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Chapter 1

Introduction

1.1 Setting the problem

In the last three decades there has been an increasing interest in the study of
the tensile behavior of concrete or, more generally, of quasi-brittle materials,
and its role in the assessment of the performance of structures. Many compu-
tational models have been developed (following either the discrete modelling
or the continuum modelling approach) to reproduce tensile fracture phenom-
ena occurring in quasi-brittle materials.

Assuming that these models are capable of correctly describing the frac-
ture process according to a qualitative point of view, their reliability, in re-
producing quantitatively correct results, significantly relies on the identifica-
tion of the constants characterizing the model equations (model parameters).
However, some model parameters are defined at the material point level (con-
stitutive law equations) and their real physical interpretation is not always
clearly established. This is the case, for instance, for the length scale pa-
rameter, introduced in the nonlocal continuum models in order to regularize
the local approach. Direct experimental estimates of these parameters are
not possible and the parameter identification problem needs to be solved in
the framework of the Inverse Problems Theory. The development of inverse
procedures is required, which can provide the parameters estimate by mini-
mizing, iteratively, the discrepancy between experimental and computational
data. Hence, innovative computational and experimental techniques may be
coupled to extract intrinsic material properties from measured structural re-
sponses.

1



2 1.2 Scope and objectives of current research

1.2 Scope and objectives of current research

Scientific modelling of natural processes provides relations between causes
and effects. Hence, considering the scheme of Figure 1.1, the following cases
may be distinguished, according to the type of unknowns of the problem:

- the effects are unknown =⇒ the forward problem has to be solved;

- the causes are unknown =⇒ the inverse problem has to be solved;

- the model is unknown =⇒ both the forward and the inverse problem
have to be solved.

In fact, solving the forward problem means to find analytical or numerical
solutions for ordinary or partial differential equations with known initial con-
ditions, boundary conditions and constants (or parameters) in the equations.
On the contrary, in the inverse problem the solution is known and the ob-
jective is to determine the complete forward problem for which that solution
is possible. When developing a model, which can be used for prediction or
design purposes, the following three phases can be identified:

a) Model building

- idealization and simplification of the physics and/or mechanisms on
the basis of the real process/phenomenon;

- conversion into equations or mechanical system(s);

- solution of a forward problem (causes and model are known);

- check on the model output: the response reproduced by the model
should be qualitatively acceptable after comparison with the real re-
sponse.

b) Model calibration

- A real situation (causes and effect known) is considered. The model
is formulated, but not entirely, since model parameter estimation is
necessary. Hence, an inverse problem needs to be solved for the model
parameter identification. Starting from an initial guess of the model
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Causes
Effects

Process/model

Figure 1.1: Modelling scheme of processes.

parameters, the computational output is compared to the known ex-
perimental response of the modelled system. On the basis of the dis-
crepancy between the two outputs, the parameters estimate may be
iteratively or directly updated.

This represents a first check for the model, because, already in this
phase, weak points in the model may be detected. For instance, the
solution of the inverse problem might not exist or it might be unstable.

However, error identification may require a significant effort, since causes
of ill-posedness might not only be found in the model, but also in the
type of experimental data used for the calibration (quality, quantity
and type of data) or in the adopted inverse method (for instance, lo-
cal searching techniques might stick into local minima of the function
of the discrepancy between the computational and experimental data,
whose minimization represents the identification process).

c) Model assessment

- various real situations are considered, different from the one(s) used
for the model calibration, but still in the valid application range of the
model (because they satisfy the assumptions on which the model is
based). Forward problems are solved and a comparative study between
the experimental and computational responses is performed. Hence,
limits related to the predictive capacities and to the applicability of
the model can be provided, establishing the conditions under which
the model performs well and under which it fails.

The present thesis is situated mainly in phase b) and partially in phase c)
of nonlocal continuum models for localized fracture in quasi-brittle material
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and, particularly, of the gradient-enhanced continuum damage model1. The
first phase of the model development is not discussed. However, as already
pointed out, if, on one hand solving a calibration problem neglects a debate on
the model (the way the process has been modelled), on the other hand, at the
end of this phase or in the model assessment phase, the presence of possible
weak points can be highlighted. Hence, the inverse analysis might reveal limits
in the basic assumptions of the model. A ‘proof ab absurdo’ of the model can
be provided by the inverse analysis: starting from the hypothesis that the
way the model describes the physical process is correct, possible flaws might
be found, that lead to re-discuss the hypotheses, which give input when going
back to phase a) of the model development.

Related to the identification of the parameters of nonlocal continuum
models for localized failure in quasi-brittle materials, limited, though inter-
esting, studies are available in literature (e.g. [22, 38, 55, 58]). However, the
main issues remain the investigation of the well-posedness of the inverse prob-
lem (also influenced by the choice of experimental data, in terms of quality
and quantity, involved in the solution), the choice of the adopted inverse
strategy (as a suitable searching scheme in terms of effectiveness, efficiency
and robustness) and the assessment of the so-calibrated numerical model (in
terms of reliability, limits of the applicable domains and predictive capabil-
ities). All these aspects are analyzed in the present work, examining issues
related both to the forward model and to the inverse parameter identification
problem.

1.3 Outline of the thesis

The essential phenomenological aspects of quasi-brittle materials and the nu-
merical model used to reproduce these phenomena are presented in Chapter
2. Hence, this chapter is devoted to the forward problem and to some is-
sues related to the length scale parameter characterizing nonlocal continuum
models. The inverse problem is discussed in Chapter 3, presenting the inverse
techniques used in the thesis. The solution of the inverse problem needs ex-
perimental results as target solutions. The experimental tests used for this
purpose are reported in Chapter 4. In Chapter 5 the numerical applications
are described. Hence, containing the main findings, Chapter 5 represents the
core of the work. The developed inverse strategy for parameter identifica-
tion, derived from the results in Chapter 5, is presented in Chapter 6. How

1The optimal experiment design is not part of the scope of this thesis.



1 Introduction 5

this strategy and the adopted inverse techniques may be extended to other
material models for localized failure is discussed in Chapter 7. Finally, the
summary of the main conclusions and achievements of the research, the open
issues and future outlook and recommendations are presented in Chapter 8.





Chapter 2

The forward problem

2.1 Softening, localization and size effect

Deformation controlled tensile tests of quasi-brittle materials (such as con-
crete, rock and ice) are characterized by a gradual softening after reach-
ing the maximum load. In a one-dimensional stress-strain relation or load-
deformation relation, this means that after the peak load has been reached,
the load-carrying capacity decreases until complete failure, as a result of col-
laborative structural and material effects. The distinction between aspects
related only to the structural or to the material behaviour is very difficult,
because structural effects may be minimized but never avoided. As a matter
of fact, the causes of the softening behaviour are the irreversible processes
of fracturing that first occur at the micro-level in the material and then,
through the growth and coalescence of microcracks, at the macro-level, influ-
enced by structural aspects (e.g. geometry, boundary and loading conditions)
manufacturing factors and environmental conditions.

At a certain stage of the loading process, deformations grow in a small
portion of the specimen, leading to strain localization phenomena which are
responsible for the macroscopic failure of the structure. Hence, while damage
continues to increase in a limited part of the structure, other parts unload
releasing the elastically stored energy. The characteristic localization width,
for a given structure, is material-dependent and therefore it represents ad-
ditional experimental information that may be exploited in the parameter
identification procedure.

The phenomenological behaviour of quasi-brittle materials presents an-
other important aspect. Numerical and experimental investigations by many

7



8 2.1 Softening, localization and size effect

researchers demonstrated the size effect phenomenon: the results obtained
in the laboratory are influenced by the size of the specimen. Particularly,
many models deal with the size effect on the nominal strength. In this cate-
gory the Weibull weakest link theory [91], Baz̆ant’s Size Effect Law [2] and
the Multi Fractal Scaling Law by Carpinteri [23] are the most well known.
The real mechanisms that are behind the size effect phenomenon are not yet
completely understood and they have been the topic of an extensive scien-
tific discussion. The opinion of the author is that the stress-redistribution,
consequence of micro and macrocracking, that are at the basis of the size
effect phenomena, are governed by structural factors and by intrinsic local
properties of the material [85]. In other words, the size effect is governed by
deterministic and statistical phenomena. The boundary and loading condi-
tions in the tensile experiments, for instance, are structural factors that have
an important effect on the tensile strength and on the failure mechanism of
the specimen: free or fixed rotations (together with the stiffness of the speci-
men) may or may not allow for some stress-redistribution after microcracking
in the pre-peak regime [84]. On the other hand, particle density, particle dis-
tribution, relative stiffness, strength and amount of the constitutive phases
of an heterogeneous medium define the intrinsic properties of the material in-
fluencing the local microcracking processes. Finally, differential deformations
due to the hydration heat and drying and other manufacturing and environ-
mental factors cause different local eigen-stresses depending on the size of
the specimen. Small specimens, for instance, are relatively more affected by
non-uniform drying than large specimens, since the effects are limited to the
body skin and small size specimens have a bigger surface to volume ratio.
Interesting investigations regarding the parameter identification problem are
based on size effect phenomena (e.g. [22, 55, 73, 81]).

From the numerical point of view, over the past two decades, the simula-
tion tools used in mechanics of materials have become increasingly powerful.
Progress made in the field of scientific computation is giving rise to a new
branch of mechanics called computational mechanics of solids [50], allowing
the use of more realistic and more complex models. In the case of fracture
behaviour of quasi-brittle materials, it may be numerically modeled follow-
ing a discrete or a continuum approach. In the first case the failure of the
mechanical system is reproduced by the definition of a fracture criterion and
a cohesive law along the crack and linear elastic relations in the remaining
part. In the second case, instead, the loss of mechanical integrity is accounted
for in the constitutive relations. A zone of material degradation and local-
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ized deformation, according to the standard continuum mechanics theory,
represents fracture.

Of course, the complete computational descriptions of all the phenomeno-
logical aspects described above is very difficult and any discussion about the
potentiality of continuum models versus discrete models, which is topic of a
scientific debate in the last years, is neglected here. However, it suffices here
to mention that the calibration of a numerical model reduces to a merely
data fitting problem, if the parameter identification process is not driven
by a critical assessment and awareness of the limits of applicability and of
predictive capability of the model.

In the present work the continuum approach is chosen and briefly pre-
sented in this Chapter. However, many issues of the inverse problem remain
valid also for other computational models. A discussion on this issue is added
in Chapter 7.

2.2 Local damage model

The adopted numerical model is based on the isotropic continuum damage
formulation of Lemaitre and Chaboche [56]. The material degradation due to
thermal or chemical effects is neglected and only the damage caused by nucle-
ation, coalescence and growth of microcracks is taken into account through
a scalar damage variable ω. All dissipation phenomena are related to the
growth of microcracks and therefore to the degradation of the elastic con-
stitutive moduli, while plastic deformations are neglected. This model can
describe the quasi-brittle fracture mechanisms in which a high number of
micro-structural changes occurs before complete failure of the material takes
place.

The range for ω is in the interval [0,1]: if ω = 0 no damage has developed in
the material that remains in the initial virgin state, while ω = 1 corresponds
to the completely damaged material without any residual load-carrying ca-
pacity. The damage scalar variable ω is responsible for the degradation of the
elastic stiffness according to the following classical stress-strain relation

σ = (1 − ω)Delε, (2.1)

in which Del represents the matrix of the virgin elastic stiffness moduli, gov-
erning the response of the undamaged material (ω = 0) and σ and ε denote
stress and strain, respectively. During damage evolution ω increases, reducing
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the stress that can be transferred until complete failure of the material (ω =
1) when the stiffness and load-carrying capacity has vanished.

A scalar invariant measure of strain, the equivalent strain εeq, is defined
as function of the strain tensor components. Different definitions of εeq can be
formulated [70] and here only the modified von Mises definition [90], adopted
in the applications discussed in the thesis, is given

εeq =
(η − 1)I ′1

2η(1 − 2ν)
+

1

2η

√

(η − 1)2I ′1
2

(1 − 2ν)2
+

12ηJ ′

2

(1 + ν)2
, (2.2)

where I ′1 and J ′

2 are the first invariant of the strain tensor and the second
invariant of the deviatoric strain tensor, respectively, given by

I ′1 = εxx + εyy + εzz (2.3)

and

J ′

2 = (εxx
2+εyy

2+εzz
2−εxxεyy−εyyεzz−εzzεxx)/3+εxy

2+εyz
2+εzx

2. (2.4)

In Eq. (2.2) η is a model parameter that represents the sensitivity in com-
pression relative to that in tension. It is given by the ratio of the compressive
and the tensile strength of the material: η = fcc/fct. According the equiva-
lent strain definition of Eq. (2.2), compressive and tensile actions of the same
magnitude on the material have different effects on the damage growth only
if η 6= 1.

As long as the equivalent strain εeq is smaller than a strain threshold κi,
no damage occurs in the material that remains in the linear elastic regime.
Damage growth is determined by means of a damage loading function which
is expressed in terms of the equivalent strain

f(εeq) = εeq − κ(εeq), (2.5)

where κ is a history variable representing the most severe deformation un-
dergone by the material

κ(εeq) = max(εeq, κmax), (2.6)

being κmax the maximum value of equivalent strain occurred in the material.
However, when εeq= κi the damage process starts, evolving according to a
damage evolution law
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Figure 2.1: (a) Exponential softening damage evolution law (b) uniaxial
stress-strain curve.

ω = ω(κ). (2.7)

The magnitude of the loading function is governed by the Kuhn-Tucker
relations

fκ̇ = 0, f ≤ 0, κ̇ ≥ 0. (2.8)

For f < 0 no growth of damage can take place (κ̇ = 0) and the response
remains linear elastic. Damage increases (κ̇ > 0) only if the strain state sat-
isfies the equation f = 0 and during this increment the consistency condition
ḟ = 0 must be satisfied as well.

The complete formulation of the model requires the explicit definition of
the damage evolution law Eq. (2.7). Here, the following exponential softening
damage evolution law is chosen

ω = 1 −
κi

κ
[1 − α+ αe−β(κ−κi)], (2.9)

where α and β are two additional model parameters that govern the softening
curve. As schematically represented in Figure 2.1, α determines the residual
stress of the damaged material and β sets the negative slope of the softening
branch.

However, strain localization arising from a material instability poses con-
siderable difficulties in numerical solutions. In fact, the standard local damage
model presented above can reproduce the global softening behaviour of the
material, but it presents what is commonly known as mesh dependence. The
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Figure 2.2: The principle of local and nonlocal action [37].

width of the zone where damage localises depends on the used finite element
size: decreasing the element size leads to a decrease of the strain localisa-
tion band and, consequently, the numerical analysis depends on the spatial
discretisation. In the limit case the growth of damage tends to localise in a
portion of material of zero volume, the crack propagation becomes instanta-
neous and no work is necessary to produce the fracture process (zero fracture
energy). This non physical behaviour, predicted by the local damage the-
ory, is mathematically explained by a local loss of ellipticity of the set of
partial differential equations governing the rate of deformation. The bound-
ary value problem becomes ill-posed, i.e. it does not have a unique solution
with continuous dependence on the given data (an infinitesimal change in the
data can cause a finite change in the solution). To recover the mathematical
well-posedness of the boundary value problem a length scale must be incor-
porated, implicitally or explicitly, into the material description or into the
formulation of the problem. A number of approaches have been proposed in
the last years [25, 77] to remedy this difficulty, giving rise to different types of
regularized models. The model adopted here belongs to the class of nonlocal
regularized models.

2.3 Nonlocal damage model

The basic idea of the nonlocal model is that a state variable in a material
point depends on state variables (and/or history) in the considered point
(local action principle) and in the neighboring points (see Figure 2.2). The
introduction of this principle of nonlocality in the constitutive equations was
first considered by Kröner [49] and Eringen and Edelen [31]. It was first
applied to regularization of material instability problems using imbricate el-
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ements by Baz̆ant et al. [4] and Belytschko et al. [14] for strain-softening
materials and then applied to continuum damage mechanics by Pijaudier-
Cabot and Baz̆ant [10, 72], with several versions of nonlocal models later
proposed by Baz̆ant and co-workers [6, 8] based on similar concepts. Many
studies, applications, developments and enrichment have later emerged from
the nonlocal damage theory [5, 18, 26, 52, 90, 93].

The nonlocality in the constitutive model may be introduced in different
ways: directly in the constitutive equation σ(ε) or, alternatively, in the evo-
lution law of an internal variable. Within continuum damage mechanics, the
nonlocality is usually embedded in the damage evolution. The constitutive
relation Eq. (2.1) remains unaltered, while the computation of damage is
modified through the following history variable definition, substituting Eq.
(2.6) by

κ(ε̄eq) = max(ε̄eq, κmax), (2.10)

where ε̄eq is the so-called nonlocal equivalent strain. In the nonlocal damage
theory the nonlocal equivalent strain ε̄eq can be defined as a spatially averaged
quantity and, as a consequence, a smooth damage field is obtained avoiding
the ill-posedness of the boundary value problem and the mesh sensitivity of
the discretised problem as discussed for the local approach. The definition of
the non local equivalent strain is given by

ε̄eq(x) =
1

Ψ(x)

∫

Ω
Ψ(y; x)εeq(y)dΩ, (2.11)

where y points to the positions of the infinitesimal volume dΩ and Ψ(x) is
defined as

Ψ(x) =

∫

Ω
Ψ(y; x)dΩ. (2.12)

The weighted average is defined such that for homogeneous strain states
the local and nonlocal equivalent strain are equal. As weighting function
Ψ(y; x) the homogeneous and isotropic Gauss distribution is usually adopted

ψ(ρ) =
1

(2π)3/2l3
exp

[

−
ρ2

2l2

]

, (2.13)

where ρ = |y −x| and the factor (2π)−3/2l−3 normalizes the weight function
such that in R

3
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∫

R3

ψ(ρ)dΩ = 1. (2.14)

The length parameter l in Eq. (2.13) gives the size of the neighborhood
that determines the nonlocality of the model.

2.3.1 Gradient enhanced damage formulation

Instead of an integral type nonlocal model also a differential type nonlocal
model may be used, a so-called gradient model. For instance, gradient plas-
ticity models have been derived [63, 78]. For sufficiently smooth fields of the
local equivalent strain, it is possible to apply a Taylor series expansion [71]

εeq(y) =εeq(x) +
∂εeq
∂xi

(yi − xi) +
1

2!

∂2εeq
∂xi∂xj

(yi − xi)(yj − xj)+

1

3!

∂3εeq
∂xi∂xj∂xk

(yi − xi)(yj − xj)(yk − xk)+

1

4!

∂4εeq
∂xi∂xj∂xk∂xl

(yi − xi)(yj − xj)(yk − xk)(yl − xl) + · · · . (2.15)

Substituting Eq. (2.15) into Eq. (2.11) and carrying out some calculus for
the problem in R

3, the integral Eq. (2.11) can be rewritten as a differential
equation in terms of gradients of the local equivalent strain εeq

ε̄eq(x) = εeq(x) + c̄2∇
2εeq(x) + c̄4∇

4εeq(x) + · · · , (2.16)

where the Laplacian ∇n is defined by ∇2 =
∑

i ∂
2/∂xi

2, ∇2n = (∇2)n and
the coefficients by c̄2 = (1/2)l2 and c̄4 = (1/8)l4.

Odd derivative terms vanish in Eq. (2.16) for the problem in R
3 as a

consequence of the isotropy of the Gaussian weight function, while this is
no longer true for a problem in finite domains Ω ⊂ R

3. However Eq. (2.16)
remains an approximation of the integral Eq. (2.11).

Multiplying Eq. (2.16) with c̄2∇
2 and subtracting the result from Eq.

