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Abstract—In this paper, we propose open machine learning
models that can provide airport delay predictions in a network
with an error of around or less than five minutes. Due to the
complexity of different components of air traffic networks, tradi-
tional flight performance model-based predictions fall short when
dealing with numerous flights and often are not able to deal with
delays that propagate among airports in a network. In this study,
we employ three different machine learning models to predict
delays at three different scopes: individual flights, airports, and
the network of airports. Consequently, we tested three approaches
with different levels of complexity, including statistical regression
models, recurrent neural networks, and spatial-temporal graph
attention neural networks. We conduct experiments for all three
types of models using the Eurocontrol research data archive. After
training and testing with two years of data covering the top
50 European airports, our models produce prediction errors of
around or less than 5 minutes with look-ahead time up to 3 hours.
These metrics have shown a significant advancement compared to
existing prediction models. We also openly share this model to
support open science in aviation.

Keywords — Flight delay, airport delay propagation, random forest,
recurrent neural network, graph attention neural network

I. INTRODUCTION

Flight delays significantly impact all stakeholders in the air traffic
system, including passengers, airlines, airports, and air navigation
service providers. A previous study has shown that around 20% of
flights in Europe experienced delays longer than 5 minutes in the year
2018 [1]. Delays can be either planned or unplanned. Planned delays
include air traffic flow management (ATFM) delays before an aircraft
takes off, and en-route ATFM delays. Delays can also be categorized
as reactionary or primary. Reactionary delays are caused by the late
arrival of the previous journey of an aircraft, while primary delays are
delays caused by other reasons.

From an airport perspective, the overall delays among all arriving
and departing flights are two key indicators that evaluate the airport’s
performance. Rather than focus on delays of individual flights, the
average delay of all flights can also further the understanding of the
propagation of delays among the networks of airports [2].

Over the past year, several studies have focused on the prediction of
delays. Some research has proposed a classification approach, which
essentially predicts the severity of delays using data-driven classifiers
[3], [4]. More accurate regression models have also been proposed. For
example, study [2] developed a non-parametric statistical approach to
model daily and seasonal trends and uses a mixture distribution to
estimate residual errors. A random forest model was proposed by [5]
and achieved a median estimation error of around 20 minutes. Another
study [6] proposed several methods including the Markov Jump Linear
System, regression trees, and a deep neural network that achieved an

airport estimation error of around 7 minutes for a 2-hour prediction
horizon for the top 30 airports in the USA. In a more recent study
[7], a recurrent neural network architecture was employed that embeds
the graph information to predict airport delays. When this model is
training on a non-sampled dataset, the method provides a mean error
of around 6.5 minutes for US airports for short look-ahead time.

Traffic prediction is not a problem unique to air transport; recent
research dealing with ground transport delay [8] employed a more
advanced graph attention neural network, to estimate road traffic.
The graph attention network was found to be superior in considering
features from connection transportation nodes. However, in [8], con-
nections between nodes are represented by constant matrices, which
is not the case for air traffic networks.

In this paper, we address the air traffic delay problem at three
different levels and propose three separate models that are better
suited to tackle each regression problem. For flight and airport delay
predictions, we design a classical machine learning approach and
recurrent neural network approaches. Both the classical random forest
approach and recurrent neural network approach provide estimation
errors that are comparable to or better than the state-of-the-art models.

The main innovation of this paper is the development of dynamic
spatial-temporal graph attention (DST-GAT) neural networks that can
be employed to accurately model and estimate the delays in the
network of airports. It allows us to achieve a very low mean estimation
error across the top 50 airports in Europe. It not only improves the
estimation accuracy of current prediction models but also provides a
new approach to modeling and studying delay propagation in the air
transport network. In the experiment section of this paper, we conduct
a thorough analysis of the error using two years of data from the
Eurocontrol R&D data archive.

Furthermore, the source code of all our models is publicly shared
along with the publication of this paper to encourage more open
science in aviation. Currently, this is one of few delay prediction
models that are publicly shared in aviation research.

II. METHODOLOGY

A. Data exploration
In this study, we use flights from the EUROCONTROL R&D

Data Archive 1 to model and evaluate various delay predictions. This
dataset provides all commercial flights that are registered on the
EUROCONTROL network. The flight plan and flown trajectory are
provided for each flight. It is worth noting that only four months
(March, June, September, and December) of data each year are
provided in this dataset, and hence these are the only available months
for constructing the prediction model.

