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SUMMARY

This thesis explores the application of reinforcement learning (RL) to the problem of
radar waveform optimization, with a particular focus on multi-agent reinforcement learn-
ing (MARL). Radar technology is crucial in various fields such as aviation, maritime nav-
igation, and defense, but it faces challenges like interference, clutter, and the need for
high resolution and accuracy. Cognitive radar, which adapts to environmental changes
in real time, offers a promising solution. This research investigates how MARL can be
effectively utilized to optimize radar waveforms and whether integrating domain knowl-
edge can enhance its performance.

The thesis provides a comprehensive overview of radar technology, reinforcement
learning, and graph machine learning. Key concepts include Pulse Doppler Radar, Markov
Decision Processes (MDPs), and Graph Neural Networks (GNNs). It also reviews essen-
tial reinforcement learning algorithms like Proximal Policy Optimization (PPO), Inde-
pendent Proximal Policy Optimization (IPPO), and Multi-Agent PPO (MAPPO).

The survey covers classical methods for radar waveform optimization, such as math-
ematical optimizers and genetic algorithms, as well as recent approaches using neural
networks and reinforcement learning. It identifies gaps in the literature, particularly the
underexplored potential of MARL in optimizing radar waveforms.

The radar waveform optimization problem is framed within the Decentralized Par-
tially Observable Markov Decision Process (Dec-POMDP) framework. The thesis defines
the radar environment, agents’ observations, and actions, along with multiple objectives
represented as reward functions. We experiment with different architectures, including
decentralized actors with a centralized critic. The centralized critic, which has access
to global state information, helps stabilize the learning process and mitigate the prob-
lems of non-stationarity and credit assignment. The use of GNNs as a centralized critic
is proposed to leverage graph data sparsity, enhancing scalability.

The proposed models are trained and tested in a radar-tracking scenario. Their per-
formance is evaluated in terms of Pareto optimality and optimization times, comparing
the IAC and IACC models against traditional genetic algorithms and the single-agent
baseline. The results show that both IAC and IACC models outperform traditional meth-
ods in terms of probability of detection, waveform duration, and optimization speed.

The findings highlight the effectiveness of MARL approaches in optimizing radar
waveforms. Centralized critics improve robustness and coordination among agents, but
the choice of architecture significantly impacts overall performance. While GNNs of-
fer potential advantages in scalability, their integration of domain knowledge did not
yield significant improvements in this study. The thesis lays a foundation for the use of
MARL and GNNs in radar waveform optimization and encourages further exploration
into more advanced techniques. Future work should consider increasing the number of
agents, exploring variable burst budgets, and refining the integration of domain knowl-
edge to enhance performance further.
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Radars, an acronym for Radio Detection and Ranging, are systems used for detecting
and locating objects by transmitting and receiving electromagnetic waves. The primary
components of a radar system include a transmitter, which generates electromagnetic
waves, an antenna to direct these waves toward a target, and a receiver to capture the
waves reflected back from the target. This reflected signal is then processed to extract
information such as the distance, speed, and characteristics of the target. Radars hold a
significant place in modern technology due to their ability to perform in various environ-
mental conditions, including adverse weather and low visibility scenarios where optical
and infrared systems may fail. Their capability to detect and track objects over long dis-
tances makes them indispensable in numerous fields such as aviation, maritime naviga-
tion, weather forecasting, and defense. The applications of radar technology are diverse,
ranging from air traffic control, where radars manage and monitor aircraft movement, to
military operations, where they are used for surveillance, target acquisition, and missile
guidance. Additionally, radars are essential in meteorology for monitoring weather pat-
terns and predicting severe weather conditions. In automotive industries, radar systems
are integrated into vehicles for collision avoidance and adaptive cruise control.

Figure 1.1: Radar System

Despite their versatility, radars face several challenges. These include interference
from other electromagnetic sources, clutter from non-target objects, and the need for
high resolution and accuracy. Additionally, modern radars must adapt to dynamic envi-
ronments and emerging threats, requiring advanced signal processing and optimization
techniques. The challenge is further compounded by the need to balance performance
with constraints such as power consumption and computational efficiency.

Cognitive radar represents an advanced approach aimed at overcoming these chal-
lenges through increased adaptability and intelligence.
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Cognitive radars are designed to perceive their environment and ad-
just their operational parameters in real-time to optimize perfor-
mance. This concept of cognitive radar aligns closely with John
Boyd’s OODA loop (Observe, Orient, Decide, Act), a decision-making
framework originally developed for military strategy [1]. By imple-
menting the OODA loop, cognitive radar systems dynamically re-
spond to environmental changes, and a crucial aspect of this adapt-
ability is radar waveform optimization, which involves designing

waveforms that maximize detection and identification capabilities under varying con-
ditions.

Waveform design and optimization are important aspects of enhancing radar per-
formance. It involves the selection of radar waveform parameters that maximize detec-
tion and identification capabilities under varying conditions. Mathematical optimiza-
tion methods have been widely applied in the field of radar waveform design. These
methods involve formulating the waveform optimization problem as a mathematical
model, often as a linear or nonlinear programming problem. The objective is to max-
imize or minimize a specific performance metric, such as signal-to-noise ratio (SNR),
resolution, or detection probability, subject to various constraints. Figure 1.2 shows the
probability of detection at various ranges and velocities for a waveform optimized for
heavy rain and wind. Areas with a low probability of detection can be seen before the
10km mark, caused by the rain. The radar is effectively blind in these regions, and wave-
form optimization is necessary to reduce these blind spots as much as possible.

Figure 1.2: Probability of detection over tracking area for an optimized waveform

Common optimization techniques include gradient-based methods[2], convex opti-
mization [3], and metaheuristic algorithms such as simulated annealing [4] and particle
swarm optimization [5]. They can suffer from issues like slow convergence, computa-
tional complexity, and sensitivity to initial conditions and parameters. These methods
often struggle with scalability and can get trapped in local minima, leading to subopti-
mal solutions. Additionally, they may require careful tuning and handling of constraints,
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and their performance can be affected by noise and the nonconvex nature of the prob-
lem landscape. These methods also need to be reapplied to each problem instance, mak-
ing real-time adaptivity hard to achieve.

Environment Waveform
Optimization 

Algorithm

Policy Environment

Waveform

Figure 1.3: Optimization pipeline for classical algorithms compared to a policy. The optimization algorithm
produces a waveform based on the state of the environment and the predefined constraints. A policy is more
similar to the OODA Loop, where we can keep querying the policy for a waveform as the environment changes,
once the policy is trained, without the need for re-optimization.

Given these limitations, neural networks (NN) have emerged as a powerful alter-
native for radar waveform optimization [6]. By leveraging large amounts of data, NNs
can be trained to predict optimal waveform parameters in real-time, thereby overcom-
ing some of the scalability and adaptivity issues associated with traditional optimization
methods. Neural networks offer several advantages in this context. First, they can gen-
eralize from the training data to new, unseen conditions, providing robust performance
across a variety of scenarios. This generalization capability allows for the creation of a
model that can be applied broadly, reducing the need for constant re-optimization (Fig-
ure 1.3). Second, once trained, neural networks can make rapid inferences, enabling
real-time adjustments to radar waveforms. However, one key disadvantage of super-
vised learning using NNs is their reliance on large labeled datasets for training. Su-
pervised learning with NNs requires a substantial amount of data where the optimal
waveform parameters are already known. Collecting and labeling such data can be time-
consuming and expensive, especially in complex radar environments where the optimal
waveforms may not be easily discernible or may vary significantly across different sce-
narios. Another disadvantage of NNs is their potential for overfitting, particularly when



1

5

the training data does not adequately represent all possible operating conditions. Over-
fitting occurs when the model learns to perform well on the training data but fails to
generalize to new, unseen data. This can lead to suboptimal performance in real-world
scenarios that differ from the training conditions.

In contrast, reinforcement learning does not require labeled data in the same way. In-
stead, RL algorithms learn optimal strategies through interaction with the environment,
receiving feedback in the form of rewards or penalties. This ability to learn from expe-
rience allows RL methods to adaptively discover optimal solutions even in the absence
of pre-labeled data. This is particularly advantageous in dynamic and uncertain envi-
ronments where the optimal solution is not static or known beforehand. Furthermore,
radar waveform optimization is a multi-objective problem, which can be expressed as
a multi-agent reinforcement learning problem. Each objective or figure of merit can be
assigned to a different agent, decomposing a complex problem into manageable sub-
problems. This allows the policy of each agent to tackle a single aspect of the problem,
which should be easier to learn. In the current literature, RL approaches are not very
widespread and are only applied to very specific radar problems, such as spectral notch-
ing [7]. The work of [8] introduces the first Pulse-Doppler single-agent RL approach,
which has inspired this thesis. To the author’s knowledge, there are no MARL approaches
in the radar waveform optimization literature. To address this gap, we pose the following
research question:

RQ) How can multi-agent reinforcement learning (MARL) be effectively utilized to
optimize radar waveforms?

In particular, we focus on answering:

(a) How can the multi-objective radar waveform optimization problem be modeled
as a MARL problem?

(b) How can radar domain knowledge be integrated to improve the performance of
the agents?

(c) What are the possible architectures that allow scalability in the number of radar
waveform parameters?

Each architecture is tested using a radar tracking scenario, where the agents need
to follow a moving target in difficult environmental conditions. Firstly, we focus on the
challenges of multi-agent reinforcement learning such as the credit assignment problem
and non-stationarity by introducing two architectures, using a decentralized critic and
a centralized critic, respectively. We then build on the centralized critic architecture by
swapping its policy with a GNN. This addresses the common issue of scalability in MARL
and presents a way of incorporating radar domain knowledge into the graph-building
process.

This thesis explores the application of reinforcement learning to radar waveform op-
timization, with a focus on multi-agent reinforcement learning. Chapter 2 covers the
fundamentals of radar systems, including Pulse Doppler Radar, reinforcement learning,
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and graph learning. Chapter 3 delves into current radar waveform optimization tech-
niques, from classical methods to supervised and reinforcement learning.

For readers already familiar with these topics, it may be beneficial to proceed di-
rectly to Chapter 4 and beyond, where the core research begins. These chapters detail the
framing of the radar waveform optimization problem within the Decentralized Partially
Observable Markov Decision Process (Dec-POMDP) framework, and the introduction
of centralized critics using Graph Neural Networks (GNNs). Chapter 5 details the var-
ious proposed architectures, while Chapter 6 evaluates the proposed models in radar-
tracking scenarios. The findings demonstrate the effectiveness of MARL in optimizing
radar waveforms, highlighting advancements over traditional methods and single-agent
RL, providing a foundation for future research.



2
BACKGROUND

Chapter 2 provides relevant information regarding the rest of the thesis. In Section 2.1, the
basics of radar are introduced, focusing on Pulse-Doppler technology. The main param-
eters and their trade-offs are explained. Section 2.2 introduces the concept of reinforce-
ment learning and its extension to multiple agents, covering fundamental concepts such
as Markov Decision Processes (MDPs), Partially Observable Markov Decision Processes
(POMDPs), and Decentralized POMDPs (Dec-POMDPs). It also details key reinforcement
learning algorithms, including Proximal Policy Optimization (PPO) and its multi-agent
variants, MAPPO and IPPO. Finally, Section 2.3 talks about graphs and how they are de-
fined, as well as graph shift operators and their use in graph convolutions. This section
also introduces Graph Neural Networks (GNNs) and their application in modeling com-
plex interactions within graph-structured data.