(2.16) the following relation can be obtained [70]

ε̄eq − c̄2∇
2ε̄eq = εeq + (c̄4 − c̄22)∇

4ε̄eq + · · · . (2.17)

Neglecting terms of order four and higher in the right-hand side of Eq.
(2.17) yields
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ε̄eq − c∇2ε̄eq = εeq, (2.18)

where it has been assumed that c̄2 = c. Eq. (2.18) is the differential ap-
proximation of the integral Eq. (2.11) and, since the nonlocal variable ε̄eq
depends implicitly on the corresponding local variable εeq, it is referred to as
an implicit gradient-enhancement [70].

The solution of Eq. (2.18) requires extra boundary conditions. Two dif-
ferent boundary conditions may be given

ε̄eq = ε̂ Dirichlet boundary condition, (2.19)

nT∇ε̄eq = ε̂n Neumann boundary condition, (2.20)

where n is the boundary unit normal. In most cases the natural boundary
condition is used even if the physical interpretation of it is still an open issue

nT∇ε̄eq = 0 natural boundary condition. (2.21)

2.4 The internal length scale

The length scale l (or alternatively the gradient parameter c) is an additional
parameter that is necessarily introduced in the constitutive equations to reg-
ularize continuum models. In fact, without the length scale parameter, the
strain-softening continuum models for damage can only correctly describe
situations in which the damage remains distributed and not localised. The
length scale gives information on the limited possible volume in which dam-
age may localise, so that it is called localization limiter.

Moreover, only with the introduction of the length scale the failure models
may describe the size effect phenomena. Therefore, fitting of the size effect
curve is often used for the identification of the length scale parameter (e.g.
[22, 55]).

However, it remains unclear whether this model parameter represents
only a mathematical trick to remedy the loss of ellipticity of the governing
equations or that it can be considered as a material property related to the mi-
crostructure of the material. As a matter of fact, interesting studies have been
made to justify the length scale in the nonlocal approach by microstructure
[11] and physical justifications. The introduction of the principle of nonlocal
action is suggested by micromechanics motivations in [3, 9]. Two arguments
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seem to be relevant:(i) the inelastic strain caused by damage is the conse-
quence of the release of stored energy from a microcracked neighborhood,
the size of which is not negligible (ii) the interaction among microcracks in
a certain neighborhood implies nonlocality. The size of this neighborhood or
interaction radius depends on the characteristic micro-structure of the ma-
terial and it is related to the length scale, which supports the necessity of
introducing information on the microlevel in the constitutive model. In fact,
an important continuum model requirement for a brittle heterogeneous ma-
terial such as concrete, for instance, is that it must correctly represent the
consequences of heterogeneity of the microstructure. This can be taken into
account by the use of the nonlocal concept and so of the length scale pa-
rameter, which permits to obtain a microstructural dependent model. Hence,
the internal length scale may be considered as a mathematical tool necessary
to translate the mechanics of the discrete microstructure into a continuum
approach.

Although some studies indicate a fixed ratio between l and the maxi-
mum aggregate size (e.g. [11, 59, 60]), the optimum values of that ratio show
substantial variation from one type of structure to another [67]. Hence, it is
suggested to consider the length scale not as a material constant but as a
material function depending on the structure (e.g. bending vs. tension tests)
and on the stress-strain field in the neighborhood of a point, especially for
points in the fracture process zone.

In addition, other researchers [34, 38, 62, 68, 85] conclude that the inter-
nal length scale depends on the initial undamaged microstructure and also
on all deformation mechanisms occurring during the damage process. These
mechanisms change the microstructure in a progressive way. In other words,
the length scale could not be constant during the entire fracture process,
but it could be variable according a suitable evolution law, for instance, in
terms of cracking strain or damage variable, in a sort of self-adaptive strategy
implemented at the level of the material constitutive law.

All the hypotheses that consider the possibility of an internal length
scale that is not a constant material parameter rise essentially from two
facts: i) only one parameter can not be sufficient to describe all the com-
plex microstructural processes that characterize the material behaviour and
which define the response at the structural level, ii) the nonlocal contin-
uum approach suffers from the drawback of preserving continuum mechanics,
whereas, due to crack propagation, a transition from a continuous towards a
discontinuous medium actually occurs [33, 76].
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Regardless of the interpretation of the length scale, this model parameter
can not be directly measured during laboratory tests and direct accurate
links between l and any measurable microscopic material property have not
been established. Hence, only by using inverse problem methods, as valid
tools for extracting local material parameters from structural experimental
response, the length scale parameter may be estimated and the related issues
can be investigated [22, 38, 55, 58]. However, the main issues remain the
well-posedness of the identification problem (also influenced by the choice of
experimental data, in terms of quality and quantity, involved in the solution),
the choice of the adopted inverse technique (as a suitable searching tool in
the parameters space that is capable of avoiding eventual sticking into local
minima) and the assessment of the so calibrated numerical model (in terms
of reliability, validity domains and predictive capabilities). All these aspects
are analyzed in the present work.

2.5 Governing equations of the forward problem

Let Ω be an open bounded domain of R
d, with d = 1, 2, 3 representing a

general mechanical system. If ∂Ω is defined as the continuous boundary of Ω,
it can be split into two parts: ∂Ωu where displacements û are prescribed and
∂Ωt where surface tractions t̂ are prescribed. The equilibrium and kinematics
of the system, under the action of body forces b and surface tractions t̂,
assuming the hypothesis of small deformations, are governed by the following
set of equations

LT σ + b = 0, (2.22)

ε = Lu, (2.23)

where the differential operator L is defined as

LT =






∂
∂x 0 0 ∂

∂y 0 ∂
∂z

0 ∂
∂y 0 ∂

∂x
∂
∂z 0

0 0 ∂
∂z 0 ∂

∂y
∂
∂x




 (2.24)

and the stress and strain components are assembled in the following vectors

σT =
[
σxx σyy σzz σxy σyz σzx

]
, (2.25)
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εT =
[
εxx εyy εzz 2εxy 2εyz 2εzx

]
, (2.26)

with boundary conditions

NT σ = t̂ on ∂Ωt, (2.27)

u = û on ∂Ωu, (2.28)

where

NT =





nx 0 0 ny 0 nz

0 ny 0 nx nz 0
0 0 nz 0 ny nx



 . (2.29)

Considering the gradient-enhanced damage formulation presented in Sec-
tion 2.3.1, the diffusion problem (Eq. (2.18)) is solved, with the natural
boundary condition (Eq. (2.21)), in addition to the previous equilibrium prob-
lem. The constitutive equations are similar to those presented in Section 2.2
replacing properly the local equivalent strain εeq(x) with the nonlocal coun-
terpart ε̄eq(x). The complete set of equations is summarised in Table 2.1.
This set represents a fully coupled problem, in the sense that the solution of
the diffusion equation is not possible without the solution of the equilibrium
equations and vice versa.

The numerical implementation of the gradient-enhanced damage model
in the finite element framework requires spatial discretisation, by means of
different shape functions for the displacement field u and the non local equiv-
alent strain ε̄eq [70].

The model parameters for the complete problem of Table 2.1 can be
assembled in the following vector

xT =
[

E ν κi α β c η
]
, (2.30)

where
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E = Young’s modulus

ν = Poisson’s ratio

κi = strain threshold for damage initiation

α = softening curve parameter (related to the residual stress)

β = softening curve parameter (related to the stiffness of softening branch)

c = gradient parameter (related to the internal length scale l) = l2/2

η = ratio of compressive and tensile strength = fcc/fct

The inverse problem reduces to the identification of vector x.
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Governing equations:

LT σ + b = 0 equilibrium equations in Ω

ε̄eq − c∇2ε̄eq = εeq diffusion equation in Ω

Boundary conditions:

NT σ = t̂ b. c. on ∂Ωt

u = û b. c. on ∂Ωu

nT∇ε̄eq = 0 natural b. c. on ∂Ω

Kinematic equations:

ε = Lu kinematic equations in Ω

Constitutive equations:

σ = (1 − ω)Delε stress-strain relations

ω = ω(κ) = 1 − κi

κ [1 − α+ αe−β(κ−κi)] damage evolution law

κ(ε̄eq) = max(ε̄eq, κmax) history variable definition

εeq = εeq(ε) equivalent strain definition

f(ε̄eq) = ε̄eq − κ(ε̄eq) loading function

fκ̇ = 0 f ≤ 0 κ̇ ≥ 0 Kuhn-Tucker loading-
unloading conditions

Table 2.1: Set of equations.



Chapter 3

The inverse problem

3.1 Introduction

Inverse problems can be characterized as problems where the answer is known,
but not the question, or where the results, or consequences are known, but
not the cause. Citing Oleg Mikailivitch Alifanov, great proponent of inverse
methods, ‘the solution of an inverse problem entails determining unknown
causes based on observation of their effects. This is in contrast to the cor-
responding direct or forward problem, whose solution involves finding effects
based on a complete description of their causes’ [1]. In direct problems, in
fact, analytical or numerical solutions are found for ordinary or partial dif-
ferential equations with known initial conditions, boundary conditions and
constants (or parameters) in the equations. On the contrary, in the inverse
problem the solution is known (analytically, numerically or experimentally)
and the objective is to determine the complete forward problem for which
that solution is possible.

Inverse problems have applications in different engineering fields, such
as navigation, oil drilling, water and air quality control, medical diagnostics
(tomography), electrical imaging, acoustics, satellite positioning, atom in-
vestigation, economy modelling, non-destructive machines testing (e.g. crack
identification), adaptive control, robotics, optimal design etc. However, the
main contribution in the development of the inverse problem theory, in the
sense of systematic exploration of the mathematical structure of the inverse
problems and development of quantitative methods for extracting informa-
tion data, has been given by geophysicists in the 1960s. They considered the
necessity of studying the Earth’s interior using only data collected at the

21
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I=inverse problems

=niche of study

Figure 3.1: Inverse problem subsets and niche of interest for the present work.

Earth’s surface. While the simultaneous evolution of computers has made
the solution of inverse problems possible for a great array of applications.

There are many ways of classifying inverse problems and one is by the
type of information that is sought in the solution procedure, so that we can
distinguish:

backward or retrospective problems: the initial conditions are to be
found

coefficient inverse problems or parameter identification problems: con-
stant multipliers in the governing equations are to be found

boundary inverse problems: missing information at the boundary of the
domain is to be found and this could also be a function estimation
problem if the sought boundary condition changes with time.

Hence, parameter identification problems represent a subset of the Inverse
Problems (see Figure 3.1) and within this class other subsets can be distin-
guished. In Continuum Mechanics, for instance, the constants to be identified
could be inhomogeneous in the body, so that areas of degradation or variation
of the mechanical properties of the material may be characterized. This is the
case for damage/crack/inclusion/defect identification or damage monitoring,
in which the identification involves localization of micro-defects or inclusions
more than the estimation of constant (homogeneous) material parameters
(e.g. [16, 21, 28]). Moreover, another subset of the parameter identification
problems are the inverse parameters design problems characterized by the
fact that the target solution is known exactly, by designer specifications,
instead of being represented by experimentally measured data. Finally, the
class of model calibration problems on which the present work is focused.
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3.2 Inverse problems in Computational Mechanics

In the last years a considerable effort has been made in the development of
numerical models that can reproduce the mechanical behaviour of materials.
However, assuming that these models are capable of correctly describing the
real phenomena that the material structure undergoes (at different scales)
according to a qualitative point of view, their reliability significantly relies
on the correct identification of the constants characterizing the phenomeno-
logical model equations. Although, these parameters may not all be directly
measurable in the laboratory, more and more sophisticated experimental tools
and techniques have been used in a large number of experiments carried out
in the past years to measure other important quantities in order to gain in-
sight into the physical mechanisms governing the material behaviour. Thus,
the great difficulties in establishing a link between the experimental and the
computational world arise from the fact that during laboratory tests a com-
bination of structural and material behaviour responses is measured, while
computational continuum models require the identification of the constitu-
tive model parameters at a material point level. Within the Inverse Problems
framework there are techniques available to close this gap, extracting infor-
mation at material point level from the observed structural response. Hence,
besides the continuous qualitative updating of models, the Inverse Problem
Theory is concerned with the development of rules for quantitative updating
of models [20, 82].

The Inverse Problem Theory offers also useful tools for continuous and
simultaneous assessment and improvement of models and experiments. In
this regard, it seems interesting to cite here the three research cases in sci-
ence and engineering implied in inverse problems [13], in order to understand
what is commonly done and what would be ideal to do. The cases are called
A, B and C. In the first case, a simple model in algebraic form is adopted
and the parameters are identified using simple equation inversions and mea-
surements from experiments which are not necessarily simple. In the case B,
a poorly-understood process is studied using complex models and complex
experiments. However, they are kept scrupulously apart until a comparison
of the result is made at the end by plotting them on the same figure. Ad-
justment of the model parameters may be done, for instance using inverse
techniques, concluding that the ‘model is satisfactory’. The last case is the
ideal situation in which complex models and experiments are used, but ex-
periments and model interact continuously in a fully coupled analysis of the
phenomenon, with the objective of improving both. In this case C the study of
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Figure 3.2: Schematic representation of a real and modelled system.

the design of the optimal experiment is extremely important, because many
choices have to be made that can greatly affect the values and the accuracy
of the model parameters estimate. These choices may, for instance, concern
the number of sensors, their location, geometry and size of the specimen,
boundary and loading conditions, duration of the experiment. Hence, the
numerical model may be an useful tool for the optimal experiment design
(several criteria and methods are available [30]). While, on the other hand,
the experimental data may be used for qualitative and quantitative updating
of the numerical model. This continuous integration and interaction of model
building with experimental design, data acquisition and data analysis allows
not only extraction of the maximum information out of the examined pro-
cess, but also significant improvement of the model as basis for predictions
and design problems.

3.3 Setting an inverse problem

Let S be the real mechanical system (see Figure 3.2) represented by a nu-
merical model S

′

containing nx model parameters assembled in the vector x,
e.g. Eq. (2.30). If a perturbation F is applied on S, the system reacts giv-
ing a certain response that, at different ‘instants’ t, may be represented by
ny measurable quantities collected in a yt∗

exp vector. Through an ‘in situ’ or
laboratory measurement equipment, the system response may be acquired,
so that a vector yt

exp of measured quantities may be obtained. The variable
t represents a time ordering variable and it can also be the amplitude of the
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imposed external action on the system. If the ny quantities are experimen-
tally measured at different ‘instants’ t, the measurements acquisition system
gives a flow of experimental data yt

exp for t = 1, 2, 3....n. Different types of
measurable quantities can be assembled in the yt

exp vector. For structural me-
chanics problems these can be forces, the crack mouth opening displacements
(CMOD), relative displacements measured by an interferometry technique,
strains measured by strain gauges or embedded optical fibers, width of the
localisation zone etc. On the other hand, the numerical model of the sys-
tem, S

′

, given the model parameter vector x, is able to compute at every
‘instant’ t, the solution of the forward problem, with numerical values for the
ny quantities that may be collected in a vector yt

comp. This vector is the cor-
responding computational counterpart of yt

exp and it depends on the model
parameters x according to the following general relation

yt
comp = ht(x), (3.1)

where ht(x) is referred to as the forward operator and it is non linear in the
case of the gradient-enhanced continuum damage model used in this study.

Without solving any inverse problem the two vectors yt
exp and yt

comp

are different. This can be due to different reasons that may be classified
depending on whether they are intrinsic deficiencies of the ‘S

′

’ or the ‘M’ box
(see Figure 3.2). Numerical models, in fact, are an approximation of reality
and they can not include all complex factors that may play a role in the real
system. Particularly, regarding structural mechanics problems, weak points
are:

modelling of loading and boundary conditions. For instance, constraints
modelled as fixed points while in the real system small displacements
are allowed, or the external load considered as a perfectly centered point
load or a uniformly distributed load, while a small eccentricity may be
present in the real tests.

material modelling. The choice of the constitutive framework, for in-
stance a plasticity model, a damage model or a fracture model, is an
a priori limiting factor. Subsequently, within each constitutive frame-
work, a series of possible sources of error may be identified. Firstly, the
model parameters are considered constant while, in the real system,
they could be a function of time (due to e.g. corrosion, degradation
etc.), microstructure, structure (in the sense of size, geometry and load-
ing conditions), temperature, stress or strain state etc. Moreover, rela-
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tively simple constitutive relations are used for the material behaviour,
often neglecting large deformation plasticity, viscoplasticity etc. In ad-
dition, the material is generally assumed to be orthotropic or isotropic
with the same behaviour in tension and compression. Finally, poor in-
formation at microstructural level is available or, even if images of the
microstructure are obtained, poor knowledge exists on the modelling
of the interaction and connection between the various microstructural
elements and on their intrinsic properties. This results in a standard
continuum modelling approach, for the description of accumulated and
localised damage. Particularly, for the case of the gradient-enhanced
continuum damage model, considered in the present thesis, the follow-
ing limitations can be mentioned: the damage is isotropic, the fracture
process is restricted to mode I, permanent deformations, viscous ef-
fects, load rate dependency and moisture effects are not included in
the model. These limitations might represent possible sources of error,
if one of the neglected aspects are instead present in the experimental
tests.

deterministic versus stochastic modelling. Parameters with a stochas-
tic nature are often neglected or assumed to be deterministic in the
numerical model. Except from the meso- or microstructure, this may
be due to manufacturing processes (concrete casting) or environmental
conditions (humidity, temperature).

structure modelling. For instance, the three-dimensional reality, the en-
vironmental interactions (e.g. soil-structure) and the modelling of the
complete experimental set up (e.g. loading plates) are often neglected.

dynamic versus static analysis. Small dynamic effects are neglected in
static analyses and it is difficult to describe the damping properties of
all parts of the structure.

On the other hand, also the passage of the yt∗
exp vector through the ‘M’

box (see Figure 3.2) does not occur without intrinsic deficiencies. The main
differences between the two vectors yt∗

exp and yt
exp are due to the so-called

measurement noise (non systematic measurements errors). The following fac-
tors may be responsible for this discrepancy:

tolerance and reliability of the measurement devices. Bad accuracy of
the measurement devices leads to systematic errors. These kind of er-
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rors, however, may not only be intrinsically related to the measurement
instruments, but also to an inaccurate or incorrect use of them.

debatable outline of the measurements statistics. i.e. bad quality of the
statistics of the measurement data, characterized by a big scatter due
to an insufficient number of repeated experiments. Moreover, the accu-
racy of the measurement data is often compromised by the averaging
operation. For instance, the average load-deformation curve may be
characterized by a peak load that is different from the average of the
peaks, since the various curves, corresponding to repeated experiments,
may be slightly shifted along the strain axis. In general, it is advisable
to consider not only the average curves, but also the scatter bands in
the numerical versus experimental comparison.

accidental errors. For instance in the placement of strain gauges or
other displacement measurement devices.

experimental modelling. The experimental measurements are interpreted
according to a certain simplified model of reality, built in the experi-
mentalist mind, with some assumptions and inferences that may cor-
respond to the computational model. Moreover, a good quality of the
experiment should be guaranteed in order to avoid measurement of
the external load that include uncontrolled reactions, loading system-
specimen interactions or uncontrolled third dimension eccentricities.

Basically, all the above sources of errors may be synthesized in one unique
aspect of reality that is never a closed system [66]. This implies a series of
external uncontrolled and unpredictable factors that makes the demonstra-
tion of the truth, verification, of a numerical model impossible in the deepest
and widest sense. A series of hypothesis and assumptions are necessary set-
ting the model, that not always and not exactly may be verified in reality.
Models are always approximations of the reality, being not always capable of
capturing all aspects of the observed reality. On the other hand, experiments
are always true, but their interpretation may contain errors.