The two predictor key parameters we consider are departure delays
and arrival delays. They are both calculated based on the flight plan and

1https://www.eurocontrol.int/dashboard/rnd-data-archive
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flown trajectory. The filed and actual off block time (FOBT and AOBT)
are already calculated and provided for all the flights each month. The
associated airports (departure and arrival) are also presented in the
dataset.

An additional feature, capacity at an airport, is defined as the frac-
tion of total arriving and departing flights compared to the maximum
capacity of the airport. Temporal features, month, and day of the week
are also included. For the single airport and network of airport models,
individual flight data is then aggregated over the same time intervals.
An overview of the data flow can be seen in Fig. 1.

EUROCONTROL 
R&D Data Archive

Extract Flight
Information

Calculate Delays Aggregate By Time
Intervals

Calculate Adjacency
Matrices

Network DatasetAirport DatasetFlight Dataset

Fig. 1: Data extraction flow for all three models

With the basic parameters generated from the dataset, we perform
an exploratory analysis of features and predictors (average arrival
and departure delays of an airport). Different levels of correlations
can already be seen between the features. Fig. 2 illustrates such
correlations. These correlations form the basis for our airport and
network delay prediction models.
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0.62 0.49 0.16 0.02 0.24 1 0.25 -0.23 0.6 0.02 -0.01 0.54

0.34 0.3 0.18 0.05 0.39 0.25 1 -0.1 0.34 0.1 0.01 0.16
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Fig. 2: Correlation heatmap for features used in airport and network
delay models, built with a subset of data for EGLL on January, 1,
2019

B. Flight arrival delay predictions
The flight arrival delay model focuses on predicting the single-event

arrival delay for individual flights. It also serves as the basis for the
later airport and network delay models. Compared to the later models,
three flight-specific parameters are available and used for training the
prediction models, which are filed off-block time, filed arrival time,
and departure delay at the origin airport.

Table I: Features for predicting flight arrival delays

Features Type

Departure delay Numerical (minutes)
Departure airport Categorical
Filed off-block time Numerical (15-min interval)
Filed arrival time Numerical (15-min interval)
Aircraft operator Categorical
Month Categorical
Day of week Categorical
Airport capacity Numerical (percentage)

Several common machine regression models are constructed for
flight arrival delay prediction. These models are K-Nearest Neighbor
(KNN) [9], Support Vector Machine (SVM) [10], Multiple Linear
Regression (MLR), and Random Forest (RF) [11].

We use cross-validations and grid searches to obtain the best
hyperparameters for the machine learning model. Once the models
are trained, we evaluate and compare the performance of all four
different models using three error metrics, including mean absolute
error (MAE), root mean squared error (RMSE), and coefficient of
determination (R2).

C. Airport delay predictions
The airport delay model aims to predict average arrival and depar-

ture delays for a given airport. Our main objective is to effectively
capture the dynamic of delay evolution during daily operations. To
this extent, we propose a recurrent neural network, specifically, the
long-short term memory (LSTM) network [12] to consider the spatial
dynamic of airport delays. The LSTM network can model time-series
features using the combination of input, forget, and output gates, where
past states and current states are adapted and used to predict future
states.

Features in Table II are used for the LSTM network. It is worth
noting that each feature also has an additional dimension with several
time steps representing information from the past for predicting future
delays at the airport.

Table II: Features for predicting airport arrival and departure delays

Features (from the past) Type

Departing flights Numerical
Arriving flights Numerical
Fraction of low-cost flights Numerical
Mean arrival flight duration Numerical (minutes)
Mean departure flight duration Numerical (minutes)
Average arrival delay Numerical (minutes)
Average departure delay Numerical (minutes)
Filled capacity at the airport Numerical (percentage)
Airplanes at the airport Numerical
Month Categorical
Day of week Categorical
Hour of the day Categorical

For all look-back time steps, all features in the previous table are
constructed as input data. It is worth noting that past delay forms the
basis of the LSTM model, which is combined with other features.
The predictors are arrival and departure delays for all look-ahead time
steps.

Fig. 3 shows the structure of the neural network, where two LSTM
layers are followed by several dense layers, and finally reshaped into
the correct output dimensions.
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Fig. 3: Neural network structure for airport average arrival and
departure delay estimation

D. Delay predictions in the network of airports
1) Spatial-temporal graph model: The model in this section is

designed for predicting delays at a network of airports and studying
the propagation of delays among these airports. We need to consider
both the time-varying features of an individual airport and also its
relationships with connected airports. The network of airports is
represented by a graph model. Each airport in the network acts as
a node with its feature state for every time step. The edges of the
graph represent the relationships between the airports.

