017 (2.8)
2 1005 (7) 1.0001 (1.6) 1.002 (8) 1.0017 (2.,8)
5 1.006 (7) 1.0001 (1,6) 1.002 (8) 1.0017 (2,8)
10 1.007 (7) 0.9999 (1,6) 1.002 (8) 1.0017 (2.8)
30 1017 (5 0.9995 (1.4) 1.001 (7) 1.0013 (2,7)
60 1.144 (0) 1.1176 (1,0) 1.044 (7) 1.0015 (1,7

Notice that the first numbers in brackets indicates the half wave number along the

generator, while the second one and the single number in brackets indicate the full wave
number along the circumferential direction. L is the slant length of the truncated conical
shell.
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Hydrostatic pressure

Some results of present theory are compared with those obtained by Seide!*!), and shown
in Table 5.3. As can be seen the agreement is good.

Table 53 Hydrostatic buckling pressures of isotropic conical shells

o,=5° o, = 30°
Seide!*!! Present theory Seide!*! Present theory
LR, | Rt
p/E n p/E n p/E n p/E n

05 | 250 | 1950(6) | 15 | 1.951(-6) | 15 | 1.160(6) | 14 | 1.175(6) | 14
500 | 3351(7) | 18 | 3352¢7 | 18 | 204 (7 | 17 | 2026¢7) | 17
700 | 1201 ¢7) | 20 | 1200 ¢7) | 20 | 7.199¢8) | 19 | 7270(-8 | 19

20 250 | 4.161(-7) 8 4.176 (-7) 8 1.831 (-7) 9 1.984 (-7) 9
500 7372 (-8) | 10 | 7.402 (-8) 10 | 3217(8) | 11 3.474 (-8) 11
750 | 2.660(-8) | 11 2.670 (-8) 11 1.165(-8) | 13 1.258 (-8) | 12

Numbers in brackets denote exponent of factor of 10 by which number should be
multiplied.

Combined hydrostatic pressure and axial load

Calculations are also made for isotropic conical shells under combined hydrostatic pressure
and axial load. A is assumed to change from -1.0 to +1.0 by steps of 0.2, while the
minimum buckling load p is calculated for the specified A. Note that the negative values
of A denote axial tension. The results from present theory are compared with those from
Ref. [161], and listed in Table 5.4. The agreement is good. Notice that the critical
buckling pressure p increases in the presence of axial tension, and decreases as the fixed
axial compression A is increased.
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Table 54 Critical buckling loads of isotropic conical shells under combined
hydrostatic pressure and axial load (LIR; = 0.5, R/t = 250)
a,=5° a, = 10°

A Seide!'6! Present theory Seidel16!! Present theory
p/E n pE n p/E n p/E n
08 | 4602 (-7) 13 | 4582 (-7) 13 4276 (-7) 13 4285 (-T) | 13
06| 8559 (-7) 13 8.566 (-7) 13 8.065 (-7) 13 8.077 (-7) 13
04 | 1253 (-6) 13 1.254 (-6) 13 1.179 (-6) 14 1.181 (-6) 14
02| 1.606 (-6) 14 1.605 (-6) 14 1511 (-6) 14 1.531 (-6) 14
00| 1950 (-6) 15 1951 (-6) 15 1.833 (-6) 15 1836 (-6) { 15
02| 2258 (-6) 15 | 2.257 (-6) 15 2.126 (-6) 15 2129 (-6) | 15
-04 | 2.556 (-6) 16 | 2.557 (-6) 16 2404 (-6) 16 2408 (-6) | 16
-06 | 2828 (-6) 16 | 2.829 (-6) 16 2.664 (-6) 16 2668 (-6) | 16
08 | 3.091 (-6) 17 3.092 (-6) 17 2908 (-6) 17 2913 (-6) 17
-1.0 | 3333 (-6) 17 3.335 (-6) 17 3.140 (-6) 17 3.145 (-6) 17

o, =20° o, = 30°

\ Seidel!s!! Present theory Seide!!6!! Present theory
p/E n p/E n p/E n p/E n
0.8 3.587 (-7) 13 | 3614 (-7) 13 | 2678 (-) | 12 | 2711 (-7) 12
0.6 6.733 (-7 13 6.770 (-7) 13 5156 -7y | 13 5230 7 13
04 9.849 (-7 14 9912 (-7) 14 7444 (-7) | 13 7537 -1 13
0.2 1.260 (-6) 14 1.267 (-6) 14 9600 (-7) | 14 | 9741 (-7) 14
0.0 1.529 (-6) 15 1.539 (-6) 15 1.160 (-6) | 14 1.176 (-6) 14
-02 1.772 (-6) 15 1.782 (-6) 15 1.347 (-6) | 15 1.367 (-6) 15
-04 2,004 (-6) 16 | 2.017 (-6) 16 1523 (-6) | 15 1.545 (-6) 15
-0.6 2220 (-6) 16 | 2234 (-6) 16 1.686 (-6) | 16 1.712 (-6) 16
0.8 2424 (-6) 17 | 2440 (-6) 17 1843 (-6) | 16 1.870 (-6) 16
10 | 2617 ¢6) | 17| 2633 (6) | 17 | 1987 (:6) | 17 | 2017 (6) | 17

o
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Table 54 continuation
o, = 45° a, = 60°

N Seidel!6! Present theory Seide!6!) Present theory

p/E n p/E n p/E n p/E n
0.8 1439 (-7) 11 1480 (-7) 11 5224 (-8) 10 5657 (-8) 10
0.6 2.747 (-7 12 2.841 (-7) 12 9.618 (-8) 10 1.024 (-7) 10
04 3952 (-7 12 4.070 (-7 12 1.395 (-7) 11 1483 (-7) 10
02 | 5005 7) | 13| 5283 (-7) B3l en | 1| | u
0.0 6.142 (-7) 13 6.344 (-7) 13 2.139 (-7) 11 2296 (-7) 11
-0.2 7137 (-7) 14 7406 (-7) 13 2467 (-7 12 2681 (-7) 1l
-04 8.051 (-7) 14 8335 (-7) 14 2.785 (-7) 12 3.018 (-7) 12
-0.6 8928 (-7) 15 9.261 (-7) 14 3.083 (-7) 13 3.345 (-7) 12
-0.8 9.733 (-7) 15 1.009 (-6) 15 3358 (-7) 13 3.662 (-7) 13
-1.0 1.052 (-6) 16 1.091 (-6) 15 3631 (-7) 13 3.944 (-7) 13

Notice that numbers in parentheses denote exponent of factor of 10 by which number

should be multiplied.

Classical Orthotropic Conical Shells

Some critical buckling loads for classical orthotropic conical shells under hydrostatic

pressure are compared with values published in Ref. [79]. The results are listed in Table

5.5, which show that the solutions from present theory agree approximately with those of

Ref. [79]. The differences are probably due to the use of different approximations for the

description of the buckling pattern.
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Table 5.5 Critical buckling load of classical orthotropic conical shells under
hydrostatic pressure (EJEy =2.591, vy = 0.09)

Typical Singer™ (p/E)x10° | Present theory
shell o’ | Rt LR, t — > worm (p/E)x10°

1 30 28795 1 0.1 0.2065 0.2041 0.1695 (1,13)
2 75 556.30 0.518 0.1 0.0145 0.0142 0.01026 (1,14)
3 30 287.95 3 0.1 0.0438 0.0418 0.04279 (1,10)
4 60 168.90 6.178 0.0157 0.0184 0.0133 0.02169 (1.8)
5 75 188.39 5.539 0.0157 0.00601 0.00428 0.00673 (1,7

Anisotropic Conical Shells

Since no results for anisotropic conical shells are available in the literature, comparison is
made with anisotropic cylindrical shells under axial compression using also the simplified
Donnell-type theory!'®? by taking the semi-vertex angle o, = 0.1° The geometric and
material properties of the anisotropic cylindrical shell used in the calculations can be
found in Table 5.6.

Table 5.6 Booton’s anisotropic shell (30°, 0°, -30°), (R,/t = 100, t = 0.0267 in., Z = 400)

&s 1.3751
-0.7582  2.6292 0.

-0.7582 0. N, 0. 0. 0.1785 || %

N, |+ L |o. 0. -0.0096 || ¥,
2c

0.7430  0.1965

Yo | 0.

0. 48885 )N, 0. e

0. 0. -0.7430 || Ns 05634 02214 0.

-0.1965 || Ny | + D]0.2214  0.3898

e

=tlo 0.
2c

M, +M,, -0.1785 00096 0. |N,| [0 0. 0.1856)
= A

where ¢? = 3(1-v?), D = Et¥/4c?, E = 5.83x10° psi, v = 0.363.

The critical buckling load parameter A calculated from the present theory is 0.4072 with
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five axial half waves and six circumferential full waves. This result is the same as that of
Ref. [162]. Besides, it should be mentioned that unlike the cases of isotropic or orthotropic
conical shells, the critical buckling load of anisotropic conical shells corresponds to a non-
zero T, where in this case 7, = -1.0.

Summarizing one can state that the present theory yields results that are in fair agreement
with those of other investigations. More comparisons and results can be found in Ref.
[158].

5.4 On the Behavior of Conical Shells as the Cone Angle Approaches
Zero

The buckling load discontinuity of perfect isotropic conical shells with classical SS3
boundary conditions under axial compression was first observed by Baruch, Harari and
Singer’®>1%%], Although it has been more than twenty years since then, a clear explanation
for this unexpected phenomenon is still needed, due to some continuous confusions about
this problem in the open literature.

5.4.1 Problem description

It is well-known('%+1%) that in the case of simplified analysis for cylindrical shells under
axial compression, low buckling loads (half of the classical one) occur for SS1 and SS2
boundary conditions, while for SS3 boundary conditions the critical buckling load is one.
However, by using a solution based on displacement formulation in which different
boundary conditions are fulfilled in an exact manner, Baruch et al.l'®¥ obtained low
critical buckling loads (less than half of the classical value) for isotropic conical shells
with the following ‘classical simply supported’ boundary conditions

SS3:N,=v=W=M, =0

The low buckling load corresponds to axisymmetric mode, and occurs even for small cone
angle (o, = 0.5°). This result was unexpected, since one would expect that the in-plane
boundary effects for a cylindrical shell and for a conical shell with small semi-vertex
angle would be similar. Thus, for the SS3 boundary conditions the transition from conical
to cylindrical shell is not as smooth as it is for the other boundary conditions. In other
words, it seems that there is a discontinuity phenomenon.
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In order to verify these unexpected results, the axisymmetric buckling of the axially
compressed conical shell was also analyzed by Baruch et al.l'*! via two other different
methods: a closed-form solution using Hankel functions and a finite difference solution.
Calculations by these two alternative methods confirmed the results obtained by the
displacement method.

However, the story is not yet finished. It was the believe of the author of this thesis that
by making the semi-vertex angle o, smaller and smaller, finally one would possibly find a
"boundary layer”" type behavior. In other words, if o, approaches zero the discontinuity
phenomenon may disappear. Therefore, it was decided to reexamine carefully this
phenomenon by using the closed-form solution in Hankel function suggested by Baruch et
al.'%% with the help of some advanced Computer Algebra systems, such as MAPLE.

5.4.2 Closed-form solution using Hankel functions
Following the procedure suggested by Baruch et al.l'%*), the analysis is carried out in non-

dimensional form, and the non-dimensional quantities are obtained by dividing the original
displacements and coordinates by s,. For example

X =5s/s
u* =u/s, (5.39)
w* = W/s,

The equilibrium equations for the axisymmetric buckling mode are obtained from Eq. (3.8)
as

(KN, = N
(5.40)

(xM,),, - My, + s Ngcotor, + s,(xN w,),, =0

Substituting the first of Eqs. (5.40) into the second and integration yields

(xM,),, - My + s;xNcoter, + s,xN_w, = - (D/s)K 5.41)
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where K is a constant of integration.

Substituting the constitutive relations of isotropic conical shells into the first of Egs. (5.40)
and Eq. (5.41) yields

U + Ufx — u*/x2 + [w¥x? - (v/x)w,; Jeota, = 0 (5.42a)

()XW )y ~(1/xD(xW,1 ), + (Phsin2o )(s,/D)( xw,; /x2) 5.428)
+ 12veola, (s,/)%( w*/x ) - 12(s,/0)%cotar (u,; +vu®/x) = K/x

where u” and w" represent the dimensionless displacements, t is the wall thickness, P is
the applied axial load, and

D = Et¥/12(1-v?) (5.43)
By applying the differential operator’®Z!

2
2d d
X e + 3x
50+ 350

on Eq. (5.42b) and substituting Eq. (5.42a) into the resulting equation yields
X2f, 00 + 2xf,, + 2kAxf, + k*f = 0 (544

where

£ = (xwp),

_uyil2
k = [12(1-v¥)]¥(s ft)cota, (5.45)
A = P/Pcl

., = 2E?mcos?a /y3(1-v?)

P
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Notice that Eq. (5.44) is of the 6" order in w', which can also be written as

2 2
a3 by xd +byf=0 (5.46)
dx? dx?
where

b, = k(A +iy1-A%)

b, =k - iy1-2?) (5.47)
i= T

It is assumed that A<1.

The solution of Eq. (5.46) is

£ = (xW )y = - b [C (26 ) HY (24bx) + €, (2bx) BP (2/bx)1] 548

- b, [G (2fb,x YH® (2fb,x) + €, (2o, B (24fb,%) ]

where Hi@) is a Hankel function of kind j and order i.

Further, integrating Eq. (5.48) twice yields

w* = GU2H@fox) + @b 0H" 2o )
+ Gl2HP ) + foEPRfbx0)
+ G2HP@fo0) + fo,0H" 2oy} (5.49)
+ cl28Pfbyx) + @foHPRfb0)

+ Cg + Cylnx

Notice that Eq. (5.42a) can be rewritten as




139

X3*/x), ), = (Vxw,s - w*)coto, (5.50)
Substituting Eq. (5.49) into Eq. (5.50) and carrying out the integration yields

ueoter, = C{42b) HP@ox) + 2vH2)bx))
+ Cla o) HP2 o) + 2vHP 2 o))
+ iAo HO@byx) + 2vEP 2 fbyx)) G.3h
+ 4o HPQ o) + 2vHP2fb0))
+ C5 + Cgllnx-v-Ad/2x)
where

d = (ts,)tanc y4(1+v)/3(1-v) (5.52)

Since here the arguments of the Hankel functions are large, they can be evaluated by using
the asymptotic expansions of Watson!167],

In order to avoid the use of complex constants C,, ..., C4 the following transformation is
used

C=TB (5.53)
where

1 i 0 0 0 0
0 0 1 i 0 0
T - 0 0 1 -i 0 0 (5.54)
1 - 0 0 0 0
0 0 0 0 1 0
10 0 0 0 0 1
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By satisfying the SS3 boundary conditions one obtains,

AB =0 (5.55)

where A and B are real, and the 6x6 terms of the matrix A are functions of A. A, is the
buckling load which makes the determinant of A zero.

The calculations were performed by using a MAPLE program with very high accuracy. A
was calculated for very small semi-vertex cone angles (0.5°< o, <0.005°), and it was
found that the buckling load is always very close to 0.5. In other words, for SS3 boundary
conditions the transition from conical to cylindrical shell is indeed discontinuous.

5.4.3 Explanation for the discontinuity

The explanation of this unexpected phenomenon was first given by Koiter!!%®. He sugge-
sted that a rigid body translation permitted by this boundary condition is incorporated in
the solutions. Thus, the corresponding buckling mode of a conical shell is nearly identical
with the buckling mode of a cylindrical shell with radially free edges, which will certainly
lead to a low buckling load!®).

The existence of a rigid body translation can be easily proven from the analytic solution
expressed in terms of Hankel functions. From Eqs. (5.49) and (5.51) one of the exact
solution reads,

*

u”* = cota_ C
03 (5.56)

W'=C5

which clearly represents a rigid body motion of the conical shell. However, it must be
emphasized that, as expected, solution (5.56) does not cause any internal forces. It is
needed for the fulfillment of the boundary conditions.

In practice, however, the large translations that accompany the low buckling loads with
$S3 boundary condition cannot occur. Therefore, the classical SS3 boundary conditions
defined here are not an appropriate representation of the boundary conditions that occur in
practice for conical shells under axial compression. A modification for the ‘classical
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simply supported’ boundary conditions of conical shells was proposed by Seide as type 7
of Table 4.1. Calculations by using this modified SS3 boundary conditions show that, as
expected, the corresponding buckling load is about one.

Still another question could be asked, namely, if a very steep conical shell with SS3
boundary conditions can yield a low buckling load, then a cylindrical shell having some
initial geometric imperfection in the form of the corresponding conical shell with SS83
boundary conditions would be also expected to yield the same low buckling load.

However, analysis shows that this never occurs for a cylindrical shell. Thus, one must

conclude that the above mentioned results for conical shells are not realistic. The final
elucidation of this question comes from personal communication with Prof. Koiter!'®%), It
is concluded that although the case of cylindrical shells looks like that of the conical
shells, in fact, they are different in the sense of no rigid body translations being permitted
in the calculations of imperfect cylindrical shells.

5.5 Discussions and Conclusion

The existence and nonexistence of membrane prebuckling solution for anisotropic conical
shells are examined. The results indicate that real membrane solution usually does not
exist for the case of anisotropic conical shells.

There exist no closed-form solutions for the nonlinear axisymmetric prebuckling equations
of anisotropic conical shells. Also for the linearized prebuckling equations there are no
general closed-form solutions available. This is different from the situation of anisotropic
cylindrical shells, where the closed-form prebuckling solution is always available because
the corresponding prebuckling differential equations with constant coefficients are linear.
For the case of perfect isotropic conical shells, there is a closed-form solution for the

corresponding linearized prebuckling equations!*®3%],

The use of membrane-like prebuckling solution, i.e., membrane prebuckling stress state
with omission of prebuckling deformation terms has been the general practice in buckling
analyses of conical shells. Employing such simplified analysis will lead to a significant
reduction of the analysis effort and increase the computational efficiency, although the
corresponding solutions are not always in fair agreement with experimental results.
Nevertheless, the corresponding results can provide at least some qualitative references.
For more accurate analysis, a rigorous solution of the prebuckling state is needed.



142

Galerkin’s procedure is used to solve analytically for the classical critical buckling load of
anisotropic conical shells. To overcome the lengthy analytic and symbolic calculations that
occur in Galerkin’s procedure, A REDUCE-based program GMACS is developed, which
can be used to derive the final algebraic equation of the critical buckling load efficiently.
Further, a Fortran program is generated automatically by REDUCE to calculate the
classical critical buckling load from Eq. (5.23) for different kinds of conical shells. All the
effort indicates that the use of some Computer Algebra systems is vital for the simplified
buckling analysis of anisotropic conical shells.

Some numerical results are obtained according to the present theory and compared with
those of previous investigations. The agreement is essentially good. Therefore, the cor-
rectness of the present theory is insured. The results obtained from present theory can be
used as preliminary solutions for practical applications or as starting values for some more
rigorous theoretical analysis.

The discontinuity phenomenon in the transition from conical to cylindrical shells under
axial compression with classical SS3 boundary conditions is reexamined with the help of
analytical solutions derived with MAPLE. The speculation over the existence of some

boundary layer type behavior is eliminated.
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Chapter 6
Rigorous Bifurcation Buckling Analysis
of Anisotropic Conical Shells

6.1 Introduction

In the previous chapter the simplified buckling analysis is carried out by using a membra-
ne-like prebuckling solution and employing Galerkin’s procedure. However, as mentioned
earlier, it happens frequently that the solutions obtained from the simplified analysis are
not in fair agreement with the experimental results. Therefore, as an improvement for the
previous simplified analysis, in the following a rigorous treatment for the bifurcation
buckling behavior of perfect anisotropic conical shells will be presented. This rigorous
bifurcation buckling analysis is carried out by including the effects of boundary conditions
and using nonlinear prebuckling deformations, based on the nonlinear Donnell-type theory.
The principal objective of the present investigation is twofold: First, the results can be
used as an approximation for the actual failure load and mode, and secondly, it is the first
step for the initial postbuckling analysis suggested by Koiter™ to investigate the imper-
fection sensitivity of the critical buckling load. The final aim of this research is to esta-
blish a reliable and improved design criterion for the buckling instability of various kinds
of conical shells.

Besides, as a preliminary effort to account for the physical imperfection consisting of
variations of the wall thickness and stiffness coefficients that occur when laminated
composite conical shells are made by filament winding, numerical studies are also carried
out according to the previously suggested formulae (see chapter 2) for the equivalent con-
stant wall thickness and stiffness coefficients.
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6.2 Theoretical Analysis

To facilitate the rigorous bifurcation buckling analysis which takes into account the exact
form of boundary conditions and nonlinear prebuckling deformations, first, the ordinary
differential equations for the prebuckling problem will be further simplified, while the
equations for the buckling problem will be regrouped for later uses.

6.2.1 Prebuckling governing equations

Observation shows that the nonlinear differential equations (3.51) and (3.52) can be
integrated once, and reduced to two third-order ordinary differential equations as

ALE" + ALY - ALfL - ALf, - (2s,sino ) [Byw,”

+ (1-32.2+1—3;1-§1.1)W;I + (Ez;—ﬁl.z_ﬁl‘l)w; - l-31.2Wu] ©.D

Z Sl / z
= (-e’c/sina ) [cotor (w,+wg) + (1/2s)(w,+w,)’] + ke
ﬁztlf;” + (1_32‘1'*]-3-1.1 'ﬁ;z)f: + (E;l _E;z‘ﬁ;z)f; - E1'2fo

+ (U2ssina ) [D;w." + D;w! - Dw. - Dyw,]

6.2)

= 2e%c(w +w(f,+f) + (2e’cs, cotar /t)(f, +f))
+ e*pcs, cot’or /(tsina ) + ke*
where k, and k, are constants of integration.

By enforcing the periodicity condition (see Appendix A2.1 for details), one obtains

k =0 (6.3)

By satisfying the equilibrium condition H = H (see Eq. (4.39)) at the boundary, one
obtains

k, = 2Acs,cot’e / (tsinet ) (6.4)
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Introducing the new variables defined by Egs. (3.65), Eqs. (6.1) and (6.2) can be further
simplified as

Rz‘zq)” - ‘7\1‘1‘9 - (t/25,sin<xo)[§2°l\y” + (§2.2_§1‘1)WI - ﬁl.z"’]

(6.5)
= (-e*c/sina, ) [cota, ¥ + (¥2s)y?]
B,0” + (B,-BL)¢’ - Bo + (2ssina) (Dy"-Dow)
= 2e*coy + (2e*cs, cota /)¢ + ¥ pcs, cot’a f(t sinar ) (6.6)

+ 2e*Acs, cot’o /(t sinat, )

Equations (6.5) and (6.6) form a set of two nonlinear, coupled and inhomogeneous
ordinary differential equations governing the behavior of anisotropic conical shells in the
axisymmetric prebuckling state. Due to the nonlinear nature of the above equations,
anything but a numerical solution is out of question.

In order to be able to use the ‘shooting method’ to solve the nonlinear prebuckling
equations, it is necessary, by considering Egs. (6.5) and (6.6) to eliminate the ¢" and "
terms. Some regrouping makes it possible to write the resulting equations as

Q" =80  + 80 + W + Ey + et + 8Ly + Leoy 67

+ ey + 8™ + & A

(- a ! A A / A A ~
L AR A R A TR I Gy +C e’ 68)

P

+ &Y + Ce™y? + C e’ + e h
where the coefficients €; (i=1 ~ 19) are listed in Appendix A4.1, the nondimensional load
parameters p and A are given by Eqs. (5.3) and (5.4), respectively.

6.2.2 Buckling governing equations

The ordinary differential equations governing the behavior of the buckling state of
anisotropic conical shells have been given as Egs. (3.61)-(3.64). In order to be able to use
the ‘shooting method’ to solve the above differential equations it is necessary, by
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considering Egs. (3.61) and (3.63), to eliminate the w," term from Eq. (3.61) and the £,
term from Eq. (3.63). Similarly, by considering Eqgs. (3.62) and (3.64) one must eliminate
the w," term from Eq. (3.62) and the £, term from Eq. (3.64). Finally, some regrouping
makes it possible to write the resulting equations as

"

v " " / " / " "
cfi + Cfl +Cfy +cf +cfy +cfy + cfy + Cowy + Cywy

W

/ " " / PN
+ CoWy + C W, + C Wy + CWy + C Wy + €€ (f; +f)

(6.9)
+ c et (wy+w)) + ce’[fiy + £l +y) + wie + wi(e/+9)]

+ c et (fy+w,0) + cwez[Wl”‘l»‘ + Wiyl + cetw Y

/1 " / 1 " / m "
+efy +cfy +cf, —cfy - cff - cfi + cwy + Cwy

= ¢,f;

iv

F
I

/ " " / el gl
+ CyWp + CW, = Wy = Cpwy = Cy Wy + 8% (f +f) 6.10)
N s (w! s W) 21h oy " oy

C e (Wy +Wy) + Cpe KW + O+ + w0 + wy(@ +9)]

+ CQ @ EWAW,0) + C et (WY + W)l + cye Wy

i i 4 / 1 " 7 m
£" = - fl’ + Cf) - cofi + cpf, + cufy - Cufy + €y + W

v Gyl 4 e+ Cpw, + Cpewy” ¢ Wy + CyWs + Cuet (W +w))
6.11)
+ ¢, % (f)+f]) + c e [w; (o’ fi'y + f]

16 1+ 19 19 + wi(o’+9) + fiy + Wy +y)]

i 1/ / 7
+ Cpe (W +f ) + cpe®wiy + wi(y )] + celwy
iv - n 74 ! 1 " / "
£, = - cfy + cfy - cfy + Cpf, — cfi + Cfy = Cpfi + Wy
" / m " / z " /.
+ CpWy + CpWp + CpeW, = Cp oWy = CyyW = Cy Wy + Cy8 (W, +Wy)
(6.12)
+C el(fll f/) Z[ " le ) f” /
16+ + c et w0 + Wy (@'+) + Y + 20V +y)]

¥ Coue (W0 +EW) + ce?[wyy + Wy (Y +Y)] + Cyetw,y
where the coefficients c; (i=1 ~ 34) are listed in Appendix A4.2.

It can be seen that for every n there is a system of linear ordinary differential equations of

-
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the forms represented by Egs. (6.9)-(6.12) with certain boundary conditions given in chap-
ter 4, which forms an eigenvalue problem. Only for nonzero eigenvalues do there exist
nonzero solutions f,, f,, w, and w, which represent the eigenfunctions for the correspon-
ding eigenvalues.

Notice further that the load parameters do not appear explicitly in the buckling equations,
but they enter into the buckling equations implicitly via the prebuckling solution. Thus, the
buckling equations (6.9)-(6.12) represent a so-called generalized eigenvalue problem.

6.3 Numerical Analysis

Due to the highly nonlinear nature of the two-point boundary value problems governing
the axisymmetric prebuckling state and the complicated variable coefficients represented
by the prebuckling solution in the linearized stability equations, anything but a numerical
solution is out of question. There are many numerical methods which may be used to
solve the above problems, for example, the finite difference method, the finite element
method and the shooting method. However, considering the successful applications of the
shooting method for the stability analysis of various cylindrical shells'™'"'"% it is decided
to solve both the prebuckling and buckling problems by employing the ‘parallel shooting’
method.

As mentioned in Ref. [67], parallel shooting over n-intervals is slower than a coarse
standard finite difference or finite element scheme. However, if the length of the intervals
of integration is chosen properly so that numerical instability is avoided, then this method
gives more accurate results. Also since the step size is changed automatically so as to
satisfy the chosen convergence criterion, a single run is sufficient to obtain a converged
solution. Thus it is not necessary to repeat the solution with different step sizes to
ascertain that a properly converged solution has been found, as is the recommended
practice with the standard finite difference or finite element codes.

