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Abstract

Two popular products on the interest rate market are Constant Maturity Swap (CMS) deriva-
tives and CMS spread derivatives. This thesis focusses on the efficient pricing of CMS and CMS
spread derivatives, in particular the pricing of CMS and CMS spread options.

The notional values for these products are usually quite large, so even small errors when
pricing these products can lead to substantial losses. Therefore, the pricing of these products
has to be accurate. It is possible to use sophisticated models (e.g. Libor Market Model) to price
these products, however the downside is that these models generally have high computational
costs; they are not very efficient.

To efficiently price CMS options the Terminal Swap Rate (TSR) approach can be used. From
this approach TSR models are obtained, we will consider four different TSR models. Two of
these TSR models are established in the literature, the other two TSR models are developed in
this thesis. The main advantages of a TSR model is that the computational costs are low and
that it has good numerical tractability.

To price CMS spread options the copula approach is usually used. With the copula approach
a pricing formula can be obtained for efficient valuations of CMS spread options. The copula that
is considered in this thesis is the Gaussian copula. The TSR models are also a key component
in the copula approach, because the marginal distributions are obtained with the help of a TSR
model.

Furthermore, an alternative approach is considered for the pricing of CMS spread options.
The CMS spread options are priced with a relatively simple stochastic volatility model, the
displaced diffusion SABR model. The displaced diffusion SABR model is obtained by applying
the Markovian projection method to a modification of a two-dimensional version of the well-
established SABR model. The calibration of the two-dimensional SABR model is performed
with the help of the TSR approach.
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Glossary

An,m(t) Annuity factor or annuity
a.s. Almost surely
α0 Volatility parameter SABR model
α(·) Annuity mapping function
β Variance elasticity parameter SABR model
B(t) Continuously compounded money-market account
C(·, ·) Bivariate copula function
c(·, ·) Bivariate copula density function
EA[·|Ft] Expectation operator given the information at time t with respect to

the probability measure QA

Ft Filtration
G(·, ·) Function of mean reversion
γij Cross-skew parameter displaced diffusion SABR model
K Strike price
L(t, Tn, Tn+1), Ln(t) Simply compounded forward Libor rate
Λ Value of the convexity adjustment
ν Volatility of volatility parameter SABR model
Ω Sample space
(Ω,F ,P) Probability space
P (t, T ) Time-t price of a zero-coupon bond with maturity T
QA Annuity measure
QB Risk neutral measure
QT T -forward measure
R Correlation matrix
Re(z), Im(z) Real and imaginary part of a complex number z
ρ Correlation coefficient SABR model
Sn,m(t) (Forward) swap rate at time t
σSABR(t) SABR implied volatility at time t
t Time
T Maturity time
τ(Tn, Tn+1) Year fraction between time points Tn and Tn+1

V Value of payoff function
% Correlation coefficient for two different swap rates
ς Price difference CMS spread option computed with copula approach or

DD SABR model vs reference model
1W, 1M, 1Y 1 week, 1 month, 1 year
ξij De-correlation parameter displaced diffusion SABR model
ζ Price difference CMS option computed with TSR model vs reference model
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GLOSSARY iii

AD Anti-Dependence
ATM, ITM, OTM At-The-Money, In-The-Money, Out-of-The-Money
bps Basis points. A basis point is 1/100 of one percent, (1bp = 10−4)
CDF Cumulative Distribution Function
CMS Constant Maturity Swap
CMSSO CMS Spread Option
DD Displaced Diffusion
FRA Forward-Rate Agreement
GIC Guaranteed Investment Contracts
Libor London Interbank Offered Rate
LMM Libor Market Model
MC Monte Carlo
ODE Ordinary Differential Equation
OTC Over-The-Counter
PDE Partial Differential Equation
PDF Probability Density Function
SABR Stochastic Alpha Beta Rho
SSE Sum Squared Error
SMM Swap Market Model
TSR Terminal Swap Rate
SDE Stochastic Differential Equation
USD United States Dollar
ZCB Zero-Coupon Bond
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Chapter 1

Introduction

The global Over-The-Counter (OTC) market has increased at an incredible pace during the last
decade. The asset class of interest rate contracts is the largest asset class of the OTC market
by far. Shortly after the financial crisis in 2007-2008 the trading volume of OTC interest rate
derivatives decreased. However, it wasn’t long before the trading volume started to rise again.

In Table 1.1 the notional amount of the different asset classes for three different time periods
is given; for more details we refer to [5].

Notional amounts outstanding
Risk Category/Instrument Jun 2011 Jun 2012 Jun 2013

Foreign exchange contracts 64,698 66,672 73,121

Interest rate contracts 553,240 494,427 561,299

Equity-linked contracts 6,841 6,313 6,821

Commodity contracts 3,197 2,994 2,458

Credit default swaps 32,409 26,931 24,349

Other derivatives 46,498 42,059 24,860

Total contracts 706,884 639,396 692,908

Table 1.1: Amounts outstanding of over-the-counter (OTC) derivatives. By risk category and
instrument. In Billions of USD.

The interest rates contracts at the end of June 2013 amounted to about 561 Trillion United
States dollar (USD), which is equivalent to over 81% of the total OTC traded derivatives market.

Although notional values are not necessarily very meaningful in the derivative markets for
assessing the total exposure of a market, they give an indication for the trading volumes in
specific derivative instruments. The notional values indicate somewhat the industry’s interest
in a certain type of derivative.

The majority of OTC derivative notional volumes are relatively simple products like interest
rate swaps, interest rate options and forward rate agreements (FRAs). However, there are more
exotic derivatives that are useful to companies and investors such as Constant Maturity Swap
(CMS) derivatives and CMS spread derivatives.

1.1 Problem Exploration

CMS derivatives and CMS spread derivatives are very popular products nowadays because they
enable investors to take a view on the level or the change in the level of the yield curve. The
efficient pricing of CMS and CMS spread derivatives is the main objective of this thesis.

Some types of CMS derivatives are CMS swaps, CMS caps and CMS floors, these are options
that are based on a CMS rate. The underlying is a swap rate, which is a long-term interest

1



CHAPTER 1. INTRODUCTION 2

rate. CMS options are commonly traded in the market. CMS-based products are widely used
by insurance companies and pension funds in their Asset & Liability management ([15] and
[28]), because these institutions are very vulnerable to movements in the interest rates. CMS
options provide suitable hedge requirements for insurance products like for instance Guaranteed
Investment Contracts (GICs). GICs are contracts that guarantee repayment of principal and a
fixed or floating interest rate for a predetermined period of time. GICs are generally issued by
life insurance companies and they are often bought for retirement plans. In particular, a CMS
floor provides a hedge to GICs when interest rates are dropping and the insurance company
has to make guaranteed fixed interest payments. Similarly, CMS caps provide a hedge in case
interest rates are rising.

Some of the most common CMS spread derivatives are CMS spread options, CMS spread
caps and CMS spread floors. A CMS spread option is similar to a regular cap/floor option. The
difference is that whereas in a regular cap/floor the underlying is usually a reference rate, in a
CMS spread cap/floor the underlying is the spread between two swap rates of different maturity.
Banks typically use CMS spread options to hedge the CMS spread swaps that they have entered
into with customers.

It is very important that the pricing of both CMS and CMS spread derivatives is efficient
and accurate, since a small pricing error will lead to substantial losses due to the large notional
values associated with these kind of products.

1.2 Research Question

The use of sophisticated models to price CMS and CMS spread derivatives is not always desirable
due to too time-consuming calculations. Our aim is to develop models which can efficiently and
accurately price CMS and CMS spread derivatives. Therefore, the following research question
could be imposed:

Can one- or two-factor models be derived which can efficiently and accurately price
CMS and CMS spread derivatives?

In order to answer this question, we will start by looking into the pricing of CMS derivatives.
The CMS derivatives will be priced by making use of the Terminal Swap Rate approach, from
which Terminal Swap Rate models are obtained. We will investigate the performance of several
TSR models. After that we will focus on the pricing of CMS spread derivatives. The CMS
spread derivatives will be priced by using the copula approach in which the earlier mentioned
TSR models also play an important role. The CMS spread derivatives will also be priced with
a stochastic volatility model. The results of the respective models will be compared, to infer
which models could be possible interesting alternatives for the industry.

1.3 Outline

The outline of this thesis is as follows.
We start in Chapter 2 with some fundamentals we need when pricing interest rate derivatives.

Readers that are already familiar with interest rate modeling may want to skip this chapter.
In Chapter 3 we look into the pricing of CMS derivatives with TSR models. We start with the

explanation of CMS derivatives and the important concept of CMS convexity adjustment. Next,
a replication method will be presented which can be used for the pricing of CMS derivatives.
After that, the Terminal Swap Rate approach is explained together with another important
concept the annuity mapping function. We will also discuss different TSR models. Two of
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the TSR models we will consider are described in the literature, the linear TSR model and
the swap-yield TSR model. We will however also consider two new TSR models, we developed
ourselves, that are based on interpolation. The performance of the respective TSR models will
be investigated by means of several numerical experiments.

In Chapter 4 we look into the pricing of CMS spread derivatives by making use of the copula
approach. We begin with the explanation of CMS spread derivatives, and discuss the pricing
approach we are going to take to efficiently price CMS spread options. After that, copulas
are discussed; in particular the Gaussian copula. Additionally, Sklar’s Theorem which is a
key component in the copula approach is presented. We will derive a one-dimensional pricing
formula which can be used for the pricing of CMS spread options, as well as a simple Monte
Carlo method that can be applied for the pricing of CMS spread options in case a Gaussian
copula is used. The performance of the copula approach together with the TSR models will be
investigated by performing several numerical experiments.

In Chapter 5 we will look deeper into the pricing of CMS spread options, when we will
consider a stochastic volatility model. The stochastic volatility model that we will consider is
the displaced diffusion SABR model. We first present a two-dimensional version of the SABR
model that can be used for the pricing of CMS spread options. We present the Markovian
projection method which is crucial to obtain the displaced diffusion SABR model. After that,
the necessary steps to obtain the displaced diffusion SABR model from the two-dimensional
SABR model are discussed in detail. The results of the displaced diffusion SABR model will be
compared with the results obtained by the copula approach.

Chapter 6 summarizes the main results and conclusions that we have obtained regarding the
efficient pricing of CMS and CMS spread derivatives.

Finally, Chapter 7 discusses possible further research directions that could be followed.



Chapter 2

Fundamentals of Interest Rate
Modeling

2.1 Introduction

Before we can formulate the precise problem of pricing CMS and CMS spread derivatives we
have to prepare ourselves with some fundamentals of interest rate derivative pricing to cover our
upcoming needs. This chapter is organized as follows.

In Section 2.2 we start by reviewing some basic concepts of no-arbitrage pricing theory and
we discuss the technique of change of numéraire, which as we will see plays a key role in the
pricing of interest rate derivatives. In Section 2.3 we formulate some important definitions
concerning interest rates. Next, in Section 2.4 we look at examples of pricing numéraires. In
Section 2.5 we consider some basic interest rate derivatives. Finally, in Section 2.6 we discuss
the concept of implied volatility.

This chapter is mainly based on [35, pp. 3-30, 167-207] and [9, pp. 1-40].

2.2 No-Arbitrage Pricing Framework

The concept of a numéraire is very important in the pricing of financial derivatives. The defini-
tion of a numéraire is given as follows:

Definition 2.2.1 (Numéraire). A numéraire is any positive asset with price process N(t) that
pays no dividend. The numéraire N(t) is used to discount other asset price processes, the relative
price process of asset S is given by:

SN (t) ,
S(t)

N(t)
. (2.1)

So a numéraire can be seen as a reference asset that is chosen to normalize all other asset
prices with respect to it. Another import concept is a so-called equivalent martingale measure
that is defined as follows:

Definition 2.2.2 (Equivalent Martingale Measure). Consider a continuous time framework
within a compact time interval [0, T ]. Let Q be a probability measure on (Ω,F), measure Q is
called an equivalent martingale measure with numéraire N(t), t ∈ [0, T ] if the following two
properties are satisfied:

i) Measure Q is equivalent to measure P, that is P(A) = 0 if and only if Q(A) = 0, for every
A ∈ F .

4
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ii) The relative price process SN (t) is a martingale under measure Q, i.e.

EQ [SN (t)
∣∣Fs] = SN (s), s < t. (2.2)

For more details we refer to [9, pp. 24-25]. Next we state the following two theorems:

Theorem 2.2.3 (First Fundamental Theorem of Asset Pricing). A financial market, on
a probability space (Ω,F ,P), is arbitrage-free if and only if there exists at least one risk-neutral
probability measure Q, called an equivalent martingale measure, that is equivalent to the original
(or actual) probability measure P.

Proof. For a proof of this theorem we refer to [42, pp. 228-232].

Theorem 2.2.4 (Second Fundamental Theorem of Asset Pricing). Let a financial market
have at least one risk-neutral probability measure. Then the market model is complete if and only
if the risk-neutral probability measure is unique.

Proof. For a proof of this theorem we again refer to [42, pp. 232-234].

These two theorems provide the fundament for the no-arbitrage pricing framework, they
ensure that prices are unique. The fundamental pricing formula presented in [35, pp. 9-11] is a
result of these theorems and since it is such an important result we highlight it by listing it in
the following lemma:

Lemma 2.2.5 (Fundamental Pricing Formula). Assume there exists an equivalent mar-
tingale measure Q, then for each attainable1 contingent claim V (T ), defined as a stochastic
cash-flow at time T and modelled as an FT -measurable random variable2 there exists a unique
price V(t), for each 0 ≤ t ≤ T , given by

V (t) = N(t)EN
[
V (T )

N(T )

∣∣∣∣Ft] . (2.3)

Proof. For the proof we refer to [35, pp. 8-11].

Equation (2.3) enables us to calculate today’s price of a derivative security in a no-arbitrage
pricing framework.

Often it is possible to reduce the complexity of a pricing problem by an appropriate measure
transformation by changing the numéraire. The price of any asset divided by a numéraire is a
martingale (no drift) under the measure associated with that numéraire.

The so-called Radon-Nikodym derivative is the key concept to change from one measure to
another. To change from one measure to another we will make use of Theorem 2.2.6.

Theorem 2.2.6 (Change of Numéraire). Let M be a numéraire and QM be the corresponding
probability measure, equivalent to an initial measure Q0, such that the price of any traded asset,
X, relative to M , is a martingale under measure QM , i.e.

EM
[
X(T )

M(T )

∣∣∣∣Ft] =
X(t)

M(t)
. (2.4)

1This is a technical requirement. For a claim to be attainable there needs to exist a suitable self-financing
replicating strategy. When the market is complete every contingent claim is attainable.

2The significance of V being FT -measurable is that it may depend on the whole path of the underlying in
[0, T ], precisely because FT contains all this information.
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Let now N be an arbitrary numéraire. Then a probability measure QN exists, equivalent to Q0,
such that the price of any attainable claim, Y , normalized by some quantity, N , is a martingale
under measure QN , i.e.

EN
[
Y (T )

N(T )

∣∣∣∣Ft] =
Y (t)

N(t)
. (2.5)

The Radon-Nikodym derivative, which defines the measure QN , is given by:

dQN

dQM

∣∣∣∣
Ft

=
N(T )M(t)

N(t)M(T )
. (2.6)

Proof. The proof is given in Appendix A.1.

2.3 Definitions & Notations

Now we will define several concepts. The concepts that will be discussed are: tenor structure,
zero-coupon bonds, Libor rates, swap rates and the money market account.

2.3.1 Tenor Structure

A tenor structure is an increasing sequence of maturity times (dates), usually roughly equidis-
tantly spaced. We will consider the following tenor structure,

0 ≤ T0 < T1 < T2 < . . . < TN . (2.7)

The accrual factor or year fraction, denoted by τ(t, T ), measures the time between t and T (in
years),

τ(t, T ) = T − t. (2.8)

In practice there exists a great variety of so-called day-count conventions (e.g. Actual/365,
30/360, etc.), which differ according to product type and country. We refer to [9, pp. 4-6] for
more information about day-count conventions. For clarity we will now simply use τ = T − t,
although later when we deal with real market data we will take the correct day-count conventions
into account.

2.3.2 Zero-coupon bonds

So-called zero-coupon bonds (ZCBs), also known as pure discount bonds, are the most basic
products in the interest rate market. ZCBs have no payoff until their maturity date T and
are therefore interesting tools for interest rate modeling and discounting future cash-flows. The
formal definition of a ZCB is given as follows:

Definition 2.3.1 (Zero-Coupon Bond). A zero-coupon bond (ZCB) is a basic interest rate
product, whose value is denoted by P (t, T ), where t ≤ T . A ZCB pays 1 currency unit at maturity
T , i.e. P (T, T ) = 1.

The ZCB is one of the main building blocks for interest theory/models.



CHAPTER 2. FUNDAMENTALS OF INTEREST RATE MODELING 7

2.3.3 Libor Rates

Libor (London Interbank Offered Rate) rates are the benchmark interest rates at which banks
can borrow unsecured funds from other banks in the interbank markets. The simply compounded
forward Libor rate is defined as follows:

Definition 2.3.2 (Simply Compounded Forward Libor Rate). Let the tenor structure be
given by (2.7). The simply compounded forward Libor rate contracted at time t for the interval
[Ti, Ti+1] is given by:

L(t, Ti, Ti+1) ,
1

τ(Ti, Ti+1)

(
P (t, Ti)

P (t, Ti+1)
− 1

)
. (2.9)

We introduce the useful shorthand notation

Li(t) = L(t, Ti, Ti+1). (2.10)

We speak of a spot Libor rate denoted by Li(Ti) = L(Ti, Ti, Ti+1) when t = Ti, i.e. when the
present date coincides with the start of the period over which the interest rate is effective.

2.3.4 Swap Rate

Given the tenor structure defined in (2.7) the annuity factor or annuity is defined as follows

A(t) , An,m(t) =
n+m−1∑
i=n

P (t, Ti+1)τi, (2.11)

where n,m are any two integers satisfying 0 ≤ n < N , m > 0 and n + m ≤ N . Note that
τi = Ti+1 − Ti is the year fraction for the time interval [Ti, Ti+1].

The forward swap rate or swap rate is defined as follows:

Definition 2.3.3 (Swap Rate). The swap rate is given by:

S(t, Tn, Tn+m) , Sn,m(t) =
P (t, Tn)− P (t, Tn+m)

A(t)
, (2.12)

where A(t) given by (2.11). If no confusion arises the short-hand notation S(t) is used instead.

For practical purposes it is sometimes more convenient to use a different expression.

Lemma 2.3.4 (Alternative Expression Swap Rate). The swap rate Sn,m(t) can be expanded
into a weighted sum of forward rates to get the following expression

S(t) = Sn,m(t) =

∑n+m−1
i=n τiP (t, Ti+1)Li(t)

An,m(t)
, (2.13)

with An,m(t) and Li(t) given by (2.11) and (2.10).

Proof. The proof is given in Appendix A.2.

2.3.5 Money Market Account

The continuously compounded money market account can be seen as a deposit of 1 unit of
currency that earns the instantaneous risk-free rate, r, and it satisfies the following stochastic
differential equation (SDE)

dB(t) = r(t)B(t)dt, B(0) = 1,

where r(t) is the short rate. Solving this equation we obtain

B(t) = e
∫ t
0 r(z)dz.
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2.4 Examples of Pricing Numéraires

There are several well-known numéraires which are very useful for interest rate derivative pricing.
We are going to review some of these numéraires and their associated measures, since they play
an important role in pricing CMS type products.

2.4.1 Money Market Account as the Numéraire

The first numéraire we will look into is the continuously compounded money market account,
B(t). This is the numéraire that defines the risk-neutral measure, denoted by QB. The related
expectation is denoted by EB [·]. Using the fundamental pricing formula (2.3) we immediately
get

V (t) = B(t)EB
[
V (T )

B(T )

∣∣∣∣Ft] . (2.14)

Note that if we take V (t) = P (t, T ) then we get

P (t, T ) = B(t)EB
[
P (T, T )

B(T )

∣∣∣∣Ft] (2.15)

= EB
[
B(t)

B(T )

∣∣∣∣Ft] (2.16)

= EB
[
e−

∫ T
t r(z)dz

∣∣∣Ft] . (2.17)

Hence, we can formulate the following lemma presented in [35, pp. 172-173]:

Lemma 2.4.1 (Fundamental Bond Pricing Formula). If there are no-arbitrage opportuni-
ties in the market, the time t price P (t, T ) of a T -maturity ZCB is given by

P (t, T ) = EB
[
e−

∫ T
t r(z)dz

∣∣∣Ft] . (2.18)

2.4.2 ZCB as the Numéraire

The T -forward measure uses a T -maturity ZCB as the numéraire, the related expectation is
denoted by ET [·]. We can change from the risk-neutral measure to the T -forward measure by
applying Theorem 2.2.6 and get

V (t) = B(t)EB
[
V (T )

B(T )

∣∣∣∣Ft]
= B(t)ET

[
V (T )

B(T )

dQB

dQT

∣∣∣∣Ft]
= B(t)ET

[
V (T )

B(T )

B(T )P (t, T )

B(t)P (T, T )

∣∣∣∣Ft]
= P (t, T )ET [V (T )| Ft] . (2.19)

Note that by changing to the T -forward measure we have obtained an easier expression. The
1/B(T ) term inside the expectation operator is replaced by the related bond price that is outside
of the expectation operator. Measure QT is called the T -forward measure because forward rates
are martingales under the T -forward measure. An example of a forward rate is the simply
compounded forward Libor rate. We will now show that the simply compounded forward Libor
rate is indeed a martingale under the T -forward measure.
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Lemma 2.4.2 (Forward Libor Rate under Ti+1-Forward Measure). In the absence of
arbitrage the simply compounded forward Libor rate for time interval [Ti, Ti+1], L(t, Ti, Ti+1), is
a martingale under the Ti+1-forward measure, QTi+1, i.e.

ETi+1 [L(t, Ti, Ti+1)| Fs] = L(s, Ti, Ti+1), for all 0 ≤ s ≤ t ≤ Ti < Ti+1. (2.20)

Proof. Let L(t, Ti, Ti+1) be defined as in (2.9), then

ETi+1 [L(t, Ti, Ti+1)| Fs] = ETi+1

[
1

τ(Ti, Ti+1)

(
P (t, Ti)

P (t, Ti+1)
− 1

)∣∣∣∣Fs]
=

1

τ(Ti, Ti+1)
ETi+1

[
P (t, Ti+1)− P (t, Ti)

P (t, Ti)

∣∣∣∣Fs]
=

1

τ(Ti, Ti+1)

(
P (s, Ti)− P (s, Ti+1)

P (s, Ti+1)

)
(2.21)

=
1

τ(Ti, Ti+1)

(
P (s, Ti)

P (s, Ti+1)
− 1

)
,

= L(s, Ti, Ti+1), (2.22)

for all 0 ≤ s ≤ t ≤ Ti < Ti+1. Equation (2.21) is obtained using the fact that P (t, Ti) and
P (t, Ti+1) are both tradeable assets divided by the numéraire P (t, Ti+1), so they must be mar-
tingales under the Ti+1-forward measure. And naturally their difference is also a martingale
under the Ti+1-forward measure.

2.4.3 Annuity Factor as the Numéraire

Note that the annuity is a linear combination of ZCBs, so the annuity can be taken as a
numéraire. The associated measure is the so-called annuity measure or swap measure, denoted
by QA. The swap rate is a martingale under the annuity measure.

Lemma 2.4.3 (Swap Rate under Annuity Measure). In the absence of arbitrage the swap
rate Sn,m(t) is a martingale under the annuity measure, QA, i.e.

EA [Sn,m(t)| Fs] = Sn,m(s). (2.23)

Proof. Let Sn,m(t) be defined as in (2.12), then

EA [Sn,m(t)| Fs] = EA
[
P (t, Tn)− P (t, Tn+m)

An,m(t)

∣∣∣∣Fs]
=
P (s, Tn)− P (s, Tn+m)

An,m(s)
, (2.24)

= Sn,m(s). (2.25)

Equation (2.24) is obtained using the fact that P (t, Tn) and P (t, Tn+m) are both tradeable assets
divided by the numéraire An,m(t), so they must be martingales under the annuity measure. And
their difference is also a martingale under the annuity measure.

2.5 Basic Interest Rate Derivatives

We will discuss three main derivative products of fixed-income markets, namely swaps, caps/floors
and swaptions.
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2.5.1 Interest Rate Swaps

A swap is a generic term for an OTC derivative in which two counterparties agree to exchange
one stream of cash flows against another stream of cash flows. These streams are called the legs
of the swap. When the fixed leg is paid the swap is usually called a payer swap3, when the fixed
leg is received the swap is called a receiver swap. Swaps of different maturities between interest
rate dealers and financial institutions are often traded to adjust interest risk positions of the
parties involved, or to simply make bets on the future direction of interest rates. Swaps are also
used by corporates to transform fixed rate obligations into floating ones, or vice versa.

A plain vanilla fixed-for-floating interest rate swap (a plain vanilla swap or just a swap if
there is no confusion) is a swap in which one leg is a stream of fixed rate payments and the
other is a stream of payments based on a floating rate, most often Libor. To formally define
a fixed-floating swap a tenor structure needs to be specified. We assume the tenor structure
given by (2.7). In a fixed-floating swap with fixed rate K, one party (the fixed rate payer) pays
the simple interest based on the rate K in return for simple interest payments computed from
the Libor rate fixing on date Tn, for each period [Tn, Tn+1], n = 0, . . . , N − 1. The payments
are exchanged at the end of each period, i.e. at time Tn+1. In practice, the payments are
netted. This means that the cash flow only takes place in one direction each payment. From
the perspective of the fixed rate payer, the next cash flow of the swap at time Tn+1 is therefore
given by4

τn(Ln(Tn)−K), (2.26)

corresponding to the interest rate L(Tn, Tn+1) fixing at time Tn. Dates when the Libor rates
are observed are usually called fixing dates, dates when the payments occur are called payment
dates.

By the fundamental pricing formula, Lemma 2.2.5, with the money market account, B(t),
as the numéraire the value of a swap is equal to the expected discounted value of its (netted)
payment. We can formulate the following lemma:

Lemma 2.5.1 (Valuation Interest Rate Swap). The value of the swap from the perspective
of the fixed rate payer at time t, 0 ≤ t ≤ T0 is given by5

Vswap(t) = B(t)
N−1∑
n=0

τnEB
[
Ln(Tn)−K
B(Tn+1)

∣∣∣∣Ft] , (2.27)

= A(t)(S(t)−K). (2.28)

Similarly,
Vswap-rec(t) = A(t)(K − S(t)), (2.29)

where A(t) is given by (2.11) and S(t) is given by (2.13).

Proof. The proof is given in Appendix A.3.

2.5.2 Caps and Floors

An interest rate cap is a derivative that allows one to benefit from low floating rates yet be
protected from high rates. An interest rate floor on the other hand allows one to benefit from
low floating rates yet be protected from high rates. Caps and floors are among the most liquidly
traded interest rate derivatives in fixed-income markets.

3In this document when we talk about a swap we mean a payer swap unless specified otherwise.
4Here an unit notional is assumed, this assumption is made throughout the document.
5This is a somewhat idealized expression. For more details we refer to [35, pp. 224-226].
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Formally a cap is a strip of caplets, call options on successive Libor rates, and similarly a
floor is a strip of floorlets, put options on successive Libor rates. The time-Tn+1 cash flows of
caplets/floorlets are given by

V n
caplet = τn(Ln(Tn)−K)+, (2.30)

V n
floorlet = τn(K − Ln(Tn))+. (2.31)

Applying Lemma 2.2.5 with numéraire B(t), the time-t value of the cap/floor covering the time
interval [T0, TN ] is given by

Vcap(t) = B(t)

N−1∑
n=0

τnEB
[

(Ln(Tn)−K)+

B(Tn+1)

∣∣∣∣Ft] , (2.32)

Vfloor(t) = B(t)

N−1∑
n=0

τnEB
[

(K − Ln(Tn))+

B(Tn+1)

∣∣∣∣Ft] . (2.33)

To get easier expressions we will change numéraire. Changing to the Tn+1-forward measure for
each period we get using Theorem 2.2.6,

Vcap(t) = B(t)
N−1∑
n=0

τnETn+1

[
(Ln(Tn)−K)+

B(Tn+1)

B(Tn+1)P (t, Tn+1)

B(t)P (Tn+1, Tn+1)

∣∣∣∣Ft]

=
B(t)

B(t)

N−1∑
n=0

τnETn+1
[
(Ln(Tn)−K)+ P (t, Tn+1)

∣∣Ft]
=

N−1∑
n=0

τnP (t, Tn+1)ETn+1
[
(Ln(Tn)−K)+

∣∣Ft] . (2.34)

Similarly,

Vfloor(t) =

N−1∑
n=0

τnP (t, Tn+1)ETn+1
[
(K − Ln(Tn))+

∣∣Ft] . (2.35)

As such we represent caps and floors as baskets of European calls (caplets) and puts (floorlets)
on Libor forward rates.

2.5.3 Swaptions

European swaptions as the name suggests are European options on interest rate swaps. A
European swaption gives the holder the right, but not the obligation, to enter a swap at a future
date at a given fixed date. A payer swaption6 is an option to pay the fixed leg on a fixed-floating
swap; a receiver swaption is an option to receive the fixed leg.

If we assume the underlying swap starts on the expiry date T0 of the option, the payoff for
the swaption at time T0 is given by

Vswaption(T0) = (Vswap(T0))+ (2.36)

=

(
N−1∑
n=0

τnP (T0, Tn+1)(Ln(T0)−K)

)+

. (2.37)

6When we talk about a swaption we mean a payer swaption unless specified otherwise.
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As before, applying Lemma 2.2.5 with numéraire B(t) gives us the following value at an inter-
mediate time t, t < T0:

Vswaption(t) = B(t)EB
[(∑N−1

n=0 τnP (T0, Tn+1)(Ln(T0)−K)

B(T0)

)+∣∣∣∣∣Ft
]
. (2.38)

Note that the payoff does not only depend on the evolution of the individual Libor rates, as was
the case with caplets/floorlets, but also depends on the joint behavior of the rates.

Using expression (2.28) we get

Vswaption(t) = B(t)EB
[

1

B(T0)
A(T0)(S(T0)−K)+

∣∣∣∣Ft] . (2.39)

We formulate the following useful lemma for the valuation of payer and receiver swaptions:

Lemma 2.5.2 (Valuation Payer and Receiver Swaption). The value of the payer and
receiver swaptions at time t can be written as:

Vswaption-pay(t) = An,m(t)EA
[
(Sn,m(Tn)−K)+

∣∣Ft] , (2.40)

Vswaption-rec(t) = An,m(t)EA
[
(K − Sn,m(Tn))+

∣∣Ft] . (2.41)

Proof. The proof is given in Appendix A.4.

From expressions (2.40) and (2.41) it is clear that under the annuity measure a payer swaption
is basically a call option on the forward swap rate, with the strike K being equal to the fixed rate
of the swap. Similarly, a receiver swaption can be interpreted as a put option on the forward
swap rate.

2.6 The Implied Volatility Smile

The market convention is to quote caplets/floorlets and swaption prices in terms of the implied
value of volatility which sets the Black model price equal to the market price.

Specifically, suppose that the market price of an option with strike K and maturity T is
known, denote this price by V (t, S, T,K). The time t implied volatility function σimp(t, S, T,K)
is defined as the solution to

Black(S,K, σimp(t, S, T,K)
√
T − t, w) = V (t, S, T,K), (2.42)

where Black(S,K, v, w) is given in the following lemma:

Lemma 2.6.1 (Black’s Formula). Let F (t) be an asset with dynamics given by

dF (t) = σF (t)dW (t), (2.43)

so the underlying follows a geometric Brownian motion. The price of a European call/put option,
denoted by V (t), with strike K, volatility σ and maturity T is given by V (t) = Black(F,K, v, w);
where Black’s formula is given by

Black(F,K, v, w) , wFΦ(wd1(F,K, v))− wKΦ(wd2(F,K, v)), (2.44)
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with w = 1 for call options and w = −1 for put options; and

d1(F,K, v) =
log(F/K) + v2/2

v
,

d2(F,K, v) =
log(F/K)− v2/2

v
,

v = σ
√
T − t,

Φ(x) =

∫ x

−∞

1√
2π
e−

1
2
u2du.

