

Circular Façade Systems

Pragya Chauhan

5319110

Mentors - Thaleia Konstantinou, Atze Boerstra

P5 Presentation

16th June 2022

85 – 95% of these will still be standing in 2050!

Need to be upgraded to match the current standards

**** **** ****

European Commission

35 million

buildings expected to be renovated by 2030

Renovation Wave

The European Green Deal

October 2020 #EUGreenDeal (EC, 2020)

Operational carbon

•00000

A Circular Economy in the Netherlands by 2050

There is a lack of a clear and strategic approach to designing a circular façade. The process is complex due to many interconnected factors involved.

v/s

"How can we implement circularity in façades during the planning and design processes of building renovation projects in the Netherlands?

"How can we implement circularity in façades during the planning and design processes of building renovation projects in the Netherlands?

Literature

- o Building Renovation Goals
- Circular Economy in Built Environment

Building Renovation Goals

Urban Design	Improvement of the urban and architectural quality, preventing vacancy in a neighborhood to avoid social problems are important factors related to the urban context in which the building is placed.
Architectural Design	Avoid the decay of valuable architectural heritage and construction, update the appearance of the overall building, and change the character to suit the current times.
Function	Transform the building spatially, optimize the spaces as per requirement
User Comfort	Eliminate unpleasant indoor conditions, hygiene, and ventilation problems, avoid sick building syndrome or building related illnesses.
Technical Installations	Reduce the high operational energy demand and maintenance needs
Hazardous Materials	Get rid of hazardous materials if any have been used in the original construction
Building Physics	Eliminate building physics concerns like lack of insulation, wind or water leaks, fire protection deficiencies while planning for climate change and the current climatic conditions.
Fire Regulation	Introduce compulsory fire safety improvements as per current building standards and regulations
Safety	Avoid danger or damage to third party
Energy Consumption	Meet the current energy consumption standards as per building norms.
Operational Costs	Avoid the high maintenance costs and high energy demands of building
Lett ability	Bring and vacant building back into the market
Marketing	Users' representation needs
Financial Market	Investment from institutional investors

Circular Economy in the Built Environment

Circular Economy aims to: close and extend the loops of material cycles, in order to preserve value of materials, resulting in decreased virgin material consumption and waste generation in our current society

Circular Economy in the Built Environment

Planning Process

Case Study

 \bigcirc

Building Grid

11

H

Building Grid

Building Materials

Building Materials

000000

(Peutz, DGMR, 2015) 22

Building Facade Layers

 $00 \bullet 000$

Planning and Design Process

10R Framework

000000

Refuse prevent raw material use Reduce narrowing loops decrease raw material use Renew narrowing loops redesign product in view of circularity Reclaim use product again Repair maintain and repair product Refurbish revive product Remanufacture make new product from second-hand Repurpose reuse product with a different function Recycle closing loops salvage material streams with highest possible value Recover incinerate waste with energy recovery

000000

Materials

Design Options

Reclaim

Reclaimed Timber frames

Reclaimed

Bricks

Renew

Straw insulation

Rice Fleece Composite Panels

Recycle

Ceramic Façade Tiles

Recycled Textile Insulation

Recycled

Aluminum

Reduce

Reused stone panel

Reused timber frames

255 [mm] **0.23** [W/m²K]

Design Options

 $\bigcirc]$

Design Framework

Evaluation and Recommendations

Life Cycle Approach

Product Stage Construction Process Stage		Use Stage					End-of-Life Stage			Benefits and Loads beyond the System Boundary								
B Raw material supply	R Transport	& Manufacturing	A Transport to building site	G Installation into building	Use/application	Raintenance	Repair B3	Replacement Replacement	g Refurbishment	B Operational energy use	g Operational water use	Deconstruction/demolition	C Transport	S Waste processing	Disposal C4	D Reuse	D Recovery	D Recycling

Life Cycle Approach

Variable for each Option

Material

Quantity Embodied Carbon (as per EPD) Transport Distance (as per EPD) Service Life Reused

Common for all Options

Energy used (same for all options) Calculation Period (same for all options) Service Life of Building Acidification Eutrophication Ozone depletion Potential Global Warming Potential (Embodied Carbon)

Evaluation & Recommendations

Life Cycle Approach

Evaluation & Recommendations

000000

Life Cycle Approach

Building Circularity

Variable for each Option	
Material Quantity Service Life Content (recycled, reused, renewable) Wastage during construction DfD DfA EOL Process	Building Circularity – Materials Used and Recovered
Common for all Options	
Weighing factors Calculation Period	

 \bigcirc

()()

Evaluation & Recommendations

Building Circularity

Overview

Final Design

Materials used

- Biobased
- Renewable

Extent of Intervention

- Window
- Parapet

00000

A Circular System

Strategic Def	inition	Design	Construction	End-c	of-Life
Demolition audit Research on creat	, information of harvested materials ive use of materials Development of circular material databases / detaile	ed information			
		(Efficient prefabrication	Facade disassembly plan Creative end of life desi	ign
	Incorporate business models specific for the	facade BIM, Digital twin to monitor	performance of facade elements Renovation	& materials passport for facade	
	Market developmen	at of circular materials,	Skilled teams for disassembly of facade		
		Educate, learn; Policy making and	Certifications		(multiple sources) 45

Answering the Research Question

"How can we implement circularity in façades during the planning and design processes of building renovation projects in the Netherlands?