In the following, two kinds of shooting schemes will be employed in the solution of
bifurcation buckling problem. One uses Keller’s method"*'"'"" by taking the eigenvalue
as one of the unknowns in the iteration step, another uses a generalized version of Stodo-
la’s method®'21¥ of mode iteration. For general descriptions of the ‘shooting method’
the interested reader should consult Refs. [105,106].
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6.3.1 Solution of prebuckling problem

Introducing as a unified variable the 4-dimensional vector Y defined as

Yoo  YW-o Pev Wev
the axisymmetric prebuckling governing equations (6.7) and (6.8) become
g_z. 3= &Y + &Y + Y + 8 YY + (8,7 + &Y

+ &YOYY + &YV + 8™ + EA)
d vo

- (0} a (o) a (0} A © zZ (A () a ()
el &Y, +&,Yy +¢€,Y, +8,Y, +e*(, Yy +¢E,Y,

A (o (o) - ©)xs (0 a a
+ &YV 4 8 YYD 4 86 + S M)

6.13)

(6.14)

(6.15)

The above first order, nonlinear and inhomogeneous differential equations governing the

axisymmetric prebuckling state can be rewritten as

o

4 yo - o,y p) 0<z<z
dz

(6.16)

Neglecting the nonlinear terms in Eqs. (6.14) and (6.15) yields the linearized prebuckling

governing equations as

d . 5 5 " " "
G2 Y2 ¢ &Y ¢ &Y Y v et (&Y ¥ &Y

+ &eZp + &)

d o Av® A v® A vl a w©) 2ra @ A v
EY,, = -&Y, + 8,5 +8,Y," +8,Y" +e*(8,Ys + &Y,

+8,,e%p + & \)

(6.17)

(6.18)
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The linearization of the nonlinear prebuckling equations can be justified according to the

following considerations:

- Suppose that one knows a priori that the nonlinear terms are much smaller than the
linear ones, then one can immediately neglect all the nonlinear terms. Otherwise

- one can neglect the nonlinear terms by imposing some constraint conditions which
ensure that the nonlinear terms are smaller than the linear ones.

- if no constraint conditions are imposed, one can also neglect the nonlinear terms
under the conditions that the reliability of the linearized solution can be checked by
comparing its theoretical predictions with experimental results.

Together with two set of boundary conditions (simply supported and clamped) given in
chapter 4, Egs. (6.14)-(6.15) and (6.17)-(6.18) can be solved by employing parallel shoot-
ing over 2N intervals.

The membrane-like prebuckling solution can also be used in the bifurcation buckling
analysis. They are

Yl(o) -C,0(e®p + )

(6.19)
A

Y$? = e?e,p - e7¢,

where the coefficients & (i = 20 ~ 22) are also listed in Appendix A4.1.
6.3.2 Solution of buckling problem via Keller’s method
The ordinary differential equations governing the buckling state are given by Eqgs. (6.9)-

(6.12). Introducing as a unified variable the 16-dimensional vector Y is defined as
follows

1) (¢} /4 1) 43 7
Y, =w, Ys = w Yy, =w, Yy =w,
a _ m _ o w _ ) 7
Yz = fl Ys = fl Yxo = fz Y14 = f2
(6.20)
w _ 7 W _ O _ / M _ w
Y;  =w, Y; = w, Yy =-w Y5 = -w

W _ g [ [ / 1) m
Y4 —fz Y; “fz le = - f Y16=—fl

1
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then Eqgs. (6.9)-(6.12) become

d O _ o y® m Yo o) ) m
i = ¢ Yy +¢Y +6Y, + Yy, +¢Ye - CYe

z
+ 6 YE + ¢ Y 4 e Y + ¥ + ¢, Y 4 ¢, Yi - ¢, YS"
. ch,(: v er{e (Y, (1)+Y11)) 1‘S(Y(n )) + o, [YC )Y(o) (6.21)
+ YOO + YRYO + YUY OHY)] + 0 (Yo Y
+ YY) + e [YSYD + YO +Y)) + oY Y7}
S_Y;l) - CY(I) +c, Y(l) _ c“)Y4(l) Y(l) Y(l) v Y(l) + Gy Y(l)
dz
+ 6 Y 4 0 YR+ Y+ 0 XS 4 0 Y} - 6 Y5 4 ¢ YY)
+ e e (YYD + e (YO+YD) + ¢ [YEYD + YP(YP+Y)Y) (622)
YOV + YOO T + ¢ (Y4 YY)
+ e [ YRV + YRV YO)] + 0, Y5 Y0
4 y® o cy® - cx® + e YQ - ¢ Y - YO - ¢ YO - YO
dz
+ YR - e Y& 4 e YT - Y - e, Y5 - e, YR - ¢, Y5
(6.23)

- e z { cls(Y(l)"Y(l)) + (Y(l) (1]) + C” [ Y I)Y(") (1)(Y(°)+Y§°))

- YDV - YOO + o (YYOYOYD)

L YPYP - YOYPL Y] + ¢, YY)
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d o M o) 0 o) ) TN 0
EY" = - Yyg - ¢, Y - Y - cpYy - € Ys +CuYi - €Y,

o) o) m o M [N m
+ G Y15 = CyYs + CpYyy = CpuYi = €Yy = € Ypy - €Y

. 5 oo (6.24)
- et o, (YP-YD) + ¢ (YO-YP) + ¢, [YOYE - YRAYV+YS)

(s ©) (D <y (0) (0) (D7 (0} )y (0)
+ Y )Ys - Yo (Y +Y, )] + ¢ (Y, )Yzo +Y; Y.")

(s (0) )~y ©) |, <7 (0) (~7(0)
+ ey [ Y5 Y5 = Y (Y 4 Y, + ¢, YY" )
The above first order, linear and homogenous differential equations can be rewritten as

Dym = (2,790, A), ¥O) = R(z, YO) YO 0<z <z,
dz (6.25)

BPYO(z2=0) + BYYP(z=2)) = 0

where the applied loading consists of axial compression and hydrostatic pressure. They are
assumed to have uniform spatial distributions and are divided into a fixed part and a
variable part. The magnitude of the variable part is allowed to vary in proportion to a load
parameter A. This leads to an eigenvalue problem for the critical load A.. In Eq. (6.25) the
user can select A, to be either the normalized axial load A or the normalized hydrostatic
pressure p. The components of the 8x16 matrices B,” and B, depend on the boundary
conditions at the shell edges, Y is the solution of axisymmetric prebuckling problem.

Further

Rll

=

R Y?) = . (6.26)

‘Rlz Ru
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r

o 0 0 0 0 0 o0 O

o 0 0 0 0 o0 0 O

o 0 0 0 0 0 0 O

o o0 0 0 0 0 O O 6.27)
R, = ’

"o o o 0 0 0 O O

o 0 0 0 0 0 O O

0 0 D D, -¢c,-c, ¢ ¢

0 0 D Dy ¢y ¢ € G

o 0 -1 0 0 O 0 O

o 0o 0o -1 0 O O O

o 0o 0 0 1 0 O O

o o 0 0 O 1 0 O (6.28)
R, =

o o0 0 o0 O O -1 O

o o o O O O 0 -1

D, D, ¢, ¢ Dy Dg ¢, ¢

Dy Dy ¢y € Dy Dy ¢y cy

where the terms D, (i=1 ~ 12) are listed in Appendix A4.3.

To make the eigenfunctions unique, within a sign (for simple eigenvalues), one must use
some kind of normalization condition. Here

z.
Jor®y® + Yz = C (6.29)
0

shall be used, and C is a (positive) constant.

This condition can be written as a differential equation as follows
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‘;_Y{;’ = Y1 + ¥ = £z, Y% A) 0<z<z, (6.30)
Z

with the boundary conditions

YR =0
(6.31)

Y7 @) = C

By adding the above normalization condition to the homogeneous boundary value problem

the eigenvalue can be treated as one of the unknown parameters in the iteration sche-
mel105.107)

The advantage of using the formulations expressed by Egs. (6.20) for anisotropic conical
shells is that together with the corresponding initial conditions the variational equations

W = RW (6.32)
have the following property

W) = W@ W) ‘ (6.33)
W) W@

where W = [W,, W, ..., W], and W (z) are submatrixes.

The derivation of Eq. (6.33) is given in Appendix A4.4. For more details of the solution
procedure the reader should consult Refs. [105,107].

6.3.3 Solution of buckling problem via Stodola’s method

As an alternative for Keller’s method, a generalized version of Stodola’s method®’?

will
also be used for the calculations of the buckling loads and the corresponding asymmetric

buckling modes of anisotropic conical shells.
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It has been shown previously that by introducing as a unified variable a 16-dimensional
vector YO defined as follows

Y& = f

m m M
1 Y, =f, Y; = w, Y = w,,

1

(6.34)
YO <, YO <t o YO =W

one can reduce the system of equations (6.9)-(6.12) to the following nonlinear eigenvalue
problem

:_11_ YO = fOz YO, YO A, B) (6.35)
2

BPYO(z=0) + BYYX(z=2,) = 0 (6.36)

where the components of the 8x16 matrices B, and B, depend on the boundary
conditions at the shell edges. Notice that the 4-dimensional vector

YO = [, ¢/, v, 4 (6.37)

contains the known solution of the prebuckling problem.

Because of the nonlinear dependence of the prebuckling state on the variable load A, in
general it is necessary to approach the critical eigenvalue (for a given circumferential
wave number n,) by the solution of a sequence of modified (linearized) eigenvalue
problems. These equations are obtained by restricting the search for eigenvalue to a
sufficiently small neighborhood of an estimate A = A, so that in this neighborhood the
functions Y have a linear dependence on A. Setting

A=A +p (6.38)

one has to first order in p
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YOA) = YA) + pP(A) (6.39)

where

¥ = 2 _yo (6.40)
oA

Substituting this expression into Egs. (6.35)-(6.36) and using A as the variable load yields
the following modified eigenvalue problem

Z_Y“’ = @ Y9, YO A, ) + ng® ¥, ¥ (6.41)
4
BPYO(z=0) + BPYY(z=2,) = 0 (6.42)

Notice that each of the ‘effective load terms’ is split into a part independent of p and a
second part linear in p. The iteration equations are obtained by setting p = 1 in the second
parts of the ‘effective load terms’ and interpreting the buckling mode variables of these
parts as being known inputs from the previous iteration. Thus the first parts of the
‘effective load terms’ become homogenous terms and the second parts become inhomoge-
neous terms for the equivalent linearized problem of each iteration. Thus one must solve

repeatedly

Z_Y“’ = %@ YO, Y®; A, B) + gV, P7, Ye) (643)
Z

BPY®(2=0) + BPY®(z=2)) = 0 644

where

Y® = buckling mode of the k™ iteration
Y®? = buckling mode of the (k-1)* iteration

After each iteration the corresponding eigenvalue estimate p® is calculated by evaluating
the following Rayleigh quotient
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p® = (0®, u®; o® P, u®)/ (oW, u®; o, u®) (6.45)

where the inner products are defined as follows

(o®, u®; g&-D, y&-D)
= EO « (WO)®, (WO)E-D) 4 (FO)0 4 (WO (WO (6.46)
+ FEOED o (WO, (woym)

where the short hand notation used is

2xsinct, z,
A+®O = [ [sle={eshA+A, +Az) B+B,)(C+C)

[} 0

(6.47)
+ (1fes)) (A, +A, ) B C

- (1/s) A5 [(B+B,)C; + (C+C,)B,5]11d0 dz

The iterations are continued until the sum A® + p® remains essentially constant at the
value A,. A suitable choice for the sequence A® is A" = 0 and A® = A% + (172)p*"
for k > 1, where the ‘relaxation factor’ 1/2 is inserted in order to assure that at each stage
A% < A,. Cohen" has shown that in order to insure that the eigenvalues p™ are real it is
necessary that A,® < A,. For further details of the solution procedure the reader should
consult Refs. [67,173].

6.3.4 Problem of starting values

As mentioned earlier, one of the greatest difficulties in implementing the ‘shooting
method’ consists of obtaining a starting estimate of the initial data which is sufficiently
close to the exact initial data so that the iteration scheme used to find the solution of the
nonlinear problem will converge. In the case of bifurcation buckling analysis of anisotro-
pic conical shells, fortunately, the initial guess for the eigenvalue and eigenmode can be
obtained from several simpler analyses. For example, the Schiffner’s solutions (Galerkin
procedure for an one term deflection function approximately satisfying simply supported
boundary conditions for classical orthotropic conical shells), and the simplified solution of
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anisotropic conical shells (see chapter 5 for details) can be used.
6.3.5 Description of the programs

Based on the successful applications of the parallel shooting method for the stability
analysis of anisotropic cylindrical shells’"'" and the derivations presented earlier, two
Fortran programs for the Bifurcation Analysis of Anisotropic Conical Shells (BAAC) were
developed. BAACI is based on Keller's method, and BAAC2 is based on Stodola’s
“method. Figures 6.1 and 6.2 show the flow diagrams of BAAC1 and BAAC?2, respectively.

For both BAAC1 and BAAC2, in order to start the iteration initial guesses for the
eigenvalue and eigenmode are obtained from the simpler analysis described earlier.

In BAACI, the main loop is the Newton iteration to solve the eigenvalue problem. In each
iteration step, first the prebuckling state and the prebuckling state differentiated with
respect to the load parameter are solved. The converged solutions are used in the integrati-
on of the buckling state. In an early stage of the iteration process a damping factor can be

used for the corrections to guarantee convergence to the desired root!!"”.

In BAAC2 there are three main loops. The first and the second loops are the Newton’s
iterations for solving the prebuckling and bifurcation buckling equations, respectively. The
last one is to solve for the corresponding eigenvalue estimate by evaluating the Rayleigh
quotient.

For both programs, the accuracy of the solution is controlled by the user chosen round-off
error-bound. Because of the inherited characteristics of the ‘parallel shooting method’
considerable speed up can be achieved by using the vectorization and parallelization
facilities on the Convex C3840. Different types of boundary conditions formulated in
terms of W and F, which partially or completely satisfy Seide’s geometric boundary con-
straint, can be rigorously enforced. As an option, rigorous, linear or membrane-like

prebuckling solutions can be used.

For both programs, the solutions of the associated initial value problems and the corres-
ponding variational equations are done by the library subroutine DEQ from Caltech’s
Willis Booth Computer Center, which uses an Adams-Moulton predictor-corrector scheme.
Starting values are obtained by the method of Runge-Kutta-Gill. The program includes an
option with variable interval size and uses automatic truncation error control.
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6.4 Numerical Results

Because of the large number of geometric, material and loading parameters involved in
this investigation, it is impractical to attempt to present numerical results of a general
nature. Rather, it seems more appropriate to present mainly some results for anisotropic
conical shells with short or moderate length. However, before proceeding to these results,
it is necessary to compare computations of the present investigation with those of previous
investigations in order to establish the reliability of the computer programs BAACI and
BAAC2, described earlier.

6.4.1 Comparisons with previous investigations

In the following results obtained from the present analysis are compared with results of
previous investigations. The purpose of this comparison is twofold: (1) to insure that the
results of the present investigation agree with results of previous investigations using a
similar theory (i.e., Donnell-type theory); and (2) to test the accuracy and reliability of the
computer program ‘BAAC’. Notice that in the following calculations the nondimensional
load parameters § and A given by Egs. (5.3) and (5.4) are used, and for pure hydrostatic
pressure A = 0; for pure axial compression p = 0; for external lateral pressure P = -
7ps,Zsin’c,.

Isotropic conical shells

All the cases shown in Table 6.1 are for simply supported (MSS4 and MSS2 boundary
conditions) isotropic conical shells with various geometric properties under axial compres-
sion. All these cases have been treated previously by Baruch et al.”** using a Donnell-type
theory and membrane-like prebuckling solution. As can be seen, the results of the present
investigation using also the membrane-like prebuckling solution are essentially the same as
those obtained by Baruch et al.*. However, it must be emphasized that the results from
SS2 or MSS2 boundary conditions are only for the purpose of comparison, since Donnell
type solutions are inaccurate for the practical applications due to only 2 full waves in the
circumferential direction.

The cases shown in Table 6.2 are for simply supported isotropic conical shells with
various geometric properties under hydrostatic pressure. Cases 1-12 were previously
treated by Seide!” using membrane-like prebuckling solution and the modified simply
supported boundary conditions (type 7). With this type of boundary conditions the shell is
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assumed to be closed by hypothetical bulkheads which are rigid in their own plane, but
free to distort out of their plane, and offer no restraint against rotation of the ends of the
shell. As can be seen, the results of the present investigations are in excellent agreement
with those obtained by Seide. Cases 13-16 were previously studied by Baruch et al.**
using a Donnell-type theory and membrane-like prebuckling solution. As can be seen, the
results of present analysis are almost the same as those obtained by Baruch et al.. Cases
17-18 were first treated by Thurston™ using a finite-deflection theory. He obtained exact
prebuckling stresses and displacement by using Reissner’s finite-deflection theory™™!. For
the buckling analysis, he used the same theory and truncated Fourier series to permit
asymmetric modes. The results shown in Table 6.2 indicate that the present analysis yields
nearly the same results as those obtained using a finite-deflection theory.

All the cases shown in Table 6.3 are for simply supported (type 7) isotropic conical shells
with various geometric properties subjected to combined hydrostatic pressure and axial

load (either compression or tension). They were previously studied by Seide!®! using
membrane-like prebuckling solution. Again, it can be seen that the results from the present

analysis are in excellent agreement with those obtained by Seide.

To summarize briefly, the results shown in Tables 6.1-6.3 indicate that the present analysis
and computer programs adequately predict the instability of isotropic truncated conical
shells subjected to axial load and (or) hydrostatic pressure based on the comparison with
the results of other investigations.
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Table 6.1 Comparison of results of isotropic conical shells under axial compression

(Ry/t = 100)
Previous
investigation [55] Present investigation
Case °
/R, Oy N A
BC. B.C. )
membrane membrane | linear nonlinear
prebuckling prebuckling | prebuckling j prebuckling
1 0.5 1 $S4 1.002(8) MSS4 1.0023(8) 1.0468(8) 0.86447(8)
0.86175(9)
| 2 0.5 2 $S4 1.002(8) MSS4 1.0023(8) 1.0466(8) 0.86539(8)
| 0.86245(9)
3 0.5 5 S84 1.002(8) MSS4 1.0020(8) 1.0455(8) 0.86935(8)
0.86589(%9)
4 0.5 10 | SS4 1.002(8) MSS4 1.0013(8) 1.0432(8) 0.87698(8)
0.87316(9)
5 0.5 30 | SS4 1.001(7) MSS4 0.99937(7) | 1.0304(7) 0.93443(8)
0.93505(9)

0.5 1 §§2 | 0.5191(2) MSS2 0.51899(2) | 0.52380(2) | 0.53056(2)
0.5 2 $S2 | 0.5193(2) MSS2 0.51908(2) | 0.52390(2) | 0.53066(2)
§S2 | 0.5196(2) MSS2 0.51951(2) | 0.52442(2) | 0.53114(2)
0.5 10 | SS2 | 0.5203(2) MSS2 0.52029(2) | 0.52537(2) | 0.53203(2)
10 0.5 30 | SS2 | 0.5203(2) MSS2 0.51990(2) | 0.52602(2) | 0.53246(2)
11 0.5 60 | SS§2 ([ 0.4657(2) MSS2 0.46482(2) | 0.47310(2) | 0.48331(2)
12 2 1 §S2 | 0.5070(2) MSS2 0.50727(2) | 0.50764(2) | 0.51017(2)
13 2 2 §S$2 | 0.5070(2) MSS2 0.50714(2) | 0.50754(2) | 0.51006(2)
14 2 5 S82 0.5076(2) MSS2 0.50688(2) | 0.50735(2) | 0.50988(2)
15 2 10 | SS2 | 0.5075(2) MSS2 0.50680(2) | 0.50738(2) | 0.50996(2)
16 2 30 | SS2 | 0.5098(2) MSS2 0.50904(2) | 0.51004(2) | 0.51319(2)

2

2

0

O R ||
j=]
1.3
(9]

17 60 | SS2 | 0.5181(2) MSS2 0.51750(2) | 0.51918(2) | 0.52432(2)

18
19

80 | SS2 | 0.5415(2) MSS2 0.53994(2) | 0.54301(2) | 0.55618(2)
985 | 10 MSS4 1.0001(6) 0.84404(%)
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Table 6.2 Comparison of results of isotropic conical shells under hydrostatic pressure

Previous investigations
[41, 52, 54] Present investigation
Case | LR, Rt [m | &
LR, (p/E) x 107 p/E x 10™
B.C. B.C.
membrane membrane linear nontinear
[nonlinear] prebuckling prebuckling prebuckling
prebuckling
1 1 250 7 5 Type 7 | 9.024(11) Type 7 9.0244(11) 8.9863(11) 8.9854(11)
2 1 250 7 10 Type 7 | 8.254(11) Type 7 8.2549(11) 8.2167(11) 8.2159(11)
3 1 250 7 20 Type 7 | 6.578(11) Type 7 6.5813(11) 6.5468(11) 6.5466(11)
4 1 250 7 30 Type 7 4.781(11) Type 7 4.7854(11) 4.7591(11) 4.7593(11)
5 1 250 7 45 Type 7 | 2.351(11) Type 7 2.3542(11) 2.3410(11) 2.3415(11)
6 1 250 8 60 Type 7 | 7.507(10) Type 7 7.5272(10) 7.4846(10) 7.4887(10)
7 2 500 8 5 Type 7 | 7.372(10) Type 7 7.3724(10) 7.3709(10) 7.3709(10)
8 2 500 8 10 Type 7 6.383(10) Type 7 6.3828(10) 6.3812(10) 6.3812(10)
9 2 500 8 20 Type 7 4.696(11) Type 7 4.6960(11) 4.6947(10) 4.6947(10)
10 2 500 8 30 Type 7 | 3.217(11) Type 7 3.2172(11) 3.2161(11) 3.2161Q11)
11 2 500 8 45 Type 7 1.451(12) Type 7 1.4510(12) 1.4504(12) 1.4504(12)
12 2 500 9 60 Type 7 | 3.940(14) Type 7 3.9387(14) 3.9352(14) 3.9356(14)
13 [0.5] 100 6 10 SS1 17.70(10) Type 5 17.1630(10) 16.0213(10) 15.6695(11)
14 [0.5] 100 6 10 SS2 18.98(10) MSS2 18.4123(10) 18.6747(10) 18.2916(10)
15 [0.5] 100 6 10 SS3 19.40(11) Type 6 18.8153(11) 17.2162(11) 16.8012(11)
16 [0.5] 100 6 10 SS4 21.65(12) MSS4 20.9974(12) 20.7093(12) 20.1970(12)
17 2 500 8 10 Type 7 | [6.373(10)] Type 7 6.3829(10) 6.3813(10) 6.3813(10)
18 2 500 8 30 Type 7 | [3.202(11)] Type 7 3.2175(11) 3.2165(11) 3.2165(11)
Remarks: 1. Notice that m is the exponent used in the definition of the eigenvalue.

2. In some cases IR, is used instead of L/R,. These cases are identified by
all
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Table 6.3 Comparison of results of isotropic conical shells under combined axial load
and hydrostatic pressure (R;/t = 250, type 7 boundary conditions)

Previous

investigation Present investigation
Case LR, |m |A o, | [161)

(®/E) x 10™ p/E x 10™

membrane membrane linear nonlinear

prebuckling prebuckling prebuckling | prebuckling
1 0.5 6 0.0 5 1.950(15) 1.9497(15) 1.8960(15) 1.8900(15)
2 0.5 6 02 5 1.605(14) 1.6044(14) 1.5742(14) 1.5697(14)
3 0.5 6 04 5 1.253(13) 1.2539(13) 1.2554(13) 1.2554(13)
4 0.5 7 0.6 5 8.559(13) 8.5642(13) 8.9519(13) 8.6048(13)
5 0.5 6 <02 5 2.258(15) 2.2565(15) 2.1775(15) 2.1857(15)
6 0.5 6 -0.4 5 2.556(16) 2.5556(16) 2.4640(16) 2.5057(16)
7 0.5 6 -0.6 5 2.828(16) 2.8280(16) 2.7165(16) 2.8098(16)
8 0.5 6 |00 30 | 1.160(14) 1.1612(14) 1.1254(14) | 1.1223(14)
9 0.5 7 0.2 30 ] 9.600(14) 9.6144(14) 9.4292(14) 9.4009(14)
10 0.5 7 04 30 | 7.444(13) 7.4683(13) 7.4690(13) 7.4755(13)
11 05 7 06 30 | 5.156(13) 5.1865(13) 5.3928(13) 5.2159(13)
12 05 6 0.2 30 | 1.347(15) 1.3470(15) 1.3007(15) 1.3055(15)
13 05 6 -04 30 | 1.523(15) 1.5233(15) 1.4635(15) 1.4871(15)
14 0.5 6 -06 30 | 1.686(16) 1.6854(16) 1.6201(16) 1.6765(16)
15 1.0 7 -0.2 30 | 5.526(12) 5.5242(12) 5.4828(12) 5.4884(12)
16 10 [7 |02 30 | 3.932011) 3.9408(11) 39342(11) | 3.9367(11)
17 1.0 7 0.2 5 7.528(10) 7.5350(10) 7.5278(10) 7.5282(10)
18 1.0 6 -02 5 1.051(11) 1.0515(11) 1.0444(11) 1.0453(11)

Orthotropic conical shells

The cases shown in Table 6.4 are for simply supported (type 6) classical orthotropic
conical shells with various geometric properties under hydrostatic pressure. These cases
were previously treated by Singer et al.” using a Donnell-type theory and membrane-like
prebuckling solution. The results obtained from present analysis are about 15%, 10% and
17% lower for cases 1-3 respectively than those obtained by Singer et al.. The higher
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buckling loads of Singer et al. are probably due to using too few terms in their series type
solutions.

Table 6.4 Comparison of results of classical orthotropic conical shells under
hydrostatic pressure
Previous Present investigation
investigation [79]
Case | |, Ryt o°
MR | R ° (p/E,) x 10° (P/E,) x 10°
B.C. B.C.
membrane membrane linear nonlinear
prebuckling prebuckling | prebuckling prebuckling
1 1 28795 | 30 S83 | 0.2041 Type 6 | 0.17232(12) | 0.16986(12) | 0.16984(12)
2 3 287.95 | 30 S§S3 | 0.0418 Type 6 | 0.03741(11) [ 0.03737(11) | 0.03737(11)
3 6.18 168.90 | 60 §83 | 0.0122 Type 6 | 0.01003(13) | 0.00996(13) | 0.00996(13)

Based on converging polynomial series, which can be used to fulfill the boundary
conditions, Tong et al!® presented some results for buckling of classical orthotropic
conical shells under axial compression with SS3 (type 6) boundary conditions. According
to their results shown in Figure 5 of Ref. [93] it appears that they considered only
axisymmetric buckling modes, which would be incorrect if one wants to find the minimum
buckling loads. Hence, it was decided to investigate this case by using the present theory.
In the present investigation membrane-like prebuckling solution is employed, and the
results of comparisons are shown in Figure 6.3.

Notice that in Figure 6.3 the notations used are

A, = P/P, (6.48)

where P, is the critical buckling load obtained by the present calculation, and

P, = P_cos’, = 2Etmcos’e, /y3(1-v?) (6.49)

The classical load given by Eq. (6.49) represents the critical buckling load of an isotropic
conical shell obtained by Seide®™. In Eq. (6.49), P, is the classical buckling load for a
cylindrical shell, t is wall thickness, o, is the semi-vertex angle of the conical shell, E is
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the Young’s modulus and v is the Poisson’s ratio.

For classical orthotropic conical shells with SS3 boundary conditions, P is calculated
from Eq. (6.49) with v replaced by v, and E replaced by E, (not by E, as mistakenly
stated by Tong et al.). The results given in Figure 6.3 are for &, = 10°. However, calculati-
ons for other conical shells with o, = 30° and @, = 45° gave results very close to those
obtained for o, = 10°.