Proof. For the proof we refer to [7].

The mapping K 7→ σimp(t, S, T,K) is called an implied volatility smile7. Market participants
prefer to quote prices in terms of implied volatilities, as volatilities tend to be more stable over
time. Implied volatilities are also used to price options with non-quoted strikes and to compute
hedge parameters.

2.6.1 SABR Model and Hagan’s Formula

The SABR model is a four parameter stochastic volatility model that is introduced to accommo-
date the volatility smile in derivatives markets, [20]. The name is an abbreviation of ’Stochastic
Alpha Beta Rho’ referring to the three key parameters of the model. In the interest rate market
the SABR model has become an industrial standard for quoting, interpolating and extrapolating
the prices of plain-vanilla products. Its popularity is due to

• the analytical approximations for the implied volatilities,

• the intuitive meaning of the parameters of the model.

• the capability to (re-)produce a wide range of skew/smile patterns,

• realistic implied volatility smile dynamics with respect to changes in the forward level.

• the capability to calculate hedge parameters for every strike.

The SABR model is defined by the following system of SDEs

dFt = αtF
β
t dW

1
t , F0 = F,

dαt = ναtdW
2
t , α0 = α, (2.45)

〈dW 1
t , dW

2
t 〉 = ρdt

where Ft is the forward price with F being today’s forward price, αt is the volatility with α > 0,
β is the variance elasticity with 0 ≤ β ≤ 1, ν is the volatility of the volatility with ν > 0 and ρ
is the correlation coefficient.

From (2.45) Hagan derived a formula to calculate the Black implied volatility. The derivation
is based on singular perturbation techniques, for the details we refer to [20]. The main attractive

7In case the smile is monotonically downward or upward sloping, i.e. U -shaped, it is often called a volatility
skew. Skew then refers to the slope of the smile.
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feature of the SABR model is exactly this asymptotic approximation formula for the implied
volatility, also commonly referred to as Hagan’s formula. Hagan’s formula is given by:

σSABR(F,K) =
α

(FK)(1−β)/2
(

1 + (1−β)2

24 log2
(
F
K

)
+ (1−β)4

1920 log4
(
F
K

)
+ . . .

) · z

x(z)

·
[
1 +

(
(1− β)2

24

α2

(FK)1−β +
1

4

ρβνα

(FK)(1−β)/2
+

2− 3ρ2

24
ν2

)
T + . . .

]
, (2.46)

where

z =
ν

α
(FK)(1−β)/2 log

(
F

K

)
,

x(z) = log

(√
1− 2ρz + z2 + z − ρ

1− ρ

)
,

F denoting today’s forward price and K denotes the strike. For the special case of at-the-money
(ATM) options (options with K = F ) the σimp formula reduces to

σSABR
ATM =

α

F (1−β)

[
1 +

(
(1− β)2

24

α2

F 2−2β
+

1

4

ρβνα

F (1−β)
+

2− 3ρ2

24
ν2

)
T + . . .

]
. (2.47)

So the SABR model allows for an accurate analytical approximation for the volatility at a given
strike and the market price and the market risks can be obtained immediately from Black’s
formula.

The option prices are usually quoted in the market in terms of implied Black-Scholes volatil-
ities, the quotes are available for a set of strikes. Thus is order to calibrate the SABR model to
the market the SABR parameters are adjusted such that the model implied volatilities (given
by Hagan’s formula (2.46)) are as close as possible to the market implied volatilities. Note that
generally the beta parameter is fixed in advance (from e.g. historical consideration), alpha is
used to fit the ATM volatility (see (2.47)) exactly, and the parameters rho and nu are used to
fit the remaining market quotes using some optimisation method.

To get better insight in the influence of the parameters on the implied volatility smile a simple
specific base scenario is chosen that generates an implied volatility smile. The parameters for
the base scenario are given by

F0 = 0.025, α0 = 0.03, β = 0.6, ν = 0.025, ρ = −0.3, (2.48)

and T = 1. Next each individual parameter is investigated by shifting the parameter both up
and down. The resulting implied volatility smiles are given in Figure 2.1.

Analyzing Figure 2.1 we notice the following interesting results:

• Shifting F0 up (F0 high = 0.030) or down (F0 low = 0.015) we see that the forward price
and the smile move in the same direction. When the forward price increases the volatility
shifts to higher prices; smile moves to the right. Similarly when the forward prices decrease
the volatility smile shifts to lower prices; the smile moves to the left.

• Shifting α0 up (α0 high = 0.05) or down (α0 low = 0.01) results in the entire smile
moving up or down. So α does not really influence the shape of the smile, but rather the
vertical location.

• Shifting ν up (ν high = 0.5) or down (ν low = 0.1) we see that the curvature of the smile
is influenced. The higher ν is the more convex the smile becomes.
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Figure 2.1: Impact of the SABR parameters on the implied volatility smile.

• Shifting β up (β high = 0.60) or down (β low = 0.20) we see that β also has an effect on
the curvature of the smile, in particular on the side of the smile left from the ATM point.
The higher β is, the steeper (the more convex) the smile becomes. We also note that the
entire smile is shifted in the opposite direction of β.

• Shifting ρ up (ρ high = 0.80) or down (ρ low = −0.80) we see that changing the level of
the correlation causes the smile to ’rotate’ around the ATM point. Decreasing ρ causes a
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steeper smile, while increasing ρ causes the smile to flatten.

Thus, by making use of Hagan’s formula we can obtain the market price for a given strike
directly by substituting σSABR in Black’s formula8.

Remark 2.6.2. Hagans’s formula is only accurate for short time to maturity, [21] and [2].

For more details about the SABR model we refer to [20].

2.6.2 Pricing Caps and Floors

It is common market practice to quote the value of a cap or a floor not in terms of its price
but instead in terms of implied volatilities. Since we make use of Hagan’s formula the implied
volatilities are denoted by σSABR

n,N . Assuming the swap rate follows a geometric Brownian motion
we can make use of Black’s formula to obtain the time-t price of the cap/floor:

Vcap-Black(t) =

N−1∑
n=0

τnP (t, Tn+1)Black(Ln(t),K, σSABR
n,N

√
Tn − t, 1), (2.49)

Vfloor-Black(t) =

N−1∑
n=0

τnP (t, Tn+1)Black(Ln(t),K, σSABR
n,N

√
Tn − t,−1), (2.50)

where 0 ≤ t ≤ Tn. So for the price of the n-th caplet/floorlet we can write:

V n
caplet-Black(t) = τnP (t, Tn+1)Black(Ln(t),K, σSABR

n,N

√
Tn − t, 1), (2.51)

V n
floorlet-Black(t) = τnP (t, Tn+1)Black(Ln(t),K, σSABR

n,N

√
Tn − t,−1). (2.52)

2.6.3 Pricing Swaptions

From Lemma 2.4.3 we know that Sn,m(t) is a martingale under the annuity measure, QAn,m .
Same as with caps/floors it is common market practice to express market prices of swaptions in
terms of implied volatilities, assuming the swap rate follows a geometric Brownian motion we
can again make use of Black’s formula and get

Vswaption-pay = An,m(t)Black(Sn,m(t),K, σSABR
n,m (S(t),K)

√
Tn − t, 1), (2.53)

Vswaption-rec = An,m(t)Black(Sn,m(t),K, σSABR
n,m (S(t),K)

√
Tn − t,−1), (2.54)

where 0 ≤ t ≤ Tn.

8For each strike the same parameters are used in Black’s formula



Chapter 3

Pricing CMS Derivatives with TSR
models

3.1 Introduction

In this chapter we will focus on the pricing of CMS derivatives by making use of Terminal Swap
Rate (TSR) models. This chapter is organized as follows.

We start in Section 3.2 with the explanation of CMS derivatives and the important concept of
CMS convexity adjustment. Next, in Section 3.3, a replication method will be presented which
can be used for the pricing of CMS derivatives. Section 3.4 introduces the TSR Approach.
Next, in Section 3.5 we will consider several TSR models which can be used for the pricing of
CMS derivatives. In Section 3.6 several numerical experiments are performed to investigate the
performance of the respective TSR models. Section 3.7 concludes.

This chapter is mainly based on [35, pp. 206-207 and 336-338] and [37, pp. 709-739].

3.2 CMS Derivatives

A CMS swap is a fixed-for-floating swap, where, in contrast to a plain vanilla swap, the floating
leg payments are based on CMS rates rather than on Libor rates.

For the pricing of CMS derivatives, it is necessary to compute the expectation of the future
CMS rates under the forward measure that is associated with the payment date. However,
the natural martingale measure of the CMS rate is the annuity measure. A so-called convexity
adjustment arises because the expected value of the CMS rate under the forward measure differs
from the expected value of the CMS rate under its natural swap measure with annuity as the
numéraire.

Definition 3.2.1 (CMS Convexity Adjustment). The CMS convexity adjustment is the
difference between the expectation of the (function of the) CMS rate under the forward measure
and the expectation of the (function of the) CMS rate under the annuity measure.

Formally, let Sn,m(·) denote the m-period swap rate with first fixing date Tn, as defined in
(2.13). Then an m-period (payer) CMS swap (linked to m-period rate) is given by

VCMS-swap(t) = B(t)
N−1∑
n=0

τnEB
[
Sn,m(Tn)−K
B(Tn+1)

∣∣∣∣Ft] . (3.1)

In order to simplify expression (3.1) we will change the valuation from the risk-neutral measure
to the Tn+1-forward measure. Changing to the Tn+1-forward measure for each period we obtain

17
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using Theorem 2.2.6,

VCMS-swap(t) = B(t)

N−1∑
n=0

τnETn+1

[
Sn,m(Tn)−K
B(Tn+1)

B(Tn+1)P (t, Tn+1)

B(t)P (Tn+1, Tn+1)

∣∣∣∣Ft]

=
B(t)

B(t)

N−1∑
n=0

τnETn+1 [ (Sn,m(Tn)−K)P (t, Tn+1)| Ft]

=

N−1∑
n=0

τnP (t, Tn+1)ETn+1 [Sn,m(Tn)−K| Ft] . (3.2)

CMS caps and floors are defined as strips of European options on CMS rates, just like regular
caps and floors are strips of European options on Libor rates. The values of these derivatives
are given by the following formulas,

VCMS-cap(t) =
N−1∑
n=0

τnP (t, Tn+1)ETn+1
[
(Sn,m(Tn)−K)+

∣∣Ft] , (3.3)

VCMS-floor(t) =

N−1∑
n=0

τnP (t, Tn+1)ETn+1
[
(K − Sn,m(Tn))+

∣∣Ft] . (3.4)

While plain vanilla swaps, caps and floors can be valued solely from knowledge of the term
structure of interest rates, CMS swaps and CMS caps/floors require an interest rate model for
valuation.

In this chapter we will mostly focus our attention on a single CMS-linked cash flow. The
value of the CMS-linked cash flow is defined by:

VgCMS(0) = ETp [g(S(T0))| F0], (3.5)

where

g(s) =


s, in case of a swaplet,

(s−K)+, in case of a caplet,

(K − s)+, in case of a floorlet.

(3.6)

Note that a CMS swap is a collection of CMS-linked cash flows with g = s. Similarly, CMS
caps/floors are a collection of CMS-linked cash flows with g = (s−K)+ or g = (K − s)+.

Let us be clear on the notations, consider the case of a swaplet, then:

• t = 0 denotes the present date.

• T0 denotes the start date of the reference swap (e.g., 1 year from now). This will also be
the start of the accrual period of the swaplet.

• Tp denotes the payment date of the swaplet (e.g., 6 months from T0). This will also be
the end of the accrual period of the swaplet.

• TN denotes the maturity date of the reference swap (say, 10 years from T0).

Remark 3.2.2. There is another date that plays a role here, namely the date on which the swap
rate is fixed. This date is called the reset date of the swap. The reset date is used to correctly
incorporate the volatility effect that is present in the market. Usually the reset date is two days
before the start date of the swap. For clarity we will ignore this date in the rest of the thesis,
although when we deal with real market data we take the reset dates into account.
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We know that for a continuous random variable Y and any function h(·) the expectation of
h(Y ) is defined as,

E[h(Y )] =

∫ ∞
−∞

h(y)ψ(y)dy, (3.7)

where ψ(·) is the probability density function (PDF) of Y . So, for the expectation in (3.5) we
can write

ETp [g(S(T0))| F0] =

∫ ∞
−∞

g(s)ψTp(s)ds, (3.8)

where ψTp (·) is the PDF of a swap rate in the Tp-forward measure. However, the PDF ψTp (·) is

not directly available. The PDF ψA(·) of a swap rate in the annuity measure on the other hand
can be obtained from the market prices of swaptions ([35, pp. 737-739] and [9, pp. 448-449])
via

ψA(x) =

{
∂2c(0,S(0),T0,x)

∂x2
, if x ≥ S(0),

∂2p(0,S(0),T0,x)
∂x2

, if x < S(0),
(3.9)

where

c(0, S(0), T0, x) = EA
[
(S(T0)− x)+

]
, (3.10)

p(0, S(0), T0, x) = EA
[
(x− S(T0))+

]
. (3.11)

From the market we can imply the dynamics of S(T0) in the annuity measure so we are going
to transform (3.5) to the annuity measure by once again applying Theorem 2.2.6,

VgCMS(0) = EA
[
g(S(T0))

P (T0, Tp)A(0)

P (0, Tp)A(T0)

∣∣∣∣F0

]
(3.12)

=
A(0)

P (0, Tp)
EA
[
P (T0, Tp)

A(T0)
g(S(T0))

∣∣∣∣F0

]
. (3.13)

The CMS convexity adjustment is given by:

ΛgCMS(0) , ETp [g(S(T0))| F0]− EA [g(S(T0))| F0] . (3.14)

The difficulty in calculating the expectation in (3.13) stems from the term

P (T0, Tp)

A(T0)
, (3.15)

since it depends on the joint distribution of a whole set of interest rates. In order to compute
this expectation generally a term-structure model is used.

However, in this thesis we will use a TSR model that approximates the term P (T0, Tp)/A(T0)
with a so-called annuity mapping function, denoted by α(S(T0)). The way to obtain such an
annuity mapping function will be discussed in Section 3.4, for the moment we will simply assume
that such a function can be found. Hence, expression (3.13) can be written as

VgCMS(0) =
A(0)

P (0, Tp)
EA [α(S(T0))g(S(T0))| F0] , (3.16)

where α(S(T0)) is an annuity mapping function.
In order to calculate (3.16) we will make use of the replication method which we will present

in the next section.
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3.3 Replication Method

The replication method is used to replicate the CMS payout by means of European swaptions of
various strikes. This method is very popular in practice (e.g. [19] and [31]) because it takes the
volatility smile effects into account. Therefore, it is sometimes referred to as the street-standard
model for CMS convexity correction. For more information about the replication method we
refer to [10].

Let us write (3.16) as follows:

VgCMS(0) =
A(0)

P (0, Tp)
EA [f(S(T0))| F0] , (3.17)

where f(S(T0)) = α(S(T0))g(S(T0)). We can write the expectation as an integral over the
density function

EA [f(S(T0))| F0] =

∫ ∞
−∞

f(x)ψA(x)dx, (3.18)

where ψA(·) is given in (3.9).
The way to calculate expression (3.18) is formulated in Lemma 3.3.1.

Lemma 3.3.1 (Replication Method for CMS Options). Let f(·) be defined on the interval
[a, b]1. The calculation of EA [f(S(T0))| F0] in (3.17) is subdivided into three different cases
depending on the value of the swap rate, S(0), compared to the boundary conditions, a and b;
namely:

Case 1: If S(0) < a,

EA [f(S(T0))| F0] = f(b)
∂c(0, S(0), T0, b)

∂x
− f(a)

∂c(0, S(0), T0, a)

∂x
− f ′(b)c(0, S(0), T0, b) + f ′(a)c(0, S(0), T0, a)

+

∫ b

a
f ′′(x)c(0, S(0), T0, x)dx. (3.19)

Case 2: If S(0) > b,

EA [f(S(T0))| F0] = f(b)
∂p(0, S(0), T0, b)

∂x
− f(a)

∂p(0, S(0), T0, a)

∂x
− f ′(b)p(0, S(0), T0, b) + f ′(a)p(0, S(0), T0, a)

+

∫ b

a
f ′′(x)p(0, S(0), T0, x)dx. (3.20)

Case 3: If a ≤ S(0) ≤ b,

EA [f(S(T0))| F0] = f(S(0))− f(a)
∂p(0, S(0), T0, a)

∂x
+ f(b)

∂c(0, S(0), T0, b)

∂x
+ f ′(a)p(0, S(0), T0, a)− f ′(b)c(0, S(0), T0, b)

+

∫ S(0)

a
f ′′(x)p(0, S(0), T0, x)dx+

∫ b

S(0)
f ′′(x)c(0, S(0), T0, x)dx.

(3.21)

1This is for numerical reasons (among others).
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Here p(0, S(0), T0, x) and c(0, S(0), T0, x) are defined by (3.10) and (3.11).

Proof. The proof is given in Appendix A.5.

Remark 3.3.2. The minimum strike, Kmin, or maximum strike, Kmax, are chosen based on
numerical considerations. The values of the boundaries a, b differ depending on the type of CMS
option.

• In case of a CMS caplet: a = K, where K is the given strike, and b = Kmax.

• In case of a CMS floorlet: b = K, where K is the given strike, and a = Kmin.

• In case of a CMS swaplet: a = K, where Kmin = K = 0 and b = Kmax.

Remark 3.3.3. The values of the call and put options can be obtained by making use of market
data and Black’s formula. To incorporate the volatility smile we make use of Hagan’s formula,
(2.46).

Note that in order to evaluate formula (3.18) we still need to specify the functional form of
f(·) and calculate its first and second derivatives. Function f(·) can be specified in different
ways depending on the chosen approach. As stated previously we will use the TSR approach.

3.4 TSR Approach

In this section we present the Terminal Swap Rate approach, which we will use to price CMS
derivatives. This section is mainly based on [37, pp. 709-739] and [23, pp. 263-273].

It is well-known that European swaptions are relatively easy to price and this is due to
the fact that only knowledge about the terminal distribution of a single swap rate, S(T ), in the
annuity measure is necessary. In fact, all securities whose payoff can be expressed as deterministic
functions of the swap rate are relatively easy to price. Unfortunately these kinds of payoffs are
rare in the fixed income market; it is much more common that relatively simple payoffs depend
not only on the swap rate but also mildly on certain discount bonds. Usually these bonds are
observed on the same date. When multiple discount bonds are involved and knowledge of the
distribution of the swap rate is not sufficient for valuation of the product one could choose to
make use of a term structure model. The downside to this is that a term structure model has
high computational costs. An alternative to avoid these high computational costs is the so-called
TSR approach. The TSR approach can be used when the dependence on the additional discount
bonds is sufficiently mild, so the swap rate is the rate that primarily determines the payoff. In
the TSR approach the values of discount bonds on a date T are linked functionally to the driving
swap rate S(T ).

A critical part of the TSR approach is that the developed models, so-called TSR models,
capture precisely those properties of the market which are relevant to the derivative product
being priced. The main advantage of this approach over other techniques is that it is guaranteed
to price the new product accurately relative to existing products. Following this approach the
developed model will have realistic properties and is built upon a solid theoretical basis. The
characteristics of the model will usually be highly transparent, so it should be relatively easy to
understand the model’s strengths and weaknesses. So, the TSR approach is extremely useful in
handling a range of liquid European derivatives that are not, strictly speaking, functions of a
single rate, but can still be approximated as such. An example of these kinds of liquid European
swap derivatives are CMS derivatives. Before we can present the TSR models which we can
use to price CMS derivatives, we first have to discuss the basics of the TSR approach and the
concept of an annuity mapping function.
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3.4.1 Basics of the TSR Approach

In the TSR approach the swap rate S(T ) is the single fundamental state variable for the yield
curve at time T . Let {P (T,M)}M≥T be the discount bonds of various maturities, all observed
at time T . A key feature of the TSR model is that it specifies a map

P (T,M) = π(S(T ),M), M ≥ T, (3.22)

where π(·,M)M≥T is a collection of functions such that each discount factor is a known function
of the swap rate.

In term structure models the relationship between the market rate S(T ) and the discount
factors {P (T,M)}M≥T follows directly from the model, as it is derived from no-arbitrage con-
ditions. In order for a TSR model to have the same type of relationship, the TSR model must
satisfy the following three conditions:

1. No-arbitrage condition;

2. Consistency condition;

3. Realism condition.

In order to satisfy the no-arbitrage condition a restriction must be imposed on the map-
ping functions π(·,M)M≥T . The fundamental pricing formula (2.3) must reproduce the initial
discount bond prices. Thus the following must hold for all M ≥ T ,

P (0,M) = A(0)EA
[

π(S(T ),M)∑N−1
n=0 τnπ(S(T ), Tn+1)

]
. (3.23)

We will refer to equation (3.23) as the no-arbitrage condition.
The consistency condition is obtained by observing that the swap rate S(T ) itself is a function

of discount factors, which follows directly from expression (2.12). Therefore, the following
expression must be satisfied for all2 s:

s =
1− π(s, TN )∑N−1
n=0 τnπ(s, Tn+1)

. (3.24)

We will refer to equation (3.24) as the consistency condition. The consistency condition ensures
that all relevant relationships which hold in the market will also hold for the model.

The last condition, the realism condition has to do with monotonicity and limit proper-
ties. We call a set of mapping functions {π(·,M)}M≥T reasonable if it satisfies the following
restrictions:

• For all s and M ≥ T ,
0 < π(s,M) ≤ 1.

• For all s, π(s, ·) is monotonic in M ,

M1 < M2 ⇔ π(s,M1) ≥ π(s,M2).

• The function π(s,M) is continuous in (s,M).

2Here s is a state variable.



CHAPTER 3. PRICING CMS DERIVATIVES WITH TSR MODELS 23

Not all of these restrictions are equally important. As an example it is possible to allow
negative interest rates, which means that π(s,M) > 1 for some s,M . However, we cannot allow
negative prices of bonds, i.e. having π(s,M) < 0 for some s,M is not possible.

The three requirements related to the realism condition do not define the mapping functions
{π(·,M)}M≥T uniquely. However, they specify the functions uniquely within a particular para-
metric class. So, to obtain a concrete TSR model we can first select a particular parametric
class for the functions {π(·,M)}M≥T and then choose functions within this class such that the
model has the no-arbitrage and the consistency properties.

There are many different types of TSR models that can be used to price CMS derivatives.
But first we look more closely to the concept of an annuity mapping function, since it plays a
crucial role in CMS valuations.

3.4.2 Annuity Mapping Function

In Section 3.2 we introduced the concept of an annuity mapping function, but stopped just before
we developed a method to determine it. The annuity mapping function, denoted by α(S(T0)),
in (3.16) is defined to be the function that maps the term P (T0, Tp)/A(T0) to a function of the
swap rate q(S(T0)). In general, the function q(·) is taken to be a payoff function. In our case
q(·) = g(·), where g(·) is given by (3.6). By making use of the tower property of expectations we
can write for the expectation in the expression of the CMS-linked cash flow given by (3.16),

EA
[
P (T0, Tp)

A(T0)
g(S(T0))

∣∣∣∣F0

]
= EA

[
EA
[
P (T0, Tp)

A(T0)
g(S(T0))

∣∣∣∣S(T0) = s,F0

]∣∣∣∣F0

]
= EA

[
EA
[
P (T0, Tp)

A(T0)

∣∣∣∣S(T0) = s,F0

]
g(S(T0))

∣∣∣∣F0

]
= EA [α(S(T0))g(S(T0))| F0] , (3.25)

where function α(s) is given by

α(s) = EA
[
P (T0, Tp)

A(T0)

∣∣∣∣S(T0) = s,F0

]
. (3.26)

This result gives rise to the following useful lemma, presented in [37, pp. 726-727]:

Lemma 3.4.1 (Annuity Mapping Function for CMS-Linked Cash-Flow). The annuity
mapping function α(s) in (3.16) may be written as a conditional expectation,

α(s) = EA
[
P (T0, Tp)

A(T0)

∣∣∣∣S(T0) = s,F0

]
. (3.27)

This result is model-independent.

Lemma 3.4.1 clarifies the role of various methods of linking discount bond values to rates
in order to value approximately single-rate derivatives. The methods that can be used are
for instance TSR models and/or approximations inspired by term structure models. So, these
methods can be seen as approximations to the true annuity mapping function defined by the
conditional expected value in (3.27).

3.5 TSR Models

In this section we present four different TSR models. Two of these TSR models are established
in the literature, namely the linear TSR model and the swap-yield TSR model. The other two
TSR models we developed ourselves, and they are both based on interpolation. We will refer to
these TSR models as the linear interpolation and log-linear interpolation TSR models.
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3.5.1 Linear TSR Model

As stated previously in Section 3.4.1 a TSR model must satisfy the no-arbitrage, consistency and
realism conditions. The important specifications of the linear TSR model are given by Lemma
3.5.1.

Lemma 3.5.1 (Specifications Linear TSR Model). The linear TSR model is obtained by
specifying

π(s,M)∑N−1
n=0 τnπ(s, Tn+1)

= a(M)s+ b(M), M ≥ T, (3.28)

where a(·) and b(·) are deterministic functions. The three necessary conditions, the no-arbitrage,
consistency and realism condition impose the following requirements:

• Requirement 1:

b(M) =
P (0,M)

A(0)
− a(M)S(0). (3.29)

• Requirement 2:

b(T0) = b(TN ), (3.30)

a(T0) = 1 + a(TN ). (3.31)

• Requirement 3:

N−1∑
n=0

τna(Tn+1) = 0, (3.32)

N−1∑
n=0

τnb(Tn+1) = 1. (3.33)

To complete the model specification we must proceed as follows:

1. First choose coefficients {a(T1), . . . , a(TN )} subject to condition (3.32).

2. Next calculate a(T ) = a(T0) from (3.31) and the remaining a(M)’s by linear interpolation
of {a(T1), . . . , a(TN )}.

3. Finally calculate all b(M)’s via (3.29).

Proof. The proofs of identities (3.29), (3.30), (3.31), (3.32) and (3.33) are given in Appendix
A.6.

Due to the linear relationship between the market rate and annuity-discounted bonds one
of the features of the linear TSR model is that it has good numerical tractability. The linear
TSR model is rather popular in financial applications because of this nice feature, although the
assumed linear relationship is not completely realistic. So, the decision in favor of the linear
TSR model should be made on a case-by-case basis.

The linear TSR model (3.28) is considered to be a rather flexible model, since the coefficients

{a(T1), . . . , a(TN )},

can essentially be selected independently, subject only to condition (3.32).
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Remark 3.5.2. Note that it is still not possible to obtain the values of the respective coefficients,
since the obtained system of equations cannot be solved.

Even if the system of equations could be solved we would not want to deal with all these
coefficients individually. It is not clear what the financial implications would be for the various
choices of the coefficients. The transparency, one of the nice features, of the linear TSR model
would be lost. Therefore, we will parameterize a(·) by a single parameter that also has a financial
interpretation.

Simple Version

Note that the coefficients a(·) essentially define the shape of the yield curve at time T for different
levels of the state variable S(T ). We can estimate a(·) by making assumptions about the yield
curve. In the simple version we assume that the time T yield curve is very low, which means
that S(T ) is close to zero. We must have

P (T,M)

A(T )
≈ 1∑N−1

n=0 τn
. (3.34)

Since we may write

P (T,M)

A(T )
= EA [a(M)S(T ) + b(M)|S(T ) = 0] , (3.35)

= b(M), (3.36)

this suggests setting

a(M) =
1

S(0)

(
P (0,M)

A(0)
− b(M)

)
, (3.37)

b(M) =
1∑N−1

n=0 τn
, (3.38)

where the equation for a(M) follows from the no-arbitrage condition (3.29). However, this is a
very crude approximation and in the next section we will consider a better way to estimate a(·),
which we will call the mean reversion version.

Before we look into the mean reversion linear TSR model we will perform our first numerical
experiment concerning TSR models. We will calculate the price and convexity adjustment of
a CMS caplet for various strikes using the simple version of the linear TSR model. The CMS
caplet we consider has as underlying the 10 year (10Y) CMS rate (swap rate) with 12 months
(12M) frequency. The prices of CMS derivatives will generally be given in basis points (bps),
because this is market standard. A basis point is 1/100 of one percent, 1bp = 10−4. The market
data that was used is from 2013 and is given by Table B.1 and Table B.2; which can be found
in Appendix B. The results are given in Figure 3.1.

Figure 3.1 shows that we can already observe that there is a difference between the expec-
tation of (S(T0)−K)+ under the forward measure and the expectation of (S(T0)−K)+ under
the annuity measure when the simple version of the linear TSR model is used. In the next
paragraph we will compare the performance of the simple version of the linear TSR model to
the performance of the mean reversion TSR model.
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Figure 3.1: Expectation under different measures and CMS convexity adjustment of a CMS
caplet on 10Y CMS rate with 12M frequency using the simple version of the linear TSR model.

Mean Reversion Version

In the mean reversion version the coefficients of the linear TSR model are connected to a mean
reversion parameter. This has two major advantages, first of all it reduces the number of
parameters that need to be specified and secondly the new single parameter has strong financial
implications. Calibrating this mean reversion parameter is not straight-forward. The mean
reversion parameter could be derived from prices of traded derivatives. The precise connection
of a(·) to a mean reversion parameter is given by Lemma 3.5.3.

Lemma 3.5.3 (Mean Reversion Linear TSR Model). In the mean reversion linear TSR
model, the coefficients a(·) in (3.28) are connected to a mean reversion parameter, denoted by
κ, by the following relation

a(M) =
P (0,M)(γ −G(T,M))

P (0, TN )G(T, TN ) +A(0)S(0)γ
, for all t ≥ T, (3.39)

where

γ =

∑N−1
n=0 τnP (0, Tn+1)G(T, Tn+1)

A(0)
, (3.40)

and G(·, ·) is the function of mean reversion given by

G(t, T ) =

{
1−e−κ(T−t)

κ , for κ > 0,

T − t, for κ = 0.
(3.41)

The coefficients b(·) can be obtained directly by substituting a(·) in (3.29).

Proof. The proof is given in Appendix A.7.

Linking a(·) to mean reversion leads to a more intuitive parametrization and also ensures
better risk management.

As the second numerical experiment concerning TSR models we will compute the CMS
convexity adjustment of a CMS caplet on 10Y CMS rate with 12M frequency, we will use the
same market data as before 3. We use different values for the mean reversion parameter. The
results are shown in Figure 3.2.

3The market data from 2013 will be used for all TSR models in the upcoming subsections.
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Figure 3.2: CMS convexity adjustment of a CMS caplet on 10Y CMS rate with 12M frequency
using the linear TSR model.

In Figure 3.2 also the results of the simple version of the linear TSR model are given. We
first note that the values of the CMS convexity adjustment computed with the different TSR
models are relatively close. However, usually a CMS cap/floor is a product of a long-term CMS
rate (>10Y) with frequency 6M or 3M. Therefore, already a small difference in the CMS option
price and CMS convexity adjustment is significant. Especially, since the notional values for these
kinds of derivatives are usually quite large. The computed CMS convexity adjustment is the
smallest for the simple version of the linear TSR model. The fact that the simple version of the
linear TSR model performs satisfactory is probably due to the fact that interest rates were low
in 2013, the yield curve was relatively flat. If the yield curve becomes less flat the performance
of the simple version of the linear TSR model is expected to decrease. Therefore, we will not
consider the simple version of the linear TSR model for valuation of CMS options. For the mean
reversion linear TSR model the computed CMS convexity adjustment increases as the value of
the mean reversion parameter κ increases.

To see that there is also a timing effect, we investigate the effect of moving the start date
further into the future on the value of the CMS convexity adjustment of a CMS swaplet. We
will do this by means of a simple example, but first we present the following useful lemma:

Lemma 3.5.4 (CMS Price and CMS Convexity Adjustment under Linear TSR
Model). Using the linear TSR model for a CMS swaplet we can write the CMS price and
CMS convexity adjustment in the following form,

VgCMS(0) = S(0) +
A(0)

P (0, Tp)
aVarA (S(Tn)) , (3.42)

ΛgCMS(0) =
A(0)

P (0, Tp)
aVarA (S(Tn)) . (3.43)

Proof. The proof is given in Appendix A.8.