However, a model that does not contain known or detectable flaws, is
internally consistent and represents a reasonable logic description of the phe-
nomenon can be calibrated or validated. This requires the comparison, at
every ‘instant’ t, between the experimental data yt

exp and the corresponding
computed values assembled in yt

comp(x), minimizing iteratively the error e(x)
between the two vectors, until an acceptable solution is achieved. Hence, the
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final estimate of the model parameter vector x̂t corresponds to the minimizer
of an objective function that may be generally written as

f(x) = (yt
exp − yt

comp(x),x0) = (et(x),x0), (3.2)

where also an initial starting point, initial guess of the model parameters, x0

may be included. The consequence of such a calibration process is that all
discrepancies between the real system response and the output of the numer-
ical model, due to the various mentioned reasons, are assumed to be covered
only by adjustment of the model parameters. The result is that model pa-
rameters supposed to be constant are found to be variable according to, for
instance, the structure geometry, size, time etc. Hence, variable model pa-
rameters may be the consequence of erroneous modelling. On the other hand,
since the model parameters could be, on their own, dependent on all already
mentioned different factors (e.g. time, strain state etc.), considering them as
constant may be cause of erroneous modelling. This is, in the opinion of the
author, the loop of material modelling : variable model (material) parameters
are the cause and the effect of erroneous modelling.

Moreover, also the set up of the ‘I’ box can be a cause of possible sources
of deficiencies. A crucial point, in fact, is the choice of experimental data that
are to be included in the definition of the objective function of Eq. (3.2). Es-
sentially, two types of problems may be encountered in this case depending
on whether the considered experimental data set under-determines or over-
determines the model parameters (or some of them) [82]. In the first case,
the intrinsic lack of data can be responsible for the indetermination in two
different ways. In one case, the used experimental data do not depend on the
values of the model parameters to be identified. This is the trivial case. For
instance, using force values along the tail of a softening force-deformation
curve to identify elastic material properties, such as the Young’s modulus E
and Poisson’s ratio ν is meaningless. In this regard, a sensitivity analysis is
important in order to acquire knowledge on the effect that a certain param-
eter has on a given output variable. Moreover, the sensitivity analysis may
be useful for the experiment design, for instance positioning displacement
transducers in optimal information points of the specimen. This is referred
to as optimal experiment design or data acquisition planning [30]. In the other
case, the experimental data depend on the values of the model parameters
to be identified, but do not guarantee uniqueness of the inverse solution. It
is well known, for instance, that it is impossible to have a unique solution of
the inverse problem of estimating the density distribution of a mass inside
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a planet from gravitational field data on its surface, since infinitely many
different mass density distributions correspond to the same external gravi-
tational field (Gauss’ theorem). Additional data or a priori assumptions are
necessary. More specifically, in the case of the examined continuum dam-
age model, it will be illustrated in Chapter 4 that correlation between two
model parameters spoils the uniqueness of the solution if only the structural
force-deformation curve of one single specimen size is involved in the inverse
procedure. Also in this case, additional experimental data are requested.

On the contrary, regarding the second problem of over-determination of
the model parameters, the data redundancy can, in general, easily be handled
with methods that, still in the present days, do not differ essentially from
those used, for instance, by Laplace [51] (who introduced the ‘least-absolute-
values’ and the ‘minimax’ criterion to obtain the ‘best’ solution), Legendre
[53] or Gauss [35] (who introduced the ‘least-squares’ criterion).

All the above mentioned weak points, related to the computational model,
to the experiments and to the objective function definition may lead to the
so-called ill-posedness of the inverse problem. This occurs when one or more
of the following properties is not guaranteed for the solution of the inverse
problem:

existence or identifiability : no model parameters set can reproduce the
target response of the system. In fact, it is worthwhile to recall that
the assigned target solution is an experimental response and not a com-
putational solution. Hence, it is not known in advance if the adopted
model can properly reproduce the system behaviour, so that the ex-
istence of the inverse solution is not a priori guaranteed. Then, the
parameter identification problem may be used to assess if the adopted
computational model can properly simulate the real system behaviour,
highlighting its deficiencies, inadequacies and limitations.

uniqueness: different model parameter sets give equivalent computa-
tional responses of the system. This is typically the case of saddles or
multiple absolute minima in the objective function, as schematically
shown in Figure 3.3 for mono-dimensional problems.

stability : solutions that slightly differ may correspond to significantly
different model parameter sets. Hence, small measurement errors cause
significant errors in the identified parameters (see Figure 3.4).
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f=f (x)f=f (x)

Figure 3.3: Examples of objective functions with non unique solutions for
one-dimensional inverse problems.

In addition, once the objective function is defined, a proper inverse tech-
nique is required for the search of the ‘best’ model parameters estimate in the
parameters space. In this case, the possible weak point is that a local search
method is used starting from an inappropriate initial guess of the model pa-
rameters, in the case of multi-extremality of the objective function (see Figure
3.5). As a result, the inverse procedure may stick into local minima with a
completely wrong estimate of the x vector.

The conclusion is that calibrations of numerical models as tools for pre-
diction and decision making problems, not only rely on a good choice of the
‘S

′

’ box itself (see Figure 3.2), but also on a proper choice of the ‘M’ and
‘I’ boxes, and not only for one specific circumstance, but for a reasonable
number of applications that tests the limits of the model.

Finally, it is worthwhile to notice that when the comparison between the
result predicted by a model and the observed data is unfavorable, deficiencies
in the model are searched for and an update of the model can be made until
a good fit between the experimental data and the computational results is
achieved. But when the match between computational and experimental data
is reached, using different models (for instance continuum versus discrete
fracture models or the case of all different size effect laws) then a dilemma
may arises: it is the problem of equivalence between models or non-uniqueness
of the theoretical description for a certain phenomenon. Then, there is no way
to choose between them unless claiming extra considerations like simplicity,
elegance, personal, political and philosophical preferences [66].

3.4 Inverse techniques

The first inverse technique dates back to the beginning of the nineteenth
century. Gauss was the first who used, in his classic paper [35], the method of
least squares (still adopted in parameter estimation) to determine the planets
orbit. Since then, many different inverse techniques have been developed [12,
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Figure 3.4: Example of instable solution for one-dimensional inverse prob-
lems.

f=f (x)

Figure 3.5: Example of objective functions with multiple minima for one-
dimensional inverse problems.

69, 82], although only since the late 1950s the availability of both digital
computational and data acquisition facilities have made parameter estimation
practicable for a great array of applications.

A possible criterion of classification of the inverse methods is represented
by the level of information on the objective functions (see Eq. (3.2)) required
in the method for its minimization. Hence, zero order methods involve only
calculations of the objective functions (e.g. direct search methods), first order
methods need derivatives of the objective function (e.g. steepest descendent
method, trust region method) and second order methods require informa-
tion on the Hessian (i.e on the curvature) of the objective function (e.g.
(modified) Newton method, Marquardt method). Moreover, some methods
are based on the idea of building an approximation of the objective function
(construction of meta-models as models of models), for instance artificial
neural networks (general approximators), radial basis functions, kriging and
response surface methodology. Finally, there are methods that are charac-
terized by being ‘local searchers’ and others by being ‘global searchers’ (e.g.
genetic algorithms). In fact, as already mentioned in the previous Section, in
case of multi-extremality of the objective function and an inaccurate initial
guess of the model parameters, local search methods may not be able to find
the global minimum, while, on the other hand, higher computational cost are
generally related to global search methods. Hence, the choice of the inverse
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technique is very important in order to identify the correct solution of the
parameter estimation problem.

More general, the question should be addressed in terms of the inverse
strategy, in the sense that more inverse techniques may be used, for instance
in cascade, in order to optimize effectiveness (how close the estimation is
to the exact solution), efficiency (time saving) and robustness (reliability or
repeatability of the solution, for instance using different experimental data
that are equivalent in terms of identifiability or starting from different initial
guess of the model parameters) of the inverse method. The robustness of
an inverse technique may be tested, for instance, by adding noise to the
experimental data and checking that the identified parameters are not very
sensitive to that noise.

For this purpose, two inverse techniques are used in the present work,
with different features, so that a compromise of local-global search tool is
obtained: the K-Nearest Neighbors (KNN) method (zero order method) and
the Kalman filter (KF) method (first order method). While the KNN method
belongs to the class of ‘discrete grid methods’, the KF technique solves the
parameter identification problem in a statistical context, with a Bayesian ap-
proach, iteratively updating the parameters estimate starting from an initial
guess. Since the final solution may be strongly influenced by the starting
point of the search process, the KNN method is proposed for a first pre-
liminary study of the parameters space. Hence, the so-identified parameters
vector may be used as initial guess in the KF method in order to refine the
inverse solution. Moreover, the KNN method provides a general overview of
the parameters space, so that ill-posedness of the inverse problem, for in-
stance in terms of non-uniqueness of the solution, may be easily captured, as
will be shown in the numerical applications. This method is also suggested
when a rough tuning of a model is required because it may be easily han-
dled (derivative free method) and implemented for any computational model
(without changing the forward problem code, but as an external tool) and
also by users that are not familiar with the inverse problem theory. On the
other hand, the KF method offers the advantage of a subsequent parameters
update during the fracture process and the possibility of treating the data
with their associated uncertainty.

3.4.1 KNN method

The experimental data which are generally available and which should be
reproduced by the numerical model are force-deformation data. Hence, if
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Figure 3.6: Fixed equally spaced intervals of deformations selected along the
global force-deformation curves whose corresponding forces are collected in
the vectors ycomp(x) and yexp for the KNN method.

fixed equally spaced intervals of deformations are selected, the corresponding
forces may be considered as measured and computed quantities (see Figure
3.6), so that

ycomp(x) =
[
F 1

comp(x) F 2
comp(x) · · · F

ny
comp(x)

]T
, (3.3)

yexp =
[
F 1

exp F 2
exp · · · F

ny
exp

]T
. (3.4)

The vector yexp represents a point in the ny-dimensional space, therefore
a valid estimation of the initial guess x0 is the parameter set that corresponds
to the nearest neighbour ycomp(x0) to yexp, between all the possible points
ycomp(xi) (see Figure 3.7). In other words, the a priori guess of the model
parameters corresponds to the minimum of the following function f(x)

f(x) = (yexp − ycomp(x))TC−1
exp(yexp − ycomp(x)), (3.5)

which represents the squared weighted distance between the two vectors yexp

and ycomp(x). Hence, the initial guess x0 may be estimated using the K-
Nearest Neighbours (KNN) method (K=1), that builds an approximation of
the function f(x) represented in Eq. (3.5). In fact, once a population of xi

is chosen, the function f(xi) can be evaluated at each point xi in a sort of
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’discrete grid method’ [74]. The parameter set xi that corresponds to the
minimum value of f(xi) can be considered as the initial guess x0. Hence,
no derivative of the function f(x) is necessary, but only evaluations of the
function at each point xi of an appropriate population of parameter sets,
offering the advantage of performing parallel runs of different forward prob-
lems for the computation of f(xi). Cexp is the matrix of the error covariance
of the measurements and may be computed using the standard deviation s
of repeated experiments.

3.4.2 Kalman Filter method

In 1960, R. E. Kalman published his famous paper on recursive minimum
variance estimation in dynamical systems [47]. This paper introduced a new
algorithm, known as the Kalman filter, that represented a virtual revolution
in the field of system engineering. Detailed treatments can be found in e.g.
[15, 19, 20, 24, 39, 40, 45, 46, 57, 61, 79].

The Kalman filter methodology recursively solves parameter identification
problems in a statistical context. In fact, the most general formulation of an
inverse problem can be obtained using the framework of probability calculus
and considering the uncertainties involved in the system. Hence, the right
question should be addressed in the following way: given a certain amount
of (a priori) information on some model parameters, and given an uncertain
physical law relating some observable quantities to the model parameters, in
which sense should we modify the a priori information, given the uncertain
results of some experiments? However, the uncertainties related to the com-
putational model (or physical law) are here neglected and the computational
model is considered to be deterministic. The KF procedure considered herein
is based on the following assumptions:

all the random variable vectors involved follow a Gaussian distribution
(completely characterized by the mean value vector and a covariance
matrix);

the computational model, i.e. the forward operator ht(x), is considered
as deterministic;

measurement uncertainties, represented by the vector vt, are considered
as Gaussian white noises, i.e. as stochastic processes characterized by a
Gaussian (or “normal”) probability distribution with zero mean value
and without correlation between different instants.
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In other words, the measurements of the ny quantities, collected in the
yt

exp vector, at every instant t, are characterized by an uncertainty vector vt

for which we assume the following probability function P (vt)

P (vt) = ((2π)nydet(Ct
exp))

−
1

2 exp

{

−
1

2
vT

t (Ct
exp)

−1vt

}

, (3.6)

E(vt) = 0 E(vtv
T
t ) = Ct

exp E(vtv
T
s ) = 0 s 6= t, (3.7)

where E(·) represents the averaging operator, E((· −E(·))(· −E(·))T ) is the
covariance operator and Ct

exp is the covariance matrix.

Since the forward operator has been assumed to be deterministic, the
measurements noise vt determines the difference between experimental and
computed observable quantities. Namely considering Eq. (3.1)

yt
exp = yt

comp + vt = ht(x) + vt. (3.8)

As previously outlined, next to the experimental (yt
exp) and computed

(yt
comp) data, the KF procedure relies on a third independent information

source, namely an initial ‘a priori’ estimate of the model parameter vector
x (i.e. for t = 0). This initial guess (Bayesian approach) can be chosen by
the expert or can be based on engineering experience of the material under
consideration.

Also the a priori information on the nx parameters is assumed to be
statistically characterized by a Gaussian distribution with x0 mean and C0 =
E((x−x0)(x−x0)

T ) covariance matrix by means of probability function Px
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Px(x) = ((2π)nxdet(C0))
−

1

2 exp

{

−
1

2
(x − x0)

TC−1
0 (x − x0)

}

. (3.9)

A Gaussian probability distribution is assumed, as simplifying idealiza-
tion, for the estimates computed up to time t. Substitution of the measure-
ment noise vt into Eq. (3.6), as the difference between the experimental
vector and the forward operator according to Eq. (3.8), gives the following
conditional probability density of experimental data with respect to the pa-
rameters

Py|x(x,yt
exp) =((2π)nydet(Ct

exp))
−

1

2

exp

{

−
1

2
(yt

exp − ht(x))T (Ct
exp)

−1(yt
exp − ht(x))

}

. (3.10)

The two independent information sources of experimental data and a
priori guess of model parameters in Eqs. (3.9) and (3.10) can be combined
obtaining the a posteriori information as the following conditional probability
density function (Bayes’ theorem) ([82])

Px|y(x,yt
exp) =

Py|x(x,yt
exp)Px(x)

µ
, (3.11)

where µ ≡ Py(yt
exp) does not depend on the model parameter vector x, and

acts as a normalizing factor. Substitution of Eq. (3.10) and Eq. (3.9) into Eq.
(3.11) results in the following relation

Px|y(x,yt
exp) =

1

µ∗
exp {−St(x)} , (3.12)

in which

2St(x) = (yt
exp − ht(x))T (Ct

exp)
−1(yt

exp − ht(x)) + (x − x0)
TC−1

0 (x − x0),
(3.13)

1

µ∗
=

((2π)nxdet(C0))
−

1

2 ((2π)nydet(Ct
exp))

−
1

2

µ
. (3.14)
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The unknown parameter vector x corresponds to the maximum condi-
tional probability density. In other words, the solution of the identification
problem is the vector x which follows from the optimization problem

max
x

{

Px|y(x,yt
exp)

}

, (3.15)

which equals

min
x

{St(x)} . (3.16)

The minimization of the function St(x) consists of two parts (see Eq.
(3.13)): (i) the first represents the difference between the experimental and
computed ny quantities at a certain instant t (or load level t) (ii) the sec-
ond contains the a priori guess of the model parameters and improves the
convergence of the minimization procedure.

If the forward operator ht(x) is linear, the a posteriori conditional prob-
ability density Px|y(x,yt

exp), given by Eq. (3.12), is a Gaussian (normal)

distribution. However, this is not the case for the gradient-enhanced damage
model, which is considered here, in which the dependence between the com-
puted vector yt

comp and the model parameters x is nonlinear. In this case an
iterative inverse procedure can still be formulated, introducing a step-by-step
linearization of the forward operator and assuming a normal distribution of
Px|y(x,yt

exp) within each step. In this case no proof exists about the conver-

gence properties of the procedure, however computational experience showed
good convergence and stability properties of the method (see e.g [80]). For
the linearization of the forward operator, the 1st-order Taylor expansion can
be used around the initial guess of the model parameters x0:

ht(x) ≃ ht(x0) + S0(x − x0), (3.17)

in which:

S0 ≡
∂ht

∂x
(x0, t). (3.18)

The tangent operator S0 is denoted as the sensitivity matrix and it quan-
tifies the influence of the model parameters on the computed quantities yt

comp.
When no closed form expression for S0 can be given, which is the usual case,
the numerical computation of the sensitivity matrix represents a significant
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part of the computing effort. In this case interpolations in the space of the pa-
rameters are necessary to numerically evaluate the derivatives of the forward
operator, e.g. using the following three point formula

∂hi,t

∂xj
((x1,t−1), ..., (xn,t−1), t) ≃ {hi((x1,t−1), ..., (xj,t−1 + ∆xj), ..., (xn,t−1), t) −

hi((x1,t−1), ..., (xj,t−1 − ∆xj), ..., (xn,t−1), t)}/2∆xj .

(3.19)

Consequently, for each time step t of the KF procedure, several forward
analyses are carried out, in order to evaluate the forward operator ht at the
points (x0 + ∆x) and (x0 − ∆x). If the number of parameters to identify is
large, the computing time increases significantly because of this numerical
determination of S0. Alternatively, the derivatives of the sensitivity matrix
might be determined, at each step t of the KF procedure, as part of the
solution of the forward problem, at integration point level, by differentiation
of the variables of the forward problem with respect to the model parameters
(e.g. [41, 48]). This would save time for computing the sensitivity matrix, but
it would require enhancement of the software code, reducing the simplicity
and flexibility of the implemented inverse procedure regarding its applications
to other computational models.

Substituting Eq. (3.17) into Eq. (3.13) and then into Eq. (3.12) and using
matrix algebra rules results in the following equation

Px|y(x,yt
exp) = ((2π)nxdet(Ĉ))−

1

2 exp

{

−
1

2
(x − x̂)T Ĉ

−1
(x − x̂)

}

, (3.20)

where

x̂ = x0 + [ST
0 (Ct

exp)
−1S0 + C−1

0 ]−1ST
0 (Ct

exp)
−1(yt

exp − ht(x0))

= x0 + C0S
T
0 [S0C0S

T
0 + Ct

exp]
−1(yt

exp − ht(x0)), (3.21)

Ĉ = E((x − x̂)(x − x̂)T ) = [ST
0 (Ct

exp)
−1S0 + C−1

0 ]−1 =

= C0 − C0S
T
0 [S0C0S

T
0 + Ct

exp]
−1S0C0. (3.22)

Vector x̂ is the mean value vector of the normal distribution Px|y given

by Eq. (3.20), while Ĉ is the corresponding covariance matrix. The values
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assembled in x̂ are the estimates of the mean value of the model parameters
and it is the solution of the optimization problem represented by Eq. (3.15).
Eq. (3.21) and Eq. (3.22) can be rewritten in a more compact form

x̂ = x0 + K0(y
t
exp − ht(x0)), (3.23)

Ĉ = C0 − K0S0C0, (3.24)

where

K0 = C0S
T
0 [S0C0S

T
0 + Ct

exp]
−1 =

= [ST
0 (Ct

exp)
−1S0 + C−1

0 ]−1ST
0 (Ct

exp)
−1. (3.25)

If we assume

x̂ = x̂t, Ĉ = Ĉt,

x0 = x̂t−1, C0 = Ĉt−1,
(3.26)

Eqs. (3.21- 3.25) and Eq. (3.18) can be rewritten in the following format

St =
∂ht

∂x
(x̂t−1, t), (3.27)

Kt = Ĉt−1S
T
t [StĈt−1S

T
t + Ct

exp]
−1, (3.28)

x̂t = x̂t−1 + Kt(y
t
exp − ht(x̂t−1)), (3.29)

Ĉt = Ĉt−1 − KtStĈt−1. (3.30)

Eqs. (3.27-3.30) define a procedure (schematically represented by the
“KF” box in Figure 3.8) that, gives at each step t a better estimate of the
mean value of the model parameters and the corresponding covariance ma-
trix. The initialization of the iterative scheme (i.e. for t = 1) requires the
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Figure 3.8: Parameter identification procedure.

initial guess x̂0 and Ĉ0. The a priori information on the model parameters
is the input also for the computational model (represented by the “Comp.
Mod.” box in Figure 3.8) in order to calculate the y1

comp vector as a solution
of the forward analysis. The three information sources y1

exp, y1
comp and x̂0

are processed by the Kalman filter scheme and, as a result, a new improved
estimation x̂1 is obtained and the next step (i.e. t = 2) can be analyzed.