Using either the BAACI or the BAAC2 program, the critical buckling load was calculated
for two possible mode shapes: axisymmetric mode for which the number of circumferenti-
al waves are zero and asymmetric mode for which the buckling load was minimized with
respect to the number of circumferential waves (n, 2 4). As one can see from Figure 6.3,
for orthotropicity factor E/E, close to one the critical buckling load obtained corresponds
to an axisymmetric mode shape. However, for E/E, about 12 and higher the mode shape
associated with the critical buckling load becomes ésymmelric (with number of circumfe-
rential wave equal to eight or nine) and this critical buckling load is much lower than the
one obtained for the axisymmetric mode shape. From Figure 6.3 it appears that the
buckling load calculated by Tong et al. using polynomial sericé, follows closely the
axisymmetric branch (see also Figure 5 of Tong et al.), and hence when EJ/E, is greater
than 12 their results are much higher than the ones obtained by the present method.

Aoy

s ~— -
.t Ve =03 Tong, Tabarrok and Wang /
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2t ]
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Fig. 63 Influence of EJE4 on the ratio A, for S§3 boundary conditions
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Notice that the difference between buckling loads also exists when E; / Eq = 1, which
represents the cases of isotropic conical shells. The lower buckling load given by Ref. [93]
is due to the fact that a rigid body translation is possible for isotropic conical shells with
classical $S3 boundary conditions under axial compression. As it has been explained ear-
lier in chapter 4, for the case of isotropic conical shells under axial compression the
classical SS3 boundary conditions are not an appropriate representation of a practical
situation because they permit a rigid body translation. As it was concluded, the modified
MSS3 boundary conditions given by the present theory are the one to be used.

Anisotropic conical shells

All the cases shown in Table 6.5 are for simply supported (SS4 boundary conditions)
regular antisymmetric cross-plied conical shells with various geometric properties and
different numbers of orthotropic laminae under axial compression. These cases were
previously treated by Tong et al™ using Donnell-type theory and membrane-like
prebuckling solution. For cases 1-12 the results of present analysis are about 9% lower
than those obtained by Tong et al.. For cases 1, 4, 7 and 9 there are differences in the
circumferential wave numbers. The higher buckling loads of Ref. [175] are probably due
to using SS4 boundary conditions instead of MSS4 in their solutions. For cases 13-15 the
conical shells become longer, the influence of the boundary conditions is less important,
thus the present results are in fair agreement with those obtained by Tong et al..

The cases shown in Table 6.6 are for simply supported (type 6 and MSS3 boundary
conditions) regular antisymmetric cross-plied conical shells with various geometric
properties and different numbers of laminae under axial compression. These cases are also
compared with the results of Tong et al.'™\. As can be seen, the results of present analysis
are in fair agreement with those obtained by Tong et al. However, there are some
differences in the circumferential wave numbers for the cases 7, 9 and 13.

There are no results published for conical shells with general anisotropic properties, as far
as the author knows. Thus in the following comparisons are made with anisotropic
cylindrical shells. The results of corresponding anisotropic cylindrical shells were
previously calculated by Jansen"” using Donnell-type theory. The anisotropic shells
considered are built by three layer glass-epoxy laminae with (30°, 0°, -30°) stacking
sequence.

All the results of present analysis in Tables 6.7 and 6.8 are for very steep (o, = 1°) conical



168

shells with different L/R, ratios and boundary conditions under axial compression and
hydrostatic pressure, respectively. The material data for these steep anisotropic conical
shells are assumed to be the same as those of corresponding anisotropic cylindrical shells.
As can be seen, all the results of present analysis are in excellent agreement with those
obtained by Jansen!"),

To summarize briefly, the results shown in Tables 6.5-6.8 indicate that based on the
comparisons with the results of other investigations the present analysis and computer
programs can provide accurate information for the instability of anisotropic conical shells
subjected to axial compression and/or hydrostatic pressure.

Table 6.5 Comparison of results of regular antisymmetric cross-plied conical
shells under axial compression (R,/t = 100)

Previous Present investigation
investigation [175]
Case L N [
A A
B.C. B.C.

membrane membrane nonlinear

prebuckling prebuckling prebuckling
1 25.738 2 10 554 0.07926(9) MSS4 0.073895(7) 0.072646(7)
2 25.738 4 10 §s4 0.1101(6) MSSs4 0.10244(6) 0.10504(6)
3 25.738 6 10 554 0.1115(6) MsSs4 0.10690(6) 0.10850(6)
4 24744 2 30 §84 0.08389(9) MSS4 0.073814(7) 0.072672(7)
S 24.744 4 30 S84 0.1106(6) MSS4 0.10282(6) 0.10516(6)
6 24,744 6 30 $84 0.1128(6) MSS4 0.10692(6) 0.10868(6)
7 21.474 2 45 S84 0.08703(¢6) MSS4 0.074382(7) 0.073680(7)
8 21.474 4 45 SS4 0.1150(6) MSS4 0.10339(6) 0.10682(6)
9 21.474 6 45 S84 0.1173(5) MSS4 0.10796(6) 0.11046(6)
10 15.954 2 60 S84 0.0938(6) MSS4 0.077978(6) 0.078941(6)
11 15.954 4 60 $S4 0.1226(5) MSS4 0.10896(5) 0.11385(5)
12 15.954 6 60 584 0.1248(5) MSS4 0.11288(5) 0.11619(5)
13 59.922 2 10 §s4 0.0699(7) MSS4 0.070477(7) 0.070484(7)
14 59922 | 4 10 §$S4 0.1021(6) MSSs4 0.10294(6) 0.10356(6)
15 59.922 6 10 $s4 0.1070¢6) MSs4 0.10751(6) 0.10802(6)

where N is the total number of layers.




Table 6.6 Comparison of results of regular antisymmetric cross-plied conical
shells under axial compression (R;/t = 100)
Previous Present investigation
investigation [175]
Case L N o,
A A
B.C. B.C.
membrane membrane nonlinear
prebuckling prebuckling prebuckling
1 25738 | 2 10 ss3 | 0.06742(7) Type 6 | 0.068083(7) | 0.068981(7)
2 25738 | 4 10 $83 | 0.1016(6) Type 6 | 0.10198(6) 0.10392(6)
3 25738 | 6 10 $83 | 0.1066(6) Type 6 | 0.10679(6) 0.10833(6)
4 24744 | 2 30 $S3 | 0.06726(7) Type 6 | 0.06759%7) | 0.068962(7)
5 24744 | 4 30 ss3 | 0.1018(6) Type 6 | 0.10176(6) 0.10390(6)
6 24744 | 6 30 ss3 | 0.1075(6) Type 6 | 0.10680(6) 0.10847(6)
7 21474 | 2 45 $S3 | 0.06751(6) Type 6 | 0.066618(7) | 0.068663(7)
8 21474 | 4 45 §S3 | 0.1054(6) Type 6 | 0.10187(6) 0.10491(6)
9 21474 | 6 45 $S3 | 0.1117(5) Type 6 | 0.10769(6) 0.11003(6)
10 15954 | 2 60 $§3 | 0.06849(6) Type 6 | 0.066248(6) | 0.069824(6)
11 15954 | 4 60 $$3 | 0.1111(5) Type 6 | 0.10648(5) 0.11027(5)
12 15954 | 6 60 $S3 | 0.1185(5) Type 6 | 0.11249(5) 0.11531(5)
13 59922 |2 10 S$3 | 0.06986(9) MSS3 0.069347(7) | 0.069863(7)
14 59922 | 4 10 ss3 | 0.1017%6) MSS3 0.10290(6) 0.10350(6)
15 59922 | 6 10 $S3 | 0.1067%(6) MSS3 0.10750(6) 0.10800(6)

where N is the total number of layers.
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Table 6.7 Comparison of results with anisotropic cylindrical shells under axial
compression (t = 0.0267 in., R/t = 100)
Previous investigation [107] Present investigation
A (o, =0% A (o, =19
Case | LR, B.C. B.C.
membrane nonlinear membrane nonlinear
prebuckling | prebuckling prebuckling | prebuckling
1 0.70711 | S83 | 0.42465(6) 0.37096(8) MSS3 0.42475(6) 0.37079(8)
2 0.70711 | SS4 0.39349(8) MSS4 0.39331(8)
3 0.70711 | C1 0.41815(7) MC1 0.41872(7)
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Table 6.7 continuation
|
‘ 4 070711 | C2 0.43689(8) MC2 0.43736(8)
5 070711 | C3 0.41993(8) MC3 0.42047(8)
6 0.70711 | C4 0.46257(7) 0.43835(8) MC4 0.46286(7) 0.43890(8)
7 0.70711 | SS3 | 0.40926(6) 0.39303(7) MSS3 0.40931(6) 0.39316(7)
8 20 SS4 0.40556(8) MSS4 0.40681(8)
9 20 C1 0.40790(6) MC1 0.40809(6)
10 |20 c2 041178(6) | MC2 0.41185(6)
11 20 C3 0.40865(6) MC3 0.40879(6)
12 20 C4 0.41224(6) 0.41194(6) MC4 0.41233(6) 0.41202(6)
Table 6.8 Comparison of results with anisotropic cylindrical shells under
hydrostatic pressure (¢ = 0.0267 in., R/t = 100)
Previous investigation [107] Present investigation
P (0, =0 P @,=19
Case | LR, B.C. B.C.
membrane nonlinear membrane nonlinear
prebuckling prebuckling prebuckling prebuckling
1 070711 | SS1 0.10382(9) MSS1 0.10288(9)
2 070711 | SS2 0.12367(10) | MSS2 0.12245(10)
3 070711 | $§3 | 0.11710(10) | 0.10985(10) | MSS3 0.11611(10) 0.10882(10)
4 0.70711 | §S4 0.13360(11) | MSS4 0.13227(11)
5 070711 | C1 0.1293310) | MC1 0.12824(10)
6 070711 | C2 0.14739(11) | MC2 0.14603(11)
7 070711 | C3 0.13019(10) | MC3 0.12914(10)
8 070711 | C4 0.15341(11) | 0.14984(11) | MC4 0.15214(11) 0.14853(11)
9 20 Ss1 0.03646(6) MSS1 0.035718(6)
10 20 §52 0.04831(7) MSS2 0.047153(7)
11 20 §S3 | 0.03808(6) 0.03795(6) MSS3 0.037494(6) 0.037352(6)
12 2.0 5S4 0.05046(7) MSS4 0.049477(7)
13 20 c1 0.04036(7) MCl1 0.039073(7)
14 20 c2 0.05141(7) MC2 0.050406(7)
15 20 c3 0.04042(7) MC3 0.039124(7)
16 20 c4 0.05146(7) 0.05188(7) MC4 0.050501(7) 0.050934(7)
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6.4.2 Effect of different prebuckling solutions

Most of the available results for the stability analysis of conical shells are based on the
use of membrane-like prebuckling solutions. It is well known™>*¢" that for cylindrical
shells using membrane prebuckling solutions implies that one relaxes completely the
supports in the prebuckling range and thus assumes that the prebuckling stresses and
deformations are constant. In most practical cylindrical shell structures, however, some
measure of radial support is present from the beginning of loading so that, prior to
buckling, complicated axisymmetric deformations and stresses are present to modify the
loading-shortening behavior of the cylindrical shells and to influence their buckling load.
This influence is especially important for cylindrical shells in axial compression and for
short cylindrical shells under hydrostatic pressure.

Whereas the effect of prebuckling deformations on the buckling load of cylindrical shells
has been investigated extensively, few results have been published for conical shells, and
practically none for anisotropic conical shells. Therefore, in the following, the effect of
different prebuckling solutions on the buckling behavior of various conical shells under
axial compression and hydrostatic pressure will be studied for a wide range of geometries.
The emphasis and most of the numerical calculations, however, relate to anisotropic
conical shells with short or moderate length.

Isotropic conical shells

First, the effect of different prebuckling solutions on the buckling behavior of isotropic
conical shells under axial compression is shown in Table 6.1. As can be seen, for short
conical shells (I/R, = 0.5) with MSS4 boundary conditions the buckling loads calculated
using rigorous prebuckling solutions are about 10% lower than those calculated with
membrane-like prebuckling solutions. However, for short conical shells (I/R, = 0.5) with
MSS2 boundary conditions the buckling loads calculated using rigorous prebuckling
solutions are about 2% higher than those calculated with membrane-like prebuckling
solutions. This result indicates that using membrane-like prebuckling solutions does not
always guarantee that the resulting buckling loads are on the safety side (upper bound).
This phenomena was also reported by Almroth®! for isotropic cylindrical shells. Never-
theless, as the shells become longer (I/R, = 2), the difference caused by using different
prebuckling solutions will decrease.

Considering the results in Table 6.1, one observes that using linear prebuckling solutions
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for isotropic conical shells with MSS4 boundary conditions will always result in higher
buckling loads than when membrane-like or rigorous prebuckling solutions are employed.
Therefore, as in the case of using membrane-like prebuckling solution, using linear
prebuckling solutions will not yield conservative buckling loads. Besides, for the case of
short conical shells (I/R, = 0.5) with MSS4 boundary conditions there exist some closely-
spaced eigenvalues with different eigenmodes if the rigorous prebuckling solutions are
employed. The buckling modes of case 19 are shown in Figures 6.4 and 6.5 for membra-
ne-like and rigorous prebuckling solutions, respectively. Notice the distinct changes that
occur.

The effect of different prebuckling solutions on the buckling behavior of isotropic conical
shells under hydrostatic pressure is shown in Table 6.2. As can be seen, for short conical
shells (I/R, = 0.5) with MSS4 boundary conditions the buckling load calculated using
rigorous prebuckling analysis is about 4% lower than those with membrane-like prebuc-
kling solutions, while for types 5 or 6 (SS1 or S§3) boundary conditions the differences
are about 10%. For conical shells with L/R, = 1 the differences are less than 1%, and
shells with L/R, = 2 the differences are negligible. The buckling modes of case 1 are
shown in Figures 6.6 and 6.7 for membrane-like and rigorous prebuckling solutions,
respectively.

The effect of different prebuckling solutions on the buckling behavior of isotropic conical
shells under combined axial loads and hydrostatic pressure is shown in Table 6.3. As can
be seen, for short conical shells (L/R, = 0.5) with type 7 boundary conditions the
differences are about 1%, while for shells with moderate length (L/R, = 1) the differences
are negligible. The buckling modes of cases 17 and 18 are shown in Figures 6.8 and 6.9,
respectively. It is found that if the given axial compression (or tension) does not dominate,
the resulting buckling modes are similar with those of corresponding conical shells under
pure hydrostatic pressure.

To summarize briefly, the results shown in Tables 6.1-6.3 indicate that in order to obtain
reliable results for short isotropic conical shells it is essential to employ the rigorous
prebuckling solutions in the buckling analysis. For conical shells with moderate length the
use of rigorous prebuckling solutions is also recommended since sometimes the accuracy
of using membrane-like or linear prebuckling solutions is questionable.
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34

Fig. 64 Buckling mode of isotropic conical shell under axial compression
(o, = 10°; MSS4 boundary conditions; membrane-like prebuckling solution)

34

Fig. 65 Buckling mode of isotropic conical shell under axial compression

(o, = 10°; MSS4 boundary conditions; nonlinear prebuckling solution)



174

620

Fig. 6.6 Buckling mode of isotrapic conical shell under hydrostatic pressure
(o, = 5°; S83 boundary conditions; membrane-like prebuckling solution)

620

Fig. 6.7 Buckling mode of isotropic conical shell under hydrostatic pressure
(o, = 5°; S§3 boundary conditions; nonlinear prebuckling solution) ‘
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620
Fig. 6.8 Buckling mode of isotropic conical shell under combined axial compression
and hydrostatic pressure (&, = 5° A = 0.2; S83 boundary conditions;
membrane-like prebuckling solution)

620

Fig. 6.9 Buckling mode of isotropic conical shell under combined axial tension
and hydrostatic pressure (&, = 5°; A = -0.2; $S§3 boundary conditions;
membrane-like prebuckling solution)
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Classical orthotropic conical shells

The effect of different prebuckling solutions on the buckling behavior of classical
orthotropic conical shells under hydrostatic pressure is shown in Table 6.4. As can be
seen, the differences between the buckling loads obtained by using different prebuckling
solutions become smaller as the shells become longer.

Anisotropic conical shells

As mentioned earlier, most of the published results for buckling analysis of isotropic and
classical orthotropic conical shells were based on the use of membrane-like prebuckling
solutions. Nevertheless, there are also a few published papers®>**%! using the linear or
nonlinear prebuckling solutions. However, it seems that there are no results published for
the influence of different prebuckling solutions on the buckling behavior of anisotropic
conical shells.

The effect of different prebuckling solutions on the buckling behavior of anisotropic
conical shells made by anti-symmetric cross-ply laminates under axial compression is
shown in Tables 6.5 and 6.6 for boundary conditions of MSS3, MSS4 and type 6,
respectively. As can be seen, for MSS3 boundary conditions the buckling loads calculated
using the rigorous prebuckling solutions are always higher than those with membrane-like
prebuckling solutions. For relatively short shells the difference is about 5%, while for
longer shells the difference becomes negligible. The buckling modes for case 14 of Table
6.6 are shown in Figures 6.10 and 6.11 for membrane-like and rigorous prebuckling
solutions, respectively. The buckling mode for case 13 of Table 6.5 is shown in Figure
6.12.

The effect of different prebuckling solutions on the buckling behavior of anisotropic
conical shells with very slight conicity (&, = 1.0°) is shown in Table 6.7 for axial
compression and Table 6.8 for hydrostatic pressure, respectively. As expected, the results
of the anisotropic conical shells with very slight conicity are very similar to those of
corresponding anisotropic cylindrical shells. As can be found from Table 6.7, the effect of
rigorous prebuckling solutions is important for the short conical shells (L/R; = 0.70711)
under axial compression. The buckling loads are lowered by 13% for MSS3 boundary
conditions and by 5% for MC4 boundary conditions, as compared with the results obtained
by using membrane-like prebuckling solutions. As the shells become longer (L/R; = 2), the
decreases are less pronounced (4% for MSS3 and negligible for MC4 boundary condi-
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tions). As can be seen from Table 6.8, for short shells (L/R, = 0.70711) under hydrostatic
pressure, using nonlinear prebuckling solution the buckling loads are lowered by 6% and
2% for MSS3 and MC4 boundary conditions, respectively, as compared with the buckling
loads obtained by using membrane-like prebuckling solutions. As the shells become longer
(L/R, = 2), the effect of rigorous prebuckling solution is less noticeable (0.4% decrease for
MSS3 boundary conditions and 1% increase for MC4 boundary conditions). The buckling
modes of anisotropic conical shell (L/R, = 2, o, = 4°, R/t = 100) with MSS3 boundary
conditions under axial compression are shown in Figures 6.13 and 6.14 for membrane-like
and rigorous prebuckling solutions, respectively.

Fig. 6.10 Buckling mode of antisymmetric cross-ply conical shell under
axial compression (o, = 10°; MSS3 boundary conditions;
membrane-like prebuckling solution; four layers)
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Fig. 6.11 Buckling mode of anri;;?mmetric cross-ply conical shell under
axial compression (o, = 10°; MSS3 boundary conditions;
nonlinear prebuckling solution; four layers)

3so

Fig. 6.12 Buckling mode of antisymmetric cross-ply conical shell under
axial compression (o, = 10°; MSS4 boundary conditions;
membrane-like prebuckling solution; two layers)
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Fig. 6.13 Buckling mode of anisotropic conical shell under axial compression
(o, = 4°; MSS3 boundary conditions; membrane-like prebuckling solution)

Fig. 6.14 Buckling mode of anisotropic conical shell under axial compression
(0, = 4°; MSS3 boundary conditions; nonlinear prebuckling solution)
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The effect of different prebuckling solutions on the buckling behavior of anisotropic
conical shells is also shown in Table 6.9 for axial compression and Table 6.10 for
hydrostatic pressure, respectively. Notice that if the anisotropic conical shells are made by
geodetic filament winding, the layer thicknesses and the fiber orientations used are the
equivalent constant thicknesses and winding angles which can be calculated according to
the formulae given in chapter 2.

As can be seen from Table 6.9, for short conical shells (L/R, = 0.70711) with different
semi-vertex angle (o, = 10°, 30° 45°) the buckling loads are about 5% lower for MC4
boundary conditions and 8% lower for MSS4 boundary conditions, as compared with those
obtained by using membrane-like prebuckling solutions. The semi-vertex angle o, has no
important influence on the normalized buckling loads. As the shells become longer (L/R,
= 2), the differences become smaller (about 1% and 3% lower for MC4 and MSS4
boundary conditions, respectively).

The buckling modes of case 8 in Table 6.9 are shown in Figure 6.15 for membrane-like
prebuckling solution and in Figure 6.16 for rigorous prebuckling solution. As can be seen
the two modes do not differ much. Figure 6.17 shows the skewed pattern of Figure 6.15.
The buckling modes of case 13 in Table 6.9 are shown in Figures 6.18 and 6.19 for mem-
brane-like and rigorous prebuckling solutions, respectively. As can be seen the prebuckling
solutions have important influence on the corresponding buckling modes. Using the same
circumferential wave number (n, = 6) as that of Figure 6.18 and the nonlinear prebuckling
solution yields the buckling mode shown in Figure 6.20. As can be seen, Figure 6.20 is
similar to Figure 6.19 since for both cases nonlinear prebuckling solutions are employed.
The skewed pattern of Figure 6.19 is shown again in Figure 6.21.

As can be seen from Table 6.10, for short conical shells (L/R, = 0.70711) with different
semi-vertex angles (o, = 10° 30°, 45°) the buckling loads using nonlinear prebuckling
solutions are about 2.5% and 7% lower for MC4 and MSS3 boundary conditions, respecti-
vely, as compared with those obtained from membrane-like prebuckling solutions. As the
shells become longer (L/R, = 2), the buckling loads are about 1% lower for MSS3
boundary conditions and 1% higher for MC4 boundary conditions if one uses nonlinear
prebuckling solutions. The buckling modes of cases 13 and 14 of Table 6.10 are shown in
Figures 6.22 and 6.23, respectively. Observation reveals that if the hydrostatic pressure
dominates, the buckling modes exhibit very little skewness.
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To summarize briefly, the effect of different prebuckling solutions on the buckling
behavior is studied for conical shells covering a wide range of geometries with different
boundary conditions under different loadings. For some relatively long shells the use of
membrane-like prebuckling solutions can often yield satisfactory results. For short conical
shells and shells with moderate length membrane-like prebuckling solutions must be used
with great cautions, since as is the case for cylindrical shells, the critical buckling loads
may be drastically over or under estimated. In these cases, the prebuckling nonlinearity
must be taken into account if the critical buckling loads are to be determined with accura-

cy.

Table 6.9 Comparison of buckling load A of anisotropic conical shells using
membrane-like and nonlinear prebuckling solutions (R;/t=100, 1=0.0267 in.)

A
Cose LRy o’ BC. membrane nonlinear
prebuckling prebuckling

1 0.70711 10 MC4 0.46491(T) 0.44281(8)
2 0.70711 30 MC4 0.46469(7) 0.44192(8)
3 0.70711 45 MC4 0.46085(7) 0.43364(8)
4 0.70711 10 MSSs4 0.42648(6) 0.39163(%9)
5 0.70711 30 MSSs4 0.42622(6) 0.39149(9)
6 0.70711 45 MSs4 0.42426(6) 0.39433(8)
7 2 10 MC4 0.41447(7) 0.41333(7)
8 2 30 MC4 0.41510(7) 0.41432(7)
9 2 45 MC4 0.41558(7) 0.41421(7)
10 2 10 MSS4 0.41005(6) 0.40246(8)
11 2 30 MSS4 0.41134(7) 0.39970(8)
12 2 45 MSS4 0.41159(6) 0.39689(7)
13 2 30 MSS3 0.41122(6) 0.39104(7)
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-Table 6.10  Comparison of buckling load p of anisotropic conical shells using
membrane-like and nonlinear prebuckling solutions (R,/t=100, 1=0.0267 in.)

|4

Case LRy %’ BC. membrane nonlinear

prebuckling prebuckling
1 0.70711 10 MSS3 0.10724(10) 0.099758(10)
2 0.70711 30 MSS3 0.08394(10) 0.077603(10)
3 0.70711 45 MSS3 0.06357(10) 0.058968(10)
4 0.70711 10 MC4 0.14048(11) 0.13673(11)
5 0.70711 30 MC4 0.10943(12) 0.10675(12)
6 0.70711 45 MC4 0.082546(11) 0.080966(11)
7 2 10 MSS3 0.029509(7) 0.029383(7)
8 2 30 MSS3 0.018963(8) 0.018830(8)
9 2 45 MSS3 0.012681¢9) 0.012532(9)
10 2 10 MC4 0.039995(8) 0.040347(8)
11 2 30 MC4 0.027734(8) 0.028264(8)
12 2 45 MC4 0.019089(8) 0.019603(8)
13 2 5 MSS3 0.033137(7) 0.033024(7)
14 2 5 MC4 0.044850(8) 0.045148(8)

Fig. 6.15 Buckling mode of anisotropic conical shell under axial compression
(0, = 30°; MC4 boundary conditions; membrane-like prebuckling solution)
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Buckling mode of anisotropic conical shell under axial compression

Fig. 6.16

(o, = 30°; MC4 boundary conditions; nonlinear prebuckling solution)
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Another view of the buckling mode of anisotropic conical shell under axial

Fig. 6.17

compression (o, = 30°; MC4 boundary conditions, membrane-like

prebuckling solution)
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Fig. 6.18 Buckling mode of anisotropic conical shell under axial compression
(o, = 30°; MSS3 boundary conditions; membrane-like prebuckling solution)

Fig. 6.19 Buckling mode of anisotropic conical shell under axial compression
(o, = 30°; MSS3 boundary conditions; nonlinear prebuckling solution)
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Fig. 6.20 Buckling mode of anisotropic conical shell under axial compression
(o, = 30°; n, = 6, MSS3 boundary conditions; nonlinear prebuckling

solution)
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Fig. 6.21 Another view of the buckling mode of anisotropic conical shell under axial
compression (o, = 30°; n; = 7; MSS3 boundary conditions; nonlinear pre-

buckling solution)
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Fig. 6.22 Buckling mode of anisotropic conical shell under hydrostatic pressure
(o, = 5°; MSS3 boundary conditions; membrane-like prebuckling solution)

-10

Fig. 623 Buckling mode of anisotropz?; conical shell under hydrostatic pressure

(0, = 5°; MC4 boundary conditions; membrane-like prebuckling solution)
Q
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6.4.3 Effect of different boundary conditions

It is well known that the load-carrying capacity of cylindrical shells can be influenced
greatly by a variety of support conditions®>*>6%177,

For isotropic conical shells under hydrostatic pressure, Singer® studied the effect of axial
constraint on the instability behavior. Baruch et al.”® systematically studied the effect of
four sets of in-plane boundary conditions on the buckling behavior. In both investigations,
the first two stability equations are solved by the assumed displacement method, while the
third one is solved by Galerkin’s procedure. The boundary conditions are satisfied by
adjusting the 4 unknown coefficients in the expressions for u and v. It was found, as in
the case of cylindrical shells, that the effect of axial constraint is of primary importance
for isotropic conical shells under hydrostatic pressure whereas the circumferential restraint
has little influence.

The effect of four sets of in-plane boundary conditions on the buckling behavior of
isotropic conical shells under axial compression and combined axial compression with
hydrostatic pressure was also studied by Baruch et al.”®® using a method similar to the one
used in Ref. [54]. It was found that under axial compression both circumferential and axial
restraints are of primary importance. In the cases SS1 (N = N, = 0) and SS3 (v = N =
0), the axisymmetric buckling mode dominates and A = 0.5. The axisymmetric buckling
mode in the SS3 case involves large axial translation. If this rigid body translation is
u=20)
an asymmetric buckling mode occurs and A = 0.5. In the S84 case (v = u = 0) the

prevented, only the classical modes with A = 1 can occur. In the SS2 case (N
buckling mode is again asymmetric but with A = 1.