7
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2.1. RADAR

2.1.1. FUNDAMENTAL CONCEPTS

Radar systems operate by transmitting electromagnetic (EM) waves into a region of space
to detect and analyze reflected signals from various targets. Pulse Radar emits short
bursts of radiofrequency energy and measures the time taken for signals to return from
targets. Although there are various types of radar systems, this thesis specifically fo-
cuses on Pulse-Doppler radar. However, the concepts and methods introduced here are
designed to be easily adapted to other types of radar systems as well. Therefore, the
framework presented in this thesis is general and applicable across different radar tech-
nologies. In this work, we will tackle the problem of radar waveform optimization for
tracking radars.

A burst refers to a sequence of rapid, consecutive radar pulses sharing the same car-
rier frequency transmitted at a specific repetition frequency over a short period. In our
specific case, each pulse in a burst is linearly frequency modulated, enabling the use of
pulse compression (PC) techniques. By spreading the signal over a longer time period
and then compressing it on reception, the energy of the pulse is concentrated. PC en-
hances signal-to-noise ratio and range resolution [9].

Radar
range R

Target

Figure 2.1: Range measurement using the two-way time to the target

In pulse-Doppler radar systems, range measurement involves determining the time
delay between the transmission of a radar pulse and the reception of its echo from a
target (Figure 2.1. This process, known as pulse-ranging, is essential for calculating the
distance between the radar system and the target object. The formula for calculating
range in Pulse-Doppler radar is presented in Equation 2.1, where R represents the range
to the target, c is the speed of light, and τ is the two-way time.

R = c ·τ
2

(2.1)

The Doppler effect occurs when there is relative motion between a wave source and
an observer. In radar, the Doppler effect helps determine the velocity of a target by an-
alyzing the frequency shift of reflected radar waves. The Doppler shift ( fd ) is approxi-
mated using Equation 2.2, where v represents the target’s radial velocity, fc is the carrier
frequency, λ is the transmitted radar wavelength, and c is the speed of light in a vacuum.

fd = 2v

c
fc = 2v

λ
(2.2)
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Two significant ambiguities can affect target measurements: range ambiguity and
Doppler ambiguity (Figures 2.3 and 2.4).

p1 p2 p3 pn

Burst

Pulse
Duration

PRI

Figure 2.2: Example of a radar burst. Note that while the PRI is typically much longer than the pulse duration,
it is depicted this way here for illustrative purposes.

Range ambiguity occurs when an echo of a previous pulse is received after a consec-
utive pulse has already been sent. If the time it takes for the radar pulse to return from a
distant target exceeds the time between consecutive pulses, the radar may misinterpret
the range, resulting in ambiguous measurements. The formula for range ambiguity (Ra)
in Pulse-Doppler radar is given by Equation 2.3.

Ra = c

2 ·PRF
(2.3)

Transmit
pulses

Echo

P1 P2 P3

E1 E2 E3

Target 1 Target 1 Target 1

E1 E2

Target 2 Target 2

PRI

Figure 2.3: Range ambiguity: the echo from the 2nd target arrives only after the 2nd pulse is sent, thus appear-
ing at a shorter range than in reality

Doppler ambiguity arises when the radar observes targets with velocities that result
in a frequency shift equal to or exceeding half the PRF. In such cases, the radar may in-
terpret the Doppler shift incorrectly, leading to velocity measurement ambiguities. The
maximum unambiguous Doppler shift that can be detected is half the PRF, as seen in
Equation 2.4.
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f max
d =±PRF

2
(2.4)

Clutter

Target 1 Target 1
Target 2

Noise

-PRF/2 +PRF/2

fd

Magnitude
of FFT

samples

Figure 2.4: Doppler ambiguity: targets at frequencies larger than half the PRF are aliased within this range

Range resolution in Pulse Doppler radar refers to the ability to distinguish between
two targets at different distances along the radar’s line of sight. Range resolution depends
on the bandwidth B of the transmitted radar pulse. Frequency modulation allows us to
distinguish between potentially overlapping pulses, so a higher bandwidth provides a
better range resolution, as shown in Equation 2.5.

∆R = c

2×B
(2.5)

Doppler resolution, on the other hand, refers to the ability to differentiate between
targets moving at different velocities. Larger PRI results in better Doppler resolution,
as shown in Equation 2.6, where ∆ fd is the Doppler resolution and N is the number of
pulses in the burst.

∆ fd ∝ PRF

N
(2.6)

Pulse Doppler radar systems involve trade-offs between maximum unambiguous
range and velocity measurements, as well as between Doppler and range resolution.
These trade-offs stem from inherent limitations in radar system design and operation
The pulse repetition frequency (PRF) significantly influences both maximum unambigu-
ous range and velocity measurements. A higher PRI reduces the likelihood of range am-
biguity by allowing less frequent pulse transmissions. However, it also reduces the PRF,
limiting the unambiguous Doppler velocity. To address this trade-off, radar systems of-
ten employ techniques like staggered PRF (Figure 2.5). This technique involves transmit-
ting pulses at different intervals rather than at a constant rate, making it easier to resolve
ambiguities[10].
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p1 p2

p1 p2 p3 p4

p1 p2 p3

B1

B2

B3

p5

p3

Figure 2.5: PRF Staggering: Three bursts with different PRFs. Note that while the PRI is typically much longer
than the pulse duration, it is depicted this way here for illustrative purposes.

2.2. REINFORCEMENT LEARNING
In RL, the agent and the environment play central roles. The agent, an entity capable
of learning, observes and acts within the environment, which encompasses everything
with which the agent interacts. This interaction is modeled as a Markov Decision Process
(MDP), a framework for modeling decision-making where outcomes are partly random
and partly under the control of the agent. The core of an MDP involves states, actions,
and rewards. At each time step, the agent observes a state from the state space of the
environment and selects an action from its action space. In response to the action, the
environment presents a new state and provides a reward to the agent (Figure 2.6). The
agent’s objective is to learn a policy, a strategy of choosing actions based on states, to
maximize the total reward it receives.

Figure 2.6: Reinforcement learning loop

Definition 1. A finite Markov decision process is a tuple 〈S, A,T,R〉, where S represents
the set of environment states, A denotes the set of agent actions, T : S × A×S → is the state
transition probability function, and R : S × A×S →R is the reward function.
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The state st ∈ S describes the environment at each time step t . The agent observes
the state and selects an action at ∈ A. Consequently, the environment transitions to a
new state st+1 ∈ S according to T . Subsequently, the agent receives a reward rt ∈ R de-
termined by the output of the reward function R. This process iterates until the agent
reaches a terminal state or satisfies some predefined stopping conditions. One realiza-
tion of this process is called an episode. However, sometimes the agent cannot directly
observe the state of the environment. Instead, it must maintain a sensor model of the
environment, known as observations.

Definition 2. A partially observable Markov decision process (POMDP) is a tuple 〈S, A,Ω,T,R〉,
where S represents the set of environment states, A denotes the set of agent actions, Ω is
the set of observations, T : S × A × S → is the state transition probability function, and
R : S × A×S →R is the reward function.

We can extend a POMDP to multiple decentralized agents using a Dec-POMPD.

Definition 3. A Dec-POMDP is a tuple 〈S, A1, ..., An ,Ω1, ...,Ωn ,T,R1, ...,Rn〉, where n is the
number of agents, S represents the set of environment states, Ai denotes the set of actions
for agent i . The joint actions space can be represented as A. Ωi is the set of observations
of agent i and Ω is the set of joint observations. T : S × A × S → is the state transition
probability function, and Ri : S × A ×S →R are the reward functions of the agents.

The (joint) expected discounted reward is G = ∑t=1
T γt rt , where γ represents a dis-

count factor and rt is the global reward at time t. To solve a Dec-POMDP is to find a set
of policiesΠ= {π1,π2, . . . ,πn} that maximize the joint expected discounted reward.

In the context of reinforcement learning, a policy is a strategy or a rule that an agent
follows to decide its actions based on the current state of the environment. Formally,
a policy is a mapping from states to a probability distribution over actions. The policy
guides the agent’s behavior in the environment, determining which actions to take in
order to maximize cumulative rewards over time.

The state-value function, denoted as V πθ (st ), is a measure of the expected cumula-
tive reward starting from a state st and following a certain policy πθ, parameterized by θ.
It is given by the expected value with respect to the policy, visible in Equation 2.7. In this
case t is the current time instance, γ is the discount factor, influencing the importance
of future rewards, and R is the reward.

V πθ (st ) = Eπ
[ ∞∑

k=0
γk Rt+k+1|St = st

]
(2.7)

The action-value function, or Q-function, denoted as Qπθ (st , at ), extends this idea to
consider the value of taking a specific action at in a given state st . It is expressed as:

Qπθ (st , at ) = Eπ
[ ∞∑

k=0
γk Rt+k+1|St = st , At = at

]
(2.8)

The advantage function is a component that helps in evaluating the relative value
of an action compared to the average action in a given state. The advantage function,
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denoted as Aπθ (st , at ), is defined as the difference between the action-value function
Qπθ (st , at ) and the state-value function V πθ (st ). Mathematically, it can be expressed as:

Aπθi (st , at ) =Qπθi (st , at )−V πθ (st ) (2.9)

The use of the advantage function helps to reduce the variance of policy gradient es-
timates. By comparing the value of an action to the average value of all possible actions
in a given state, the advantage function provides a more stable and centered estimate.
This centering helps in obtaining more reliable and efficient updates during the learn-
ing process. Usually, the state-value function or the action-value function is estimated
by another neural network, called a critic. Critics, in general, reduce variance during
training and lead to faster convergence [11].

2.2.1. PROXIMAL POLICY OPTIMIZATION

Proximal Policy Optimization (PPO) is a reinforcement learning algorithm, part of the
policy gradient method family [12]. PPO operates by making small, controlled updates
to the policy, which helps to maintain stability and prevent drastic changes that could
destabilize the learning process. The PPO algorithm functions through the use of a
"clipped" objective function, which restricts the extent to which policy updates can de-
viate from the current policy. This clipping mechanism ensures that the updates are
conservative, reducing the risk of significant deviations that could lead to poor perfor-
mance or instability.

rt (θ) = πθ(at |st )

πθol d
(at |st )

(2.10)

J (θ) = Et
[
min

(
rt (θ)Ât , clip(rt (θ),1−ϵ,1+ϵ)Ât

)]
(2.11)

where:

• πθ(at |st ) is the probability of taking action at in state st under the current policy
parameterized by θ.

• πθol d
(at |st ) is the probability of taking action at in state st under the old policy

parameterized by θol d .

• Ât is the advantage estimate at time step t .

• ϵ is a small hyperparameter that defines the clipping range.