Example 3.5.5 (Timing Effect). We consider the problem of pricing a CMS swaplet on a
10Y CMS rate with 6M frequency. Today’s date is 20-nov-13. We will consider different start
dates, namely: 20-nov-14, 20-may-15, . . . , 20-nov-23. The payment dates are equal to the start
dates. Since we are pricing a swaplet, we have K = 0. Furthermore, we assume that interest
rates are flat at 5%. We can then obtain our bond prices by making use of Lemma 2.4.1,

P (0, Tn) = e−0.05Tn , (3.44)
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where Tn denotes the tenor of the swaplet. For simplification reasons we will keep the value
for the swap rate constant. The swap rate is assumed to have a log-normal distribution with a
constant volatility of σ = 17% for all fixing dates. Since the swap rate is assumed to have a
log-normal distribution with a constant volatility parameter we have

VarAS(Tn) = EA
[
S(Tn)2

∣∣Fn]− (EA [S(Tn)| F0]
)2

= S(0)2eσ
2Tn − S(0)2

= S(0)2(eσ
2Tn − 1). (3.45)

From (3.45) and Lemma 3.5.4 it follows that

VgCMS(0) = S(0) +
A(0)

P (0, Tp)
aS(0)2

(
eσ

2Tn − 1
)
, (3.46)

ΛgCMS(0) =
A(0)

P (0, Tp)
aS(0)2

(
eσ

2Tn − 1
)
. (3.47)

Figure 3.3 shows the CMS convexity adjustment for the CMS swaplet on a 10Y CMS rate with
6M frequency at different times of maturity for different versions of the linear TSR model.
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Figure 3.3: Simple example for the timing effect. The convexity adjustment of a CMS swaplet
on 10Y CMS rate with 6M frequency is computed using the linear TSR model and simplifying
assumptions.

From Figure 3.3 in Example 3.5.5 we can clearly see that as the start date moves further
into the future the convexity adjustment for the CMS swaplet increases, indicating that there
may be a timing effect.

3.5.2 Swap-Yield TSR Model

Arguably the most popular TSR model in the financial industry is the swap-yield TSR model. Its
popularity stems from the fact that only a single assumption is necessary to derive the annuity
mapping function. The assumption that is made, as we we will show later, is that all underlying
swap rates are approximated by a single swap rate. The derivation of the Swap Market Model
(SMM), a sophisticated model (a term structure model), is actually based on all underlying
swap rates, [13].

We will now proceed with the actual derivation of the annuity mapping function. Re-
member that the annuity mapping function is defined to be the function that maps the term
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P (T0, Tp)/A(T0) to a function of the swap rate. To derive an expression for (3.27) based solely
on swap rates, we start by writing the annuity as follows,

A0,N (T0) =

N−1∑
n=0

τnP (T0, Tn+1)

=
N−2∑
n=0

τnP (T0, Tn+1) + τN−1P (T0, TN )

= A0,N−1(T0) + τN−1P (T0, TN ). (3.48)

The annuity can also be written in the following form:

A0,N (T0) =
N−1∑
n=0

τnP (T0, Tn+1)

=

∑N−1
n=0 τnP (T0, Tn+1)

1− P (T0, TN )
(1− P (T0, TN ))

=

∑N−1
n=0 τnP (T0, Tn+1)

P (T0, T )− P (T0, TN )
(1− P (T0, TN ))

=
1

S0,N (T0)
(1− P (T0, TN )). (3.49)

From (3.49) we see that,
P (T0, TN ) = 1− S0,N (T0)A0,N (T0). (3.50)

Now, substituting (3.50) in (3.48) we get:

A0,N (T0) = A0,N−1(T0) + τN−1(1− S0,N (T0)A0,N (T0)).

Rewriting gives us the following useful recursive expression:

A0,N (T0) =
1

1 + τN−1S0,N (T0)
(τN−1 +A0,N−1(T0)). (3.51)

Unwrapping the recursion in (3.51) we obtain:

A0,N (T0) =
N−1∑
n=0

τn

n∏
i=0

1

1 + τiS0,i+1(T0)
. (3.52)

From (3.52) we see that the ZCBs, P (T, Tn) with n ≥ 1 are given by:

P (T0, Tn) =
n−1∏
i=0

1

1 + τiS0,i+1(T0)
. (3.53)

Equation (3.53) is an expression depending solely on the swap rates. We now make another
simplifying assumption. We approximate all underlying swap rates S0,i+1(T0) in (3.53) by a
single swap rate S0,N (T0). It follows that the mapping functions for the swap-yield TSR model
are defined by

π(s,M) =
n−1∏
i=0

1

1 + τis
. (3.54)
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Formula (3.54) essentially tells us to discount all cash flows after T0 at the same rate, namely
a rate given by the realized swap rate S0,N (T0). Another useful observation to make is that we
can write the annuity as follows,

A0,N (T0) =
1

S0,N (T0)

(
1−

N−1∏
i=0

1

1 + τiS0,N (T0)

)
. (3.55)

Assuming the payment date is equal to the start date we have,

P (T0, Tp) = P (T0, T0) = 1. (3.56)

Thus, the annuity function is given by:

α(s) =
s

1−
∏N−1
i=0

1
1+τis

. (3.57)

We highlight this result by listing it as a lemma, Lemma 3.5.6. Additionally, Lemma 3.5.6 gives
expressions for the first and second derivatives of the annuity mapping function4.

Lemma 3.5.6 (Annuity Mapping Function for Swap-Yield TSR Model). The annuity
function and its first and second derivatives for the swap-yield TSR model are given by:

α(s) =
y

z
, (3.58)

dα

ds
=
z dyds − y

dz
ds

z2
, (3.59)

d2α

ds2
=
z
(
z d

2y
ds2
− y d2z

ds2

)
− 2dzds

(
z dyds − y

dz
ds

)
z3

, (3.60)

where

y = s,
dy

ds
= 1,

d2y

ds2
= 0, (3.61)

z = 1−
N−1∏
i=0

1

1 + τis
, (3.62)

dz

ds
=

N−1∏
i=0

1

1 + τis

N−1∑
i=0

τi
1 + τis

, (3.63)

d2z

ds2
= −

N−1∏
i=0

1

1 + τis

(
N−1∑
i=0

−τi
1 + τis

)2

+
N−1∏
i=0

1

1 + τis

N−1∑
i=0

(
τi

1 + τis

)2
 . (3.64)

Proof. The proof is given in Appendix A.9.

To be considered as a proper TSR model the swap-yield model must satisfy the no-arbitrage,
consistency and realism conditions. The realism condition is satisfied, as follows directly from
(3.54). The consistency condition (3.24) is satisfied automatically as the following identity holds,

1− π(s, TN )∑N−1
n=0 τnπ(s, Tn+1)

= s.

However, the current form of the swap-yield TSR model is not arbitrage-free, as (3.23) is not
satisfied.

4The first and second derivatives are needed in the replication method, Lemma 3.3.1. They are not trivial
from the annuity mapping function as is the case for the linear annuity mapping function.
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Arbitrage-Free Swap-Yield TSR Model

Clearly, the swap-yield TSR model violates the no-arbitrage condition, since

EA [α(S(T0))| F0] 6= P (0, Tp)

A(0)
. (3.65)

However, this problem can be fixed by re-scaling the original annuity mapping function. We
obtain the new annuity mapping function α̃(s) in the following way:

α̃(s) ,
P (0, Tp)

A(0)

α(s)

α
, (3.66)

where
α = EA [α(S(T0))| F0] . (3.67)

Now, we can check that indeed the no-arbitrage condition is satisfied, as we have

EA [ α̃(S(T0))| F0] = EA
[
P (0, Tp)

A(0)

α(S(T0))

α

∣∣∣∣F0

]
=
P (0, Tp)

A(0)
EA
[

α(S(T0))

EA [α(S(T0))| F0]

∣∣∣∣F0

]
=
P (0, Tp)

A(0)
.

We also obtain a new valuation formula which can be written in the following convenient form,

VgCMS(0) =
A(0)

P (0, Tp)
EA [ α̃(S(T0))g(S(T0))| F0]

=
A(0)

P (0, Tp)
EA
[
P (0, Tp)

A(0)

α(S(T0))

α
g(S(T0))

∣∣∣∣F0

]
= EA

[
α(S(T0))g(S(T0))

EA [α(S(T0))| F0]

∣∣∣∣F0

]
=

EA [f(S(T0))| F0]

EA [α(S(T0))| F0]
. (3.68)

Remark 3.5.7. Two important observations are:

• The correction (3.66) is useful even for arbitrage-free models, where the no-arbitrage con-
dition (3.65) holds in theory. This follows from the fact that in practice the no-arbitrage
condition can be violated by the used numerical scheme. Therefore, the valuation formula
(3.68) can also be useful for other types of TSR models.

• The use of valuation formula (3.68) doubles the computation time.

We again compute the CMS convexity adjustment of the CMS caplet on 10Y CMS rate with
12M frequency, and the result is given in Figure 3.4.

If we compare Figure 3.4 to Figure 3.2 we see that the result of the swap-yield TSR model
is closest to the result of the mean reversion linear TSR model with κ = 0.

As a final note, the main downside of the swap-yield TSR model is its lack of explicit control
over the shape of the yield curve at time T . In the linear TSR model we have explicit control
over the yield curve at time T , which was done by imposing a link between parameters of these
models to a mean reversion parameter.



CHAPTER 3. PRICING CMS DERIVATIVES WITH TSR MODELS 32

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
CMS convexity adjustment − swap−yield TSR model − 2013

K [%]

Λ
gC

M
S
(0

) 
[b

ps
]

Figure 3.4: CMS convexity adjustment of a CMS caplet on 10Y CMS rate with 12M frequency
using the swap-yield TSR model.

3.5.3 Interpolation TSR models

The linear and especially the swap-yield TSR model are relatively well-established in the litera-
ture. As we specified earlier, the annuity mapping functions of these TSR models can be seen as
approximations of the true annuity mapping function defined by the conditional expected value
in (3.27). We will propose two new TSR models that are based on interpolation. The value of
ZCB P (T0, T0) is known. Furthermore, it can also be assumed that we know the value of the
swap rate S0,N (T0). Therefore, using the definition of the swap rate we can obtain an expression
for P (T0, TN ).

Linear Interpolation TSR model

The first interpolation TSR model we will develop is based on linear interpolation of the ZCBs,
we will therefore call it the linear interpolation TSR model. We make use of the following type
of interpolation:

P (T0, Tn) = θnP (T0, T0) + (1− θn)P (T0, TN ), (3.69)

for T0 ≤ Tn ≤ TN . Since P (T0, T0) = 1, we obtain

P (T0, Tn) = θn + (1− θn)P (T0, TN ). (3.70)

Substituting (3.70) in the definition of the annuity we obtain:

A0,N (T0) =

N−1∑
n=0

τnP (T0, Tn+1)

=

N−1∑
n=0

τn (θn+1 + (1− θn+1)P (T0, TN ))

=

N−1∑
n=0

τnθn+1 + P (T0, TN )

(
N−1∑
n=0

τn −
N−1∑
n=0

τnθn+1

)
. (3.71)
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For notational convenience we write,

Γ1 =
N−1∑
n=0

τn, (3.72)

Γ2 =
N−1∑
n=0

τnθn+1. (3.73)

So we have:
A0,N (T0) = Γ2 + P (T0, TN ) (Γ1 − Γ2) . (3.74)

From (3.74) it follows that for the swap rate we obtain,

S0,N (T0) =
P (T0, T0)− P (T0, TN )

A0,N (T0)

=
1− P (T0, TN )

Γ2 + P (T0, TN ) (Γ1 − Γ2)
. (3.75)

From (3.75) we find the following expression for P (T0, TN ):

P (T0, TN ) =
1− Γ2S0,N (T0)

1 + (Γ1 − Γ2)S0,N (T0)
. (3.76)

Substituting (3.76) in (3.74) gives us the following expression for the annuity:

A0,N (T0) = Γ2 + (Γ1 − Γ2)
1− Γ2S0,N (T0)

1 + (Γ1 − Γ2)S0,N (T0)

=
Γ2 (1 + (Γ1 − Γ2)S0,N (T0))

1 + (Γ1 − Γ2)S0,N (T0)
+

(Γ1 − Γ2) (1− Γ2S0,N (T0))

1 + (Γ1 − Γ2)S0,N (T0)

=
Γ2 + Γ1Γ2S0,N (T0)− Γ2

2S0,N (T0) + Γ1 − Γ1Γ2S0,N (T0)− Γ2 +−Γ2
2S0,N (T0)

1 + (Γ1 − Γ2)S0,N (T0)

=
Γ1

1 + (Γ1 − Γ2)S0,N (T0)
. (3.77)

Thus, we obtain the following annuity mapping function,

α(s) =
Γ1 − Γ2

Γ1
s+

1

Γ1
, (3.78)

where Γ1,Γ2 are given by (3.72) and (3.73), respectively. The consistency and reasonability
conditions are satisfied automatically, as was the case for the swap-yield TSR model. Coefficient
Γ2 can be chosen such that the linear interpolation TSR model is arbitrage-free. Remember that
for a TSR model to be arbitrage-free,

EA [α(S(T0))| F0] =
P (0, Tp)

A(0)
, (3.79)

must hold. We have,

EA [α(S(T0))| F0] =
1 + (Γ1 − Γ2)EA [S(T0)]

Γ1
=

1 + (Γ1 − Γ2)S(0)

Γ1
. (3.80)

If we set
1 + (Γ1 − Γ2)S(0)

Γ1
=
P (0, Tp)

A(0)
, (3.81)
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it follows that coefficient Γ2 must be chosen such that

Γ2 = Γ1 −
1

S(0)

(
P (0, Tp)Γ1

A(0)
− 1

)
. (3.82)

The obtained result is summarized by Lemma 3.5.8.

Lemma 3.5.8 (Annuity Mapping Function for Linear Interpolation TSR Model). The
annuity function for the linear interpolation TSR model is given by:

α(s) =
Γ1 − Γ2

Γ1
s+

1

Γ1
, (3.83)

where Γ1,Γ2 are given by

Γ1 =
N−1∑
n=0

τn, (3.84)

Γ2 = Γ1 −
1

S(0)

(
P (0, Tp)Γ1

A(0)
− 1

)
. (3.85)

We will again compute the CMS convexity adjustment of the CMS caplet on 10Y CMS rate
with 12M frequency. Since the market standard is the swap-yield TSR model, we will compare
the results of both models. The results are given in Figure 3.5.
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Figure 3.5: CMS convexity adjustment of a CMS caplet on 10Y CMS rate with 12M frequency
using the linear interpolation TSR model.

Figure 3.5 shows that the results of the linear interpolation TSR model are close to the
results of the swap-yield TSR model. In fact, the difference between the calculated convexity
adjustment of the two models is smaller than 1bp.

Log-Linear Interpolation TSR model

The second TSR model we will develop is based on linear interpolation of the logarithm of ZCBs,
which can be a better way to describe the future yield curve movement. Therefore, we will call
it the log-linear interpolation TSR model. We make use of the following type of interpolation:

log(P (T0, Tn)) =
TN − Tn
TN − T0

log(P (T0, T0)) +
Tn − T0

TN − T0
log(P (T0, TN )), (3.86)
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for T0 ≤ Tn ≤ TN . Using the fact that P (T0, T0) = 1, we obtain

log(P (T0, Tn)) =
Tn − T0

TN − T0
log(P (T0, TN )). (3.87)

Rewriting (3.87) we get the following expression for P (T0, Tn),

P (T0, Tn) = P (T0, TN )
Tn−T0
TN−T0 . (3.88)

Proceeding in the same fashion as we did with the linear interpolation TSR model, making use
of the definition of the swap rate, we find

S0,N (T0) =
1− P (T0, TN )∑N−1

n=0 τnP (T0, TN )
Tn+1−T0
TN−T0

. (3.89)

Unfortunately, we can not obtain an expression for P (T0, TN ) analytically, but we can solve it
by a few iterations of a numerical root finding algorithm. We can rewrite (3.89) as follows,

S0,N (T0)
N−1∑
n=0

τnP (T0, TN )
Tn+1−T0
TN−T0 + P (T0, TN )− 1 = 0. (3.90)

Next, we set P (T0, TN ) to be the solution, z(S(T0)), of the equation

S0,N (T0)

N−1∑
n=0

τnz(S(T0))
Tn+1−T0
TN−T0 + z(S(T0))− 1 = 0. (3.91)

We get the following expression for the annuity,

A0,N (T0) =
N−1∑
n=0

τn(z(S(T0)))
Tn+1−T0
TN−T0 . (3.92)

Thus we obtain the following annuity mapping function,

α(s) =
1∑N−1

n=0 τn(z(s))
Tn+1−T0
TN−T0

. (3.93)

As was the case for the linear interpolation TSR model, the consistency and reasonability con-
ditions are again satisfied automatically. However, this TSR model is not arbitrage-free. To fix
this problem we can make use of valuation formula (3.68). Besides the use of valuation formula
(3.68), also a numerical root finding algorithm has to be used to calculate the values for the an-
nuity mapping function. Meaning that the log-linear TSR model has the highest computational
cost of the considered TSR models, although the computational costs are still very low when
compared to sophisticated models.

The annuity function and its derivatives are given by Lemma 3.5.9.

Lemma 3.5.9 (Annuity Mapping Function for Log-Linear Interpolation TSR Model).
The annuity function and its first and second derivatives for the log-linear interpolation TSR
model are given by:

α(s) =
1∑N−1

n=0 τnz(s)
ϑn+1

, (3.94)

dα

ds
=

Υ1(s)

Υ2(s)
, (3.95)

d2

ds2
α(s) =

Υ2(s)dΥ1
ds −Υ1(s)dΥ2

ds

(Υ2(s))2
, (3.96)



CHAPTER 3. PRICING CMS DERIVATIVES WITH TSR MODELS 36

where ϑn = Tn−T0
TN−T0 and

Υ1(s) = −dz
ds

N−1∑
n=0

τnϑn+1z(s)
ϑn+1−1, (3.97)

Υ2(s) =

(
N−1∑
n=0

τnz(s)
ϑn+1

)2

, (3.98)

dΥ1

ds
= −d

2z

ds2

N−1∑
n=0

τnϑn+1z(s)
ϑn+1−1 −

(
dz

ds

)2 N−1∑
n=0

τnϑn+1(ϑn+1 − 1)z(s)ϑn+1−2, (3.99)

dΥ2

ds
= 2

(
N−1∑
n=0

τnz(s)
ϑn+1

)(
dz

ds

N−1∑
n=0

τnϑn+1z(s)
ϑn+1−1

)
. (3.100)

The first and second derivatives of z(s) with respect to s are given by,

dz

ds
=

−
∑N−1

n=0 τnz(s)
ϑn+1

1 + s
∑N−1

n=0 τnϑn+1z(s)ϑn+1−1
, (3.101)

d2z

ds2
=
−dz
ds

∑N−1
n=0 τnϑn+1z(s)

ϑn+1−1

1 + s
∑N−1

n=0 τnϑn+1z(s)ϑn+1−1

+

(∑N−1
n=0 τnz(s)

ϑn+1

)(∑N−1
n=0 τnϑn+1z(s)

ϑn+1−1 + sdzds
∑N−1

n=0 τnϑn+1(ϑn+1 − 1)z(s)ϑn+1−2
)

(
1 + s

∑N−1
n=0 τnϑn+1z(s)ϑn+1−1

)2 .

(3.102)

Proof. The proof is given in Appendix A.10

For this model we will also compute the CMS convexity adjustment of the CMS caplet on
10Y CMS rate with 12M frequency. We will again compare the results to the results obtained
with the swap-yield TSR model. The results are given in Figure 3.6.
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Figure 3.6: CMS convexity adjustment of a CMS caplet on 10Y CMS rate with 12M frequency
using the log-linear interpolation TSR model.

Figure 3.6 shows that the results of the log-linear interpolation TSR model and the swap-
yield TSR model are almost identical.

To evaluate the performance of the respective TSR models additional numerical experiments
are necessary, which we will perform in the next section.
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3.6 Numerical Experiments

In this section we will perform more numerical experiments to get better insight in the perfor-
mance of the different TSR models. Besides the market data from 2013 we will now also make
use of market data from 2007. The market data from 2007 is given by Table B.8 and Table
B.9; which can be found in Appendix B. We will compare the difference in prices computed
with the different TSR models and a reference model. The swap-yield TSR is chosen as the
benchmark/reference model, since currently it is the most popular TSR model that is used in
the market.

Remark 3.6.1. The swap-yield TSR model is not necessarily better than the other TSR models
that will be considered. It is simply used as a benchmark, since there are no other references
available.

The price that is calculated with the reference model will be denoted by Vref. The difference
between the price computed with a chosen TSR model and the reference model will be denoted
by ζ, where ζ is defined as:

ζ = VgCMS(0)− Vref.

Besides looking at the difference in prices computed by the different TSR models we also study
the volatility and timing effects.

3.6.1 CMS Caplet Price: 2007 vs 2013

To gain insight into the performance of the different TSR models we will price a CMS caplet5

on a 10Y CMS rate with 12M frequency for market data from 2007 and 2013. The computed
CMS caplet prices and ζ for 2007 and 2013 are given in Figure 3.7.

If we compare the results of 2007 with 2013, we can make a number of observations. First, we
note that the performance of the respective TSR models is similar for both 2007 and 2013. The
computed CMS caplet prices with the respective TSR models only differ slightly from the price
computed with the reference model. For both years the results of the log-linear TSR model are
closest to the results of the reference model, although the results of the mean reversion linear
TSR model with κ = 0 are also quite close. We also observe that the differences for 2013
are larger than the differences for 2007, which is probably due to the fact that the volatilities
observed in 2013 are more extreme. The fact that the differences for 2013 are bigger than for
2007 is an indication that it is now of even more importance to choose a correct TSR model for
the pricing of CMS derivatives.

5The reason that we price a CMS caplet/floorlet instead of a CMS cap/floor is that to price a CMS cap/floor
a lot more market data has to be used. We can already draw our conclusions about the model performance from
the pricing of a single CMS caplet/floorlet, since a CMS cap/floor is just a sum of CMS caplets/floorlets.
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Figure 3.7: Prices of a CMS caplet on 10Y CMS rate with 12M frequency for 2007 and 2013 -
mean reversion linear TSR model, linear interpolation TSR model and log-linear interpolation
TSR model vs reference model.

3.6.2 Investigate the Timing Effect

Next, we wish to investigate the timing effect. We already observed the timing effect to some
extent in Example 3.5.5, but this time we will make use of the market data of 2007 and 2013.
We will again make use of different start dates to study the timing effect. Originally the start
date of the CMS caplet we considered was 1 year from today, Figure 3.7. We will now consider
start dates up to 10 years from today. In Figure 3.8 ζ is given for 2007 and 2013 for two different
starting dates.

From Figure 3.7 and Figure 3.8 it is clear that moving the start date further into the future
leads to an increase in ζ for both market data from 2007 and 2013. From this we can infer that
there is indeed a timing effect. We also note as before that the differences in prices for 2013 are
larger than the differences in prices for 2007.
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Figure 3.8: Price differences for a CMS caplet on 10Y CMS rate with 12M frequency for 2007
and 2013 - mean reversion linear TSR model, linear interpolation TSR model and log-linear
interpolation TSR model vs reference model. Using different start dates, T0 = 5 and T0 = 10.

3.6.3 Investigate the Volatility Effect

To investigate the volatility effect we will again price a CMS caplet on a 10Y CMS rate with
12M frequency for low and high volatilities. We will partly use the market data from 2013, only
now we will assume that the volatility is constant. We consider the case where the start date
is 10 years from today, T0 = 10. The calculated CMS caplet prices for low and high constant
volatility are given in Figure 3.9.

From Figure 3.9 it is obvious that for high volatility the computed CMS caplet prices with
the different TSR models differ more than for low volatility, indicating that there is a volatility
effect.
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Figure 3.9: Prices of a CMS caplet on 10Y CMS rate with 12M frequency using different TSR
models for low and high volatilities. The volatility is assumed to be constant, σlow = 0.1 and
σhigh = 0.9.

3.6.4 No-Arbitrage Condition

Two of the TSR models we considered are actually not arbitrage-free and we had to make use of
rescaling by using valuation formula (3.68) instead of the theoretical valuation formula (3.17).
In order to show the necessity of the rescaling, we will check if the no-arbitrage condition (3.79)
is satisfied, we compute the difference,

EA [α(S(T0))| F0]− P (0, Tp)

A(0)
, (3.103)

for the swap-yield, linear interpolation and log-linear interpolation TSR models. The results are
given in Figure 3.10.
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Figure 3.10: Test for the no-arbitrage condition. The difference given by (3.103), is computed
with the swap-yield TSR model, the linear interpolation TSR model and the log-linear interpo-
lation TSR model.

The mean reversion linear TSR model is arbitrage-free by definition, but additional work
needs to be done to obtain a correct value for the mean reversion parameter κ. As of yet we do
not have a method to properly calibrate this mean reversion parameter. The linear interpolation
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TSR model on the other hand requires no additional calibration and the model is arbitrage-free
by construction. From Figure 3.10 we can conclude that indeed the linear interpolation TSR
model is arbitrage-free by construction, while the swap-yield TSR model and the log-linear
interpolation TSR model are certainly not arbitrage-free.

Since, not every TSR model is arbitrage-free a fairer way to compare the TSR models is by
not making use of the rescaling in the annuity mapping function. We will again compute the
CMS caplet on a 10Y CMS rate with 12M frequency, but this time we will use valuation formula
(3.17) for all TSR models. The reference model is still the same as before, the swap-yield TSR
model where we make use of rescaling. The results are given in Figure 3.11.
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Figure 3.11: Prices of a CMS caplet on 10Y CMS rate with 12M frequency for 2007 and 2013
- no-rescaling - swap-yield TSR model, mean reversion linear TSR model, linear interpolation
TSR model and log-linear interpolation TSR model vs reference model.

From Figure 3.11 it is clear that for the swap-yield TSR model and the log-linear TSR model
the rescaling is absolutely necessary to obtain the correct price. For the remaining TSR models
there is no notable difference when we use either (3.68) or (3.17). So, from this point of view
the mean reversion linear and the linear interpolation TSR model are superior to the swap-yield
and log-linear TSR models.
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3.7 Conclusions

CMS-based products are widely used by insurance companies and pension funds in their Asset
& Liability Management, because these institutions are very vulnerable to movements in the
interest rates. CMS caps and floors are collections of options on CMS rates. The pricing of
these products has to be efficient and accurate. However, the use of sophisticated models is not
always desirable due to too time-consuming calculations. Therefore, different approaches are
used in practice.

One of these approaches is the use of a Terminal Swap Rate model. TSR models are obtained
by using the TSR approach. The TSR approach can be used when the dependence on the
additional discount bonds is sufficiently small, so that primarily the swap rate determines the
payoff.

We have demonstrated that it is convenient to change to the annuity measure when pricing
CMS derivatives. We used the replication method to price a single CMS-linked cash flow. To
compute the implied volatilities for different strikes we made use of Hagan’s formula.

We have considered two types of TSR models described in the literature, namely the linear
TSR model and the swap-yield TSR model. We also developed two new TSR models both
based on interpolation, the linear interpolation TSR model and the log-linear interpolation TSR
model.

Many numerical experiments were performed to study the performance of the respective TSR
models. We considered market data from 2007 and 2013. The results for both sets of market
data were similar, but we did observe that the differences for the year 2013 were bigger than for
the year 2007, which is probably due to the fact that the volatilities observed in 2013 are more
extreme. Therefore, nowadays correct valuation of CMS derivatives is of even more importance.

We have seen that depending on the chosen TSR model the computed price of the CMS
option can differ. We also showed that there is a timing and a volatility effect. The further
the start date is moved into the future the bigger the differences will be between the computed
prices of the CMS derivative with the respective TSR models, indicating that there is a timing
effect. We also demonstrated the volatility effect, by showing that for higher volatilities the
price differences between the respective TSR models are larger.

From the numerical experiments we have seen that all TSR models have their pros and cons.
The swap-yield TSR model is most widely used in the financial industry. Its popularity stems
from the fact that only a single assumption is necessary to derive the annuity mapping function.
The assumption that is made, is that all underlying swap rates are approximated by a single
swap rate. A downside of the swap-yield model is that it is not arbitrage-free. A rescaling
has to be used to correctly calculate the price of the CMS option price, which doubles the
computation time. The mean reversion linear TSR model is arbitrage-free by definition. Of the
four considered TSR models the mean reversion linear TSR model is the only TSR model that
incorporates a mean reversion parameter, making it the most flexible TSR model. However,
calibrating this mean reversion parameter is not straight-forward and is an issue that should be
further researched. The linear and log-linear interpolation TSR models on the other hand require
no additional calibration. The linear interpolation TSR model is based on a linear interpolation
of the zero-coupon bonds. Another advantage of this model compared to the swap-yield TSR
model is that it is arbitrage-free by construction. The log-linear interpolation TSR model is
based on a linear interpolation of the logarithm of zero-coupon bonds, which can be a better
way to describe the future yield curve movement. For the log-linear interpolation TSR model
the same rescaling as for the swap-yield model has to be used. Besides the necessary rescaling,
also a numerical root finding algorithm has to be used to calculate the values for the annuity
mapping function. Meaning that the log-linear TSR model has the highest computational cost of
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the considered TSR models, although the computational costs are still very low when compared
to sophisticated models.

So we would recommend the use of the log-linear interpolation TSR model to price CMS
options, depending on the view of the movement of the yield curve. When it is important to
reduce the calculation time, we recommend the use of the linear interpolation TSR model. If
more flexibility needs to be added we would recommend the use of the mean reversion linear
TSR model.

Usually a CMS cap/floor is a product of a long-term CMS rate (>10Y) with frequency 6M or
3M, so already a small difference when pricing a CMS caplet/floorlet is significant. Especially,
since the notional values for these kind of derivatives are usually quite large. So even these small
differences can lead to substantial losses. Thus obtaining a fast, efficient and accurate model to
price CMS derivatives is of vital importance.



Chapter 4

Copula Approach for Pricing CMS
Spread Derivatives

4.1 Introduction

In this chapter we look into the pricing of CMS spread derivatives by making use of the copula
approach. Specifically, we will focus on the pricing of CMS spread options. This chapter is
organized as follows.

In Section 4.2 we introduce CMS spread derivatives. Section 4.3 shortly describes the pricing
approach we are going to apply. In Section 4.4 copulas are discussed, in particular the Gaussian
copula. In Section 4.5 an efficient pricing formula for CMS spread options is derived, additionally
a Monte Carlo method is presented by which CMS spread options can be priced. In Section 4.6
several numerical experiments are performed. Finally, Section 4.7 concludes.

This chapter is mainly based on [37, pp. 765-815].

4.2 CMS Spread Derivatives

A CMS spread derivative is a financial instrument whose payoff is a function of the spread
between two swap rates of different maturity. This can for example be the 10-year swap rate
minus the 2-year swap rate. These type of derivatives are traded by parties that wish to take
advantage of, or hedge against, future changes in the slopes of specific parts of the yield curve.
Therefore, this type of derivative has become quite popular among insurance companies and
pension funds. The most common CMS spread derivatives are CMS spread notes/bonds (steep-
ener or flattener), CMS spread range accrual notes/bonds, and CMS spread caps and floors.
There are also other CMS spread derivatives that are not commonly traded in the market, but
they are embedded in other financial instruments. Examples of such CMS derivatives are CMS
spread digital options and CMS spread swaptions, [45].

The valuation of these CMS spread derivatives is an important subject of research for
both practitioners and academics. Our focus will be on the pricing of CMS spread caps and
floors, which are also referred to as a CMS spread options (CMSSOs). Typically banks use
CMSSOs to hedge the CMS spread swaps that they have entered into with customers. A CMS
spread cap/floor consists of a series of options which are also known as caplets/floorlets. Each
caplet/floorlet ensures the buyer protection for a single payment period. A cap protects against
an increase in the spread, whereas a floor protects against an inversion or reduction in the swap
rate spread. On each fixing date, if the underlying is above the strike (for a cap) or below the
strike (for a floor) the buyer receives a payout. As mentioned earlier, a CMSSO is an efficient

44
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way to exercise a view on the shape of the yield curve. In environments where the yield curve is
very flat, the forecasted spread is typically around zero. However from historical analysis, yield
curves tend to be characterized by low short term rates relative to longer term rates. In recent
times for example, the 10Y2Y spread in USD has been as high as 200bps. Therefore, in markets
where yield curves are currently flat, an investor could purchase a CMS spread cap based on a
10Y-2Y spread for a relatively low price. Subsequently, if over the tenor of the option the curve
normalizes, the investor will be ITM and generate a significant gain.