However, in most of the previous investigations involving the effect of boundary conditi-
ons membrane-like solution has been used to define the prebuckling state. This is actually
an inconsistent assumption with regard to the prebuckling and buckling boundary
conditions. Schiffner™® studied the influence of nonlinear prebuckling solutions on the
buckling behavior of isotropic and classical orthotropic conical shells by enforcing the
boundary conditions of types 6 (equivalent to SS3) and 13 (equivalent to C3). However, in
his solutions Seide’s geometric constraint was used only in the prebuckling state and
neglected in the buckling state. Hence inconsistency still exists!'*), Famili®” solved the
asymmetric buckling problem of isotropic conical shells under hydrostatic pressure by
using rigorous prebuckling solution and enforcing consistently MSS3 boundary conditions.
However, to the author’s knowledge, there are no publications where the influence of
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consistent boundary conditions on the buckling behavior of conical shells is systematically
investigated. This is especially needed for anisotropic conical shells. Therefore, in the
following the effect of different boundary conditions on the buckling behavior of anisotro-
pic conical shells will be investigated using rigorous prebuckling solutions.

Axial compression

The nondimensional buckling loads of anisotropic conical shells (&, = 30°) under axial
compression with different boundary conditions are given in Table 6.11. All these
buckling loads are calculated using rigorous prebuckling solutions. As can be seen, the
buckling load of simply supported shells is drastically reduced for the weak boundary
support N = O (v is free). This result has also been reported for anisotropic cylindrical
shells by Jansen'”, However, as suggested by Almroth“”, this kind of weak boundary
conditions rarely occur in practice since real shell structures tend to be restrained at the
ends by fairly rigid rings or bulkheads. Therefore, the actual boundary conditions are
somewhere between clamped and simply supported.

For short conical shells (L/R, = 0.70711), the edge constraint in axial direction (u = 0)
raises the buckling load by about 5% as compared to the cases in which u is free. The
effect of clamping (\7\/,, = 0) is seen to be predominant, giving increases by more than
10%. For shells with moderate length (L/R, = 2), the increases are less than 3% for u = 0
and less than 4% for W, = 0.

Further, the low buckling load for isotropic conical shells with SS3 boundary conditions
does not occur here, since the rigid body translation is eliminated by using MSS3
boundary conditions.

From Table 6.7 it can be seen that all the above conclusions are also valid for anisotropic

conical shells with very small semi-vertex angles.
Hydrostatic pressure

The nondimensional buckling loads of anisotropic conical shells (&, = 30°) under hydrosta-
tic pressure with different boundary conditions are given in Table 6.12. All these buckling
loads are obtained using rigorous prebuckling solutions. As can be seen, for short conical
shells (L/R, = 0.70711) both the axial constraint (u = 0) and the rotational constraint (W,s
= () increase the buckling loads considerably (by about 10-25%). For shells with moderate
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length (L/R, = 2), the axial constraint has a pronounced influence. The buckling loads
corresponding to MSS2 and MSS4 boundary conditions increase about 30% and 33% as
compared to those from MSS1 and MSS3 boundary conditions, respectively.

It is also found that for both short shells (IL/R, = 0.70711) and shells with moderate length
(L/R; = 2) axial constraint will increase not only the buckling loads but also the wave
numbers in the circumferential direction.

To summarize briefly, for short anisotropic conical shells under axial compression the
effect of rotational constraint is found to be predominant, while for short anisotropic
conical shells under hydrostatic pressure both the axial and the rotational constraints are
important. For anisotropic conical shells with moderate length under axial compression,
the effect of boundary conditions are less important, while for anisotropic conical shells
with moderate length under hydrostatic pressure both the axial and rotational constraints
are important, and usually the axial constraint is predominant.

Table 6.11  Comparison of buckling load A of anisotropic conical shells using
nonlinear prebuckling solution for different boundary conditions

Case Rt LR, t o,° B.C. A

1 100 0.70711 0.0267 30 MSS3 0.36954(8)
2 100 0.70711 0.0267 30 MSS4 0.39149(9)
3 100 0.70711 0.0267 30 MCl1 0.42097(8)
4 100 0.70711 0.0267 30 MC2 0.43965(8)
5 100 0.70711 0.0267 30 MC3 0.42320(8)
6 100 0.70711 0.0267 30 MC4 0.44192(8)
7 100 2 0.0267 30 MSS3 0.39104(7)
8 100 2 0.0267 30 MSS4 0.39970(8)
9 100 2 0.0267 30 MC1 0.40791(7)
10 100 2 0.0267 30 MC2 0.41390(7)
11 100 2 0.0267 30 MC3 0.40954(7)
12 100 2 0.0267 30 MC4 0.41432(7)
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Table 6.12  Comparison of buckling load p of anisotropic conical shells using
nonlinear prebuckling solution for different boundary conditions

Case RA | LR, t o’ BC. B
1 100 0.70711 0.0267 30 MSS1 0.073069(9)
2 100 0.70711 0.0267 30 MSS2 0.086850(10)
3 100 0.70711 0.0267 30 MSS3 0.077603(10)
4 100 0.70711 0.0267 30 MSSs4 0.094445(11)
5 100 0.70711 0.0267 30 MC1 0.092078(10)
6 100 0.70711 0.0267 30 MC2 0.010451(11)
7 100 0.70711 0.0267 30 MC3 0.092532(11)
8 100 0.70711 0.0267 30 MC4 0.10675(12)
9 100 2 0.0267 30 MSS1 0.018729(7)
10 100 2 0.0267 30 MSS2 0.024407(8)
11 100 2 0.0267 30 MSS3 0.020536(7)
12 100 2 0.0267 30 MSSs4 0.027317(8)
13 100 2 0.0267 30 MC1 0.019888(8)
14 100 2 0.0267 30 MC2 0.025299(9)
15 100 2 0.0267 30 MC3 0.019998(8)
16 100 2 0.0267 30 MC4 0.025607(10)

6.4.4 Effect of different wall constructions

The spectrum of applications for composite materials is growing rapidly because such
materials can be tailored to meet design performance specifications at a reduced weight.
The most important variables that describe a particular laminated composite structure are
the properties of the reinforcing fibers, matrice properties, lamina fiber orientations, lamina
thicknesses, lamina stacking sequences, and the number of laminae. As a preliminary step
for the design optimization of anisotropic conical shells the effect of different wall
constructions on the buckling behavior of conical shells is studied in the following.

Antisymmetric cross-ply laminated conical shells

A regular antisymmetric cross-ply laminate consists of an even number of orthotropic
laminae of the same thickness laid on each other with the directions of the stiffest
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principal material properties alternating at O degree and 90 degree to the laminate s axis.
For unidirectional fiber-reinforced laminae, the fiber direction alternates at 0 degree and
90 degree to the s axis. Only the coupling stiffnesses B,, and B,, exist for these cross-ply
laminates.

Variation in E; / E,: The buckling loads of two layer antisymmetric cross-ply laminated
conical shells (L/R, = 0.515) with MSS3 boundary conditions under axial compression are
shown in Figure 6.24. Notice that the buckling loads are calculated with both membrane-
like and rigorous prebuckling solutions. It can be observed that as in the case of classical
orthotropic conical shells the buckling loads increase as E; / E, increases, and they
approach a constant when E, / E, is large enough. Besides, similar to the situation of
cylindrical shells'*?!, the buckling load calculated from rigorous prebuckling solution is
about 12% lower than that obtained from membrane-like prebuckling solution at E, / Ey =
5 and 2% higher at E_ / E, = 40.

Variation of number of layers: The buckling loads of antisymmetric cross-ply laminated
conical shells with MSS3 boundary conditions under axial compression are shown in
Figure 6.25. Notice again that the buckling loads are obtained from nonlinear prebuckling
solution. As can be seen, for conical shells with fixed L/R, ratio and o, the buckling loads
increase and the corresponding circumferential wave numbers tend to decrease as the
number of layers increases. This result is expected since the stiffness coefficients By (stret-
ching-bending coupling) decrease rapidly as the number of layer increases.

General laminated conical shells

The results listed in Table 6.13 make a comparison of the buckling loads of anisotropic
conical shells with different fiber orientations under hydrostatic pressure possible. Two
kinds of boundary conditions, namely, MSS3 and MC4 are considered. The details of shell
geometry are given in Figure 6.26. The radius-thickness ratio is held constant (R,/t = 100).
Under such condition, for a given value of L/R,, varying the cone angle is equivalent to
increasing the slant length of the cone and the radius at the large end. As can be seen
from Table 6.3, increasing the fiber orientation angles of the antisymmetric angle-ply
laminated conical shells from 30° to 60°, the corresponding buckling loads obtained from
rigorous prebuckling solutions can increase up to 18%.
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With the results shown in Table 6.14 one can compare the buckling loads of two kinds of
anisotropic conical shells (symmetric angle-ply and antisymmetric angle-ply) with different
boundary conditions under axial compression. Both short shells (L/R, = 0.70711) and
shells with moderate length (L/R, = 2) are considered, while the radius-thickness ratio R/t
and the semi-vertex angle o, are fixed. The buckling loads shown in Table 6.14 are
obtained from rigorous prebuckling solution. As can be seen, by using the symmetric
angle-ply the buckling loads increase about 8% for short shells and 6% for shells with
moderate length, as compared with the corresponding anisotropic conical shells made by

antisymmetric angle-ply.

It is known that unlike the case of filament-wound cylindrical shells, where most fabricati-
on processes will result in nominally uniform wall thicknesses and stiffness properties, for
conical shells the opposite is true®™). Unless special techniques are employed, the wall
thickness and the stiffness properties of laminated conical shells produced by filament
winding will depend on the longitudinal coordinate s. To extend the present theory to this
manufacturing process, formulae to calculate the equivalent constant stiffness coefficients
and the constant wall thickness are suggested in chapter 2. By using these formulae the
buckling loads of anisotropic conical shells under axial compression with different
boundary conditions are calculated and listed in Tables 6.15-6.17. As can be seen, the
physical buckling loads calculated from the equivalent cylindrical mean and geometric
mean are very close, while the results from the arithmetic mean are higher. Therefore, as
an approximation it seems proper to use the equivalent cylindrical or geometric mean to
calculate the stiffness coefficients and wall thicknesses of anisotropic conical shells made
by filament winding.

However, it is recommended here that in order to investigate the effect of physical imper-
fections caused by filament winding more accurately, another kind of nonlinear Donnell-
type shell equations which takes into account the variations of wall thicknesses and
stiffness properties should be employed in a future theoretical analysis.

To summarize briefly, the above numerical computations show that the buckling behavior
of laminated conical shells depends significantly on the different wall constructions. This
behavior, naturally, makes the designers’ task very difficulty with regards to finding
optimum reinforcement architecture or lamination pattern in order to increase the buckling
strength to weight ratios.



Table 6.13  Comparison of buckling load p of anisotropic conical shells using
nonlinear prebuckling solutions for different fiber orientations
P
Case | Rjt | L/R, t o.° B.C. 0. 0. 307 ] 60", 0, 607
1 100 | 0.70711 | 0.0267 | 10 MC4 0.13673(11) 0.15773(11)
2 100 | 0.70711 | 0.0267 | 30 MC4 0.10675(12) 0.12311(11)
3 100 | 0.70711 | 0.0267 | 45 MC4 0.080966(11) 0.095033(11)
4 100 | 0.70711 | 0.0267 | 10 MSS3 0.099758(10) | 0.11492(10)
5 100 | 0.70711 | 0.0267 | 30 MSS3 0.077603(10) 0.089587(10)
6 100 | 0.70711 | 0.0267 | 45 MSS3 0.058968(10) 0.069635(10)
7 100 | 2 0.0267 10 MC4 0.040347(8) 0.047616(8)
8 100 | 2 0.0267 | 30 MC4 0.028264(8) 0.030087(9)
9 100 | 2 0.0267 | 45 MC4 0.019603(8) 0.019971(9)
10 100 | 2 0.0267 | 10 MSS3 0.029383(7) 0.034583(7)
11 100 | 2 0.0267 | 30 MSS3 0.018830(8) 0.022157(8)
12 100 |2 0.0267 | 45 MSS3 0.012532(9) 0.014659(8)
Table 6.14  Comparison of buckling load A of anisotropic conical shells for
symmetric and antisymmetric angle-ply
A
Case | Rt | LR, ' %’ BC. Symmetric Antisymmetric
angle-ply angle-ply
(30°, 0, 30°) (30°, 0, -30°
1 100 | 0.70711 | 0.0267 | 30 MSS2 0.26759(2) 0.24508(2)
2 100 | 0.70711 { 0.0267 | 30 MSS3 0.39283(8) 0.36954(8)
3 100 | 0.70711 | 0.0267 | 30 MSS4 0.41317(9) 0.39149(9)
4 100 | 0.70711 | 0.0267 | 30 MC1 0.45578(8) 0.42097(8)
5 100 | 0.70711 | 0.0267 | 30 MC2 0.47697(8) 0.43965(8)
6 100 | 0.70711 | 0.0267 | 30 MC3 0.46120(8) 0.42320(8)
7 100 | 0.70711 0.0267 | 30 MC4 0.47988(8) 0.44192(8)
8 100 | 2 0.0267 | 30 MSS2 0.26240(2) 0.24041(2)
9 100 | 2 0.0267 | 30 MSS3 0.41708(8) 0.39104(7)
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10 100 | 2 0.0267 | 30 MSS4 0.42544(8) 0.39970(8)
11 100 | 2 0.0267 | 30 MC1 0.43514(8) 0.40791(7)
12 100 | 2 0.0267 | 30 MC2 0.43947(8) 0.41390(7)
13 100 | 2 0.0267 | 30 MC3 0.43659(8) 0.40954(7)
14 100 | 2 0.0267 | 30 MC4 0.43970(8) 0.41432(7)
Table 6.15  Buckling load . of anisotropic conical shells by equivalent cylindrical
mean (o, = 30°, LIR; = 2, [30°, 0°, -30°])
Equivalent cylindrical mean
case | B.C.
Lalin) | Leln) | o) | Gn) B | Bed® | B |2
1 MSS3 | 0005656 | 0.006128 | 0.005656 | 0.01744 { 20.140 [ 0 20149 | 0.39511(10)
(0.17696x10°%)
2 MSS4 | 0005656 | 0.006128 | 0.005656 | 0.01744 | 20149 | © -20.149 | 0.39679(10)
3 MC3 0.005656 | 0.006128 | 0.005656 | 0.01744 | 20149 | © 20,149 | 0.39743011)
4 MC4 0.005656 | 0.006128 | 0.005656 | 0.01744 20.149 0 -20.149 | 0.39789(11)
Table 6.16  Buckling load ) of anisotropic conical shells by arithmetic mean
(o, = 30°, LIR; = 2, [30°, 0°, -30°))
Arithmetic mean
case B.C.
@) | tan) | taln) | An) B’ B’ | B’ A
1 MSS3 | 0006298 | 0.006515 | 0006298 | 0.01909 | 18481 | O -18.481 | 0.39390(10)
(0.19371x10%)
2 MSS4 | 0006298 | 0.006515 | 0.006298 | 0.01909 | 18481 | 0 -18.481 | 0.39530(10)
3 MC3 | 0006298 | 0.006515 | 0.006298 | 001909 | 18481 | 0 -18.481 | 0.39632(10)
4 MC4 | 0006298 | 0.006515 | 0.006298 | 0.01909 | 18481 | © -18.481 | 039665(10)
Table 6.17  Buckling load A of anisotropic conical shells by geometric mean
(o, = 30°, LIR; = 2, [30°, (°, -30°])
Geometric mean
case B.C.
1) | talind | twtn) | ) | Bu® | B | B’ A
1 Mss3 | 000572 | 0.00606 | 0.00572 | 00175 | 2036 | 0 2036 | 0.39502(10)
(0.17757x10%)
2 Mss4 | 000572 | 000606 | 000572 | 00175 | 2036 | 0 2036 | 0.39674(10)
3 Mc3 | 000572 | 000606 | 000572 | 00175 | 2036 | O 2036 | 0.39745(10)
4 MC4 | 000572 | 0.00606 | 0.00572 | 0.0175 | 2036 | 0 2036 | 039797(10)
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Fig. 625 Buckling loads of antisymmetric cross-ply laminated conical shells as

functions of the number of laminae N
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o, (degrees)
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o \\

LR,
Fig. 6.26 Some cone geometries

6.5 Discussions and Conclusion

The nonlinear Donnell-type anisotropic shell equations and fourteen sets of appropriate
boundary conditions in terms of radial displacement W and Airy stress function F are used
for the bifurcation buckling analysis of anisotropic conical shells.

Both the nonlinear ordinary differential equations for prebuckling state and the linear
ordinary differential equations with variable coefficients for buckling state can be solved
via the ‘parallel shooting’ method by using either Keller’s or Stodola’s method. Using
Keller’s method the eigenvalue is taken as an unknown in the iteration scheme. The
eigenvalue and corresponding eigenmode can be obtained simultaneously by adding a
normalization condition to the nonlinear eigenvalue equations. Using Stodola’s method the
eigenmodes are solved by an iteration process, while the eigenvalue corrections are
calculated by the Rayleigh quotient.

Extensive numerical studies have been carried out for different types of conical shells.
First, the influences of different prebuckling solutions and different boundary conditions
on the critical buckling load are studied for anisotropic conical shells with a wide range of



197

geometries. Initial results indicate that in order to obtain reliable solutions for anisotropic
conical shells, the use of nonlinear prebuckling solution and enforcing the consistent
boundary conditions rigorously is indeed a must.

Secondly, to account for the variable stiffness coefficients and the variations in wall
thickness that occur when laminated composite conical shells are made by filament
winding, numerical results are presented for buckling loads by using the simplified
formulae for the equivalent constant stiffness coefficients and wall thickness. The validity
and importance of using proper simplification formulae are verified.
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Chapter 7
Initial Postbuckling Analysis of Perfect and
Imperfect Anisotropic Conical Shells

7.1 Introduction

A rigorous treatment of the bifurcation buckling of anisotropic conical shells was
presented in the previous chapter. It is known that the bifurcation buckling analysis
represents a search for the load at which the equilibrium of a structure ceases to be stable.
Unfortunately, it yields no information about the ultimate load carrying capacity of the
structure. In order to find out whether in practice the critical load of the structure is
degraded by the presence of the unavoidable initial imperfections, it is necessary to
determine the characteristics of the post-bifurcation path in the neighborhood of the
bifurcation point. By employing a perturbation technique Koiter'®! developed a general
theory for the initial postbuckling behavior and the imperfection sensitivity of elastic
structures, which relies on the principle of stationary potential energy. Later, Budiansky
and Hutchinson®® derived equivalent results, which are more convenient for applications,
by writing the field equations directly in variational form with the aid of the principle of
virtual work. However, all these formulations are restricted to structures whose prebuck-
ling behavior is linearly proportional to the applied load. Fitch” and Cohen!"® extended
Budiansky-Hutchinson’s approach to account for the nonlinear prebuckling behavior.
Arbocz!®"! further extended Koiter’s and Cohen’s asymptotic formulations to anisotropic
shell structures under combined loadings. All these theoretical efforts have inspired
extensive and successful applications of Koiter’s theory for many practical structural pro-
blems. An excellent review of the applications is given by Bushnelll176).
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Although the studies of the initial postbuckling behavior and imperfection sensitivity of
shell structures are of considerable theoretical and practical interest, few results have been
published for anisotropic conical shells. In the following the initial postbuckling coeffi-
cients ‘a’ and ‘b’ and the imperfection form factors ‘e’ and ‘B’ are rederived in forms
suitable for conical shells. Then numerical investigations for the initial postbuckling
behavior and imperfection sensitivity of anisotropic conical shells are carried out based on
the extended Koiter-type formulae and Donnell-type nonlinear theory in terms of the radial
displacement W and Airy stress function F.

7.2 Theoretical Analysis

To carry out an initial postbuckling analysis, the six ordinary differential equations gover-
ning the behavior of anisotropic conical shells in the initial postbuckling state presented by
Egs. (3.70)-(3.75) have to be further simplified and regrouped. Further, despite the
existence of formulae of the initial postbuckling coefficients and imperfection form factors
for shells of revolution, cylindrical shells, spherical shells!®”717717%8] there are few
available results which can be directly used for anisotropic conical shells. Therefore, the
equations defining the initial postbuckling coefficients and the imperfection form factors
are derived for the applications of anisotropic conical shells.

7.2.1 Postbuckling governing equations

Equations (3.70) and (3.73) can be integrated once respectively and yield

At + AnSY - ANEL - AL, + (U2s,sina ) [ -BJw.”

* (1—31‘1‘];2.1 ‘ﬁz'z)wc:/ + (]_31'1 +§1‘2‘§2‘2)W; + g1'2""m]
= (e "ct/ds,sina,) [ 4y(Wo+Wy) + wy(w)-2n%w, +2w,) 7.1

+ w{(w£—2n2w2+2w2) + (1-nH)(wiewd)

+ (4slc0ta°/t)(wé+wa)] + €
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Se M Ba l_Sa /= . S clll
D{\w, + Dj\w, - Dpw, - Dyw, + (2s;sina/t) [ By fy

+ (§1.1+§;1‘]_32.2)f: + (1—31‘1 '§1'2‘§2'2)fé - E;Zfa]
= (2ce %s,sinai /t) [ wi(f]-n%, +f,) + wy(f;-n’f,+f) 72)
+ (L-n) (W] +W, 4w, £ +Wof) + 20(wi+W,)

+ 29(EL+E,) + @2s,cota fO(EL+E) ] + ¢,

where ¢, and c, are constants of integration. By enforcing the periodicity condition (see
Appendix A2.1 for details) ¢, is known to be zero. By enforcing the boundary equilibrium
condition H = H (see Eq. (4.39)), c, is also equal to zero.

Introducing the following transformations

’
f, =f, + £, (7.3)

!

o = Wo t W,

£1
1]

Equations (7.1) and (7.2) can be further simplified yielding

ALEl! - ANE, + (W2ssino ) [ -Byw. + (B -B)Wy, + Blow, ]

. _ ;s (7.4)
= -(e"ct/ds;sina ) [ 4y W, + wy(w)-2n%w,+2w,)
1, 1 2 2 2 2 .
+ Wo(wy-2nw,+2w,) + (1-n%)(wy+w,) + (4s,cota /t) w ]
D;w/ - DLw, + (2s,sina 0 [Bf + (B},-Bf.-Bf,]
= (2ce %s,sina /t) [ wi(f]-n%f, +f,) + wa(f;-n’f,+f,) (7.3)

+ (l—nz)(w]fll+w2f2/+w,f1+w2f2) + 20w, + waa + (ZSlcotao/t)?u]

Further, in order to be able to use the ‘shooting method’ to solve the governing equations
of the 2nd order state it is necessary, by considering Egs. (3.71) and (3.74), to eliminate
the wBi" term from Eq. (3.71) and the fﬁi" term from Eq. (3.74). Similarly, by considering
Egs. (3.72) and (3.75) one must eliminate the wy‘V term from Eq. (3.72) and the fY‘V term
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from Eq. (3.75). Next by considering Eqgs. (7.4) and (7.5) one can eliminate the W: term
from Eq. (7.4) and the t":' term from Eq. (7.5). Finally, some regrouping makes it possible
to write the resulting equations as

iv
w, = D,w.

iv

/

m "
- D40W5

nm " /
+ D37w1 + +D16w7 - D:‘,sw7 - D39WB - waﬂ

Y
+ Dyfy" + Dyfy + Dyfy + Dyf, - Dyufy’ + Dysfy’ - Dyl

+ e *{Dg [ylwy +w,) + wiwy +w) ] + Dy [wy(wy+wy) + wy(wy +wy)]
+ Ds(wéw,”+w;’w,’) + D34w1’w2l - D35\|I'wy + Dg(w;/+w;) a6
+ Dy [yl +£,) + (p/(w.;i-wy) + QOwy+wr) + y(E] +£)) ]

- Dyg(W'f, +@"w,) + Dyy(wy Ty ew 4wy f +wof)

+ Do [,(w( +w]) + £,(w) +wg) + wy(f]'+£]) + wy(f; +£5)]

+ Dgy(wify +wf}) + Dy (£, +£))

/
Y

Dlwé” + D37wé/ + +D16wé - D38wB + D39wy/” + Dlgw;/ + Dyow

+ Dyfy’ + Dyfy + Dygfy + Dygfy + Dyofy” - Dyfy + Dyefy

+ ez{DG[\;l/(wé+wB) + \y(wél+wé)] + D, [wl(w,”+w1/) - wz(w£l+w2/)]

+ Ds(w,’w{/—wzﬁwz’) + D4.,(w,ﬂ —w2ﬂ ) - D35\|l’wB + D9(wé/+wé) an
/ fod "ol "o ol

+ Dm[\(l/(fB +Hg) + @ (wg+wg) + @(wg+wp) + y(fg +fp) ]

- Dg(W/fg+@’wg) + Dys(wif{ +wify -w, ' -w,f;)

+ Dy [f,(wy +w)) — fy(ws +wq) + wy(] +£)) ~ wy(fy +£)]

+ Dgy(wifi-wyfy) + Dy (fg +£5))
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iv 17 " / /" /" /
£' = - Dif)’ - Disf) - Dygfy - Dysf, + Dygfy’ + Digfy + Dgfy

"
- Dywy" -

" / " " /
y ~ DaygWy - Dyywy - Dyw, + Dygwg' + Dygwp' + Dpywp

v

- e 1Dy [W(wy+w,) + Y(wy +wy)] - Dygy'w, + Doy [ wylwy +wy)

| + wl(w2”+w2')] + D36wllw2/ + Dsz(wz’w,”+w2”w,l) + D33(w.;l+w.;) a8
‘ .
- D6[\|l’(f,$+fy) + (p’(w.;+w7) + (p(w.:’+w7/) + \|!(£Y”+f;)]
- D, [ wy+w]) + £ (wiwy) + Wyl +£]) + wy(fy +E5)]
1) 173} /. /,
= Dy (wyfy+wofy) + Dyo(y fY +Q wy)
-Dy(wy y +wiEy +w, Tl +wof;) — Dy(£, +£))
i " 4 / m 1 /
fo' = - Dify’ - Disfy - Dyfy - Dygfy - Dygfy” - Dyofy’ - Dy,
m 1 / 1/ " /
- D21WB - D22wB - D23wﬂ - DMWB - D25w7 - D26w7 - D27wy
z{ I, ! "ol Vi " /
- e Dzs[\p(wB+wB) + W(wu +WB)] - ng\yw'5 + Dgg [ wy(wy +wy)
- wyWi+w)) 1 + Dy (wi-wl) + Dy(wiw] -wyws) + Dyy(wp +wp) a9
- Dg[W/(f+E5) + @/wg+wy) + @(wy +wp) + Wifg +fp)]
+ Dy [(wy +wy) — fywi+wp) + wylfy +F5) - wy(E +))]
N /
+ Dyy(wyf,-wify) + Dyg(W'fy +¢'wp)
~ Dy(wy'f{-wy +wiE]-wyfy) - Dy(fs +£3))
\II;/ = DI‘TV; + DSV_Va + Dﬁé + Ds?u
+ e*{Deyw, + D51(w]2 wl) + Dsz(w{2 +w2’2 ) + Dy(Wiw, +Ww,) 10)
7.

- N fel e ol /
+ Dgw + Dya(wif;+wif, +Wofy +w,f, +fiw, +Ewy+w, f) +Ww,f))

= Dy (Wify +wafy +fwy +E;w, +wy £y +wofy) + Dyjf, + Dy @ W +¥f,) )
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r L = =1 =
fo = ~Difg + Dssfy - DyWo + Dsyw,

- e*{Dyw, + Dss(wl2 +w§) + Dss(wlﬂ +w2ﬂ ) + D,o(wllw] +w2’w2) a1

- ! 1t ot / ! 1ol
+ Dy, - Dg(wyf; +w,f5 +wof, +wi f) +W,fy +w f, +w,of, +w f))

+ Ds.,(wllfl +wsz2+f1/w1 +f2/w2+w1f1 +w,f,) - Dg?a - D6(<p\_n"a+\|l?a))

The constants D, (i = 1 ~ 56) are listed in Appendix A5.1.