PPO offers a favorable compromise with minimal tuning required, ease of implemen-
tation, and efficient sample usage by aiming to find a policy that is only slightly modified
from the previous one. Additionally, it is versatile enough to be used in a model-free
context, where knowledge of state transitions in the environment is not needed, and it
can easily handle both discrete and continuous variables.
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2.2.2. MAPPO AND IPPO

Multi-agent learning involves training multiple agents that interact within a shared en-
vironment, where agents can either cooperate to achieve a common goal or compete
against each other with conflicting objectives. Multi-agent systems can scale to large
and complex tasks that would be infeasible for a single agent. Agents can have different
objectives, which simplifies the reward mechanism for the agent, instead of expressing
multiple objectives as a sum of rewards, as a single agent has no way of telling which
reward came from which objective. Stationarity is an important property that guaran-
tees the convergence of many RL algorithms. In Dec-POMDPS each agent assumes the
other agents are part of the environment, which violates stationarity due to the tran-
sition probabilities changing. The Markov property is not fulfilled so the environment
appears non-markovian. This poses a significant challenge to multi-agent learning al-
gorithms. Furthermore, stochasticity in the environment can destabilize the learning
process. When the agent needs to distinguish between multiple distinct rewards, given
the same action, it cannot know if the difference in reward arises from the actions of the
other agents, or stochasticity in the environment. This is known as the credit assignment
problem, another common challenge in MARL. The exploration of other agents is also
an issue, since the exploration yields low rewards, the other agents cannot tell why the
reward was low. If they adapt to this too quickly, the policy can be ’ruined’ and the opti-
mal policy is never reached. All of these issues destabilize learning, and a possible way to
tackle this is by using centralized critics. Centralized critics are claimed to stabilize the
learning process by reducing variance in value function estimates.

Multi-Agent Proximal Policy Optimization (MAPPO) [13] extends the Proximal Policy
Optimization (PPO) algorithm to environments with multiple interacting agents, which
may either cooperate or compete (Figure 2.7). The goal is to enable each agent to learn
optimal policies while considering the interactions with other agents. MAPPO uses shared
experience replay buffers, allowing agents to learn from each other’s experiences. This
facilitates faster and more stable learning by providing a richer set of experiences. Dur-
ing training, MAPPO employs a centralized critic that has access to the global state and
actions of all agents. Centralized critics have seen reasonable success in literature [14],
and the suggested benefits of using a centralized critic are reduced variance, improved
coordination, stability, and training time [15]–[19]. However, [20] shows that a central-
ized critic does not necessarily enhance cooperation compared to decentralized critics,
as both provide the same gradients to decentralized policies in expectation. They find
that centralized critics provide more stable value function estimates, but have increased
variance in the policy gradients. The authors empirically show that decentralized critics
are more robust and do not promote cooperation as intuition would guide us to believe,
but also recognize that the choice of architecture depends on the environment.
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Figure 2.7: A diagram of MAPPO. The agents each learn their own policy, but share the parameters of the critics.

Given the possible disadvantages of MAPPO, we also consider IPPO in this work [21].
Independent Proximal Policy Optimization (IPPO) applies the PPO algorithm indepen-
dently to each agent in a multi-agent environment (2.8). Unlike MAPPO, IPPO does
not explicitly account for interactions among agents during the learning process. This
means that IPPO uses decentralized critics, where each agent has their own critic net-
work and global information is not shared between them. IPPO should theoretically have
more biased value function estimates, but less variance in the policy gradients. IPPO
should also have better scaling with an increased number of agents due to the lack of
joint observations in the critic.

Figure 2.8: A diagram of IPPO. Each agent is a fully independent learner.

2.3. GRAPH MACHINE LEARNING

2.3.1. GRAPH THEORY
In mathematical terms, a graph is an ordered pair G = (V ,E) consisting of a set V of ver-
tices (or nodes) of cardinality |V | = N and a set E of edges (or links) of cardinality E = |M |
which are two-element subsets of V . Each edge in E is an unordered pair {v, w} or an
ordered pair (v, w) for an undirected or directed graph, respectively. In the case of an
undirected graph, edges lack orientation, implying that {v, w} is identical to {w, v}. Con-
versely, in a directed graph (or digraph), edges are ordered pairs, meaning (v, w) differs
from (w, v). A graph may also be characterized as weighted if a numerical value or weight
is assigned to each edge.
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Figure 2.9: Directed graph with blue bars denoting the magnitude of the graph signal
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A graph signal refers to a set of scalar values x = [x1, x2, x3, ..., xN ]T ∈RN correspond-
ing to each vertex in a graph. This concept extends the idea of signal processing, tradi-
tionally defined on time or spatial domains, to the domain of graph theory. The concept
of a graph signal is particularly useful in the analysis of data that reside on the nodes of
a graph, such as sensor networks, social networks, or communication networks, where
each node has a value or a set of values associated with it, and the edges represent the
relationships or connections between these nodes.

The k-hop neighborhood of a vertex within a graph refers to the set of all vertices that
can be reached from the given vertex by traversing at most k edges. For a vertex v ∈ V ,
its k-hop neighborhood is defined as follows:

Nk (v) = {u ∈V | there exists a path from v to u with at most k edges}

This definition applies to both directed and undirected graphs. In the context of a di-
rected graph, the path must respect the direction of the edges. The k-hop neighborhood
includes the vertex itself (since zero edges are needed to reach it) and any other vertices
that are within k edge traversals. For example, in a 1-hop neighborhood (also known
as the immediate neighborhood or simply the neighborhood), you include all vertices
directly connected to the vertex v by a single edge. As k increases, the neighborhood
expands to include vertices that are progressively further away from the original vertex
in terms of edge hops.

2.3.2. GRAPH SHIFT OPERATOR
In graph signal processing, the graph shift operator (GSO) is a fundamental linear oper-
ator that plays a role analogous to that of the time shift in classical signal processing. It
is used to represent and analyze signals defined on the vertices of a graph. Let G = (V ,E)
be a graph with vertex set V and edge set E , and let x ∈ RN be a graph signal. The graph
shift operator is defined as a matrix S that acts on the graph signal x.

Mathematically, the graph shift operator S is a |V |×|V | matrix, where |V | is the num-
ber of vertices in the graph. The action of S on the graph signal x is given by Equation
2.12, which is a new graph signal, represented by x(1).

x(1) = Sx (2.12)
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The specific structure of S depends on how the notion of "shifting" is defined on the
graph, but it generally adheres to the following properties:

1. Sparsity: S is often sparse, with non-zero entries corresponding to edges in the
graph. This means that Si j ̸= 0 if and only if there is an edge between vertices i
and j , or i = j .

2. Locality: The action of S on a signal value at a vertex should only depend on values
at neighboring vertices. In other words, (S f )(v) for a vertex v is a function of f (u)
for vertices u that are adjacent to v .

Common choices for S include the adjacency matrix of the graph, the graph Lapla-
cian, and their normalized versions. For example, if A is the adjacency matrix of the
graph, then S = A is a possible choice for the graph shift operator. The (i , j )-th element
of A is non-zero (often set to 1) if there is an edge from vertex i to vertex j and zero oth-
erwise. This choice of S shifts the signal value at each vertex to its immediate neighbors.

Alternatively, the graph Laplacian L = D−A (where D is the degree matrix, a diagonal
matrix where Di i is the degree of vertex i ) can also be used as a shift operator. The
Laplacian-based shift reflects a notion of diffusion or spreading of the signal across the
graph.

2.3.3. GRAPH CONVOLUTIONS
Graph convolutions are a fundamental operation in graph signal processing and Graph
Neural Networks (GNNs), extending the concept of convolution from traditional signal
processing to data represented on graphs. Mathematically, a graph convolution opera-
tion blends local neighborhood information in a graph signal according to the structure
defined by a GSO. The graph convolution of the signal x with a filter h ∈ R|V | is defined
as:

y = H(S)x =
K−1∑
k=0

hk Sk x (2.13)

Here, H(S) is a graph filter, hk are the filter coefficients, and K is the filter length. The
term Sk x represents the k-th power of the GSO applied to the signal, effectively aggre-
gating information from k-hop neighbors.

2.3.4. GRAPH NEURAL NETWORKS
Graph Neural Networks (GNNs) are a class of neural networks designed to operate on
data represented as graphs. These networks effectively capture both the graph structure
and the features associated with its nodes or edges, making them particularly useful for
tasks involving irregularly structured data, such as social networks, molecular structures,
and communication networks.

In a GNN, the input is a graph G = (V ,E) and a feature vector xv for each vertex v ∈
V . The goal of a GNN is to learn a state embedding hv for each vertex that captures
both its features and its topological role within the graph. This learning process typically
involves iterations of message passing and aggregation. Consider a GSO S representing
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the graph’s connectivity, and let Z(l ) denote the matrix of node embeddings at layer l .
The basic operation in a GNN layer can be represented as:

Z(l+1) =σ
(
SZ(l )W(l )

)
where W(l ) is a learnable weight matrix at layer l , and σ is a non-linear activation

function, such as ReLU. This formula represents the aggregation of information from
the neighbors of each node (via the GSO S) and the transformation of this information
through learnable parameters. In real-world applications, the filter coefficients hk are
typically constrained to a small number of parameters to reduce computational com-
plexity and overfitting. This leads to localized filters that aggregate information only
from close neighbors. Moreover, in many GNN architectures, the filter is simplified to
operate on one-hop neighbors only (i.e., K = 1) for efficiency.



3
LITERATURE SURVEY

Chapter 3 provides an extensive literature survey on various techniques and methodolo-
gies related to radar waveform optimization. In Section 3.1, classical optimization meth-
ods for radar waveforms are reviewed, including linear programming, convex optimiza-
tion, and gradient-based methods in Subsection 3.1.1. Subsection 3.1.2 explores the use of
genetic algorithms in waveform design, highlighting their effectiveness and limitations.
Section 3.2 discusses the application of neural networks, particularly deep learning mod-
els, in optimizing radar waveforms. Section 3.3 delves into the utilization of reinforce-
ment learning for waveform optimization, emphasizing its advantages in dynamic envi-
ronments. Finally, Section 3.4 examines the integration of Graph Neural Networks with
Multi-Agent Reinforcement Learning, showcasing their potential in handling complex,
structured environments. Section 3.5 concludes the chapter with a short discussion.
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3.1. CLASSICAL WAVEFORM OPTIMIZATION
The main goal of radar waveform optimization is to adaptively design radar signals that
are best suited for specific operational scenarios and objectives, such as detecting small
or fast-moving targets and operating in cluttered environments. The optimization pro-
cess involves adjusting parameters like waveform shape, frequency, duration, and power
to suit specific tasks or environments. Classical solvers often use well-established math-
ematical techniques such as linear programming, convex optimization, and gradient-
based methods. These approaches focus on achieving the best trade-off between con-
flicting requirements, such as maximizing range resolution while minimizing power con-
sumption.

In this section, we will briefly describe different traditional methods of optimizing
waveforms.

3.1.1. MATHEMATICAL OPTIMIZATION TECHNIQUES
The paper [22] introduces a radar waveform design using Lagrange multipliers to min-
imize mismatch loss, focusing on constraints from cross-correlation and peak correla-
tion responses. The technique creates group-complementary code sets to enhance sig-
nal distinction and accuracy by managing sidelobes but requires complex computations
and expertise. Conversely, [23] discusses an iterative convex optimization for cognitive
radar waveform synthesis, aiming to minimize spectral density errors and suppress in-
terference, contrasting with traditional methods by emphasizing faster convergence and
reduced errors.