To this extent, we propose a dynamic spatial-temporal graph atten-
tion neural network (DST-GAT) to model and predict both arrival and
departure delays of all airports in the network.

Such a graph attention neural network can efficiently consider the
delay, capacity, and aggregated flight information from all connected
airports. We also propose a specific type of network that allows the
properties of graph edges to be updated dynamically over time. As
the result, without the need for a propagation model, as proposed in
[13], the dynamic graph neural network can more effectively capture
the propagation.

2) Adjacency matrices: Adjacency matrices are used to describe
specific relationships between all connected nodes. In our case, two
matrices are designed. The first adjacency matrix Adist, proposed
according to study [7], describes the geographical closeness of two
airports. We intend to capture the correlations of airspace situations
for airports that are located closer to each other. Equation 1 is used
to define the element of this static matrix:

aij =

exp

(
dist2(pi, pj)

σ2

)
if dist(pi, pj))2 < ϵ

0 otherwise
(1)

where p represents the position of an airport and σ is the standard
deviation of all distances among airport pairs. The threshold ϵ is set
to 400km empirically.

The second adjacency matrix, Aflight, models the number of flights
between two airports at each time interval. This matrix is dynamically
updated for each time step between all airport pairs.

These matrices are then summed with different weights, shown by
Equation 2:

At = αAdist + (1− α)Aflight,t (2)

where α is the weighting factor. It is selected to be 0.4 empirically to
reflect the higher importance of connecting flights than geographical
distances.

E. Graph Attention Networks
Over the past years, several types of graph neural networks have

been proposed in the computer science domain. Since the delay
propagates among the airports in an air traffic network, features from
neighboring nodes should be a significant factor in the prediction. We

chose to adopt the Graph Attention Network (GAT) [14] as our graph
network layer. The GAT architecture allows us to efficiently exploit
relevant information from adjacent airports. Fig. 4 shows the update of
a single node in the graph network based on the states and relationships
of neighbor states.

concat / avg

Fig. 4: Illustration of GAT neighborhood attention for a single node.
Node 1 obtains attention coefficient from all neighbors and computes
the linear combination of their features. After that, the next level
feature of node 1 (h1+) is aggregated.

The advantage of using GAT over more common Graph Convolu-
tional Networks (GCN) is that the importance of connected airports
is updated dynamically. In addition, edge features can also be more
easily exploited by the GAT network.

In our design, we also want to model the time dynamic of the
propagated delays. Hence, the GAT layer is followed by two LSTM
layers. The principle and structure of this LSTM layer are similar
to the one used for airport-level delay prediction. It performs future
predictions based on features from look-back steps. In the final DST-
GAT architecture, for every sequence of predictions, the same number
of look-back steps are processed by the GAT layer and then the LSTM
layers. The structure of the model is illustrated in Fig. 5.

The same features from Table II are used for training our DST-GAT
model.

III. EXPERIMENTS AND RESULTS

To thoroughly validate the performance of all three types of
prediction models at different levels, we downloaded three years of
data from 2017 to 2019 from the Eurocontrol R&D data archive. In
total, this subset of data contains all Eurocontrol flights that occurred
in March, June, September, and December each year.

To reduce the impact of extreme outliers, we apply a filter to remove
flights of extreme values that correspond to delays larger than 90
minutes or smaller than -30 minutes (early arrivals or departures).
The removed flights account for approximately 0.7% of all flights.

For the airport- and network-level delay predictions, in the following
experiments, the proposed neural networks model and predict the
average arrival and departure delays with a time window of 30 minutes.
It is worth noting that this time window can be adapted based on targets
of different use cases.

A. Flight arrival delay prediction
To evaluate the single arrival delay event prediction from the

random forest model, we make use of all flights between 2017 and
2019, arriving at the top 25 European airports. For each airport, a
separate random forest model is constructed. The estimation errors of
all flights are illustrated in Fig. 6, organized by the airports.

