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Circuit quantum electrodynamics (QED) studies the interaction of artificial atoms, open transmission lines, and
electromagnetic resonators fabricated from superconducting electronics. While the theory of an artificial atom
coupled to one mode of a resonator is well studied, considering multiple modes leads to divergences which are
not well understood. Here, we introduce a first-principles model of a multimode resonator coupled to a Josephson
junction atom. Studying the model in the absence of any cutoff, in which the coupling rate to mode number n

scales as
√

n for n up to ∞, we find that quantities such as the Lamb shift do not diverge due to a natural rescaling
of the bare atomic parameters that arises directly from the circuit analysis. Introducing a cutoff in the coupling
from a nonzero capacitance of the Josephson junction, we provide a physical interpretation of the decoupling of
higher modes in the context of circuit analysis. In addition to explaining the convergence of the quantum Rabi
model with no cutoff, our work also provides a useful framework for analyzing the ultrastrong coupling regime
of a multimode circuit QED.

DOI: 10.1103/PhysRevB.95.245115

Quantum electrodynamics (QED) explores one of the most
fundamental interactions in nature, that of light and matter. In
a typical cavity QED scenario, an individual atom interacts
through its dipole moment with the electric field of cavity
modes, as described by the Rabi model [1] and depicted
in Fig. 1(a). One consequence of this interaction is the
Lamb shift of the atomic transition frequencies [2,3]. Early
attempts at calculating this shift led to the first shortcomings
of QED theory, mainly, that the transition energies of the
atom diverge as the infinite number of electromagnetic modes
are considered. Efforts to address these issues gave birth to
renormalization theory [4]. Akin to cavity QED is the field
of circuit QED [5], where artificial atoms such as anharmonic
superconducting LC circuits couple to the modes of a waveg-
uide resonator or an open transmission line. Such systems
allow the study of a wealth of quantum effects [6,7] and are
one of the most promising platforms for the realization of
quantum processors [8–10]. Despite experimental successes,
“ad hoc” multimode extensions of the Rabi model suffer from
divergences when considering the limit of infinite modes in a
waveguide resonator [11,12].

Aware of this problem, Nigg et al. [13,14] and Solgun et al.
[15] developed the method of black-box quantization to obtain
effective Hamiltonians with higher predictive power. While a
practical tool for weakly anharmonic systems, this method was
not designed for systems with strong anharmonicity, such as a
Cooper pair box [16]. Furthermore, in applying the black-box
procedure, the form of the quantum Rabi Hamiltonian is not
preserved, and while it gives the correct energy spectrum, it
is not clear how to identify and connect it to a coupling rate
between the two bipartite systems. Doing so, it is no longer
possible to directly identify which parts of the Rabi interaction
lead to certain energy shifts of bare quantities, such as the
Bloch-Siegert shift, highly relevant for studying the physics of
ultrastrongly coupled (USC) systems [17,18].

In this paper, we derive a first-principles Hamiltonian model
addressing these issues. This Hamiltonian is expressed in

the basis of the uncoupled resonator modes and the atom,
is valid for arbitrary atomic anharmonicities, and allows us
to understand why previous attempts at extending the Rabi
Hamiltonian have failed. The presence or not of a Josephson
capacitance CJ in our study leads to two important results.
First, in the limit CJ → 0, the coupling rates follow a square-
root increase up to an infinite number of modes. Without
introducing a cutoff in the number of coupled modes, we
show that a first-principles analysis of the quantum circuit
leads to convergence of the energy spectrum. The CJ = 0
limit also highlights a natural renormalization of Hamiltonian
parameters, arising from the circuit analysis, which is essential
to understanding how to reach correct multimode extensions of
the Rabi model. Second, we study the experimentally relevant
case CJ > 0, which introduces a cutoff that suppresses the
coupling to higher modes [19–21]. In particular, we provide
an analysis of this regime and discuss the physics of this cutoff
in the context of a lumped element circuit model. This results
in a useful tool for studying multimode circuit QED in the
framework of the Rabi Hamiltonian, or for studying strongly
anharmonic regimes, out of reach of the black-box quantization
method. This model was indispensable in extracting the
Bloch-Siegert shift in the experiment of Ref. [18], where a
naive extension of the Rabi model would predict a Lamb
shift of more than 3 times the atomic frequency due to 35
participating modes before any physically motivated cutoff,
such as the qubit’s physical size or the junction capacitance,
becomes relevant.