The Kt matrix is denoted as the gain matrix and, according to Eq. (3.29),
it transforms the difference between the computed yt

comp (or ht(x̂t−1)) and
experimental yt

exp vectors, at each step t, into a correction for the new esti-
mate of the parameters x̂t.

The Kalman filter process applied to the flow of experimental data yt
exp

with uncertainty Ct
exp, starting from the a priori information x̂0 with its

uncertainty Ĉ0, can symbolically be represented by

[x̂, Ĉ] = F(x̂0, Ĉ0;y
t
exp,C

t
exp, t = 1, 2...n). (3.31)

If the forward operator ht(x) is linear, it can be proven ([24], [47]) that
the final estimates of the model parameters [x̂, Ĉ] do not depend on the ini-
tial guess [x̂0, Ĉ0]. If, on the contrary, as in the present case of the gradient-
enhanced damage model, the forward operator is nonlinear (even if not rigor-
ously proven) this independence can be valid for the asymptotic result [x̄, C̄]
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of an iterative application of the KF procedure on the same experimental
data at the same KF steps

[x̄, C̄] = FN→∞(x̂N−1, ĈN−1;y
t
exp,C

t
exp, t = 1, 2...n). (3.32)

In this latter case, as schematically represented in the Figure 3.8, the
final estimates [x̂, Ĉ] of one KF procedure are used as initial guess for the
subsequent KF process. For a finite number N of global iterations of the
KF process, the resulting estimate of the model parameters may depend on
the initial guess since multiple local minima and corresponding attraction
basins may exist. The KF procedure, in fact, implicitly minimizes a norm
of the difference between the experimental and computed data which is a
non-convex function of the parameter vector x, and therefore local minima
may exist. The initial guess should be selected such that a point within the
right attraction basin, and also as close as possible to the absolute minimum,
is chosen, in order to speed up the convergence of the method, as will be
analyzed in the numerical application.

3.2.2.1 Confidence indicators

Two indicators can be important in order to review the KF process carried
out for a given experimental test. They are briefly presented in what follows,
while the entire treatment of the subject can be found in [82].

The uncertainty domain

At each step t of the KF procedure, it is possible to associate with each
model parameter estimation x̂t an ellipsoid which contains information on
the correct values of x. This ellipsoid is centered in point x̂t and is defined,
in the space of the parameters, by the quadratic form associated to the inverse
of its covariance matrix, namely:

(x − x̂t)
T Ĉ

−1
t (x − x̂t) = 1. (3.33)

For the ellipsoid of Eq. (3.33) the following geometric properties can be
proven [82]:

the square lengths of the principal diameters of the ellipsoid are equal
to the eigenvalues of the current covariance matrix Ĉt;
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the volume of the ellipsoid is proportional, through factor π, to the
product of the lengths of the principal axes, i.e. to the det(Ĉt).

As a consequence, the ellipsoid obtained homotetically amplifying by a
factor 3 that of Eq. (3.33) contains the correct values of the model parameters
with a probability of 99%. If the KF identification process converges, the
volume of the ellipsoid decreases at each step t, since the covariance matrix
Ĉt decreases, while its center moves towards the final correct estimation of
the model parameters.

The relative information index

For sake of completeness also the relative information index is reported here
(not used in the numerical applications). This index points out the test ranges
that are the most productive information for the parameter identification
procedure. In fact, it measures the informative content of the probability
density P t with respect to the probability density at the previous instant
t− 1:

RI(P t, P t−1) =

∫

Rnx

P t(x) log
P t(x)

P t−1(x)
dx. (3.34)

If P t is a Gaussian probability density, the expression 3.34 can be rewrit-
ten in a closed form:

RI(P t, P t−1) =(x̂t − x̂t−1)
T Ĉ

−1
t−1(x̂t − x̂t−1)+

log
det (Ĉt)

det (Ĉt−1)
+ Trace[Ĉt−1Ĉ

−1
t − I]. (3.35)

The evaluation of the relative information index can be useful in order to
determine the measurements intervals in the experimental test.



Chapter 4

Experimental data

The identification problem of model parameters needs experimental results
as target solutions. The four experimental data series, used for this purpose
in the present work, are briefly described in this Chapter.

4.1 Series n. 1

The uniaxial tensile test is considered to be the most objective test for deter-
mining tensile parameters that are needed as input in modeling of fracture in
quasi brittle materials. Hence, cable-loaded uniaxial tensile tests performed
on single-edge notched sandstone specimens in the Microlab of Delft Univer-
sity of Technology [86] are considered as a first series of experimental data.

The specimen geometry and boundary conditions are shown in Figure
4.1. Freely rotating boundary conditions provide a well-defined loading con-
dition for the specimen and, in this problem with a single notch, they result
in the initiation and propagation of a single crack in the notched area. How-
ever, it is difficult to make perfect hinges and often some small constraints
are unintentionally imposed in one or more directions. These constraints are
fundamentally unknown and it makes it difficult to reproduce experimental
results by means of computational analyses. In order to reduce the effects of
these constraints, cable supports are used for the uniaxial tensile tests. More-
over, using the cable supports the loading point is uniquely defined during
the test, while in fixed platen tests stress-redistributions cause the specimen
loading to change continuously. The experimental load-CMOD (crack mouth
opening displacement) curves are obtained by means of a control system
based on the maximum deformation rate of the control LVDTs, which is im-

43
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Figure 4.1: Specimen geometry and dimensions of experimental series n. 1.

portant for obtaining stable test results. The load-CMOD curves used in the
numerical applications are related to the average CMOD measured by the
two LVDTs placed close to the notch (see Figure 4.1).

4.2 Series n. 2

In order to investigate the predictive capabilities of the adopted constitu-
tive model related to the size effect phenomenon, tensile size effect tests on
concrete dog-bone shaped specimens carried out in the Stevin laboratory of
Delft University of Technology [87, 88] are adopted as series n. 2.

The specimen geometry and dimensions, for all six different sizes, are
shown in Figure 4.2. The specimens tested during these experiments may be
divided into two groups according to the curing conditions after demoulding:
the ‘DRY’ series (specimens placed in the laboratory under the approximate
conditions of 20 degrees Celsius and 60% of relative humidity) and the ‘WET’
series (specimens placed in the climate room with temperature kept constant
at 20 degrees Celsius and a relative humidity of 95%). For the numerical
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Figure 4.2: Specimen geometry and dimensions of experimental series n. 2.

applications presented in this thesis only the experimental results regarding
the first group are used.

The available experimental data are the global load-displacement curves
for the various specimen sizes. The displacement along the abscissas axis of
these diagrams is represented by the average of the deformations measured by
LVDTs with a measuring length that is scaled with the size of the specimen.
Considering only the peak loads of the load-displacement curves of the various
specimen size, a relation between the nominal strength and the characteristic
specimen dimension may be found, which represents the size effect curve.
For the experimental series n. 2 the width D of the basis of the specimen is
considered as characteristic specimen dimension, while the nominal strength
is computed from the maximum force Fmax according to

σ =
Fmax

0.6DT
, (4.1)

in which T is the constant thickness of the specimen.

4.3 Series n. 3

Experimental results of three-point bending tests on notched concrete beams
[32] (see Figure 4.3) have been used and are denoted as series n. 3.

In this case, in fact, in addition to the global force-deformation curve,
deformations in some points in the neighborhood of the macrocrack are also
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Figure 4.3: Specimen geometry and dimensions of experimental series n. 3.

registered by means of strain gauges (measuring length 10 mm) during the
fracture process (see strain gauges positions in Figure 4.3).

4.4 Series n. 4

This series consists of double-edge notched uniaxial tensile tests and single-
edge notched bending tests on specimens made of the same concrete [42, 43].

The specimen geometries and dimensions are shown in Figure 4.4 (not
scaled saw-cut notches). In this case, besides conventional measurement tech-
niques such as using LVDTs, in-plane Electronic Speckle Pattern Interferome-
try (ESPI) is used leading to whole field displacement and strain distribution
along the main sensitivity direction perpendicular to the notches. Hence,
the available experimental data consist of global data (force vs. deformation
curves) and local data (width of the fracture process zone vs. deformation
curves) for the different specimen sizes and geometries. For the double-edge
notched uniaxial tensile tests the average of the CMODs measured at the
two specimen sides is considered. Although, in the case of local data, the way
of determining the size of the fracture process zone (FPZ) could be debat-
able and arbitrary (see Section 5.6), it is kept consistent for all the specimen
sizes and loading conditions, so that this allows a relevant investigation of
four essential aspects: i) which kind of experimental data is necessary for the
identifiability of the model parameters and the well-posedness of the inverse
problem (local/global data), ii) how are the estimated parameters influenced
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by the experimental data involved in the inverse problem and iii) their de-
pendency on structural effects and iv) the assessment of the reliability of the
model predictions, in terms of loading conditions and size effects.

For representing the size effect curve of the bending specimens of the
experimental series n. 4, the ligament height Weff=H-a0 is considered as
characteristic specimen dimension and the nominal flexural strength is com-
puted via

σ =
3FmaxS

2W2
effT

, (4.2)

in which T is the constant thickness of the specimen and S is the distance
between the two loads.
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Chapter 5

Numerical applications

In this Chapter the inverse methods presented in Chapter 3 are numerically
applied for the solution of the identification problem of the gradient-enhanced
continuum damage model (described in Chapter 2), using the experimental
data reported in Chapter 4.

A preliminary sensitivity analysis, necessary to investigate the influence
of the unknown model parameters on the force-deformation response of the
specimen, is reported in Section 5.1. The inverse strategy implementation is
briefly described in Section 5.2. Subsequently, applications of the inverse KF
method are described in Section 5.3. The well-posedness of the inverse prob-
lem and factors of influence on the final parameter estimates are presented
in Section 5.4. Finally, the issue of the choice of the set of experimental data
to be used in the identification procedure and the predictive capabilities of
the considered numerical model, in terms of size effects and loading condition
effects, are discussed in the last two Sections.

5.1 Sensitivity analysis of model parameters

The term ‘sensitivity’ defines analyses that are performed in order to study
the variation of the output (response) of the modelled system as effect of a
variation of a single model parameter.

As already mentioned in Chapter 3, in general, the sensitivity analysis
is important both for the choice of the experimental data, in order to avoid
under-determined problems, and for the optimal experimental design. Al-
though the used experimental series have been carried out earlier than the
computations, the sensitivity analysis is performed in order to acquire knowl-

49



50 5.1 Sensitivity analysis of model parameters

reference curve

increasing α

fct

disp

load

reference curve

increasing 

load

disp disp

load

disp

load

reference curve decreasing η

decreasing β

reference curve

increasing c

(a) (b)

(c) (d)

Figure 5.1: Influence of (a) the c and β parameters (b) the tensile strength
parameter fct (c) the α parameter and (d) the η parameter on the global
load-displacement curve.

edge on the effect that each model parameter has on the different parts of
the global load-displacement curve (i.e. pre-peak, post-peak and tail), that
means on the different phases of the fracture process. After that, a first rough
fitting of the experimental curves through a trial and error method [82] can
be easier performed.

In Figure 5.1 the influence of the various model parameters on the load-
displacement curve is schematically reported in the case of three point bend-
ing tests. Increasing the gradient parameter c (or equivalently the length scale
parameter l) induces the load-displacement curve to move towards higher
load values (see Figure 5.1a), while the effect on the tail of the curve is
smaller. Decreasing parameter β, not only corresponds to higher values of
the load, but also to a more ductile behaviour in the post peak regime, while
the effect on the tail of the load-displacement curve is smaller (see Figure
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5.1a). In fact, shape changes in the post peak part of the curve are expected,
since β mainly governs the slope of the softening branch of the constitutive
law at material point level (see Figure 2.1b). The effects of an increment of
the tensile strength fct are equally distributed through the entire curve (see
Figure 5.1b), while only the tail of the curve is involved by changing the α
parameter, as shown in Figure 5.1c. Finally, decreasing the η parameter the
load-carrying capacity increases (see Figure 5.1d), except in the tail of the
curve, so that an effect is obtained that is qualitatively similar to that caused
by the gradient parameter c.

The described influences of the model parameters on the global response
of the specimen are shown in Figure 5.2 in the case of the smallest size of the
single-edge notched bending specimens of the experimental series n. 4 (note
that the stress reported in the ordinates axis of the stress-CMOD curves for
the three point bending tests are computed according to Eq. (4.2)).

Independently from the adopted inverse technique, the solution of a pa-
rameter identification problem may be very time consuming if the number of
the unknown parameters is high and the numerical solution of the non-linear
forward problem is complex. Hence, if possible, a reduction of the model pa-
rameters vector should be adopted, since it may significantly decrease the
computing effort required in the inverse problem. In the present case, the
described model contains seven parameters to be identified (see Eq. (2.30)).
Two parameters are the elastic moduli (E and ν), which can be determined
from standard uniaxial tests, and two parameters are related to the tensile
and compressive strength of the material (fct and η = fcc/fct). Although
these parameters are subject of an extended debate on how they can be esti-
mated, in the present study they are considered as a priori known. Moreover,
as already shown through the sensitivity analysis, the α parameter mainly
governs the tail of the softening curve (or the residual load carrying capacity
when all damage has developed) and experimental evidence suggests values
for it between 0.9 and 0.99. Hence, few corrections through the trial and
error fitting method [82] can provide a reasonable good estimation for this
parameter. As a consequence, the parameter identification problem presented
in this thesis mainly focuses on the gradient parameter c (or equivalently on
the length scale parameter l) and on the slope of the softening branch of the
constitutive law β.

Regarding the tensile strength parameter fct, some additional comments
can be made. As previously reported and shown in Figures 5.1 and 5.2, the
peak load and the post peak branch of the load-deformation curve are mainly
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Figure 5.2: Influence of the various model parameters on the global load-
displacement curve in the case of BG1 specimen of the experimental series n.
4 (see Figure 4.4) (the model parameters units are consistent with the stress
and CMOD units. E=30000 MPa, ν=0.2 ).

governed by three parameters: the tensile strength fct, the gradient parameter
c and parameter β. The experimental value measured during tensile tests
on cubic specimens may be taken as starting point for the tensile strength,
although the parameter fct in the adopted computational model might have a
different value. Successively, it is possible to carry out (more time consuming)
inverse procedures for the identification of all three parameters, both with
the KNN method and with the KF method. However, when applying the
KNN method on a grid of the tensile strength parameter fct and the gradient
parameter c, a correlation results between the two parameters, as it can be
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also expected considering Figure 5.1a and b. Hence, additional experimental
data might be necessary for the well-posedness of the inverse problem with
simultaneously identification of tensile strength fct, gradient parameter c and
parameter β, with respect to the case in which only the last two parameters
are estimated.

5.2 Inverse strategy implementation

The KF procedure, as well as the KNN method, is implemented outside the
finite element code FEAP. The finite element (FE) analyses are necessary
to carry out the forward numerical analysis at each step t in the inverse
procedure. Hence, the code related to the two inverse methods may be built
as an external program, with the advantage that no modification of the FE
code is needed and, as a consequence, the strategy is easy adaptable for
different forward models.

The code related to the implementation of the KNN method is entirely
separate from the FE code. The method may be coded in different program-
ming environments and in the present work it has been done in a Matlab
framework. The solution of the KNN method is used as initial parameters
vector value in that part of the FE input file related to the material property
description (see Figure 5.3).

The KF procedure is executed using two additional ‘loop’ commands in
the input file of the FE analysis (see Figure 5.3), which are placed externally
to the usual loops related to the iterative solving scheme of the non-linear
forward analysis. One loop is necessary in order to numerically evaluate the
sensitivity matrix according to the three points formula of Eq. (3.19) for each
KF step. Hence, the forward analysis is stopped and repeated two additional
times for each model parameter to be identified (with plus and minus a small
variation of that parameter) for each KF step. The other loop is related to
the number of KF steps, so that the forward analysis is stopped at the end of
one KF step and repeated for the next KF step with the updated estimation
of the model parameters. Between the two loops a user subroutine is called
where the iterative KF procedure, represented by the Eqs. (3.27-3.30), is
implemented. The subroutine provides the new parameters estimate, which
have to be substituted into the previous value in the allocated memory, before
the following KF step starts. Hence, two ‘loop’ commands and few user-
subroutines, called between the usual three parts of the FE input file (see
dashed boxes in Figure 5.3), may be used for the implementation of the
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Figure 5.3: Inverse methods implementation scheme.
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F exp[N] Ctexp[N2] t CMOD[mm]

50.107 0.70 1 0.007
46.526 0.60 2 0.037
29.715 0.25 3 0.067
20.694 0.12 4 0.097
14.021 0.05 5 0.127
10.580 0.03 6 0.157

Table 5.1: Experimental values for series n. 1.

adopted inverse method.

5.3 KF method applications

Applications of the KF method are presented using the data of the sandstone
specimens of the experimental series n. 1 [86]. Analogous features, issues and
results are encountered for the other experimental series.

The relative vertical displacement of the opposite faces of the notch, i.e.
the ‘crack mouth opening displacement’ CMOD (see Figure 4.1) is a mono-
tonically increasing quantity in time t. As observable quantity, the force F
applied at the cables is considered at each time t

yt
exp = [F t

exp], (5.1)

yt
comp = ht(x) = [F t

comp(x)]. (5.2)

The measurement noises are taken proportional to the measured force
Ft

exp considering measurement accuracies of ± 5% [17]:

Ct
exp = (

0.05

3
F t

exp)
2. (5.3)

In Table 5.1 the experimental values for F and the relative covariance
(computed according to Eq. (5.3)) for each KF step t are listed.

The values of the model parameters considered as a priori known for the
experimental series n. 1 are listed in Table 5.2.

Conventional spatial discretisation by quadrilateral 4-node finite elements
is used in the domain Ω with bilinear shape functions for the displacements
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Figure 5.4: Mesh used for the forward analyses in KF procedure for the
experimental series n. 1: 2763 quadrilateral 4-noded elements.