Table III shows the random forest estimator performance metrics
across all airports. In general, the MAE is found to be between 3.8
and 7.7 minutes, with a mean error of around 4.5 minutes across all
airports. The RMSE is found to be between 5.1 and 10.5 minutes,
with a mean of 6.3 minutes across all airports. The R2score describes
how well a model performs compares to the simple mean, which is
in general around 0.8. It indicates that the models can model a great
part of the variance shown in arrival flight delays.
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Fig. 5: Model structure of DST-GAT neural network used for delay predictions in a network of airports
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Fig. 6: Estimation error of arrival delays at the top 25 airports in
Europe from 2017 to 2019

Table III: Random forest: error metrics for all flight arriving at top
European airports

EG
LL

LF
PG

EH
A

M

ED
D

F

LE
M

D

LE
B

L

LT
FM

U
U

EE

ED
D

M

EG
K

K

MAE 6.02 3.77 4.32 3.83 5.19 4.34 5.07 7.67 3.83 5.68
RMSE 7.90 5.14 5.93 5.25 7.09 6.03 6.96 10.45 5.24 7.55
R2 0.75 0.80 0.85 0.83 0.71 0.81 0.74 0.58 0.81 0.77

LI
R

F

EI
D

W

LF
PO

LO
W

W

LS
ZH

LP
PT

EK
C

H

LE
PA

EG
C

C

LI
M

C

MAE 4.24 5.38 4.08 4.30 4.48 5.42 3.82 4.11 4.51 4.51
RMSE 5.75 7.31 5.58 5.75 6.01 7.43 5.15 5.79 6.26 6.31
R2 0.78 0.74 0.80 0.78 0.78 0.76 0.79 0.83 0.76 0.80

B. Airport-level arrival and departure delay prediction using
LSTM networks

To demonstrate the performance of airport delay predictions, we
selected London Heathrow Airport (EGLL) as the example, which is
one of the busiest airports in Europe. 80% of the data is used for
training, while 20% of the data is used for testing. Specifically, flight

data associated with EGLL from January 1, 2018, to September 12,
2019, are used to train the model. The remaining date in 2019 (from
September 13 to December 31) is used as the testing dataset to examine
the performance of models.

It is important to emphasize that, compared to the commonly used
random split of training and testing datasets, we make such a strict
split by a cutoff date to be rigorous for the validation process. This
way, we eliminate any potential data leak between training and test
data. Thus, the results should indicate the performance of the model
in the least optimal situation, i.e. the model trained up to September
is still able to be used for predictions in December 2019.

Table IV shows the performance of our LSTM network trained and
tested with the EGLL dataset. With different look-ahead times, the
MAE for arrivals is between 4.6 minutes and 5.4 minutes, while the
departure delay errors are between 2.2 and 2.3 minutes.

Table IV: LSTM: arrival and departure delay metrics, EGLL

(a) Arrival delay

look-ahead MAE RMSE R2

30 min 4.59 6.31 0.69
60 min 4.59 6.43 0.68
90 min 4.78 6.73 0.65
120 min 4.91 7.02 0.62
150 min 5.24 7.49 0.56
180 min 5.43 7.73 0.53

(b) Departure delay

look-ahead MAE RMSE R2

30 min 2.20 3.29 0.45
60 min 2.18 3.36 0.43
90 min 2.27 3.54 0.37
120 min 2.30 3.55 0.37
150 min 2.24 3.50 0.38
180 min 2.30 3.57 0.36

Fig. 7 shows the difference between actual and estimated delays
for a number of days in the testing dataset. For better illustration,
20 out of the 50 days in the test dataset are plotted. By comparing
the prediction and actual delays, we see a great level of prediction
accuracy that captures the delay dynamic.

In terms of computational performance, for such a signal airport
model with approximately 8 months of data, the training takes about
one minute on an Nvidia Quadro K620 GPU (from the year 2014).

C. Network-level arrival and departure delay prediction using
DST-GAT graph neural networks

The final experiment is designed to test the performance of the
spatial-temporal graph attention networks at the large network level.
In this test, we selected the top 50 airports in Europe to demonstrate the
performance of our DST-GAT model. The training and testing datasets
are constructed similarly to the previous experiments (80% for training,
20% for testing). Data from January 1, 2018, to September 12, 2019,
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Fig. 7: LSTM: Average arrival and departure delay with different look-ahead times for EGLL
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Fig. 8: DST-GAT: average arrival and departure delay with different look-ahead times (showing EGLL as an example).
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is used for model training, and data from September 13 to December
31 is used for testing. Features from Table II are considered by the
model.

Due to the complexity of the GAT network and the higher quantity
of data, the training of the entire model takes about 40 minutes for
the network of 50 airports (on the same Quadro K620 GPU from
2014). Compared to the previous single airport LSTM network, the
computational complexity increases linearly.