The circuit QED system studied in this work is an artificial
atom (AA) formed from an anharmonic LC oscillator [16],
capacitively coupled to a quarter-wave (λ/4) transmission
line resonator [22] as depicted in Fig. 1(b). The AA is
a superconducting island connected to ground through a
Josephson junction characterized by its Josephson energy EJ .
It has a capacitance to ground CJ and is coupled to the voltage
antinode of the resonator, with characteristic impedance
Z0 and fundamental mode frequency ω0/2π , through a
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FIG. 1. (a) Schematic representation of cavity QED: A multilevel
atom (in blue) coupled to the electromagnetic cavity modes (dashed
black lines). (b) Circuit QED example covered in this work: A
Josephson junction anharmonic LC oscillator, or “artificial atom,”
coupled to modes of a transmission line. (c) Lumped element
equivalent of (b).

capacitance Cc. The Josephson junction acts as a nonlinear
inductor, providing a source of single-photon anharmonicity
in the oscillations of current flowing through it. In order to
clearly illustrate the most novel aspect of our model, the
renormalization of the charging energy, we first consider the
case CJ = 0. Despite the absence of a cutoff in the number of
coupled modes in this case, we find that the energy spectrum
still converges. The case of CJ > 0 is discussed at the end of
this article and in detail in the Supplemental Material [23].

Circuit Hamiltonian. We consider a Hamiltonian in which
each uncoupled harmonic mode of the resonator, with reso-
nance frequency ωm and annihilation operator âm, is coupled
to the transition between the bare atomic states |i〉, |j 〉
with energies h̄εi , h̄εj through a coupling strength h̄gm,i,j

[24,25]. We derive such a Hamiltonian by constructing a
lumped element equivalent circuit, or Foster decomposition,
of the transmission line resonator as represented in Fig. 1(c).
The input impedance of a shorted transmission line, at a
distance λ/4 from the short, Z(ω) = iZ0 tan[πω/(2ω0)], is
equal to that of an infinite number of parallel LC resonators
with capacitances C0 = π/(4ω0Z0) and inductances Lm =
4Z0/[(2m + 1)2πω0]. In order to consider a finite number of
modes M in the model, one replaces the m � M LC circuits in
Fig. 1(c) by a short circuit to ground. This removes the m � M

resonances in the resonator input impedance Z(ω) with little
effect on Z(ω) for ω � ωM . The focus of this paper is on the
evolution of the Hamiltonian parameters as a function of this
system size M and the consequences on the energy spectrum.
Using the tools of circuit quantization [26], we obtain as the

Hamiltonian of the system [23],

Ĥ (M) =
∑

i

h̄ε
(M)
i |i〉(M) 〈i|(M) +

m<M∑

m=0

h̄ωmâ†
mâm

+
∑

i,j

m<M∑

m=0

h̄g
(M)
m,i,j |i〉(M) 〈j |(M) (âm + â†

m) . (1)

The eigenfrequencies of the higher resonator modes
ωm are related to those of the fundamental mode
through ωm = (2m + 1)ω0. The coupling strength h̄g

(M)
m,i,j =

2eVzpf,m 〈i|(M) N̂J |j 〉(M) scales with the square root of the
mode number m through the zero-point voltage fluctuations
of the mth mode Vzpf,m = √

2m + 1
√

h̄ω0/2C0. Since we will
concentrate on the frequency and coupling of the first atomic
transition |g〉 → |e〉, we use the shorthand ω(M)

a = εe − εg and
g(M)

m = g(M)
m,g,e throughout this paper.

The (bare) AA eigenstates |i〉(M) and energies h̄ε
(M)
i in

Eq. (1) are those that diagonalize the Hamiltonian,

Ĥ
(M)
AA = 4E

(M)
C N̂J − EJ cos(δ̂) . (2)

Here N̂J is the quantum number of Cooper pairs on the island
conjugate to δ̂ the superconducting phase difference across the
junction, and E

(M)
C is the charging energy of the island. This

choice of the decomposition of the Hamiltonian is one in which
the bare atom corresponds to purely anharmonic degrees of
freedom (currents flowing only through the junction) and the
bare cavity to purely harmonic degrees of freedom (currents
flowing only through the linear cavity inductors).