Solvers can find optimal solutions over time, but suboptimal ones may be more com-
putationally efficient [24]. The paper addresses robust waveform design against colored
Gaussian noise using a max-min strategy for optimizing detection across Doppler shifts,
tackling the complex QCQP problem with a polynomial complexity algorithm for a vi-
able sub-optimal solution. Additionally, it explores non-convex optimization for MIMO
radar by jointly designing transmit sequences and receive filters through Riemannian ge-
ometric methods [25], efficiently solving constant-envelope waveform challenges with
advanced algorithms for reduced iteration complexity.

Classical solvers, grounded in mathematical and physical principles, provide robust
and well-understood methodologies for radar waveform optimization. These techniques
are typically deterministic, offering precise control over waveform characteristics, and
are effective in well-defined scenarios. However, they may lack flexibility in adapting to
dynamic or complex environments and can be computationally intensive for large-scale
problems. The next sections will showcase the importance of methods such as genetic
algorithms or neural networks. While they are not guaranteed to reach the optimal solu-
tion, they provide benefits in terms of speed.

3.1.2. GENETIC ALGORITHMS
Genetic algorithms (GAs) are optimization methods mimicking natural selection, start-
ing with a random solution set. Each solution’s viability is determined by a fitness func-
tion. GAs evolve solutions through selection, crossover, and mutation, gradually opti-
mizing toward the best outcome. The process continues until a satisfactory solution is
found or a preset generation limit is reached, effectively navigating large solution spaces
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to identify optimal solutions for complex problems.
In [26], the authors demonstrate how evolutionary algorithms can be used to mini-

mize blind areas in range/Doppler space, leading to PRF sets that compare very favor-
ably against both exhaustive search results and existing methods. This advancement in
medium PRF radar design showcases the potential of evolutionary algorithms in opti-
mizing complex systems where multiple conflicting criteria must be balanced.

Selecting the optimal waveform based on the current scenario can pose a challenge
even for experts [27]. In the paper, the focus is on exploring the utilization of the radar
ambiguity function in various configurations, including monostatic, bistatic, and multi-
static setups. A genetic algorithm is employed with a specific emphasis on incorporat-
ing the autocorrelation and ambiguity functions into the evaluation of fitness. The re-
sults show that genetic algorithms are an effective tool, achieving a near-perfect (within
0.005% of the optimal one) solution in the case of multistatic radar. In a somewhat
similar fashion, the work in [28] introduces a modified genetic algorithm (GA) to de-
sign orthogonal discrete frequency-coding waveforms (DFCWs) for MIMO radar sys-
tems. These waveforms exhibit desirable aperiodic autocorrelation and cross-correlation
properties. The paper highlights the enhanced correlation properties of the designed
waveforms compared to others in existing literature. It also explores the impact of Doppler
frequency shift on these signals and their ambiguity function.

While GAs have been useful in solving complex problems with large solution spaces,
including radar waveform selection, they are increasingly being supplanted by more effi-
cient and specialized algorithms. GAs often require significant computational resources
and time, especially for complex problems with large solution spaces [27]. GAs may
face challenges in effectively handling multi-objective optimization problems, which are
common in radar waveform design. This limitation has prompted researchers to explore
other optimization methods [29].

3.2. SUPERVISED LEARNING
Supervised learning models, particularly deep learning, excel in learning and adapting
to complex, dynamic environments such as radar waveform optimization. Once trained,
these models offer quick predictions for new data, showcasing greater computational
efficiency and scalability compared to the evolutionary strategies of Genetic Algorithms
(GAs), which require reapplication for each new problem instance.

The study in [30] presents a deep learning technique for creating unimodular wave-
forms in MIMO radar, optimizing a wide range of metrics efficiently and outperforming
older methods limited to fewer metrics. This approach achieves excellent autocorrela-
tion and cross-correlation, and is time-efficient for practical use, but faces challenges
like complexity, potential generalizability issues across radar systems, and dependence
on training data quality and quantity.

Radar technology, essential for the automotive industry and advanced driver-assistance
systems, is improved by NeuroWav, a novel supervised learning approach for waveform
design in Vehicular Ad-Hoc Networks (VANETs), introduced in [31]. It effectively tackles
radio frequency interference, outperforming traditional algorithms by being faster and
more efficient without sacrificing performance, making it more suitable for real-time
applications.
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While most methods use fully connected neural networks, the work in [32] intro-
duces a supervised learning method for designing radar waveforms using convolutional
neural networks (CNNs). This method designs sequences with improved auto- and cross-
correlation properties, utilizing group convolution and identity mapping in the neural
network framework. CNNs demonstrate better correlation properties than traditional
algorithms, with a significant reduction in the number of parameters, reducing the com-
putational burden. Their use of kernels leads to better feature extraction and utilization
of spatial information in the waveform.

The work [33] explores using recurrent neural networks for designing radar wave-
forms in dynamic environments. This approach aims to reduce the convergence time of
traditional adaptive radar waveform design methods, which typically require complex
optimization routines. The strength of this method lies in its application of RNNs, offer-
ing efficiency and speed suitable for dynamic environments. Initial trials show promis-
ing results, achieving comparable characteristics to the Error Reduction Algorithm [34].
However, the method faces challenges, including the complexity and resource require-
ments of RNNs.

These supervised learning algorithms offer significant improvements over traditional
methods, primarily in their ability to handle complex, high-dimensional problems with
greater efficiency and accuracy. Their adaptability to dynamic environments and pro-
ficiency in modeling non-linear relationships make them particularly suitable for radar
waveform optimization. However, challenges such as computational complexity and
dependency on the quality of training data can impact their practical deployment.

3.3. REINFORCEMENT LEARNING
Reinforcement learning algorithms excel in situations where they must adapt to chang-
ing environments. In radar systems, this means adjusting the radar waveform in re-
sponse to the evolving state of the target and interference environments [35]. One of the
significant advantages of reinforcement learning (RL) in applications like radar wave-
form optimization is its ability to use simulated environments, reducing the reliance on
varied, informative, error-free datasets. It is much easier to measure the quality of a
waveform than to produce input-output pairs since we do not know what the optimal
waveform is for a certain input a priori. Simulations can also be tailored to specific re-
quirements or conditions of the radar system. This allows for more targeted and effective
training of the RL model, as the simulated environment can be adjusted to represent a
wide range of conditions and challenges the radar might face. RL is inherently designed
to handle sequential decision-making processes. The position of the target depends
on its previous position and velocity. RL’s framework, particularly when modeled as a
Markov Decision Process, is well-suited for this task [36], as opposed to non-Markovian
RL [37], [38].

The authors of [39] explore the usage of the Deep Deterministic Policy Gradient(DDPG)
algorithm for the selection of phases for a phase-coded waveform that optimally shares
spectrum, evident through the creation of a low-power notch in the power spectrum.
Similarly, the authors in [7] propose a solution to the same problem using deep reinforce-
ment learning (Deep RL), specifically focusing on varying radar waveform bandwidth
and center frequency. They demonstrate that their Deep RL approach, which employs
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a Deep Q-Learning (DQL) algorithm, significantly enhances radar performance metrics,
outperforming traditional methods such as policy iteration and sense-and-avoid strate-
gies.

The work in [40] presents a cognitive beamforming algorithm for colocated Multiple-
Input Multiple-Output (MIMO) radars using a Reinforcement Learning (RL) framework.
This study focuses on addressing the challenge of detecting multiple targets in an en-
vironment where the number and positions of targets are unknown. The proposed RL-
based optimization protocol enables the MIMO radar system, treated as the agent within
this framework, to iteratively sense the unknown environment and adjust its transmit-
ted waveforms accordingly. The key contribution lies in the radar’s ability to synthesize a
set of transmitted waveforms whose beam patterns are tailored based on the knowledge
acquired about the environment. The authors extend their approach to environments
with unknown disturbance statistics, outperforming classical solutions [41].

The study in [35] addresses the challenge of a continuously changing cognitive radar
tracking system, which results in an infinite number of states in the environment and
targets. To tackle this, the authors design a novel deep Q-network that maps the state-
action pair to its Q-values, with the radar acting as the agent, the state being the entropy
of the environment, and the action being the transmitted waveform. This approach sig-
nificantly improves the precision of target tracking, illustrating the potential of DRL in
enhancing the adaptability and efficiency of cognitive radar systems in dynamic envi-
ronments.

In [8] the use of reinforcement learning (RL) in the optimization of radar waveforms
is explored. The authors approach the problem of constrained waveform optimization
as a sequential decision problem. The authors demonstrate the effectiveness of their
proposed method by optimizing an agent’s policy to define the number of pulses, as well
as their duration and modulation parameters while optimizing a user-defined figure of
merit.

Traditional single-agent models may not adequately capture the interactions and
dependencies between different components of the environment, such as various fre-
quency bands. MARL allows for a more nuanced and comprehensive modeling of these
interactions [42]. The authors propose a framework where each frequency band is treated
as an independent agent within a multi-agent system. These agents interact with the
environment, receive individual observations, share rewards, and collectively update a
Q-network. The key achievement of this approach is the significant improvement in
mutual information and Signal-to-Interference-plus-Noise Ratio (SINR) over traditional
methods like the water injection method. The paper demonstrates that the SINR of
waveforms designed using this multi-agent RL approach is substantially higher than that
of Linear Frequency Modulation (LFM) waveforms.

3.4. GRAPH NEURAL NETWORKS & MULTI-AGENT REINFORCE-
MENT LEARNING

Graph Neural Networks combined with Multi-Agent Reinforcement Learning are gain-
ing significant attention due to their ability to efficiently handle complex, structured en-
vironments. GNNs excel in capturing the relationships and dependencies within data
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structured as graphs. When integrated with MARL, they provide a powerful framework
for modeling and solving problems where multiple agents interact within an environ-
ment, such as in social networks, traffic management, and strategic games.

Addressing the complex dynamics of connected autonomous vehicle (CAV) networks,
the authors present a deep reinforcement learning algorithm that combines a graph con-
volution neural network (GCNN) with a deep Q-network (DQN) [43]. The GCNN pro-
cesses the network’s data, treating vehicles as nodes and their communications as edges,
effectively capturing vehicle interactions crucial for CAV operations. The DQN compo-
nent optimizes decisions based on GCNN’s insights, focusing on safety, efficiency, and
smooth traffic flow. The approach demonstrates improved cooperative control, safety,
and mobility in CAV environments by effectively utilizing sensory and connectivity data.

The authors of [19] introduce a combination of MARL and GAT for real-time strat-
egy games. The foundational aspect of their approach is the QMIX algorithm, which is
a distributed MADRL framework. QMIX is important for enabling effective distributed
computation and decision-making among multiple agents in the complex environment
of an RTS game. State categorization serves as a means to preprocess and structure the
game data in a way that is more amenable to analysis via graph neural networks. The
paper leverages self-attention mechanisms within the graph neural network framework
to discern the inter-agent relationships in the form of graphs.

The paper [44] introduces a method merging graph neural networks (GNNs) with
vector-valued Q-learning for solving multi-objective factored MDPs, transitioning to-
wards multi-objective RL (MORL) that accommodates multiple reward functions for di-
verse objectives. This facilitates adaptable agent training across varying utility functions
by employing a Q-value estimator that outputs a matrix for deriving scalarized action-
state values. The authors develop Batch-FMODQN, an algorithm leveraging a message-
passing GNN architecture to handle inputs of state variables and corresponding rewards,
aiming at environments with variable numbers of state variables, actions, and local re-
wards.

