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Abstract 

Spectral power distribution (SPD) is the radiation power 

intensity at different wavelengths, containing the most basic 

photometric and colorimetric performance of the illuminant, 

which is able to predict the lifetime of LEDs. This paper 

proposes an SPD model assisted by machine learning 

algorithms to detect the early failure of white LEDs. The SPD 

features of 3W high-power white LEDs were firstly extracted 

by the statistical models of Gaussian, Lorentz, and Asym2sig 

functions. An unsupervised learning method, principal 

component analysis (PCA), was then used to reduce the 

extracted features parameters’ dimensions. Next a K-nearest 

neighbor (KNN)-based method was used to detect LEDs’ 

anomalies by dividing the main cluster into groups, and 

estimating the distance from the center of mass of each cluster 

to the test point. The results showed the following: (1) for 

selected white LEDs, the Asym2sig function has a better fitting 

result than Gaussian and Lorentz functions; (2) machine 

learning methods can significantly assist in LED anomaly 

detection and can decrease the amount of anomaly detection 

time to 789.6 h, compared to the 1311 h when lumen 

maintenance degradation reaches 70% as required by IES TM-

21. 

Keywords: White LEDs; Spectral power distribution; 

Anomaly detection; Principal component analysis; K-nearest 

neighbor  

1. Introduction 

Light-emitting diodes (LEDs), as advanced solid-state 

lighting, can directly convert electrical energy to light energy 

without other energy conversions and have been used in fields 

such as indoor-outdoor lighting  [1], automotive and 

locomotive headlighting, architectural and road lighting, and 

vegetation lighting [2]. Long service life, high luminous 

efficiency, high reliability, environmental friendliness, and 

compact size  are LEDs’ great strengths [3, 4], which are 

superior to traditional illuminants. 

Many studies related to the fault diagnosis and lifetime 

prediction of LEDs have been conducted. IES TM-21/28 use 

luminous flux and chromaticity shift as standard performance 

indicator for LED light source or lamp’s lifetime prediction. In 

the standard performance, the length of time, when the 

luminous flux output of a lighting product decreases to 70% of 

its initial value, is determined as LEDs’ service lifetime [5]. 

According to IES-LM-80, released by the Illuminating 

Engineering Society of North America (IESNA) in 2008, 

colorimetric data are required to be collected every 1000 h for 

a duration of at least 6000 h [6]. Fan et al. [7] proposed a 

method to detect anomalies in white LEDs by calculating the 

martingale distance between indirect LED performance data 

(e.g., lead temperature, input drive current, and forward 

voltage). Cao et al. [8] recommended a method to predict LED 

array modules’ luminous flux, using ANN and verified its 

accuracy by comparing various operating conditions. Jing et al. 

[9] used a constant-drift Wiener process to model the radiation 

power degradation of the UV LEDs. 

Although previous studies on LED lifetime prediction and 

fault diagnostics have focused on lumen degradation, color 

shifts have been given insufficient attention. Color degradation 

is an important performance parameter for LEDs in application 

scenarios such as museums, supermarkets, and shopping 

centers. Based on the spectral power distribution (SPD), the 

most basic luminescence mechanism of illuminant is included 

by the radiation power distribution emitted by illuminant in a 

certain visible wavelength range. LEDs’ luminosity and 

chromaticity parameters, such as color coordinates, luminous 

flux, color rendering index, associated color temperature, can 

be calculated based on the SPD function. 

Thus, the SPD-based design and research can fully consider 

both lumen degradation and color shift degradation modes. To 

realize the early fault detection of both lumen degradation and 

color shift of a white LED, this paper proposes a fault diagnosis 

method by analyzing the SPD, using principal component 

analysis and KNN dimension-reduction methods. Accordingly, 

the present study demonstrates a method to predict the 

remaining useful lifetime of phosphor-converted white LEDs 

(pc-WLEDs) through the photometric and colorimetric 

parameters of the device. Chang et al. [10]extracted the same 

number of points from each lamp and used the training and test 

data together to obtain a new threshold. In his study, die’s and 

phosphor’s SPDs were disassembled, and the anomalies in die, 

phosphor and entier SPD were diagnosed separately. Results 

show that degradation of die degradation is earlier than that of 

phosphor degradation. Using 640 data points, anomalies were 

first detected from die and then from phosphor, within 

approximately 1200 hours die’s SPD data. 

 

2. Experimental setup and SPD data collection 

As shown in Figure 1, the Avago 3W high-power pc-WLEDs 

(ASMT-JN31-NTV01) were used in this study [11]. The 16 test 

samples driven by 200 mA DC current were aged under a 

constant aging temperature (Ta = 90°C). SPD data were 
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measured using a spectrometer, where a total of 71 cycles 

(1633 h) of SPD data were collected. When the lumen 

maintenance was reduced to about 70%, the ageing test was 

stopped. 