E[MPa] ν fct[MPa] α η

specimen 7000 0.2 2.3 0.96 12.0
(sandstone)
loading platen 210000 0.3 - - -
cables 195000 0.3 - - -

Table 5.2: Values of the a priori known model parameters for the experimental
series n. 1 [86].

and linear shape functions for the non-local equivalent strains (see Figure
5.4). For reasons of vertical equilibrium all vertical displacements along the
horizontal symmetry line at the notch are kept zero. The test is numerically
simulated assuming a plane stress situation. The steel platens are also mod-
elled contrary to the aluminium discs which are assumed to have a small in-
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fluence on the global response. The loads are applied by means of an indirect
displacement control procedure with the crack mouth opening displacement
(CMOD) taken as control parameter. The displacement norm criterion with a
tolerance of 10−6 is used as convergence criterion and a full Newton-Raphson
scheme is used to solve the nonlinear system of equations.

5.3.1 Scalar KF procedure for c identification (KFI and KFII)

The term ‘scalar ’ is used for a KF procedure for the identification of only one
model parameter. Since also one observable quantity is taken into account,
the entire KF procedure involves, in this case, only scalar quantities.

The first KF process, marked as KFI, concerns the identification of the
gradient parameter c, i.e.

x̂ = [ĉ]. (5.4)

The β parameter is considered in this case as a priori known and its
value is set equal to 150. The following values are chosen for the initial guess
of the gradient parameter and its covariance (the last corresponding to an
uncertainty of about 25%):

x̂0 = [ĉ0] = 0.8 mm2, (5.5)

Ĉ0 = 0.005 mm4. (5.6)

In order to limit the computing time, six steps are considered for the
KFI procedure (i.e. t=1,2,3,4,5,6). Three forward analysis for each KF step
are necessary in order to numerically compute the derivatives of the forward
operator ht(x), considering a fixed variation of ∆c = 0.05 mm2.

The gradient parameter mean value estimates and the corresponding co-
variances during KFI are illustrated in Figure 5.5 (square points). The c pa-
rameter estimate converges towards a constant value, while the covariance,
related to the uncertainty on the parameter estimate, reduces progressively
to zero.

In Figure 5.6 the global load-CMOD curves are plotted for all steps of KFI

(three curves per step). Since all forward analyses are carried out sequentially
without any interruption, the straight lines towards the origin correspond to
each analysis re-initialization. The experimental curve is fitted well by the
numerical one if it is computed using the KFI converged value of the gradient
parameter.
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Figure 5.5: KFI and KFII estimations of the (a) c parameter and (b) covari-
ance of c.

An analogous KF identification process, KFII, is carried out starting from
a different value of the a priori guess. The gradient parameter initial estimate
is taken equal to 1.0 mm2 and the covariance equal to 0.017 mm4.

As shown in Figure 5.5, after the third step, the two KF processes result
in similar estimations of the parameter, with similar fitting of the global
load-CMOD curve (see Figure 5.7).

5.3.2 Scalar KF procedure for β identification (KFIII)

A ‘scalar’ KF procedure, referred to as KFIII, is also applied for the identi-
fication of the β parameter. The gradient parameter c is considered in this
case as a priori known and set equal to 0.83 mm2 (close to the previous KFs
converged value). The β parameter initial estimate is taken equal to 100.0
and the covariance equal to 70.0, while a fixed variation ∆β = 10.0 is applied
to β at each of the three forward analyses.

The β parameter and covariance estimates during the KFIII procedure
are plotted in Figure 5.8. The a priori guess of β is underestimated resulting
in a higher load value around the peak of the global load-CMOD curve (see
Figure 5.9). After the third KFIII step the final value of β is approximately
found. The procedure converges towards a constant value that is very close
to the a priori fixed one of the two previous KF procedures.

5.3.3 Bidimensional KF procedure for c and β identification
(KFIV)

The term ‘bidimensional ’ is used for a KF procedure in which the identifica-
tion of two model parameters is done. A bidimensional KF procedure, referred
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series n. 1 [86].
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Figure 5.8: KFIII estimations of the (a) β parameter and (b) covariance of β.

to as KFIV, is carried out for the identification of the c and β parameters
simultaneously. In this case the vector x is defined as

x̂T =
[

ĉ β̂
]
. (5.7)

The initial guess values for x and C are

x̂T
0 =

[
1.0 200.0

]
, (5.8)

Ĉ0 =

[
0.017 0.0
0.0 270.0

]

. (5.9)

Considering the following model parameter variation vector:

∆xT =
[

0.05 10.0
]
, (5.10)

in order to numerically evaluate the sensitivity matrix S, five forward
analyses have been carried out for each KFIV step.

The c and β mean value estimates and the corresponding covariances dur-
ing the KFIV process are plotted in Figures 5.10 and 5.11. The simultaneous
identification of the β parameter results in different c mean value estimates
during KFIV in comparison with the ones obtained during KFII. It is worth
noting that, for computing time reasons, a fixed number of KF steps has been
considered. However, in the case of the KFIV procedure the convergence of
the identification process towards a constant value for c is slower than in
KFI or KFII. The final value for the covariance of c, in fact, is significantly
larger in case of KFIV. Consequently a bigger uncertainty domain (see Section
3.2.2.1) is present for KFIV, as illustrated in Figure 5.12. A larger band of
99% confidence limits characterizes the mean value of the gradient parameter
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Figure 5.9: KFIII fitting of the global Load-CMOD response of the experi-
mental series n. 1 [86].

c in case of KFIV, i.e. the area that contains the correct value of c with a
probability of 99% is wider for the bidimensional KF procedure.

This suggests the necessity of increasing the number of steps in the bidi-
mensional identification process or to perform an iterative application of the
KF procedure with the same experimental data according to Eq. (3.32).

In Figure 5.13 the global numerical and experimental load-CMOD curves
are plotted for the case of KFIV (note the five forward analyses per KF step).

5.4 Uniqueness and stability of the solution

The application of the KF procedure described in the previous Section shows
that the method is a powerful tool, which not only identifies the required
model parameters, but also provides a quantitative assessment of the uncer-
tainties related to their estimates. Moreover, the experimental global response
of the specimen, represented by the load-CMOD curve, is well fitted by the
numerical curves corresponding to the model parameters identified by the
KF procedure. However, other aspects arise when the choice of the initial
guess of the model parameters is not so appropriate and a preliminary study
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Figure 5.10: KFIV estimations of (a) the c parameter and (b) the β parameter.

Figure 5.11: KFIV estimations of the covariance of (a) the c parameter and
(b) the β parameter.

of the parameters space is performed, through the KNN method, for that
purpose. The problem is examined considering first only the global response
(force-deformation curve) of one single size.

5.4.1 Global curve of one single size

The data related to the concrete dog-bone shaped specimens of the experi-
mental series n. 2 [87, 88] is used in this application. The values of the model
parameters not involved in the identification procedure (valid for all specimen
sizes of the series) are presented in Table 5.3.

E[MPa] ν fct η

specimen 33000 0.2 3.3 14.55
(concrete)
loading platen 210000 0.3 - -

Table 5.3: Values of the a priori known model parameters for the experimental
series n. 2 [87, 88].



5 Numerical applications 63

Figure 5.12: c mean values and corresponding 99% confidence limits for KFII

and KFIV.
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Figure 5.13: KFIV fitting of the global Load-CMOD response of the experi-
mental series n. 1 [86].



64 5.4 Uniqueness and stability of the solution

Parameter c [mm2] β α

Value n. 1 20.0 1500.0 0.93
Value n. 2 25.0 1400.0 0.94
Value n. 3 30.0 1300.0 0.95
Value n. 4 35.0 1200.0 -
Value n. 5 40.0 1100.0 -
Value n. 6 45.0 1000.0 -
Value n. 7 50.0 900.0 -
Value n. 8 - 800.0 -
Value n. 9 - 700.0 -

Table 5.4: Parameter values for the generation of the parameter sets popula-
tion for the experimental series n. 2.

The experimental quantities collected in the vector yexp are represented
by 100 points along the global load-displacement curve of one single specimen
size. In other words, 100 total forces are considered corresponding to 100
fixed and equally spaced deformations (see Figure 3.6). Hence, Eq. (3.5),
considering Eqs. (3.3) and (3.4) and that the matrix Cexp is assumed to be
diagonal (uncorrelated data), may be rewritten as

f(x) =

100∑

k=1

1

Ck
exp

[F k
comp(x) − F k

exp]
2. (5.11)

The parameters population selected for the evaluation of ycomp is repre-
sented by the sets generated by all combinations of the values given in Table
5.4.

For each specimen size a total number of 9x7x3=189 forward problems
have to be solved in order to compute the ycomp vector corresponding to each
parameters set xi. Hence, for each fixed value of α = αj (with j = 1, 2, 3), a
population of couples [βi, ci] (with i = 1, 2...63) is selected. From the values of
the function of Eq. (5.11) calculated in these points, the approximation of the
surface fα=αj

(β, c) can be built and the minimum can be selected according
to the KNN method. The plot of the approximated surface f(x) is shown
in Figure 5.14, for all specimen sizes (except type F, omitted because of the
large computational effort). Figure 5.14 is related to α=0.93, while analogous
results for other values of α have been obtained.

The objective function f(x) basically has a saddle shape and the promis-
ing region for the parameter estimation is a diagonal area in the c−β plane.
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Sections of f(x) with planes perpendicular to the β axis may be approximated
by the following regression formula

f(c)
α = α

β = β

= b1c
3 + b2c

2 + b3c+ b4, (5.12)

where b1, b2, b3 and b4 are regression coefficients that depend on β and α.
The cubic curves represented by Eq. (5.12) are plotted in Figure 5.15 for

all values of β and for α=0.93, in case of specimen type B. The envelope of the
different minima of the cubic curves of Eq. (5.12) is represented by a line that
is almost horizontal. This means that a correlation exists between the length
scale parameter (related to c) and the slope of the softening branch β, if only
global measurements regarding the structural load vs. deformation curve of
one specimen size are collected in the vector yexp. Consequently, the inverse
problem is ill-posed, since no unique solution is guaranteed or, if a minimizer
exists, the solution is not stable (for the ill-posedness definition see Section
3.3 and Figures 3.3 and 3.4). Two similar global responses may be obtained
considering two different parameter sets. In Figure 5.16 the case of specimen
type C is shown for two equivalent parameter sets xT

1 : [c = 50 mm2 β = 1200]
and xT

2 : [c = 20 mm2 β = 800].
The equivalence between two different parameter sets may be more gen-

eral than that shown in Figure 5.16, since it does not necessarily mean
that the two parameter sets correspond to identical global force-deformation
curves. In fact, the objective function of Eq. (5.11) is defined as a summation
of differences between the computational and experimental curve. Hence, also
different computational curves may correspond to identical global balance be-
tween parts of the curve that fit better and parts of the curve that fit worse
with the experimental target curve.

It is worthwhile to recall here that a non-uniform distribution of exper-
imental scatter along the entire load-displacement curve leads to parameter
estimates that correspond to the optimum fitting of those parts of the curve
characterized by lower scatters. In fact, data characterized by a significant
uncertainty are less weighted in the computation of the objective function of
Eq. (5.11). Hence, as a consequence, computational curves that provide the
best fitting in these areas do not correspond to the optimal parameters es-
timate. Highly non-uniform scatter distributions may lead to insignificant
fitting of the average experimental curve. In Figure 5.17 the experimen-
tal and computational curves related to xT

1 : [c = 80 mm2 β = 700] and
xT

2 : [c = 30 mm2 β = 500] are reported for the concrete specimen BG4 of
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Figure 5.14: Objective function f(x) corresponding to α=0.93 for the different
specimen sizes A-E of the experimental series n. 2.
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Figure 5.15: Sections of the objective function f(x) with planes perpendicular
to the β axis for α=0.93, for specimen type B of experimental series n. 2.

E[MPa] ν fct η

specimen 30000 0.2 2.2 15.91
(concrete)
loading platen 210000 0.3 - -

Table 5.5: Values of the a priori known model parameters for experimental
series n. 4 [42, 43].

the experimental series n. 4 [42, 43]. The values of the model parameters
considered as a priori known for the experimental series n. 4 are listed in Ta-
ble 5.5 (the platens are present only in the case of the double-edge notched
tensile specimens KG). The narrow scatter band around the CMOD value of
0.26 mm behaves as a ‘singular’ point in Eq.(5.11), with the results that the
experimental curve results better fitted by x1, although x2 provides values
around the peak and the tail that are closer to the experimental curve.

Usually, the tail of the load-deformation curve is characterized by smaller
scatter values. Hence, the fitting process might be mainly driven by the tail.
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Figure 5.16: Force-deformation diagrams corresponding to the two different
parameter sets xT

1 : [c = 50 mm2 β = 1200] and xT
2 : [c = 20 mm2 β = 800]

(α = 0.93) for specimen type C of the experimental series n. 2.

In order to avoid such misleading identification procedures, the last part of
the tail of the diagram might be cut off for the identification of the c and
β parameters and, subsequently, adjusting it only by means of α. Another
reason for this tail cut off could be the length of the tail related to the length
of the peak and post-peak part of the curve. In case of a long tail, even with
a uniform scatter distribution along the curve, the main contribution in the
computation of the objective function of Eq.(5.11) might be represented by
the tail, and, as consequence, parameters sets that correspond mainly to the
best fitting of the tail might be selected.

5.4.1.1 KF solution

Although the problem suffers from the lack of an unique and/or stable min-
imizer of the objective function f(x), four KF procedures are considered in
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Figure 5.17: Experimental and computational stress-CMOD curves corre-
sponding to the two parameter sets xT

1 : [c = 80 mm2 β = 700] and
xT

2 : [c = 30 mm2 β = 500] for specimen BG4 of experimental series n. 4
[42, 43] (α = 0.92). The computational curve generated by x1 results to be a
better fitting due to the non-uniform experimental scatter distribution.

order to investigate the influence of C0, Cexp and the number of KF steps
on the estimated parameter values in case of specimen type B of the experi-
mental series n. 2. The related data are reported in Table 5.6, expressing the
covariances matrices in terms of uncertainty on the mean value and consid-
ering plausible values of C0 according to the expertise and experience of the
user.

In all four cases only c and β are involved in the identification procedure,
with a fixed value for α = 0.95, starting from the initial guess xT

0 = [c0 β0] =
[40.0 1200.0]. The initial guess, the final parameter estimates of the four KF
procedures and the minima of the neighborhood function of Eq. (3.5) (or Eq.
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KF procedure C0 [%] Cexp [%] n. steps

KFI (ref.) 40 50.0 (real) 20
KFII 10 50.0 20
KFIII 40 5.0 20
KFIV 40 50.0 30

Table 5.6: KF procedures data

20 25 30 35 40 45 50

KFI

KFII

1400

1200

800

1000

KFIV
KFIII

β

Type B
c α=0.95

relative minima initial point for all KFs

final points of KFs

Figure 5.18: Estimated parameter sets for KFI, KFII, KFIII and KFIV.

(5.11)) (obtained through the KNN method) are reported in the parameters
space c − β in Figure 5.18. Interesting remarks can be made comparing the
four KF procedures and observing Figure 5.18:

- the covariance matrix C0 associated with x0 is a measure of the un-
certainty on the initial guess, and the final solution remains confined
within an area surrounding x0 proportional to C0. Hence, the final es-
timate computed by KFII, characterized by the smallest covariance C0,
is close to the initial guess x0 (see Figures 5.19 and 5.20). Therefore, x0

and the related covariance have an important role in the identification
procedure. In fact, if an additional penalty term concerning the initial
guess is introduced in the neighborhood function of Eq. (3.5)
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f(x) = (yexp−ycomp(x))TC−1
exp(yexp−ycomp(x))+(x−x0)

TC−1
0 (x−x0),

(5.13)
the function f(x) takes a convex shape that is related to C0, as shown
in Figure 5.21. This points out the important role of C0 and x0 in the
final parameters estimate.

- An area of uncertainty proportional to Cexp may be defined around
the mean value yt

exp. Numerical solutions within that area are con-
sidered good approximations of the experimental solution. Hence, a
narrow band around the mean value leads to select a computational
curve close to the mean value. In fact, in case of the KFIII, with the
smallest Cexp, the final estimate x is forced to correspond to a numer-
ical solution yt

comp(x) close to yt
exp, approaching the local minimum of

the neighborhood function.

Hence, from the above two points the following conclusion can be drawn:

- if a discrepancy between the computational and the experimental
curve exists, the KF performs well in minimizing this discrepancy only if
a narrow band around the experimental average curve is defined by Cexp

and a large enough band around the computational curve corresponding
to the initial guess is defined by C0 (see Figure 5.22).

Moreover:

- the final estimate is improved by increasing the number of KF steps,
as in the case of KFIV (see Figure 5.18).

- The parameter sets identified by the four KF procedures converge to
the same local minimum (except KFII), being the starting point in that
attraction basin.

In addition, as already mentioned in Section 3.4, the KF procedure up-
dates, at each step t, the model parameters estimate on the basis of the
current experimental information, so that the evolution of internal length
scale parameter may be investigated during the fracture process. In the case
of the specimen type B and procedure KFIII, for instance, Figure 5.23 shows
that the first part of the post peak experimental force-deformation curve is
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Figure 5.22: Meaning of C0 and Cexp.

better fitted using higher values of c, the central part of the softening branch
corresponds to a smaller roughly constant value of the length scale, while, at
the end, c tends to increase because of the tail. However, this tail effect, as
already previously mentioned, may be better regulated by adjusting the α
parameter.

5.4.2 Global curves of different sizes

The ill-posedness of the inverse problem is not solved if global force vs. defor-
mation curves of different specimen sizes are considered in the identification
problem. The load-displacement curves corresponding to two equivalent pa-
rameter sets are presented in Figure 5.24 for the dog-bone shaped specimens
of the experimental series n. 2 [87, 88]: similar curves are found for all speci-
men sizes using two equivalent parameter sets. The promising areas (diagonal
lines), corresponding to the best parameters sets, are plotted in Figure 5.25
on the parameters grid used for the KNN method, for all sizes of the experi-
mental series n. 2 (projection of the saddles of the objective function f(x) of
Figure 5.14 on the c− β plane). A similar coupling between the two param-
eters c and β is found, in the same direction for all specimen sizes. Hence,
involving the force-deformation curves of different specimen sizes in the ob-
jective function (Eq. (3.5)) does not provide uniqueness and/or stability to
the inverse solution.
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Figure 5.23: Experimental and computational (KFIII) force deformation
curves for the concrete dog-bone shaped specimen Type B of the experi-
mental series n. 2 [87, 88].

5.5 Size effect

As already mentioned in Section 2.1, the size effect phenomenon can be ex-
ploited in an inverse procedure to identify the model parameters [22, 55, 73,
81]. In this case only the peak loads of the force-deformation curves of dif-
ferent specimen sizes are considered in the solution of the inverse problem.
However, since only peak loads are the objective of the data fitting, the ill-
posedness of the parameter identification problem remains, analogously to
the previous case.

Moreover, the gradient-enhanced damage model seems to incorrectly re-
produce the entire experimental size effect curve using only one parameters
set for all specimen sizes. This is shown, for instance, in Figure 5.26 in case
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specimens of the experimental series n. 2 [87, 88], for two equivalent param-
eter sets xT

1 : [c = 50 mm2 β = 1200] and xT
2 : [c = 20 mm2 β = 800]

(α = 0.93).

of the experimental series n. 2. Considering the curve corresponding to the
parameter set [c = 50 mm2 β = 1500] as a reference curve, a decrement of
the gradient parameter c (=20) or of the parameter β (=700) causes mainly
a shift in the vertical direction or a very small rotation of the computational
curve. An analogous trend is shown in Figure 5.27 in case of the bending spec-
imens of the experimental series n. 4. Hence, the computational size effect
curve remains too flat compared to the experimental one.