3.5. DISCUSSION
In radar systems, the need for adaptivity in waveform optimization arises from the dy-
namic and unpredictable nature of target environments and interference. Classical opti-
mization techniques, while useful, do not offer the real-time adaptivity needed in some
scenarios, where the response time is measured in seconds. A possible solution to this
problem is to learn a policy, which is faster than the classical methods, but can also adapt
to the changing environment. Neural networks are effective at learning complex policies
from data, enabling rapid and flexible responses to new situations, essentially surogating
the optimization time to the training phase. However, supervised learning approaches
have their challenges. Due to the nature of the problem, reinforcement learning is a suit-
able alternative, due to the ease with which we can simulate radar environments. The
work that has been done up to now shows that RL can be successfully applied to radar
problems, but the adoption of this technology in the field is not yet widespread, perhaps
due to the complexity of the algorithms and the computational complexity. Multi-agent
reinforcement learning offers a way of expressing the multi-objective problem which is
radar waveform optimization as a multi-agent game, where agents use policies to output
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waveforms according to predefined objectives and the target environment. The advan-
tage of this solution is that there is no need for a dataset since we can simulate the radar
environment, and the learned policy can adapt in real-time, with minimal computa-
tional requirements in the field. The agents can be exposed to a wide range of scenarios,
improving their generalization capabilities, and can be trained to optimize one or more
desired figures of merit. Furthermore, we can use graph neural networks to express the
dependencies between the different agents or their objectives, as a graph, and enhance
learning by infusing our already existing knowledge of radars into the behavior of the
agents. GNNs also have the advantage of scalability when compared to fully connected
neural networks, a desirable property in MARL, where the computational complexity in-
creases rapidly with the number of agents.





4
MARL FOR RADAR WAVEFORM

DESIGN

Chapter 4 presents radar waveform design as an optimization problem framed within the
Decentralized Partially Observable Markov Decision Process (Dec-POMDP) framework.
Section 4.1 introduces the parameters and metrics used in defining radar waveforms and
their optimization. Section 4.2 details the reinforcement learning environment, including
the state, observation, and action spaces, as well as the reward and transition functions. In
Section 4.3, the concept of a centralized critic is introduced to address instability and non-
stationarity in multi-agent learning. We also propose the use of Graph Neural Networks
(GNNs) as a centralized critic to improve scalability and efficiency by leveraging graph
data sparsity.

27



4

28 4. MARL FOR RADAR WAVEFORM DESIGN

In this section, we present radar waveform design as an optimization problem, fram-
ing it within the Decentralized Partially Observable Markov Decision Process (Dec-POMDP)
framework. We define the state, observation, and action spaces, as well as the reward and
transition functions.

4.1. RADAR WAVEFORM OPTIMIZATION
A burst β is a sequence of pulses transmitted by a radar system within a short duration.
It can be characterized by the following parameters: the pulse duration (τ), which repre-
sents the duration of each pulse within the burst; the pulse repetition frequency (PRF),
indicating the rate at which pulses are transmitted within the burst; and the number of
pulses (N ), which is the total count of pulses transmitted within the burst and the carrier
frequency ( fc ), which is the frequency around which the pulses are modulated.

A waveform Ψ is a collection of bursts, where each burst can have different param-
eters. The bursts are transmitted sequentially. The parameters of all the bursts can be
defined as vectors, where we will use (τ, N ,P RF , fc ) to refer to all of the parameters com-
prising a burst.

The duration of a burst can then be expressed in terms of the number of pulses, PRF,
and pulse length.

Tβ = N (τ+ 1

PRF
) (4.1)

The duration of a waveform can be computed by summing over all the burst dura-
tions Ti , where M is the total number of bursts.

TΨ =
M∑

m=1
Tβi (4.2)

For a desired Doppler resolution ∆ f
′

d , we define the waveform duration ratio T r ati o
Ψ

as the ratio between the waveform duration and the minimal waveform duration achiev-
able T

′
Ψ given ∆ f

′
d .

T
′
Ψ = c

2 fc∆ f
′

d

(4.3)

T r ati o
Ψ = TΨ

T
′
Ψ

(4.4)

The probability of detection Pd in radar systems refers to the likelihood that the radar
system will correctly detect a target. A detection threshold is set to distinguish between
noise and target signals. The choice of threshold impacts both the PD and the probability
of false alarm P f a . Q is the tail probability of the normal distribution. The SNR is the
signal-to-noise ratio of the waveform that has been sent, for a specific target.

Pd =Q(Q−1(P f a)−
p

2 ·SNR) (4.5)

It is clear that a high probability of detection for a low probability of false alarm is
desirable. A high probability of detection can be easily achieved by sending more bursts
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or pulses, increasing the power sent to the target. However, this will also increase the du-
ration of the waveform, which is a quantity that should be minimized. Short waveforms
are desirable because they improve the operational efficiency of the radar system.

The primary objective of this research is to optimize radar waveform design to achieve
a high probability of detection while maintaining a waveform duration ratio close to 1.
This optimization problem is framed within the DEC-POMDP framework, as a way of
tackling the multi-objective nature of radar waveform design.

4.2. REINFORCEMENT LEARNING ENVIRONMENT
Now that we have defined a model for bursts and waveforms, we can introduce the RL
formulation of the radar waveform optimization problem. The simplest way of modeling
the problem would be as an MDP, but that would not be very useful in realistic scenarios.
An alternative would be to model the problem as a POMDP, which is more akin to real
situations where we do not know the true state of the environment. In RL, learning is
guided by the reward signal, and in this case, the reward can be expressed as a sum of
two sub-rewards, for the probability of detection and for the waveform duration ratio.
The problem associated with this approach is that the agent cannot distinguish between
getting a high reward for the PD or for the waveform duration, so it might face difficulties
in achieving both objectives simultaneously. Alternatively, we can model the problem
as a Dec-POMDP, where one agent aims to maximize the probability of detection while
the other agent minimizes the waveform duration. We will now provide a Dec-POMDP
formulation of the environment.

State space: The state space describes the physical environment in which the agents
take their actions, as well as the characteristics of the target of the radar system:

• Range r : the distance of the target from the radar

• Velocity v : the radial velocity of the target

• Altitude h: the distance of the target from sea level

• Radar cross-section rcs: a measure of how much energy is reflected by the target.

• Wind Speed vw : contributes to ground and sea clutter

• Rainfall rate ρ: volumetric clutter

• Target Doppler Resolution ∆ ft ar g et : it is correlated with the waveform duration

The true state of the environment is not visible to the agents unless it is included in
the observation space. Formally the state is a set:

S = {r,h, vt ar g et , vw , rcs,ρ,∆ftarget}

Action space: The action space defines how the agent interacts with the environ-
ment. Each agent has a fixed burst budget, for which they can decide the free parame-
ters. These parameter vectors are:
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• The duration of the pulses in each of the bursts, τ

• The number of pulses per burst, N

• The PRF of each burst,P RF

• The carrier frequency fc of each burst

While each agent decides the parameters of the bursts allocated to them, all the
bursts from all the agents are sent sequentially as one waveform. The actions of the
other agents directly influence the reward received by the agent at each time instance,
so the agents are forced to cooperate. The action space for each of these parameters is
discreet so that the agent can choose between predefined values. The set describing the
actions of agent i is defined as:

A = A1 ∪ A2

Ai = {τ, N ,P RF , fc }

Observation space: The observation space defines the state of the environment as
it appears to the agents. The agents can observe the position and velocity of the target,
with some uncertainty which depends on the previously sent waveform. The observa-
tion space also includes the actions of all the agents at the previous time instance.

• Apparent Range r̂ : the measured distance of the target from the radar

• Apparent Velocity v̂ : the measured radial velocity of the target

• Altitude ĥ: the measured distance of the target from sea level

• Wind Speed vw : it can be measured on-site

• Probability of detection Pd at the target position at the previous time step

• The waveform duration ratio T r ati o
Ψ of the previous waveform

• The set of actions A at the previous time step

The Pd and T r ati o
Ψ allow the agent to gauge how well it is doing, and if it needs to

adjust the burst parameters since the two metrics are also part of the reward. If the Pd

is low, then the agent can also realize that the measured position of the target is not
accurate. Given all of this, the observation spaceΩ becomes:

Ω= A∪ {r̂ , ĥ, v̂t ar g et , vw ,Pd ,T r ati o
Ψ }

Transition function: The transition model used to update the state only modifies
the target position, while the other parameters remain constant throughout the episode.
The target velocity remains constant throughout the episode, with the addition of a noise
term.

T (St−1) = Kt St−1 +wt , wt ∼N (0,Ct )
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where Kt is the transition matrix and Ct models the noise covariance.
Reward function: The reward function defines what the agent should aim to maxi-

mize over time, guiding it toward desired behaviors. One agent maximizes the Pd , while
the other agent tries to get the waveform duration ratio T r ati o

Ψ as close to 1 as possible.
These goals are specific to this setting, but the rewards could be used to guide the agent
towards waveforms with good autocorrelation properties or ambiguity functions. In the
case of settings with only one agent, the reward becomes a sum of the other sub-rewards.
Finally, the agents receive a small bonus reward at each time step if both metrics have
values over a certain threshold. This helps agents maximize both objectives and cooper-
ate in the multi-agent setting.

4.3. CENTRALIZED CRITIC
Multi-agent learning presents significant challenges compared to single-agent reinforce-
ment learning due to the complex dynamics and interactions between multiple agents.
As explained in Chapter 2, non-stationarity and the credit assignment problem destabi-
lize learning. To tackle these problems, we introduce a centralized critic. One can refer to
Figures 2.7 and 2.8 or to Chapter 5 for a better understanding of the various components.

The centralized critic uses the joint observation space, which contains information
about the observed state and the joint agent action to produce central value function
estimates. Since the actions of the other agents are considered part of the state from
the perspective of each agent, both the actions and the state need to be part of the value
function computation. We expect that the reduced variance in the central value function
estimates will help stabilize learning and boost performance.

The objective function for agent i with respect to its policy parameters θi is given by:

J (θi ) = Et
[
min

(
rt (θi )Ât , clip(rt (θi ),1−ϵ,1+ϵ)Ât

)]
(4.6)

Where Ât := Â(st , at ) is the estimate of the advantage function. The advantage func-
tion is now computer using the central value function instead of the decentralized one.
The centralized critic is defined by parameters φ, captured by some neural network.

Aπθi (st , at ) =Qπθi (st , at )−V
πφ

centr al (st ) (4.7)

The main challenge introduced by the addition of a centralized critic is scalability. As
the joint observation space increases, the number of parameters in the centralized critic
also grows, making it infeasible for a large number of agents or radar waveform parame-
ters. Additionally, fully connected networks suffer from position bias, meaning the order
of input data matters. Radar bursts are permutation invariant, so if the order in which
they are fed to the network changes (e.g., agent 2 first instead of agent 1), the neural
network’s performance may degrade. Moreover, given the ability to simulate radar en-
vironments, we can identify optimal bursts to maximize detection and minimize blind
ranges. While agents could potentially learn this, integrating radar domain knowledge
into the centralized critic could provide less biased estimates.