 
Fig 1. The 3W high-power pc-WLEDs and test board used in this study 

 

3. SPD modeling and features extraction 

Most white LEDs on the market use chips covered with 

phosphor to emit light. Chips emit shortwave light to excite the 

phosphor, to produce longwave visible light. The remaining 

light of the chips and the phosphor's emitted light are 

compounded to form white light. The pc-WLEDs adopts the 

luminescence mode of blue chips and yellow phosphor, and can 

indirectly control the intensity ratio of blue and yellow light by 

regulating the concentration of phosphor, to obtain white light 

with different color temperatures.  

The spectrum of a pc-WLED usually has multiple peaks: one 

peak is located in the short-wave region (380–495 nm), 

representing the blue light emitted by the LED chip, i.e., 

emission spectrum; conversion spectrum is located in the long-

wave region (495–745 nm), representing the yellow-green light 

converted by the phosphor (Figure 2). 

 
Fig 2. Illustration of SPD of a typical of pc-WLED 

Failure modes of pc-WLEDs mainly are highly related to 

LED chip failure, phosphor failure, and packaging material 

failure [12]. After a long operating time, the deviation of SPD 

can be used to determine the failure modes: 1) when LED chips 

degrades the two spectral areas decline in equal proportion 

because the intensity of the phosphor-conversion light depends 

on the intensity of the emitted blue light; 2) when phosphors 

degrades, the degradation of the conversion spectral area is 

larger than that of the emission spectral area; 3) when 

packaging materials fail, the degradation of the emission 

spectral area is larger because the packaging materials, 

typically silicone, are more sensitive to short wavelength light. 

Thus, the SPD of a pc-WLED always can be modeled by 

some overlapped single-peak spectra, as follows: 

                     𝑆𝑃𝐷𝐿𝐸𝐷(𝜆) = ∑ 𝑆𝑃𝐷𝑖(𝜆)
𝑛
𝑖=1                        (1) 

where 𝑆𝑃𝐷𝐿𝐸𝐷  represents the spectrum of the LED, 𝑆𝑃𝐷𝑖  
represents the decomposed SPD spectrum i, and n is the total 

number of SPDs, which is highly depended on the phosphor 

materials as used and light conversion mechanisms. Gaussian 

[13-15], Lorentz, and asymmetric double sigmoidal 

(Asym2sig) functions are the candidate models to describe the 

decomposed SPD. Considering a white LED as a double-

peaked function, where n equals 2, i.e., functions 1 and 2 are 

superposed, the models are as follows: 

1) Double Gaussian function: 

𝑦 = 𝑦0 +(
𝐴1

(𝜔1√
𝜋

2
)
𝑒
−2(

(𝑥−𝑥𝑐1)

𝜔1
)2
) + (

𝐴2

(𝜔2√
𝜋

2
)
𝑒
−2(

(𝑥−𝑥𝑐2)

𝜔2
)2
)    (2) 

where 𝑥 is the wavelength, 𝑥𝑐1  and 𝑥𝑐2 are peak wavelengths, 

and 𝜔1 and 𝜔2 represent full widths at half-maxima (FWHM); 

2) Double Lorentz Function: 

𝑦 = 𝑦0 +
2𝐴1
𝜋
(

𝜔1
(4(𝑥 − 𝑥𝑐1)

2 + 𝜔1
2) +

2𝐴2
𝜋
(

2

(4(𝑥 − 𝑥𝑐2)
2 + 𝜔2

2)  

                                                     (3) 

where 𝐴1 and 𝐴2 represent the areas of the spectra; 

3) Double Asym2sig function: 

𝑦 = 𝑦0 + 𝐴1(
1

1 + e
−(x−𝑥𝑐1+

𝜔11
2
)

𝜔21

)

(

 1−
1

(1 + 𝑒

−(𝑥−𝑥𝑐1−
𝜔11
2
)

𝜔31 )

 

+ 𝐴2(
1

1 + e
−(x−𝑥𝑐2+

𝜔12
2
)

𝜔22

)

(

 1−
1

(1 + 𝑒

−(𝑥−𝑥𝑐2−
𝜔12
2
)

𝜔32 )

  

                                           (4) 

where 𝐴1 and 𝐴2 represent the amplitude values, 𝜔31 and 𝜔32 

represent the variances of the low-energy side, and 𝜔21  and 

𝜔22 represent the variances of the high-energy side. 