The crucial consequence of quantizing our model is a
renormalization of the parameters of the Hamiltonian as modes
are added. In particular, the charging energy E

(M)
C of the (bare)

AA depends explicitly on the number of modes included in
the equivalent circuit,

E
(M)
C = e2

2

C0 + MCc

C0Cc

, (3)

as reported previously in the case of multiple atoms coupled
to a single mode [27], or in the context of metallic dots
coupled to a resonator [28]. For the case of M → ∞ with
CJ = 0, the charging energy of the bare atom diverges. This
divergence arises from the definition of the bare atom as current
oscillations flowing only through the junction. As M → ∞,
the impedance path through only the series capacitors of the
resonator equivalent circuit diverges. Charge from currents
through the junction can no longer oscillate on Cc and ω(M)

a

diverges. For the case of M = 1 and Cc � C0, Eq. (3)
simplifies to the standard definition of the charging energy
EC = e2/2Cc [16]. With M > 1, we will see that a more
complex picture emerges.

Renormalization of the atomic parameters. In Fig. 2, we ex-
plore the renormalization of the parameters of our model as the
number of modes M is increased. Through the change in charg-
ing energy, both the eigenstates |i〉(M) and coupling strengths
g(M)

m depend on M . For a fixed number of modes M , the
coupling g(M)

m of the atom to mode m scales with the square root
of the mode number m: g(M)

m = g
(M)
0

√
2m + 1. From this cou-

pling, each mode will induce a Lamb shift of the atomic energy
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FIG. 2. Renormalization of the Hamiltonian parameters and dressing of the atom by higher modes. For the plots, we choose ω0/2π =
10 GHz, Z0 = 50 �, Cc = 50 fF, and EJ /h = 20 GHz. Although this places the AA in the transmon limit, we note that the scaling shown in
the figure is exact for all regimes, including the Cooper pair box limit. (a) Coupling of the ground to first excited-state transition of the atom
|g〉 → |e〉 to the resonator modes as a function of the mode number m, h̄g(M)

m = √
2m + 1Vzpf,02e 〈g|(M) N̂J |e〉(M), for different values of M . The

M dependence of the coupling is detailed in (b). (b), (c) Renormalization of the coupling strength and the atomic frequency through the change
in charging energy E

(M)
C as a function of M . For large M , the coupling diminishes with 1/M and the atomic frequency increases linearly with M .

(d)–(f) Schematic energy diagrams of the renormalization procedure in the case of the atom and fundamental mode at resonance. (a) M = 1 and
(b) M = 2. Adding a mode shifts the bare atomic energy upwards and changes the values of the couplings. (f) Dressing the atom with the
second mode results in a dressed atomic state with atomic frequency and coupling to the m = 1 mode close to that of the M = 1 model.

χm � −2(g(M)
m )2

/ωm = −2(g(M)
0 )2

/ω0, a formula valid in the
transmon regime when ωm is much larger than the bare atomic
frequency. With the typical assumption of coupling and bare
atomic frequency independent of M , summing the Lamb shifts
of every mode would lead to diverging values of the dressed
atomic frequencies. This leads to the divergences found in
typical multimode extensions of the quantum Rabi model.

In the model presented here, however, we find that the
full quantization of the lumped-element circuit leads to a
Hamiltonian in which both the bare atomic frequency ωa and
the couplings to the modes gm are explicitly dependent on the
number of modes M included in the model. As the number of
modes M in the model increases, the bare atomic couplings
g(M)

m are suppressed [Figs. 2(a) and 2(b)], and the bare atomic
frequency ω(M)

a increases [Fig. 2(c)], diverging for an infinite
number of modes. As we will see, however, convergence is
obtained in the dressed transition energy of the atom when
including the Lamb shift from higher modes of the resonator.