To address these issues, we propose using a Graph Neural Network (GNN) to learn
the central value function estimate provided by the centralized critic. GNNs have fewer
parameters than fully connected networks, which scale poorly with input size. GNNs
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leverage the sparsity of graph data, performing computations only when two nodes are
connected by an edge. This reduction in parameters accelerates training time and de-
creases computational costs by minimizing the size of matrix multiplications during the
network’s forward pass. This addresses the scalability issue (point 1).

Graph neural networks do not only provide scalability but also offer a way of rep-
resenting and accounting for agent interactions in the centralized value function. To
process the joint observation space as a graph, each burst intended for the final wave-
form is represented by a node in the graph (Figure 4.1). The burst parameters—such
as PRF, pulse duration, RF, and number of bursts—form the node signal associated with
each burst. The observed state information is processed using an encoder and concate-
nated to the feature vector of each node. Domain knowledge integration is achieved by
connecting only nodes that minimize range-doppler blindness. We compute a metric to
measure this compatibility and connect nodes based on the metric’s value, which also
serves as the edge weight. Since GNNs are permutation invariant (the order in which
nodes are processed is irrelevant), this addresses the issue of position bias (point 2).
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Figure 4.1: A realization of a burst graph. There are 3 bursts per agent, for a total of 6 bursts. The nodes have
been connected based on the burst parameters

To summarise, the agents decide on the burst parameters by taking their actions.
These bursts are then used to construct the burst graph, which the GNN critic processes
to produce a single value for the centralized value function. The agent actions, the bursts
(which make up the waveform), are also used to compute the reward for each agent and
advance the state to the next time instance. Figure 5.3.2 illustrates the entire pipeline.
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MODEL ARCHITECTURE

Chapter 5 details the architecture of various models used in the thesis. 5.1 introduces the
Single Agent Baseline (SA) model, which serves as a benchmark for comparison. It then
describes the Independent Actor-Critic (IAC) model in 5.2, where each agent learns a de-
centralized policy and critic locally. 5.3 further introduces a multi-agent model with a
centralized critic using a fully connected network, which leverages global state informa-
tion to stabilize the learning process. Additionally, 5.3.2 discusses a multi-agent model
with a centralized critic utilizing GNNs, detailing methods of graph construction and their
impact on performance. Hyperparameter tuning is detailed in Section 5.4.
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In this chapter, we delve into the various model architectures proposed and imple-
mented in this research. The primary focus is on three distinct models: the Single Agent
Baseline (SA), the Independent Actor-Critic (IAC), and the Independent Actor with Cen-
tralized Critic (IACC). The Single Agent Baseline model serves as a foundational bench-
mark, demonstrating the capabilities and limitations of a single agent controlling the
entire radar system. This model provides a crucial point of comparison, highlighting
how more sophisticated, multi-agent approaches can potentially outperform a single-
agent setup. The Independent Actor-Critic model represents an advancement over the
SA model by introducing a decentralized approach where multiple agents operate in-
dependently. The Independent Actor with Centralized Critic model further refines the
multi-agent approach by incorporating a centralized critic that has access to global state
information. This centralized critic is designed to stabilize the learning process by pro-
viding consistent value estimates, which can mitigate the challenges of non-stationarity
and credit assignment often encountered in multi-agent systems.

5.1. SINGLE AGENT BASELINE (SA)
This model consists of a single PPO agent controlling the entire burst budget. The agent’s
rewards are the sum of the rewards for each objective: probability of detection and wave-
form duration ratio. The individual value function is estimated by a separate neural net-
work, the critic. Both the policy and the critic are multi-layer perceptrons (MLPs) with
two hidden layers of 256 neurons and tanh activation functions.

Policy

Agent

Critic

Waveform
Construction

Burst
Parameters

Environment

Metrics

Simulation Reward
Module

Observation

Observation 
Module

Reward

Figure 5.1: Single Agent

5.2. INDEPENDENT ACTOR-CRITIC (IAC)
The first actor-critic (AC) multi-agent extension, called Independent Actor-Critic (IAC),
learns a decentralized policy and critic for each of the agents locally. The burst b budget
is equally split between agents. At every timestep, each agent takes an action, and an
observation is generated for the agent. Each agent has a different reward function, which
defines its objective. The architectures of the agents and critics remain the same as for
the SA model.
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Figure 5.2: IAC

5.3. INDEPENDENT ACTOR WITH CENTRALIZED CRITIC (IACC)
The second AC multi-agent extension is the Independent Actor with Centralized Critic.
The centralized critic learns the joint value function, which is used to update each de-
centralized policy. We distinguish between two different architectures for the centralized
critic, one based on an MLP, and the other on a GNN.

5.3.1. IACC (MLP)
The critic MLP has the same architecture as the critics in the previous models. The joint
observation is fed directly into the network, which outputs the centralized value func-
tion.

5.3.2. IACC (GNN)
This model incorporates a GNN centralized critic. The main difference from the previ-
ous model is that the bursts of all agents form a graph, which is then processed by the
GNN critic. The GNN uses two graph convolutional layers to compute the centralized
value function. The performance of GNNs significantly depends on the graph-building
method. We experiment with different methods and observe that connecting nodes
when their dissimilarity value is over a certain threshold works best. Experiments with
more complex architectures using hierarchical pooling and encoder-decoder modules
did not bring any benefits.

5.4. HYPERPARAMETER TUNING
In this study, hyperparameters were systematically tuned using grid search methods.
The primary hyperparameters considered include the learning rate, batch size, mini-
batch size, stochastic gradient descent (SGD) iterations, discount factor, exploration rate,
and network architecture parameters.
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Figure 5.3: IACC (MLP)
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LEARNING RATE

The learning rate, which determines the step size during model updates, was varied be-
tween 10−5 and 10−2. Lower values contributed to stability, while higher values acceler-
ated convergence but increased the risk of overshooting optimal solutions.

DISCOUNT FACTOR

The discount factor, which balances immediate and future rewards, was tested in the
range of 0.90 to 0.99. Higher discount factors prioritized long-term rewards, whereas
lower values placed more emphasis on short-term gains.

EXPLORATION RATE

The exploration rate, which governs the trade-off between exploration and exploitation,
was annealed from 1 to 0.01 over the training period using various decay schedules (e.g.,
linear, exponential). An initially high exploration rate facilitated the gathering of diverse
experiences, while a reduced rate in later stages allowed for fine-tuning of the policy.

BATCH SIZE, MINIBATCH SIZE, AND SGD ITERATIONS

• Batch Size: The number of episodes or experiences collected before performing
a gradient update. Larger batch sizes provided more accurate gradient estimates
but required greater memory and computational resources.

• Minibatch Size: The number of samples randomly selected from the batch for
each step of SGD. Smaller minibatches resulted in more frequent updates and
could help avoid local minima, though they introduced higher variance.

• SGD Iterations: The number of passes through the minibatch for model parame-
ter updates. Increasing the number of SGD iterations enhanced learning stability
but also raised computational costs.

We evaluated batch sizes of 256, 512, 1024, and 2048; minibatch sizes of 32, 64, 128,
and 256; and 20, 30, or 40 SGD iterations.

NETWORK PARAMETERS

The architecture of the neural network, a critical factor in the learning capability of the
reinforcement learning agent, was tested with 2 to 10 layers and units per layer varying
from 64 to 512.

5.4.1. TUNING RESULTS
Using grid search methods, the optimal set of hyperparameters was identified:

• Learning Rate: 3×10−4

• Discount Factor: 0.98

• Exploration Rate: Exponentially decayed

• Network Architecture: 2 hidden layers with 256 units each
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• Batch Size: 512

• Minibatch Size: 128

• SGD Iterations: 30

We find that shallow, wider architectures work best in this setting. Deeper networks
did not bring any sort of improvement in performance and were sometimes detrimental.
The underlying data distribution and the relationships between features can be captured
well by a shallow network since there is no need for complex feature extraction. Further-
more, a shallow network is less prone to overfitting and is faster to train.



6
EVALUATION

Chapter 6 of this thesis evaluates the proposed multi-agent reinforcement learning mod-
els in a radar tracking scenario 6.1. The evaluation focuses on several aspects, including
Pareto optimality 6.2, optimization times 6.3, and sensitivity to environmental parame-
ters 6.5. Various models, including Independent Actor-Critic and Independent Actor with
Centralized Critic with both MLP and GNN architectures, are compared against tradi-
tional genetic algorithms and a single-agent baseline. Results are discussed in Section 6.6.
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6.1. TRACKING SCENARIO
The reinforcement learning environment for training the agents is a radar tracking sim-
ulation designed to detect and follow a low-flying target over the sea. Radar tracking
involves continuously monitoring a target’s position, speed, and trajectory using radar
systems. In this scenario, the wind direction is from the target toward the radar, with rain
and waves further complicating the environment.

Figure 6.1: Tracking a low flying target over the sea

Tracking a low-flying target over the sea presents numerous challenges. The sea sur-
face generates significant background noise, known as sea clutter, which can obscure
radar returns from the target, making it difficult to distinguish the target from reflections
off the sea. Additionally, multipath propagation causes radar signals to reflect off both
the sea surface and the target, leading to signal interference and distortion.

Parameter Minimum Maximum

Wind Speed (m/s) 0 18
RCS (m2) 0.1 5
Rainfall rate (mm/hr) 0 4

Table 6.1: Parameter Ranges

Environmental factors and the target itself can have a significant impact on radar
performance. In our simulation, we will focus on the radar cross-section of the target,
the wind speed, and the rainfall rate, with the purpose of creating diverse and challeng-
ing episodes for the agent to learn from. Radar Cross Section (RCS) is a measure of how
much electromagnetic energy is reflected back to a radar system by a target. It effectively
represents the "visibility" of the target to the radar. RCS is important because it influ-
ences the radar’s ability to detect, track, and identify objects. Higher RCS values mean
stronger return signals, making targets easier to detect and track, while lower RCS values
indicate weaker signals, making targets harder to detect. Wind speed affects radar de-
tection by influencing the movement and characteristics of the medium through which
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radar signals travel. High wind speeds can create turbulent conditions and increased
sea clutter, particularly over bodies of water, which can obscure or distort radar returns
from targets. Rainfall rate measures the intensity of precipitation, usually in millime-
ters per hour. It affects radar detection by causing signal attenuation and scattering,
which weaken and distort radar returns. High rainfall rates can create significant clutter,
masking the radar signals from actual targets and reducing detection accuracy. These
parameters are sampled from a uniform distribution at the beginning of each episode.
The ranges for each parameter can be seen in Table 6.1.
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Figure 6.2: Episode Reward Mean during Training

The models are trained for 8000 iterations each. Figure 6.2 shows the smoothed mean
episode reward over the training procedure. The IAC model converges the fastest and
reaches the highest reward. The IACC (MLP) model converges slower but reaches a sim-
ilar reward. The single agent and IACC (GNN) models reach slightly lower rewards, with
the GNN model also having a larger variance than the other models. However, the re-
ward signal is not the optimization target of the agent, and we cannot conclude anything
about the general performance of the agents.