Referring to the equations 2 to 4, the 16 sets of collected 

data were fitted with Double-Gaussian, Double-Lorentz, and 

Double-Asym2sig functions, respectively. The fitting curves 

are shown in Figure 3. The Goodness-of-fitting is judged by the 

coefficient of determination, 

𝑅2 = 1 −
∑ (�̂�𝑖−
𝑛
𝑖=1 𝑦𝑖)

2

∑ (�̅�𝑖−
𝑛
𝑖=1 𝑦𝑖)

2                               (5) 

 
Fig 3. SPD modeling with three function fitting curves 

Table 1 The Goodness-of-fitting results of three SPD models 

Models Goodness-of-fitting 
2R  

Double-Gaussian function 0.991124 

Double-Lorentz Function 0.98510267 

Double-Asym2sig function 0.99952867 

 

As shown in Table 1, all three curves fitted well with R2 is at 

least 95%. Compared with the R2 of the three curves, the 
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Double-Asym2sig function has the best fitting result, reaching 

99.9%. Therefore, the Double-Asym2sig function was used in 

the further study for SPD modeling and feature extraction. 

 

4. Principal component analysis and K-means method 

As the most commonly used linear dimensionality 

reduction method, Principal component analysis (PCA) maps 

high-dimensional data to a low-dimensional space by some 

linear projection, where the data are most informative in the 

projected dimension. Hence, PCA uses less data dimensions to 

retain more characteristics of original data points. The failure 

points were detected by extracting 11 eigenvalues and 

transforming them into principal components as initial values. 

To analyze the effect of the training data on experimental 

results, LEDs 2, 4, 8, and 10 of 16 LEDs were used as test data, 

where each LED included 72 data points. Each training dataset 

was used to evaluate PCA’s variance-covariance matrix. 

Original training set was projected onto the selected features 

vector to obtain a new dimension after dimensionality 

reduction. In Figure 4, the 11 features extracted by SPD were 

reduced to two principal components, in which the x-axis 

indicates the dimension of principal component, and the y-axis 

indicates the variance of the corresponding principal 

component. Gently fluctuating points were removed, and the 

two principal components were retained. 

 
Fig 4. Principal component for SPD training data using 720 data points (72 

points from each LED) 

KNN-means belongs to the class of unsupervised learning in 

machine learning, which uses unlabeled data to learn the 

distribution of data and the relationships between data. The “k” 

in the K-means algorithm represents k clusters, and the 

“means” indicates, after dividing into new clusters, the center 

of mass of each cluster is recalculated according to the 

averaging approach, thus determining the new cluster center. 

Total cluster sum of squares is obtained by summing the intra-

cluster sums of squares of all clusters in the dataset, as follows: 

𝐶𝑆𝑆 = ∑ ∑ (𝑥𝑖 − 𝜇𝑖)
2𝑛

𝑖=1
𝑚
𝑗=0                  (6) 

where observations ( 𝑥1, 𝑥2, 𝑥3…𝑥𝑛 ) are one-dimensional 

vectors, and KNN-means clustering divides the n observations 

into m clusters, S (𝑆1, 𝑆2, 𝑆3…𝑆𝑚), where the center of mass of 

cluster 𝑆𝑖  is 𝜇𝑖. The smaller the total inertia, the more similar 

the samples within each cluster, and the more effective the 

clustering. Through continuous iteration, we achieve the best 

cluster selection when inertia minimizes the centroid. 

For a dataset with 720 training points, the training set was 

divided into four clusters, as shown in Figure 6. In Figure 5, it 

is observed that the curve becomes smooth at cluster 4. Based 

on the multiple optical features of the LEDs, the dataset was 

divided into four groups instead of two or three. The 720 

training sets were trained with two and three groups for 

anomaly detection, but no anomaly was found in any of the 

results, so the 720 datasets were considered to be divided into 

four clusters, as shown in Figure 6 where the x-axis and y-axis 

represent principal components 1 and 2, respectively. 

 
Fig 5. CSS for SPD training data using 720 data points 

 
Fig 6. KNN-means for SPD training data using 720 data points 

After dividing training set into four clusters by KNN-means, 

similarity detection can be used to determine the failure point. 

When dividing training data into m clusters, the center of mass 

of cluster 𝑆𝑖 is 𝜇𝑖, and the distance from the data point to the 

center of mass is calculated by the Euclidean distance. The 

distance (𝐷𝑖) from each test point to the center of mass (𝜇𝑖) to 

which it belongs is evaluated. When 𝐷𝑖  is larger than the 

threshold (𝑇𝑖), it is judged to be an anomaly, and when it is 

smaller, then the step is repeated at the next test point. The 

average radius (R (𝑆𝑗)) is the average distance of all points in 

the cluster to the center of mass 𝜇𝑗, which measures the density 

of points in the cluster. The following equations calculate the 

center of mass and radius[10]: 

𝜇𝑗 =
∑ 𝜇𝑖
𝑘
𝑖=1

𝑘
                                   (7) 