The payoff of a CMS spread option1 is given by

VCMSSO(Tp) = ($1S1(T )−$2S2(T )−K)+, (4.1)

where Tp ≥ T is the time of payment, S1(T ) and S2(T ) are two swap rates of different tenors
fixing at time T , K is the strike and $1 and $2 are the gearing factors of the respective swap
rates. The gearing factor defines which percentage of a swap rate will be used in the payout
calculation. The default value is 1, which represents 100%. Alternatively, the gearing factor can
for example be chosen to be 0.5 which represents 50% or 1.5 which represents 150%. We will
assume the default values for the gearing factors, so $1 = $2 = 1. In this case the undiscounted
value of a CMS spread option is given by2

VCMSSO(0) = ETp
[
(S1(T )− S2(T )−K)+

∣∣F0

]
. (4.2)

The difficulty in pricing CMS spread derivatives arises from the fact that unlike a single interest
rate, a CMS spread rate can take both positive and negative values. The yield curve can move
in a way such that any part can be either flat, upward or downward sloping. It is this feature
that adds an extra complication in the pricing of derivative instruments for which a CMS spread
rate is the underlying.

4.3 Pricing Approach

Various approaches have been developed to value financial derivatives on spread rates. In Chap-
ter 3 we have seen that TSR models can be used to price CMS derivatives, which are single-
rate derivatives. The TSR models are much more convenient and easier from a mathematical
point of view compared to full term-structure models. It is generally more difficult to fit the
market-implied distribution of one particular rate with a model that simultaneously specifies
the dynamics of the whole yield curve. In addition, the TSR models are usually faster then a
full term-structure model. Given the highly traded volumes in many derivatives markets, there
is often not much room for pricing errors due to not being able to fit market-observable prices.
The same holds true for pricing CMS spread options, which have become fairly liquid in recent
years. Closed-form solutions for CMS spread options can be obtained only in rare cases, such as
the case of caplets and floorlets with zero strike in which the Margrabe exchange option formula
can be used, [29]. Most research regarding the valuation of CMS spread derivatives involves the
Libor Market Model (LMM) or Swap Market Model (SMM) (see [1], [3], [27], and [25]). It is
commonly assumed that each rate used to calculate the spread is log-normally distributed and
there may be a nonzero correlation between them. A downside to this approach is that it has
limited analytical tractability, as the linear combination of log-normal variables has an unknown
distribution. Our aim is to have a fast, analytical tractable and flexible (two-rate) model that
specifies the joint dynamics of only the two underlying swap rates.

1From here on when we talk about a CMS spread option we mean a CMS spread caplet unless specified
otherwise.

2The discounted value can be obtained by multiplying P (0, Tp) to the RHS of equation (4.2).



CHAPTER 4. COPULA APPROACH FOR PRICING CMS SPREAD DERIVATIVES 46

We recall that we can obtain the PDF ψAi(·) of each swap rate in the annuity measure from
the market prices of swaptions across strikes. By specifying annuity mapping functions αi(·)
given by,

αi(s) = EAi

[
P (T, Tp)

Ai(T )

∣∣∣∣Si(T ) = s

]
, (4.3)

we can obtain the PDF of each swap rate in the Tp-forward measure (see Section 4.5). The
formula (4.3) is exact. In numerical calculations, (4.3) will be approximated by the annuity
function of a chosen TSR model (see Chapter 3).

An important observation to make is that this approach will lead to some inconsistencies,
since each quantity P (T, Tp)/Ai(T ), i = 1, 2 will generally depend on both swap rates S1(T )
and S2(T ). Therefore, the calculation of αi(s) should incorporate the dependence structure of
both rates. However, for tractability reasons the measure change related calculations are done
independently from the dependence structure modeling.

An important observation to make is that this approach will lead to some inconsistencies,
since each quantity P (T, Tp)/Ai(T ), i = 1, 2 will generally depend on both swap rates S1(T )
and S2(T ). Therefore, the calculation of αi(s) should incorporate the dependence structure of
both rates. However, for tractability reasons the measure change related calculations are done
independently from the dependence structure modeling.

4.4 Copula

When the marginal distributions of Si(T ) under the Tp-forward measure are determined, the
joint distribution of (S1(T ), S2(T )) can be obtained by linking the margins with a so-called
copula. The word copula originates from Latin, meaning ’tie, connection or link’. So by using a
copula we are able to connect or couple marginal distributions into a multivariate distribution.
Since we will be dealing with CMS spread options, where we have two underlying swap rates we
will from here on focus our attention on two-dimensional copulas, also called bivariate copulas.
For a thorough treatment of copulas including the multivariate case we refer the reader to [32]
and [24]. The formal definition of a bivariate copula is given as follows, [32]:

Definition 4.4.1 (Bivariate Copula). A bivariate copula is a function C : [0, 1]2 → [0, 1] that
has the following three properties:

1. ∀u, v ∈ [0, 1],
C(u, 0) = C(0, v) = 0, (4.4)

2. ∀u, v ∈ [0, 1],
C(u, 1) = u, C(1, v) = v, (4.5)

3. ∀u1, u2, v1, v2 ∈ [0, 1] with u2 ≥ u1, v2 ≥ v1,

C(u2, v2)− C(u1, v2)− C(u2, v1) + C(u1, v1) ≥ 0. (4.6)

Property 1 is called the groundness property of a function. A function satisfying Property 3
is called a 2-increasing function, this can be seen as the two-dimensional analogue of a nonde-
creasing one-dimensional function. As a consequence of property 1 and 3 additional properties
follow for a copula function, which we present in Lemma 4.4.2.

Lemma 4.4.2 (Additional Properties Bivariate Copula). Let C be a bivariate copula. As
a consequence of the groundedness and 2-increasing property for copulas, the following additional
properties follow:
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1. C is nondecreasing in each variable.

2. C satisfies the following Lipschitz condition ∀u1, u2, v1, v2 ∈ [0, 1],

|C(u2, v2)− C(u1, v1)| ≤ |u2 − u1|+ |v2 − v1|, (4.7)

it follows that every copula C is uniformly continuous on its domain.

3. ∀u ∈ [0, 1], the partial derivative ∂C(u,v)
∂v exist for almost every v ∈ [0, 1]. For such u and

v it follows that,

0 ≤ ∂C(u, v)

∂v
≤ 1. (4.8)

The analogous statement is true for the partial derivative ∂C(u,v)
∂u .

4. The functions

u→ ∂C(u, v)

∂v
, v → ∂C(u, v)

∂u
(4.9)

are well-defined and nondecreasing a.e. on [0, 1].

Definition 4.4.1 and its additional properties given by Lemma 4.4.2 are rather technical.
Therefore, we will formulate an alternative definition of a bivariate copula with which we will
work, [37].

Definition 4.4.3 (Bivariate Copula (Alternative)). Consider a function C : [0, 1]2 → [0, 1].
C(u1, u2) is said to be a bivariate copula function if it defines a valid joint distribution function
for a 2-dimensional vector of random variables, with each variable being uniformly distributed
on [0, 1].

The main attraction of the copula approach is that a copula separates the dependence struc-
ture of a multivariate distribution from its marginal distributions. The fundamental result of
copula theory is Sklar’s Theorem. But before we present Sklar’s Theorem we first state the
following useful result which is needed for the proof of Sklar’s Theorem.

Lemma 4.4.4. Let Ψ be a continuous distribution function. Then,

X ∼ Ψ if and only if Ψ(X) ∼ U [0, 1]. (4.10)

Proof. The proof is given in Appendix A.12

The two-dimensional version of Sklar’s Theorem is given by Theorem 4.4.5.

Theorem 4.4.5 (Sklar’s Theorem (2-D version)). Let ΨC be a two-dimensional joint distri-
bution function with marginal distribution functions Ψ1,Ψ2. Then there exists a two-dimensional
copula C such that for all3 x ∈ R̄2,

ΨC(x1, x2) = C(Ψ1(x1),Ψ2(x2)). (4.11)

The bivariate copula C is uniquely determined in (4.11) if the marginals Ψ1,Ψ2 are continuous.
Otherwise, C is only uniquely determined on ran(Ψ1) × ran(Ψ2), where ran(Ψi) is the range
of the function Ψi. Conversely, if C is a bivariate copula and Ψ1,Ψ2 are univariate distribu-
tion functions, then the function ΨC defined in (4.11) is a bivariate distribution function with
marginals Ψ1,Ψ2.

3Here R̄ is the extended real line.
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Proof. The proof is given in Appendix A.13.

So with Sklar’s Theorem it is possible to uniquely define a copula for a given bivariate
distribution function ΨC if the marginals are continuous. That is, we have to know the joint
distribution function of x1, x2 to determine the copula function. However, we are actually
interested in the converse statement of Sklar’s Theorem. Specifically, given a bivariate copula
function and two marginal CDFs we can construct a two-dimensional joint distribution function.
Next, we state the following useful lemma:

Lemma 4.4.6 (Joint PDF of a Bivariate Copula). The joint PDF, ψC , associated with the
joint CDF, ΨC , in (4.11) of a bivariate copula is defined as

ψC(x1, x2) = c(Ψ1(x1),Ψ2(x2))ψ1(x1)ψ2(x2), (4.12)

where

c(u1, u2) =
∂2

∂u1∂u2
C(u1, u2). (4.13)

Proof. The proof is given in Appendix A.14.

There are several famous families of copulas, such as the Gaussian copula, Student-t copula
and the Archimedean copula. As introductory examples we will first consider for the two-
dimensional case the independence copula, CID, the perfect dependence copula, CD, and the
perfect anti-dependence copula CAD. The independence copula is perhaps the simplest example
of a copula. We introduce the uniform random variables U1, U2. The two uniform random
variables underlying the copula are assumed to be independent. The perfect dependence copula
can then be formally defined as follows:

Definition 4.4.7 (Independence Copula). The copula function for the independence copula
is given by,

CID = u1 · u2. (4.14)

To obtain the copula that defines perfect dependence we set U1 = U2. We get:

CD(u1, u2) = P(U1 ≤ u1, U2 ≤ u2)

= P(U1 ≤ u1, U1 ≤ u2)

= P(U1 ≤ min{u1, u2})
= min{u1, u2}.

The perfect dependence copula can be formally defined as follows:

Definition 4.4.8 (Perfect Dependence Copula). The copula function for the perfect depen-
dence copula is given by,

CD(u1, u2) = min{u1, u2}. (4.15)

The perfect anti-dependence copula is obtained by choosing U2 = 1− U1, we obtain:

CAD(u1, u2) = P(U1 ≤ u1, U2 ≤ u2)

= P(U1 ≤ u1, 1− U1 ≤ u2)

= P(1− u2 ≤ U1 ≤ u1)

= (u1 + u2 − 1)+.

So the perfect anti-dependence copula can be formally defined as follows:
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Definition 4.4.9 (Perfect Anti-Dependence Copula). The copula function for the perfect
anti-dependence copula is given by,

CAD(u1, u2) = (u1 + u2 − 1)+. (4.16)

Figure 4.1 shows plots with the three described copulas. From Figure 4.1 it is clear that the
perfect anti-dependence copula bounds the independence copula from below, while the perfect
dependence copula bounds the dependence copula from above. In fact, these results hold for all
copulas, see Theorem 4.4.10.

Theorem 4.4.10 (Fréchet-Hoeffding Bounds). Any valid two-dimensional copula function
C must satisfy the Fréchet-Hoeffding bounds,

CAD(u1, u2) ≤ C(u1, u2) ≤ CD(u1, u2), (4.17)

where CAD(u1, u2) and CD(u1, u2) are given by (4.16) and (4.15).

Proof. The proof can be found in [32].

So, the perfect dependence and anti-dependence copulas can be used to bound any copula. The
perfect anti-dependence and dependence copulas are also referred to as the lower and upper
Fréchet-Hoeffding bounds.

Next, we will consider the copula that we will apply in the pricing of our CMSSOs, the
Gaussian copula. The Gaussian copula is the copula that is most widely known and used in
finance. In particular, we will consider the two-dimensional Gaussian copula, also called the
bivariate Gaussian copula. The bivariate Gaussian copula is constructed from the bivariate
normal distribution via Sklar’s Theorem. But before we present the definition of the bivariate
Gaussian copula, we first give the definition of Pearson’s correlation coefficient4 %:

Definition 4.4.11 (Pearson’s Correlation). Let (X1, X2)
′

be a random vector with both
E[X2

1 ],E[X2
2 ] <∞, then Pearson’s correlation %, also called the linear correlation coefficient, is

defined by

%(X1, X2) ,
Cov(X1, X2)√

Var(X1)Var(X2)
, (4.18)

with
Cov(X1, X2) = E[X1X2]− E[X1]E[X2]. (4.19)

The definition of the bivariate Gaussian copula is as follows:

Definition 4.4.12 (Bivariate Gaussian Copula). A bivariate Gaussian copula is a copula
function of the form

Cgauss(u1, u2; %) = Φ2(Φ−1(u1),Φ−1(u2); %), (4.20)

where Φ2(·) denotes the joint distribution of two-dimensional standard normal marginal distri-
butions, with correlation coefficient % given by

Φ2(h, k; %) =

∫ h

−∞

∫ k

−∞
φ2(x, y; %)dydx, (4.21)

with

φ2(x, y; %) =
1

2π
√

1− %2
exp

(
−x

2 − 2%xy + y2

2(1− %2)

)
, (4.22)

4Pearson’s correlation only accounts for linear correlation and thus does not measure any higher-order depen-
dence.
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Figure 4.1: The perspective plots and contour plots of the CDFs of the perfect anti-dependence,
independence and perfect dependence copulas.
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and Φ(·) is the standard normal distribution function given by

Φ(h) =

∫ h

−∞
φ(x)dx, (4.23)

with

φ(x) =
1√
2π

exp

(
−x

2

2

)
, (4.24)

the standard normal density function.

Figure 4.2 shows 1000 random samples from a Gaussian copula with different values of
correlation coefficient %.
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Figure 4.2: Scatter plot Gaussian copula for different values of correlation, 1000 samples.

The definition of the bivariate Gaussian copula density, the PDF of the Gaussian copula is
as follows:

Definition 4.4.13 (Bivariate Gaussian Copula Density). The bivariate Gaussian copula
density is given by:

cgauss(u1, u2; %) =
1√

1− %2
exp

(
2%Φ−1(u1)Φ−1(u2)− %2(Φ−1(u1)2 + Φ−1(u2)2)

2(1− %2)

)
. (4.25)

In Figure 4.3 the PDF and CDF of the Gaussian Copula are shown for different values of
the correlation coefficient %.
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Figure 4.3: PDF and CDF for Gaussian copula for different values of correlation.

4.5 Pricing Formulas for CMSSOs

In order to evaluate expression (4.2) two different pricing formulas can be used, both having
their pros and cons. When the joint density ψTp(x1, x2) of S1(T ) and S2(T ) is known, VCMSSO(0)
can be represented as an integral:

VCMSSO(0) =

∫ ∞
−∞

∫ ∞
−∞

(x1 − x2 −K)+ψTp(x1, x2)dx1dx2. (4.26)

Now, if the dependence structure between the swap rates is defined by a copula C(u1, u2) then
we can apply Sklar’s Theorem, Theorem 4.4.5, and obtain

VCMSSO(0) =

∫ ∞
−∞

∫ ∞
−∞

(x1 − x2 −K)+c
(

Ψ
Tp
1 (x1),Ψ

Tp
2 (x2)

)
ψ
Tp
1 (x1)ψ

Tp
2 (x2)dx1dx2. (4.27)

We note that for implementation the PDF ψ
Tp
i (·) and the CDF Ψ

Tp
i (·) are necessary. To obtain

the PDF ψ
Tp
i (·) and CDF Ψ

Tp
i (·) under the Tp-forward measure we can make use of Lemma

4.5.1.

Lemma 4.5.1 (PDF/CDF of Tp-Forward Measure). The PDF ψTp(·)5 and CDF ΨTp(·)
5In Lemma 4.5.1 and Lemma 4.5.2 the subscript i was dropped for both ψTp(·) and ΨTp(·) since the i merely

indicates which swap rate is considered.
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can be obtained via

ψTp(x) =
∂2ETp [ (S(T )− x)+| F0]

∂x2
, (4.28)

ΨTp(x) = 1 +
∂ETp [ (S(T )− x)+| F0]

∂x
. (4.29)

Proof. The proof is given in [35, pp. 278-279].

Alternatively ψ
Tp
i (·) and Ψ

Tp
i (·) can be obtained by making use of the annuity mapping

function α(·) and PDF ψA(·) in the annuity measure directly, as is described in Lemma 4.5.2.

Lemma 4.5.2 (Linking PDF/CDF of Tp-Forward and Annuity Measure). Given an
annuity mapping function α(s) defined by (3.27), the PDF ψTp(s) and the CDF ΨTp(s) of the
swap rate in the Tp-forward measure are linked to the PDF ΨA(s) and the CDF ΨA(s) of the
swap rate in the annuity measure by

ψTp(s) =
A(0)

P (0, Tp)
α(s)ψA(s), (4.30)

ΨTp(s) =
A(0)

P (0, Tp)

∫ s

−∞
α(u)ψA(u)du, (4.31)

where density ψA(·) is known from the market prices of swaptions, given by (3.9).

Proof. The proof is given in Appendix A.11.

An important observation to make is that the main downside of (4.27) is that the integrals
have to be truncated to apply a numerical integration scheme.

Besides valuation formula (4.27) another valuation formula can be obtained by applying a

change-of-variables, namely ui = Ψ
Tp
i (xi). This enables us to rewrite (4.27) as follows:

VCMSSO(0) =

∫ 1

0

∫ 1

0

([
Ψ
Tp
2

]−1
(u2)−

[
Ψ
Tp
1

]−1
(u1)−K

)+

c (u1, u2) du1du2. (4.32)

In this case the inverse CDF
[
Ψ
Tp
i

]−1
and the density ψ

Tp
i are necessary for the implementation.

The main advantage of this approach is that the domain of integration is now a bounded region,
[0, 1]× [0, 1], which simplifies the discretization. In addition the marginal PDFs ψ

Tp
i (xi) are not

necessary to evaluate the integral. A downside to this approach is that an efficient algorithm

is needed for calculating the inverses of the marginal CDFs
[
Ψ
Tp
i

]−1
. The CDFs and inverse

CDFs are not available in closed form and must be calculated numerically. For efficiency, these
inverse CDFs should always be pre-computed before the integration is performed.

Although both (4.27) and (4.32) can be used to price CMS derivatives, we are making use
of a 2-dimensional integral in order to do so. This is generally not very efficient. Therefore, our
aim will be to reduce the dimensionality.

4.5.1 Dimensionality Reduction for CMSSOs

To obtain a one-dimensional pricing formula that is based on a copula our starting point will be
expression (4.26). We will reduce the dimensionality by making use of partial integration. We
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can rewrite (4.26) as follows,

VCMSSO(0) =

∫ ∞
−∞

x1

(∫ x1−K

−∞
ψTp(x1, x2)dx2

)
dx1

−
∫ ∞
−∞

(x2 +K)

(∫ ∞
x2+K

ψTp(x1, x2)dx1

)
dx2. (4.33)

By definition,

ψTp(x1, x2) =
∂2

∂x1∂x2
ΨTp(x1, x2). (4.34)

Substituting (4.34) in (4.33) and integrating, we obtain,

VCMSSO(0) =

∫ ∞
−∞

x1

(
∂

∂x1
ΨTp(x1, x1 −K)− ∂

∂x1
ΨTp(x1,−∞)

)
dx1

−
∫ ∞
−∞

(x2 +K)

(
∂

∂x2
ΨTp(∞, x2)− ∂

∂x2
ΨTp(x2 +K,x2)

)
dx2. (4.35)

We have that,

∂

∂x1
ΨTp(x1,−∞) = 0,

∂

∂x2
ΨTp(∞, x2) = ψ

Tp
2 (x2).

Therefore,

VCMSSO(0) =

∫ ∞
−∞

x1
∂

∂x1
ΨTp(x1, x1 −K)dx1

−
∫ ∞
−∞

(x2 +K)

(
ψ
Tp
2 (x2)− ∂

∂x2
ΨTp(x2 +K,x2)

)
dx2. (4.36)

We can rewrite (4.36) and obtain,

VCMSSO(0) =

∫ ∞
−∞

x1
∂

∂x1
ΨTp(x1, x1 −K)dx1

+

∫ ∞
−∞

(x2 +K)
∂

∂x2
ΨTp(x2 +K,x2)dx2 −

∫ ∞
−∞

(x2 +K)ψ
Tp
2 (x2)dx2

=

∫ ∞
−∞

x1
∂

∂x1
ΨTp(x1, x1 −K)dx1 +

∫ ∞
−∞

(x2 +K)
∂

∂x2
ΨTp(x2 +K,x2)

−
∫ ∞
−∞

xψ
Tp
2 (x)dx−K

∫ ∞
−∞

ψ
Tp
2 (x)dx. (4.37)

By definition of the PDF and expectation, we have,

VCMSSO(0) =

∫ ∞
−∞

x1
∂

∂x1
ΨTp(x1, x1 −K)dx1 +

∫ ∞
−∞

(x2 +K)
∂

∂x2
ΨTp(x2 +K,x2)

− ETp [S2(T )| F0]−K. (4.38)

Next, we define γ(x,K) as follows,

γ(x,K) =
d

dx
ΨTp(x, x−K). (4.39)
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So we can write

γ(x,K) =
∂

∂x1
ΨTp(x, x−K) +

∂

∂x2
ΨTp(x, x−K), (4.40)

and ∫ ∞
−∞

xγ(x,K)dx =

∫ ∞
−∞

x
∂

∂x1
ΨTp(x, x−K)dx+

∫ ∞
−∞

x
∂

∂x2
ΨTp(x, x−K)dx. (4.41)

Substituting x = x1 in the first integral and x = x2 +K in the second integral, we get,∫ ∞
−∞

xγ(x,K)dx =

∫ ∞
−∞

x1
∂

∂x1
ΨTp(x1, x1 −K)dx1 +

∫ ∞
−∞

(x2 +K)
∂

∂x2
ΨTp(x2 +K,x2)dx2.

(4.42)
Thus,

VCMSSO(0) =

∫ ∞
−∞

xγ(x,K)dx− ETp [S2(T )| F0]−K. (4.43)

Remember that we wish to obtain a one-dimensional pricing formula that is based on a copula.
We can make use of integration by parts, so that we can write the integral of γ(x,K) as follows,∫ ∞

−∞
xγ(x,K)dx =

∫ ∞
−∞

x

(
d

dx
ΨTp(x, x−K)

)
dx

=

∫ 0

−∞
xdΨTp(x, x−K)−

∫ ∞
0

xd(1−ΨTp(x, x−K))

= −
∫ 0

−∞
ΨTp(x, x−K)dx+

∫ ∞
0

(1−ΨTp(x, x−K))dx

=

∫ ∞
−∞

(
1{x>0} −ΨTp(x, x−K)

)
dx. (4.44)

Substituting (4.44) in (4.43) we obtain,

VCMSSO(0) =

∫ ∞
−∞

(
1{x>0} −ΨTp(x, x−K)

)
dx− ETp [S2(T )| F0]−K.

The final step we have to take to obtain our desired result is an application of Sklar’s Theorem,
Theorem 4.4.5. From Sklar’s Theorem it follows that,

Ψ
Tp
C (x, x−K) = C(Ψ

Tp
1 (x),Ψ

Tp
2 (x−K)). (4.45)

Hence,

VCMSSO(0) =

∫ ∞
−∞

(
1{x>0} − C(Ψ

Tp
1 (x),Ψ

Tp
2 (x−K))

)
dx− ETp [S2(T )| F0]−K.

The obtained result is summarized by Lemma 4.5.3.

Lemma 4.5.3 (CMSSO 1-D Pricing Formula). Assume that CMS rates S1(T ), S2(T ) have

marginal CDFs Ψ
Tp
i under the Tp-forward measure and marginal PDFs ψ

Tp
i , i = 1, 2 that can

be coupled with a copula C. The undiscounted price of a CMS spread caplet with maturity T ,
payment date Tp and strike K is then given by

VCMSSO(0) =

∫ ∞
−∞

(
1{x>0} − C(Ψ

Tp
1 (x),Ψ

Tp
2 (x−K))

)
dx− ETp [S2(T )| F0]−K. (4.46)



CHAPTER 4. COPULA APPROACH FOR PRICING CMS SPREAD DERIVATIVES 56

The price of the CMSSO can now be calculated relatively easy with expression (4.46). The
term ETp [S2(T )| F0] can be calculated directly with a chosen TSR model. For the term that

remains we have to select a copula and the CDFs Ψ
Tp
i can be calculated making use of Lemma

4.5.1 or Lemma 4.5.2.

Remark 4.5.4. Two important observations for Lemma 4.46 are:

• The one-dimensional pricing formula for the CMSSO given by (4.46) is valid for general
copulas.

• The downside of choosing copulas other than the Gaussian copula is that extra parameters
need to be specified, which are difficult or impossible to calibrate.

4.5.2 Monte Carlo Method for CMSSOs

Another attractive feature of the Gaussian copula is that the value of the CMSSO given by (4.2)
can be calculated relatively easy by a Monte Carlo (MC) method. In case of a Gaussian copula
with correlation matrix R given by

R =

(
1 %
% 1

)
, (4.47)

the random variable Si can be specified by:

Si =
[
Ψ
Tp
i

]−1
(Φ(Zi)), (4.48)

where Z1 and Z2 are standard normal random variables with correlation %. We can calculate
the value of the CMSSO as follows:

VCMSSO(0) ≈ 1

N

N∑
n=1

([
Ψ
Tp
1

]−1 (
Φ(Zn,1)

)
−
[
Ψ
Tp
2

]−1
(Φ(Zn,2))−K

)+

, (4.49)

where Z1, . . . ,ZN , with Zn = (Zn,1, Zn,2), are N independent samples from a two-dimensional
Gaussian distribution.

4.6 Numerical Experiments

In this section we will perform numerical experiments to get better insight in the copula approach
for pricing CMS spread options. Additionally, more insight is gained in the respective TSR
models. The same market data is used as in Chapter 3. The market data for the respective
swap rates for both 2007 and 2013 can be found in Appendix B. The correlation parameter %,
which specifies the correlation of the two swap rates is given to be % = 0.8. We will calculate
the price of a CMSSO using pricing formula (4.46). As copula the Gaussian copula is chosen,
furthermore all four different TSR models will be considered. As reference we choose the MC
method given by (4.49), where in this case the chosen TSR model is the swap-yield TSR model.
The price that is calculated with the reference model will be denoted by Vref. The difference
between the price computed with pricing formula (4.46) and the reference will be denoted by ς,
where ς is defined as:

ς = VCMSSO(0)− Vref.

Besides looking at the difference in prices we will also study the timing, volatility and correlation
effects.
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4.6.1 CMSSO Price: 2007 vs 2013

The first numerical experiment we will perform is the pricing of a CMSSO on a 10Y-2Y spread
with 12M frequency for the market data of 2007 and 2013. The start date is taken to be 1 year
from today. The computed CMSSO prices and the difference in prices, ς, for both 2007 and
2013 are given in Figure 4.4.
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Figure 4.4: Prices of a CMSSO on 10Y-2Y spread with 12M frequency for 2007 and 2013 using
the copula approach. Different TSR models in combination with a Gaussian copula are used. As
reference the MC method is used with the swap-yield TSR model. The number of independent
samples for the MC method is N = 50000.

From Figure 4.4 it is clear that for both 2007 and 2013 the CMSSO price computed using
pricing formula (4.46) is very close to the chosen reference price. Furthermore, the CMSSO
price computed with the different TSR models only differs slightly. The price differences are
generally below 1bp. The results of the swap-yield TSR model, the mean reversion linear TSR
model with κ = 0 and the log-linear TSR model are almost identical for the market data from
2007 and 2013. The results of the linear interpolation TSR model differ the most from the
reference model, but this can be attributed to the fact that the swap-yield TSR model is chosen
as the reference TSR model in the MC method. Finally, we observe that the differences for 2013
are bigger than the differences for 2007. We also observed this behaviour when we priced CMS
options, see Chapter 3. In Chapter 3 we also mentioned that the bigger differences we observe for
2013 probably stem from the fact that the volatilities are more extreme for 2013 when compared
to 2007. So, also in the case of pricing CMSSOs it is nowadays even more important to choose
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the correct TSR model.

4.6.2 Investigate the Timing Effect

Next, we wish to investigate the timing effect. We proceed in the same manner as was done in
Section 3.6 and consider start dates up to 10 years from today. The results for start date T0 = 1
were shown in Figure 4.4. We present the results for start date T0 = 5 for 2007 and 2013 in
Figure 4.5.
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Figure 4.5: Prices of a CMSSO on 10Y-2Y spread with 12M frequency for 2007 and 2013 using
the copula approach. Different TSR models in combination with a Gaussian copula are used. As
reference the MC method is used with the swap-yield TSR model. The number of independent
samples for the MC method is N = 100000. The start date is T0 = 5.

Looking at Figure 4.5 we can see that the price differences for 2007 are generally smaller
than 1bp and for 2013 they are smaller than 2bps. So for a start date 5 years from today the
copula approach seems to give an accurate approximation of the CMSSO price.

Comparing the results presented in Figure 4.4 with the results presented in Figure 4.5 we
see that as the start date has moved further into the future the CMSSO price computed with
the different TSR models will differ more.

We can also make some other interesting observations. For start date T0 = 1 the results of
the swap-yield TSR model, the mean reversion linear TSR model with κ = 0 and the log-linear
TSR model are almost identical, which is not the case for start date T0 = 5. It is also interesting
to note that for 2013 the prices computed using the mean reversion linear TSR model with
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κ = 0.1 are closer to the reference prices than when κ = 0. This is opposite from what we have
seen so far. So obtaining a proper value for the mean reversion parameter is important.

Next, we consider a start date 10 years from today. In Figure 4.6 again the CMSSO price
and ς are given for both 2007 and 2013.

−2 −1 0 1 2
0

50

100

150

200

250

CMSSO price − Gaussian copula − T
0
=10 − 2007

K [%]

V
C

M
S

S
O

(0
) 

[b
ps

]

 

 

linear mrev = 0
linear mrev = 0.1
swap−yield
linear interpol
log−linear interpol
ref

−2 −1 0 1 2
−1

0

1

2

3

4

5

6

Price difference − start date T
0
=10 − 2007

K [%]
ς 

[b
ps

]

 

 

linear mrev = 0
linear mrev = 0.1
swap−yield
linear interpol
log−linear interpol

−2 −1 0 1 2
50

100

150

200

250

300

CMSSO price − Gaussian copula − T
0
=10 − 2013

K [%]

V
C

M
S

S
O

(0
) 

[b
ps

]

 

 

linear mrev = 0
linear mrev = 0.1
swap−yield
linear interpol
log−linear interpol
ref

−2 −1 0 1 2
−15

−10

−5

0

5

10

15

20

Price difference − start date T
0
=10 − 2013

K [%]

ς 
[b

ps
]

 

 

linear mrev = 0
linear mrev = 0.1
swap−yield
linear interpol
log−linear interpol

Figure 4.6: Prices of a CMSSO on 10Y-2Y spread with 12M frequency for 2007 and 2013 using
the copula approach. Different TSR models in combination with a Gaussian copula are used. As
reference the MC method is used with the swap-yield TSR model. The number of independent
samples for the MC method is N = 200000. The start date is T0 = 10.

Figure 4.6 shows that the price differences for 2007 are generally smaller than 6bps and for
2013 they are smaller than 11bp. These are satisfactory results considering the start date is
10 years from today. In fact the differences in price using the one-dimensional pricing formula
and the MC method can be explained mostly by numerical issues. To obtain accurate results,
especially for the market data from 2013, the number of MC paths had to be increased. Fur-
thermore, the integration bounds needed in valuation formula (4.5.3) had to be set to larger
values as the start date increased. For the three start dates we considered, the behavior of the
two new TSR models, the linear interpolation and log-linear interpolation TSR models, is very
satisfactory.