As an illustration of how renormalization in our model
leads to convergence of the spectrum, let us consider the
case shown in Figs. 2(d)–2(e) in which the fundamental
mode is resonant with the atomic frequency ω(1)

a when M = 1
[Fig. 2(d)]. Including an additional mode with frequency ω1

will lead to an upward shift of the bare atomic transition
ω(1)

a → ω(2)
a > ω(1)

a and a change of the coupling g
(1)
0 →

g
(2)
0 < g

(1)
0 through the renormalization of the charging energy

[Fig. 2(e)]. Diagonalizing the subsystem of the atom and
mode 1 in our model, the transition energy of the atom is
shifted down again near resonance with the fundamental mode
ω(2)

a → ω̃(2)
a ≈ ω(1)

a by the dispersive shift, and the coupling
of the atomic transition to the fundamental mode is increased

g
(2)
0 → g̃

(2)
0 ≈ g

(1)
0 [Fig. 2(f)]. In this way, the resulting vacuum

Rabi splitting of the fundamental mode is found to be similar
to that of the M = 1 model, despite the decrease in the bare
coupling rates g

(2)
0 .

Note that in our model, the value of EJ /E
(M)
C of the

bare atom, which determines its anharmonicity [16], is also
a function of M . It would seem that in the limit M → ∞,
the bare atom would be deep in the Cooper pair box limit.
However, including the hybridization with the cavity, the
low-energy sector of Ĥ (M+1) is well approximated by a model
with M modes where the charging energy is not E

(M)
C but

Ẽ
(M)
C = E

(M+1)
C − h̄

(
ḡ

(M+1)
M

)2
/4ωM , (4)

where ḡ(M)
m is the coupling constant without the dipole moment

〈i|M N̂J |j 〉M . For this to hold, h̄ωM must be larger than the
characteristic energy of the low-energy sector of Ĥ (M). In
this case, the vacuum of the (M + 1)th mode, shifted by
(ḡ(M+1)

M /ωM )N̂J , is a good variational choice for the low-lying
energy sector of Ĥ (M+1). In this subspace, the effective
Hamiltonian is of the same form as Ĥ (M), but with charging
energy Ẽ

(M)
C [23]. This result matches with the zeroth order of

a Schrieffer-Wolff approximation [29,30]. We can iterate this
procedure to a mode L. For M → ∞, an effective Hamiltonian
with L modes will have a finite charging energy,

Ẽ
(L)
C = lim

M→∞
E

(M)
C −

M∑

m�L

h̄
(
ḡ(M)

m

)2/
4ωm. (5)

The interaction with higher modes therefore modifies the
charging energy of the dressed atom, leading to a convergence
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(a) (b)

FIG. 3. Calculated spectrum as a function of the number of modes
M included in the model. (a) Dots (squares) correspond to a diagonal-
ization of the circuit (non-)renormalized extended-Rabi model. The
frequency obtained by black-box quantization of the circuit Fig. 1(b)
(dashed line) provides a point of reference corresponding to the case
when all modes are included. (b) Zoom of dashed box in (a). Triangles
show the prediction based on a first-order classical approximation of
the Lamb shift: χM = ω̃(M+1)

a − ω̃(M)
a � −2[(g(0)

M )2/ωM ][(ω(0)
a )2/ω2

M ]
[23].

of the atomic anharmonicity as well. This formula applies
for all values of CJ , but for CJ = 0, we have Ẽ

(M)
C = E

(M)
C ,

i.e., the dressing from higher modes exactly compensates the
renormalization of the charging energy.

In order to illustrate the effectiveness of this renormaliza-
tion, in Fig. 3 we compare a diagonalization of Hamiltonian (1)
to a nonrenormalized multimode extension of the quantum
Rabi model, implemented by removing the M dependence
of the charging energy E

(M)
C → e2/(2Cc). The dashed line

indicates the result of the black-box quantization (BB) method
[13] as a point of reference. The calculations are performed
using the same physical parameters as in Fig. 2. Compared to
the nonrenormalized model, which diverges linearly, a diag-
onalization of the first-principles Hamiltonian (1) converges
towards the value expected from BB.

It is also interesting to note that the corrections from our
model are nonperturbative: perturbation theory fails to give a
value for the Lamb shift resulting from including an extra
mode. Using a circuit analysis of coupled LC oscillators
(see [23]), in the transmon regime, EJ 
 E

(M)
C , we find

an estimate of the shift in the dressed AA energy when
including an additional mode in the model given by χm �
−2(g2

m/ωm)(ω̃2
a/ω

2
m). This formula can be used to estimate the

number of relevant modes to include in a simulation and can
be thought of as a replacement of the usual expression for the
Lamb shift χLamb

m � −2g2
m/ωm.

