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Summary

Trends towards higher capacity offshore wind turbines (OWTs) and deeper offshore wind farm sites,
make wave-induced vibrations more dominant in its structural design. In order to design economically
feasible monopile-type support structures for these next generation OWTs, additional damping is
required during idling phases. A specific damper, the Tuned Liquid Column Damper (TLCD), can
potentially be very effective in achieving this without requiring many components in its design.

Besides the structural design, installation is a significant cost-driver for offshore wind energy.
For next-generation OWTs, increased wave-induced vibrations may result in installation workability
reductions as high as 50%. Dampers that are designed for the operational life of an OWT will not improve
installation workability sufficiently because they are not effective at off-tuned natural frequencies of
partially installed OWTs. The application of TLCDs to OWTs imposes new constraints on the damper’s
design. As a result, existing methods for increasing effectiveness at off-tuned frequencies are not
applicable.

The main objective of this thesis is, therefore, the reduction of wave-induced vibrations during OWT
installation by non-invasive modification strategies of off-tuned TLCDs.

To this end, a novel period adjustment strategy was investigated: the Airflow Obstructed Tuned
Liquid Column Damper (AO-TLCD). Identical to the intensively researched Tuned Liquid Column Gas
Damper (TLCGD), the vertical compartments are enclosed from the environment, resulting in an addi-
tional gas-spring. The proposed modification utilises controllable valves in the gas system to regulate the
pressures inside the gas compartments. The vast amount of research performed on the passive and active
TLCGD make the AO-TLCD a promising option. Moreover, modifications are made away from the regular
geometrical design. As a consequence, the operational effectiveness of the TLCD can be maintained.

The first part of this research fulfils the first objective: the development and validation of the AO-
TLCD model. A closed-form differential equation was formulated for the polytropic pressure difference
in the compartments, assuming quasi-steady and quasi-1D gas flow. For the operational conditions of
the AO-TLCD, simplified forms of the massflow and pressure equations have differences smaller than
10% compared to their fully non-linear and incompressible counterparts. Using small-scale experimental
data, the model was validated to accurately predict the steady-state response of the passive AO-TLCD.

For the passive AO-TLCD, adjustment to off-tuned frequencies introduces large amounts of viscous
dissipation into the system, effectively reducing the restoring force with respect to the host structure.
As a result, period adjustment using passive airflow obstruction (AO) is not possible while maintaining
significant effectiveness of the TLCD. For low obstruction, a large influence of the AO on the internal
damping of the TLCD was observed without affecting other properties of the system. Hence, passive AO
can be used as an alternative design parameter for the internal damping of a TLCD.

The second part of this research fulfils the main objective: the development of an effective TLCD
modification for OWT installation. Semi-active control of the valves was used to minimize the dissipation
that renders the passive AO-TLCD ineffective. Contrary to active control, semi-active control cannot
add mechanical energy through its actuator. This results in relatively low requirements for additional
components and yields an inherently stable system, making it more suitable for offshore applications.

To reduce the complexity of the device further, the valve was controlled in a bi-state discrete manner
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(bang-bang control). In other words, the actuator can only be switched between its open and closed
state. Based on literature on semi-active dampers, two control laws were defined: a simple hybrid
control law that switches between continuous systems through discrete control actions and a clipped
Linear Quadratic Regulator, i.e. a semi-active variant of optimal full-state feedback control.

The behaviour of the semi-active AO-TLCD was solely tested for an OWT installation case study
because the narrow-banded and strongly non-linear response of the semi-active AO-TLCD results in an
excitation dependent performance. Environmental loads were limited to regular sea states with high
occurrence. As a result, the first mode of the support structure is dominant. Modal reduction was
performed on the stand-alone support structure including the non-participating TLCD weight. The semi-
active AO-TLCD was coupled through the first mode shape of the OWT.