We have seen that the further the start date is moved into the future, the bigger the dif-
ferences are between the computed prices of the CMS spread option with the respective TSR
models, indicating that there is a timing effect.
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4.6.3 Investigate the Volatility and Correlation Effect

To investigate the volatility and correlation effects, we are again going to price a CMSSO on
10Y-2Y spread. Part of the data from 2007 is used when the start date is 1 year from today,
only this time we assume a flat volatility. We will consider combination of both a low and high
constant volatility and a low and high correlation. The results are given in Figure 4.7.
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Figure 4.7: Prices of a CMSSO on 10Y-2Y spread with 12M frequency using the copula approach.
Different TSR models and a Gaussian copula are used. The volatility is assumed to be flat. Both
a low, σ1

low = σ2
low = 0.1, and high, σ1

high = σ2
high = 0.9, volatility is considered. Additionally, a

low, %low = 0.01, and high, %high = 0.99, correlation is considered.

Figure 4.7 shows that as the volatility increases the CMSSO price increases. Furthermore,
for higher volatilities the CMSSO price computed with the different TSR models will differ more.
Note that we already observed the same behaviour when we priced CMS options, Chapter 3.

Another important observation from Figure 4.7 is that the correlation parameter, %, has
influence on the curvature. The higher the value of the correlation parameter is, the more
convex the plot of the computed CMSSO price becomes. Therefore, we can conclude that there
is indeed a volatility and a correlation effect.

4.7 Conclusions

A CMS spread derivative is a financial instrument whose payoff is a function of the spread
between two swap rates of different maturity. The difficulty in pricing CMS spread derivatives
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arises from the fact that unlike a single interest rate, a CMS spread rate can achieve both
positive and negative values. The yield curve can move in a way that any part can be either flat,
upward or downward sloping. It is this feature that adds an extra complication in the pricing
of derivative instruments for which a CMS spread rate is the underlying.

An important widely used type of CMS spread derivative are CMS spread options. Banks
typically use CMS spread options to hedge the CMS spread swaps that they have entered into
with customers. The notional values for these kind of derivatives are usually quite large. So
even small differences can lead to substantial losses. Therefore, the pricing of these products
has to be efficient and accurate.

Most research regarding the valuation of CMS spread options involves the Libor or Swap
Market Models. A downside of this approach is that it is rather time consuming and it has
limited analytical tractability when applied to CMS spread derivatives. Our aim was to have a
fast, analytically tractable and flexible (two-rate) model that specifies the joint dynamics of only
the two underlying swap rates. In order to obtain our desired model we made use of the copula
approach. We determined the marginal distributions of the two swap rates under the forward
measure and the joint distribution can then be obtained by linking the marginal distributions
using a copula function.

Different copulas were discussed, but our main focus was on the Gaussian copula, which we
used for the pricing of CMS spread options. Furthermore, Sklar’s Theorem was discussed which
is a key component in the copula approach.

Using the copula approach a two-dimensional pricing formula can be obtained for the pricing
of CMS spread options. Using integration by parts we derived a one-dimensional pricing formula
from the two-dimensional pricing formula. A copula and a TSR model have to be selected in
order to make use of this one-dimensional pricing formula.

We also presented a Monte Carlo method which can be used to price CMS spread options,
in case a Gaussian copula is assumed.

Many numerical experiments were performed to study the performance of the copula ap-
proach and the respective TSR models. Market data from 2007 and 2013 was considered. In
general, the results for both sets of market data were similar. The differences in prices using
the one-dimensional pricing formula and the MC method can be explained mostly by numerical
issues, i.e. large number of MC paths, chosen values for the integration bounds.

An important observation was that the differences for the year 2013 are bigger than for the
year 2007, which is probably due to the fact that the volatilities in 2013 were more extreme.
We can conclude that nowadays correct valuation of CMS spread options is of even greater
importance.

Furthermore, we have seen that depending on the chosen TSR model the computed prices
of the CMS spread option can differ slightly. We also showed that there are timing, volatility
and correlation effects. The further the start date is moved into the future, the bigger the
differences will be between the computed prices of the CMS spread option with the respective
TSR models. The volatility effect follows from the fact that the higher the volatility is, the
bigger the differences will be between the computed prices of the CMS spread option with the
respective TSR models. The correlation parameter has influence on the curvature. The higher
the value of the correlation parameter is, the more convex the plot of the computed CMS spread
option price becomes. It was shown that the behavior of the two new TSR models, the linear
interpolation and log-linear interpolation TSR model, is highly satisfactory.

Thus with the copula approach we can efficiently and accurately price CMS spread options.



Chapter 5

DD SABR Model for Pricing CMS
Spread Derivatives

5.1 Introduction

Stochastic volatility models are often the preferred choice for pricing exotic derivatives. In this
chapter our focus is on the pricing of CMS spread options using a stochastic volatility model.
A CMS spread option is a European multi-rate option whose payoff is a function of the spread
between two swap rates of different maturities, see Chapter 4. The distribution of each rate
can be described by a stochastic volatility model. This enables us to define co-dependence
between these rates by techniques other than the copula approach. Actually, if each swap rate
involved in the payoff of a given multi-rate derivative has its own asset process and its own
stochastic variance process, then the co-dependence structure between rates can be controlled
by correlating the Brownian motions that drive the asset and stochastic variance process.

Remember that our aim is to obtain a model which can be used to efficiently and accurately
price CMS spread options. We start with a two-dimensional version of the SABR model that
can be used to price these derivatives. However, to compute the CMS spread option prices with
this model we need to apply a MC simulation and this is not very efficient. Using the Markovian
projection method we can obtain a model by which we can efficiently and accurately price CMS
spread options. This chapter is organized as follows.

In Section 5.2 a two-dimensional version of the SABR model is introduced. In order to use
the two-dimensional SABR model for CMS spread options pricing, CMS-adjusted forward rates
and the associated adjusted SABR parameters are defined. Section 5.3 presents the Markovian
projection method, which can be used to project a given model onto a simpler model. In Section
5.4 we present the displaced diffusion SABR model, by which we calculate the prices of CMS
spread options efficiently. In particular, we show in detail how to project the two-dimensional
SABR model onto the displaced diffusion SABR model for the spread. In Section 5.5 several
numerical experiments are performed. The results of the copula approach and the displaced
diffusion SABR model are compared. Finally, Section 5.6 concludes.

This chapter is based on [26, pp. 159-171] and [37, pp. 1129-1156].

5.2 Two-dimensional SABR Model

In this section we discuss a two-dimensional version of the SABR model, which can be used for
the pricing of CMS spread options. A multi-dimensional version of the SABR model is described
in [26, pp. 141-142].

62
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In Chapter 3 we saw that for the pricing of CMS derivatives it is necessary to compute
the expectation of the future CMS rates under the forward measure that is associated with the
payment date. However, the natural martingale measure of the CMS rate (swap rate) is the
annuity measure. Therefore, we cannot model them as driftless processes under the Tp-forward
measure QTp . Assuming the drift term is given by µi we have:

dSi(t) = µidt+ αi(t)Si(t)
βidW

Tp
i (t),

dαi(t) = νiαi(t)dZ
Tp
i (t),

Si(0) = s0
i ,

αi(0) = α0
i ,

〈dW Tp
i (t), dW

Tp
j (t)〉 = ρijdt,

〈dW Tp
i (t), dZ

Tp
j (t)〉 = γijdt,

〈dZTpi (t), dZ
Tp
j (t)〉 = ξijdt, i, j = 1, 2. (5.1)

Here ρij is the correlation between the Brownian motions driving the asset price processes, γij is
the so called cross-skew and ξij is the so called de-correlation between the stochastic volatilities.

In order to avoid dealing with the drift terms in (5.1) we will consider an approach that can
be seen as a combination of the approaches described in [26, pp. 159-171] and [37, pp. 804-805].
Although, some alterations had to be made to make it applicable for our problem.

We consider so-called CMS-adjusted forward rates instead of the actual CMS rates (swap
rates). Drifts of the swap rates under the forward measure are rather complicated, see e.g. [9],
while CMS-adjusted forward rates are martingales under the Tp-forward measure. The CMS-
adjusted forward rate is formally defined as follows:

S̃i(t) , ETp [Si(T0)| Ft]. (5.2)

From (5.2) it follows that at expiry T0 we have:

S̃i(T0) = ETp [Si(T0)| FT0 ] = Si(T0). (5.3)

In Chapter 4 we have seen that the undiscounted value of a CMS spread option is given by:

VCMSSO(0) = ETp
[
(S1(T0)− S2(T0)−K)+

∣∣F0

]
. (5.4)

Substituting (5.3) in (5.4) we obtain the following valuation formula for the CMS spread option:

VCMSSO(0) = ETp
[(
S̃1(T0)− S̃2(T0)−K

)+
∣∣∣∣F0

]
. (5.5)

We can now define a two-dimensional SABR (2D SABR) model that can be used for the pricing
of CMSSOs.

Definition 5.2.1 (2D SABR Model for CMS-adjusted Forward Rates). The stochastic
dynamics for CMS-adjusted forward rate S̃i and associated stochastic volatility α̃i, where i = 1, 2
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are given by:

dS̃i(t) = α̃i(t)S̃i(t)
β̃idW

Tp
i (t),

dα̃i(t) = ν̃iα̃i(t)dZ
Tp
i (t),

S̃i(0) = s̃0
i ,

α̃i(0) = α̃0
i ,

〈dW Tp
i (t), dW

Tp
j (t)〉 = ρ̃ijdt,

〈dW Tp
i (t), dZ

Tp
j (t)〉 = γ̃ijdt,

〈dZTpi (t), dZ
Tp
j (t)〉 = ξ̃ijdt, i, j = 1, 2. (5.6)

where ρ̃ij is the correlation between the Brownian motions driving the CMS-adjusted forward
rates, γ̃ij is the cross-skew and ξ̃ij is the de-correlation between the stochastic volatilities.

Since we are now using CMS-adjusted forward rates we also need to use adjusted SABR
parameters. The quadruple of Tp-measure adjusted SABR parameters associated with CMS-
adjusted forward rate S̃i(T0) is given by:

(α̃0
i , β̃i, γ̃ii, ν̃i). (5.7)

The CMS-adjusted rate S̃i(t) can be calculated using the replication method described in Lemma
3.3.1 with a chosen TSR model1. We also need a method to calibrate the adjusted SABR
parameters. In Chapter 3 we have seen that the value of a CMS caplet with underlying swap
rate Si(T0) is given by:

VCMScaplet(0) = ETp
[
(Si(T0)−K)+

∣∣F0

]
. (5.8)

We can rewrite (5.8) in the following form for S̃i(T0),

VCMScaplet(0) = ETp
[(
S̃i(T0)−K

)+
∣∣∣∣F0

]
. (5.9)

CMS caplets are simply European call options on S̃i(T0). CMS-adjusted forward rates are defined
such that each CMS-adjusted rate follows SABR dynamics. Hence, we can obtain (α̃0

i , β̃i, γ̃ii, ν̃i)
by calibrating the SABR model as described in Chapter 2 to CMS caplets prices. The CMS
caplet prices are computed using the replication method described in Lemma 3.3.1 with a chosen
TSR model. On the other hand parameters γ̃12, γ̃21 and ξ̃ cannot be calibrated using the CMS
caplet prices. In order to calibrate these parameters additional market date has to be used.
Unfortunately, this type of market data is usually not available.

The correlation matrix of the 2D SABR model, denoted by R, has the form

R =


1 RWW

12 RWZ
11 RWZ

12

RWW
12 1 RWZ

21 RWZ
22

RWZ
11 RWZ

21 1 RZZ12

RWZ
12 RWZ

22 RZZ12 1

 =


1 ρ̃12 γ̃11 γ̃12

ρ̃21 1 γ̃21 γ̃22

γ̃11 γ̃21 1 ξ̃12

γ̃12 γ̃22 ξ̃21 1

 , (5.10)

where ρ̃ = ρ̃12 = ρ̃21, ξ̃ = ξ̃12 = ξ̃21. Note that unlike in the copula approach, we now con-
sider the full correlation structure including cross-skew (parameters: γ̃12, γ̃21) and de-correlation
(parameter ξ̃). We can write the system of SDEs in (5.6) in matrix-vector notation:

dX(t) = RX(t)dY(t). (5.11)

1We make use of the swap-yield TSR model, since it is market standard.
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We cannot efficiently price CMS spread option prices with the 2D SABR model, because a MC
simulation has to applied. To apply a MC simulation we have to express the system of SDEs in
uncorrelated Brownian motions. To do so we make use of the Cholesky decomposition. We will
give the definition of the Cholesky decomposition, Definition 5.2.2, and an algorithm that can
be used to obtain a Cholesky decomposition for a given matrix, Lemma 5.2.3.

Definition 5.2.2 (Cholesky Decomposition). The decomposition

M = CCT (5.12)

of any semi positive definite matrix M as a product of a nonsingular lower triangular matrix
and its transpose is called a Cholesky decomposition.

Lemma 5.2.3 (Algorithm Cholesky Decomposition). A Cholesky decomposition for matrix
M can be obtained as follows:

1. Initialize C1 =
√
m11.

2. For k = 2, . . . , n

(a) Solve Ck−1ck = mk for ck (Ck−1 is k − 1× k − 1: for k = 2 this is a 1× 1 or scalar
equation);

(b) ckk =
√
mkk − cTk ck;

(c) Ck =

(
Ck−1 0
cTk ckk

)
.

Notation:

• Ck−1: the k − 1× k − 1 upper left corner of C;

• mk: the first k − 1 entries in column k of M ;

• ck: the first k − 1 entries in column k of CT ;

• mkk and ckk: the entries of M and C.

Using a Cholesky decomposition our multi-factor system of SDEs can be expressed as:

dX(t) = RX(t)CdỸ(t), (5.13)

where Ỹ(t) is a vector of independent Brownian motions, and C is the lower triangular Cholesky
matrix. We will approximate (5.6) by a first-order Taylor approximation scheme, better known
as the Euler scheme. It is a known fact that approximating SABR dynamics with an Euler
scheme introduces some bias. More efficient simulation schemes for the SABR model have been
developed, [12]. However, applying them to the 2D SABR model is quite involved and can be
considered a research topic in itself. Therefore, we will only consider an Euler scheme. Generally,
to obtain satisfactory results by a MC simulation a small stepsize and a large number of paths
have to be chosen. Next, we will discuss a relatively simple method that reduces the number
of paths needed in the MC simulation to obtain accurate results. The method we are referring
to is called antithetic sampling, which is based on the fact that if we have a random variable Z
that has a standard normal distribution, Z ∼ N(0, 1), then also −Z ∼ N(0, 1). Suppose that V̂
is the approximation obtained from MC, and Ṽ is the one obtained using −Z. Now by taking
the average

V =
1

2

(
V̂ + Ṽ

)
, (5.14)
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we obtain a new approximation. Since V̂ and Ṽ are both random variables we aim at:

Var(V ) < Var(V̂ ). (5.15)

We have:

Var(V ) =
1

4
Var

(
V̂ + Ṽ

)
=

1

4
Var

(
V̂
)

+
1

4
Var

(
Ṽ
)

+
1

2
Cov(V̂ Ṽ )

So it is clear that,

Var(V ) ≤ 1

2
Var

(
V̂ + Ṽ

)
. (5.16)

If desired other MC methods besides antithetic sampling can be considered, such as variate
recycling, control variates, stratified sampling and importance sampling.

Our aim is to obtain a model, which can be used to calculate spread option prices efficiently.
As mentioned earlier this cannot be done with the 2D SABR model. However, using the Marko-
vian projection method we can obtain a model that enables us to calculate spread option prices
efficiently and even analytically. With the Markovian projection method we can project the 2D
SABR model onto a so-called displaced diffusion SABR model.

5.3 Markovian Projection

In this section we discuss the Markovian projection method, [37, pp. 1129-1156]. The method
is based on a fundamental result, [18]. In [34] the fundamental result is presented in a form that
is convenient for our problem. We also present this form in Theorem 5.3.1.

Theorem 5.3.1 (Gyöngy). Consider the stochastic process defined by

dX(t) = µ(t)dt+ σ(t)dW (t), (5.17)

where µ(·) and σ(·) are adapted stochastic processes such that (5.17) admits a unique solution.
Define a(t, x) and b(t, x) by:

a(t, x) , E[µ(t)|X(t) = x], (5.18)

b2(t, x) , E[σ2(t)
∣∣X(t) = x]. (5.19)

Then the SDE
dY (t) = a(t, Y (t))dt+ b(t, Y (t))dW (t), (5.20)

with Y (0) = X(0) admits a weak solution Y (t) that has the same one-dimensional distribution
as X(t).

Proof. The proof is given in Appendix A.15.

The process Y (·) follows a so called local volatility process. The function b(t, x) is often
referred to as Dupire’s local volatility. Since, X(·) and Y (·) have the same one-dimensional
distributions, the prices of European options on X(·) and Y (·) for all strikes K and maturities
T will be the same. Thus, for the purpose of European option valuation and/or calibration
to European options, a very complicated process X(·) can be replaced by a simpler Markov
process2 Y (·), which is called the Markovian projection of X(·). From Theorem 5.3.1 we obtain
the following useful result:

2The stochastic differential equations that are generally considered in financial modeling are already of the
Markovian type.
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Lemma 5.3.2 (Connection Processes and Dupire’s Local Volatility). If two processes
have the same Dupire’s local volatility, the European option prices on both are identical for all
strikes and expiries.

In fact Theorem 5.3.1 and Lemma 5.3.2 provide us with the means to approximate a given
model by essentially any model of choice.

To get more insight in the Markovion projection method we will look at an example.

Example 5.3.3 (Markovian Projection Application). Consider a stochastic volatility model:

dX(t) = b1(t,X(t))
√
z1(t)dW (t), (5.21)

where z1(t) is some variance process. Suppose we would like to match the European option prices
on X(·) for all expiries and strikes in a model of the form

dY (t) = b2(t, Y (t))
√
z2(t)dW (t), (5.22)

where z2(t) is a different, and potentially simpler, variance process. Then Theorem 5.3.1 and
Lemma 5.3.2 imply that b2(t, x) must be chosen such that

E[z2(t)|X2(t) = x] = E[z1(t)|X1(t) = x]. (5.23)

Rewriting gives us:

b2(t, x) = b1(t, x)
E[z1(t)|X1(t) = x]

E[z2(t)|X2(t) = x]
. (5.24)

The coefficients for the SDE of the Markovian projection are obtained by calculating conditional
expected values. From (5.24) it is clear that when applying the Markovian projection method we
are limited by the accuracy of the approximations of the conditional expectations. The fact that
we calculate the ratio of two expected values, enables us to minimize the error. Note, that even
if each individual approximation is inaccurate, they are inaccurate ”in the same way” and the
overall error diminishes when the ratio is formed. So, in order to maximize the error calculation
effect, it is obviously beneficial to choose z2(t) as close to z1(t) as possible, while still retaining
analytical tractability.

From Example 5.3.3 it is clear that the main difficulty when applying Markovian projection
is calculating conditional expectations. Generally, Gaussian approximation is used to obtain
these conditional expected values and this is also what we will use.

Lemma 5.3.4 (Conditioning Formula for Gaussian variables). Let X,Y be two normally
distributed random variables, X ∼ N(µX , σ

2
X) and Y ∼ N(µY , σ

2
Y ). Then the conditional

formula is given by:

E[Y |X = x] = E[Y ] +
Cov(Y,X)

Var(X)
(x− E[X]) . (5.25)

Formula (5.25) can be used as a base for general Gaussian approximation.

5.4 Displaced Diffusion SABR Model

The spread between the CMS-adjusted rates (S̃1(t) and S̃2(t)) is defined by3:

S(t) = S1(t)− S2(t). (5.26)

Our aim is to project the 2D SABR model (in the sense of the spread SDE) onto a simpler one-
dimensional model. The one-dimensional model we consider is the displaced diffusion SABR
(DD SABR) model, which is formally defined as follows:

3For notational convenience we drop the tildes from hereon out.
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Definition 5.4.1 (DD SABR Model). A displaced diffusion SABR (DD SABR) model is
given by the following set of SDEs:

dS(t) = u(t)F (S(t))dW (t),

du(t) = ηu(t)dZ(t),

〈dW (t), dZ(t)〉 = γdt,

with F (S(t)) = p+ q(S(t)− S(0)),

p = F (S(0)),

q = F ′(S(0)), (5.27)

where γ denotes the correlation between the forward price and the volatility process.

A displaced model is a reasonable choice, since in case of spread options negative realizations
of the spread must have positive probabilities.

The result of projecting the 2D SABR model onto the DD SABR model is presented in
Theorem 5.4.2.

Theorem 5.4.2 (Approximated Spread Dynamics). The dynamics associated with the
spread

dS(t) = dS1(t)− dS2(t), (5.28)

where S1, S2 are given by (5.6) can be approximated by the DD SABR model given by (5.27).
Here

p =
√
p2

1 + p2
2 − 2p1p2ρ,

q =
p1q1ρ

2
1 − p2q2ρ

2
2

p
,

γ =
1

ηp2

(
p2

1ν1ρ1γ11 + p2
2ν2ρ2γ22 − p1p2ν2ρ2γ21 − p1p2ν1ρ1γ12

)
,

η =
1

p

√
(p1ν1ρ1)2 + (p2ν2ρ2)2 − 2ξ12p1ν1ρ1p2ν2ρ2,

p1 = α1(0)S1(0)β1 ; p2 = α2(0)S2(0)β2 ,

q1 = α1(0)β1S1(0)β1−1; q2 = α2(0)β2S2(0)β2−1,

ρ1 =
p1 − p2ρ

p
; ρ2 =

p1ρ− p2

p
,

S(0) = S1(0)− S2(0),

u(0) = 1. (5.29)

We will thoroughly describe each step that is needed to obtain the approximation. The first
step is to ensure the starting values of the process are preserved. From the 2D SABR model
given by (5.6) we have 4:

dSi(t) = αi(t)Si(t)
βidWi(t), (5.30)

with i = 1, 2. In order to preserve the starting values of the process we have to make use of the
following rescaling:

ui(t) =
αi(t)

αi(0)
. (5.31)

4From hereon out for notational convenience we drop the superscript Tp in dWTp .
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Substituting (5.31) in (5.30) we obtain:

dSi(t) = ui(t)ϕ(Si(t))dWi(t), (5.32)

where
ϕ(Si(t)) = αi(0)Si(t)

βi . (5.33)

For the dynamics of the spread we have:

dS(t) = dS1(t)− dS2(t),

= u1(t)ϕ(S1(t))dW1(t)− u2(t)ϕ(S2(t))dW2(t). (5.34)

Next, we define

σ2(t) , u2
1(t)ϕ2(S1(t)) + u2

2(t)ϕ2(S2(t))− 2ρu1(t)u2(t)ϕ(S1(t))ϕ(S2(t)), (5.35)

dW (t) ,
1

σ(t)
(u1(t)ϕ(S1(t))dW1(t)− u2(t)ϕ(S2(t))dW2(t)) . (5.36)

Then, we can rewrite (5.34) as follows:

dS(t) = σ(t)dW (t). (5.37)

To apply the result of Gyöngy we need to compute the variance of the displaced diffusion SABR
model. For notational convenience we define, pi and qi as follows:

pi , ϕ(Si(0)) = αi(0)Si(0)βi , (5.38)

qi , ϕ′(Si(0)) = αi(0)βiSi(0)βi−1. (5.39)

Using (5.38) and (5.39) we obtain:

u2(t) =
1

p2

(
p2

1u
2
1(t) + p2

2u
2
2(t)− 2ρp1p2u1(t)u2(t)

)
, (5.40)

where

p = σ(0) =
√
p2

1 + p2
2 − 2ρp1p2. (5.41)

The division by p2 = σ2(0) is necessary to preserve the scaling u(0) = 1.
Now, we can apply the result of Gyöngy, Theorem 5.3.1 and Lemma 5.3.2. We set

b(t, x) , E[σ2(t)
∣∣S(t) = x]. (5.42)

We also have
b(t, x) = E[u2(t)

∣∣S(t) = x] · F 2(x). (5.43)

Therefore,

F 2(x) =
E[σ2(t)

∣∣S(t) = x]

E[u2(t)|S(t) = x]
. (5.44)

Next, we wish to compute the two conditional expectations in (5.44). We notice that σ2(t) and
u(t) are linear combinations of the form:

fij(t) = f(Si(t), Sj(t), ui(t), uj(t)), (5.45)

gij(t) = g(ui(t), uj(t)), (5.46)
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where

f(Si(t), Sj(t), ui(t), uj(t)) = ϕ(Si(t))ϕ(Sj(t))ui(t)uj(t), (5.47)

g(ui(t), uj(t)) =
1

p2
pipjui(t)uj(t). (5.48)

So, for σ2(t) and u2(t) we can write:

σ2(t) = f11(t) + f22(t)− 2f12(t)ρ, (5.49)

u2(t) = g11(t) + g22(t)− 2g12(t)ρ. (5.50)

Using a first-order Taylor expansion we can obtain expressions for fij(t) and gij(t).

Lemma 5.4.3 (First-Order Taylor Expansions fij(t) and gij(t)). The first-order Taylor
expansion for fij(t) and gij(t) read:

fij(t) ≈ ϕ(Si(0))ϕ(Sj(0)) + (Si(t)− Si(0))ϕ′(Si(0))ϕ(Sj(0))

+ (Sj(t)− Sj(0))ϕ(Si(0))ϕ′(Sj(0)) + (ui(t)− 1)ϕ(Si(0))ϕ(Sj(0))

+ (uj(t)− 1)ϕ(Si(0))ϕ(Sj(0)), (5.51)

gij(t) ≈
pipj
p2

(1 + (ui(t)− 1) + (uj(t)− 1)) . (5.52)

Proof. The proof is given in Appendix A.16.

In order to calculate the expectations in (5.44) we need simple expressions for the conditional
expectations E[Si(t)− Si(0)|S(t) = x] and E[ui(t)− 1|S(t) = x]. The conditional expected
values E[Si(t)− Si(0)|S(t) = x] and E[ui(t)− 1|S(t) = x] can be computed using Gaussian
approximation. In particular,

E[Si(t)− Si(0)|S(t) = x] ≈ E[ S̄i(t)− S̄i(0)
∣∣ S̄(t) = x], (5.53)

E[ui(t)− 1|S(t) = x] ≈ E[ ūi(t)− 1| S̄(t) = x]. (5.54)

where

dS̄(t) = pdW (t), (5.55)

dS̄i(t) = pidWi(t), (5.56)

dūi(t) = νidZi(t), (5.57)

dW̄ (t) =
1

p
(p1dW1(t)− p2dW2(t)) . (5.58)

Using these approximations we find the correlation structure of W,Wi and W,Zi:

〈dW̄ (t), dWi(t)〉 =
1

p
(p1ρ1idt− p2ρ2idt) = ρidt, (5.59)

〈dW̄ (t), dZi(t)〉 =
1

p
(p1γ1iρ3dt− p2γ2iρ4dt) = ρi+2dt. (5.60)

Finally, applying formula (5.25) to E[ S̄i(t)− S̄i(0)
∣∣ S̄(t) = x] and E[ ūi(t)− 1| S̄(t) = x] we can

obtain the earlier mentioned simple expressions.
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Lemma 5.4.4 (Simple Expressions for Conditional Expectations (5.53) and (5.54)).
Applying Gaussian approximation, formula (5.25), to (5.53) and (5.54); we obtain the following
simple expressions:

E[Si(t)− Si(0)|S(t) = x] ≈ piρi
p

(x− S(0)), (5.61)

E[ui(t)− 1|S(t) = x] ≈ νiρi+2

p
(x− S(0)). (5.62)

Proof. The proof is given in Appendix A.17.

Now, we can calculate E
[
σ2(t)

∣∣S(t) = x
]

and E
[
u2(t)

∣∣S(t) = x
]
. The results are given by

the following lemma:

Lemma 5.4.5 (Approximations for Conditional Expectations in (5.44)). The condi-
tional expectations in (5.44) can be approximated as follows:

E
[
σ2(t)

∣∣S(t) = x
]
≈ p2 + (x− S(0))Θ1, (5.63)

E
[
u2(t)

∣∣S(t) = x
]
≈ 1 + (x− S(0))Θ2, (5.64)

where p is given by (5.41) and

Θ1 =
2

p

(
p2

1(q1ρ1 + ν1ρ3) + p2
2(q2ρ2 + ν2ρ4)− p1p2ρ(q1ρ1 + q2ρ2 + ν1ρ3 + ν2ρ4)

)
, (5.65)

Θ2 =
2

p3
(ν1p1(p1 − p2ρ)ρ3 + ν2p2(p2 − p1ρ)ρ4) . (5.66)

Proof. The proof is given in Appendix A.18.

This gives us the following results for F (x), given by Lemma 5.4.6.

Lemma 5.4.6 (Results for F (x)). The function F (x) can be approximated by

F (x) ≈

√
p2 + (x− S(0))Θ1

1 + (x− S(0))Θ2
. (5.67)

Furthermore, for F (S(0)) and F ′(S(0)) we have:

F (S(0)) = p, (5.68)

F ′(S(0)) = q, (5.69)

where

q =
p1q1ρ

2
1 − p2q2ρ

2
2

p
. (5.70)

Proof. The proof is given in Appendix A.19.

Finally, we need to derive a SABR-like diffusion for the stochastic volatility. We wish to
obtain the coefficients for the SDE:

du(t) = ηu(t)dZ(t). (5.71)

To do this we need to apply Itô’s lemma (see [44]) to u(t). Remember that for u(t) we have:

u2(t) =
1

p2

(
p2

1u
2
1(t) + p2

2u
2
2(t)− 2p1p2ρu1(t)u2(t)

)
. (5.72)
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Applying Itô’s lemma gives us:

du(t) =
1

p2

(
p2

1ν1
u2

1

u2
− p1p2ρν1

u1u2

u2

)
u(t)dZ1(t)

+
1

p2

(
p2

2ν2
u2

2

u2
− p1p2ρν2

u1u2

u2

)
u(t)dZ2(t). (5.73)

We can replace the quotients
ui(t)uj(t)

u2(t)
, (5.74)

by the expected value and set it equal to 1,

E
[
u2
i (t)

u2(t)

]
= E

[
ui(t)uj(t)

u2(t)

]
= 1. (5.75)

We get:

du(t) =
1

p2

(
p2

1ν1E
[
u2

1

u2

]
− p1p2ρν1E

[u1u2

u2

])
u(t)dZ1(t)

+
1

p2

(
p2

2ν2E
[
u2

2

u2

]
− p1p2ρν2E

[u1u2

u2

])
u(t)dZ2(t)

=
1

p2

(
p2

1ν1 − p1p2ρν1

)
u(t)dZ1(t) +

1

p2

(
p2

2ν2 − p1p2ρν2

)
u(t)dZ2(t)

=
p1ν1(p1 − p2ρ)

p2
u(t)dZ1(t) +

p2ν2(p2 − p1ρ)

p2
u(t)dZ2(t)

= u(t)

(
p1ν1ρ1

p
dZ1(t)− p2ν2ρ2

p
dZ2(t)

)
. (5.76)

To obtain the SDE (5.71) we have to set:

Z(t) =
1

ηp
(p1ν1ρ1dZ1 − ρ2ν2ρ2dZ2) , (5.77)

η =
1

p

√
(p1ν1ρ1)2 + (p2ν2ρ2)2 − 2ξ12p1ν1ρ1p2ν2ρ2, (5.78)

where η is chosen such that Z(t) scales to 〈Z(t)〉 = t. We determine the correlation between the
dynamics of the forward price process and the stochastic volatility as:

γ =
〈dW (t), dZ(t)〉

dt

=
〈dW̄ (t), dZ(t)〉

dt

=
1

ηp2

(
p2

1ν1ρ1γ11 + p2
2ν2ρ2γ22 − p1p2ν2ρ2γ21 − p1p2ν1ρ1γ12

)
. (5.79)

For more details regarding the projection of the 2D SABR model onto the DD SABR model we
refer the reader to [26, pp. 159-171] and [37, pp. 1129-1156].