6.2. PARETO OPTIMALITY
Pareto optimality provides a framework for evaluating and comparing RL models based
on multiple criteria. A solution is considered Pareto optimal if no other solution can
improve one objective without degrading another. In this experiment, we simulate our
main use case, where given an approximate range and velocity we would like to detect a
target as accurately as possible. Each model receives an initial observation and can send
up to 1000 consecutive waveforms to detect the target. We then construct a Pareto front
based on the distribution of the waveforms, where we analyze the trade-off each model
finds between the probability of detection and waveform duration ratio. The target is at
a range of 25km, an altitude of 10 m, and moving with a velocity of 250 m/s. The RCS of
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the target is 0.5 m2, the wind speed is 18 m/s and the rainfall rate is 4mm/hr.
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Figure 6.3: Pareto Frontier per Model

Figure 6.3 shows the Pareto front of each model. We also compare with the solution
found by a genetic algorithm. The best-performing models are the IAC and the IACC
(MLP). They find high-probability waveforms with durations below 2, 1 being optimal.
The genetic algorithm finds the highest Pd waveform but does not manage to find wave-
forms with a duration shorter than 2. The IACC (GNN) model requires much longer
waveforms to reach the same Pd as the other models, and we can see a very steep de-
cline in PD once the waveforms become shorter. The single-agent model is somewhat
better than the IACC (GNN) model when sending shorter waveforms, but it struggles to
reach higher probabilities of detection. To sum up, the IACC (MLP) and IAC models find
the best trade-offs between waveform duration and the probability of detection, reach-
ing high Pd s, with short waveforms, while the other models struggle to find waveforms
fulfilling both objectives simultaneously.

6.3. COMPARISON OF OPTIMIZATION TIMES
Similarly to the previous experiment, the agents have a maximum of 1000 function calls
to find a sufficiently good waveform. The results are averaged over 100 repetitions to
ensure a statistically significant result. We define a sufficiently good waveform as one
having Pd ≥ 0.95 and T r ati o

Ψ ≤ 2. If the agent reaches 1000 function calls and has not
found a good enough waveform, that iteration is counted as having taken 1000 calls,
even though the agent has not managed to meet the objective. We define 4 scenarios
with varying levels of difficulty, given by the values of the environmental and target pa-
rameters: RCS, wind speed, rainfall rate, and target altitude. The results are displayed in
Table 6.2 and Figure 6.4.

For all scenario difficulties, both the Genetic Algorithm and the Single Agent baseline
required more than 1000 function calls to achieve a good waveform. he IAC model shows
significantly better performance compared to GA and SA across all difficulty levels. The
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Model
Scenario Difficulty

Easy Medium Hard Very Hard

GA 1000 < 1000 < 1000 < 1000 <
SA 1000 < 1000 < 1000 < 1000 <
IAC 1.8 ± 1.4 1.6 ± 1.1 1.9 ± 1.5 32.5 ± 38.5
IACC (MLP) 1.9 ± 1.5 1.7 ± 1.3 1.9 ± 1.6 38.0 ± 43.5
IACC (GNN) 3 ± 0 36.3 ± 120.4 805.6 ± 323.9 1000 <

Table 6.2: Mean number of function calls (with standard deviation) needed to reach a sufficiently good
waveform

number of function calls remains low and consistent for Easy, Medium, and Hard sce-
narios. The IACC (MLP) model also performs well with low and consistent mean func-
tion calls for Easy, Medium, and Hard scenarios. The IACC (GNN) model shows good
performance for the Easy scenario but exhibits a dramatic increase in the mean num-
ber of function calls as the difficulty increases. For the Very Hard scenario, the number
of function calls exceeds 1000, indicating that the IACC (GNN) struggles significantly as
the difficulty increases. The results indicate that the performance of the agents does not
scale linearly with the difficulty, as the number of function calls increases dramatically.
The mean of the IACC (GNN) is also skewed in the Hard scenario as it fails to find a
good waveform in around 70 % of the iterations. If those occurrences are removed, the
mean number of function calls becomes 392.5 ± 275.6. The IAC and IACC (MLP) models
never fail to reach the optimization target. IAC and IACC (MLP) are the most efficient
models for reaching a good waveform across all scenarios, with low mean function calls
and standard deviations across all scenarios. The IACC (GNN) model shows poor per-
formance with increasing difficulty, suggesting it may not be suitable for more complex
scenarios. The GA and SA models are not sufficiently good optimizers.

6.4. WAVEFORMS
To better understand the learned policies of the agents and the differences in perfor-
mance, we need to compare the waveforms that each model chooses in different scenar-
ios. In this experiment, we have plotted some of the best waveforms sent by each agent
in scenarios varying from easy to very hard. The plots show the probability of detection
across the range-doppler domain. Yellow denotes a high probability of detection, while
blue is a probability of 0. The target is no longer visible after 30-40 km, depending on
the scenario, as it goes over the horizon due to the low altitude. The plots can be seen in
Figures 6.6, 6.7, 6.8, 6.9.

From the visualization, it is evident that the SA model focuses on sending bursts with
short pulse durations, as the Pd at low ranges is very high. This is more visible especially
when compared to the other models, which have low Pd s in the low-range areas, The
agents do not need to track anything at such low ranges, and they are not trained for it.
The actions of the SA model are a consequence of the reward function and the policy
getting stuck in a local maxima where it learns to minimize the waveform duration ratio,
instead of both objectives. The other 3 models achieve better coverage of the tracking
area, in terms of mean probability of detection, or minimizing the blind range-doppler
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(c) Hard Scenario
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Figure 6.4: Boxplots for the different scenarios. The IACC (GNN) model is not visible in some of the plots so
the other two models can be visualized.

zones. They appear to send identical waveforms, although a closer inspection will reveal
that there are small differences between the models. The close resemblance of the wave-
forms suggests that the agents converge to similar policies, which is expected, given the
similar architectures and reward functions.

However, as we have seen so far, the performance of the agents differs by a significant
margin. Although the waveforms are very similar, the agents’ policies are not identical.
It was already shown that the IACC (GNN) model is not able to find as short, high Pd

waveforms as the IAC and IACC (MLP) models. The explanation for the similarity of
the waveforms is that even though the IACC (GNN) waveform has a high mean Pd over
the tracking area, the actual duration of the waveform is longer than the other 2 MARL
models. If we analyze the action distribution of each agent in Figure 6.5, we can see
that the GNN model favors a higher number of pulses and longer PRIs, which result in a
higher probability of detection, but lengthen the duration of the waveform. On the other
hand, the single agent baseline favors short PRIs, and a low number of pulses, resulting
in a low probability of detection and short waveforms. The IAC and IACC(MLP) have
almost identical action distributions for this scenario.

6.5. SENSITIVITY TO ENVIRONMENTAL PARAMETERS

The aim of this experiment was to compare the average performance of different models
and to observe how their performance varies with different environmental parameters.
Each parameter range (as shown in Table 6.1) is divided into 20 discrete cells. For each
cell, 1000 episodes are run, and the mean value of a metric is calculated over all itera-
tions. The parameters that are not being varied in each figure remains fixed throughout
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(a) Action Distribution for Single Agent Baseline (b) Action Distribution for IAC

(c) Action Distribution for IACC (MLP) (d) Action Distribution for IACC (GNN)

Figure 6.5: Main caption for all subfigures

(a) Very Hard (b) Hard

(c) Medium (d) Easy

Figure 6.6: Range-Doppler probability of detection for the SA model across 4 scenarios



6

46 6. EVALUATION

(a) Very Hard (b) Hard

(c) Medium (d) Easy

Figure 6.7: Range-Doppler probability of detection for the IAC model across 4 scenarios

(a) Very Hard (b) Hard

(c) Medium (d) Easy

Figure 6.8: Range-Doppler probability of detection for the IACC (GNN) model across 4 scenarios
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(a) Very Hard (b) Hard

(c) Medium (d) Easy

Figure 6.9: Range-Doppler probability of detection for the IACC (MLP) model across 4 scenarios

all the episodes. Heatmaps are used to visualize all pairwise combinations of parameters
for each metric. These heatmaps can be found in Appendix A as well as in Figure A.5.
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(a) Single Agent Baseline
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(b) IAC
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(c) IACC (MLP)
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(d) IACC (GNN)

Figure 6.10: Probability of detection for radar cross-section versus wind speed

From figures in Appendix A it can be seen that the IACC (MLP) model is the most ro-
bust to changes in the environment, maintaining a high average probability of detection
as the RCS, rainfall rate and wind speed increase. The IAC and IACC (GNN) models of-
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fer similar performance, while the Single Agent Baseline performs the worst on average,
and is also the most affected by environmental conditions. From figures in A we can see
that the average waveform duration ratio is not affected by the changes in parameters.
The IAC and IACC (GNN) models reach the lowest duration, closely followed by the IACC
(MLP) model. The slightly longer waveform duration also explains the higher probability
of detection. The Single Agent Baseline finds much longer waveforms on average.

In practice, however, we are not as interested in the average performance of the
waveform, but in the best waveform the agent can output given a limited time budget.
We will now investigate how the quality of the best waveform produced by the agent
varies with the changing environment. Instead of averaging over 1000 episodes, we now
select the best waveform out of the set of candidate waveforms produced by the agent in
one episode (20 timesteps).

Figures in B show that the models perform well, and seem to randomly fail in some
cells. The IACC model is again the most robust and fails to find a good waveform the
least. Surprisingly, the Single Agent baseline is more consistent than the other two re-
maining models, by a small margin. Finally, the waveform duration ratio is mostly un-
affected for the multi-agent models, with the Single Agent baseline seeing a significant
increase.
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(a) Single Agent Baseline
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(b) IAC
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(c) IACC (MLP)
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(d) IACC (GNN)

Figure 6.11: Probability of detection for radar cross-section versus wind speed

6.6. DISCUSSION
The evaluation chapter has provided a comprehensive comparison of various MARL
models in a radar-tracking scenario. Here, we discuss the key findings from our experi-
ments and their implications.
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The IAC model demonstrated the fastest convergence during training, attributed to
the more stable policy gradients [20]. Stable policy gradients provide more consistent
updates to the policy, reducing the likelihood of drastic changes from one update to the
next. This consistency helps the policy to improve steadily rather than erratically, lead-
ing to smoother and more reliable learning trajectories. With lower variance, the pol-
icy gradients more accurately represent the true gradient of the expected reward. This
accuracy ensures that each update moves the policy in the right direction, resulting in
faster convergence to an optimal or near-optimal policy. Another minor finding is that
the cooperation reward is key to the multi-agent models outperforming the single-agent
baseline. Without it, unsurprisingly, the agents do not learn to coordinate.

The IACC’s (MLP) and IAC’s policies found the best trade-offs between waveform du-
ration ratio and probability of detection, outputting waveforms that achieved both ob-
jectives simultaneously. In contrast, the single-agent baseline had trouble optimizing
for both objectives simultaneously, instead prioritizing waveform duration ratio and ne-
glecting the probability of detection. The reason for this is that reward signal The IACC
(MLP) model proved to be the most robust to varying environmental conditions and the
fastest and best performing when faced with a challenging test scenario. Since central-
ized critics are not limited to local observations, they can avoid the biases introduced
by partial observability. Decentralized critics, on the other hand, base their estimates on
limited local information, which can lead to biased or incomplete value estimates. Accu-
rate value function estimates allow the centralized critic model to take optimal actions
regardless of the difficulty of the task.