The semi-active control laws behaved as designed. The internal parameters of the TLCD were
improved and energy was effectively absorbed from the host. Across all load cases, wave-induced tower
top displacements were reduced up to 60% even though relatively small liquid strokes were observed. A
sensitivity study found that the effectiveness of the semi-active AO-TLCD was independent of the oper-
ational TLCD’s design frequency. At optimally tuned conditions, the semi-active AO-TLCD outperformed
its passive counterpart by more than 10%. Inclusion of actuator dynamics was not detrimental to the
performance.

The developed modification strategy was further investigated through a more general framework of
periodic linear time-variant systems. The inherent stability of the damper was demonstrated further.
Moreover, it was shown that the two proposed control laws have relatively optimal performance.

The design of the proposed modification is of low complexity compared to existing TLCDs capable
of period adjustment. Depending on the design of the AO-TLCD, the airflow obstruction can be imple-
mented as a temporary modification or its effects on the operational TLCD can be minimised. Most
importantly, the damper effectively reduces wave-induced vibrations independent of the passive TLCD
design. Consequently, the semi-active AO-TLCD will be sufficiently effective in improving workability for
the whole OWT installation range. Therefore, it can be concluded that the main objective of this thesis
is fulfilled.

Further development of the semi-active AO-TLCD is required. The semi-active AO-TLCD should be
validated experimentally; namely, unmodelled dynamics that are potentially introduced through semi-
active control of the valves should be investigated. Additionally, the effects of sensor noise on the
performance of the controller should be investigated.
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uf Liquid displacement m

V Volume m3

v Gas flow speed m/s

V0 Initial gas compartment volume m3

w Host horizontal displacement m

x State vector

Greek symbols
α Area ratio TLCD AH/AB −
β2 Area ratio valve/liquid column −
δ Tuning factor ωA/ωs −
δL Headloss coefficient m−1

δ Modulation frequency ratio −
ε Inverse air-spring stiffness Pa/m

ε Modulation depth −
ζA Linearized damping TLCD crit

ζS Structural damping Host crit

γ Isentropic constant −
γ Normalized excitation frequency −
γ Normalized damping −
κ̄ Geometrical parameter 2 TLCD −
κ Geometrical parameter 1 TLCD −
Λ Characteristic multipliers
λ Characteristic exponents
µ Modal mass ratio TLCD/Host −
φi,j Phase angle between i and j deg

φφφj Mode vector j −
φj,i Mode vector j at location i −
φφφ(t) Fundamental matrix
Φ(t, t0) Transition matrix between time t0 and time t



Φ0(t) Transition matrix between time t0 = 0 and time t
ρ Density kg/m3

τ Normalized time s

ω Excitation frequency rad/s

ωA Natural frequency TLCD rad/s

ωS Natural frequency Host rad/s

χ Normalized liquid displacements −

Subscripts
a Absorber/damper
eq Equivalent (energy) linearised property
f Fluid/liquid
g Gas
opt Optimal TLCD property
0 Initial property when related to gas system
0 Amplitude when referred to TLCD responses
p Properties used for the spring-element concept
s System/host
v Actuator

Superscripts
∗ Modal property, periodic varying property

Abbreviations
AO Airflow Obstruction
AO-TLCD Airflow Obstructed Tuned Liquid Column Damper
CFD Computational Fluid Dynamics
DoF Degree of Freedom
SDoF/MDoF Single/Multiple Degree of Freedom
ER-fluid Electro Rheological fluid
(G)AS (Global) Asymptotic Stability
LQR Linear Quadratic Regulator
C-LQR Clipped Linear Quadratic Regulator
LTI Linear time-invariant (system)
LTV Linear time-variant (system)
MR-fluid Magneto Rheological fluid
MMS Method of Multiple Scales
OWT Offshore Wind Turbine
SA Semi-active
STMD Semi-Active Tuned Mass Damper
TLCD Tuned Liquid Column Damper
TLCGD Tuned Liquid Column Gas Damper
TMD Tuned Mass Damper
TT Tower top
VA (Dynamic) Vibration Absorber



Chapter 1

Introduction

1.1 Motivation

In order to make offshore wind energy a viable option in the long term, further costs reductions are
required. One of the key factors in achieving cost-competitiveness is the introduction of higher capacity
turbines (up-scaling) [1].