R(𝑆𝑗) = √
∑ (𝜇𝑖−𝜇𝑗)

2𝑘
𝑖=1

𝑘
                               (8) 

Ideally, the clusters appear as circles. In Figure 6, each 

cluster is closer to an ellipse, with different major and minor 

axes. The failure point diagnosis depends on the accuracy of 
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the threshold value, and the failure threshold should be between 

the long and short axis, and too large or small is not conducive 

to the error point diagnosis. When the threshold is too large, the 

missed-alarm rate increases, and when it is too small, the failure 

detection rate increases. To increase the accuracy while 

considering the distribution of detection points, the new 

threshold is therefore adjusted as: 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(T) = mean radius(r) +
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝜎)

𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑓𝑎𝑐𝑡𝑜𝑟(𝑑)
                    (8) 

where σ is the standard variance, describing the offset of the 

test point from the center. 𝐷 is the scaling factor, which in this 

study is 2, because the data are two-dimensional after 

dimensionality-reduction. 
4. Anomaly detection results and discussion 

In this section, ten of these datasets, a total of 720 data points, 

were used as the training set to examine LED 16. When the 

training set was two clusters and three clusters, no alarm was 

detected, as shown in Figures 7 and 8. When the training cluster 

was four clusters, the failure point was found and the anomaly 

was monitored. When the distance from the center of mass 𝐷𝑗 
was greater than the threshold 𝑇𝑗, an alarm was detected to 

detect failure at 789.6 h, an anomaly occurred as shown in 

Figure 9.  

 
Fig 7. Distance measure of cluster 2 from LED 16 

 
Fig 8. Distance measure of cluster 3 from LED 16 

Next, the training data were placed into 2, 4, 6, 8, 10 and 12 

groups, that is144, 288, 432, 576, 720 and 864 data points, 

respectively, to verify the anomaly detection accuracy of the 

remaining 14, 12, 10, 8, 6 and 4 LEDs separately. The error 

detection was roughly divided into two groups: false alarm and 

missed alarm. A false alarm refers to the premature detection 

of an anomaly, i.e., the LED is judged to fail while in normal 

condition; a missed alarm means that no anomaly is detected 

when the LED ends its life (luminous flux degrades to 70% or 

color shift reaches 0.007). 

 
Fig 9. Distance measure of cluster 4 from LED 16 

 
Fig 10. Anomaly detection results (Missed alarm rate, False alarm rate, 

and Anomaly detection rate) 

The anomaly detection results are shown in Figure 10, which 

indicates that both missed alarms and false alarms showed a 

decreasing trend with the increase of training data. When the 

data reaches 576 and 720 respectively, the false alarm and 

missed alarm reach 0,  and no such error occurs. Meanwhile, 

the anomaly detection accuracy shows an increasing trend. 

Moreover, after the training data reached 720, there were no 

missed or false alarms. Compared to the work from Chang[10], 

in this paper, the training data and testing data were separated, 

and only testing dataset were used to verify the accuracy of the 

proposed method. Fuethermore, in the dimensionality 

reduction, there were three parameters after dimensionality 

reduction in [10], but only two dimensions in this paper and the 

clusters were relatively less. The reduction of dimensionality 

as well as the number of clusters makes the subsequent steps  

much simpler. When the dataset reaches 397, the anomaly 

detection accuracy is higher than that from [10]. Meanwhile, 

the false alarm rate is lower, and the accuracy of missed alarm 

is comparatively higher. This may be caused by a higher 

threshold as compared to Chang's, which leads to more points 

Authorized licensed use limited to: TU Delft Library. Downloaded on March 28,2023 at 13:59:57 UTC from IEEE Xplore.  Restrictions apply. 



189 

979-8-3503-4638-1/22/$31.00 ©2022 IEEE 

gathered in the same cluster, and a larger radius and a larger 

threshold were finally obtained. 

 

5. Conclusion 

In this paper, we proposed a machine learning-assisted 

anomaly detection method, which first used the superposition 

of two asymmetric Asym2sig functions to fit the SPD of pc-

WLEDs, where the functions could describe the spectra of blue 

light chips and yellow light phosphor conversions best. The 

extracted features take full advantage of the information 

contained in the SPD, not just the lumen degradation, but also 

the color shift.  Eleven extracted features were reduced to two 

by PCA and KNN-means was used for clustering after 

dimension reduction. A new threshold was obtained by the 

above distance formula after grouping. When the distance from 

the test data to the center of mass exceeded the threshold, an 

anomaly was detected. The results show that: according to the 

IES TM-21, when the lumen degradation was 70%, the time 

required for this accelerated experiment was 1311 h, which was 

reduced to 789.6 h by the proposed method, thereby 

significantly reducing the time required for LED reliability 

tests.  
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