Table V shows the error metrics for all airport arrival and departure
delays in the testing dataset. The MAE for arrival delay prediction is
around or less than 5 minutes, while departure delay error is around
or less than 4 minutes. The visualization of the testing and predicted
delays are shown in Fig. 8

Table V: DST-GAT: arrival and departure delay metrics for all top 50
airports

(a) Arrival delay

look-ahead MAE RMSE R2

30 min 4.60 7.09 0.38
60 min 4.75 7.27 0.35
90 min 4.86 7.41 0.32
120 min 4.93 7.51 0.30
150 min 4.98 7.58 0.29
180 min 5.01 7.63 0.28

(b) Departure delay

look-ahead MAE RMSE R2

30 min 3.68 5.87 0.35
60 min 3.79 6.01 0.32
90 min 3.89 6.14 0.29
120 min 3.96 6.24 0.27
150 min 4.00 6.29 0.25
180 min 4.04 6.35 0.24

The DST-GAT model can also provide delay estimation at individual
airports, similar to the previous airport-level LSTM model. Table VI
shows a similar level of accuracy as the previous LSTM model that
is specifically trained for EGLL.

Table VI: DST-GAT: arrival and departure delay metrics for EGLL
only

(a) Arrival delay

look-ahead MAE RMSE R2

30 min 4.33 6.28 0.69
60 min 4.70 6.76 0.64
90 min 5.16 7.47 0.56
120 min 5.54 8.06 0.49
150 min 5.83 8.38 0.45
180 min 5.99 8.56 0.43

(b) Departure delay

look-ahead MAE RMSE R2

30 min 2.22 3.15 0.50
60 min 2.38 3.30 0.45
90 min 2.51 3.46 0.39
120 min 2.52 3.51 0.37
150 min 2.52 3.54 0.36
180 min 2.60 3.61 0.34

Furthermore, the DST-GAT model has a superior capability in
predicting delay evolution at the network level. Fig. 9 shows the
evolution of arrival delay predicted with 60-minutes of look-ahead
time during the day at four different hours. The size of the circle
represents the delays, i.e., larger circles represent larger delays. The
color represents the absolute estimation error, i.e., the darker colors
represent larger estimation errors.

The estimation performances also vary depending on the airports.
In Fig. 10, we show the MAE and RMSE of arrival delay estimation
for all airports. The selected look-ahead is 60 minutes. We find that
the MAE varies between 1.7 minutes and 6.4 minutes, with an average
value of around 4.7 minutes. When examining the RMSE, the range is
between 3.4 and 10.5 minutes, with an average value of 7.2 minutes.
Both sets of error metrics show a good level of accuracy across the
entire network.

Fig. 11 shows the error metrics for departure delay estimation errors.
The MAE range is between 1.3 and 7.6 minutes, with an average value
of 3.8 minutes. The RMSE is between 2.2 and 10.9 minutes with an
average of 5.8 minutes. Both sets of errors are smaller than the arrival
delay prediction errors shown in the previous figure.
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Fig. 9: Evolution of arrival delay predictions among top airports in
the European network
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Fig. 10: Arrival delay errors for top European airports

IV. DISCUSSION

In this session, we reflect on our design choices and experiment
processes. We also give more insight into the models and their
performance.

A. Why so many models?
The main reason for the flight delay prediction model is to establish

a baseline for our last two models. For such a model, we essentially
need to design a regressor with a single-output (delay), based on
inputs (shown in Table I) that contain both numerical and categorical
features. It is also known that flight delays have a strong correlation
with the date and time [2]. Hence, the best algorithm should be able to
efficiently handle these features. That is why, among the four models
that are tested, the random forest yields the best results. Since our main
focus is on airport and network delays, we did not continue with other
models. However, we believe other methods, like Gradient Boosting
Machines [15], would potentially provide similar or better estimation
performance.

One of the main challenges in this research is to match the
complexity of the problem with the complexity of the model and
the data that is available to construct the model. The final DST-GAT
generally outperforms the single airport LSTM model in terms of lower
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Fig. 11: Departure delay errors for top European airports

prediction error. However, it requires a complete overview of data
and a longer training time. This is often not practical for operations
at a single airport. Hence, for single airport delay prediction, we
still recommend the use of a simpler LSTM model with data that is
available for that particular airport in Table II. By constructing separate
models for the different airports, the LSTM is also likely to capture
local variance that is specific to the airport.

B. The secret of model parameters
For the regression models, we make use of the grid search cross-

validation approach to identify the best hyperparameters. This can be
performed when the machine learning model is not too complex.