This set of inhomogeneous differential equations with variable coefficients together with
some appropriate boundary conditions is sufficient to yield the required information about
the initial postbuckling behavior and the associated imperfection sensitivity of anisotropic
conical shells.

7.2.2 Postbuckling coefficients and imperfection form factors

For perfect shells one is interested in the variation of A(§) with § in the vicinity of A =
A,. Near the bifurcation point A, the asymptotic expansion given by Eqs. (3.42) is valid.
The derivation of postbuckling coefficients ‘a’ and ‘b’ for anisotropic cylindrical shells
can be found in Ref. [67], while the derivation of those for anisotropic conical shells will
be carried out in the following by a REDUCE-based program GEPCAC, GEnerating
Postbuckling Coefficients of Anisotropic Conical Shells (see Appendix AS5.2 for the source
program). After extensive symbolic calculations the initial postbuckling coefficients are
obtained as

a = - BRAAFD x(WDHwh) (7.12)
b= - (VAA [2ZFDx(WDWD) 4+ FOLwhwh)
(7.13)
+aAJL + (1/2)(aA )T ]
where

A= ZF(”*(WC, wy . FC*(w(l), w) (7.14)
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I, - F(')*(WC,W(Z)) . p(2)*(wc,w(1)) + #c‘(w(l),w(l)) (7.15)
I, = ZF(])*(WC, wy 4 iic*(w(l), wy (7.16)
. 0

( )c = a—A'( )c (7.17)

The subscript ( ), denotes the fact that the prebuckling solution is evaluated at the
bifurcation point. F¥ and W® (i = 1 ~ 2) are the solutions after the z-transformation. The
short-hand notation used is given by Eq. (6.47).

For imperfect shells the variation of A(E, E) in the vicinity of the bifurcation point A = A,
is given by the following asymptotic expansion!®”1% (see also Figure 7.1)

(A-ADE = aAE? + DALY + .. - aAE - B(A-ADE + O(EE) (7.18)
A 1 y;
\ ’
AN Vé
~. -
AC b §=0
AS
E0
5

Fig. 7.1 Equilibrium paths of perfect and imperfect systems!%!
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The imperfection form factors ‘e’ and ‘B’ are derived by GEPCAC as

o = (VA D [F x(W,WD) + FOx(W,W)]

B = (VAYE (W, WD) + FDu(W, W) + T - oA, [(1/2)T] + IL])
where

IL = (W,, WD)« (W, W)

I, - ZF(I)*(W:;’ wy . ifc*(w(l), wy
I = W, WhxW,, w9

in which

2msinx, z,

A B«CD) = [ [(s) (1A, (A+A,)B+B,)
0 0

+ ApAgBis + Al (A+A,)Bj + (B+B,)A_]1(C+C,) (D+D,)}

+ {A(A+A,)(B+B,) + A,,AgB;5 + Ay [(A+A,)B; + (B+B,)A5]CiD5)

+ {A(A+A,)(B+B,) + AyA B + Agl(A+A,)B;z + (B+B,)Az]

[(C+C,)D,5 + (D+D,)C;51} } dzdd

The initial imperfection is assumed to be

W =EW

(7.19)

(7.20)

(7.21)

(7.22)

(7.23)

where \"‘V represents the shape of the initial imperfection and E is the imperfection

amplitude. Notice that if the initial imperfection is assumed to be affine to the buckling

mode then

W =w®d

(7.24)
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Substituting the axisymmetric prebuckling expression and the Fourier decompositions for
the buckling and postbuckling states into the Eqs. (7.12)-(7.13) and (7.20)-(7.21), and
carrying out the lengthy integration in the 0 direction by GEPCAC yields

a=0
b = -I,/ (A Q)
(7.25)
a = I,/ (AA)
B =1 + T - aA (/2T +IK]1}/A
where
A = (Et*nsino /cs,) f e { n2/ (wi+w?) - 2n2Y (F)w,+E;w,)
0
(7.26)
+ ¢ [(w]/+w1)2 + (w2/+w2)2] + 2\]1[f1’w1/ + ’El/w1 + z/Wz, + f2/W2
2 / /
+ (1-n*)(wif; + wof, + fiw, + fw,)] ) dz
4 . r z 298/ 2 2 rys /
I,/2 = (Et nsmoco/2cs])fe { n23/ (wy +wy) - 203 (fiw, +f,w,)
0
(7.27)
£ G LW +w)? + (wprwp?] + 2P [fw) + flwy + fwy + fw,
+ (L-nd(wif, + wof, + fiw, + f,w,)] ) dz
IL = BPn/sh) [ WPe® { n?Ag (wiew))
Of (7.28)

+ 2n§16(w1’w2—w2'wl) + ,4_\”[(w1’+w1)2 + (w2’+w2)2] } dz
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I, = (Br*msino,/2cs,) [e* |
0

2w [2nzt"l”w1 + f{(-2n2w1’ +w,’ 2w, +w,) - 2nzf2”w2
+ f£(2n2w2/—-w2’—n2w2—w2) + (l—nz)w{f1
- (1-nd)wyf, + (1-ndf;w, - (1-n)f,w,]
+ 2w, [20%]'w, + £{(-20%w+wyentw,+wy) + 20%f)'w,
+ £5(-2n2w{+w]+n%w, +w,) + (1-nd)f,w]
+ (1-nd)wyf, + (L-nd(f,w,+E,w,)]
+ AW, [fiw] + (1-0Df{w, + fw; + (1-ndfw,
+ (1-nIwif, + (1-nDwyf, + (1-n2)(E,w, +E,w,) ]
+fy [wy (1-4n%) + 2wiw; (1-4n% - wi (1-4n?)
(7.29)
- 2wjw, (1-4n%) + wl(1-4n2) - w2 (1-4n?)]
+ 26, [wiwy(1-4n%) + wiwy(1-4n%) + wyw,(1-4n?) + W wy(1-4n?)]
+ 26 [(wlew)? + (whew )]
+ 2wg [fiw] + (1+nDf)w, - fw; - (1+endfyw, + (1-n)wf,
- (1-nd)wyf, + (1-ndw,f, - (1-ndw,f,]
+ ZW;[f{wé + (L+ndfyw, + fw] + (L+ndfpw,
+ (1-nHwif, + (1-nAwyf, + (1-n2)(E,w,+E,w) |
+ By [wl + 2(1-20)wlw, - 2(1-2n)wlw, - w)
+ (1-5n%)w’ - (1-5n%)w?]
+ 2f) [wiw, + (1-20%w)w, + (1-20%)wyw, + (1-5nDw,w, ]

+ 2n2¥é(w]2+w27') + n2fé/(w22—w12) - 2n2f;/w1w2 } dz
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zD
I, = Et'nsina/s;c) [ o2 { n2p/wyy swyi) -0 W(EW, +£%)
0

+ WIEWR + W, + %y + W%, + (1-n)Wf,
(7.30)
+ (1-nd)wf, + (1-nd)(EW, + f,W)]

N lo A Y
+ @ [wW + wiw, + w{wzl + woW, + Ww,
o/ < <
+ Wow, + W, + woW,] ) dz

ZD

Ty = Et'rsing/sic) [ &7 { 2 (w, W, +w, ) -n2U(E W +5%,)
0
+ WLEW, + £, + %) + O, + (1-n)Wf
(7.31)
+ (1-n)wif, + (1-nd(EW, + %) ]

a7 /A Ial /A )
O [wiWy + Wil + Wl + Wl + Wyw,

./ < .
+ Wow, + W, + W%, ) dz

zo
I = Enss) [ Wy e {n2Ag(w, W, swyy)
0

(7.32)
< I Ia ot wl
+ nA16 (W Wy—wy W, +W W, —Wow )

+ A LWl W] +0) + WiWgewy) + W (W +W) + wy(Wy+W,) ] ) dz
where W = tE(v‘v,cos no + W,sin né) (7.33)

It is known that for many practical applications where a unique buckling mode is
associated with the lowest buckling load and the buckling and initial postbuckling
behaviors are symmetric with respect to the buckling displacement, i.e., the buckling
modal displacement W and stress function F" are harmonic with respect to the
circumferential coordinate, the first postbuckling coefficient ‘a’ is identically equal to zero.
In this case the sign of ‘b’ determines whether the load initially increases or decreases
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after bifurcation. A positive ‘b’ factor characterizes a bifurcation path for which an
increase in load is required for further deformation and signifies that the transition from
axisymmetric to asymmetric behavior occurs smoothly without a sudden loss in load carry-
ing capacity. Thus the corresponding imperfect structure is said to be imperfection-
insensitive. On the other hand, a negative ‘b’ factor characterizes a bifurcation path for
which a reduction in load is required in order to maintain the equilibrium of the system
and signifies that the transition from axisymmetric to asymmetric behavior occurs with a
sharp snap-buckling. Thus the corresponding imperfect structure is said to be imperfection-
sensitive.

Knowing only whether the structure is imperfection-sensitive or not is not enough. The
ultimate aim of imperfection sensitivity analysis is to determine the maximum load-
carrying capacity. As can be seen from Figure 7.1 the buckling load of the imperfect
structure A, occurs at the ‘limit point’ of the prebuckling state. If the limit point is close
enough to the bifurcation point then A, the maximum load that the structure can support
prior to buckling, can also be evaluated from Eq. (7.18) by maximizing A with respect to
E. In the case of ‘a’ equal to zero using Eq. (7.18) to maximize A with respect to § leads
to the following modified Koiter formulal'™”!

(1-p )% = 32 - 30% [1 - B/o)(1-p)1[E| (7.34)

where p, = AJA_ and € is the normalized amplitude of the initial imperfection. It should
be emphasized that in all cases presented, E has been normalized with respect to the shell
thickness.

In practice, however, the design engineers must obtain an estimate of the ‘knockdown’
factor with which they have to multiply the buckling load prediction of the perfect
structure in order to arrive at the safe allowable load level. With the help of Eq. (7.34)
such an estimate can be computed if besides the imperfection sensitivity coefficient b=
ob one also knows the size of the amplitude E of the imperfection. For such cases the
predictions of Eq. (7.34) are conveniently summarized in Figure 7.2.

Notice that in the above analysis only the deterministic imperfections are considered. In
the realistic situation, however, the imperfections are known to be stochastic rather than
deterministic properties. Therefore, to obtain more accurate results one has to establish the
characteristic initial imperfection distribution that a given fabrication process is likely to
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produce, and then to combine this information with some kind of statistical analysis of
both the initial imperfections and the corresponding critical loads, a kind of statistical
imperfection-sensitivity analysis(' ).

1.0

01
0 f
t 0 = 1
0p Al _uzbgz 0
Fig. 7.2 Estimate of critical loads for imperfection sensitive structures!’”’!

7.3 Numerical Analysis and Corresponding Program

Introducing as a unified variable the 20-dimensional vector Y® defined as follows

YP =, YPef, YP=%,, YP-w, YP-w,

YO =1, Y2 -1, Y= »'v; Y = wh, Y[ = wy,
Yx(? - fé/’ Ya) - fy”, Y(2) Y(2) _ W;;/» Y(Z) - W;I’ (7.35)
LN e Nl ¥

then the system of equations (7.6)-(7.11) can be reduced to the following inhomogeneous
2-point boundary value problem

%_ YO - (5, YO, YO, A B) + f(z YD) (7.36)
Z

BPY® (z-0) + BPY? (z=12,) = BY (7.37)
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where the components of the boundary matrices B,, B, and B;® depend on the
boundary conditions at the shell edges. Notice that here the 4-dimensional vector Y©
contains the known solution of the prebuckling problem and that the 16-dimensional
vector YV is the eigenvector of the buckling problem.

Due to the complicated functions of z represented by the known prebuckling and buckling
solutions anything but a numerical solution of this linear, inhomogeneous 2-point boundary
value problem is out of question. Because of earlier successful experiences with the
‘shooting method’ applied for the prebuckling and buckling problems it was decided to
solve the postbuckling problem also by the numerical technique known as ‘parallel
shooting over n-intervals’.

After the solutions of the buckling and postbuckling problems have been obtained, one
must evaluate the integrals involved in the definition of the postbuckling coefficients ‘a’
and ‘b’, and of the imperfection form factors ‘e’ and ‘B’. It has been shown in Ref. [67]
that it is advantageous to evaluate the above integrals by solving initial value problems
rather than using numerical integration schemes. The same approach is used here.

The program SAAC, Stability Analysis of Anisotropic Conical Shells, is written for the
buckling and initial postbuckling analysis of anisotropic conical shells. SAAC is based on
ANILISA®"! and BAAC2, in which maximum 40 intervals can be used in the ‘shooting’
procedure and different kinds of boundary conditions specified at the two edges can be
rigorously enforced. As an option, membrane-like, linear and nonlinear prebuckling
solutions can be used.

7.4 Numerical Results

To test the accuracy and the reliability of the present formulations for conical shells and
the corresponding program SAAC, the results obtained from present theory are compared
with those of previous investigations. Among these comparisons is Booton’s glass/epoxy
(30°, 0°, -30°) composite cylindrical shell calculated via ANILISAY”. Its geometric and
material data are given in Table 5.6. Some mode shapes are depicted in Figures 7.3-7.6,
while the results of comparisons are listed in Table 7.1. As can be seen the agreement is
good.
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Table 7.1 Comparison of results with a composite cylindrical shell under axial
compression
Cylindrical Shells Conical Shells (c;, = 0.2°)
B.C. A b o B B.C. A b o B

S$83 | 0.39303(7 0.36634 0.48043 40.04943 | MSS3 | 0.39306(7) -0.36399 0.48166 -0.048798

S84 | 0.40556(8) -0.31596 0.40169 -0.17038 | MSS4 | 0.40577(8) -0.29423 0.39841 -0.18756

C1 0.40790(6) -0.28671 0.87486 033970 | Cl1 0.40794(6) -0.29375 0.87457 0.33535

o) 0.41178(6) -0.025474 | 097729 099583 | MC2 | 0.41179(6) | -0.026089 | 0.97694 0.99475

C4 0.41194(6) -0.034472 | 0.97320 097137 | MC4 0.41195(6) | -0.034937 0.97294 0.97093

Notice that the numbers in the brackets indicate the wave numbers in the circumferential
direction.

When one considers the imperfection sensitivity of anisotropic conical shells, there are
innumerous combinations with different geometric, material and loading parameters
possible and one can choose from different types of boundary conditions. However, in the
following, the initial imperfection sensitivity computations are limited to a few cases of
interest, based on the assumption that the shapes of the initial imperfections are affine to
the corresponding buckling modes. In all cases only the imperfection sensitivity of the
lowest buckling load is calculated, and the nonlinear prebuckling solution is employed.

First, the influence of wall constructions on the imperfection sensitivity of three-layer
Khot-type conical shells (o, = 10°) with fiber orientations in outer, middle and inner
layers denoted by (-6°, 0° 0°) is studied. The shell is made of either glass-epoxy or
boron-epoxy composites. The corresponding elastic constants are listed in Table 7209, In
this study only the fiber orientations are varied. The effect of fiber orientations on the b, o
and P factors of the aforementioned conical shells with MSS3 boundary conditions under
axial compression is shown in Table 7.3 and Figure 7.7.
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Table 72 Elastic constants of Khot-type composite conical shells

Material

glass-epoxy boron-epoxy
Constants
Ey, 7.5 x 10° psi 40 x 10° psi
Ep 3.5 x 10° psi 4.5 x 10° psi
Vi2 0.25 0.25
G 1.25 x 108 psi 1.5 x 10° psi
Va1 Vi B/ Eyy Vi2 Epn /By

where R, = 6.0 inches, t = 0.036 inch, L = 12.5 inches.

Table 7.3 Effect of fiber orientations on the o and P factors of Khot-type conical
shells (o, = 10°) with MSS3 boundary conditions under axial compression

Material 0° A o B o?b Bro
10 | 0.17830 (11) 1.0027 1.0024 -0.033548 0.99962
20 | 021724 (16) 099885 | 099697 | -0.041183 0.99812
30 | 022722 (15) 099273 | 098355 | -0.043874 0.99075
40 | 0.233604(16) 099955 | 099772 | -0.037644 0.99817

Boron-epoxy | 50 | 0-23063 (16) 10032 1.0037 -0.028567 1.0005
60 | 0.19303 (13) 1.0069 1.0090 -0.023651 1.0022
70 | 0.15956 (12) 1.0038 1.0059 -0.017310 1.0021
80 | 0.14243 (12) 1.0018 1.0042 -0.013813 1.0023
10 | 0.51014 (12) 087342 | 056772 | -0.49278 0.65000
20 | 051915 (13) 084710 | 047124 | -0.41052 0.55630
30 | 0.52836 (13) 082534 | 043087 | -0.34115 0.52205
40 | 0.53667 (13) 0.87531 060593 | -0.28898 0.69225

Glass-epoxy | SO | 054023 (13) 095402 | 0.86047 [ -0.23464 0.90194
60 | 0.53574 (13) 098378 | 095377 | -0.16190 0.96949
70 | 0.519361(12) 098557 | 095724 | -0.20782 097125
80 | 0.50804 (11) 099078 | 097230 | -0.11995 0.98135
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Fig. 7.7 Effect of fiber orientation on the b factor of Khot-type conical shells

(o, = 10°) with MSS3 boundary conditions under axial compression

From Figure 7.7 one can see that the magnitude of the b factor is much greater for glass-
epoxy shells than for boron-epoxy shells. This indicates that the glass-epoxy shells are
more imperfection sensitive than the boron-epoxy shells. This conclusion agrees with that
of composite cylindrical shells!!”*},

From Table 7.3 it can be seen that for boron-epoxy shells the imperfection form factors o
and P are almost constant, while for glass-epoxy shells o and B factors change as @
changes.
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Calculations are also carried out for Khot-type (-40° 40°, 0°) glass-epoxy shells under
hydrostatic pressure with MSS3 boundary conditions. The results of Khot-type shells are
listed in Table 7.4. The imperfection sensitivity of the Khot-type anisotropic shells is
shown in Figure 7.8. The corresponding mode shapes are shown in Figures 7.9-7.12. It is
found that the anisotropic conical shells with small semi-vertex angles have about the
same imperfection sensitivities as the corresponding cylindrical shell. For increasing of the
cone angle, the imperfection sensitivity will increase.

Table 7.4 Results of Khot-type cylindrical and conical anisotropic shells under
hydrostatic pressure

Shells | Cylindrical shell Conical shell Conical shell Conical shell
Results (o, = 0% (0,=0.1%) (0,=10°% (0,=30°
p 0.031571(7) 0.031489(7) 0.024699(8) 0.0157214(9)
b -0.024938 -0.025604 -0.028759 -0.04195
o 0.99960 0.99960 0.99958 0.99972
B 0.99962 0.99961 0.99960 © 1 0.99982
a’b -0.024914 -0.025584 -0.028735 -0.041922
Bl 1.000 1.000 1.000 1.000
1
Ps
o, =0°
0.8
> o, = 10°
ao = 30°
.4
g
0.2 F
¢ 0.2 0.4 0: 6 0.8

3
Fig. 78 Imperfection sensitivities of Khot-type glass-epoxy shells (-40°, 40°, (°) with
MSS3 boundary conditions under hydrostatic pressure
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Further calculations are made to study the effect of different fiber orientations on the b, o
and B factors of Booton-type anisotropic conical shells (&, = 30°) with MSS3 and MC4
boundary conditions under axial compression. The effects of fiber orientation on the b
factor and on the o and B factors are shown in Figure 7.13 and Table 7.5. The influence
of boundary conditions on the imperfection sensitivity of the lowest buckling load of the
axially compressed Booton-type glass-epoxy conical shell (30°, 0°, -30° is shown in
Figure 7.14.

0.5

C4

0.3 ¢

MSS3

-1

10 20 30 g &) %0 70 80

]

Fig. 7.13 Effect of fiber orientation on the b factor of Booton-type anisotropic conical
shells (o, = 30°) with MSS3 and MC4 boundary conditions under axial
compression
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Table 7.5 Effect of fiber orientations on the o and B factors of Booton-type anisotro-
pic conical shells under axial compression (LIR; = 2, o, = 30°)

BC. o A a B a’b Bla
10, 0, -10 0.39719 (10) ] 0.97040 0.92499 -0.094014 0.95320
20, 0, -20 0.39590 (8) 0.92794 0.83154 -0.095481 0.89612
25,0, -25 0.39628 (7) 0.74148 043607 -0.145130 0.58811
30, 0, -30 0.39104 (7) | 046346 -0.015277 -0.063670 -0.03296
MSS3 35,0, -35 0.38325 (7) | 0.33271 -0.071518 -0.027227 -0.21495

40, 0, 40 0.37884 (7) | 0.27947 -0.054826 -0.017200 | -0.19618
50, 0, -50 0.38697 (8) | 0.27061 -0.11328 -0.019787 | -0.41861
60, 0, -60 041020 (8) [ 0.36750 -0.22256 -0.047326 } -0.60560
70, 0, -70 0.42396 (10) | 0.79387 0.33795 -0.173950 042570
80, 0, -80 041014 (10) | 097272 0.91835 -0.074945 0.94411

10, 0, -10 0.39992 (9) | 0.99486 0.98630 -0.032651 0.99140
20, 0, -20 0.40046 (9) | 0.98800 0.96965 -0.030765 0.98143
25,0, -25 040620 (8) | 0.98294 0.97100 -0.027416 0.98785
30,0, -30 041432 (7) | 0.96204 0.95240 -0.047103 0.98999
MC4 35,0,-35 042338 (6) | 0.89801 1.1179 -0.093904 1.2449
40, 0, 40 042581 (8) | 0.26971 -1.4930 -0.024643 -5.5354
50, 0, -50 043173 (9) | 0.20226 -1.5272 -0.016533 -7.5506
55,0, -55 044280 (9) { 0.27855 -1.6160 -0.041362 -5.8015
60, 0, -60 0.45348 (9) | 046452 -1.1044 -0.14369 -2.3775
65, 0, -65 0.45055 (10) | 0.85576 0.34236 -0.16130 0.40007
70, 0, -70 0.43441 (10) | 0.97187 0.89617 -0.052901 0.92211

80, 0, -80 041515 (9) | 0.99370 0.98150 -0.033686 0.98772
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Fig. 7.14 Imperfection sensitivity of Booton-type anisotropic conical shells (a, = 30°)
with MSS3 and MC4 boundary conditions under axial compression

From Figure 7.13 one can see that an increase in bifurcation buckling load is accompanied
by an increase in imperfection sensitivity. This indicates that a design with higher
buckling load is not always the ideal one if one accounts for the possible greater imperfec-
tion sensitivity. Therefore, to obtain an optimum design one has to balance these two as-
pects.

From Figure 7.14 it is seen that the boundary conditions have significant influence on the
imperfection sensitivity of Booton-type anisotropic conical shells.

From Table 7.5 one can seen that the imperfection form factors o and 3 are functions of
the fiber orientation 6.

The effect of different fiber orientations on the b, a and B factors of Booton-type aniso-
tropic conical shells (o, = 30°) with MSS3 and MC4 boundary conditions under hydrosta-
tic pressure is shown in Table 7.6. The imperfection sensitivities of Booton-type anisotro-
pic conical shells (30°, 0°, -30°) with MSS3 boundary conditions under hydrostatic
pressure is shown in Figure 7.15.
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Table 7.6 Effect of fiber orientations on b, a. and B factors of anisotropic conical
shells under hydrostatic pressure (LIR; = 2, &, = 30°)
B.C. 0° P b « B a’b Blo
10, 0, -10 | 0.017684 (8) -0.081284 | 0.99858 | 0.99900 -0.081053 ] 1.0004
20, 0, 20 | 0.018220 (8) -0.078693 | 0.99890 | 0.99941 -0.078521 | 1.0005
30,0, -30 | 0.018830 (8) -0.071244 | 0.99926 | 0.99983 -0.071138 | 1.0006
40, 0, 40 | 0.019551 (8) -0.062296 | 0.99955 | 1.0001 -0.062241 | 1.0006
MSs3 50, 0, -50 | 0.020552 (8) -0.055561 | 0.99971 | 1.0002 0055528 | 1.0005
60, 0, -60 | 0.022157 (8) -0.051548 | 0.99971 | 1.0001 -0.051518 | 1.0004
70,0, -70 | 0.024328 (7) -0.052262 | 0.99997 | 1.0003 -0.052258 | 1.0003
80, 0, -80 | 0.026986 (7) -0,047507 | 0.99986 | 1.0002 -0.047493 | 1.0003
10, 0, -10 | 0.022913 (9) -0.083189 | 1.0076 1.0080 -0.084452 | 1.0004
20, 0, -20 | 0.024275(10) | -0.085151 | 1.0076 |{ 1.0082 -0.086447 | 1.0006
30, 0, -30 | 0.025607(10) | -0.085127 | 1.0083 1.0091 -0.086550 | 1.0007
MC4 40, 0, 40 | 0.026924 (9) -0.084816 | 1.0091 1.0098 -0.086367 | 1.0007
50, 0, -50 | 0.028226 (9) -0.074544 | 1.0077 1.0082 -0.075691 | 1.0005
60, 0, -60 | 0.030087 (9) | -0.065261 | 1.0063 | 1.0067 -0.066085 | 1.0004
70, 0, -70 | 0.032737 (9) -0.058179 | 1.0055 1.0059 -0.058824 | 1.0004
80, 0, -80 ) 0.035000 (8) -0.051761 | 1.0053 1.0056 -0.052313 | 1.0003
ps - il
0.8}
o, =0.29 10°
0.6
o a, = 30°
{ % = 60°
0.2 t
0 T2 o] o o] |E|
Fig. 7.15 Imperfection sensitivities of Booton-type glass-epoxy conical shells (30°,

0°, -30°) with MSS3 boundary conditions under hydrostatic pressure
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From Table 7.6 one can see that the buckling load p increases as 6 increases. This is
attributed to the increase of stiffening in the circumferential direction. Unlike the case of
conical shells under axial compression the magnitudes of b factor and o’b decrease as p
increases for conical shells with both MSS3 and MC4 boundary conditions under
hydrostatic pressure. Again, as in the case of Khot-type anisotropic shells, when increasing
the cone angle, also the imperfection sensitivity will increase.

The effect of variations of shell geometry on the imperfection sensitivity of Booton-type
anisotropic conical shells (30°, 0°, -30°) with MSS3 boundary conditions under axial com-
pression is shown in Figure 7.16 and Table 7.7. As can be seen the conical shells having
smaller semi-vertex angles are more imperfection sensitive than the ones with larger semi-
vertex angles. As expected, if L/R, is fixed, with the increase of semi-vertex angle the
shell becomes flat, and the magnitude of b-factor decreases.