Consequence of introducing a high-frequency cutoff. In a
realistic system, higher modes will tend to decouple from the
atom due to several coexisting physical mechanisms [12].
One such mechanism is the capacitance of the Josephson
junction CJ . In particular, the capacitive loading of the cavity
from the AA illustrated in the inset of Fig. 4 leads to a
decreasing impedance to ground Zc(ω) � i(CJ + Cc)/ωCJ Cc

at the end of the resonator when ω 
 ωa . When the mode
frequencies become such that this impedance is lower than
the characteristic impedance of the resonator |Zc(ω)| � |Z0|,

Zc(ω)

Cc

CJ

[G
H
z]

FIG. 4. High-frequency cutoff for CJ �= 0. The capacitive loading
at the left boundary of the resonator shown in the inset transforms
this point from a voltage antinode to a voltage node for higher modes.
The mode mc � 35 marks this transition. The solid line corresponds
to the coupling strength as a function of the number of modes. With
CJ �= 0 the coupling strength converges to a nonzero value for large
M; hence the choice M = 3000. Dashed lines: asymptotic values of
the coupling, with g0 = g

(M=3000)
0 and C = CcCJ /(Cc + CJ ).

this voltage antinode of the resonator, to which the AA
couples, becomes a voltage node, and the coupling vanishes.
Additionally, the eigenfrequencies will span from those of a
λ/4 resonator for the lower modes to those of a λ/2 resonator
ωm → 2mω0 for the higher-lying modes.

This effect can be captured with the same quantization
procedure applied to the circuit in Fig. 1(c) with CJ �= 0 and
is detailed in the Supplemental Material [23]. Mathematically,
the cutoff in the coupling is due to a mode-mode coupling
term of the form

∑m<M
m=0

∑m<M
m′=m+1 G

(M)
m,m′ (âm + â

†
m)(am′ +

a
†
m′ ), which arises naturally from the circuit quantization. This

is the equivalent of the A2 term discussed in Refs. [19–21].
Diagonalizing the Hamiltonian of coupled resonator modes
leads to decreasing zero-point voltage fluctuations of the
modes at the coupling node. As shown in Fig. 4, with a
capacitance to ground CJ = 5 fF close to the experimental
parameters of Ref. [18], the expected cutoff occurs when
|Zc(ωmc

)| � |Z0|, or equivalently, at the mode number mc �
(CJ + Cc)/2ω0Z0CJ Cc. This mechanism is accompanied by
the appearance of an upper bound in the renormalized charging
energy, such that Eq. (3) becomes

E
(M)
C = e2

2

C0 + MCc

MCcCJ + C0(Cc + CJ )
, (6)

and E
(M)
C → e2/2CJ for M → ∞. We emphasize, however,

that this cutoff is not a necessary condition for the convergence
of the energy spectrum: the model described above with CJ = 0
converges even in the absence of such a cutoff. This is to be
contrasted with typical models of (natural) atoms coupled to
cavity modes where high-frequency cutoffs must be imposed
to obtain finite predictions [31]. It would be interesting to
study if the ideas developed in this work apply to such
systems.

Conclusion. We have developed a first-principles multi-
mode quantum Rabi model of circuit QED from a compact
lumped element equivalent circuit. Using this formulation, we
derived the convergence of quantities such as the Lamb shift in
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the absence of any high-frequency cutoff, arising from a natural
renormalization of the Hamiltonian parameters as modes are
added. We also study the implications of a finite junction
capacitance, which introduces a cutoff in the coupling to
high-frequency modes but does not change the renormalization
that occurs when additional modes are included in the circuit.
For both cases with and without a junction capacitance, we
show that when constructing a quantum Rabi model from
this compact lumped element equivalent circuit it is crucial
to include this renormalization to get correct Hamiltonian
parameters from the values of the circuit elements. This work
provides a useful framework for an intuitive understanding
and modeling of experiments in the multimode ultrastrong
coupling regime. This formulation of the multimode quantum
Rabi model in the context of circuits hints at an intuitive
picture on how this renormalization can arise physically, and it

suggests the study of how this proposed physical picture could
be applied to other problems in quantum field theory.

Note added. After we finished this manuscript, we became
aware of Ref. [32], which arrives at similar conclusions
as the last section of this article but through a different
approach.
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