Remark 5.4.7. When applying the Markovian projection method we are limited by the accuracy
of the approximations of the conditional expectations. In [34] and [37, pp. 1129-1156] Piterbarg
claims that the use of first-order Taylor expansions and Gaussian approximations to obtain
approximations for the conditional expectations are reasonable. However, quantifying the error
of these approximations is not straight-forward and deserves further research.
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So, using the Markovian Projection method we have obtained the DD SABR model, which
allows for more efficient simulation. Note that using Hagan’s formula the prices of CMS spread
options can be obtained even analytically.

The main advantage of the DD SABR model compared to the copula approach is that, unlike
in the copula approach, now the full correlation structure is incorporated into the pricing.

5.5 Numerical Experiments

In this section we will perform numerical experiments to gain insight in the performance of
the DD SABR model. The 2D SABR model will be used as the reference model. We start
by investigating for which time to maturity the DD SABR model can be reasonably used, we
do this by pricing a European call spread option for different times to maturity. Next, we will
consider the same market data of 2007 and 2013 that was used in Chapter 4 to price a 10Y-2Y
CMSSO by the DD SABR model and the reference model. We will compare the results of the
DD SABR model with the results of the copula approach in Chapter 4. The chosen TSR model
in the copula approach, Lemma 4.5.3, is the swap-yield TSR model, because it is the market
standard TSR model. After that, we perform another experiment which gives us insight in the
performance of the DD SABR model and the copula approach. For the year 2013 market prices
are available which can be used to calibrate the copula approach and the DD SABR model.
Finally, we will look at the cross-skew and de-correlation effects that are not present in the
copula approach.

5.5.1 Pricing a European Call Spread Option

By the first numerical experiment we will perform related to the DD SABR model we gain
insight in up to which maturity time the DD SABR model can accurately be used. In order to
do this we will price a European call spread option with both the DD SABR model and the 2D
SABR model for different times to maturity. The parameters that are chosen can be found in
[26, pp. 169-171].

Chosen parameters5: S1(0) = 0.030, S2(0) = 0.026, α1(0) = 0.23, α2(0) = 0.20, ρ = −0.4,
γ11 = −0.2, γ12 = −0.2, γ21 = −0.2, γ22 = −0.3, ξ = 0.3, β1 = 0.75, β2 = 0.85, ν1 = 0.20,
ν2 = 0.25.

Three different maturity times are considered, namely T = 1, T = 5 and T = 10. The results
are given in Figure 5.1.

From Figure 5.1 it can be seen that the fit of the DD SABR model is quite good up to
five years to maturity. For ten years to maturity the prices calculated by the DD SABR model
deviate from the reference prices calculated by the 2D SABR model.

5Note that in this case S1,S2 are not swap rates
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Figure 5.1: European call spread option price using the DD SABR model and the 2D SABR
model. Three maturity times are considered: T = 1, T = 5 and T = 10. Number of MC paths
is 100000.

5.5.2 DD SABR Model vs Copula Approach - 2007 and 2013

In Chapter 4 we calculated the price of a CMSSO on a 10Y-2Y spread with 12M frequency for
market data of 2007 and 2013 using the copula approach. We will now calculate the CMSSO
price using the DD SABR model. The 2D SABR model is chosen as the reference model. We
have seen that the fit of the DD SABR model is highly satisfactory up to five years to maturity
for European call spread options. Therefore, we will consider start dates 1 year and 5 years from
today. The difference between the price computed with the DD SABR model (or the copula
approach) and the reference model will be denoted by ς, where ς is defined as:

ς = VCMSSO(0)− Vref.

To calculate the CMSSO prices by the 2D and DD SABR model we need to make use of CMS-
adjusted forward rates and the associated adjusted SABR paramters as described in Section 5.2.
The calibration results regarding the adjusted SABR parameters for 2013 and 2007 are given by
Table B.4 and Table B.11, which can be found in Appendix B. The correlation parameter is set
to the same value that was used in the copula approach6, ρ = 0.8. The cross-skew parameters,
γ12 and γ21, and de-correlation parameter, ξ, are set equal to 1 in order to compare the results
of the DD SABR model with the copula approach.

6In Chapter 4 the correlation parameter was denoted by %.
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The computed CMSSO prices and the difference in prices for 2007 and 2013 for start date
T0 = 1 are given in Figure 5.2.

−2 −1 0 1 2
0

50

100

150

200

250

CMSSO price − DD SABR vs copula app − T
0
=1 − 2007

K [%]

V
C

M
S

S
O

(0
) 

[b
ps

]

 

 

DD SABR
copula app
ref

−2 −1 0 1 2
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Price differences − DD SABR vs copula app − T
0
=1 − 2007

K [%]

ζ 
[b

ps
]

 

 

DD SABR
copula app

−2 −1 0 1 2
0

50

100

150

200

250

300

350

400

CMSSO price − DD SABR vs copula app − T
0
=1 − 2013

K [%]

V
C

M
S

S
O

(0
) 

[b
ps

]

 

 

DD SABR
copula app
ref

−2 −1 0 1 2
−4

−3

−2

−1

0

1

Price differences − DD SABR vs copula app − T
0
=1 − 2013

K [%]

ζ 
[b

ps
]

 

 

DD SABR
copula app

Figure 5.2: Copula approach vs DD SABR model 2007 and 2013. The start date is taken to be
1 year from today. The swap-yield TSR model was used in the copula approach. The reference
model is 2D SABR model, number of MC paths is 100000.

From Figure 5.2 it is clear that the fit of both the copula approach and the DD SABR model
are good for start date 1 year from today. For 2007 we see that the price differences are smaller
than 2bps, while for 2013 they are smaller than 4bps. For the majority of strikes we considered,
the prices obtained by the DD SABR model are closer to the reference prices, than the prices
obtained by the copula approach. The price differences for 2013 are bigger than for 2007. We
already observed this in Chaper 4. As we already mentioned, this is probably due to the fact
that the implied volatilities for the year 2013 are more extreme.

Now, we consider a start date 5 years from today. In Figure 5.3 again the CMSSO prices
and ς are given for 2007 and 2013.

Figure 5.3 again shows that the results from the DD SABR model are slightly better than
the results of the copula approach. Comparing Figure 5.2 with Figure 5.3 we see that the price
differences increase as the start date is moved further into the future. We now see that for 2007
the price differences are smaller than 3bps, while for 2013 they are smaller than 8bps. So it
seems that both the copula approach and the DD SABR model give accurate approximations
of the CMSSO price. Furthermore, also in this example the DD SABR model outperforms the
copula approach.
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Figure 5.3: Copula approach vs DD SABR model 2007 and 2013. The start date is taken to be
5 years from today. The swap-yield TSR model was used in the copula approach. The reference
model is 2D SABR model, number of MC paths is 100000.

5.5.3 Comparing to Market Prices

For the year 2013 we have market prices available for a 10Y-2Y CMSSO with start dates 1
year and 5 years from today7. We will compare these market prices to the CMSSO prices
calculated with both the DD SABR model and the copula approach. Since we now have market
prices available we can calibrate the DD SABR model and the copula approach. Calibrating the
copula approach gives us a value for the single correlation parameter ρ. We can then calculate
the CMSSO prices by the copula approach using this value for the correlation parameter. We
also calibrate the DD SABR model using the market prices. In this case we obtain values for the
correlation parameter, the cross-skew parameters and the de-correlation parameter. Remember
that for the DD SABR model CMS-adjusted rates and adjusted SABR parameters have to be
used. The calibration results regarding the correlation parameters for start date T0 = 1 and
T0 = 5 are given by Table B.6 and Table B.7, which can be found in Appendix B. With the
obtained parameters we calculate the CMSSO prices. The CMSSO prices, market prices and
price differences are given by Table 5.1 and Table 5.2 for their respecting start dates. In order
to compare the results of the DD SABR model with the copula approach the sum of squared
errors (SSE) is computed for the price differences obtained with both the DD SABR model and

7For the year 2007 we do not have this market prices available.
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the copula approach. The SSE is defined as follows:

SSE ,
N∑
i=1

(Model Price(i)−Market Price(i))2 , (5.80)

where N denotes the number of market/model prices.

Strike [%] DD SABR Copula Market DD SABR diff Copula Diff

0.25 176.724 177.190 177.124 -0.399 0.065

0 152.158 152.520 152.520 -0.361 0.001

0.25 127.903 128.039 128.191 -0.287 -0.151

0.5 104.184 103.937 104.334 -0.149 -0.396

0.75 81.373 80.645 81.285 0.087 -0.640

1 60.061 59.008 59.830 0.231 -0.821

SSE 0.456 1.270

Table 5.1: DD SABR model vs copula approach for start date 1 year from today. The CMSSO
prices (in bps) calculated with the DD SABR model and the copula approach are compared
with the CMSSO market prices. The prices, price differences and SSE for both the DD SABR
model and the copula approach are reported.

Strike [%] DD SABR Copula Market DD SABR diff Copula Diff

0.25 112.463 113.115 112.387 0.076 0.727

0 92.894 92.823 92.822 0.072 0.001

0.25 75.103 74.887 75.224 -0.121 -0.336

0.5 59.496 59.041 59.598 -0.101 -0.556

0.75 46.360 45.528 46.335 0.025 -0.807

1 35.751 34.631 35.678 0.073 -1.047

SSE 0.0421 2.703

Table 5.2: DD SABR model vs copula approach for start date 5 years from today. The CMSSO
prices (in bps) calculated with the DD SABR model and the copula approach are compared
with the CMSSO market prices. The prices, price differences and SSE for both the DD SABR
model and the copula approach are reported.

From Table 5.1 and Table 5.2 we see that the SSE is smaller for the DD SABR model than
for the copula approach. The CMSSO prices calculated with the DD SABR model are closer
to the market prices, than the CMSSO prices calculated with the copula approach. Once again
the DD SABR model outperforms the copula approach.

5.5.4 The Cross-Skew and De-Correlation Effect

The results of the previous numerical experiments have shown that the DD SABR model out-
performs the copula approach. The main advantage of the DD SABR model in comparison
to the copula approach is that the cross-skew and the de-correlation are incorporated into the
pricing. The next experiment we perform will show the influence of these parameters on the
arbitrage-free prices.

We consider the following base scenario8: S1(0) = 0.045, S2(0) = 0.032, α1(0) = 0.25, α2(0) =
0.2, ρ = 0.9, γ11 = −0.2, γ12 = −0.3, γ21 = −0.3, γ22 = −0.3 ξ = 0.75, β1 = 0.7, β2 = 0.7,
ν1 = 0.4 and ν2 = 0.4.

8Note that the tildes were dropped from the notation.
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First we look into the effect of the cross-skew parameters, γ12 and γ21. Two maturity times
will be considered, namely T = 1 and T = 5. Besides the base scenario case we will vary the
value for the cross-skew parameters both up and down (e.g. γ12±0.5). The results for parameter
γ12 are given in Figure 5.4.
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Figure 5.4: Effect of the cross-skew parameter γ12 in the DD SABR model. For γ12 three
different values are chosen. Base: γ12 = −0.3, low: γ12 = −0.8 and high: γ12 = 0.2.

From Figure 5.4 we can see that already for short time to maturity there is a cross-skew
effect. For longer time to maturity we see that the effect of the cross-skew parameter γ12 is
significant, the prices differ much when shifting γ12. In general, when γ12 increases the CMSSO
prices decrease, and when γ12 decreases the CMSSO prices increase. For correlation parameter
γ21 we follow the same approach as was done for parameter γ12. The results for parameter
γ21 are given in Figure 5.5. From Figure 5.5 we can see that shifting γ21 has the same effect
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Figure 5.5: Effect of the cross-skew parameter γ21 in the DD SABR model. For γ21 three
different values are chosen. Base: γ21 = −0.3, low: γ21 = −0.8 and high: γ21 = 0.2.

as shifting γ12. The effect that parameter γ21 has on the CMSSO price seems weaker when
compared with parameter γ12.

Next, we look at the effect of the de-correlation parameter ξ. We again follow the same
approach as was done for parameters γ12 and γ21. The results when varying ξ are given in
Figure 5.6. From Figure 5.6 it is clear that as the time to maturity increases the de-correlation
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Figure 5.6: Effect of the de-correlation parameter ξ in the DD SABR model. For ξ three different
values are chosen. Base: ξ = 0.75, low: ξ = 0.25 and high: ξ = 0.99.

effect becomes more pronounced. For a small time to maturity we hardly see any difference in
the prices when shifting the parameter ξ. For longer time to maturity we see a difference. When
ξ increases we see that the CMSSO prices decrease, on the other hand when ξ decreases the
the CMSSO prices increase. It is also interesting to note that the effect of the de-correlation
parameter seems smaller than the effect of the cross-skew parameters. Thus, there is indeed a
cross-skew effect and a de-correlation effect.

5.6 Conclusions

In this chapter we showed a technique to obtain and calibrate a relatively simple stochastic
volatility model which can be used for pricing CMS spread options, the DD SABR model.

First a modification of the multi-dimensional SABR model presented in [26] was obtained,
the 2D SABR model, which can be used for the pricing of CMS spread options. In this model
the CMS-adjusted forward rates are assumed to follow SABR dynamics. Most parameters of
the 2D SABR model can be obtained by calibrating the SABR model to CMS caplet prices,
where the CMS caplet prices are calculated using the replication method and a TSR model, as
was described in Chapter 3. The remaining parameters, γ12, γ21 and ξ, can be used to calibrate
to additional market prices (if available).

Using the Markovian Projection method we obtained from the 2D SABR model the DD
SABR model, which allows for more efficient simulation. Note that using Hagan’s formula the
prices of CMS spread options can be obtained even analytically.

The main advantage of the DD SABR model compared to the copula approach is that the
full correlation structure is incorporated into the pricing.

Many numerical experiments were performed to study the performance of the DD SABR
model. First European call spread options were priced, which showed that the DD SABR model
is accurate up to 5 years to maturity. The results of the copula approach from Chapter 4 were
compared to the results of the DD SABR model. From the results of the numerical experiments
we can conclude that both the copula approach and the DD SABR model can be used to
efficiently and accurately price CMS spread options. We have also seen that the cross-skew
parameters and the de-correlation parameter have influence on the CMS spread option price.

We can conclude that generally the DD SABR model outperforms the copula approach.



Chapter 6

Conclusions

This chapter summarizes the main results and conclusions that we have obtained in this thesis.

In this thesis we considered models that can be used for efficient pricing of CMS and CMS
spread derivatives. The first part of the research focuses on the pricing of CMS derivatives,
while the second part focuses on the pricing of CMS spread derivatives. A CMS derivative is a
financial instrument whose payoff is a function of a single swap rate. On the other hand a CMS
spread derivative is a financial instrument whose payoff is a function of the spread between two
swap rates of different maturity. We are specifically interested in pricing CMS and CMS spread
options.

CMS options are widely used by insurance companies and pension funds in their Asset
& Liability Management, because these institutions are very vulnerable to movements in the
interest rates. CMS spread options are typically used by banks to hedge the CMS spread swaps
that they have entered into with customers. The pricing of these products has to be accurate
and efficient. The notional values for these kind of derivatives are usually quite large, so even
small errors when pricing these products can lead to substantial losses. It is possible to use
sophisticated models, for example the Libor market model, to price these products. A downside
of these type of models is that they usually are not very efficient, the models have limited
analytical tractability. Therefore, the aim of this thesis was to obtain accurate and efficient
models that can be used to price CMS and CMS spread options.

For the pricing of CMS options we made use of the TSR approach. Using this approach
TSR models can be obtained. We considered two types of TSR models that were described
in the literature, the linear TSR model and the swap-yield TSR model. We also developed
two new TSR models both based on interpolation, the linear interpolation TSR model and the
log-linear interpolation TSR model. To study the performance of the respective TSR models
market data from 2007 and 2013 was used. The results for both sets of market data were similar
but we observed that the price differences for the year 2013 were larger than for the year 2007,
which is probably due to the fact that the volatilities in 2013 were more extreme, indicating
that nowadays correct valuation of CMS derivatives is of even more importance. We have also
seen that depending on the chosen TSR model the computed price of the CMS option differs
slightly. We also showed that there is a timing and a volatility effect. The further the start
date is moved into the future, the bigger the differences are between the computed prices of the
CMS derivative with the respective TSR models, indicating that there is a timing effect. The
volatility effect follows from the fact that the higher the volatility is, the bigger the differences
will be between the computed prices of the CMS derivative with the respective TSR models.

From the numerical experiments we have seen that all TSR models have their pros and cons.
The swap-yield TSR model is most widely used in the financial industry. Its popularity stems

80



CHAPTER 6. CONCLUSIONS 81

from the fact that only a single assumption is necessary to derive the annuity mapping function.
The assumption that is made, is that all underlying swap rates are approximated by a single
swap rate. A downside of the swap-yield model is that it is not arbitrage-free. A rescaling
has to be used to correctly calculate the price of the CMS option price, which doubles the
computation time. The mean reversion linear TSR model is arbitrage-free by definition. Of the
four considered TSR models the mean reversion linear TSR model is the only TSR model that
incorporates a mean reversion parameter, making it the most flexible TSR model. However,
calibrating this mean reversion parameter is not straight-forward and is an issue that should be
further researched. The linear and log-linear interpolation TSR models on the other hand require
no additional calibration. The linear interpolation TSR model is based on a linear interpolation
of the zero-coupon bonds. Another advantage of this model compared to the swap-yield TSR
model is that it is arbitrage-free by construction. The log-linear interpolation TSR model is
based on a linear interpolation of the logarithm of zero-coupon bonds, which can be a better
way to describe the future yield curve movement. For the log-linear interpolation TSR model
the same rescaling as for the swap-yield model has to be used. Besides the necessary rescaling,
also a numerical root finding algorithm has to be used to calculate the values for the annuity
mapping function. Meaning that the log-linear TSR model has the highest computational cost of
the considered TSR models, although the computational costs are still very low when compared
to sophisticated models.

We would recommend the use of the log-linear interpolation TSR model to price CMS op-
tions, depending on the view of the movement of the yield curve. When it is important to
reduce the calculation time, we recommend the use of the linear interpolation TSR model. If
more flexibility needs to be added we would recommend the use of the mean reversion linear
TSR model.

In the second part we made use of the copula approach to efficiently price CMS spread
options. We determined the marginal distributions of the two swap rates under the forward
measure, the joint distribution was obtained by linking the marginal distributions using a copula
function. The Gaussian copula is the copula that we used for the pricing of CMS spread options.
Using the copula approach and applying integration by parts we derived a one-dimensional
pricing formula that can be used for the pricing of CMS spread options. A copula and a TSR
model have to be selected in order to make use of this one-dimensional pricing formula. We
also presented a Monte Carlo method which can be used to price CMS spread options, in case
a Gaussian copula is assumed.

To study the performance of the copula approach we again made use of market data from
2007 and 2013. In general, the results for both sets of market data were similar. The differences
in prices using the one-dimensional pricing formula and the MC method can be explained mostly
by numerical issues, i.e. large number of MC paths, chosen values for the integration bounds.

All four TSR models were considered in the copula approach and generally we have seen
that the computed CMS spread option price only differs slightly depending on the chosen TSR
model. We also showed that there are timing, volatility and correlation effects. The further
the start date is moved into the future, the bigger the differences will be between the computed
prices of the CMS spread option with the respective TSR models. The volatility effect follows
from the fact that the higher the volatility is, the bigger the differences will be between the
computed prices of the CMS spread option with the respective TSR models. The correlation
parameter has influence on the curvature. The higher the value of the correlation parameter is,
the more convex the plot of the computed CMS spread option price becomes. It was shown that
the behavior of the two new TSR models, the linear interpolation and log-linear interpolation
TSR model, is highly satisfactory.

Finally, we considered a stochastic volatility model for the pricing of CMS spread options,
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the displaced diffusion SABR (DD SABR) model. A two-dimensional SABR (2D SABR) model
was presented that can be used for the pricing of CMS spread options. However, the prices
can only be calculated using a MC simulation. Using the Markovian projection method the DD
SABR model was derived from the 2D SABR model. To use the 2D and DD SABR models for
the pricing of CMS spread options, adjusted CMS-forward rates and the associated adjusted
SABR parameters have to be used. The main advantage of the DD SABR model compared to
the copula approach is that, unlike in the copula approach, now the full correlation structure
is incorporated into the pricing. CMS-adjusted forward rates are defined such that each CMS-
adjusted rate follows SABR dynamics. Therefore, most parameters of the DD SABR and 2D
SABR models can be obtained by calibrating the SABR model to CMS caplets prices. The
remaining parameters, γ12, γ21 and ξ, can be used to calibrate to additional market prices (if
available).

We can conclude that both the copula approach and the DD SABR model can be used to
accurately and efficiently price CMS spread options. The DD SABR model generally outperforms
the copula approach.



Chapter 7

Further Research

This chapter describes possible further research directions that could be taken for the efficient
pricing of CMS and CMS spread derivatives.

We have seen that CMS derivatives can be priced efficiently using TSR models. Besides the TSR
models we considered it might be interesting to look into alternative TSR models. We have seen
that the mean reversion linear TSR model is the most flexible TSR model, due to the use of a
mean reversion parameter. In this thesis we did not calibrate this parameter. Calibrating this
mean reversion parameter is not straight-forward and deserves further research.

It would also be interesting to investigate if the other three TSR models could incorporate
a mean reversion parameter. Perhaps alterations could be made to their respective annuity
mapping functions. Although we feel that it would be difficult to make such alterations while
still satisfying the no-arbitrage, consistency and reasonability conditions.

The two new TSR models we developed are based on interpolation, another possible research
direction is to investigate other interpolation techniques which can lead to new TSR models.

For the pricing of CMS spread options we made use of the copula approach. The copula that
we chose was the Gaussian copula. Obviously, research could be done into the application of
other copulas in CMS spread option pricing. Making use of other copulas in the obtained one-
dimensional pricing formula would perhaps lead to slightly more accurate CMS spread option
prices. The downside is that these other types of copulas have more parameters which in turn
need to be calibrated properly. Additionally, one of the main advantages of the copula approach
is the transparency of the obtained model. The more complicated the considered copula is the
less transparent the model becomes. In that case it would probably make more sense to use a
stochastic volatility model.

We also priced CMS spread options using a stochastic volatility model, the DD SABR model.
The DD SABR model was obtained by applying the Markovian projection method to the 2D
SABR model. Most parameters of the 2D SABR model can be obtained by calibrating the
SABR model to CMS caplet prices. The cross-skew parmaters (γ12, γ21) and de-correlation
parameter (ξ) can only be calibrated if additional market prices are available. Therefore, it is
worth to look into other possible calibration procedures for the two-dimensional and displaced
diffusion SABR models.

When applying the Markovian projection method we are limited by the accuracy of the
approximations of the conditional expectations. We followed the same approach as in [34], we
made use of first-order Taylor expansions and Gaussian approximations to obtain approximations
for the conditional expectations. However, quantifying the error of these approximations was not
straight-forward and deserves further research. Additionally, research could be done on other
approximation methods such that the accuracy of the approximated conditional expectations
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improves.
Finally, we would like to mention that the multi-dimensional SABR model and the DD SABR

model are not only useful for the pricing of CMS spread options. Further research could be done
in order to apply these models to the pricing of e.g. FX Asian options or equity basket options.
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Appendix A

Proofs

In this appendix we list the proofs, which we have omitted in the main text.

A.1 Proof of Theorem 2.2.6

We first notice that for numéraires M(T ) and N(T ) we have the following two equalities:

EM
[
X(T )

M(T )

∣∣∣∣Ft] =
X(t)

M(t)
, (A.1)

EN
[
X(T )

N(T )

∣∣∣∣Ft] =
X(t)

N(t)
. (A.2)

From equation (2.6) it follows that

M(T )N(t)

N(T )M(t)

dQN

dQM
= 1.

This means that we can write,

EM
[
X(T )

M(T )

∣∣∣∣Ft] =

∫
Ω

X(T )

M(T )
dQM

=

∫
Ω

X(T )

M(T )

(
M(T )N(t)

N(T )M(t)

dQN

dQM

)
dQM

=

∫
Ω

X(T )

N(T )

N(t)

M(t)
dQN

= EN
[
X(T )

N(T )

N(t)

M(t)

∣∣∣∣Ft] .
Equating the expectations above, we obtain the following expression for the Radon-Nikodym
derivative:

dQN

dQM

∣∣∣∣
Ft

=
N(T )M(t)

N(t)M(T )
. (A.3)

For an arbitrary numéraire a probability measure, QN , exists, equivalent to the initial measure,
Q0, so that the price of an attainable claim, X, normalized by N , is a martingale under measure
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QN , and

EN
[
X(T )

N(T )

∣∣∣∣Ft] =
EN
[
X(T )
N(T )

dQN

dQM

∣∣∣Ft]
EM

[
dQN

dQM

∣∣∣Ft]
=

EM
[
X(T )
N(T )

N(T )M(t)
M(T )N(t)

∣∣∣Ft]
EM

[
N(T )M(t)
M(T )N(t)

∣∣∣Ft] .

We can rewrite this as follows:

EN
[
X(T )

N(T )

∣∣∣∣Ft] =
EM

[
X(T )
M(T )

M(t)
N(t)

∣∣∣Ft]
EM

[
N(T )
M(T )

M(t)
N(t)

∣∣∣Ft]
=

EM
[
X(T )
M(T )

∣∣∣Ft]
EM

[
N(T )
M(T )

∣∣∣Ft] .
Now, using equalities (A.1) and (A.2) we get

EM
[
X(T )
M(T )

∣∣∣Ft]
EM

[
N(T )
M(T )

∣∣∣Ft] =
M(t)

N(t)

X(t)

M(t)
(A.4)

=
X(t)

N(t)
. (A.5)

Equation (A.4) follows from the assumption that a numéraire M exists and the price of any
traded asset divided by its associated numéraire is a martingale.

A.2 Proof of Lemma 2.3.4

We can rewrite (2.12) as follows:

Sn,m(t) =
P (t, Tn)− P (t, Tn+m)

An,m(t)

=

∑n+m−1
i=n P (t, Ti)− P (t, Ti+1)

An,m(t)

=

∑n+m−1
i=n τiP (t, Ti+1) 1

τi

P (t,Ti)−P (t,Ti+1)
P (t,Ti+1)

An,m(t)

=

∑n+m−1
i=n τiP (t, Ti+1) 1

τi

(
P (t,Ti)
P (t,Ti+1) − 1

)
An,m(t)

=

∑n+m−1
i=n τiP (t, Ti+1) 1

τ(Ti+1−Ti)

(
P (t,Ti)
P (t,Ti+1) − 1

)
An,m(t)

(A.6)

=

∑n+m−1
i=n τiP (t, Ti+1)Li(t, Ti, Ti+1)

An,m(t)

=

∑n+m−1
i=n τiP (t, Ti+1)Li(t)

An,m(t)
, (A.7)

where we made use of expression (2.9) in (A.6).
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A.3 Proof of Lemma 2.5.1

We can rewrite (2.27) as follows:

Vswap(t) = B(t)
N−1∑
n=0

τnEB
[
Ln(Tn)−K
B(Tn+1)

∣∣∣∣Ft] (A.8)

= B(t)
N−1∑
n=0

τnEB
[

Ln(Tn)−K
B(Tn)/P (Tn, Tn+1)

∣∣∣∣Ft] (A.9)

= B(t)

N−1∑
n=0

τnEB

(

1
τn

(
P (Tn,Tn)
P (Tn,Tn+1) − 1

)
−K

)
P (Tn, Tn+1)

B(Tn)

∣∣∣∣∣∣Ft
 (A.10)

= B(t)

N−1∑
n=0

EB
[
P (Tn, Tn)− P (Tn, Tn+1)− τnKP (Tn, Tn+1)

B(Tn)

∣∣∣∣Ft] (A.11)

= B(t)

N−1∑
n=0

P (t, Tn)− P (t, Tn+1)− τnKP (t, Tn+1)

B(t)
(A.12)

=

N−1∑
n=0

P (t, Tn)− P (t, Tn+1)− τnKP (t, Tn+1) (A.13)

=

N−1∑
n=0

τnP (t, Tn+1)

(
1

τn

(
P (t, Tn)− P (t, Tn+1)

P (t, Tn+1)

)
−K

)
(A.14)

=

N−1∑
n=0

τnP (t, Tn+1)(Ln(t)−K) (A.15)

=

(
N−1∑
n=0

τnP (t, Tn+1)

)(∑N−1
n=0 τnP (t, Tn+1)Ln(t)∑N−1

n=0 τnP (t, Tn+1)
−K

)
(A.16)

= A(t)(S(t)−K), (A.17)

where A(t) is given by (2.11) and S(t) is given by (2.13). The value of the receiver swap follows
analogically,

Vswap-rec(t) = A(t)(K − S(t)). (A.18)

We used the following to get from (A.8) to (A.17): expression (2.16), definition of Ln(Tn),
basic calculations, martingale property, basic calculations, definition of Ln(t), basic calculations,
definition of A(t) and S(t).

A.4 Proof of Lemma 2.5.2

From (2.39) we know that we can write

Vswaption-pay(t) = B(t)EB
[

1

B(Tn)
An,m(Tn)(Sn,m(Tn)−K)+

∣∣∣∣Ft] . (A.19)
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Changing to the annuity measure by applying Theorem 2.2.6 we get

Vswaption-pay(t) = B(t)EA
[

1

B(Tn)
An,m(Tn)(Sn,m(Tn)−K)+B(Tn)An,m(t)

B(t)An,m(Tn)

∣∣∣∣Ft] (A.20)

=
B(t)

B(t)
EA
[
An,m(t)(Sn,m(Tn)−K)+

∣∣Ft] (A.21)

= An,m(t)E
[
(Sn,m(t)−K)+

∣∣Ft] . (A.22)

The value of the receiver swaption follows analogically,

Vswaption-rec(t) = An,m(t)E
[
(K − Sn,m(t))+

∣∣Ft] . (A.23)

A.5 Proof of Lemma 3.3.1

We write,

EA [f(S(T0))| F0] =

∫ b

a
f(x)ψA(x)dx. (A.24)

Let us start to analyze Case 3, a ≤ S(0) ≤ b, then we separate the integral and get

EA [f(S(T0))| F0] =

∫ S(0)

a
f(x)ψA(x)dx+

∫ b

S(0)
f(x)ψA(x)dx, (A.25)

where ψA(x) is given by

ψA(x) =

{
∂2p(0,S(0),T0,x)

∂x2
, if a ≤ x < S0,

∂2c(0,S(0),T0,x)
∂x2

, if S0 ≤ x ≤ b.
(A.26)

Remember the formula for integration by parts, given by∫
udv = uv −

∫
vdu. (A.27)

We are going to calculate the integral∫ S(0)

a
f(x)︸︷︷︸
u

∂2p(0, S(0), T0, x)

∂x2
dx︸ ︷︷ ︸

dv

, (A.28)

the other integral can be calculated analogically. Now let u = f(x) and dv = ∂2p(0,S(0),T0,x)
∂x2

dx,
so that

du = f ′(x)dx,

v =
∂p(0, S(0), T0, x)

∂x
.

Therefore,∫ S(0)

a
f(x)

∂2p(0, S(0), T0, x)

∂x2
dx = f(x)

∂p(0, S(0), T0, x)

∂x

∣∣∣∣S(0)

a

−
∫ S(0)

a
f ′(x)

∂p(0, S(0), T0, x)

∂x
dx.

(A.29)
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We use integration by parts again to determine the integral∫ S(0)

a
f ′(x)︸ ︷︷ ︸
u

∂p(0, S(0), T0, x)

∂x
dx︸ ︷︷ ︸

dv

.

Now let u = f ′(x) and dv = ∂p(0,S(0),T0,x)
∂x dx so that

du = f ′′(x)dx,

v = p(0, S(0), T0, x).

Therefore,∫ S(0)

a
f ′(x)

∂p(0, S(0), T0, x)

∂x
dx = f ′(x)p(0, S(0), T0, x)

∣∣S(0)

a
−
∫ S(0)

a
f ′′(x)p(0, S(0), T0, x)dx.