On the other hand, the IACC (GNN) model does not perform as well. It is unable
to find sufficiently good waveforms in difficult scenarios and suffers from slow training
times due to the graph-building process. There is likely no need to construct a radar-
informed graph, as it hampers performance, and an MLP critic can learn the correlations
between burst parameters on its own. The permutation invariance of the GNN also does
not seem to provide any benefits. The IACC (GNN) might show increased benefits in
larger coordination tasks, where the increased number of agents and the joint observa-
tion scaling affect the size of the MLP.

To summarize, we have seen that moving from a single-agent setting to a multi-agent
setting is beneficial for radar waveform optimization. The IAC and IACC agents show
greatly improved performance, and the IAC model also boasts faster convergence due to
the stability in policy gradients. The IACC’s (MLP) centralized critic makes it resilient to
changes in the environment and to the non-stationarity induced by other agents.





7
CONCLUSION & FUTURE WORK

This chapter presents the conclusion of the work carried out in the rest of this thesis. In Sec-
tion 7.1, a short summary is presented, together with the answer to the research question.
Section 7.2 presents avenues for further research.
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7.1. CONCLUSION
In this thesis, we explored the application of reinforcement learning to the problem
of radar waveform optimization, with a particular focus on multi-agent reinforcement
learning approaches.

Chapter 1 outlines the importance of radar technology in various applications such
as aviation, maritime navigation, and defense. It highlights the challenges faced by radar
systems, including interference, clutter, and the need for high resolution and accuracy.
The chapter introduces cognitive radar as an advanced approach to overcoming these
challenges through adaptability and intelligence, setting the stage for the exploration of
reinforcement learning methods. We posed the following research question:

RQ) How can multi-agent reinforcement learning (MARL) be effectively utilized to
optimize radar waveforms?

In particular, we focus on answering:

(a) How can the multi-objective radar waveform optimization problem be modeled
as a MARL problem?

(b) How can radar domain knowledge be integrated to improve performance of the
agents?

(c) What are the possible architectures that allow scalability in the number of radar
waveform parameters?

Chapter 2 provided a comprehensive overview of radar technology, reinforcement
learning, and graph machine learning. Fundamental concepts such as Pulse Doppler
Radar, Markov Decision Processes, and graph convolutions were explained. The section
on reinforcement learning covered important algorithms like Proximal Policy Optimiza-
tion, IPPO and MAPPO, while the graph machine learning section introduced the key
concepts and techniques used in GNNs.

In Chapter 3 we reviewed existing literature on radar waveform optimization, cov-
ering classical methods like mathematical optimizers and genetic algorithms, as well as
more recent approaches using neural networks and reinforcement learning. The sur-
vey highlighted the strengths and limitations of these methods and identified gaps that
our research aimed to address, particularly the potential of MARL in optimizing radar
waveforms.

In Chapter 4, radar waveform design is framed as an optimization problem within
the Decentralized Partially Observable Markov Decision Process framework. We define
the radar environment, as well as the agents’ observations and the actions they can take.
We define the multiple objectives of radar waveform optimization as different reward
functions for our agents. To address the challenges of instability and non-stationarity
in multi-agent learning, the chapter introduces the concept of a centralized critic. This
centralized critic has access to global state information and helps stabilize the learning
process. Additionally, the use of Graph Neural Networks as a centralized critic is pro-
posed to leverage the sparsity and structured nature of graph data, enhancing scalability
and efficiency.
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The architecture of various models used in the research is detailed in Chapter 5. It de-
scribes the Single Agent Baseline (SA), Independent Actor-Critic (IAC), and Independent
Actor with Centralized Critic (IACC) models. The chapter also covers hyperparameter
tuning and the results of tuning experiments.

Chapter 6 presents the training and testing of the proposed models in a radar track-
ing scenario. It discusses the performance of the models in terms of Pareto optimality
and optimization times. The chapter also examines the sensitivity of the models to en-
vironmental parameters and provides a comprehensive discussion of the results.

The performance of the Independent Actor-Critic and Independent Actor with Cen-
tralized Critic models is compared against traditional genetic algorithms and the single
agent baseline. The results indicate that both IAC and IACC models outperform the tra-
ditional methods in terms of probability of detection, waveform duration, and optimiza-
tion speed. The IAC model shows robust performance across different environmental
conditions, finding good waveforms while also being the fastest to converge due to its
stable policy gradients.

The IACC model, specifically with the Multi-Layer Perceptron architecture, as well as
the IAC model demonstrate superior performance in achieving optimal radar waveform
parameters quickly. However, the Graph Neural Network based IACC model, while the-
oretically promising, did not provide the expected improvements and requires further
refinement. The discussion emphasizes that while centralized critics improve robust-
ness and coordination among agents, the choice of architecture significantly impacts
the overall performance. The ability of centralized critics to give better value function
estimates is thought to be the main cause of improvement in robustness over decentral-
ized critics. However, decentralized critics are more scalable and converge faster.

Overall, the evaluation highlights the effectiveness of MARL approaches in optimiz-
ing radar waveforms, showcasing their potential for real-time applications in dynamic
and uncertain environments. Not only do we show that RL approaches outperform
heuristic methods such as genetic algorithms, but also that posing the problem as a
multi-agent optimization problem results in a significant increase in performance. Fur-
thermore, GNNs provide several advantages, the method of integrating domain knowl-
edge in the centralized critic did not result in any improvement over the other MARL
methods.

We hope that the insights derived from this work will help the field of radar wave-
form optimization toward embracing more machine learning techniques and build con-
fidence in their ability to be deployed in practice. This thesis lays a solid foundation for
the use of MARL and GNNs in the field of radar waveform optimization, demonstrat-
ing their potential to significantly enhance performance and adaptability. The findings
encourage further exploration into more adaptive algorithms and the integration of ad-
ditional environmental factors, ultimately contributing to the broader field of reinforce-
ment learning and radar technology. We believe that continued innovation and inter-
disciplinary approaches will drive the development of more efficient and effective radar
systems, capable of meeting the complex demands of modern applications.
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7.2. FUTURE WORK

7.2.1. INCREASING THE NUMBER OF AGENTS
Due to the limited computational resources and time constraints, the number of agents
in the system was kept low. However, there are many other figures of merit we can opti-
mize for, such as autocorrelation, mean probability of detection over the tracking area,
and so on. Increasing the number of agents would also make the benefits of the GNNs
in terms of scalability more apparent, which could make the IACC (GNN) the only viable
option, due to the poor scaling of the IACC (MLP) model. The IAC model could also be
used as it scales linearly with the number of agents, but we would lose the benefits of
having a centralized critic.

7.2.2. VARIABLE BURST BUDGET
The current action space of the model only allows for a fixed burst budget. In realis-
tic scenarios, the number of bursts is not fixed and influences the probability of detec-
tion by increasing the energy on the target, while simultaneously increasing the wave-
form duration. A way of implementing this would be to define the maximum number
of bursts to be sent in practice, which is never more than 15-20, and then incorporate a
one-dimensional mask of the same length in the action space of the agents. The mask
is then used to select which bursts are sent as part of the waveform and which are not.
Preliminary experiments suggest this would improve performance.

7.2.3. IMPROVED INTEGRATION OF DOMAIN KNOWLEDGE
Even though adding radar domain knowledge in the graph construction process did not
yield any benefits, we still believe that with further refinement it could lead to promis-
ing results. In this work, we connected bursts that had dissimilar parameters, with the
assumption that their PRFs and pulse lengths would be different enough to cover blind
range-doppler areas. However, that is not guaranteed and one could compute the range-
doppler diagrams defined by these parameters and only connect bursts where these
zones are actually minimized by a sufficient amount. If we take into account the low
number of bursts and agents in this work, the graph only amounts to 15-20 bursts per
iteration. It is possible that once the number of agents increases, the added benefit of
these connections will also become more apparent, as opposed to an MLP centralized
critic which compares all bursts with each other.
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Figure A.1: Firm track probability for radar cross-section versus rainfall rate
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Figure A.2: Firm track probability for radar cross-section versus wind speed
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Figure A.3: Firm track probability for wind speed versus rainfall rate
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Figure A.4: Probability of detection for radar cross-section versus rainfall rate
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Figure A.5: Probability of detection for radar cross-section versus wind speed
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Figure A.6: Probability of detection for wind speed versus rainfall rate
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Figure A.7: Waveform duration ratio for radar cross-section versus rainfall rate
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Figure A.8: Waveform duration ratio for radar cross-section versus wind speed
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Figure A.9: Waveform duration ratio for wind speed versus rainfall rate
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(c) Multi-Agent Baseline with a Centralized Critic (Fully
Connected Network)
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(d) Multi-Agent Model with a GNN Centralized Critic
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Figure B.1: Firm track probability for radar cross-section versus rainfall rate
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(c) Multi-Agent Baseline with a Centralized Critic (Fully
Connected Network)
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(d) Multi-Agent Model with a GNN Centralized Critic
(Threshold Graph)

Figure B.2: Firm track probability for radar cross-section versus wind speed
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(d) Multi-Agent Model with a GNN Centralized Critic
(Threshold Graph)

Figure B.3: Firm track probability for wind speed versus rainfall rate
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(c) Multi-Agent Baseline with a Centralized Critic (Fully
Connected Network)
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Figure B.4: Probability of detection for radar cross-section versus rainfall rate
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(a) Single Agent Baseline
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(b) Multi-Agent Baseline
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(c) Multi-Agent Baseline with a Centralized Critic (Fully
Connected Network)
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(d) Multi-Agent Model with a GNN Centralized Critic
(Threshold Graph)

Figure B.5: Probability of detection for radar cross-section versus wind speed
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(a) Single Agent Baseline
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(b) Multi-Agent Baseline
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(c) Multi-Agent Baseline with a Centralized Critic (Fully
Connected Network)
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(d) Multi-Agent Model with a GNN Centralized Critic
(Threshold Graph)

Figure B.6: Probability of detection for wind speed versus rainfall rate
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(a) Single Agent Baseline
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(b) Multi-Agent Baseline
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(c) Multi-Agent Baseline with a Centralized Critic (Fully
Connected Network)
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(d) Multi-Agent Model with a GNN Centralized Critic
(Threshold Graph)

Figure B.7: Waveform duration ratio for radar cross-section versus rainfall rate
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(a) Single Agent Baseline
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(b) Multi-Agent Baseline

0 5 10 15
0

1

2

3

4

5

0

2

4

6

8

10

Waveform Duration Ratio

Wind Speed (m/s)

R
a
d
a
r
 C

r
o
s
s
 S

e
c
t
io

n
 (

m
^

2
)

Loading [MathJax]/extensions/MathMenu.js

(c) Multi-Agent Baseline with a Centralized Critic (Fully
Connected Network)
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(d) Multi-Agent Model with a GNN Centralized Critic
(Threshold Graph)

Figure B.8: Waveform duration ratio for radar cross-section versus wind speed
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(a) Single Agent Baseline
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(b) Multi-Agent Baseline
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(c) Multi-Agent Baseline with a Centralized Critic (Fully
Connected Network)
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(d) Multi-Agent Model with a GNN Centralized Critic
(Threshold Graph)

Figure B.9: Waveform duration ratio for wind speed versus rainfall rate
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