A possible explanation for this is related to the limits of the model in
reproducing experimental tests characterized by a certain statistical effect:
the statistical distribution of the model parameters, or the statistical varia-
tion of the local material properties and weak spots in the different sizes may
play an important role that can not be properly reproduced by the adopted
deterministic model [54, 75, 89]. Moreover, the thickness of the specimen is
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Figure 5.25: Diagonal promising lines for the various sizes of the dog-bone
shaped specimens of the experimental series n. 2 [87, 88] (projection of the
saddles of the objective function f(x) of Figure 5.14 on the parameters grid)
(α = 0.93).

constant for all sizes. As a consequence, in the specimens type A and B, in
addition to the strain gradients in the plane of the dog-bone specimen due to
the load eccentricity, also out-of-plane strain gradients could develop, which
are not included in the two-dimensional plane stress numerical model [29, 87].
Furthermore, it could be questionable if the model parameters, or some of
them, are only constants to be calibrated according to a simple data fitting
or they are variables as a result of all error sources discussed in Chapter 3.

The fact that the experimental average nominal strength of the smallest
specimen type A is lower compared to the larger specimen sizes can be caused
by different factors, as reported in [87]. The strength values for the specimen
type A show a scatter which is much larger than the other specimen sizes.
This is partially due to the higher number of repeated tests for the smallest
size and partially to the small aspect ratio between the smallest structural
dimension (0.6D=30 mm) and the maximum aggregate size (=8 mm). The
ultimate strength of the specimen can have a smaller or higher value depend-
ing on whether a large aggregate is present or not in the middle section of the
specimen (where failure takes place, considering the shape of the specimens).
In fact, in the first case large stress concentrations develop in the neighbor-
hood of the aggregate. This reduces the ultimate load, since restricted stress
redistribution are possible in the small cross section of the specimen type
A. The small specimen dimension has also an influence regarding the wall
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effect, which is responsible for a poor concrete quality in the zone along the
specimen edges. These zones represent a considerable part for the smallest
specimen, so that a larger variation of concrete strength can be expected for
this specimen size. Increasing the size of the specimen the influence of the
wall effect reduces. Finally, the lower value of strength for the specimen type
A can also be partially due to a lower degree of hydration compared to the
larger specimens. In fact, due to the larger specific area of the specimen type
A, the dry process is faster and less water is left for hydration of the cement
[87].

By using a single parameter set for all specimen sizes, only an unsta-
ble average fitting of the size effect curve can be reached. In other words,
different parameter sets can be found which correspond to slightly different
computational size effect curves representing an average fitting of the exper-
imental curve. This is shown in Figures 5.28 and 5.29 for the case of the
bending tests of the experimental series n. 4 (belonging the parameter set
[c = 25 mm2 β = 350] to the saddle of the objective function f(x)).

In addition, a single parameters estimate that provides an acceptable
fitting of the entire force-deformation curves of a few specimen sizes does not
necessarily correspond to a correct prediction of the peak loads, as shown
in Figures 5.30 and 5.31 for the case of the dog-bone shaped specimens of
the experimental series n. 2. This aspect might also be emphasized by the
errors due to the averaging operation, already mentioned in Section 3.3. In
fact, the average load-deformation curve might be characterized by a peak
load that is different from the average of the peaks, since the various curves,
corresponding to the repeated experiments, might be slightly shifted along
the strain axis.

Different parameter sets, for the various specimen sizes, are necessary to
reproduce the real size effect curve. For the experimental series n. 4, the
parameter sets that provide the best fitting of only the peak load (circle
points) or of the entire force-deformation curve (cross points) are reported
in the parameters space of Figure 5.32a for each specimen size, while the
corresponding peak loads are shown in Figure 5.32b. Hence, not only the best
estimates are different for the various sizes, but they also result to be different
depending on whether only the peak load or the entire force-deformation
curve is involved in the inverse problem.

However, in order to obtain a satisfactory fitting, it might be better to
consider a size dependent length scale parameter (see Chapter 6). For in-
stance, in the case of the double-edge notched tensile specimens of the ex-
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Figure 5.28: Stress-CMOD curves for
all BG specimen sizes of the experi-
mental series n. 4 [42, 43] correspond-
ing to only one parameter set xT :
[c = 25 mm2 β = 350] (α = 0.92).
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Figure 5.29: Experimental and computational size effect curves corresponding
to the stress-CMOD curves of Figure 5.28 for the single-edge notched bending
specimens (BG1 to BG5 size) of the experimental series n. 4 [42, 43] (α =
0.92).

Figure 5.30: Experimental and computational size effect curves corresponding
to the load-deformation curves of Figure 5.31 for the dog-shaped specimens
(A to F size) of the experimental series n. 2 [87, 88] (α = 0.93).
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Figure 5.31: Force-deformation
curves for all dog-bone speci-
men sizes of the experimental
series n. 2 [87, 88] correspond-
ing to only one parameter set
xT : [c = 20 mm2 β = 700]
(α = 0.93).
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Figure 5.32: (a) Parameter sets that provide the best fitting of only the peak
load (circle points) or of the entire global stress-CMOD curve (cross points),
in the parameters space, for each specimen size of the experimental series
n. 4 [42, 43] (BG1 to BG5) and (b) corresponding computational size effect
curves. (α = 0.92)
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perimental series n. 4, an acceptable size effect fitting (only peak loads) may
be achieved considering a fixed value of β = 500 and different values of the
gradient parameter c, as shown in Figures 5.33 and 5.34 (note the reduced
parameters grid). Nevertheless, choosing a size dependent length scale is not
an acceptable solution, since this parameter is considered to be independent
of size.

Finally, the size effect curves reproduced by the numerical model, us-
ing a single parameters set for all specimen sizes, present a curvature of
the same type as the Carpinteri MFSL law. The comparison between the
computational size effect curves (using the parameter sets corresponding to
the global responses of Figures 5.28 and 5.31), Baz̆ant SEL and Carpinteri
MFSL curves (corresponding to the fitting of the experimental peak loads)
are shown in Figures 5.35 and 5.36 for the experimental series n. 2 and n. 4,
respectively.

5.6 Global and local data

The correlation between the two model parameters c and β, shown in Section
5.4 (see Figures 5.14, 5.16 and 5.24), suggests the use of additional experi-
mental information. These data may be used as criteria for selecting a proper
parameters vector between those vectors equivalent in terms of structural
global response and represented by the saddle shaped area of the objective
function f(x) (see Figure 5.14). However, the main issue is to establish which
type of data is necessary for this purpose.

5.6.1 Global and local curves of one single size

5.6.1.1 Experimental series n. 3

The experimental results of the three-point bending tests on notched con-
crete beams of the series n. 3 are considered [32]. In this case, in addition to
the global force-deformation curve, the deformations in some points in the
neighborhood of the macrocrack are also registered during the fracture pro-
cess (see strain gauges positions in Figure 4.3). The values of the parameters
considered as a priori known for the experimental series n. 3 are reported in
Table 5.7.

The results indicate that parameter sets equivalent in terms of global re-
sponse correspond also to a similar development of strains in points that are
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Figure 5.33: (a) Parameter sets that provide the best peaks fitting keeping
constant β, in the parameters space, for each specimen size of the experimen-
tal series n. 4 [42, 43] (BG1 to BG5) and (b) corresponding computational
size effect curve. The stress-CMOD curves related to these parameter sets
are shown in Figure 5.34. α = 0.92
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(a)

(b)

Figure 5.35: Experimental, computational and (a) Baz̆ant SEL (b) Carpinteri
MFSL fitting size effect curves for the dog-bone shaped specimens (A to F
size) of the experimental series n. 2 [87, 88] (α = 0.93).
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(a)

(b)

Figure 5.36: Experimental, computational and (a) Baz̆ant SEL (b) Carpinteri
MFSL fitting size effect curves for the single-edge notched bending specimens
(BG1 to BG5 size) of the experimental series n. 4 [42, 43] (α = 0.92).
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E[MPa] ν fct η

34760 0.2096 3.38 11.73

Table 5.7: Values of the a priori known model parameters for the experimental
series n. 3 [32].

outside the area where damage and strains localize. In Figure 5.37a the com-
putational load-CMO curves corresponding to two equivalent parameter sets
are reported. The two parameter sets provide a similar evolution of the defor-
mations at the points where the inductive displacement transducer IDT3 and
the strain gauges SG3/SG6 are placed (see Figure 4.3), as shown in Figures
5.37b and 5.38. Hence, involving deformation data related to points outside
the localization zone does not provide additional criteria for the selection of a
unique solution. Instead, for points within that area no comparison between
the numerical and the experimental deformation is possible, since limited val-
ues in the case of the real discrete crack (as the ones registered by the strain
gauges SG2/SG5) correspond to high numerical values in the computational
continuum smeared approach.

5.6.1.2 One-dimensional bar

These results promote the idea of considering averaged local information,
instead of localized data, in the solution of the inverse problem. In fact,
numerical simulations show that parameter sets equivalent in terms of global
response correspond to different strain profiles along the main direction of
the specimen and different widths of the fracture process zone (FPZ) (e.g.
[36]).

The effect of adding local experimental information in the definition of
the neighborhood function Eq. (3.5) is investigated in the simple case of a
one-dimensional bar in tension, with a weak zone in the middle part, where
deformation and damage localize. The load-deformation curve, the damage
profile and the equivalent strain profile along the bar represent the solution of
the forward problem. Pseudo-experimental data are created artificially con-
sidering analytical curves that are close to the computational curves corre-
sponding to the following reference parameters set: xT = [c β] = [30.0 1500]
(see Figure 5.39). The remaining model parameters, considered as a priori
known, are E=20000 [MPa], ν=0.0 α=0.95, κi=0.0001/0.00009 (the smaller
value for the weak part of the bar) and η=14.00. Geometrical data are: bar
length 100.0 mm, length of the weak part 10 mm, cross-section area 10 mm2.
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Figure 5.37: (a) Computational force-CMO curve and (b) computational
force-displacement curve at the tensile face IDT3 (see Figure 4.3) for two
equivalent parameter sets xT

1 : [c = 20.0 mm2 β = 1000] and xT
2 : [c =

12.5 mm2 β = 800] for the experimental series n. 3 [32].
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The neighborhood function f(x) may be rewritten in the following form, with
three separate contributions:

f(x) =
(yexp − ycomp(x))T (yexp − ycomp(x))

(yexp)
T (yexp)

︸ ︷︷ ︸

+

1
(ωexp − ωcomp(x))T (ωexp − ωcomp(x))

(ωexp)T (ωexp)
︸ ︷︷ ︸

+

2
(εeq,exp − εeq,comp(x))T (εeq,exp − εeq,comp(x))

(εeq,exp)T (εeq,exp)
︸ ︷︷ ︸

, (5.14)

3

where in the vectors ω and εeq points are collected along the final damage
profile curve and final equivalent strain profile curve (see Figure 5.39b and c),
respectively. Using the KNN method, a population of model parameter sets
xi is chosen and the approximation of the neighborhood function is built from
the evaluations of f(xi). The plots and contour plots of f(x) are reported in
Figure 5.40 considering the various contributions in Eq. (5.14). The second
and third term in Eq. (5.14) lead, separately, to a correlation between c and β
in a different direction with respect of the one related to the first term (note
the different directions of the saddle areas in Figure 5.40). Hence, considering
both terms, the final solution x can be univocally defined as a crossing point
of two correlation zones or three correlation zones (see Figure 5.40).

5.6.1.3 Experimental series n. 4

For realistic parameter identifications the data of the experimental series n.
4 are used. In this case, local FPZ width-deformation curves (i.e. FPZ widths
measurements during the entire fracture process) are available in addition
to the global stress-CMOD curves. Hence, the width of the damaged area
d (i.e. the area that is not completely virgin) may be used as additional
experimental data in the solution of the inverse problem.

The idea of considering averaged local quantities seems to be consistent
with the fact that the real discrete fracture process is described through a
continuum smeared approach. However, the main difficulty is to establish a
method for relating the computational strain and/or damage distribution to
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Figure 5.38: Computational strain-CMO curve corresponding to the strain
gauges SG3/SG6 (see Figure 4.3) for two equivalent parameter sets xT

1 : [c =
20.0 mm2 β = 1000] and xT

2 : [c = 12.5 mm2 β = 800] for the experimental
series n. 3 [32].

the macrocracks, side branches and/or bridges that can be observed during
the experiments. In other words, a criterion is necessary in order to define
the FPZ width d from a strain distribution.

Experimentally, the use of in-plane Electronic Speckle Pattern Interfer-
ometry (ESPI) in the experimental series no. 4 provides whole field displace-
ments and strain distributions along the main sensitivity direction perpen-
dicular to the notches. Hence, the FPZ width is defined as the width of the
area where the strain exceeds a certain threshold value (defined relatively
to the peak value). Widths of the FPZ are recorded during the entire frac-
ture process, so that FPZ width vs. deformation curves are available for the
experimental series no. 4.

Numerically,at each time step t, the nonlocal equivalent strain profile
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Figure 5.40: Objective function and projection in the parameters grid consid-
ering different information contribution for the one-dimensional tension bar
case (α = 0.95).
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Figure 5.41: Nonlocal equivalent strain profile along the beam mid-height
axis, used for the FPZ width definition dcomp.

along the beam mid-height axis may be considered (alternatively, the dam-
age profile or the local equivalent strain profile might be used). Hence, anal-
ogously to the experimental case,the computational value dt

comp(x) may be
defined as the width of the area where the nonlocal strain ε̄eq is larger than a
certain fixed percentage (the same used during the experiments) of the peak
value (see Figure 5.41).

As already mentioned in Section 4.4, it could be argued that this way
of determining the FPZ width is arbitrary and debatable and that the final
estimate of the model parameters vector is influenced by both the experi-
mental technique adopted for the measurement of dexp and the method and
threshold value used for the definition of the numerical corresponding value
dcomp. However, the essential aspect and requirement is that all coefficients,
assumptions, and procedures used for the calibration of the numerical model
are kept constant and consistent for all specimens sizes and loading condi-
tions, so that the predictive capacity of the model may be assessed. Therefore,
the strain threshold value used for the definition of the FPZ width, which
should be consistent with the experimental data, may be seen as a tuning
parameter of the so-calibrated model.

Hence, the width of the damaged area d may be included in the definition
of the objective function f(x), so that Eq. (3.5) may be rewritten as

f(x) = p1

(yexp − ycomp(x))TC−1
exp(yexp − ycomp(x))

yT
expyexp

+

p2

(dexp − dcomp(x))TC−1
d-exp(dexp − dcomp(x))

dT
expdexp

, (5.15)
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where yexp and ycomp are represented by Eqs. (3.3) and (3.4), respectively,
while dexp and dcomp may be defined as

dexp =
[
d1

exp d2
exp · · · d

nyd
exp

]T
, (5.16)

dcomp(x) =
[
d1

comp(x) d2
comp(x) · · · d

nyd
comp(x)

]T
, (5.17)

with dt points along the local FPZ width-deformation curve, analogously to
the case of forces along the global force-deformation curve (see Figure 3.6).
In Eq. (5.15) p1 and p2 are two weight factors with which the two contri-
butions, global and local data, are taken into account, while yT

expyexp and

dT
expdexp are two normalizing factors, necessary because of the different or-

ders of magnitude between force and FPZ width values. The maximum value
of each contribution between all parameters population xi may be used, al-
ternatively, as normalizing factor, so that each component in Eq. (5.15) is
a dimensionless number between zero and one. Normalization is also neces-
sary if the responses of different specimen sizes are involved in the objective
function, since they are characterized by rather different values of forces.

Alternatively, Eq. (3.5) may remain the same, but the two vectors yexp

and ycomp are redefined as

yexp =

[ √
p1

yT
exp1

yexp1

yT
exp1

√
p2

yT
exp2

yexp2

yT
exp2

]T

, (5.18)

yexp1
=

[
F 1

exp · · · F
ny
exp

]T
, (5.19)

yexp2
=

[
d1

exp · · · d
nyd
exp

]T
, (5.20)

ycomp(x) = [
√

p1

yT
exp1

yexp1

(F 1
comp(x) · · · F

ny
comp(x))

√
p2

yT
exp2

yexp2

(d1
comp(x) · · · d

nyd
comp(x))]

T

. (5.21)

Equivalently, the equations of the KF procedure may remain the same
considering instead of Eqs. (5.1) and (5.2) the following vectors
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yt
exp = [

√
p1

yT
exp1

yexp1

F t
exp

√
p2

yT
exp2

yexp2

dt
exp]

T

t = 1..ny(nyd), (5.22)

yt
comp(x) = [

√
p1

yT
exp1

yexp1

F t
comp(x)

√
p2

yT
exp2

yexp2

dt
comp(x)]

T

. (5.23)

Regarding the choice of the two weights p1 and p2, some comments can
be made. In case of multi-objective or multi-criteria optimization problems,
one of the possible approaches available in literature is to use a weighted
summation of the objective functions. This approach, belonging to the ‘a
priori’ methods, provides that preferences may be included by the user at
the beginning of the search process. So, the user assigns subjective weights
to each criterion, according to engineering intuition, knowledge and specific
requirements. For instance, the user might prefer to emphasize the fitting of
the global response instead of the local response or vice versa. However, two
procedures can be followed that may help the user in this matter. Firstly,
a study of the sensitivity of the global and local results with respect to the
model parameters is suggested. If, for instance, the influence of the model pa-
rameters on the global response is stronger than that on the local response, a
higher value for the corresponding weight may be selected. Hence, a paramet-
ric study of the influence of the ratio p1 over p2 may be carried out. A second
procedure may be to assign to both weights unit values, so that the only
effective weight for each experimental data is the corresponding experimen-
tal covariance for the local and global set. Consequently, experimental values
characterized by significant noise (or scatter or uncertainty) are considered
a less important target.

For the specimen BG1 of the experimental series n. 4, for instance, the
two parameters sets xT

1 : [c = 60.0 mm2 β = 600] and xT
2 : [c = 20.0 mm2 β =

300] belong to the saddle area of the objective function defined using only the
global stress-CMOD curves (see Figure 5.42a). However, the first parameter
set corresponds to a better fitting of the local FPZ width-CMOD curve (see
Figure 5.42b). Hence, by using the objective function definition of Eq. (5.15),
with unitary weights and using a strain threshold of 20% (in Figure 5.41,
a=0.20) of the peak values for the definition of the FPZ width (the same as
used experimentally), the equivalence between the two parameters sets may
be removed.
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Figure 5.42: Specimen BG1 of the experimental series n. 4 [42, 43]: (a) stress-
CMOD curves and (b) FPZ width-CMOD curves corresponding to two pa-
rameter sets that belong to the saddle area of the objective function, if only
global information is used (α = 0.92).
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However, the influence of structural factors (such as the specimen size,
the specimen geometry, load and boundary conditions) on the width of the
damaged area dexp can not be completely ignored as well as on the global
force-deformation response of the specimen. Hence, parameter identification
procedures based on the global and local curve of one single specimen size, do
not guarantee a satisfactory prediction of the peak loads and global curves
of other specimen sizes, as already discussed in the previous Sections. Hence,
a wide range of experimental global and local data is required, for reliable
model calibration that can be used for prediction purposes.

5.6.2 Global and local curves of different sizes

In this case the inverse problem is well-posed and an average, stable fitting
of the size effect curve and of all global force-deformation curves may be
obtained. However, a rigorous fitting of all sizes is not achieved when only a
single model parameter set is used.

Hence, if only global data or only local data of all specimen sizes of
the experimental series n. 4. are used in Eq. (5.15), the objective function
remains characterized by a saddle (see Figure 5.43a and b). Considering both
the global and local contribution, with unit weights (p1 = p2 = 1.0), a single
stable solution may be identified (see Figure 5.43c). Reducing the local data
weight p2, the area of possible solutions enlarges (see Figure 5.43d).