(A.30)
Substituting (A.30) in (A.29) we get∫ S(0)

a
f(x)

∂2p(0, S(0), T0, x)

∂x2
dx = f(x)

∂p(0, S(0), T0, x)

∂x

∣∣∣∣S(0)

a

− f ′(x)p(0, S(0), T0, x)
∣∣S(0)

a

+

∫ S(0)

a
f ′′(x)p(0, S(0), T0, x)dx. (A.31)

Analogically for the other integral we get∫ b

S(0)
f(x)

∂2c(0, S(0), T0, x)

∂x2
dx = f(x)

∂c(0, S(0), T0, x)

∂x

∣∣∣∣b
S(0)

− f ′(x)c(0, S(0), T0, x)
∣∣b
S(0)

+

∫ b

S(0)
f ′′(x)c(0, S(0), T0, x)dx. (A.32)
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Substituting (A.31) and (A.32) in (A.25) we get the following expression

EA [f(S(T0))| F0] = f(x)
∂p(0, S(0), T0, x)

∂x

∣∣∣∣S(0)

a

− f ′(x)p(0, S(0), T0, x)
∣∣S(0)

a

+

∫ S(0)

a
f ′′(x)p(0, S(0), T0, x)dx+ f(x)

∂c(0, S(0), T0, x)

∂x

∣∣∣∣b
S(0)

− f ′(x)c(0, S(0), T0, x)
∣∣b
S(0)

+

∫ b

S(0)
f ′′(x)c(0, S(0), T0, x)dx

= f(S(0))
∂p(0, S(0), T0, S(0))

∂x
− f(a)

∂p(0, S(0), T0, a)

∂x
− f ′(S(0))p(0, S(0), T0, S(0))

+ f ′(a)p(0, S(0), T0, a) +

∫ S(0)

a
f ′′(x)p(0, S(0), T0, x)dx+ f(b)

∂c(0, S(0), T0, b)

∂x

− f(S(0))
∂c(0, S(0), T0, S(0))

∂x
− f ′(b)c(0, S(0), T0, b)

+ f ′(S(0))c(0, S(0), T0, S(0)) +

∫ b

S(0)
f ′′(x)c(0, S(0), T0, x)dx

= f(S(0))

[
∂p(0, S(0), T0, S(0))

∂x
− ∂c(0, S(0), T0, S(0))

∂x

]
− f(a)

∂p(0, S(0), T0, a)

∂x

+ f(b)
∂c(0, S(0), T0, b)

∂x
− f ′(S(0))

[
p(0, S(0), T0, S(0))− c(0, S(0), T0, S(0))

]
+ f ′(a)p(0, S(0), T0, a)− f ′(b)c(0, S(0), T0, b) +

∫ S(0)

a
f ′′(x)p(0, S(0), T0, x)dx

+

∫ b

S(0)
f ′′(x)c(0, S(0), T0, x)dx. (A.33)

Using the following two identities

p(0, S(0), T0, S(0))− c(0, S(0), T0, S(0)) = 0, (A.34)

∂p(0, S(0), T0, S(0))

∂x
− ∂c(0, S(0), T0, S(0))

∂x
= 1, (A.35)

we can write (A.33) as follows

EA [f(S(T0))| F0] = f(S(0))− f(a)
∂p(0, S(0), T0, a)

∂x
+ f(b)

∂c(0, S(0), T0, b)

∂x
+ f ′(a)p(0, S(0), T0, a)− f ′(b)c(0, S(0), T0, b)

+

∫ S(0)

a
f ′′(x)p(0, S(0), T0, x)dx+

∫ b

S(0)
f ′′(x)c(0, S(0), T0, x)dx. (A.36)

We still need to consider the other two cases.
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For Case 1, S(0) < a, we have

EA [f(S(T0))| F0] =

∫ b

S(0)
f(x)

∂2c(0, S(0), T0, x)

∂x2
dx

=

∫ b

a
f(x)

∂2c(0, S(0), T0, x)

∂x2
dx

= f(x)
∂c(0, S(0), T0, x)

∂x

∣∣∣∣b
a

− f ′(x)c(0, S(0), T0, x)
∣∣b
a

+

∫ b

a
f ′′(x)c(0, S(0), T0, x)dx (A.37)

= f(b)
∂c(0, S(0), T0, b)

∂x
− f(a)

∂c(0, S(0), T0, a)

∂x
− f ′(b)c(0, S(0), T0, b) + f ′(a)c(0, S(0), T0, a)

+

∫ b

a
f ′′(x)c(0, S(0), T0, x)dx. (A.38)

For Case 2, S(0) > b, we have

EA [f(S(T0))| F0] =

∫ S(0)

a
f(x)

∂2p(0, S(0), T0, x)

∂x2
dx

=

∫ b

a
f(x)

∂2p(0, S(0), T0, x)

∂x2
dx

= f(x)
∂p(0, S(0), T0, x)

∂x

∣∣∣∣b
a

− f ′(x)p(0, S(0), T0, x)
∣∣b
a

+

∫ b

a
f ′′(x)p(0, S(0), T0, x)dx (A.39)

= f(b)
∂p(0, S(0), T0, b)

∂x
− f(a)

∂p(0, S(0), T0, a)

∂x
− f ′(b)p(0, S(0), T0, b) + f ′(a)p(0, S(0), T0, a)

+

∫ b

a
f ′′(x)p(0, S(0), T0, x)dx. (A.40)

A.6 Proof of Lemma 3.5.1

To obtain the linear TSR model the following relation is specified

π(s,M)∑N−1
n=0 τnπ(s, Tn+1)

= a(M)s+ b(M), M ≥ T, (A.41)

where a(·) and b(·) are deterministic functions. In order for the model to satisfy the no-arbitrage
condition we see after substituting (A.41) in (3.23) that the following relation must be satisfied

P (0,M) = A(0)EA [a(M)S(T ) + b(M)] . (A.42)

Using the fact that under the annuity measure S(T ) is a martingale we get the following condition
on the free coefficient b(·),

b(M) =
P (0,M)

A(0)
− a(M)S(0). (A.43)
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Now we move on to the consistency condition, to satisfy the consistency condition we must have

s =
1− π(s, TN )∑N−1
n=0 τnπ(s, Tn+1)

=
1∑N−1

n=0 τnπ(s, Tn+1)
− π(s, TN )∑N−1

n=0 τnπ(x, Tn+1)

=
π(s, T0)∑N−1

n=0 τnπ(s, Tn+1)
− π(s, TN )∑N−1

n=0 τnπ(s, Tn+1)

= (a(T0)s+ b(T0))− (a(TN )s+ b(TN )). (A.44)

Rewriting expression (A.44) we get,

0 = (a(T0)s+ b(T0))− (a(TN )s+ b(TN ))− s
= (a(T0)− a(TN )− 1)s+ b(T0)− b(TN ).

The expression above must hold for all s (so also s = 0) if follows that b(T0) = b(TN ). Now
writing,

0 = (a(T0)− a(TN )− 1)s+ b(T0)− b(T0) = (a(T0)− a(TN )− 1)s,

it follows that
a(T0) = a(TN ) + 1.

So we found the following two conditions

b(T0) = b(TN ), (A.45)

a(T0) = 1 + a(TN ). (A.46)

Also if (A.45) is satisfied then (A.46) is satisfied, this follows from (A.42). We have

b(T0) = b(TN ),

P (0, T0)

A(0)
− a(T0)S(0) =

P (0, TN )

A(0)
− a(TN )S(0).

Rewriting gives,

P (0, T0)− a(T0)S(0)A(0) = P (0, TN )− a(TN )S(0)A(0).

So we have

a(T0) =
P (0, T0)− P (0, TN ) + a(TN )S(0)A(0)

S(0)A(0)

=
P (0, T0)− P (0, TN )

A(0)

1

S(0)
+ a(TN )

=
S(0)

S(0)
+ a(TN )

= 1 + a(TN ).

Proceeding in a similar fashion it is possible to show from (A.42) that if (A.46) is satisfied, then
(A.45) is satisfied.
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The specified relationship (A.41) imposes additional restrictions on a(·), b(·). The following
must now hold

1 =

N−1∑
n=0

τn(a(Tn+1)s+ b(Tn+1))

=

N−1∑
n=0

τna(Tn+1)s+

N−1∑
n=0

τnb(Tn+1).

Since the equation above must again be valid for all s we must have

N−1∑
n=0

τna(Tn+1) = 0

N−1∑
n=0

τnb(Tn+1) = 1.

A.7 Proof of Lemma 3.5.3

We want to connect the coefficients a(·) to mean reversion parameter κ. Remember that

π(s,M)∑N−1
n=0 τnπ(s, Tn+1)

= a(M)s+ b(M), M ≥ T, (A.47)

and
P (T,M) = π(S(T ),M), M ≥ T. (A.48)

Substituting (A.48) in (A.47) and differentiating we get

a(M) =
∂

∂S(T )

P (T,M)∑N−1
n=0 τnP (t, Tn+1)

. (A.49)

We can rewrite this in the context of a Gaussian one-factor model, as

a(M) =
∂

∂x

P (T,M, x)∑N−1
n=0 τnP (T, Tn+1, x)

∣∣∣∣∣
S(T,x)=S(0)

× 1
∂
∂xS(T, x)

∣∣∣∣∣
S(T,x)=S(0)

, (A.50)

where x is now the short rate state in the Gaussian model on which all discount bonds and swap
rates depend. In [36] we have seen that the bond reconstitution formula is given by

P (t, T ) =
P (0, T )

P (0, t)
exp

(
−x(t)G(t, T )− 1

2
y(t)G2(t, T )

)
, (A.51)

where

G(t, T ) =

∫ T

t
e−

∫ u
t κ(s)dsdu.

We can easily see that we have

G(t, T ) =
1− e−κ(T−t)

κ
, (A.52)
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since

G(t, T ) =

∫ T

t
e−

∫ u
t κ(s)dsdu =

∫ T

t
e−κ(u−t)du =

[
− 1

κ
e−κu+κt

]T
t

=

(
− 1

κ
e−κT+κt

)
−
(
− 1

κ
e−κt+κt

)
= − 1

κ
e−κ(T−t) +

1

κ

=
1− e−κ(T−t)

κ
.

Differentiating P (t, T ) we get

∂

∂x
P (t, T ) =

∂

∂x

(
P (0, T )

P (0, t)
exp

(
−x(t)G(t, T )− 1

2
y(t)G2(t, T )

))
= −G(t, T )

P (0, T )

P (0, t)
exp

(
−x(t)G(t, T )− 1

2
y(t)G2(t, T )

)
= −G(t, T )P (t, T ).

Now denote by A(T, x) the annuity as the function of the short rate state x,

A(T, x) =
N−1∑
n=0

τnP (T, Tn+1, x).

Differentiating we get

∂

∂x
A(T, x) =

∂

∂x

N−1∑
n=0

τnP (T, Tn+1, x) =

N−1∑
n=0

τn
∂

∂x
P (T, Tn+1, x)

= −
N−1∑
n=0

G(T, Tn+1)τnP (T, Tn+1, x).

Now we are ready to tackle expression (A.50). Firstly we have

∂

∂x

P (T,M, x)

A(T, x)
=
A(T, x) ∂

∂xP (T,M, x)− P (T,M, x) ∂
∂xA(T, x)

A2(T, x)

=
−A(T, x)G(T,M)P (T,M, x) + P (T,M, x)

∑N−1
n=0 G(T, Tn+1)τnP (T, Tn+1, x)

A2(T, x)

= −G(T,M)P (T,M, x)

A(T, x)
+
P (T,M, x)

∑N−1
n=0 G(T, Tn+1)τnP (T, Tn+1, x)

A2(T, x)

= − G(T,M)P (T,M, x)∑N−1
n=0 τnP (T, Tn+1, x)

+
P (T,M, x)

∑N−1
n=0 G(T, Tn+1)τnP (T, Tn+1, x)∑N−1

n=0 τnP (T, Tn+1, x)
∑N−1

n=0 τnP (T, Tn+1, x)
.
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Secondly,

∂S(T, x)

∂x
=

∂

∂x

(
P (T, T0, x)− P (T, TN , x)

A(T, x)

)
=
A(T, x) ∂

∂x(P (T, T0, x)− P (T, TN , x))− (P (T, T0, x)− P (T, TN , x)) ∂
∂xA(T, x)

A2(T, x)

=
A(T, x) ∂

∂x(P (T, T0, x)− P (T, TN , x))−A(T, x)S(T, x) ∂
∂xA(T, x)

A2(T, x)

=
∂
∂xP (T, T0, x)− ∂

∂xP (T, TN , x)− S(T, x) ∂
∂xA(T, x)

A(T, x)

=
G(T, TN )P (T, TN , x)− S(T, x) ∂

∂xA(T, x)

A(T, x)

=
G(T, TN )P (T, TN , x) + S(T, x)

∑N−1
n=0 G(T, Tn+1)τnP (T, Tn+1, x)∑N−1

n=0 τnP (T, Tn+1, x)
.

Using for all t ≥ T the approximation

P (T, t, x)|S(T,x)=S(0) ≈
P (0, t)

P (0, T )
, (A.53)

we get

∂

∂x

P (T,M, x)

A(T, x)

∣∣∣∣
S(T,x)=S(0)

= −
G(T,M)P (0,M)

P (0,T )∑N−1
n=0 τn

P (0,Tn+1)
P (0,T )

+

P (0,M)
P (0,T )

∑N−1
n=0 G(T, Tn+1)τn

P (0,Tn+1)
P (0,T )∑N−1

n=0 τn
P (0,Tn+1)
P (0,T )

∑N−1
n=0 τn

P (0,Tn+1)
P (0,T )

= − G(T,M)P (0,M)∑N−1
n=0 τnP (0, Tn+1)

+
P (0,M)

∑N−1
n=0 G(T, Tn+1)τnP (0, Tn+1)∑N−1

n=0 τnP (0, Tn+1)
∑N−1

n=0 τnP (0, Tn+1)
,

(A.54)

and

∂

∂x
S(T, x)

∣∣∣∣
S(T,x)=S(0)

=
G(T, TN )P (0,TN )

P (0,T ) + S(0)
∑N−1

n=0 G(T, Tn+1)τn
P (0,Tn+1)
P (0,T )∑N−1

n=0 τn
P (0,Tn+1)
P (0,T )

=
G(T, TN )P (0, TN ) + S(0)

∑N−1
n=0 G(T, Tn+1)τnP (0, Tn+1)∑N−1

n=0 τnP (0, Tn+1)
.

So we have

1
∂
∂xS(T, x)

∣∣
S(T,x)=S(0)

=

∑N−1
n=0 τnP (0, Tn+1)

G(T, TN )P (0, TN ) + S(0)
∑N−1

n=0 G(T, Tn+1)τnP (0, Tn+1)
. (A.55)
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Substituting (A.54) and (A.55) in (A.50) we get

a(M) =
−G(T,M)P (0,M)

G(T, TN )P (0, TN ) + S(0)
∑N−1

n=0 G(T, Tn+1)τnP (0, Tn+1)
+

P (0,M)
∑N−1

n=0 G(T, Tn+1)τnP (0, Tn+1)

G(T, TN )P (0, TN )
∑N−1

n=0 τnP (0, Tn+1) + S(0)
∑N−1

n=0 G(T, Tn+1)τnP (0, Tn+1)
∑N−1

n=0 τnP (0, Tn+1)

=
−G(T,M)P (0,M)

∑N−1
n=0 τnP (0, Tn+1)

G(T, TN )P (0, TN )
∑N−1

n=0 τnP (0, Tn+1) + S(0)
∑N−1

n=0 G(T, Tn+1)τnP (0, Tn+1)
∑N−1

n=0 τnP (0, Tn+1)

+
P (0,M)

∑N−1
n=0 G(T, Tn+1)τnP (0, Tn+1)

G(T, TN )P (0, TN )
∑N−1

n=0 τnP (0, Tn+1) + S(0)
∑N−1

n=0 G(T, Tn+1)τnP (0, Tn+1)
∑N−1

n=0 τnP (0, Tn+1)

=
P (0,M)

∑N−1
n=0 G(T, Tn+1)τnP (0, Tn+1)− P (0,M)G(T,M)

∑N−1
n=0 τnP (0, Tn+1)

A(0)G(T, TN )P (0, TN ) +A(0)S(0)
∑N−1

n=0 G(T, Tn+1)τnP (0, Tn+1)

=
P (0,M)

(∑N−1
n=0 G(T, Tn+1)τnP (0, Tn+1)−G(T,M)A(0)

)
A(0)G(T, TN )P (0, TN ) +A(0)S(0)

∑N−1
n=0 G(T, Tn+1)τnP (0, Tn+1)

=
P (0,M)

(∑N−1
n=0 G(T,Tn+1)τnP (0,Tn+1)

A(0) −G(T,M)
)

G(T, TN )P (0, TN ) + S(0)
∑N−1

n=0 G(T, Tn+1)τnP (0, Tn+1)
. (A.56)

We can rewrite (A.56) in the following form

a(M) =
P (0,M)(γ −G(T,M))

P (0, TN )G(T, TN ) +A(0)S(0)γ
, for all t ≥ T,

where

γ =

∑N−1
n=0 τnP (0, Tn+1)G(T, Tn+1)

A(0)
.
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A.8 Proof of Lemma 3.5.4

We can rewrite (3.16) as follows:

VgCMS(0) =
A(0)

P (0, Tp)
EA [α(S(Tn))S(Tn)| Fn]

=
A(0)

P (0, Tp)
EA [ (aS(Tn) + b)S(Tn)| Fn]

=
A(0)

P (0, Tp)
EA
[
aS(Tn)2 + bS(Tn)

∣∣Fn]
=

A(0)

P (0, Tp)

(
bEA [S(Tn)| Fn] + aEA

[
S(Tn)2

∣∣Fn])
=

A(0)

P (0, Tp)

(
bS(0) + aEA

[
S(Tn)2

∣∣Fn])
=

A(0)

P (0, Tp)

((
P (0, Tp)

A(0)
− aS(0)

)
S(0) + aEA

[
S(Tn)2

∣∣Fn])
= S(0) +

A(0)

P (0, Tp)

(
aEA

[
S(Tn)2

∣∣Fn]− aS(0)2
)

= S(0) +
A(0)

P (0, Tp)

(
aEA

[
S(Tn)2

∣∣Fn]− a (EA [S(Tn)| Fn]
)2)

= S(0) +
A(0)

P (0, Tp)
aVarA (S(Tn)) . (A.57)

and

ΛgCMS(0) = ETp [S(Tn)| Fn]− S(0)

= VgCMS(0)− S(0)

=
A(0)

P (0, Tp)
aVarA (S(Tn)) . (A.58)

We used the following to get (A.57): first two times basic calculations, linearity of expecta-
tion and taking out what is known, martingale property, no-arbitrage condition (3.29), basic
calculations, martingale property, definition of the variance.

A.9 Proof of Lemma 3.5.6

We want to determine the first and second derivative of α(s). Using the quotient rule we obtain
the following two expressions:

dα

ds
=
z dyds − y

dz
ds

z2
, (A.59)

and

d2α

ds2
=
z
(
z d

2y
ds2
− y d2z

ds2

)
− 2dzds

(
z dyds − y

dz
ds

)
z3

. (A.60)
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Expression (A.60) is valid since,

d2α

ds2
=
z2 d

ds

(
z dyds − y

dz
ds

)
−
(
z dyds − y

dz
ds

)
d
ds

(
z2
)

(z2)2

=
z2
[
d
ds

(
z dyds

)
− d

ds

(
y dzds
)]
−
(
z dyds − y

dz
ds

)
2z dzds

z4

=
z
[
dz
ds
dy
ds + z d

2y
ds2
−
(
dy
ds
dz
ds + y d

2z
ds2

)]
− 2dzds

(
z dyds − y

dz
ds

)
z3

=
z
(
z d

2y
ds2
− y d2z

ds2

)
− 2dzds

(
z dyds − y

dz
ds

)
z3

.

The next step is to obtain expressions for dy
ds , d2y

ds2
, dz
ds and d2z

ds2
. For dy

ds and d2y
ds2

we have:

dy

ds
= 1,

d2y

ds2
= 0.

To get an expression for dz
ds we write:

z(s) = 1− h(s), (A.61)

where

h(s) =
N−1∏
i=0

1

1 + τis
. (A.62)

So we have

dz

ds
=

d

ds
(1− h(s))

= −dh
ds
. (A.63)

Now taking the logarithm on both sides of equation (A.62), we can write:

log(h(s)) = log

(
N−1∏
i=0

1

1 + τis

)

=

N−1∑
i=0

log

(
1

1 + τis

)

=

N−1∑
i=0

log
(
(1 + τis)

−1
)
. (A.64)

Differentiating equation (A.64) on both sides we get:

1

h(s)

dh

ds
=

N−1∑
i=0

1

(1 + τis)−1
· −(1 + τis)

−2 · τi

=
N−1∑
i=0

(1 + τis) · −(1 + τis)
−2 · τi

=

N−1∑
i=0

−τi
1 + τis

.



APPENDIX A. PROOFS 104

So we have:

dh

ds
= h(s)

N−1∑
i=0

−τi
1 + τis

=
N−1∏
i=0

1

1 + τis

N−1∑
i=0

−τi
1 + τis

.

Thus,

dz

ds
= −

N−1∏
i=0

1

1 + τis

N−1∑
i=0

−τi
1 + τis

=

N−1∏
i=0

1

1 + τis

N−1∑
i=0

τi
1 + τis

. (A.65)

For the second derivative of z we can write:

d2z

ds2
=

d

ds

(
N−1∏
i=0

1

1 + τis

N−1∑
i=0

τi
1 + τis

)

=
d

ds

(
h(s)

N−1∑
i=0

τi
1 + τis

)

=
dh

ds

N−1∑
i=0

τi
1 + τis

+ h(s)
d

ds

(
N−1∑
i=0

τi
1 + τis

)

=
dh

ds

N−1∑
i=0

τi
1 + τis

+ h(s)
d

ds

(
N−1∑
i=0

τi(1 + τis)
−1

)

=
dh

ds

N−1∑
i=0

τi
1 + τis

+ h(s)
N−1∑
i=0

−τi(1 + τis)
−2 · τi

=
dh

ds

N−1∑
i=0

τi
1 + τis

+ h(s)
N−1∑
i=0

−
(

τi
1 + τis

)2

=

N−1∏
i=0

1

1 + τis

N−1∑
i=0

−τi
1 + τis

N−1∑
i=0

τi
1 + τis

+

N−1∏
i=0

1

1 + τis

N−1∑
i=0

−
(

τi
1 + τis

)2

= −
N−1∏
i=0

1

1 + τis

(
N−1∑
i=0

τi
1 + τis

)2

−
N−1∏
i=0

1

1 + τis

N−1∑
i=0

(
τi

1 + τis

)2

= −

N−1∏
i=0

1

1 + τis

(
N−1∑
i=0

−τi
1 + τis

)2

+

N−1∏
i=0

1

1 + τis

N−1∑
i=0

(
τi

1 + τis

)2
 .
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A.10 Proof of Lemma 3.5.9

We want to determine the first and second derivatives of α(s). For the first derivative of α(s)
we get

d

ds
α(s) =

d

ds

(
1∑N−1

n=0 τnz(s)
ϑn+1

)

=
−1(∑N−1

n=0 τnz(s)
ϑn+1

)2

d

ds

(
N−1∑
n=0

τnz(s)
ϑn+1

)

=
−
∑N−1

n=0
d
ds

(
τnz(s)

ϑn+1
)(∑N−1

n=0 τn(z(s))ϑn+1

)2

=
−
∑N−1

n=0 τnϑn+1z(s)
ϑn+1−1 dz

ds(∑N−1
n=0 τn(z(s))ϑn+1

)2

=
−dz
ds

∑N−1
n=0 τnϑn+1z(s)

ϑn+1−1(∑N−1
n=0 τn(z(s))ϑn+1

)2 . (A.66)

Note that we need the first derivative of z(s) with respect to s. Using expression (3.91) we can
write:

z(s) = 1− s
N−1∑
n=0

τnz(s)
ϑn+1 . (A.67)

Next we will make use of implicit differentiation and obtain:

dz

ds
= −

N−1∑
n=0

τnz(s)
ϑn+1 − sdz

ds

N−1∑
n=0

τnϑn+1z(s)
ϑn+1−1.

We can rewrite this as,

dz

ds

(
1 + s

N−1∑
n=0

τnϑn+1z(s)
ϑn+1−1

)
= −

N−1∑
n=0

τnz(s)
ϑn+1 .

Thus we obtain,

dz

ds
=

−
∑N−1

n=0 τnz(s)
ϑn+1

1 + s
∑N−1

n=0 τnϑn+1z(s)ϑn+1−1
.

For notational convenience we define:

α(s) =
Υ1(s)

Υ2(s)
,

where

Υ1(s) = −dz
ds

N−1∑
n=0

τnϑn+1z(s)
ϑn+1−1,

Υ2(s) =

(
N−1∑
n=0

τn(z(s))ϑn+1

)2

.
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For the second derivative of α(s) we then have,

d2

ds2
α(s) =

Υ2(s)dΥ1
ds −Υ1(s)dΥ2

ds

(Υ2(s))2
. (A.68)

For the first derivative of Υ1(s) with respect to s we have,

dΥ1

ds
=

d

ds

(
−dz
ds

N−1∑
n=0

τnϑn+1z(s)
ϑn+1−1

)

= −d
2z

ds2

N−1∑
n=0

τnϑn+1z(s)
ϑn+1−1 − dz

ds

d

ds

(
N−1∑
n=0

τnϑn+1z(s)
ϑn+1−1

)

= −d
2z

ds2

N−1∑
n=0

τnϑn+1z(s)
ϑn+1−1

− dz

ds

N−1∑
n=0

d

ds

(
τnϑn+1z(s)

ϑn+1−1
)

= −d
2z

ds2

N−1∑
n=0

τnϑn+1z(s)
ϑn+1−1

− dz

ds

N−1∑
n=0

τnϑn+1(ϑn+1 − 1)z(s)ϑn+1−2dz

ds

= −d
2z

ds2

N−1∑
n=0

τnϑn+1z(s)
ϑn+1−1

−
(
dz

ds

)2 N−1∑
n=0

τnϑn+1(ϑn+1 − 1)z(s)ϑn+1−2. (A.69)

Note that we need the second derivative of z(s) with respect to s. We have,

d2z

ds2
=

(
1 + s

∑N−1
n=0 τnϑn+1z(s)

ϑn+1−1
)

d
ds

(
−
∑N−1

n=0 τnz(s)
ϑn+1

)
(

1 + s
∑N−1

n=0 τnϑn+1z(s)ϑn+1−1
)2

−

(
−
∑N−1

n=0 τnz(s)
ϑn+1

)
d
ds

(
1 + s

∑N−1
n=0 τnϑn+1z(s)

ϑn+1−1
)

(
1 + s

∑N−1
n=0 τnϑn+1z(s)ϑn+1−1

)2

=
−dz
ds

∑N−1
n=0 τnϑn+1z(s)

ϑn+1−1

1 + s
∑N−1

n=0 τnϑn+1z(s)ϑn+1−1

+

(∑N−1
n=0 τnz(s)

ϑn+1

)(∑N−1
n=0 τnϑn+1z(s)

ϑn+1−1 + s dds

(∑N−1
n=0 τnϑn+1z(s)

ϑn+1−1
))

(
1 + s

∑N−1
n=0 τnϑn+1z(s)ϑn+1−1

)2

=
−dz
ds

∑N−1
n=0 τnϑn+1z(s)

ϑn+1−1

1 + s
∑N−1

n=0 τnϑn+1z(s)ϑn+1−1

+

(∑N−1
n=0 τnz(s)

ϑn+1

)(∑N−1
n=0 τnϑn+1z(s)

ϑn+1−1 + sdzds
∑N−1

n=0 τnϑn+1(ϑn+1 − 1)z(s)ϑn+1−2
)

(
1 + s

∑N−1
n=0 τnϑn+1z(s)ϑn+1−1

)2 .

(A.70)
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For the first derivative of Υ2(s) with respect to s we have,

dΥ2

ds
=

d

ds

(N−1∑
n=0

τn(z(s))ϑn+1

)2


= 2

(
N−1∑
n=0

τn(z(s))ϑn+1

)
d

ds

(
N−1∑
n=0

τn(z(s))ϑn+1

)

= 2

(
N−1∑
n=0

τn(z(s))ϑn+1

)(
dz

ds

N−1∑
n=0

τnϑn+1z(s)
ϑn+1−1

)
. (A.71)

A.11 Proof of Lemma 4.5.2

The proof we present here can be found in [37, pp. 737-738]. The value of the density ψTp(K)
at point K is equal to the (undiscounted) value of the security with the delta-function payoff,
δ(S(T )−K),

ψTp(K) = ETp [δ(S(T )−K)] . (A.72)

By switching to the annuity measure, using the law of iterated conditional expectation, and the
definition (3.27) of α(s), we obtain

ψTp(K) =
A(0)

P (0, Tp)
α(K)EA

[
P (T, Tp)

A(T )
δ(S(T )−K)

]
=

A(0)

P (0, Tp)
α(K)EA [α(S(T ))δ(S(T )−K)]

=
A(0)

P (0, Tp)
α(K)EA [δ(S(T )−K)]

=
A(0)

P (0, Tp)
α(K)ψA(K).

Expression (4.31), follows trivially.

A.12 Proof of Lemma 4.4.4

The inverse of Ψ, denoted by Ψ−1, exists since Ψ is continuous. Suppose that X ∼ H, then

P(Ψ(X) ≤ u) = P(Ψ−1(Ψ(X)) ≤ Ψ−1(u))

= P(X ≤ Ψ−1(u))

= H(Ψ−1(u)).

If H = Ψ, then
H(Ψ−1(u)) = Ψ(Ψ−1(u)) = u.

Now suppose that Ψ(X) ∼ U [0, 1], then

u = P(Ψ(X) ≤ u)

= H(Ψ−1(u)).

Hence, H = Ψ.
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A.13 Proof of Theorem 4.4.5

A full proof of Sklar’s Theorem can be found [41] and [32]. We are going to proof Sklar’s
Theorem for the two-dimensional case, where the marginal distribution functions are assumed
to be continuous.

Let X = (X1, X2)′ be a random vector with joint distribution function Ψ and continuous
marginal distribution functions Ψ1,Ψ2. Since the marginal distribution functions are continuous,
we have:

P(X1 ≤ x1, X2 ≤ x2) = P(Ψ1(X1) ≤ Ψ1(x1),Ψ2(X2) ≤ Ψ2(x2)). (A.73)

From Lemma 4.4.4 we know that for i = 1, 2:

Ψi(Xi) ∼ U [0, 1]. (A.74)

The existence follows directly from the definition of the copula, Definition 4.4.3, since (Ψ1(X1)Ψ2(X2))′

has a copula C as its joint distribution function.
What is left to prove is the uniqueness. Let xi = Ψ−1

i (ui) for all i = 1, 2, then by continuity
of the marginal distribution functions we have,

C(u1, u2) = Ψ(Ψ−1
1 (u1),Ψ−1

2 (u2)). (A.75)

Since (A.75) is an explicit expression, C must be unique.
Conversely, let C be a copula and Ψ1,Ψ2 be continuous univariate distribution functions.

Suppose the random vector U = (U1, U2)′ has joint distribution function C. Let X = (Ψ−1
1 (U1),Ψ−1

2 (U2))′

then by Lemma 4.4.4 we have,

P(X1 ≤ x1, X2 ≤ x2) = P(Ψ−1
1 (U1) ≤ x1,Ψ

−1
2 (U2) ≤ x2)

= P(U1 ≤ Ψ1(x1), U2 ≤ Ψ2(x2))

= C(Ψ1(x1),Ψ2(x2)). (A.76)

A.14 Proof of Lemma 4.4.6

The proof of the multi-dimensional case can be found in [37, pp. 771-772]. We are going to
proof the two-dimensional case. From Sklar’s Theorem, Theorem 4.4.5, we have

ΨC(x1, x2) = C(Ψ1(x1),Ψ2(x2)). (A.77)

The PDF is the derivative of the CDF, so differentiating the copula function gives us

ψC(x1, x2) =
∂2

∂x1∂x2
ΨC(x1, x2)

=
∂2

∂x1∂x2
C(Ψ1(x1),Ψ2(x2))

=
∂2C(Ψ1(x1),Ψ2(x2))

∂Ψ1(x1)∂Ψ2(x2)

∂Ψ1(x1)

∂x1

∂Ψ2(x2)

∂x2

=
∂2C(Ψ1(x1),Ψ2(x2))

∂Ψ1(x1)∂Ψ2(x2)
ψ1(x1)ψ2(x2)

= c(Ψ1(x1),Ψ2(x2))ψ1(x1)ψ2(x2),

where

c(u1, u2) =
∂2

∂u1∂u2
C(u1, u2).
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A.15 Proof of Theorem 5.3.1

Piterbarg [34] mentions that the original proof in [18] is fairly involved. Instead he follows a
different approach inspired by Savine (see [39]), which is a much more financially-motivated
approach. This is also the approach we will follow.