Fig. 7.16 Imperfection sensitivities of Booton-type anisotropic conical shells having
different geometries with MSS3 boundary conditions under axial compressi-

on
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Table 7.7 Effect of shell geometry on b, o and B factors of Booton-type conical shells
with MSS3 boundary conditions under axial compression (LIR; = 2)

Results
A b o B
| Semi-vertex angle
02° 0.39306 (7) -0.36399 0.48166 -0.04880
1.0° 0.39316 (7) -0.34496 0.48689 -0.04720
20° 0.39328 (7) -0.32602 0.49381 -0.04727
3.0 0.39301 (8) -0.35766 045919 -0.10239
4.0° 0.39266 (8) -0.35684 046339 -0.10723
5.0° 0.39236 (8) -0.36251 0.46698 -0.11297
6.0° 0.39212 (8) -0.37249 0.47000 -0.11917
10° 0.39193 (8) -0.37533 047250 -0.12547
8.0° 0.39179 (8) -0.36646 047450 -0.13161
| 9.0° 0.39170 (8) -0.35760 0.47604 -0.13736
10.0° 0.39164 (8) -0.35003 047717 -0.14260
12.0° 0.39162 (8) -0.33454 047823 -0.15115
15.0° 0.39174 (8) -0.31995 047720 -0.15870
20.0° 0.39209 (8) -0.30429 0.46978 -0.15843
250° 0.39198 (7) -0.29805 0.47088 -0.032023
30.0° 0.39104 (7) -0.29643 0.46346 -0.015277
35.0° 0.39011 (7) -0.29276 045485 -0.015640
400° 0.38928 (7) -0.28931 044373 -0.029359
0.38862 (7) -0.28560 042978 -0.052876
0.38736 (6) -0.27707 043723 -0.058773
0.38523 (6) -0.26770 0.42206 -0.085705
0.38356 (6) -0.25780 0.40320 -0.11250
0.38284 (6) -0.24923 0.37554 -0.15150
0.37921 (5) -0.23036 0.36922 -0.19572
0.37743 (5) -0.21383 0.31464 0.005348
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7.5 Discussions and Conclusion

By rederiving Koiter’s asymptotic formulae in forms suitable for conical shells, the initial
postbuckling behavior and imperfection sensitivity of anisotropic conical shells are studied
whereby the deterministic initial imperfection in the shape of the critical buckling mode is
used. The results obtained from present theory show that

1). within the context of Koiter’s initial postbuckling theory the computer program SAAC
can be used successfully to investigate the imperfection sensitivity of the buckling load of
anisotropic conical shells taking into account the effect of different boundary conditions
and of nonlinear prebuckling solution.

2). anisotropic conical shells are generally imperfection sensitive. Thus, to obtain a reliable
result for the stability behavior of anisotropic conical shells it is necessary to carry out the
initial postbuckling and imperfection sensitivity analyses after the bifurcation buckling
load has been found.

Despite the above results, there are still some unanswered problems. To know the extent
to which buckling can be expected to be gradual or sudden, one has to calculate the
postbuckling variation of the applied variable load A with the generalized displacement; to
obtain more realistic and accurate results for the effect of initial imperfection, one has to
establish the characteristic initial imperfection distribution that a given fabrication process
is likely to produce, and then to combine this information with some kind of statistical
analysis of both the initial imperfections and the corresponding critical loads; to ascertain
that the buckling load obtained is the minimum, one has to study the possible nonlinear
modal interaction. Finally, one has to ascertain the range of validity of the asymptotic
theory presented by comparing its predictions with the results obtained by solving the
nonlinear problem directly.
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Appendix 1
For Chapter Three

Al1l REDUCE-based Package GEACS1

comment this is for the derivation of the Donnell-type nonlinear
goveming equations of imperfect anisotropic conical shells in
terms of W and F with both variable and constant stiffness
coefficients (GEACS1)$

depend f, sth$
depend w,sth$
depend wb,s,th$
depend u,s,th$
depend v,s,th$
depend all,s$
depend al2,s$
depend 222,58
depend 216,s$
depend 226,53
depend 266,53
depend b11,s$
depend b12,s$
depend b21,s$
depend b22,s$
depend b16,s$
depend b26,5$
depend b62,5$
depend b61,s$
depend b66,s$
depend d11,s$
depend d12,s$
depend d22,s$
depend d16,s$
depend d26,5$
depend d66,s$

operator k11,k22k12,n11,n22,n12,m11,m22,m12,epl1l,ep22,ep128
let k11=-df(w,s,2),
k22=-(df(w,s)/s+df(w th,2)/(s2)),
K12=-(df(w,s,th)/s-df(w,th)/(s2)),
n11=df{f s)/s+df(f th 2)/(s"2),
n22=df(f,s,2),
n12=df(f th)/(s"2)-df(f,s,th)/s,
ml1=-(b11*n11+b21*n22+b61*n12)
+(d11*k11+d12*k22+d16*k12%2),
m22=-(b12*n11+b22*n22+b62*n12)
+(d12*k11+d22*k22+426%k12*2),
m12=-(b16*n11+b26*n22+b66*n12)
+(d16*k11+d26*k22+d66*k12*2),
epll=(all*nl11+al2*n22+a16*n12)
+(b11*k11+b12*k22+b16*k12*2),
ep22=(al2*n11+a22*n22+a26%n12)
+(B21*k11+022%k22+b26%%12%2),

epl12=(al6*n11+a26*n22+a66*n12)
+(b61*k11+b62*k22+b66*k12*2)$

% The out-of-plane equilibrium equation of the imperfect shell is;
equi:=df(s*n11*(df(w,s)}+df(wb,s)),s)+n22*cot(al)+
df(n22*(df(w,th+df(wb,th))/s,th)+
df(n12*(df(w,th)+df(wb,th)),s)+
df(n12*(df(w,s)+df(wb,s))ah)+
df(s*m1l,s,2)-df(m22,s)+
df(m22/s,th,2+2*df(m12/s,th+2*df(m12,5,th)+p*s;
length(ws);

left:=df(ep12,s,th)*s+df(ep12,th)-df(ep] 1 th,2)+df(epl1,s)*s
-2*df(ep22.5)*s-df(ep22,s,2)*(s"2)$

begin scalar epll,ep22,epl23
epl1:=df(u,s)}+(df(w,s)2)2+df(wb,s)*df(w,s)$
ep22:=(u-w*cot(al))/s+df(v,th)/s+((df(w,th)/s)"2)/2
+df(w,thy*df(wb,th)/(s42)$

epl12:=df(v,s)-v/s+df(u,th)/s+df (w,s)*df(w,th)/s
+({df(wb,th)*df(w,s)+df{wb,s)*df (w,th))/s$
right:=df(ep12,s,th)*s+df(ep12,th)-df(ep11,th,2)+s*df(epl1,s)
2*s*d((ep22,5)-df(ep22,5,2)*s"28

return right

end$

% The compatibility equation of the imperfect shell is;
comp:=(s*2)*(left-right);
length(ws);

% The govemning equations with constant stiffness coefficients;
let df(all,s)=0,df(al2,s)=0,df(al6,5)=0,df(a22,5)=0,df(a26,5)=0,
df(a66,5)=0,df(b11,5)=0,df(b12,5)=0,df(b16,5)=0,df(b21,5)=0,
df(522,5)=0,d1(b26,5)=0,df (b6 1,5)=0.d{(b62,5)=0,df(b66,5)=0,
df(d11,5)=0,df(d12,5)=0,d1(d16,5)=0,df(d22,5)=0,df(d26,5)=0,
df(d66,s)=08

equiliz=equi;
length(ws);
compa:=comp;
length(ws);
end;
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Al.4 REDUCE-based Package GEACS2

comment This is for the derivation of the nonlinear Donnell-type
goveming equations of imperfect anisotropic conical shells in
terms of u, v, w with variable stiffness coefficients (GEACS2)$

depend w,s,th§
depend wb,s,th$
depend u,s,th$
depend v,s,th$
depend all,s$
depend al2,s$
depend 222,58
depend 216,s$
depend 226,58
depend 266,s$
depend bl1,5$
depend b12,s$
depend b22,s$
depend b16,s$
depend b26,s$
depend b66,5$
depend d11,s$
depend d12,58
depend d22,5$
depend d16,s$
depend d26,s$
depend d66,s$

operator k11,k22k12 epll.epl2.ep228
let k11=-df(w,s,2),
k22=-(df(w,s)/s+df(w,th,2)/(sA2)),
k12=-(df(w,s,th)/s-df(w th)/(s"2)),
epli=df(u,s)+df(w,s)*2/2+df(w,s)*df(wb,s),
epl12=df(v,s)-v/s+df(u,th)/s+df(w,s)*df (w,th)/s+
(df(w,s)*df(wb th)+df(w th)*df(wb,s))s,
ep22=(u-w*cot(al))/s+df(v th)/s+df(wth)*2/(2*s"2)+
df(w,th)*df(wb,th)/(s"2),
m11=(b11*epl1+b12*ep22+b16*epl2)
+(d11*k11+d12*k22+d16*k12*2),
m22=(b12*ep11+b22%ep22+b26*ep12)
+(d12*k11+d22*k22+d26*k12%2),
m12=(b16%ep11+b26*ep22+b66*ep12)
+(d16*k11+d26*k22+d66*k12*2),
nl1=(all*epl1+al2*ep22+al6*epl2)
+(b11*k11+bI12*k22+b16*k12%2),
n22=(al2*epl1+a22*ep22+a26*epl2)
+(b12*k11+b22*k22+b26*k12*2),
n12=(al6*epl 1+a26*ep22+a66*cpl2)
+(b16*k11+b26%k22+b66*k12*2)3

comment The goveming equations of imperfect anisotropic
conical shells with variable stiffness coefficients are;

%The first equilibrium equation is;
equil:=n22-df(n12,th)-df(s*n11,s);
length(ws);

%The second equilibrium equation is;
equi2:=n12+df(n22 th)+df(s*n12,s);
length(ws);

% The out-of-plane equilibrium equation is;

equi3:=df(s*n11*(df(w,s)y+df(wb,s)),s}+n22*coi(al)+
df(n22*(df(w,th)+df(wb,th))/s,th}+
df(n12*(df(w,th)+df(wb,th)),s)+
df(n12*(df(w,s)+df(whb,s)),th)+
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df(s*m11,s,2)-df(m22,sH+
df(m22/s,1th,2)+2*df(m12/s,th)+
2*df(m12,s,thy+p*s;
length(ws);
end;

AlLS5 REDUCE-based Package GEACS3

comment This is for the derivation of the transformed goveming
equations of anisotropic conical shells with constant stiffness
coefficients for the problems of prebuckling, buckling and
postbuckling (GEACS3)$

operator k11,k22k12,n11,n22,n12,m11,m22,m12$
depend w,z,th$
depend f,z,th$
depend wb,z,th$
depend u,z,th$
depend v,zth$
let ki 1=-(df(w,2,2)-df(w,2))/(s1*e 2)'2,
k22=-(df(w,z)+df(w,th,2))/(s1*e 2)*2,
k12=-(df(w,z,th)-df(w th))/(s1*e z)"2,
n11=(3f(f,z)+a1(f,th,2))/(s1 *erz)"2,
n22=(df(f,z,2)-df(f,2))/(s1 *e*z)"2,
n12=(df(f h)-df(f,z,th))/(s1 *eAz)"2,
ml1=-(b11*n11+b21*n22+b61*n12)*1/(2*c)
+(d11%k11+d12*k22+d16*k1252)*g *1A3/(4*c"2),
m22=-(b12*n11+b22*n22+b62*n12)*t/(2*c)
+(d12%Kk11+d22*k22+d26%k 12*2)*g*1"3f(4*c2),
m12=-(b16*n11+b26*n22+b66*n12)*1/(2*c}
+(d16%k11+d26*k22+d66*k12%2)*g"113/(4*c"2),
epll=(al1*nl11+al2*n22+al6*n12)/(g*t)
+(b11*k11+b12*k22+b16*k12*2)*1/(2*%c),
ep22=(al2*n] 1+a22*n22+a26*n12)/(g*t)
+(621%k1 1+b22*k22+b26*Kk12*2)*1/(2%c),
cpl2=(alé*nl1+a26*n22+a66*n12)/(t*g)
+(b61%k11+b62*k22+b66*k12*2)*1/(2*c)$

%The out-of-plane equilibrium equation of imperfect shell is;
on list§

equi=sub(g=e,s1*(s1*eAZ)"2*

sub(w=w*e’z f=f*eAz,wb=wb*e’z,

df(n1 1*(df(w,z)+df(wb,2)),z)/(s1*ez)

+n22*cot(al)

+df(n22%(df(w th)+df(wb,th))/(s1 *eAz),th)
+df(n12*(df(w,th)+df (wb,th)),z)/(s1*e"z)
+df(n12*(@M(w,2)+df(wb,2))/(s1¥e z) th)
+(df(m11*s1*eAz,z,2)-df (m11*s1*erz,2))/(s1*e z) 2
-df(m22,2)/(s1 *erz)

+df(m22/(s1*e”z),th,2)

+2*df(m12/(s1*eAz) th)

+2*%df(m122th)/(s1*erz)

+p*sl*erz))$

length(ws)$

left:=sub(f=f*erz,w=w*e"z,
df(ep12,z,th)
+df(epl2,th)
-df(ep11,h2)
+df(epl1,2)
2%df(ep22,2)
-df(ep22,2,2)
+df(ep22,2))$
begin scalar epl1,ep22,ep12$
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epll=df(uz)(s1 *eAz)+((Af(w,2)(s1* e 2))'2)2
+df(w.z)*df(wb,z)/(s1*erz)28
ep22:=(u-w*cot(al)(s1*e z)+df(v th)/(s1*erz)
+((df(w,th)/(s1*eA2)"2)/2+df (w th)
*df(wbh)/(s1*erz)*2$
epl12:=df(v,z)(s1*e7z)-(v-df(u,th))/(s] *eAz)
+(df(w,z)*df(w,thy+df(wb,th)*df(w z)+df(wb,z)*df(w,th))
/(s1*e* 228

right:=sub(w=w*e’z, wb=wb*c/z,
df(epl2,zth)

+df(ep12,th)

-df(ep11,th,2)

+df(epll.z)

2*df(ep22.2)

df(cp22.2,2)

+df(ep22,2))$

return right

end;

% The compatibility equation of imperfect shell is;
comp:=sub(g=e,(s142)*(left-right)*e"z)$
length(ws)$

let wb=0$

%The equilibrivm equation of perfect shell (EQ. (3.35)) is;
equi$

length(ws)$

%The compatibility equation of perfect shell (EQ. (3.36)) is;
comp$

length(ws)$

for i:=0:2 do << depend w(i),z,th; depend f(i),z,th>>$
let w=w(O}+1*w(1 H+w(2)*1A2 f=f(O)}+1*£(1)+(2)*1423
equi$

comp$

for 0:=0:2 do

<<es(o):=coeffn(equi,l0);
co{o):=coeffn(comp,],0)>>$

%The partial differential equations for p
%EQ. (3.43) is;

equili(0):=es(0)$

lengih(ws)$

%EQ. (3.44) is;

compat(0):=co(0)$

length(ws)$

buckling problem are;

%The pantial differential equations for buckling problem are;
%EQ. (3.45) is;

equili(1):=es(1)$

length(ws)$

%EQ. (3.46) is;

compat(1):=co(1)$

length(ws)$

%The pantial differential equations for postbuckling problem are;
%EQ. (3.47) is;

equili(2):=es(2)$

length(ws)$

%EQ. (3.48) is;

compat(2):=co(2)$

length(ws)$

%The axisymmetric prebuckling equation are;
let df(w(0),th)=0.df(f(0),th)=0$

%EQ. (3.51) is;
equili(0):=sub(w(0)=t*w(0),f(0)=e*t"2*s1*sin(al}*{(0)/c.equili(0))$
length(ws);

%EQ. (3.52) is;
compat(0):=sub(w(0)=t*w(0),f(0)=e*12*s1*sin(al}*{(0)/c,compat(
)8

length(ws);

%Asumming W(1) and F(1) have the following forms;
let w(l)=t¥(wl*cos(n*th)}+w2*sin(n*th})),
1(1)=e*142*s1*sin(al)*(f1*cos(n*th)+f2*sin(n*th))/c$

depend w1,z$

depend w2,z$

depend f1,23

depend 12,28

%Then the PDEs of the buckling state can be transformed as;
equili(1):=sub{w(0)=1*w(0),f(0)=e*1A2*s1*sin(al)*f(0)/c.equili(1))$
length(ws);
compat(1):=sub(w(0)=1*w(0).f(0)=e*142*s1*sin(al)*f(0)/c,compat(
[

length(ws);

% Egs. (3.61-64) are;
eql:=coeffn(equiti(1),cos(n*th),1)$
length(ws),
eq2:=coeffn(equili(1),sin(n*th),1)$
length(ws);
eq3:=coeffn(compat(1),cos(n*th),1)$
length(ws);
egd:=coeffn(compat(l),sin(n*th),1)$
length(ws);

let
cos(n*th)*sin(n*th)=sin(2*n*th)/2sin(n*th}*2=(1-cos(2*n*th))/2,
cos(n*th)*2=(1+cos(2*n*th))/2$

%The postbuckling governing equations are;
equili(2):=sub(w(0)=1*w(D).f(0)=e*1"2*s1*sin(al}*{(0)/c.es(2))$
length(ws);
compat(2):=sub(w(0)=t*w(0),f(0)=e*1"2*s1*sin(al)*f(0)/c,co0(2))$
length(ws);

depend kerci(0),z$

depend fi(0),2$

let df(w(0),2)=kerci(0)-w(0),df(w(0),2,2)=df (kerci(0),2)-df (w(0),2)$
let Gf(£(0),2)=fi(0)-f(0).df(f(0).z,2)=df(fi(0),2)df(f(0),2)$

% EQ. (3.65) is;
equili2m:=equili(2)$
length(ws);

%EQ. (3.66) is;
compat2m:=compat(2)$
length(ws);

%Asumming w(2) and F(2) have the following forms;
let w(2)=t*(wa+wp*cos(2*n*th)}+wr*sin(2*n*th)),
1(2)=e*1A2*s1¥sin(al)* (fa+fp*cos(2*n*th)+résin(2*n*th))/c$
depend wa,z$
depend wp,23
depend wr,2$
depend fa,z$
depend fp,z8
depend fr,z8

%The two postbuckling pantial differential equations are;
equili2:=equili2m$



length(ws);
compat2:=compat2m$
length(ws);

%The six ordinary postbuckling differential equations are;
©q5:=4*c*2*coeffn(coeffn(equili2,cos(2*n*1h),0),sin(2*n*th),0)
1(ex122)8

length(ws);

eq6:=4*c2*coeffn(equili2,cos(2*n*th),1)/(e*1"2)§

length{ws);

eq7:=4*cM2* coeffn(equili2,sin(2*n*th),1)/(e*12)$

length(ws),
eq8:=-2*c*coeffn(coeffn(compat2,cos(2*n*th),0),sin(2*n*th),0)1$
length(ws);

€q9:=-2*c*coeffn(compat2,cos(2*n*th),1)A$

length(ws);

eq10:=-2*c*coeffn(compat2,sin(2*n*th),1 }A$

length(ws);

9The regrouped ODE's which can be directly used for ‘shooting’
are;

neweq2:=a22*eqbft+eq9*b213

length{ws);

neweq3:=b21*eq6/t-¢q9*d11$

length(ws);

neweqd:=eq7*b21/t-eq10*d11$

length(ws);

neweqS:=eq7*a22ft+eql0*b21%

length(ws);

eql1:=a22*df(fa,z,3)+a22*df(fa,z,2)-al 1*df(fa,z)-al 1 *fa

+(1/(2*sin(al)*s1))*(-b21*df(wa,z,3)+(b11-b21-b22)*df(wa,z,2)

+(b11+b12-b22)*df (wa,z}+bl1 2*wa)+(c*1*erz/(4*sin(al)*s1))*(

4*kerci(0)*(df(wa,z)+wa)+(1-nA2)* (W 1/ 2+w2A2)+(4*col(al) *s14)

*(df(wa,zy+wa)+df(wl,z)*(df(w1,z)-2*n"2*w1+2*w1)+df(w2,2)*(

df(w2,z)-2%n"2*w2+2*w2))3

eq12:=d11*df(wa,z,3}+d1 1*df(wa,2,2)-d22%df (wa,z)-d22* wa
+(2*s1*sin(al)h)*(b21*di(fa,2,3)+(b11+b21-b22)*di(fa,2,2)
+(b11-b12-b22)*df(fa,z)-b12*fa)-(2*s 1 *sin(al)*c*e z/1)*(
df(w1,z)*(df(f1,2)-n 2% 1+f1)+df(w2,z)*(df (f2,2)
nA242+£2)+(1-nA2)* (w1 *df(f1,2)+ w2*df(f2,z)+w1*f1
+w2*£2)+2*fi(0)*(df (wa,z)+wa)+2*kerci(0)*(df (fa,z)+fa)+
(2*cot(al)*s1h)*(df(fa,z)+fa))$

depend 2,23

depend wz,2$

let df(fa,z)=fz-fa,df(wa,z)=wz-wa$

eqll$

length(ws);

eql2$

length(ws);

neweql:=eql1*b21*2*s]*sin(al)t-eq12*a22$

length(ws);

neweq6:=eql1*d11+eq12*1*b21/(2*s1*sin(al))$

length(ws);

solve(neweq2,df(wp,z,4));

length(ws);

solve(neweq3,df(fp,z,4));

length(ws);

solve(neweq4,df(fr,z,4));

length(ws);

solve(neweq5,df(wr,z,4));

length(ws);

solve(neweql df(wz,2,2));

length(ws);

solve(neweq6,df(fz,2,2));

length(ws);

end;
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Appendix 2
For Chapter Four

A2.1 Periodicity Condition
The equation describing the periodicity requirement of a conical shell is more complicated
than that of a cylindrical shell because of the complexity of its nonlinear Donnell-type

strain-displacement relations.

From Egs. (3.1) one can solve for v,5; as
Vigs = g + SEg, — € + W,f/Z + W, coter, + (W5/s)2/2 - WgW/s (A2.D)

Thus if the solution is to satisfy the periodicity requirement, then by definition

2nsino,

i!. v,;sda =0

(A2.2)

Introducing the semi-inverted constitutive equations into Eq. (A2.1) yields
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2 o* H* Dt o*
v, = (U2s;ce D {t[ -Byy" + (B);-By’ + Byl
+ 2s,sino (A, 07-A @) + e Zc(ty?+2s,coto )}
z n L* D* p* Vi
+(2s2ce HE {{t] -Byw{" + (B];-B;,-Byyw;
+ (0%B,+B} +B,-Byw] + (1-n)Byw, - 2nBjw, +2nB 5wy ]

"

+ 2s,sina [Anfl” + Al - Ann?ARf + (M2-DAJS, - nAsfy

+ nKl'sle] + 2e’c[slcota°(w,' +w)) + t\y(w]’ +w1)]}cosn§

+{t[ Bz1 2/” + (Bn le Bzz)wz

"

+ 2s;sin0, [Agfl + AL - (AL +n?ALE + (n2-DANE, + nAgf,

' +(n B22+B11+B12 Bn)w2 + (1-n )an2 + 2nB26w1 -2nB 6“’1]
t - m_xl'6f1’ ] + 2e Zc[slcot<3to(w2’+w2) + tw(w2/+w2)]}sinn-6_)

(dsice HET UL -Bywy + By-B;-Bowy + (Bfy+By, Bjwa + Bipw,]

Tor ALY - ANEL - ANEL ] + e ot wy(w,-2n’w, +2w))

+ ds;sina, [A22f
bl a2 2 2. 2 /
+ Wo(Wy-2n“w, +2w,) + (L-n")(wy+wy) + dy(w,+w,)

+ (s cotar /) (we+w,) 1)

+{2t[ -Bjwg" + (B, -Bj-Bywy

+ (4n2}_32,'2+]§1'1 +§1'2—§2'2)wé + (1—4n2)§1'2w5 - 4n1_32'6w;/ + 4r1§]'6w4]
. Telll Tl 27w T gl 2 T e ol
v dssingg [AgE) + Anfy - n?A5+ANE + @Un?-DAS, - 20Axf
2.2

- 2nAf]] + e [ t(w /2 4202w w, +2w]w, ~w!> 20w w,~2waw, +n?w] 0w,

+w12—w22) + 4slcot(xo(wé +wp) + 4t\y(wé +wp) ] }cos2nB }
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m
Y

+2{t[ -Byw)" + (B),-B;-Bpyw,’
+ (4nB,+B +B)-Bow, + (1-4nD)B,w, + 4nBygwy — 4nBjowp]

s rery el 27 % A *\¢/ 2 e A el
+ Zslsmao[Anf,’ + Apfy - (4n A12+A“)f? + (4n —l)A“f7 + 2nA,fp
- 20A0f5 1 + €% [ tW{Wy+n W] W, W W, +N W)W, +W W, 41 W Wyt W W)

+ 25,00t (W) +w,) + 2ty(w,y +w,) ]} 5in2nd)

+ (2sHE ([ wiw +wy -2nPwg +2W, +wg) + Wa(w, -2nw, +w, )
+ (1 —2n2)(w[;w1 +w.ylw2+w1wB +w2wy) + 2w1(w;+wa)] cosn®

+[ W1/ (W.: -2n2w7 W) + W{(Zw(i—w[; +2n zwb +2wo—Wp)

/ / -
wl—wyw]) + 2w,y(W,+W,) ] sinn6

+ (2n2- 1)(wéw2+w3w2—wy

+[ wll (wé +2n2wﬂ +wB) - w2/(w.{’ +2n ZWY +wy)

/

yWo W Wg ~Wow, ] cos3n0

+ (1 +2n2)(w£w1 -w.
+[ wl’(w{+2n2w,1 +W,) + wzl(wé +2n 2WB +wg)

’wl W W, +W,we) ] sin3n@ )

+ (1+2n))(wyw,+w, g

+ (t2/4s]2)§4{[2w(i(w(;+2wm)+wé(w';—8n2wB +2wp) + w.r/(w;—Snzwy ¥2w,)
2,2 2 2 / / =
+ (1-4n )(wB+w.1) + 2wy ] + 4(wa+wa)(wp+wﬁ)0052n9

+ 4(w;+wa)(w; +w7)sin2n5 +[ wé(wé+8n2wﬁ +2wb) (A2.3)

~ wy(wy +8n%w, +2w,) + (1+4n)(wj-w)) ] cosdnd

+ 2[wé(w.1/+4n2w7+wy) + (1+4n2)(w_{/+w7)wﬂ]sin4n§} + o

Substituting Eq. (A2.3) into Eq. (A2.2) and carrying out the integration yields
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(stlzce el ‘1_3;1‘V’l + (ﬁl‘l “}_3;2)“’, + §1‘2\V]

+ 2ssin0 (As, 0”-A) 0) + eZc(ty?+2s,coto )

+(WasTce DE2 {n] -Byw? + (B],-By-Bjyw. + (B}, +B-Bow,

+ Bhw, 1 + 4s;sinc [ A,

S ol Axpl Kx
+ Apfy - Anfa-Anf, ]

(A24)

+ ezct[wl’(wll -2n’w, +2w)) + w{(w£—2n2w2+2w2)

+ (1-nH(W2ewl) + dy(w,+wl) + (4s,coto/y(we+wy) I

+(tHasDE 2wo(wh+2w,) + wi(wh-8nPwy+2wg) + wy(w, -8n’w, +2w,)

+ (1—4n2)(w§+w3) + 2w§} =0

Notice that the underline terms vanish identically since they are equal to equations (6.1)

and (7.1), respectively, with the constants k, = ¢; = 0. Thus the periodicity condition is
satisfied up to and including terms of the order &°.