Answering the Research Question

Planning	Thorough analysis of building conditions					
	Material specific information flow; low embodied energy / materia composition					
	Develop design framework					
Design	Systematic approach, layer wise breakdown of components					
	Reduced virgin resource use and reduced waste generation					
	Higher volume of reused and bio-based materials					
	Support disassembly					

Discussion

Information

The most significant information about the product is the embodied carbon and material feedstock composition.

kgCO2eq/sqm

%

Discussion

Information

The most significant information about the product is the embodied carbon and material feedstock composition.

Façade System

Component should be broken down into layers, for systematic design. This can be applied to other building components also.

Discussion

Information

The most significant information about the product is the embodied carbon and material feedstock composition.

Façade System

Component should be broken down into layers, for systematic design. This can be applied to other building components also.

Materials

1. Materials need to be prioritized greatly in the design of facades. They have a significant impact on embodied carbon. This is followed by the connections.

Discussion

Information

The most significant information about the product is the embodied carbon and material feedstock composition.

Façade System

Component should be broken down into layers, for systematic design. This can be applied to other building components also.

Reused Materials > Bio-based Materials > Recycled Downcycled

Materials

- 1. Materials need to be prioritized greatly in the design of facades. They have a significant impact on embodied carbon. This is followed by the connections.
- 2. Within materials, priority should be given to first reused materials, then biobased, lastly recycled and downcycled.

Discussion

Information

The most significant information about the product is the embodied carbon and material feedstock composition.

Façade System

Component should be broken down into layers, for systematic design. This can be applied to other building components also.

Materials

- 1. Materials need to be prioritized greatly in the design of facades. They have a significant impact on embodied carbon. This is followed by the connections.
- 2. Within materials, priority should be given to first reused materials, then biobased, lastly recycled and downcycled.
- 3. The compatibility of materials within layers is dependent on the service life, and end-of-life scenarios.

Limitations

Design Oriented (Impacting the measurable results)

- **1. Exact information not available** For reused materials, even some circular materials.
- 2. In some cases, to receive a **comparable thermal performance value**, the thickness of material marginally modified (manufacturer data)

Research Oriented (Challenge in answering RQ)

1. There is **no ideal design framework**! Can vary from building to building, especially in renovations.

2. All strategies not explored Add / Wrap it interventions might have different functions of layers, therefore different materials.

Future Work

Need for Innovation In reused material applications and end-of-life solutions. Through research and experimentation.

Future Work

Need for Innovation In reused material applications and end-of-life solutions. Through research and experimentation.

Need for Information

All circular materials – biobased and reused, need more technical information which can be used in databases – development of EPD's. Though testing of products.

Future Work

Need for Innovation In reused material applications and end-of-life solutions. Through research and experimentation.

Need for Information

All circular materials – biobased and reused, need more technical information which can be used in databases – development of EPD's. Though testing of products.

Developing Strategies More design-based and favorable to application. Currently they are more vision based. Through documentation.

Future Work

Need for Innovation

In reused material applications and end-of-life solutions. Through research and experimentation.

Need for Information

All circular materials – biobased and reused, need more technical information which can be used in databases – development of EPD's. Though testing of products.

Developing Strategies

More design-based and favorable to application. Currently they are more vision based. Through documentation.

Mapping Design Decisions

Processes related to sustainability – product and building to make roadmaps, frameworks.

Through workshops.

Future Work

Need for Innovation

Need for Information

Developing Strategies

Mapping Design Decisions

Standard Evaluation Developing benchmarks, scorecards to evaluate circularity in design of building components

Through research and application.

Thank you.

Questions?

Pragya Chauhan 5319110 <u>P.Chauhan-1@student.tudelft.nl</u>

000000

3. What is the design process to implement circularity during façade renovation projects?

2. What are the design strategies applicable for circular facade design?

"How can we implement **circularity** in façades during the planning and design processes of building **renovation** projects in the Netherlands?

4. What steps undertaken in the predesign and post-design stages of the building renovation process influence the circularity of the façade 1. What is the state of the art of nonresidential building renovations especially for the building facade, in cold countries like the Netherlands?