For the LSTM model, the main challenge is to figure out the best
architecture, including the layer design and the number of neurons in
each layer. After numerous trials and tests, we settled on the current
LSTM architecture. Regarding the network design, we leave enough
margin of complexity in the layers and allow the model to discover
the correlations, hence the two LSTM layers with 200 neurons and
several following dense layers.

We also need to balance the number of look-back time steps and
look-ahead time steps to be considered in the prediction model, that
is, how many hours of the old data we want to use for predicting
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the future delays. We settled on three hours of past data for up to
three hours of future predictions in the paper. This value can be easily
adapted for different use cases.

The choice of model parameters in the DST-GAT model is almost
entirely constrained by GPU performance. In this study, we only have
access to a fairly old GPU with only 2GB of memory. The choice of
the number of nodes, number of attention heads, number of channels,
and floating number computation precision are balanced to fit the entire
training dataset on the GPU. All variables can be found in our shared
code. A better GPU would bring both speed and high accuracy to the
model.

C. Our path to the DST-GAT model
Our model is strongly inspired by two previous studies mentioned

in the introduction [7] and [8]. The first paper proposed a graph-based
convolutional neural network approach for airport delay, while the
second paper proposed a static graph attention network for ground
transport. The first model has the limited ability to consider dynamic
features from neighboring airports, while the second paper relies on
the static adjacency matrices, which are not ideal for the air transport
network.

Based on these state-of-the-art research works, we propose to
apply the dynamic adjacency matrices to the graph attention network,
which is further enhanced by recurrent layers proposed in [7]. Hence,
the model is considered a dynamic spatial-temporal graph attention
network.

The most complex part of this research is to design the data model
that can capture features representing interactions between airports in
the proposed DST-GAT architecture. After numerous hours of design
and testing, we found the right formula for arranging the data in the
right format. These models are also shared in our open code.

D. Error metrics
In most error metrics tables, we can observe lower departure delay

prediction errors than arrival delay prediction errors. This does not
translate into a better performance of departure delay prediction.
On the contrary, the prediction performance is worse for departures,
judging by the lower coefficient of determination (R2score). The lower
R2score suggests larger variances exist in departure delays, which are
not captured by the model. We can also observe this in Figures 7 and
8, where a larger high frequency variations in departure delays cannot
be captured by our models.

We think such phenomena are expected since there are other
factors we are currently not able to model, including, for example,
regulations for air traffic flow management delays, uncertainty in
airport operations, and weather conditions. These factors would be
the key to improving the prediction models in the future.

V. CONCLUSION

In this paper, we proposed three types of machine learning models
to tackle the delay prediction problem in air traffic management
research. We started with the simplest form of flight arrival delay
prediction and continued on the airport-level delay prediction. Finally,
we explored a new approach to model and predict delays at the
network level. We selected a random forest model for single event
flight arrival delay prediction as a baseline. For airport and network
delays, we proposed a long short-term memory (LSTM) architecture
and a dynamic spatial-temporal graph attention network (DST-GAT)
architecture. Both LSTM and DST-GAT produced a good level of
prediction performance with a mean absolute error of around or lower
than 5 minutes in general, for both arrival and departure delays. We
believe this is among the most accurate estimations for air traffic
delays.

The DST-GAT architecture not only predicts delays for the airport
in the network, but it can also study and predict the propagation of
delays in the entire air traffic network. Currently, we consider only
the distance and number of flights as features for the edges of the

graph model, the model can be further extended to include other
factors such as regulations of air traffic flow management, weather,
and restrictions of airspace, which would bring a future improvement
in both departure and arrival delays. The current adjacency matrices in
DST-SAT can also be further optimized, including the threshold of the
distance matrix and the weighting factor that combines both matrices.

In this paper, we used the Keras and Spektral [16] libraries as
the base for our experiments. However, by the end of the project,
we notice PyTorch may have better support for this specific problem
with PyTorch Geometric and Geometric Temporal packages. It is
also likely to bring better performance in training and modeling. We
recommend that future research also consider that as an alternative to
our approaches.

During the literature survey, it was hard for us to reproduce previous
airport delay models, due to a lack of insight into their designs. In the
spirit of open access, we shared the source code of the model along
with the publication of this paper.2 We hope this will assist future
researchers to reuse our results.
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[14] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[15] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[16] D. Grattarola and C. Alippi, “Graph neural networks in tensorflow and
keras with spektral [application notes],” IEEE Computational Intelligence
Magazine, vol. 16, no. 1, pp. 99–106, 2021.

2https://github.com/junzis/atdelay

8