A2.2 Constants Used in Boundary Conditions

B, = (D},A+BoB)a

B, = 2s,sint,(A 5B, -ALB /s

B, = ‘(‘Kl.zﬁl.l“ﬁz‘xﬁ;l)/A

B, = l(]-)l'lﬁz.l_ﬁl‘zﬁz.l)/(zslsinanA)

Bs = ‘Kx.z/‘-\;z

B, = tﬁ{,/(ZslsinaqK;z)

B, = - [DJ(AL+As) + By (B +B)Va
By = ("2‘1)(7\1‘261.1 +B 1B} Va

B, = n(AzD} +BgB))/a

By = ttn®-1)(D};B;, B,,D})/(2s sinct )
B,, = tn(D},Bs-D B, )/s,sinc:_a)

By = - (A3 « BBl

By = (“z‘l)ﬁfzz;z*ﬁz‘lﬁfz)/‘\
By, = 'zn(”)l‘s‘;‘{z*ﬁﬂ:sﬁz'l)/‘-\

s = 2An2-Dys,sinet (B Az,-ALB (ta)
By, = 2ns,sina (B As-AsB s M(ta)

B,, = B;\(B;,-B-B;)a

B,y = 0l B}, (B¢, -2B) + 2D} \A V/a

® = tl-);l(ﬁz‘z-ﬁ",—E{J/('Zs,sinaog)

o
8
[

= tn[ D} (2B -B;)-4D B, 1(2s,sincc )

B, = [ D}, %A +n?A+A] +A}+Ay;)
'ﬁz‘l(ﬁl.l +2n zﬁé'“zﬁ " '§1‘2‘§2‘2) Ifa

By, = (1-n)[B,B; +D (A} +A ) a

By, = - nBy(B,+2B 4285 Va

By, = “(“'2‘1)(251.61—32‘1'51‘1’;1'6)/A

B,, = t[B;(Dy,+n?D},+4n2Dg)

+ D} (2n®Bg-n?B;,-B;,-B;, -B (25 sincc, a)
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By = ttn®-1){ D y(B;+B)-D3B;, U2s;sinct )

B

By, = -nt D}, Bg,+By+2B 5 +2B5) + 2DB;, 1025 sinet a) Bys

By, = tm(n2-1)2DB;, +B 5D )(2s sinc a)
By = 2(1-n%cBj/a

By, = 2¢Bj/a

By, = 2(1-n%cs,cotor, B /(1a)

B,, = 2s,ccot B, /(ta)

B,, = -D;jcti(s sinc, a)

B, = l.iflctnz/(slsinao a)

By, = -Dj, ccotar, (1-n?)(sincx, a)

By = -D, ccota, / (sinct,a)

B,, = - [A;D) + By@5-B)la

By = - n[4DA;}, + B;,(2B5-Bo) Va

B, = 2s,sina, A%(By, B}, -By)i(ta)

B,, = 2nssino, [ A,(Bg,~2B1)-2A58)/(w)

B,, = [A}(D}, ™D}, +4n*Dy)
-B;2n?By-n?B},-B; -B; B 1a

B,, = (1-n)[ B}, (B+B)+DyAs Va

B,, = n[B;(B;+B5+2B+2B5)-2D A, a

B,, = n(1-n?)[B;Bg,-2DA;, Va

B, = -2s,sina, [ A5(B; +2n2B-nB;, -B},-B)

+ By(n?AL, n?AL +A ] +A L +AL) /(La)
By = 2s;sin0i, (1-n%) [AZB,-Bi (AN +A /()
By, = - 2s;sino, nAj, (Bg,+2B 5, +2B5; ()
By = 2n(n?-1)s,sinct, (2B A +B5 A )/ (1a)
B,y = 4c(1-n%)s,sina, Agy(ta)
By, = 4cs;sine Aj/(ta)
B,, = de(1-n2)sicosa, As/(t%)
By, = dcsicosa, An/(1%s)

By, = 2cBj/a

By

BS‘I

= - m%Bj/

= 20(1-n)s,coter, BJ/(ta)
= 2cs,coter, B, /(ta)

= n cotat, D, /(sinct, a)
= - 2n%s,coir, By /(ta)
= - ccotoi, /(sinct, A3,

= - ot f(s,sinci, AJ)

(ntAL+n?AL+A L +A L vAnYAS,
= (L-n2XA} +AL)/AS
(i-ndA A,

(B, -B (25 sinar, A)

(2n?BY-n?B;,-B;, -B;, B )/(2s,sinot, Aj)

= m(2B, B, M2s,sinct, A5,)

- (B, 4B +2B 5 +2B N2 sinct, Ay
= - (AL+ALYAL,

(2-DALAL

= nAy/As

= B, (2s,sina A)

- B3, +nB;,)(2ssinct, A,
= - 2B /(25 sina, A )
= t[ D} (n?B 20785, -2n2B g 4B}, 4B}, -B5y)
- B} (n?Dy, Dy, +4n?Dgy) 1(2s,sinor, )
= [ D (Bg, +2B 5+2B 5 n?Bgy)
+ B}, (2D};+2n?Dy 2D ) 125 sinor, 4)
= - [AL0D},+n?D;, +4n?Dy)
+ Bp(n2Bp,+207B;,-202B 4B, +B;, By Va

-n [ As(2D3-2D-2n2D;)

+ By n?B,+BJ + 2B +2B) Va

(1-n2XAD; +B; Vs




Bgy = n(n2-1XD} A BoByya
By, = 2n(1-n2)s,sine, (AxB;, -AnBe)(ta)
By, = (3-1)(n?A},+n?A%+A)VAS,

By, = wn2-1)B+B1,)(2s sina, As)

By, = tm3-1B/(2s,sinct, Ay
Bgs = ctn?/(s,sin Ag)

By = - o(1-n%cotar, / (sincr, Agy)
By, =n(n®-DAjA;,

By = tn?B,+2n?B;,-2n2B 5 +B | +B;, -Bo)(2s sina, Ajy)

.Byy = t(n®Bg,+nBg, +2nB js+20B,0)/(2s,sinot, A,)

By, = cn’cotos / (sinar, Z\,:z)

-]
e

= (51‘1 +I_)1‘2)/1_)1‘1

By = 21‘1-)1'5/51‘1

B,, = 2s,sino B D},

By, = 2(1-n%s sino, B /D;,

Bgs = (“2‘1)51‘1/61'1

By = 4“51'6/51.1

By, = 5;2/5;1

Bg = (1-4n)A/AS,

By = (4n7'1_\1'2+4n2;s;6+7\1'l +;;2+K7:2)/;;2
Bg = (4n2-1)A} +AL)AS,

By = 4“K£JK;2

B,y = 2n(n’-1AJA;,

B, = tn(Bg~2B)/(s,sincr, A,)
Byg, = 20t (D} By -DyBys,sino,a)
Byos = 2n(B;,Bg+DpAsYa

B = (4n2—1)(§l'1§2']+13;1;;2)/,s
B,y = - 4n(D;AL+B; B )/a

By = 25,sino, (BA},-B AL (1)

By = dnsysino (Bo AL -B7 AL ()

Bl]O

Blll
BHZ
B113
Blld
BllS
Bllﬁ

B117

118

BB]

132

B133

BBS

Bl36
B137

B 138
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= 2(4n2-1)ssina, (B A5, -ByAL)N(ta)
= t(4n?B,-8n2B g +B ], B}y +B5 W25 sinat Az
= nu(B +B g, +2B 5 +2B (s sinct Az,
= tc/(4slsinuoxz'z)

= tc/(25,sina°K2'z)

= tc(1-n?)/(2s,sinct A )

= tc(1-4n?)/(4s sinci A,)

= to(1-4n2)/(2ssinc A,)

= A +ALA,

= (@B, +B;, -B (25 sin, A,)

= 2s,sinol, (1-4n2)B; D),

= 2s,sina B}, /1D

t(B},+B /(25 sinct, Aj,)

t(1-4n2) (D;,B5,-Dy,B; /(25 sinct, a)

(ctn?D],(4s,sinot, A)
= (ctn®D})/(2s,sinct A)

= (4n?-1) B BL+DALYA

= (en?B;)I28)
= (en2B;)/A
=185,/ (2ssine, A)

- (4n?-1) B; +DAR)a

2n(4n?-1) (B;,Bg,+D; As)la

= 4n(4n?-1)s,sin0, (B Az,-BrAs A

(4n2-1)(4n?A 5, +4n2A g +AL YA

(1 -4n2)B}, +B;)/(2s sint, A,

nt(1-4n)B /(s sincr, Ay)

= (4n?-1)ccotar, / (sinct, Ag,)

= (4n?-1)tc/(s,sint, A,)

= [51‘1(’-\1‘1+Zx‘2*;2.2) * ﬁz'x(ﬁltz*ﬁz.z‘ﬁx'l)

+ 4n?D] (A +AL) + 4n®Bj (B, 285 Vs
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Byyy = (1-4n?) (61.1‘:1.1 * I-)1'1;\1.2 + ﬁl.zﬁ;l)/“

By = 20(1-4n?)(D},A), - 2B5,B s

B,y = zn(ﬁz.lﬁs.l - 2§2.l§2:6 M 251‘12’;),‘

By = - 2nBy (B, + 2By + 2B,00a

By = tD(BS, - Bj - B\ i(2s;sine, )

B,y = t[D;(n?B},+2n%B;, -2n2B 5 +B; +B;, -B;))
- B, (D}, +n?D ;) +4n?D) 1A(2s,sinci, a)

B,,s = t(1-4n?)XB;,D;,-D; B},-D; B,y)(2s,sino:, )

B, = 2tn (2D} B, - D;\B;, - 4D}B; K25 sinct, )

B,y = - 2m (DB, + DB + DB,
+ 21—)1.151‘6 + 25f,§;6)/(2515ina°,5)
By = 2nt(4n2-1)(§6’21-)]', + 21_32‘]5;6)/(2513-,“&0 a)

B, = ctD;/(4s sinct, &)
B,s, = ctD} (dn2-1)/(s sinat, &)
B,s, = ccoio, Dy, (dn2-1)/ (sinc a)
B, = Bjela
B,s, = Bjic(1-n%a
Bys, = Bjc(1+n?)/a
Bygs = 2¢s cotol, (1-4n2)B; /(1a)
B = 2c(1-4n%)B; /s
By, = - ctD} /25 sinct, 4)
B, = ctD] (dn2-1)/(2ssinct, a)
Bysy = “_);2;2.2 + §;1(§1'2*§;1+§f|)
* 4“1(456.6‘?\2'2*szxz'z*ﬁz'lﬁ;zaﬁz‘xﬁw) Vs
By = (1-4n2)(DyA;, + ByBy « BLBR)A
B = 2n(§2'l§6‘l - 2[—;2‘11322 - 45;6X7:2)/A
B, = 2n[ Bj(By +B+2B  +2B5) - 2D AL, I/a
By = 2n(1-4n2)B;,B,, - 2D A,)a
By = 2ssina, [ As(4n?B; -8By -B; -B; +B By

- §;1(4n 23 L+an?Al +A " +A W Va)

B,gs = 2s;sina, (1-4n3EBHAS - BAL, - BLANKw)
B, = 2ns;sina, (BQAy, - 2BjA% - 2BRALN)
B, = 4ns;sina, A58, + 2B + 2B/(18)

B, = 4ns,sina, (4n2-1)BoA% + 2BAS ()

By = ﬁ;lc/(ZA)

By = 2s,csingt, An/(ta)

By, = 2s;c(1-nYsina, As/(ta)

By, = 2s,c(1+ndsing, As/(ta)

By, = - 16sicnicoso Az /(t%a)
B,;e = - 16s,cn’sino As/(ta)
By;s = c(l -4n2)l-3;l/A

By = 4os;sinct, (1-4n%)A s /(ta)

176
B,;; = dosTcosa, (1-4n9)A /(%)
where A = AnD; + E,_']Z

Ji = By + BBy - BygBy + BB, - ByyByg
J; = By + BBy + BBy,

J; = By + BBy + BB, + BBy + ByB,
T, = By « BygBy + ByBys

Js = By + B;B, - BigByy + BygBy, - ByBy,
J = By + BBy + BBy,

T; = By + BBy, + BBy + BygByy + ByBy,
Jg = By + BgByy + BBy

J, = By + By;B)y ~ BygB) +BygB,-ByoB,,

Jio = By + ByyByy + BygByg

Iy = By + BBy, + BBy, + ByByy + BB,
Ji2 = By + BBy + BygByg

J3 = Bys + ByyB, - BygByg + BygBy - BBy
Jia = Byg + BBy + BygBy

Jis = By + BysByg + BygB; + BygBy « ByBy

Jig = Bgg + ByByg + ByoBg



=By - BBy + BB, - Bi;Byg

=B

= BB, + BBy + ByB,

=By,
= B48

= By

+ BgBys

+ BgBys

- BBy + BBy - BBy

+ BB, + BgsBy, + BBy,

+ By;Bgy
+ B;By
+ BBy,
+ BigBy
+ BBy,
+ BBy
+ BygByy
+ BigBp

+ ByByp,

+ ByBy -

+ ByBpy
+ BygBy,
+ ByBgy
+ BygByy
+ BygBy,

+ BBy

- B63B7l

= BgBg

+ 363870
- BgByy
+ BgyBog
+ BgBy
+ BBy

- B63B87

+ BBy

- Blan

+ BigBg

-B 18B74

+ BB

17774

- B 67BK 1

+ BBy,

+ BBy

= Bg, + (1-n%Bg

= By, + ByBy

= Bgg - BBy

= Bg; + BBy

=By + BgBp

= Bg - BgsByy

= Bg - BBy

= By, - BBy

= By - BBy, + Bg;Bg,
= By - BgsBg, - BBy
= - BBy

=Bj; - BBy

=By - BBy,

= By - ByBg

= By, - ByBy

= Bys - BBy, + BBy,
= By + BygBys

= By - BBy - ByBy
= By + ByBys

=B, - By;By, + ByBy,
= By + ByBys

= By - ByBg, - ByBy,
= By, + BygBys

= By - By;By

=By - ByBg,

= By, - ByBg,

= By - ByBy,

= By - ByyBg

= BygBes

= ~ By -~ Byg;Bgg

255
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I, = By)Bs - By Jio = ByyBigs + Buy + ByyyB, + ByysBigy + BuugByy
Ty = By ~ B Bygs + BesBygg + BiosBios Jin = BBz + Bygg + ByygBig

Ty = - Bigo + BsBiyo hi2 = BygBigyy + By - BBy,

Jgo = Big;B; + BysBioy ~ BigyBiog 3 = ByygBiag = BugyBias

T = = By + BygBigg - ByosBuyo Jie = BigyBas = BiegBiy

J = = By, - BygBige + BgsBy, + BBy Jus = BiggByyg + Bigg — BysBygs

Jo = - By + BipiBy + BesBygy - BygBy, Jis = ByByy + Bysg - By Bigy + BygBy - ByeBigs
Jas = - Byog - BesBiyp 7 = ByByg + Bigo + BygBiag

Jos = Bioy + BiyBgy s = ByBigy + Bygy + BygyByy + BygByo, + BieeBs
Jos = - Bigp + BiBig Jie = BigiBizs + Bigy + BisBins

Jy = - BesBys Jizo = BB, + By - BygBrog + BygBy - BiegBucs
Jos = = Byy; - BesBy, - ByyBy, Jiat = ByByjo + Bygs + BygBigg

Jog = = Bpyp + BiyByy - BysByg Jizs = By;Bygg + Bigy + Byg By + BygBigs + BB,
Joo =1 + ByygBgy Jizs = BigiBiio + Bieg + BiesBros

Jo = By + ByyoByy Jia = - ByyByg + Bgy + ByByyy

Jp = - By + BygByy s = BigiBiz - BigeBios

Ji = By - BigiBysy + BiyBiy, T = - BigBrar + BigBia

Jos = = By + BygBiyg + BgsBys, D1z = ByBiyg + Bpgs - BygBiys

Jo7 = = Bpay + BgsByy

Jig = = Bps + ByoBig - ByyBiye

Jos = = BygBpas - ByosBg

Jio = BesByyy - Byyg

Jiz = ~ By + BesBag

Jis = BioaBiyy + BigyByas

Jiw = BBy + Bygg - ByyBygs + BBy - BiygBigg
Jios = BpsBigs + Bygg + BBy

Jios = BuBigs + Bigp + BBy + BBy + ByyBy
Jior = BiBios + By + ByyByyo

Jioe = ByiBy + By - ByyBigy + BiyByy - BBy

Jiop = BysByyy + By + BBy
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Appendix 3
For Chapter Five

A3.1 REDUCE-based Package GMACS

GMACSO0

comment This is for the derivation of the Donnell-type
goveming equations of the anisotropic conical shells
for the simplified buckling solution$

operator k11k22k12,011,n22012,m11,m22,m128
depend w,zth$
depend f,z,th$
depend wb,z,th$
depend u,zth
depend v,z,th$
let k11=-(df(w,z,2)-df(w,2))/(s1*e )2,
k22=-(df(w,z)+df(w th,2))(s1 *e”z) 2,
k12=-(df(w,z,th)-df (w,th))/(s1*erz) 2,
nl1=(3f(f,z)+df(f th,2))/(s1*er2)A2,
n22=(df(f,z,2)-df(f,z))/(s1 *e z)"2,
n12=(df{(fth)-df(f,zth))/(s] *e 22,
m11=-(bl1*n11+b21*n22+b61*n12)*1/(2*c)
+(d11*k11+d12*k22+d16*k12*2)*g*1"3/(4*cA2),
m22=-(b12*n11+b22*n22+b62*n12)*1/(2*c)
+(d12%k11+d22%k22+d26*k12*2)*g*t1A3/(4*cA2),
m12=-(b16*n11+b26*n22+b66*n12)*1/(2*c)
+(d16*k11+d26*k22+d66*k12*2)*g*1"3/(4%cA2),
epll=(all*nl1+al2*n22+al6*n12)/(g*1)
+(b11*k11+b12*k22+b16*k12*2)*1/(2%c),
ep22=(al2*nl1+a22%n22+a26*n12)/(g*1)
+(B21*k11+b22%k22+b26%k 1 2%2)*1/(2%¢),
epl2=(al6*nll+a26%n22+a66*n12)/(1*g)
+(161%k11+b62*k22+b66*k12*2)*/(2*c)$

%The out-of-plane equilibrium equation of imperfect shell is;
%on list$

equi:=sub(g=e,s1*(s1*erz)"2*
sub{w=w*e’z f=*erz wb=wb*e/z,
df(n11*(df(w,z)+df(wb,z)),z)/(s1 *erz)

+n22*cot(al)

+df(n22*(df(w th)}+df(wb,th))/(s 1 *e~z),th)
+df(n12*(df(w,thy+df(wb,th)),z)/(s1 *erz)
+df(n12*(df(w,z)+df(wb,2))/(s1*e”z),th)
+(df(m11*s1*e*2,2,2)-df (m11*s1%e”z,2))/(s1 *erz)2
-df(m22,z)/(s1*erz)

+df(m22/(s1*e/z),th,2)

+2*%df(m12/(s1%e”2),th)

+2*df(m12,z,th)/(s1*erz)
+p*s1*erz))$
length(ws);

left:=sub(f=f*eArz,w=w*e’z,
df(epl2,z,th)

+df(epl2,th)

-df(ep11,th,2)

+df(epl1,2)

-2*df(ep22,2)

-df(ep22,2,2)

+df(ep22,2))$

begin scalar epl1,ep22,ep123

epl1:=df(u,z)/(s1*erz)+((df(w,2)/(s1*e"2))"2)/2
+df(w,z)*df(wb,z)/(s1*e/z)"28

ep22:=(u-w*cor(al))/(s1 *erz)+df (v ,th)/(s1 *erz)
+((df(w,th)/(s1*e*2))A2)/2+df (w.th)
*df(wb,th)/(s1*erz)*28

epl2:=df(v,2)/(s1*ez)-(v-df(u,th))/(s1*erz)
+(df(w,z)*df(w thy+df(wb,th)*df(w,z)+df (wb,z)*df(w,th))
Hs1*erz)A28

right:=sub(w=w*e Az, wb=wb*e’2,
df(ep12,2,th)

+df(ep12,th)

-df(ep11,th,2)

+df(epl1,2)

2*df(ep22,z)

-8f(ep22,2,2)

+df(ep22,2))3

retumn right

end;

% The compatibility equation of imperfect shell is;
comp:=sub(g=e,(s142)*(lefi-right)*e*z)$
length(ws),

let wb=0;
%Input N--the highest order of the perturbation;
pause;

for i:=0:n do << depend w(i),z,th; depend f(i),z,th>>$
w:=for i:=0:n sum w(i)}*1"i$

f:=for i:=0:n sum f(i)*1M$

equi$
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comp$

for 0:=0:n do
<<es(o):=coeffn(equi.l.o);
co(o):=coeffn(comp,1,0>>$

%The prebuckling governing equations are;
equili(0):=es(0)$

length(ws);

compat(0):=co(0)$

length(ws);

let w(0)=0,£(0)=-e*s1%1A2*(km*eA(2*z)/6+Im)(tan(al}*c)$

%The buckling governing equations are;
equili(1):=es(1)$
length(ws);

let w(1)=a*eN-z)*(sin(k1*z+nl*th}sin(k2*z-n1*1h))/2$

compat(1):=co(1)$
length(ws);

end;

GMACS1

for all a,b let

sin(a)*cos(a)=sin(2*a)/2,

sin(a)*2=(1-cos(2*a))/2,

cos(a)2=(1+cos(2%a))2,
cos(a)*cos(b)=(cos(a+b)+cos(a-b))/12,
cos(a)*sin(b)=(sin(a+b}+sin(b-2))/12,
sin(a)*sin(b)=(cos(a-b)-cos(a+b))/2$

compat(1)$

%Multipling ez in the following is a trick$

%to solve for Ci$
coe(1):=eAz*coeffn(compat(1),sin(k 1*z+n1*th),1)$
coe(2):=ez*coeffn(compat(1) sin(-n1*th+2*k2),1)$
coe(3):=erz*coeffn(compat(1),cos(k1*z+n1*th),1)$
coe(4):=erz*coeffn(compat(l),cos(n1*th-z*k2),1)$

cli:=coeffn(coe(l),e7z,1);
c2:=coeffn(coe(1),e72,0);
c3:=coefin(coe(2),e"z,1);
cd:=coeffn(coe(2),c7z,0);
cS:=coefin(coe(3),c7z,1);
c6:=coeffn(coe(3),erz,0);
cT:=coeffn{coe(4),erz,1);
c8:=coeffn(coe(4),e22,0);

Foope=LAf(1));
ope:=-(compat(1)-coe(1)*sin(k1*z+n1%th)
*eA(-z)-coe(2)*sin(-n1*th+2*k2)
*eN-z)-coe(3)*cos(k1*z+n1*th)*e”(-z)-coe(4)
*cos(nl*th-z*k2)*e/(-z))$

opel:=sub(f(1)=sin(k1*z+n1#th)* (b1 +b2*eA(-z))
+$in(k2*z-n1*th)* (b3+b4*er(-z))+cos(k 1*z+n1th)
*(bS+b6*eA(-z)Hcos(n]*th-z*k2)
*(b7+b8*eA(-2)),0pe)$

coel(1):=coeffn(opel sin(k1*z+n1*th),1)$
coel(2):=coeffn(opel sin(k2*z-n1*th),1)$
coel(3):=coeffn(opel cos(k1*z+nl *th),1)$
coel(4):=coeffn(opel,cos(ni*th-k2*z),1)$

%check:=opel-coe1(1)*sin{k 1 *z+n1*th)

-coel(2)*sin(k2*z-n} *th)-i

Focoe1(3)%*cos(k1*z+n1*th)-coe1(4)*cos(n1*th-k2*z)$

coel1(1):=coeffn(coei(1),b1,1)$
coe11(2):=coeffn(coec1(2),63,1)$
coel1(3):=coeffn(coel (3),b5,1)$
coel1(4):=coeffn(coc1(4),b7,1)$

bli=cl/coel1(1)$
b3:=c3/coel 1(2)$
bS:=cS/coel1(3)8
b7:=cT/coe11(4)$

%Now to solve for b2,b4,n6,b83

ce(1):=(coe1(1)}-coel 1(1)*bl)*e z$
ce(2):=(coe1(2)-coe11(2)*b3)*erzS
ce(3):=(coe1(3)-coe11(3)*bS)*e 28
ce(d):=(coe1(d)-coe1 1(4)*bT)*erz$

mid1:=solve(Ist(ce(1)-c2,ce(3)-c6),b2,b6)$
b2:=pan(pant(pari(mid1,1),1),2)$
b6:=pari(pan(part(midl,1),2),2)$
mid2:=solve(lsi(ce(2)-c4,ce(4)-c8),b4,b8)$
b4:=part(pan(pant(mid2,1),1),2)$
b8:=part(part(pani(mid2,1),2),2)$

end;

GMACS2
w(l):=a%eA(-z)*(sin(k 1 *2z+n]*th)+sin(k2*z-n1*th))/2§

f(1):=sin(k 1*z+n1*th)* (b1 +b2*eA(-z))+sin(k2*z-n1*th)
*(b3+bd*er

(-z))+cos(k1*z+n 1 *1h)* (bS+b6*e(-z))+cos(n1 *th-k2*z)

*(bT+b8*eA(-z))$
let 1an(al)*coi(al)=1;

equili(1)$
coe(1):=eAz*(coeffn(equili(1),sin(k1*z+n1*th),1))$
coe(2):=erz*(coeffn(equili(1),sin(k2*z-n1*th),1))$
coe(3):=erz*(coeffn(oquili(1),cos(k1*z+n1*th),1))$
coe(4):=e*z*(coeffn(equili(1),cos(k2*z-n1*th),1))$

d1:=coeffn(coe(1),c*23);
d2:=coeffn(coe(1),c*z2,2);
d3:=coeffn(coe(1),e”z,1);
d4:=cocfin(coe(l),e"z,0);

d5:=coeffn(coe(2),e”z,3);
d6:=coeffn(coe(2),e”2,2);
d7:=coeffn(coe(2),e*z,1);
d8:=coeffn(coc(2),e"2,0);

d9:=coeffn(coe(3),e*z,3);
d10:=coeffn(coe(3),e2,2);
d110:=coeffn(coe(3),e*z,1);
d120:=coeffn(coe(3),e"z0);

d13:=coeffn(coe(4),e*z,3);
d14:=cocffn(coe(4).e7z,2);
d15:=coeffn(coe(4),e*z,1);
d160:=coeffn{coe(4),e*z,0);
end;




GMACS3

forall ab let

sin(a)*2=(1-cos(2*2)}2,
cos(a)*2=(1+cos(2%))/2,
cos(a)*sin(a)=sin(2*a)/2,
sin(a)*sin(b)=(cos(a-b)-cos(a+b))/2,
cos(a)*cos(b)=(cos(a+b)+cos(a-b))2,
sin(a)*cos(b)=(sin(a+b)+sin(a-b))/2$

procedure ddint(f);

begin scalar ml,m2,m3$

ml:=int(int(f*(sin(k 1*z+n1*th}+sin(z*k2-n1*th))
*eM-2),2)4h)S

let k1=(m*pi/z0)-tuk2=(m*pi/z0)+w,n1=n/sin(al)$
m2:=sub(z=z0,m1)-sub(z=0,m1)$
m3:=sub(th=2*pi*sin(al),m2)-sub(th=0,m2)$
retumn m3

end;

il:=ddint(sin(k 1*2+n1*th)*eAr(2*z))$
i2:=ddint(sin(n1*th+k1*2)*eNz))$
i3:=ddint(sin(k1*z+n1%th))$

i4:=ddint(sin(k 1*z+n1*th)*eA(-2))$

i5:=ddint(sin(k2*z-n1*th)*e7(2*2))$
i6:=ddint(sin(k2*z-n1*th)*e*(z))$
i7:=ddint(sin(k2*z-n1*th))$
i8:=ddint(sin(k2*z-n]1*th)*e(-z))$

i9:=ddint(cos(k1*z+n1*th)*e(2*z))$
110:=ddint(cos(k 1*z+n1*th)*eA(z))$
i11:=ddint(cos(k 1*z+n1*th))$
112:=ddint(cos(k 1*z+n1*th)*e/(-2))$

i13:=ddint(cos(k2*z-n1*th)*eAr(2*2))$
114:=ddint(cos(k2*z-n1*th)*eM2))S
i15:=ddint(cos(k2*z-n1*h))$
116:=ddint(cos(k2*z-n1*th)*er(-z))$

in gmacs4$
%on factory
il;

iz

i3;

i4;

is;
i6;
ity
i8;
i%
110;
ill;
il2;
il3;
il4;
ils;
il6;

end;

GMACS4

comment This is for the further manipulations of the
inte(i)$

for all x,y,z let

sin(x+y)=sin(x)*cos(y)+sin(y)*cos(x),
sin(x-y)=sin(x)*cos(y)-sin(y)*cos(x),
sin(x+y+z)=sin(x)*cos(y)*cos(z)+sin(y)*cos(x)*cos(z)
+sin(z)* cos(x)*cos(y)-sin(x)*sin(y)*sin(z),
cos(x+y+z)=cos(x)*cos(y)*cos(z)-cos(x)*sin(y)*sin(z)
-sin(x)*cos(y)*sin(z)-sin(x)*sin(y)*cos(z),
cos(x+y)=cos(x)*cos(y)-sin(x)*sin(y),
cos(x-y)=cos(x)*cos(yHsin(x)*sin(y),

sin{4*n*pi)=0,

sin(2*m*pi)=0,

cos(4*n*pi)=1,

cos(2*m*pi)=13

end;
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Appendix 4
For Chapter Six

A4.1 Constants used in the axisymmetric
prebuckling equations

¢, = B;-B)B;a

¢, = BBy +AnD A

&, = (2sysino, XB3,-B;)D; /s

& = (tﬂs,smo)(l-)z';ﬁz'x ‘ﬁ; 1ﬁ A
& = chlcotaul-?;‘l/(m)

&, = - ccota, D} /(sina, )

¢, = %B;/a

&, = - cD}\u(2s sina_a)

&, = cslcotzct,ﬁ;ll(l sinc a)

&, = 2cs,cof’ B\ /(t sinct_a)

¢, = AuD5+B B s

8y, = (2s;sina, /iYBy,-Bi)As
¢,y = (2ssina, /XALB;,-ALB;)a
€, = 2cs 0010, B, /(1a)

€y = ksfwmoxél(tza)

&6 = dos,sina AL/(ta)

¢, = CE;‘/A

&y = 2eslcofo, AL/

&, = dosicottar, AL/(1%)
€, = cosa fsin’a,

Cyy = AAS-AjAYe

¢, = Kl',/c

where a= ;-\Z'ZD,', + Bz'lz

A4.2 Constants used in the asymmetric
buckling equations

C, = 2A5(B5-B;) s sinot, fta

G, =2( nz(ﬁ;l‘xiz_ﬁz‘l;;z_ﬁ;l‘xé*§;2K’2.2_2§6.GR’2.2)
+ ﬁ;z‘z‘;z - ﬁl.lxl'llsl sinQt fta

C, = 2n*-1) ALB5-B ) s, sina fta

C, = An-1)(B; A} -BLAL) s, sing fta

Cs = 2n (B} A5~2B5A5,-2B; Az s, sina fta

Cq = -2nA5(B; +Bgy +2B 5 +2B 50 5, sinor fta

C, = (n2-1)2B; A5 -BoAs,+2BAS) s, sina fta

Cg = ﬁz.l(ﬁl‘l _EZ.Z)/A

Cy = ["z(ﬁl‘lﬁz-l*Ez.lﬁ;z‘zﬁz‘lﬁe'c*251'2*&2‘2*456'6;2'2)
+ ﬁz‘lz *ﬁt‘zﬁz'l * 51‘1;‘2'2*52‘2;‘2‘1 Va

C,o = (n2-1)B},B; -B;Bs/a

Ch=- (“z‘l)z(ﬁz'lﬁ;z*ﬁz.z;‘;z)/A




Cp = “(E;lﬁﬂ‘l_ﬁ‘z.lﬁ‘;b_‘tﬁ;ﬁ‘x‘:z)/"

Cys = “1-32.1(}-345.1*']-36.2"2]—31.6“‘21_3276)/A

C,, = n(n?-1)4D3A;, +2B;B B, Bs)a
C,s = 4os?sino, Ay (t2atano)

Cy = 2c5,B,)/ (tatanor )

Cy, = des,sino An/ta

Cis =401 —nl)cslsinaox;zlu

Cy = 2‘:1_32.1/A

Cy = 2¢(1-0%)B;)/a

Cy = [5;1(2"2“-\;2*“2;62*;1.1*;2.2)

- 5;1(2112}-3;6‘“251‘1 ‘"zﬁztz’ﬁz‘l ‘ﬁ;z) Va
Cp, = - (2-1%@},B;+DA Va
Cp = [20ALD}, - nB;,2B5-B5) Via
Cy = - n(n2-1)[§{,(§;2—2§{5)+23,}I3{, Va
Cys = D} y(B},-B )1/ (2as, siner.)