Reclaim

Code	Product	Layer	Quantity	Transport (1 st Lea)	Service Life	Reused Material
DGW	Double glazing windows with wooden frame, 30.7 kg/m2, 1.4 W/m2K, biogenic CO2 not subtracted (for CML), FDES collective utilisable par toute entreprise qui produit en France des fenêtres et portes fenêtres, double vitrage acoustique ou standard, en bois tropicaux. (INSTITUT TECHNOLOGIQUE FCBA)	Windows	839 sqm	320	40	No
PST	Planed and strength-graded timber, pine or spruce, 460 kg/m3, planed timber: thickness 15-89 mm, moisture 8-15 ± 2%, strength-graded timber: thickness 34-89 mm, moisture 15-18 ± 2% (Stora Enso)	Structural Frame	75 cum	220	120	Yes
WCD	Wooden cladding and decking, pine or spruce, 445 kg/m3, 7-29 mm, 8-18%, moisture content (Stora Enso)	Interior Finish	1078 sqm	220	120	Yes
OSB	Oriented Strand Board (OSB), 6 - 40 x 590 - 1250 x 1840 - 6250 mm, 600 kg/m3, AGEPAN (Sonae Indústria)	Insulation	1078 sqm	340	120	No
LCI	Loose fill cellulose insulation, for wall application, L = 0.045 W/mK, R= 1.11 m2K/W, 50 mm, 3.25 kg/m2, 65 kg/m3	Insulation	1078 sqm	350	120	No
BCW	Bricks from construction waste, 210mm x 100mm x 50mm, 215mm x 102.5mm x 65mm, 228mm x 108mm x 55mm, 490/390/290mm x 90mm x 40mm, Caramel (StoneCycling)	Exterior Finish	215600 kg	60	120	Yes

Renew

Source –<u>U-value calculator | ubakus.com</u>

Code	Product	Layer	Quantity	Transport (1 st Leg)	Service Life	Reused Material
SIP	Straw insulation panels for exterior walls, L = 0.0493 W/mK, R=8.1 m2k/W, 400 mm, 66.19 kg/m2, Lambda=0.0493 W/(m.K) (EcoCocon)	1078 sqm	Interior Finish, Insulation	350	60	No
DGW	Double glazing windows with wooden frame, 30.7 kg/m2, 1.4 W/m2K, biogenic CO2 not subtracted (for CML), FDES collective utilisable par toute entreprise qui produit en France des fenêtres et portes fenêtres, double vitrage acoustique ou standard, en bois tropicaux. (INSTITUT TECHNOLOGIQUE FCBA)	839 sqm	Windows	380	60	No
WCD	Wooden decking, cladding and planed timber for joinery applications, 755kg/m3, Moistr. 3-5%, Accoya Beech (Accsys Technologies PLC)	1078 sqm	Exterior Finish	220	60	No

Reduce

Source –<u>U-value calculator | ubakus.com</u>

Code	Product	Layer	Quantity	Transport (1 st Leg)	Service Life	Reused Material
ACT	Acoustic cladding from textile and cotton wool, 1.19 kg/m2, Vibrasto 15 (TEXAA)	Interior finish	1078 sqm	60	60	No
GSP	Galvanised steel profiles (studs) for internal wall framing, 0.7 mm, 0.9 kg/m, 37 mmx73.5 mm	Structural Frame	4484 m	370	60	No
RTF	Recycled textile and fabric insulation, blown, R=3.25 m2K/W, L= 0.046 W/mK, 150 mm, 2 kg/m2, 13.3 kg/m3, Lambda=0.046 W/(m.K), COTON-FRP DOMOSANIX NITA-COTON-FRP NITA-COTTON ISOTEXTIL INNOCOTON COTON SOLIDAIRE (RMT Isolation SL)	Insulation 1	1078 sqm	60	60	No
WFI	Wood fibre insulation boards, biogenic CO2 not substracted, L = 0.044 W/mK, 173 kg/m3, EPD coverage: 0.037-0.05 W/mK, 20-240 mm, 80- 250 kg/m3 (Gutex)	Insulation 2	1078 sqm	350	60	No
AFW	Aluminum frame window, size: 1.23 x 1.48m, 27.69 kg/m2, double glazing, SUPREME S77 (Alumil)	Window	839 sqm	380	60	No
CGC	Ceramic façade cladding, 24 - 30 mm, 31 - 42 kg/m2, 2000 - 2200 kg/m3 (Argeton)	Exterior finish	1078 sqm	320	50	No

Reduce

Source –<u>U-value calculator | ubakus.com</u>

C	ode	Product	Layer	Quantity	Transport (1 st Leg)	Service Life	Reused Material
N	SS	Natural stone massive slabs (EUROROC)	Exterior Finish	299 sqm	200 km	60 years	Yes
W	/FI	Wood fibre insulation boards, R= 3.26 m2K/W, 140 mm, 15.4 kg/m2, 110 kg/m3, STEICOtherm dry (Steico)	Insulation	42 cum	350 km	60 years	No
M	IDF	Medium density fiberboard (MDF), sound absorbing, 16 mm, 13.9 kg/m2, 866 kg/m3, αw = 0.75 (class C)	Interior Finish	299 sqm	340 km	60 years	No
D	GW	Double glazing windows with wooden frame, 30.7 kg/m2, 1.4 W/m2K, biogenic CO2 not subtracted (for CML), FDES collective utilisable par toute entreprise qui produit en France des fenêtres et portes fenêtres, double vitrage acoustique ou standard, en bois tropicaux. (INSTITUT TECHNOLOGIQUE FCBA)	Windows	839 sqm	380 km	40 years	No
С	LT	Cross Laminated Timber (CLT), Thickness: up to 400 mm, 470 kg/m3, 12% moisture content (Derix GmbH & Co)	Structural Frame	9 cum	220 km	60 years	No