Before we start with the proof we first have to address the problem of applying Itô’s lemma to
non-differentiable functions. Itô established a link between stochastic processes and differentiable
solutions. For any stochastic process

dX(t) = µ(t)dt+ σ(t)dW (t),

and any twice-continuously differentiable function f(t,X(t)), we have

df(t,X(t)) =
∂

∂t
f(t,X(t))dt+

∂

∂X(t)
f(t,X(t))dX(t) +

1

2

∂2

∂X2(t)
f(t,X(t))(dX(t))2. (A.78)

For call option prices we have the following expression

C(t,K) = E[max{X(t)−K, 0}]. (A.79)

Now let f(t,X(t)) = max{X(t) −K, 0}. Note, that in this case we cannot apply Itô’s lemma.
In [39] a new type of differentiation is described for these type of functions. The functions are
differentiable in the sense of distributions. Using the results from [39] we obtain the following
partial derivatives for f(t,X(t)) = max{X(t)−K, 0}:

∂

∂t
f(t,X(t)) = 0, (A.80)

∂

∂X
f(t,X(t)) = 1{X(t)>K}, (A.81)

∂2

∂X2
f(t,X(t)) = δ(X(t)−K). (A.82)

We can apply the Itô-Tanaka formula to the function f(t,X(t)) = max{X(t)−K, 0} and obtain:

max{X(T )−K, 0} = max{X(0)−K, 0}+

∫ T

0
1{X(t)>K}dX(t) +

1

2

∫ t

0
δ(X(t)−K)(dX(t))2.

(A.83)
Now, we are ready to start with the proof. In general we are mostly concerned about the
volatility function, so we set µ(t) = 0. The dynamic for the stochastic process X(t) are now
given by

dX(t) = σ(t)dW (t). (A.84)

From Dupire’s theorem, [14] we already now that in the local volatility model,

dY (t) = b(t, Y (t)dW (t)), (A.85)

for a given call option C(t,K) the local volatility b(t, Y (t)) can be expressed as:

b2(t,K) =
∂
∂tC(t,K)

1
2
∂2

∂K2C(t,K)
. (A.86)

The dynamics of f(t,X(t)) = max{X(t)−K, 0} are derived from the Itô-Tanaka formula:

df(t,X(t)) =
∂

∂t
f(t,X(t)) +

∂

∂X
f(t,X(t))dX(t) +

1

2

∂2

∂X2
f(t,X(t))(dX(t))2

= 1{X(t)>K}dX(t) +
1

2
δ(X(t)−K)(dX(t))2

= 1{X(t)>K}σ(t)dW (t) +
1

2
δ(X(t)−K)σ2(t)dt. (A.87)
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On the other hand the expectation of the payoff is given by:

E[max{X(T )−K, 0}] = max{X(0)−K, 0}+ E
[∫ T

0
1{X(t)>K}dX(t)

]
+

1

2
E
[∫ t

0
δ(X(t)−K)(dX(t))2

]
= max{X(0)−K, 0}+

1

2

∫ t

0
E
[
δ(X(t)−K)(dX(t))2

]
= max{X(0)−K, 0}+

1

2

∫ t

0
E
[
δ(X(t)−K)σ2(t)

]
dt. (A.88)

We can rewrite E
[
δ(X(t)−K)σ2(t)

]
as follows:

E
[
δ(X(t)−K)σ2(t)

]
= E

[
E
[
δ(X(t)−K)σ2(t)

∣∣X(t) = K
]]

= E [δ(X(t)−K)]E
[
σ2(t)

∣∣X(t) = K
]
. (A.89)

Making use of (A.81) and (A.82) we get:

δ(X(t)−K) =
∂2

∂K2
max{X(t)−K, 0}. (A.90)

Substituting (A.90) in (A.89) we obtain:

E
[
δ(X(t)−K)σ2(t)

]
= E

[
∂2

∂K2
max{X(t)−K, 0}

]
E
[
σ2(t)

∣∣X(t) = K
]

=
∂2

∂K2
E [max{X(t)−K, 0}]E

[
σ2(t)

∣∣X(t) = K
]

=
∂2

∂K2
C(t,K)E

[
σ2(t)

∣∣X(t) = K
]
. (A.91)

For the partial derivative of the call price with respect to the time of maturity we have:

∂

∂T
C(T,K) =

∂

∂T

(
max{X(0)−K, 0}+

1

2

∫ t

0
E
[
δ(X(t)−K)σ2(t)

]
dt

)
=

1

2
E
[
δ(X(t)−K)σ2(t)

]
=

1

2

∂2

∂K2
C(T,K)E

[
σ2(t)

∣∣X(T ) = K
]
. (A.92)

Therefore,

E
[
σ2(t)

∣∣X(t) = K
]

=
∂
∂tC(t,K)

1
2
∂2

∂K2C(t,K)
. (A.93)

Since matching European option prices for all strikes and maturities is equivalent to matching
all one-dimensional distributions, [14], we have:

b2(t,K) = E
[
σ2(t)

∣∣X(t) = K
]
. (A.94)
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A.16 Proof of Lemma 5.4.3

Using a first-order Taylor expansion for fij(t) = f(Si(t), Sj(t), ui(t), uj(t)), we obtain:

fij(t) ≈ f(Si(0), Sj(0), ui(0), uj(0)) + (Si(t)− Si(0))
∂f

∂Si
(Si(0), Sj(0), ui(0), uj(0))

+ (Sj(t)− Sj(0))
∂f

∂Sj
(Si(0), Sj(0), ui(0), uj(0))

+ (ui(t)− ui(0))
∂f

∂ui
(Si(0), Sj(0), ui(0), uj(0))

+ (uj(t)− uj(0))
∂g

∂uj
(Si(0), Sj(0), ui(0), uj(0))

= ϕ(Si(0))ϕ(Sj(0))ui(0)uj(0) + (Si(t)− Si(0))ϕ′(Si(0))ϕ(Sj(0))ui(0)uj(0)

+ (Sj(t)− Sj(0))ϕ(Si(0))ϕ′(Sj(0))ui(0)uj(0)

+ (ui(t)− ui(0))ϕ(Si(0))ϕ(Sj(0))u′i(0)uj(0)

+ (uj(t)− uj(0))ϕ(Si(0))ϕ(Sj(0))ui(0)u′j(0)

= ϕ(Si(0))ϕ(Sj(0)) + (Si(t)− Si(0))ϕ′(Si(0))ϕ(Sj(0))

+ (Sj(t)− Sj(0))ϕ(Si(0))ϕ′(Sj(0)) + (ui(t)− 1)ϕ(Si(0))ϕ(Sj(0))

+ (uj(t)− 1)ϕ(Si(0))ϕ(Sj(0)).

(A.95)

Now, using (5.38) and (5.39) we can write,

fij(t) ≈ pipj + (Si(t)− Si(0))qipj + (Sj(t)− Sj(0))piqj

+ (ui(t)− 1)pipj + (uj(t)− 1)pipj

= pipj

(
1 +

qi
pi

(Si(t)− Si(0)) +
qj
pj

(Sj(t)− Sj(0)) + (ui(t)− 1) + (uj(t)− 1)

)
. (A.96)

Similarly, we obtain for gij(t) = g(ui(t), uj(t)):

gij(t) ≈ g(ui(0), uj(0)) + (ui(t)− ui(0))
∂g

∂ui
(ui(0), uj(0)) + (uj(t)− uj(0))

∂g

∂uj
(ui(0), uj(0))

=
1

p2
pipjui(0)uj(0) + (ui(t)− ui(0))

1

p2
pipju

′
i(0)uj(0) + (uj(t)− uj(0))

1

p2
pipjui(0)u′j(0)

=
1

p2
pipj + (ui(t)− 1)

1

p2
pipj + (uj(t)− 1)

1

p2
pipj

=
pipj
p2

(1 + (ui(t)− 1) + (uj(t)− 1)) . (A.97)

A.17 Proof of Lemma 5.4.4

Applying (5.25) to E[ S̄i(t)− S̄i(0)
∣∣ S̄(t) = x], we obtain:

E[ S̄i(t)− S̄i(0)
∣∣ S̄(t) = x] = E[S̄i(t)− S̄i(0)] +

Cov(S̄i(t)− S̄i(0), S̄(t))

Var(S̄(t))
(x− E[S̄(t)]). (A.98)

To get an expression for E[ S̄i(t)− S̄i(0)
∣∣ S̄(t) = x] we have to calculate the respective terms.

First, we calculate E[S̄i(t)− S̄i(0)]:

E[S̄i(t)− S̄i(0)] = E
[
S̄i(0) +

∫ t

0
pidWi(s)− S̄i(0)

]
= E

[∫ t

0
pidWi(s)

]
= 0. (A.99)
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Secondly, we calculate E[S̄(t)]:

E
[
S̄(t)

]
= E

[
S̄(0) +

∫ t

0
pdW̄ (s)− S̄i(0)

]
= S̄(0) + E

[∫ t

0
pdW̄ (s)− S̄i(0)

]
= S̄(0) = S(0).

(A.100)

Thirdly, we calculate Var(S̄(t)):

Var(S̄(t)) = E[S̄2(t)]−
(
E[S̄(t)]

)2
= E

[(
S̄(0) +

∫ t

0
pdW̄ (s)

)2
]
− S̄2(0)

= E

[
S̄2(0) + 2S̄(0)

∫ t

0
pdW̄ (s) +

(∫ t

0
pdW̄ (s)

)2
]
− S̄2(0)

= S̄2(0) + 2S̄(0)E
[∫ t

0
pdW̄ (s)

]
+ E

[(∫ t

0
pdW̄ (s)

)2
]
− S̄2(0)

= E
[∫ t

0
p2ds

]
=

∫ t

0
E
[
p2
]
ds =

∫ t

0
p2ds

= p2t. (A.101)

Finally, we calculate Cov(S̄i(t)− S̄i(0), S̄(t)):

Cov(S̄i(t)− S̄i(0), S̄(t)) = E[(S̄i(t)− S̄i(0))S̄(t)]− E[S̄i(t)− S̄i(0)]E
[
S̄(t)

]
= E[(S̄i(t)− S̄i(0))S̄(t)]

= E
[(
S̄i(0) +

∫ t

0
pidWi(s)− S̄i(0)

)(
S̄(0) +

∫ t

0
pdW̄ (s)

)]
= E

[
S̄(0)

∫ t

0
pidWi(s) +

(∫ t

0
pidWi(s)

)(∫ t

0
pdW̄ (s)

)]
= S̄(0)E

[∫ t

0
pidWi(s)

]
+ E

[(∫ t

0
pidWi(s)

)(∫ t

0
pdW̄ (s)

)]
= E

[∫ t

0
pipρids

]
=

∫ t

0
E [pipρi] ds =

∫ t

0
pipρids

= pipρit. (A.102)

Note that we made use of Itô isometry and the fact that the expectation of an Itô integral is
zero. Substituting (A.99), (A.100), (A.101) and (A.102) in (A.98) we obtain:

E[ S̄i(t)− S̄i(0)
∣∣ S̄(t) = x] =

piρi
p

(x− S(0)). (A.103)

Now, we apply (5.25) to E[ ūi(t)− 1| S̄(t) = x] we obtain:

E[ ūi(t)− 1| S̄(t) = x] = E[ūi(t)− 1] +
Cov(ūi(t)− 1, S̄(t))

Var(S̄(t))
(x− E[S̄(t)]). (A.104)

To get an expression for E[ ūi(t)− 1| S̄(t) = x] we only have to calculate two terms, since the
other terms are already calculated. First, we calculate E[ūi(t)− 1]:

E[ūi(t)− 1] = E
[
ūi(0) +

∫ t

0
νidZi(s)− 1

]
= E

[∫ t

0
νidZi(s)

]
= 0. (A.105)
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Finally, we calculate Cov(ūi(t)− 1, S̄(t)):

Cov(ūi(t)− 1, S̄(t)) = E[(ūi(t)− 1)S̄(t)]− E[ūi(t)− 1]E
[
S̄(t)

]
= E[(ūi(t)− 1)S̄(t)]

= E
[(
ūi(0) +

∫ t

0
νidZi(s)− 1

)(
S̄(0) +

∫ t

0
pdW̄ (s)

)]
= E

[
S̄(0)

∫ t

0
νidZi(s) +

(∫ t

0
νidZi(s)

)(∫ t

0
pdW̄ (s)

)]
= S̄(0)E

[∫ t

0
νidZi(s)

]
+ E

[(∫ t

0
νidZi(s)

)(∫ t

0
pdW̄ (s)

)]
= E

[∫ t

0
νipρi+2ds

]
=

∫ t

0
E [νipρi+2] ds =

∫ t

0
νipρi+2ds

= νipρi+2t. (A.106)

Substituting (A.105), (A.100), (A.101) and (A.106) in (A.104) we obtain:

E[ ūi(t)− 1| S̄(t) = x] =
νiρi+2

p
(x− S(0)). (A.107)

A.18 Proof of Lemma 5.4.5

For E
[
σ2(t)

∣∣S(t) = x
]

we have:

E
[
σ2(t)

∣∣S(t) = x
]

= E [f11(t) + f22(t)− 2ρijf12(t)|S(t) = x]

= E [f11(t)|S(t) = x] + E [f22(t)|S(t) = x]− 2ρ12E [f12(t)|S(t) = x] .
(A.108)

Using (A.103) we can calculate the three terms in (A.108). For E [f11(t)|S(t) = x] we have:

E [f11(t)|S(t) = x] = E
[
p2

1

(
1 + 2

q1

p1
(S1(t)− S1(0)) + 2(u1(t)− 1)

)∣∣∣∣S(t) = x

]
= p2

1

(
1 + 2

q1

p1
E [ (S1(t)− S1(0))|S(t) = x] + 2E [ (u1(t)− 1)|S(t) = x]

)
≈ p2

1

(
1 + 2

q1

p1
E
[
(S̄1(t)− S̄1(0))

∣∣ S̄(t) = x
]

+ 2E
[
(ū1(t)− 1)| S̄(t) = x

])
= p2

1

(
1 + 2

q1

p1

p1ρ1

p
(x− S(0)) + 2

ν1ρ3

p
(x− S(0))

)
= p2

1

(
1 + 2

q1ρ1

p
(x− S(0)) + 2

ν1ρ3

p
(x− S(0))

)
. (A.109)

For E [f22(t)|S(t) = x] we have:

E [f22(t)|S(t) = x] = E
[
p2

2

(
1 + 2

q2

p2
(S2(t)− S2(0)) + 2(u2(t)− 1)

)∣∣∣∣S(t) = x

]
= p2

2

(
1 + 2

q2

p2
E [ (S2(t)− S2(0))|S(t) = x] + 2E [ (u2(t)− 1)|S(t) = x]

)
≈ p2

2

(
1 + 2

q2

p2
E
[
(S̄2(t)− S̄2(0))

∣∣ S̄(t) = x
]

+ 2E
[
(ū2(t)− 1)| S̄(t) = x

])
= p2

2

(
1 + 2

q2

p2

p2ρ2

p
(x− S(0)) + 2

ν2ρ4

p
(x− S(0))

)
= p2

2

(
1 + 2

q2ρ2

p
(x− S(0)) + 2

ν2ρ4

p
(x− S(0))

)
. (A.110)
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For E [f12(t)|S(t) = x] we have:

E [f12(t)|S(t) = x] = E
[
p1p2

(
1 +

q1

p1
(S1(t)− S1(0)) +

q2

p2
(S2(t)− S2(0))

+ (u1(t)− 1) + (u2(t)− 1)
)∣∣∣S(t) = x

]
= p1p2 + p2q1E [S1(t)− S1(0)|S(t) = x] + p1q2E [S2(t)− S2(0)|S(t) = x]

+ p1p2E [u1(t)− 1|S(t) = x] + p1p2E [u2(t)− 1|S(t) = x]

≈ p1p2 + p2q1E
[
S̄1(t)− S̄1(0)

∣∣ S̄(t) = x
]

+ p1q2E
[
S̄2(t)− S̄2(0)

∣∣ S̄(t) = x
]

+ p1p2E
[
ū1(t)− 1| S̄(t) = x

]
+ p1p2E

[
ū2(t)− 1| S̄(t) = x

]
= p1p2 + p2q1

p1ρ1

p
(x− S(0)) + p1q2

p2ρ2

p
(x− S(0))

+ p1p2
ν1ρ3

p
(x− S(0)) + p1p2

ν2ρ4

p
(x− S(0)). (A.111)

Substituting (A.109), (A.110) and (A.111) in (A.108) we obtain:

E
[
σ2(t)

∣∣S(t) = x
]
≈ p2

1 + p2
2 − 2p1p2ρ12

+ 2
p2

1q1ρ1

p
(x− S(0)) + 2

p2
1ν1ρ3

p
(x− S(0))

+ 2
p2

2q2ρ2

p
(x− S(0)) + 2

p2
2ν2ρ4

p
(x− S(0))

− 2
p2q1p1ρ1ρ12

p
(x− S(0))− 2

p1p2q2ρ2ρ12

p
(x− S(0))

− 2
p1p2ν1ρ3ρ12

p
(x− S(0))− 2

p1p2ν2ρ4ρ12

p
(x− S(0))

= p2
1 + p2

2 − 2p1p2ρ12

+
2

p

(
p2

1q1ρ1 + p2
1ν1ρ3 + p2

2q2ρ2 + p2
2ν2ρ4 − p2q1p1ρ1ρ12 − p1p2q2ρ2ρ12−

p1p2ν1ρ3ρ12 − p1p2ν2ρ4ρ12) (x− S(0))

= p2
1 + p2

2 − 2p1p2ρ12

+
2

p

(
p2

1(q1ρ1 + ν1ρ3) + p2
2(q2ρ2 + ν2ρ4)− p1p2ρ12(q1ρ1 + q2ρ2 + ν1ρ3

+ν2ρ4)) (x− S(0))

= p2
1 + p2

2 − 2p1p2ρ

+
2

p

(
p2

1(q1ρ1 + ν1ρ3) + p2
2(q2ρ2 + ν2ρ4)− p1p2ρ(q1ρ1 + q2ρ2 + ν1ρ3

+ν2ρ4)) (x− S(0)),

= p2 + (x− S(0))Θ1, (A.112)

with

p =
√
p2

1 + p2
2 − 2p1p2ρ, (A.113)

Θ1 =
2

p

(
p2

1(q1ρ1 + ν1ρ3) + p2
2(q2ρ2 + ν2ρ4)− p1p2ρ(q1ρ1 + q2ρ2 + ν1ρ3 + ν2ρ4)

)
. (A.114)
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Next, we compute E
[
u2(t)

∣∣S(t) = x
]
:

E
[
u2(t)

∣∣S(t) = x
]

= E [g11(t) + g22(t)− 2ρijg12(t)|S(t) = x]

= E [g11(t)|S(t) = x] + E [g22(t)|S(t) = x]− 2ρijE [g12(t)|S(t) = x] .
(A.115)

Using (A.107) we can calculate the three terms in (A.115). For E [g11(t)|S(t) = x] we have:

E [g11(t)|S(t) = x] = E
[
p2

1

p2
(1 + 2(u1(t)− 1))

∣∣∣∣S(t) = x

]
=
p2

1

p2
(1 + 2E [u1(t)− 1|S(t) = x])

≈ p2
1

p2

(
1 + 2E

[
ū1(t)− 1| S̄(t) = x

])
=
p2

1

p2

(
1 + 2

ν1ρ3

p
(x− S(0))

)
. (A.116)

For E [g22(t)|S(t) = x] we have:

E [g22(t)|S(t) = x] = E
[
p2

2

p2
(1 + 2(u2(t)− 1))

∣∣∣∣S(t) = x

]
=
p2

2

p2
(1 + 2E [u2(t)− 1|S(t) = x])

≈ p2
2

p2

(
1 + 2E

[
ū2(t)− 1| S̄(t) = x

])
=
p2

2

p2

(
1 + 2

ν2ρ4

p
(x− S(0))

)
. (A.117)

For E [g12(t)|S(t) = x] we have:

E [g12(t)|S(t) = x] = E
[
p1p2

p2
(1 + (u1(t)− 1) + (u2(t)− 1))

∣∣∣∣S(t) = x

]
=
p1p2

p2
(1 + E [u1(t)− 1|S(t) = x] + E [u2(t)− 1|S(t) = x]) (A.118)

≈ p1p2

p2

(
1 + E

[
ū1(t)− 1| S̄(t) = x

]
+ E

[
ū2(t)− 1| S̄(t) = x

])
=
p1p2

p2

(
1 +

ν1ρ3

p
(x− S(0)) +

ν2ρ4

p
(x− S(0))

)
.

Substituting (A.116), (A.117) and (A.119) in (A.115) we obtain:

E
[
u2(t)

∣∣S(t) = x
]
≈ p2

1

p2

(
1 + 2

ν1ρ3

p
(x− S(0))

)
+
p2

2

p2

(
1 + 2

ν2ρ4

p
(x− S(0))

)
− 2ρij

p1p2

p2

(
1 +

ν1ρ3

p
(x− S(0)) +

ν2ρ4

p
(x− S(0))

)
=

1

p2
(p2

1 + p2
2 − 2ρ12p1p2)

+
2

p3

(
p2

1ν1ρ3 + p2
2ν2ρ4 − p1p2ν1ρ3ρ12 − p1p2ν2ρ4ρ12

)
(x− S(0))

=
p2

p2
+

2

p3
(ν1p1(p1 − p2ρ12)ρ3 + ν2p2(p2 − p1ρ12)ρ4) (x− S(0))

=
p2

p2
+

2

p3
(ν1p1(p1 − p2ρ)ρ3 + ν2p2(p2 − p1ρ)ρ4) (x− S(0))

= 1 + (x− S(0))Θ2, (A.119)

with

Θ2 =
2

p3
(ν1p1(p1 − p2ρ)ρ3 + ν2p2(p2 − p1ρ)ρ4) . (A.120)
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A.19 Proof of Lemma 5.4.6

From Lemma 5.4.5 it follows that,

F 2(x) ≈ p2 + (x− S(0))Θ1

1 + (x− S(0))Θ2
. (A.121)

Therefore,

F (x) ≈

√
p2 + (x− S(0))Θ1

1 + (x− S(0))Θ2
. (A.122)

We want to calculate F (S(0)) and F ′(S(0)). For F (S(0)) we have

F (S(0)) =

√
p2 + (S(0)− S(0))Θ1

1 + (S(0)− S(0))Θ2
= p. (A.123)

Next, we determine F ′(x):

F ′(x) =
1

2

(
p2 + (x− S(0))Θ1

1 + (x− S(0))Θ2

)−1/2
d

dx

(
p2 + (x− S(0))Θ1

1 + (x− S(0))Θ2

)
=

1

2
√

p2+(x−S(0))Θ1

1+(x−S(0))Θ2

(1 + (x− S(0))Θ2)Θ1 − (p2 + (x− S(0))Θ1)Θ2

(1 + (x− S(0))Θ2)2 . (A.124)

So for F ′(S(0)) we obtain:

F ′(S(0)) =
1

2p

(
Θ1 − p2Θ2

)
. (A.125)

Substituting (A.114) and (A.120) in (A.125) gives us

F ′(S(0)) =
1

p2
( p2

1q1ρ1 + p1ν1ρ3 + p2
2q2ρ2 + p2

2ν2ρ4 − p1p2q1ρ1ρ− p1p2q2ρ2ρ− p1p2ν1ρ3ρ

− p1p2ν2ρ4ρ− p2
1ν1ρ3 + p1p2ν1ρ3ρ− p2

2ν2ρ4 + p1p2ν2ρ4ρ
)

=
1

p2

(
p2

1q1ρ1 + p2
2q2ρ2 − p1p2q1ρ1ρ− p1p2q2ρ2ρ

)
=

1

p2
(p1q1ρ1(p1 − p2ρ) + p2q2ρ2(p2 − p1ρ)) .

Making use of

ρ1 =
p1 − p2ρ

p
, (A.126)

ρ2 =
p1ρ− p2

ρ
, (A.127)

we obtain:
F ′(S(0)) = q, (A.128)

where

q =
p1q1ρ

2
1 − p2q2ρ

2
2

p
. (A.129)



Appendix B

Market Data

In this appendix we present parts of the market data that were used for the numerical experi-
ments.

B.1 Market Data 2013

Start date ZCB Accrual

15-sep-14 0.995 0.997

14-sep-15 0.987 1.000

13-sep-16 0.972 1.000

13-sep-17 0.952 1.000

13-sep-18 0.929 1.000

13-sep-19 0.903 1.005

14-sep-20 0.875 0.997

13-sep-21 0.847 1.000

13-sep-22 0.818 1.000

13-sep-23 0.790 1.002

13-sep-24 0.761 1.005

15-sep-25 0.734 0.997

14-sep-26 0.707 0.997

13-sep-27 0.682 1.002

13-sep-28 0.658 1.000

13-sep-29 0.636 1.000

13-sep-30 0.615 1.005

15-sep-31 0.596 0.997

13-sep-32 0.578 1.000

13-sep-33 0.560 1.000

13-sep-34 0.544 -

Table B.1: Market data 2013 for 10Y and 2Y CMS rate with 12M frequency in 2013. Today’s
date is 11-sep-13.
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Reset date Pay date α0 β ρ ν

11-sep-14 14-sep-15 0.503 0.5 0.218 0.523

10-sep-15 13-sep-16 0.464 0.5 0.239 0.658

9-sep-16 13-sep-17 0.462 0.5 0.075 0.418

11-sep-17 13-sep-18 0.428 0.5 0.182 0.525

11-sep-18 13-sep-19 0.432 0.5 0.016 0.391

11-sep-19 14-sep-20 0.411 0.5 0.210 0.406

10-sep-20 13-sep-21 0.403 0.5 -0.010 0.365

9-sep-21 13-sep-22 0.389 0.5 0.106 0.375

9-sep-22 13-sep-23 0.387 0.5 -0.039 0.341

11-sep-23 13-sep-24 0.371 0.5 0.066 0.345

Table B.2: SABR parameters for the 10Y CMS rate in 2013. The SABR parameters were cali-
brated from given implied volatilities. Additionally, the reset dates and pay dates are reported.

Reset date Pay date α0 β ρ ν

11-sep-14 14-sep-15 0.635 0.5 0.540 0.565

10-sep-15 13-sep-16 0.633 0.5 0.477 0.543

9-sep-16 13-sep-17 0.599 0.5 0.441 0.441

11-sep-17 13-sep-18 0.550 0.5 0.356 0.428

11-sep-18 13-sep-19 0.513 0.5 0.280 0.356

11-sep-19 14-sep-20 0.482 0.5 0.350 0.336

10-sep-20 13-sep-21 0.445 0.5 0.189 0.334

9-sep-21 13-sep-22 0.426 0.5 0.195 0.340

9-sep-22 13-sep-23 0.410 0.5 0.108 0.318

11-sep-23 13-sep-24 0.382 0.5 0.119 0.335

Table B.3: SABR parameters for the 2Y CMS rate in 2013. The SABR parameters were cali-
brated from given implied volatilities. Additionally, the reset dates and pay dates are reported.
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period S̃i(0) α̃0
i β̃i γ̃ii ν̃i

10Y 0.026 0.510 0.5 0.253 0.531

2Y 0.011 0.641 0.5 0.548 0.571

Table B.4: Adjusted SABR parameters for the 10Y and 2Y CMS-adjusted rate in 2013. The
start date is 1 year from today, T0 = 1.

period S̃i(0) α̃0
i β̃i γ̃ii ν̃i

10Y 0.037 0.456 0.5 0.207 0.419

2Y 0.031 0.529 0.5 0.336 0.368

Table B.5: Adjusted SABR parameters for the 10Y and 2Y CMS-adjusted rate in 2013. The
start date is 5 years from today, T0 = 5.

Model ρ̃ γ̃12 γ̃21 ξ̃

DD SABR 0.691 0.999 0.999 1.000

Copula 0.736 - - -

Table B.6: Calibrated correlation parameters DD SABR model and copula approach. The start
date is 1 year from today, T0 = 1.

Model ρ̃ γ̃12 γ̃21 ξ̃

DD SABR 0.835 0.809 0.809 1.000

Copula 0.877 - - -

Table B.7: Calibrated correlation parameters DD SABR model and copula approach. The start
date is 5 years from today, T0 = 5.
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B.2 Market Data 2007

Start date ZCB Accrual

15-sep-08 0.956 0.997

14-sep-09 0.918 0.997

13-sep-10 0.879 1.000

13-sep-11 0.842 1.002

13-sep-12 0.807 1.000

13-sep-13 0.772 1.005

15-sep-14 0.738 0.997

14-sep-15 0.705 1.000

13-sep-16 0.673 1.000

13-sep-17 0.642 1.000

13-sep-18 0.612 1.000

13-sep-19 0.583 1.005

14-sep-20 0.555 0.997

13-sep-21 0.528 1.000

13-sep-22 0.503 1.000

13-sep-23 0.479 1.002

13-sep-24 0.456 1.005

15-sep-25 0.434 0.997

14-sep-26 0.414 0.997

13-sep-27 0.395 1.002

13-sep-28 0.377 -

Table B.8: Market data 2013 for 10Y and 2Y CMS rate with 12M frequency in 2007. Today’s
date is 11-sep-07.

Reset date Pay date α0 β ρ ν

11-sep-08 14-sep-09 0.275 0.5 -0.004 0.351

10-sep-09 13-sep-10 0.263 0.5 -0.116 0.358

9-sep-10 13-sep-11 0.259 0.5 -0.138 0.296

9-sep-11 13-sep-12 0.250 0.5 -0.116 0.349

11-sep-12 13-sep-13 0.248 0.5 -0.210 0.283

11-sep-13 15-sep-14 0.239 0.5 -0.131 0.326

11-sep-14 14-sep-15 0.240 0.5 -0.211 0.265

10-sep-15 13-sep-16 0.230 0.5 -0.137 0.304

9-sep-16 13-sep-17 0.231 0.5 -0.222 0.259

11-sep-17 13-sep-18 0.223 0.5 -0.132 0.278

Table B.9: SABR parameters for the 10Y CMS rate in 2007. The SABR parameters were cali-
brated from given implied volatilities. Additionally, the reset dates and pay dates are reported.
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Reset date Pay date α0 β ρ ν

11-sep-08 14-sep-09 0.335 0.5 -0.092 0.211

10-sep-09 13-sep-10 0.310 0.5 -0.106 0.248

9-sep-10 13-sep-11 0.294 0.5 -0.047 0.246

9-sep-11 13-sep-12 0.283 0.5 -0.010 0.268

11-sep-12 13-sep-13 0.275 0.5 -0.044 0.252

11-sep-13 15-sep-14 0.264 0.5 -0.028 0.273

11-sep-14 14-sep-15 0.258 0.5 -0.073 0.259

10-sep-15 13-sep-16 0.249 0.5 -0.055 0.276

9-sep-16 13-sep-17 0.244 0.5 -0.070 0.261

11-sep-17 13-sep-18 0.237 0.5 -0.054 0.265

Table B.10: SABR parameters for the 2Y CMS rate in 2007. The SABR parameters were cali-
brated from given implied volatilities. Additionally, the reset dates and pay dates are reported.

period S̃i(0) α̃0
i β̃i γ̃ii ν̃i

10Y 0.045 0.275 0.5 -0.050 0.366

2Y 0.043 0.333 0.5 -0.212 0.334

Table B.11: Adjusted SABR parameters for the 10Y and 2Y CMS-adjusted rate in 2007. The
start date is 1 year from today, T0 = 1.

period S̃i(0) α̃0
i β̃i γ̃ii ν̃i

10Y 0.048 0.246 0.5 -0.141 0.285

2Y 0.045 0.275 0.5 -0.087 0.256

Table B.12: Adjusted SABR parameters for the 10Y and 2Y CMS-adjusted rate in 2007. The
start date is 5 years from today, T0 = 5.
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