The optimum solution xT
1 : [c = 80 β = 600] (see Figure 5.43c) represents

an average compromise solution between global and local data (p1 = 1.0
and p2 = 1.0) of all specimen sizes, as shown in Figures 5.44 and 5.45 (the
experimental local curve for the largest size is not available).

In Figures 5.44 and 5.45 also the curves related to two other parameter
sets xT

2 : [c = 60 β = 600] and xT
3 : [c = 25 β = 350] are shown for a

comparison. The two parameter sets are unstable solutions in case of p1 = 1.0,
p2 = 0.2 and p1 = 1.0, p2 = 0.0, respectively. Of course, the best average
fitting of only global data of all sizes is obtained in case of x3 (see also Figure
5.29), while, although local data are involved, global data fitting is considered
more relevant in the case of x2. In other words, between the three parameter
sets, x3 corresponds to the best global curves and the worst local curves
fitting, x1 vice versa, since the two type of data fitting are equally taken into
account, and x2 presents curves in between the ones related to x1 and x3.
Hence, in this case, if a smaller threshold value (for instance 5% of the peak
value) for the FPZ definition is considered, the local curves corresponding to
the parameter set x3 move towards upper width values. Consequently, this
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Figure 5.43: Contourplot of the objective function f(x) of Eq. (5.15) con-
sidering all BG specimen sizes of the experimental series n. 4 [42, 43] and
involving (a) only the global data (b) only the local data (c) global and local
data with p1 = 1.0 and p2 = 1.0 (d) global and local data with p1 = 1.0 and
p2 = 0.2 (α = 0.92).
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Figure 5.44: Stress-CMOD curves for
all BG specimen sizes of the experi-
mental series n. 4 [42, 43] correspond-
ing to the three parameter sets xT

1 :
[c = 80 β = 600], xT

2 : [c = 60 β =
600] and xT

3 : [c = 25 β = 350]
(α = 0.92).
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Figure 5.45: FPZ width-CMOD curves for all BG specimen sizes of the ex-
perimental series n. 4 [42, 43] corresponding to the three parameter sets xT

1

: [c = 80 β = 600], xT
2 : [c = 60 β = 600] and xT

3 : [c = 25 β = 350]
(α = 0.92).
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Figure 5.46: Experimental and computational size effect curves corresponding
to xT

1 : [c = 20 β = 300] for double-edge notched tensile specimens (KG2
and KG3 sizes) of the experimental series n. 4 [42, 43] (α = 0.92).

would lead to a better fitting of local and global data.
Nevertheless, even with a decreased threshold for the FPZ width defini-

tion, considering a single parameter set for all specimen sizes, a computational
range of variation for the FPZ width is produced (with regards to the speci-
men size) that is smaller than the experimental one (see Figure 5.45). Hence,
not only the size effect on the peak loads, but also the size effect on the FPZ
width is badly captured by the adopted model, with a single parameter set.

5.6.3 Global and local curves of different sizes and different
structures

This represents the most complete experimental range of data that can be
involved for the validation of a numerical model. However, also in this case,
the predictions of the model using only a single parameter set, may be un-
satisfactory, as shown in Figure 5.46 for the case of the double-edge notched
tensile tests of the experimental series n. 4. Using a parameter set that pro-
vides an acceptable average fitting of the bending tests (see Figure 5.27) does
not correspond to reliable model predictions for the tensile tests ([67], [85]).
Structural effects on the length scale parameter are encountered.





Chapter 6

Parameter identification
strategy

This Chapter is intended to summarize the inverse strategy proposed for
parameter identification problems of computational models for localized fail-
ure. Although, in the present work, the strategy has been developed and
applied for the parameter identification of the gradient-enhanced continuum
damage model, it remains valid for other computational regularized contin-
uum models, because of the generality and the simplicity of implementation
of the inverse methods (see Sections 3.4 and 5.2). The considered inverse
techniques (K-Nearest Neighbors and Kalman filter) may be used to solve
parameter identification problems also in the case of numerical models which
follow the discrete approach. In this case, however, the local data that might
be needed in the parameter estimation problem should be related to other
quantities different than the width of the fracture process zone.

Moreover, as already discussed in Section 5.1, the parameter identification
problem presented in this thesis mainly focuses on the gradient parameter
c (or equivalently on the length scale parameter l) and on the slope of the
softening branch of the constitutive law represented by the parameter β (see
Figure 2.1).

6.1 Parameter identification procedure

Two inverse techniques are used in a serial fashion in the proposed parame-
ter identification strategy: the K-Nearest Neighbors method (KNN) and the
Kalman filter (KF) method (see Section 3.4).
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The first technique allows a preliminary study of the parameters space,
so that possible ill-posedness of the inverse problem and promising searching
regions may be easily detected. In Section 5.4.1, in fact, a correlation be-
tween the gradient parameter c and the slope of the softening branch of the
constitutive law β is shown using the KNN method. A preliminary investi-
gation of the promising searching regions may speed up the convergence of
the identification process, starting from an optimal choice of the initial guess
of the model parameters. Moreover, this preliminary study may detect local
minima of the objective function. Hence, it may be possible to avoid that the
inverse procedure, sticking into a local minimum, provides model parameter
estimates that are not correct and that are influenced by the initial guess, as
starting point of the searching process belonging to the attraction basin of
the local minimum. Using only the global force-deformation curves (even for
different specimen sizes) leads to an ill-posed inverse problem (lack of unique-
ness and/or stability of the inverse solution). For this reason, examination of
local data (widths of the damaged area during the fracture process) is also
provided by the inverse strategy scheme (see Sections 5.4, 5.5 and 5.6). More-
over, the adopted computational model reveals limits in reproducing all the
complex mechanisms that result in the size effect phenomenon, using a single
parameters set for all specimen sizes (see Section 5.5). Hence, the possibility
of identifying a size dependent length scale parameter is also envisaged in
the procedure. The KF method represents the refining final searching tool,
which takes into account also the uncertainties related to both the experi-
mental data and to the parameters estimate (see Section 5.3).

The strategy is composed of five steps, representing each step a checking
point of the data fitting or a changing point of the procedure itself.

Step ¬

Hence, the first step of the strategy, developed in this thesis, consists
of the identification of the initial guess x0 by means of the KNN method.
For this purpose, a parameters grid β − c may be selected and a number of
forward analyses may be carried out for each β − c couple of the considered
parameters population (see Section 3.4.1). If the identification procedure is
based on global and local experimental curves of different specimen sizes, as
suggested in Chapter 5, the following objective function needs to be computed
for each point of the parameters grid (as in the case reported in Section 5.6.2):
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n∑

j=1

p1f1 sizej +
n∑

j=1

p2f2 sizej , (6.1)

where f1 sizej and f2 sizej are the global and local contribution, respectively,
related to the specimen size j (i.e. first and second component of Eq. (5.15)).
Hence, for each specimen size, two matrices with the global and local contri-
butions may be built, being each element of the matrix related to one couple
of the parameters grid. Of course, f1 sizej and f2 sizej represent the normal-
ized value of these matrices (for instance, as already mentioned in Section
5.6.1.3, dividing each element by the maximum value of the matrix). Regard-
ing the choice of the two weights p1 and p2 the reader is referred to Section
5.6.1.3.

Step ­ and Step ®

In these two steps a comparison between the experimental and compu-
tational curves (corresponding to x0), of all specimen sizes, is performed.
First regarding the global data (Step ­) and, subsequently, regarding the
local data (Step ®a and ®b), as shown in Figure 6.1. However, as already
discussed in Sections 5.4.2, 5.5 and 5.6.2, only an average fitting through
all specimen sizes can be obtained using a single parameters set. Hence, the
experimental-computational comparison basically results in one of the fol-
lowing cases: i) both the global and local data fitting is acceptable ii) the
average fitting of one of the two types of data is not acceptable iii) the fitting
of both the global and local data is not satisfactory.

Step ¯ and Step °

The phases subsequent to the three cases presented above are presented
here. In the first case, the preliminary study may be ended and the searching
process may be refined using the KF method. The global and local data of all
sizes are exploited in the KF method for the unique parameters set estimate
(Step ¯aa in Figure 6.1).

In the second case (Step ¯ab or Step ¯ba in Figure 6.1), the ratio between
the two weights p1/p2 or the nonlocal equivalent strain threshold for the FPZ
definition might be modified (see, for instance, the case discussed in Section
5.6.2 and shown in Figures 5.44 and 5.45). Hence, the procedure is restarted
from Step ¬.
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Figure 6.1: Inverse strategy scheme.
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Finally, in the third case, a better rigorous fitting of the global and local
size effect might be obtained considering, for instance, the following sub-
procedure (Step ¯bb) (see Figures 5.33 and 5.34):

identify the best parameters set estimate for each specimen size cor-
responding to the minimum of the following objective functions (see
Figure 6.2)

p1f1 sizej + p2f2 sizej (6.2)

identify the better fixed βs (i.e. the better representatives βs of the best
sets population) (see Figure 6.2)

identify, for each better β, the best c for each specimen size (see Figure
6.3)

compare the experimental and numerical curves (global and local) and
select the best ‘fixed β’ row.

Note that the above suggested ‘sub-procedure’, does not require addi-
tional computational analyses, since the various contributions f1 sizej and
f2 sizej for the different sizes have already been calculated in Step¬. The
various steps of the ‘sub-procedure’ can be performed by simply examining
the matrices built using f1 sizej and f2 sizej of the different sizes.

Also in the third case, the searching process may be refined performing
different KF methods only on the length scale parameter for each specimen
size (using global and local data) (Step °bb).

The unsatisfactory fitting of the experimental size effect curve provided
by the examined model, with a fixed value of the length scale parameter,
might be the consequence of different phenomena. Firstly, as already cited in
Section 5.5, the considered numerical model is deterministic. Hence statisti-
cal influences in the size effect curve can not be reproduced by the model.
Moreover, the length scale parameter might depend not only on the initial un-
damaged microstructure, but also on all deformation mechanisms occurring
during the damage process. These mechanisms change the microstructure in
a progressive way. In other words, the length scale might not be constant dur-
ing the entire fracture process, but it could be variable according a suitable
evolution law, for instance, in terms of cracking strain or damage variable,
in a sort of self-adaptive strategy implemented at the level of the material
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constitutive law [38], [85]-[68]. Finally, the fact that the numerical size ef-
fect curve remains too flat compared to the experimental one might be the
consequence of a series of different possible sources of error, already cited in
Section 3.3. These errors are intrinsic deficiencies of the ‘S

′

’ or of the ‘M’ box
(see Figure 3.2) and not all easily detectable and corrected.

On the other hand, considering the possibility of a length scale that de-
pends on the specimen size or on the fracture process state, not only in-
validates the model assumption of constant material properties, but it also
makes the inverse procedure for parameter identification more complex (a
length scale function should be identified). Moreover, in this way, the use
of the model for prediction purposes would be limited. In fact, the model
calibrated on the basis of the experimental results of a certain specimen size
or loading condition might provide unreliable predictions for other specimen
sizes and loading conditions. Hence, the hypothesis of a variable length scale
is debatable and not easily accepted in the fracture mechanics research com-
munity.

Alternative possibilities require a step back: a deeper model analysis,
since the inverse problem has highlighted some limitations. As consequence,
a different and maybe more complex model might be needed. For instance,
a model that includes statistical aspects of the size effect phenomenon or
more mechanisms of the fracture process phases or with more parameters
for describing the complex material microstructure. Alternatively, different
modelling approaches (i.e. not only the continuum approach) for the different
phases of the fracture process might be considered. Hence, for instance, the
continuum approach might be used to model the pre-peak micro cracking
regime, while the discrete approach might be used to model the post-peak
macro cracking regime, as proposed in [85]. In any case, the model weakness
may be minimized if the model contains parameters which have a determined
and clear physical or mechanical meaning. In this regard, more defined phys-
ical argumentation for the length scale definition, might help in the identifi-
cation process of this parameter. Also the possibility of coupling multiscale
analyses with inverse analysis should be investigated. For instance, informa-
tion resulting from analyses performed at the meso/microscale might be used
to solve the ill-posedness at the macroscale level. Alternatively, parameter
identification procedures solved at the macroscale might provide information
for analyses on a lower scale. However, for simultaneous parameter identifica-
tions at different scales directly from experimental data, also measurements
on different scales should be available.
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In conclusion, the entire inverse strategy may be schematically seen as
composed of an initial starting analysis (KNN method on all sizes) and one
check loop with two tangential directions depending on whether the average
fitting for all specimen sizes is considered acceptable or not (see Figure 6.4).
In the first case a single model parameters set is selected for the description
of the local and global size effect (i.e. the FPZ width-deformation curves
and the force-deformation curves of all specimen sizes). Errors in the model
predictions are considered small for the specific purposes for which the model
needs to be used. In the second case, the required rigorous fitting through
the different sizes can be achieved only using a size dependent length scale
parameter, which is not an acceptable solution. In both cases, the search
process ends with a refined parameters estimate, obtained through the KF
method.



Chapter 7

Extension to other material
models for localized failure

Although numerically elaborated and applied to the parameter identifica-
tion of the gradient enhanced continuum damage model, the inverse strategy
and/or the tools developed in this thesis are also valid for other types of
models for the description of localized failure, whether in tension or in com-
pression [83]. Particularly, in case of tensile fracture in quasi-brittle materials
(e.g. concrete), the procedures hold either in case the model follows the con-
tinuum approach or in case it follows the discrete approach (see Section 2.1).
Moreover, some examined issues, for instance, related to the well-posedness
of the inverse problem or to the factors that may have an influence on the
final parameter estimates, remain crucial points that can not be neglected
when solving the parameter identification problem for other models.

The KNN method and the Kalman filter method, are general, flexible
and they may be simply implemented as a shell around various finite ele-
ment codes. An example of application of the KF method for the parameter
identification of a cohesive crack model may be found in [17]. Hence, also in
case of models following the discrete approach the implementation scheme of
the inverse methods, shown in Figure 5.3, remains valid. The vector ycomp

may contain information on the force-deformation response of the specimen.
Hence, the KNN method may be used as a preliminary study of the parame-
ters space and the objective function and the KF method may subsequentally
refine the search process. From the implementation point of view, also in this
case, the main difficulties consist of creating the continuous interaction and
exchange of information between the FE code and the KF code, such that
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all iterations of the inverse method can be automatically executed, one after
another. For this purpose, the FE code should automatically stop after a def-
inite number of forward analyses, pass the required output to the KF code,
update the recorded model parameters value and re-initialize the forward
problem for the next KF step. Hence, it is necessary to know where and how
all the involved variables are stored in the adopted FE program and how and
when they are possibly exchanged between the different subroutines of the
FE code.

7.1 Higher order continuum models

Regarding the continuum approach for softening and localization phenom-
ena, different enriched models have been proposed, which are regularized
through the introduction of higher-order spatial or time derivative terms in
the description of the material (e.g. viscoplastic model [65], Cosserat model
[64], nonlocal continuum model [10, 72] and the examined gradient-enhanced
continuum damage model (see Section 2.3.1)). Also, for this class of models,
containing a length scale parameter, uniqueness and/or stability problems
might be encountered in the solution of the parameter identification proce-
dure if only force-displacement curves are involved. Hence, in this case, not
only the inverse techniques represented by the KNN and KF methods may
be used, but also the inverse strategy, proposed in Chapter 6 and related to
the use of both local and global data, may be adapted, since it depends on
the specific model parameter set to be determined.

7.2 Discrete crack models

A possible future extension of the present work might focus on the parame-
ter identification problem of discrete numerical models [92]. The investigation
of the type of experimental data which are necessary and sufficient for the
particular case of discrete modelling is needed for the well-posedness of the in-
verse problem. Since a crack in a discrete model is confined to a line, no width
of the FPZ is available for this class of models and a comparison between
experimental local data and computational local data is not possible. How-
ever, the crack length might be used, if necessary, to solve the ill-posedness
of the inverse problem. Because no width of the FPZ is involved, the inverse
problem seems to be better conditioned. Hence, the inverse strategy, pre-
sented in Chapter 6, might be slightly modified, in the sense of data type
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Figure 7.1: Hordijk stress-crack opening relation [44].

and data handling sequences, although the KNN and KF methods remain
valid. In this way, also for this approach of modeling localized failure, possi-
ble deficiencies of the model might be highlighted and possible limits in its
applicability might be established.

7.3 Smeared crack model

Finally, a fracture energy based approach [7] may be followed to overcome
mesh dependency of the numerical results. In this case, the fracture energy
(as material parameter) is related to the size of the finite element (i.e. a
localization limiter or a length scale is introduced) and strain localization
always occurs in one element. Within this framework, an indicative example is
represented by the smeared crack model obtained by translating the Hordijk
stress-crack opening law [44] into a stress-strain relation. The Hordijk relation
for a fictitious crack, illustrated in Figure 7.1, is defined by the following
relation

σ

fct
=

{

1 + (c1
w

wc
)3

}

exp(−c2
w

wc
) −

w

wc
(1 + c3

1) exp(−c2), (7.1)

where c1, c2 and wc (critical crack opening corresponding to zero stress) are
material parameters. The integration Gf =

∫
σdw gives for Eq. (7.1) the

following expression of fracture energy
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(7.2)

In the smeared crack model, the strain is computed by distributing the
crack opening w over a crack band length, which represents a localization
limiter being dependent on element size.

For this model, the KNN method is applied, using the test results of the
concrete dog-bone shaped specimen Type B of the experimental series n. 2
(see Figure 4.2) [87, 88]. The approximation of the objective function of Eq.
(5.11) is built starting from forward analyses with parameter sets correspond-
ing to a grid of the fracture energy parameter Gf and the parameter c1 of
Eq. (7.1) [27]. Increasing c1 in the stress-crack opening law, given in Eq. (7.1)
and shown in Figure 7.1, leads to an increase of the ductility. This trend is
opposite to that related to the parameter β of Eq. (2.9), since an increment
of β corresponds to less ductile stress-strain law (see Figure 2.1b).

The projection of the objective function f(x) on the parameters grid,
shown in Figure 7.2, suggests that, also for this model, using only global
data in the parameter identification problem might result into a non-unique
and/or unstable solution. However, in this case, the involvement of local data
to solve the ill-posedness of the inverse problem would be meaningless, since
the numerical strain profile in the cracked zone does not have a physical
interpretation. The profile is dependent on element size, because strain local-
ization takes place in the smallest possible zone. Therefore, a link between
numerical and experimental local data is meaningless. Hence, this indicates
the importance of a computational model in providing not only a correct
reproduction of the force-displacement curve, but also a correct physical de-
scription of the fractured area.

7.4 Coupling data of different models

Finally, the proposed strategy and/or tools may be applied not only in order
to obtain quantitatively correct results from numerical models, but also in
order to convert parameter values passing from one model to another. In fact,
while in the first case the target solution is represented by experimental (real)
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Figure 7.2: Contourplot of the KNN objective function f(x) for the smeared
crack model, using only global data of the concrete dog-bone shaped specimen
Type B of the experimental series n. 2 [87, 88].

results, in the second case it is represented by the computational output of
one of the two models.

However, in all cases examined in this Chapter, the most important issue
remains the definition of a well-posed parameter identification problem for
the given model(s). In other words, for every model, it is crucial to choose
the experimental data needed for a unique and stable parameters solution.





Chapter 8

Conclusions and
recommendations

Numerical models for the tensile behaviour of quasi-brittle materials may
correctly describe localized failure phenomena only if all model parameters
are correctly estimated. For this purpose, the development of inverse proce-
dures is needed, since not all parameters may be directly measured during
laboratory tests. This is the main aim of the present research, focusing, as an
example, on the parameter identification of the gradient-enhanced continuum
damage model. Particularly, the estimate of the length scale parameter and
the slope of the softening branch of the stress-strain constitutive law are cho-
sen to be the main unknowns of the analysed inverse problem. Conclusions,
achievements, open issues, future outlook, other domains of applicability and
recommendations, resulting from the study of the various issues related to
both the forward and the inverse problem, are reported in this Chapter.