Cy = [B;(2nDy, +4nDgg+Dy,)

+ l-);l(anl_Bgs—nzﬁz'z—nzﬁl',—ﬁfz)] t/(2as, sincc )
C,; = DjB5-B)@3-1)(2as, sinat,)
Cy = (212D}, B, -B; D)2 asin0 )

Cy = “‘(251‘11;7:5‘6;11_36.1‘4§;15;6)/(251 sino A)

Cyy = —nuDy (2B +2B  +B gy +Bg W(2s, sina a)

C,; = (2= [nD;y(Bg,-2B ) +4nB; Dy (25, sin )
C,, = - D;\c cotat, Jasinet,

Cy, = - Djjctias, sinat)

Cy = - ﬁl'lcl(l —r12)/(As1 sinat )

where A= I;;lz + 51.1“—\1.2
A4.3 Constants used in Eq. (6.26)

D, = Cpg + Cye? + Cpe(YP+YP) + Crpe (Y T4Y(Y)

D, = C, + C;e® + CLe(Y+YY)
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D, = C;y + Cyee?Y + Cye?Y”

D, = C, + Cjee*Y{?

D, = C, + Cpee™ + Cppe?¥Y + Cpge?Ys”

D = C, + Cpge? + Cpre®Ys”

D, = Cyy + Cye® + Cre (YO +YS) + Cre((Y{7+Y)
Dy = - Cyg + Cpee® + Cmel(Y;o)*Ygo))

Dy = Cyy + Cyge?Y§? + Cye?Y(”

D,y = C; + Cpe Y

D)y = Cye + Cye™ + Cpge Y + Cpe vy

©
Dy, = Cyy + Cpee™ + Cpge™Ys
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Ad.4 Properties of W(z)

The initial value problem for W(z) can be
written in the following partitioned form

Wi@ WL

W) Wi

Ry(z) R |[Wy(a)  Wyp()
Ryx) Ry |[Wy()  Wyp(2)

with the initial conditions (if multiple
shooting is employed)

Wylz2)]  Wy[2(20)] [1 oJ
W2 Wyl [0 1
where z(2j) are the starting points for the
integration (j = 1, ..., N-1, if 2N is the

number of intervals). For edge intervals (j
=0 or j = N) the analysis is similar.

One now can obtain two uncoupled initial
value problems

1
Wy = RyWy, +R, W,

/
Wy = Ry Wy + Ry Wy,

Wy, (z2p] =1

Wz] [2(2])] =0

and

Wi = Ry Wy + Ry W,

W,’, =R Wy + Ry Wy

Wyol22i)] = 1
W,alz(2))] = 0

Comparing the two initial value problems,
it is found that

Wy =Wy,
and
Wy = -Wp

Consequently, W(z) can be written as

follows:

W) -Wy(@)
W) =

W,y (2) Wi

Therefore only eight solutions of the
variational equations are required.
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Appendix 5
For Chapter Seven

AS.1  Constants used in Egs. (7.6)-(7.11)
D, = (1-4n%B;,(B,-B /A

L*/ha* n* el e o*n
D, = By (B} -By)/A D,; = (1-4nHXD; A} +B;B)/A

D, = (1-32‘12+]_32'l§1‘2+]31'11KZ'2+I_);2TA2'2)/A D, =2 n(2]§2'1§2‘6—§2'1§6', 2D AL

D; = (B;;Bjy*DpAz)/a D,, = 20B;;(B,+Bgy+2B g +2B0)/A

D, = 2s, sina, A (BB )A w0 = 20(4n?B}Bg,-8n2B ;B +8n?D AL
= 2g, si "B -BIA"

Z: = zcli;;,r/l:‘om22 A ~B;1B¢y+2B;,B1-2D} A /A

D, = (1-n2)cB/A D,, = tD},(B},-B,)/(2s, sina,A)

D, = cEZ'I/A Dy = t(4“21;1‘161‘1"Sn2]-32‘11_);2"16“%2‘1]35.6

D, = 2cs, Byjcoto /1A +4n2D;B;,-8n°D; B

Dy = des,Apsine:id -B;,D;,+D; B )A2s, sina,A)

Dy = 4csiAjsine, cotor /A D,; = t(1-4n%)D; (B, B )/(2s, sino A)

Dy, = 4(1-n’)es, Azsina, 1A D,, = t(1-4n%)? (B;Dj-B D )/(2s, sinc )

D,, =2 slrkz'zsinozo A

= tn(@B;, Dy +Be,Dy1-2D; B /s, sina A)

¥
b
[

D,, = 2cs,n?A}sinc, /tA

_ 2An*n* R'R* n*nD* - - - = - .
Dy5 = [4n7(2By;Bes-B3 B3y -B11Byy Dy = tnD;y (B, +Bey+2B 4 +2B,9/(s, sinoA)
NS A A Imx A Se2 IS * 2L *
-2D;AL-DiAL - Bj, D,, = tn(8n?D;,B,-16n?B;Dj;
n*n* ~* s e 2~ * Sems e
- ByBy; - DAy, - DA /A -4n°Dy B, +4B,, Dy +Dy; By

2D B, /s, sine, A)
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Dy
Dy
Dy
D,

47

= ctD;/(s, sino A)

= 4ctn®D} /s, sino A)

= ct(1-n?)D; /(2s, sina A)
= ct(1+n)D}}/(2s, sinax A)
ctD]/(2s, sino A)

ceotar D}, /(sinct A)

2(1+n2)cB,/A
= 8n%B,/A

ct(1+n3)D;/(s, sina A)

(4n?B;,B;, +4n?B;,B,,-8n?B,,Bg;

+8n21_)1'2;;2+ 16n 21_)6.6;‘2.2
D2 DesDe AR e Tmaae

+By; +By By +D A5 +DyA50)/A

= (1-4n%)*(Dy,A,+BB /A

= 2n(B;,B;,-2B,,B5-4D A )A

= 2n(8n?B,,B s -4n?B; B, +16n?DA,
+B;B,-2B;,B 4D AL)/A

= 25, sino, (4n2B],A5,-8nB A},
-4n?B; A +4nB;,A5,-8n2B LA,
‘]_32‘1;&1. 1 +B 1'2;‘2‘2)/ (t4)

= 25, sina, (1-4n2)A (B}, -B,)/(14)

= 25, sina, (1-4n2)2(B; A -B AL AIA)

= 4ns, sina, (BgAs,-2B5, Az -2B A1)

= 4ns, sina, A, (Bg, +Bgy+2B+2B,0/(1A)

4ns, sina, (1-4nH)(BLA,,

-2B Az, -2B5 A )/A)

c(1+n)B,/A

= 16cn?s, sina, Ap,/(1A)
= 2(1-n2)cs, sinol, Asy/(tA)
= 4(1+n?)cs, sino;, Asy/(tA)

Dy, = c(1-n%)B,/(24)

D;, = cB;/(24)

Dy = (B;Bj+DjA LA

D;, = t(D;,B;,-D;,B,)/(2s, sint, A)
Dy, = ct(1-n%)D;}/(4s, sino, A)

Dy, = ctD;}/(4s, sina, A)

A52 GEPCAC

comment This is for the derivation of the initial postbuckling
coefficients of anisotropic conical shells, namely, a, b, alpha,
beta with the imperfection taken the general form of
Wimpf=ker* Wcapa=ker*(wi*cos(n*th)+wi2*sin(n*th))$

depend £(0),zm$
depend (1),2,th$
depend f(2)zth$
depend w(0),zm$
depend w(1),zth$
depend w(2),2th$
depend wi,zth$
depend wix0),s,Im$
depend wb(1),s,th$
depend wb(2),s,th$
depend wis,s,th$
depend 0,2,Im$
depend f1,28
depend 2,28
depend fa,z$
depend fp,z$
depend fr,28
depend w0,z,Im$
depend w1,z8
depend w2,z8
depend wil z$
depend wi2.z3
depend wa,z$
depend wp,z$
depend wr,z$

%This is for the dinate trans fic ions$

Fowb(i)=erz* w(i),wis=erz* wi fbli)=e 2*{(i), s=s1*e”z$
%d()/ds=(d()/dz)*dz/ds=(d()/dz)/(s1*e*2)$

%where wb means W(s th), wis means W(s,th)-imperfection,
%wi means W(zth)-imperfection, fb means F(s,th)$

for all k let

ns()=(FkH+df(f(k), 2+df(fk)th,2))/(s1°2%e*2),
nth(k)=(df(f(k),z21df(f(k),2))}(s1/2%e"2),
nst(k)=-df(f(k),z,th)/(s1A2%eAz),
Fowb(k)=erz*w(k),




df(wb(k),e)=(df(wk).z}+w(k))/s1,
df(wb(k),th)=df(w(k),th)/s1$
let df(wis,s)=(df(wi,zy+wi)/s1, df(wis,th)=df(with)/s1$

for all a, blet
sin(a)*2=(1-cos(2*a))2,

cos(a)'2=(1 +cos(2*a))2,
sin(a)*sin(b)=-(cos(a+b)-cos(a-b))2,
cos(a)*cos(b)=(cos(a+b)+cos(a-b))/2,
sin(a)*cos(b)=(sin(a+b)+sin(a-b))/2$

let

Fosi(al)=sin(al)$

f(0)=e*1A2%s1*si(al)*fO/c,
(1)=e*12*s1*si(al)*(f1*cos(n*th)+f2*sin(n*th))/c,
(2)=e*tA2%s1*si(al)*(fa+fp*cos(2*n*th)+r*sin(2*n*th))/c,
w(0)=t*w0,

w(1)=t*(w1*cos(n*thy+w2*sin(n*th)),

%wi is the general imperfection mode,if one lets wil equal to wi
and

%wi2 equal 10 w2 then the imperfection is affine to the buckling
mode;

wi=t*(wil*cos(n*th+ wi2*sin(n*th)),
w(2)=t*(wa+wp*cos(2*n*th)+wr*sin(2*n*th))$

%The integration function of the numerator of the factor a$
aeq:=ns(1)y*df(wb(1),sy*2+nth(1)*df(wb(1),th)*2+
2*nst(1)*df(wb(1),s)*df(wb(1),th)$

length(ws);

%The integration function of the numerator of the factor b§
begl:=ns(1)*df(wb(1),s)*df (wb(2),5)$

length(ws);

beq2:=nth(1)*df(wb(1),th)*df(wb(2),th)$

length(ws),
beq3:=nst(1)*(df(wb(1),s)*df(wb(2),th}+df(wb(1),th)*df(wb(2),5))$
length(ws);

begd:=ns(2)*df(wb(1),s}*28

length(ws);

beq5:=nth(2)*df(wb(1),th)*2$

length(ws);

beq6:=nst(2)*df(wb(1),s)*df(wb(1),th)$

length(ws);

%The integration function of the numerator of the factor alpha$
aleq1:=ns(0)*df(wb(1),5)*df(wis,s)$

length(ws);

aleq2:=nth(0)*df(wb(1),th)*df(wis,th)$

length(ws);

aleq3:=nst(0)* (df(wh(1),s)* df(wis,th)+df(wb(1),th)*df (wis,s))$
length(ws),

aleq4:=ns(1)*df(wis,s)*df(wb(0),s)$

length(ws);

aleqS:=nth(1)*df(wis,th)*df(wb(0),th)$

length(ws);

aleg6:=nst(1)*(df(wis,s)*df(wb(0)th)+df(wis th)*df(wb(0),5))$
length(ws);

%The integration function of the numerator of the factor bata$
baeq1:=df(ns(0),Im)*df(wb(1),s)*df(wis,s)$

length(ws);

baeq2:=df(nth(0),Im)*df(wb(1),th)*df(wis,th)$

length(ws);

baeq3:=df(nst(0),Im)* (df(wb(1),s)*df(wis th}+df(wb(1),ih)
*df(wis,s))$
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length(ws);

baeq4:=ns(])‘df(wis.s)“df(wb(O).s,lm)S

length(ws);
baeq5:=nth(1)*df(wis,th)*df(wb(0),th.Jm)$
length(ws);
baeg6:=nst(1)*(df(wis,s)*df(wi(0),th,Im)+df(wis,th)
*df(wb(0),s,Im))$

length(ws);

%l13;

baeq8:=e*t*(al 1*df(wb(0),s,Im)*df(wb(1),s}+
al2*df(wb(0),th Im)*df(wb(1),th)+
a16*(df(wb(0),s,Im)*df(wb(1)th)+
df(wb(0),th,Im)*df(wb(1),5)))*df(wb(0),s)*df(wis,s)$

length(ws);

baeq9:=e*1*(al2*df(wb(0),s,Jm)*df(wb(1),s)+
a22*df(wb(0),th,Im)*df(wb(1),th)+
226*(df(wb(0),s,Im)*df(wb(1),th)}+
df(wb(0),th,Im)*df(wb(1),5)))*df(wb(0),th)*df(wis,th)$

length(ws);

baeql0:=e*t*(a16*df(wb(0),s Im)*df(wb(1),s)+
226*df(wb(0),th,Im)*df (wb(1),th)+
a66*(df(wb(0),s,Jm)*df(wb(1)th)+
df(wb(0),th,Im)*df(wb(1),s)))*(df(wb(0) th)*df(wis,s)+
di(wb(0),s)*df(wis th))$

length(ws);

%114;

bacq] 1:=ns(1)*df(wb(1),sy*df(wb(0),5,lm,2)$
length(ws);
baeq12:=nth(1)*df(wb(1),thy*df(wb(0),th,Im,2)$
length(ws);
baeq13:=nst(1)*df(wb(1),th)*df(wb(0),s,Im,2)§
length(ws);
baeq14:=nst(1)*df(wb(1),s)*df(wb(0),th,Im,2)$
length(ws);
baeq15:=df(ns(0),lm,2)*df(wb(1),s)2%
length({ws),
baeq16:=df(nth(0),Im,2)*df(wb(1),th)*2$
length(ws);
baeq17:=df(nsl(0),lm,2)‘df(wb(1),s)‘df(wb(l),th)$
length(ws);

%li5;

baeq18:=e*t*(al1*df(wh(0),sIm)*df(wb(1).s)+
al12*df(wb(0),th,Im)*df(wb(1),th)+
al6*(df(wb(0),s,lm)*df(wb(1),th)+
df(wb(0),th,Im)*df(wb(1),s)))*df(wb(0),s,Im)*df(wb(1),5)3

length(ws);

baeq19:=c*1*(al2*df(wb(0),s,Im)*df(wb(1 JsH
222*df(wh(0) th,Im)*df(wb(1) thy+
a26* (df(wb(0),s,Im)*df(wb(1),th)+
df(wb(O),lh,lm)‘df(wb(l),s)))‘df(wh(()).l.h,lm)‘df(wb(l),Lh)$

length(ws);

baeq20:=e*1*(al 6*df(wh(0),s,Im)*df(wb(1),s)+
a26*df(wb(0),th,lm)*df(wb(1),th)+
266*(df(wb(0),s,Jm)*df(wb(1),th)}+
df(wb(0),th,lm)*df(wb(1),s)))* (df(wb(0),th JIm)*df(wb(l),s)
+df(wb(0),s Im)*df(wb(1},th))$

%The integration function of the denominator $
neql:=ns(1)*df(wb(1),s)*df(wix(0),s,Im)$
length(ws);
neq2:=nth(1)*df(wb(1),thy*df(wb(0),th,Im)$
length(ws);
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neg3:=nst(1)*df(wb(1)th)*df(wb(0).s,Jm)$
length(ws);
negd:=nst(1)*df(wb(1),s)*df(wb(0),th,Im)$
length(ws);

neq5:=df(ns(0),lm)*df (wh(1),5)2$
length(ws);
neqt:=df{(nth(0),Im)*df(wb(1),th)"2$
length(ws);
neq7:=df(nst(0),lm)*df(wb(1),5)*df(wb(1),th)$
length(ws);

%The integration of the of the factor a$
ain:=int(aeq,th)$

%The integration of the of the factor b$
bin1:=int(beql th)$
bin2:=int(beq2 th)$
bin3:=ini(beq3 th)$
bind:=int(beq4,th)$
binS:=int(beqS,th)$
bin6:=int(beq6 th)$

%The integration of the numerator of the factor alpha$
alin :=ini(aleql,th)$
alin2:=int(aleq2,th)$
alin3:=int(aleq3,th)$
alind:=in1(aleq4,th)$
alinS:=int(aleq5,th)$
alin6:=in(aleq6,th)$

%The integration of the numerator of the factor bata$
bainl:=int(bacq1,th)$
bain2:=int(baeq2,th)$
bain3:=int(baeq3,th)$
baind:=int(bacq4,th)$
bainS:=int(baeq5,th)$
bain6:=int(bacq6,th)$
bain8:=int(baeq8,th)$
bain9:=int(bacq9,th)$
bain10:=int(baeq10,th)$
bain]1:=int(bacql1,th)$
bain12:=int(baeq12,th)$
bain13:=int(baeq13,th)$
bainl4:=int(bacql4,th)§
bain15:=int(bacq15,th)$
bain16:=int(bacq16,th)$
bain17:=int(bacq17,th)$
bain18:=int(bacql 8,th)$
bain19:=int(baeq19,th)$
bain20:=int(bacq20,th)$

%The integration of the d i M
ninl:=int(neq1,th)$
nin2:=int(neq2,th)$
nin3:=int(neq3,th)$
nind:=int(neq4,th)$
ninS:=int(neq5,th)$
nin6:=int(neq6,th)$
nin7:=int(neq7,th)$

let
cos(2*n*pi)=1,
cos(4*n*pi)=1,
cos(6*n*pi)=1,
cos(8*n*pi)=1,
sin(n*pi)=0,

sin(2*n*pi)=0,
sin(4*n*pi)=0,
sin(6*n*pi)=0,
sin(8*n*pi)=08

on list$

%The numerator of the factor a$
ain1:=sub(th=2*pi ain)-sub(th=0,ain)$
length(ws);

%The six components of numerator of factor b$
bin 1 f:=sub(th=2*pi,bin1)-sub(th=0,bin 1)§
length(ws);
bin2f:=sub{th=2*pi,bin2)-sub(th=0,bin2)$
length(ws);
bin3f:=sub(th=2*pi,bin3)-sub(th=0,bin3)$
length(ws);
bindf:=sub(th=2*pi,bin4)-sub(th=0,bin4)$
length(ws);
binSf:=sub(th=2*pi,bin5)-sub(th=0,bin5)$
length(ws);
binéf:=sub(th=2*pi,bin6)-sub(th=0,bin6)$
length(ws);

depend fi(0),z,Im$

depend kerci(0),zJm$

let df(f0,2)=fi(0)-10,df(f0,2,2)=df(fi(0),2)-df(f0,z),
df(w0,2)=kerci(0)-w0,df(w0,z,2)=df(kerci(0),2)-df(w0,2)$

%The seven components of numerator of factor alpha$
alin1f:=sub(th=2*pi,alin1)-sub(th=0,alin1)$
length(ws);
alin2f:=sub(th=2*pi,alin2)-sub(th=0,alin2)$
length(ws);
alin3f:=sub(th=2*pi,alin3)-sub(th=0,alin3)$
length(ws);
alindf:=sub(th=2*pi,alin4)-sub(th=0,alin4)$
length(ws);
alinSf:=sub(th=2*pi,alin5)-sub(th=0,alin5)$
length(ws);
alin6f:=sub{th=2*pi,alin6)-sub(th=0,alin6)$
length(ws);

%The twenty components of numerator of factor bata$
bain1f:=sub(1th=2*pi bain1)-sub(th=0,bain1)$
length(ws);
bain2f:=sub(th=2*pi,bain2)-sub(th=0,bain2)$
length(ws);
bain3f:=sub{th=2*pi,bain3)-sub(th=0,bain3)$
length(ws);
bain4f:=sub(th=2*pi,bain4)-sub(th=0,bain4)$
length(ws);

bain5f:=sub(th=2*pi bain$)-sub(th=0,bain5)$
length(ws);

bainéf:=sub(th=2"pi bain6)-sub(th=0,bain6)$
length(ws);

bain8f:=sub(th=2*pi bain8)-sub(th=0,bain8)$
length(ws);

bain9f:=sub(th=2*pi bain9)-sub(th=0,bain9)$
length(ws),
bain10f:=sub(th=2*pi,bain10)-sub(th=0,bain10)$
length{ws);
bain11f:=sub(th=2*pi,bain11)-sub{th=0,bain11)$
length(ws);

bain12f:=sub(th=2*pi bain12)-sub(th=0,bain12)$



length(ws);
bain13f:=sub(th=2*pi,bain13)-sub(th=0,bain13)$
length(ws);
bain14f:=sub(th=2*pi bain14)-sub(th=0,bain14)$
length(ws);
bain15f:=sub(th=2*pi bain15)-sub{th=0,bain15)$
length(ws);
bain16f:=sub(th=2*pi,bain16)-sub(th=0,bain16)$
length(ws);
bain17f:=sub(th=2*pi,bain17)-sub(th=0,bain17)$
length(ws);
bain18f:=sub(th=2*pi,bain18)-sub(th=0,bain18)$
length(ws);
bain19f:=sub(th=2*pi,bain19)-sub(th=0,bain19)$
length(ws);
bain20f:=sub(th=2*pi,bain20)-sub(th=0,bain20)$
length(ws);

%The seven components of denominator $
ninlf:=sub(th=2*pi,nin1}-sub(th=0,nin1)$
length(ws);
nin2f:=sub(th=2*pi,nin2)-sub(th=0,nin2)$
length(ws);
nin3f:=sub(th=2*pi,nin3)-sub(th=0,nin3)$
length(ws);
nin4f:=sub(th=2*pi,nin4)-sub(th=0,nin4)$
length(ws);
nin5f:=sub(th=2*pi,nin5)-sub(th=0,nin5)$
length(ws);
nin6f:=sub(th=2*pi,nin6)-sub(th=0,nin6)$
length(ws);
nin7f:=sub(th=2*pi,nin7)-sub(th=0,nin7)$
length(ws);

depend f2,z8

depend wz,z$

let df(fa,z)=fz-fa,df(wa,z)=wz-wa$
%The total numerator of factor b is$
%lib,
numb:=(2*(bin1f+bin2f+bin3f)+bindf+bin5f+2*bin6f)
*2*¥erz*c*s1A3/(sifal)*e* 1A 4*pi);
length(ws);

numb] :=coeffn{numb,wp,1);
length(ws);
numb2:=coeffn{numb,wr,1);
length(ws);
numb3:=coeffn{numb,wz,1);
length(ws);
numb4:=coeffn(numb,fp,1);
length(ws);
numbS5:=coeffn(numb fr,1);
length(ws);
numbé:=coeffn(numb fz,1);
length(ws);
numb7:=coeffn(numb,df(wp,z),1);
length(ws);
numb8:=coeffn(numb,df(wr,z),1);
length(ws);
numb9:=coeffn(numb,df(wz,z),1);
length(ws);
numb]10:=coeffn{(numb,df(fp,z),1);
length(ws);

numb] 1:=coeffn(numb,df(fr,z),1);
length(ws);
numb12:=coeffn(numb,df(fz,z),1);
length(ws);

numbl 3:=coeffn(numb,df(fp,z,2),1);

length(ws);
numbl4:=coeffn{numb,df(fr,z,2),1);
length(ws);

%The total numerator of factor alpha is$

%llalpha,
numalpha:=alin 1f +alin2f+alin3f+alindf+alin5f+alin6f;
length(ws);

%The total numerator of factor beta are$

Pllbeta,

numbeta:=bain 1f+bain2f+bain3f+bain4f+bainSf+bain6f;
length(ws);

%3,

numbeta3:=bain8f+bain9f+bain10f;

length(ws);

%olldf2,
numbetad:=(2*(bain11f+bain12f+bain i 3f+bain14f)+
bain15f+bain16f+2*bain1 7f)/2;

length(ws);

%S,

numbetaS:=bain18f+bain19f+bain20f;

length(ws);

%The total denominator is$
den:=2*(ninf+nin2f+nin3f+nindf)+ninSf+nin6f+2*nin7f;
Jength(ws);
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