8.1 Conclusions and achievements of the research

An inverse strategy for parameter identification of numerical models for lo-
calised failure in quasi-brittle material is developed in the present work. The
strategy is based on the aim of extracting intrinsic material properties (consti-
tutive parameters at the material point level in the computational continuum
approach) from measured experimental responses (representing sometimes a
combination of structural and material behaviour). Hence, a link between
advanced computational and experimental techniques is established.

The final parameters estimate can be influenced by the initial guess of the
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model parameters (representing the starting point of the search process), by
the associated covariance (representing the uncertainty on the initial guess)
and by the scatter distribution of the experimental data (see Section 5.4.1).
Hence, the KNN method, for the preliminary study of the parameters space
and the possible iterative use of the KF procedure are proposed as remedies
to the nonlinearity and, as consequence, to the non-guaranteed convexity of
the inverse problem. A good quality of experimental data and a possible cut-
off of the tail of the load-deformation curves may avoid or limit problems
caused by the experimental covariance.

The well-posedness (in terms of uniqueness and/or stability of the solu-
tion) of the inverse problem is investigated, providing an insight in the prob-
lem of selecting the type of experimental data to be used in the solution of the
identification problem. In fact, considering only the global force-displacement
curve of one single specimen size, a correlation between the gradient param-
eter c (related to the length scale parameter) and the slope of the softening
branch of the stress-strain constitutive law β is obtained (see Section 5.4.1).
Hence, different parameter sets are equivalent in terms of global response and
the inverse problem appears to be ill-posed.

Involving the force-deformation curves of different specimen sizes in the
solution of the identification problem does not solve the ill-posedness, since
the direction of correlation between the two parameters is similar for the
various specimen sizes (see Section 5.4.2).

Considering additional deformation measurements in points located in the
neighborhood of the macrocrack in the parameter estimation problem does
not provide satisfactory additional criteria for the selection of a stable and
unique solution. In fact, the results indicate that parameter sets, equivalent in
terms of global response, correspond also to a similar development of strains
in points that are outside the area where damage occurs and strains localize.
Instead, for points within that area no comparison between the numerical
and the experimental deformation is possible, since limited values in the
case of the real discrete crack correspond to high numerical values in the
computational continuum smeared approach (see Section 5.6.1.1).

However, if local data, as the development of the width of the fracture
process zone during the fracture process, are involved in the identification
problem, the well-posedness may be recovered and a unique and stable solu-
tion may be obtained (see Section 5.6.1.3).

A study of the limits of validity and of the predictive capacity of the
calibrated model is also carried out, analysing possible structural influences
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on the parameters estimate, as a consequence of the structural effects on
the experimental data used in the identification process. For this purpose
experimental results related to specimens of different sizes, geometries and
loading conditions are considered (see Sections 4.2 and 4.4).

The analysed model seems to incorrectly reproduce the entire experimen-
tal size effect curve using only one parameter set for all specimen sizes. It
leaves the computational size effect curve, as a whole, too flat compared to
the experimental one. The model reveals limits in reproducing experimental
tests characterized by a certain statistical size effect. Using a single parame-
ters set for all specimen sizes, the real size effect curve may be fitted only in
an average way (see Section 5.5).

In addition, a single parameters estimate that provides an acceptable
fitting of the entire force-deformation curves of a few specimen sizes does not
necessarily correspond to a correct prediction of the peak loads. Hence, not
only the best parameter estimates are different for the various sizes, but they
also appear to be different depending on whether only the peak load or the
entire force-deformation curve is involved in the inverse problem (see Section
5.5).

Moreover, considering a single parameter set for all specimen sizes, a
computational range of variation for the FPZ width is produced (a different
FPZ width for a different specimen size) that is smaller than the experimental
one (see Section 5.6.2). Hence, not only the size effect on the peak loads, but
also the size effect on the FPZ width is badly captured by the adopted model,
with a single parameter set for all sizes.

If different sizes and different structures (three point bending tests and
uniaxial tensile tests) are considered, unsatisfactory predictions of the model
are obtained, using only one single parameter set. In other words, using a
parameter set that provides an acceptable average fitting for the bending
tests does not correspond to reliable model predictions for the tensile tests
(see Section 5.6.3).

In conclusion, solving the inverse problem turns out to be a valid tool for
the model assessment and the analysis of weak points in the description of
the forward problem.

8.2 Open issues and future outlook

The issue of a length scale as a parameter with a physical meaning or as a
computational remedy to the loss of ellipticity of the model equations remains
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controversial.

Moreover, the possibility of a length scale parameter that depends on
the specimen size, on the loading conditions or on the fracture process state
might be one of the causes or the effects of erroneous modelling (‘loop of
material modelling’), as already discussed in Section 3.3. However, this pos-
sibility not only invalidates the model assumption of geometry-independent
material properties, but it also makes the inverse procedure for the parame-
ter identification more complex and model predictions for specimen sizes and
load situations different than the ones used for the calibration more difficult.

Hence, it remains unclear and debatable if future research should be ad-
dressed towards an extension of the examined gradient damage model (for
instance, including statistical aspects of the size effect phenomenon or more
parameters for describing the complex material microstructure) or towards
different modelling approaches (i.e. not only the continuum approach) for the
different phases of the fracture process. In other words, it is questionable if a
single complex model, with many parameters to be calibrated, might provide
a better performance than interacting different simple models that contain
parameters with a determined and clear physical or mechanical meaning. In
the last case, for instance, as already cited in Chapter 6, the continuum ap-
proach might be used to model the pre-peak micro cracking regime, while
the discrete approach might be used to model the post-peak macro cracking
regime, as proposed in [85].

Also the possibility of coupling multiscale analyses with inverse analysis
should be investigated. For instance, as mentioned in Chapter 6, information
resulting from analyses performed at the meso/microscale might be used to
solve the ill-posedness at the macroscale level. Alternatively, parameter iden-
tification procedures solved at the macroscale might provide information for
analyses on a lower scale. However, for simultaneous parameter identifica-
tions at different scales directly from experimental data, also measurements
on different scales should be available.

Finally, the description of failure in compression represents a further step
that should be examined, for a complete understanding of the mechanical
behaviour of quasi-brittle materials.

8.3 Recommendations

As already pointed out in Section 3.2, the complete understanding of a real
phenomenon is not possible if laboratory experiments and model develop-
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ments are kept apart. Even complex experiments and complex models have
limited relevance if a continuous interaction between them is neglected and
comparison of the results is made only at the end for the model calibration. A
fully coupled analysis of the phenomenon provides not only extraction of the
maximum information out of the examined process, but also significant im-
provements of both the experiments (optimal experiment design), the model
and the computational analysis.

In conclusion, considerable efforts should be addressed in the definition
of the validity domain of the model as a tool for design, monitoring, and
prediction problems, avoiding that the calibration process reduces to a mere
data fitting.
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Summary

Procedures for parameter estimates of computational models for local-
ized failure, by Cecilia Iacono

In the last years, many computational models have been developed to
reproduce tensile fracture phenomena in concrete. However, their reliability
is significantly related to the correct estimate of the model parameters, which
not all may be directly measured during laboratory tests. Hence, the devel-
opment of inverse procedures is needed, that may provide the parameters
estimate minimizing, iteratively, the discrepancy between experimental and
computational data. This is the main aim of the present research, focusing on
the identification of the length scale parameter (or of the gradient parameter)
and the slope of the softening branch of the stress-strain constitutive law of
the gradient-enhanced continuum damage model.

Various issues related both to the forward model and to the inverse pa-
rameter identification problem are analyzed in the present study: the well-
posedness of the inverse problem (also influenced by the choice of experimen-
tal data, in terms of quality and quantity, involved in the solution), the choice
of the adopted inverse strategy (as a suitable searching scheme in terms of ef-
fectiveness, efficiency and robustness) and the assessment of the so-calibrated
numerical model (in terms of limits of the predictive capabilities of the model
related to size effects and loading condition effects).

For this purpose the results of four experimental series are considered:
i) cable-loaded uniaxial tensile tests performed on single-edge notched sand-
stone specimens [86], ii) tensile size effect tests on concrete dog-bone shaped
specimens [87, 88], iii) three-point bending tests on notched concrete beams
[32] and iv) double-edge notched uniaxial tensile tests and single-edge notched
bending tests on specimens made of the same concrete [42, 43].

The developed inverse strategy is based on two techniques used in cascade:
the K-Nearest Neighbors method (KNN) and the Kalman filter (KF) method.
The first method provides a preliminary study of the parameters space, while
the second method represents a refining searching technique that allows to
take into account the uncertainties related to both the experimental data and
the model parameters estimate.

The results show that involving only global force-displacement curves of
one single specimen size or of different specimen sizes in the inverse prob-
lem, a correlation between the gradient parameter c and the β parameter



exists. Hence, the uniqueness and/or stability of the inverse solution is not
guaranteed. Additional local data, such as the evolution of the width of the
fracture process zone during the fracture process, are needed to recover the
well-posedness of the inverse problem.

Using only a single parameter set for all specimen sizes, the analyzed
computational model can reproduce size effect phenomena, both related to
global and local data, that are less pronounced with respect to the ones
obtained in the experiments.

Moreover, parameter estimates based only on the peak loads of different
specimen sizes may lead to an incorrect prediction of the model for the post
peak regime.

Finally, structural effects (from three points bending tests and uniaxial
tensile tests) significantly influence the inversely determined value for the
length scale parameter.



Samenvatting

Strategieën voor het bepalen van modelparameters bij het simuleren van
gelokaliseerde schadeprocessen, door Cecilia Iacono

De voorbije jaren werd een groot aantal modellen ontwikkeld om het
bezwijkgedrag van beton onder trekbelasting adequaat te simuleren. De be-
trouwbaarheid van de resultaten hangt echter sterk samen met de correcte
schatting van de modelparameters. Omdat deze niet allemaal rechtstreeks
bepaald kunnen worden aan de hand van laboratoriumproeven winnen inverse
procedures aan belang. Hierbij worden de onbekende parameters geschat
door iteratief de verschillen tussen experimentele en gesimuleerde resultaten
te minimaliseren. Dit is het doel van voorliggend onderzoek. De aandacht
gaat daarbij voornamelijk uit naar de bepaling van de lengteschaal (of de
gradient-parameter) en de helling van de ’softening’ tak van de constitu-
tieve spannings-rek relatie van het gradient-verrijkt schade continuümmodel
(gradient-enhanced continuum damage model).

Een aantal aspecten van zowel het voorwaartse model als het inverse
parameter identificatieprobleem is geanalyseerd in de huidige studie: de sta-
biliteit van het inverse probleem (bëınvloed door de experimentele data, in
termen van kwaliteit en kwantiteit), de motivatie voor de toegepaste inverse
strategie (in termen van effectiviteit, efficiëntie en robuustheid) en de evalu-
atie van het op deze wijze gekalibreerde numerieke model (in termen van de
voorspellende waarde van het model voor de simulatie van schaal- en belast-
ingseffecten).

Hiertoe worden de resultaten van vier experimentele datasets beschouwd:
i) éénassige trekproeven op éénzijdig gekerfde kalkzandsteen monsters [86], ii)
éénassige trekproeven op ’hondebot’-vormige proefstukken van verschillende
afmetingen [87, 88], iii) driepunts-buigproeven op gekerfde betonnen proefs-
tukken [32] en iv) éénassige trekproeven op dubbelzijdig gekerfde monsters
en buigproeven op éénzijdig gekerfde monsters [42, 43].

De ontwikkelde inverse strategie is gebaseerd op twee technieken die
achtereenvolgend worden toegepast: de ’K-Nearest Neighbors’ methode (KNN)
en de ’Kalman filter’ (KF). De eerste techniek wordt gebruikt voor een
verkennende studie van de parameter-ruimte, terwijl de tweede methode een
nauwkeuriger zoektechniek is die toelaat rekening te houden met de onzek-
erheden gerelateerd aan zowel de experimentele data als de geschatte model-
parameters.



De resultaten tonen aan dat de gradient-parameter c en de β param-
eter geen onafhankelijke variabelen zijn bij een invers probleem dat enkel
gebaseerd is op globale kracht-verplaatsingsdiagrammen van één proefstuk
of meerdere proefstukken van verschillende afmetingen. Zodoende kan een
unieke oplossing van de inverse analyse en/of de stabiliteit van de oploss-
ingsmethode niet worden gegarandeerd. Aanvullende locale gegevens, zoals
de evolutie van de breedte van de breukzone gedurende het breukproces zijn
noodzakelijk om de goede conditionering van het inverse probleem te verzek-
eren.

De schaaleffecten die numeriek verkregen worden door gebruik te maken
van één enkele parameterset voor alle verschillende proefstukafmetingen, zijn
kleiner dan de schaaleffecten die experimenteel werden gevonden. Dit geldt
zowel voor de schaaleffecten gerelateerd aan globale als aan locale data.

Parameterschattingen, gebaseerd op uitsluitend de bezwijkbelasting van
de verschillende proefstukken van verschillende afmetingen, kunnen boven-
dien leiden tot een foutieve voorspelling van de respons in het ’post-peak’
regime.

Tenslotte hebben constructie-invloeden (gerelateerd aan de proefopstelling
voor driepunts-buigproeven en éénassige trekproeven) een significante invloed
op the lengteschaal parameter die op inverse wijze is bepaald.
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Propositions

Appended to the dissertation
Procedures for parameter estimates of computational

models for localized failure
by Cecilia Iacono

1. A proof ab absurdo of the model can be provided by an inverse analy-
sis, starting from the hypothesis that the model describes the physical
process correctly. Possible flaws might be found at the end of the in-
verse analysis, that may lead to re-discuss the hypothesis, giving input
for model updating, corrections or discharges.

2. Parameter estimates of models for localized failure can not only be
based on the global force-deformation data, leaving any information on
the cracked area in local regimes out of consideration.
This thesis.

3. Experimental tests should not be kept separated from computational
model developments and used only at the end for model calibration
purposes. A continuous interaction between the model and the experi-
ments is advantageous to both and provides the deepest understanding
of the studied phenomenon.
This thesis.

4. Solving an inverse problem is like reading a book backwards: you al-
ready know the end and, then, you start thinking about the plot.

5. Sometimes, if we are not sure about a theory, it might be more inter-
esting, cheaper and more courageous to carry out just one experiment,
demonstrating that we are wrong, than many experiments demonstrat-
ing that we are right.

6. We, human beings, interpret reality with bias of our mind, so according
to our modelling of reality.



7. The knowledge of mankind is the product of efforts, intuitions and
experiences of many generations, in every country of the world. Keeping
that in mind, every individual should be stimulated to add his/her
contribution for the next generation, with a respectful attitude towards
all people, nations and times.
Inspired by Albert Einstein, scientist, 1879-1955.

8. Very often significant advances in science do not concern the discovery
of new phenomena, but new ways of thinking and new angles of looking
at old facts, which have always been in front of our eyes. Therefore,
beside logic and rationality, creative imagination is also a necessary
skill for a good scientist.

9. The real peace is not only the absence of war, but also a serene state
of the mind that leads a single individual to live harmoniously with
himself/herself and other individuals.

10. Often people are labeled by the behaviour of its worst individuals, while
the efforts, sacrifices and achievements of the best ones are neglected,
and yet they redeem the pride and the hope of people.
In memory of Giovanni Falcone, 1939-1992, a Sicilian judge killed in the fight against

the Mafia.

11. Sometimes we are in a perpetual state of dissatisfaction, always looking
far away, in all directions, for something that we already have, but that
we do not appreciate. That is probably why we can not find it.
Inspired by Plato, philosopher, 427-347 BC.

These propositions are considered defendable and as such have been approved
by the supervisors, Prof. dr. ir. L. J. Sluys and Prof. dr. ir. J. G. M. van Mier.



Stellingen

Behorende bij het proefschrift
Strategieën voor het bepalen van modelparameters

bij het simuleren van gelokaliseerde schadeprocessen
door Cecilia Iacono

1. Een bewijs uit het ongerijmde van een model kan verkregen worden
door middel van een inverse analyse, vertrekkend van de hypothese
dat het model het fysische proces correct beschrijft. De inverse analyse
kan mogelijke gebreken aan het licht brengen. Dit kan leiden tot het
herevalueren van de hypothese en kan aangeven wat er in het model
moet worden aangepast, gecorrigeerd of weggelaten.

2. Parameterschattingen voor modellen met gelokaliseerde schade mogen
niet enkel gebaseerd worden op globale kracht-verplaatsingsgegevens
omdat dan informatie over de beschadigde zone in locale regimes buiten
beschouwing wordt gelaten.
Dit proefschrift.

3. Het is niet zinvol om experimentele tests gescheiden te houden van de
ontwikkeling van nieuwe rekenmodellen en ze enkel in de laatste fase
te gebruiken om het model te kalibreren. Een continue wisselwerking
tussen modelleren en experimenteren leidt tot voordeel voor beiden en
draagt bij tot een beter begrip van het bestudeerde fenomeen.
Dit proefschrift.

4. Een invers probleem oplossen is vergelijkbaar met een boek achter-
stevoren lezen: je weet al hoe het zal eindigen en dan pas begin je te
denken over het plot.

5. Indien we niet zeker zijn over een bepaalde theorie, kan het soms inter-
essanter, goedkoper en moediger zijn om één enkele proef uit te voeren
die ons ongelijk aantoont, dan vele experimenten te doen om ons gelijk
trachten te bewijzen.

6. Wij, mensen, interpreteren de realiteit met de vooringenomenheid van
onze geest, dus volgens onze voorstelling van de realiteit.



7. De kennis van de mensheid is het resultaat van inspanningen, intüıtie
en ervaringen van vele generaties, in elk land op de wereld. Met die
gedachte in het achterhoofd zou elk individu zich gesterkt moeten voe-
len om zijn/haar bijdrage te leveren voor de volgende generatie, met
een respectvolle houding jegens alle bevolkingsgroepen, naties en tij-
den.
Gëınspireerd door Albert Einstein, wetenschapper, 1879-1955.

8. Significante wetenschappelijke vooruitgang berust vaak niet op de ont-
dekking van nieuwe fenomenen, maar hangt samen met nieuwe denkwij-
zen en nieuwe invalshoeken om reeds lang gekende feiten te bestuderen.
Daarom is, naast logica en rationeel denken, ook creatieve verbeeld-
ingskracht een noodzakelijke vaardigheid voor een goede onderzoeker.

9. Echte vrede is niet enkel de afwezigheid van oorlog, maar ook de rustige
gemoedstoestand die een individu ertoe brengt om harmonieus samen
te leven met zichzelf en met andere individuen.

10. Vaak worden bevolkingsgroepen beoordeeld op basis van het gedrag van
de ergste enkelingen, en worden de inspanningen, offers en prestaties
van de besten over het hoofd gezien. Maar toch verdienen zij de trots
en de hoop van mensen.
Ter herdenking van Giovanni Falcone, 1939-1992, een Siciliaans rechter gedood in

het gevecht tegen de Maffia.

11. Soms bevinden we ons in een niet aflatende staat van ontevredenheid,
altijd en overal op zoek naar iets dat we eigenlijk reeds hebben, maar
niet appreciëren. En waarschijnlijk daarom is het onvindbaar.
Gëınspireerd door Plato, filosoof, 427-347 BC.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zo-
danig goedgekeurd door de promotoren, Prof. dr. ir. L. J. Sluys en Prof. dr.
ir. J. G. M. van Mier.