As these trends continue, the natural frequency of the Offshore Wind Turbine (OWT) will decrease
further into the wave-spectrum. In combination with the low inherent structural damping, wave-induced
fatigue may play an even larger role in the structure’s design and lifetime assessment.

Besides the structural design, installation is a significant cost driver for offshore wind energy. The
wave-induced vibrations will also pose problems for installation workability. In other words: the
probability that installation can be performed is affected negatively by these trends.

In order to design an economically feasible monopile-type support structure for the next generation
OWTs, damping needs to be increased during idling phases. This can be achieved through structural
control with vibration absorber (VA) devices. A specific device, the Tuned Liquid Column Damper
(TLCD), can potentially be very effective while not requiring many components in its design. Hence,
the use of TLCDs in offshore applications can be very promising.

The application of TLCDs in OWTs introduces new problems, especially for the purpose of improving
installation workability. VAs can be very sensitive to their tuning to specific frequencies. A damper
designed for the operational life (fatigue lifetime) is not effective at frequencies typical during installation
steps. Existing methods for period adjustment of TLCDs are not sufficient because they do not
comply with additional constraints imposed by OWTs. Therefore, this research focusses on new period
adjustment strategies of TLCDs designed for OWTs.

1.2 Research context

In this section, additional context is provided regarding OWTs and structural control, including a brief
overview of relevant literature.

Installation of OWTs

The installation phase plays an important role in the levelised cost of energy of an offshore wind farm
[2]. Installation vessels are only able to operate in mild environmental conditions. Traditionally these
conditions do not have a high probability to correlate with large structural vibrations of the partially
installed OWT.

Reduction of the OWT’s natural frequency, increases the wave-induced response for highly probable
sea states. As a result, wave-induced vibrations may dominate the installation process. In order

1



1.3. PROBLEM STATEMENT 2

to continue the trends towards higher capacity turbines and deeper waters, while using monopile
foundations, these vibrations have to be reduced.

During installation the structure has a larger natural frequency, as not the whole top mass has been
installed. A VA designed for the operational natural frequency, will not be effective.

Structural Control

Structural control through VAs has been intensively researched and applied to onshore civil structures.
For the TLCD alone, multiple modifications and geometrical variations have been investigated [3][4].
The most intensively researched and applied period adjustment strategy for a TLCD was first introduced
by Hochrainer in the form of additional gas springs: the tuned liquid column gas damper (TLCGD)
[5]. Some (semi)-active devices were also proposed including an active variation of the TLCGD [6].
Most recently, a novel method for semi-active period adjustment was proposed, using variable vertical
column geometry [7]. These existing methods are not capable of non-complex and broad-range period
adjustment for low-frequency TLCDs.

Structural Control for OWTs

The use of structural control in OWTs is in a more exploratory phase than their onshore application
[8]. The potential benefits of Tuned Mass Dampers (TMDs) and TLCDs [9] for OWTs have been
investigated using both high-fidelity wind- and soil models [10][11][12]. Generally, results show a
potential reduction of OWT vibrations for both wind/wave- and seismic excitation [9]. The largest
improvements have been obtained for wind/wave misalignment and low/high wind speeds [11] (low
aerodynamic damping). Though, large uncertainties in the soil model can render passive control
ineffective [12]. Most recently, the use of a semi-active TMD for monopile OWTs has been studied [13].
Unlike the passive system, it was able to cope with foundation damage and soil uncertainty. Furthermore,
the semi-active system was shown to out-perform its passive counterpart while having a smaller stroke.

1.3 Problem statement

As explained in the previous paragraphs, vibration reduction during OWT installation plays an important
role in ensuring economic feasibility of monopile-type support structures for next-generation OWTs. The
use of TLCDs for this reduction gives rise to the following problems:

• TLCDs designed for the operational OWT are not effective1 around natural frequencies typical
during installation steps.

• Permanent modifications of the passive damper properties are undesired due to reduced effec-
tiveness during the operational life of the OWT. Temporary modifications of the passive damper
properties, besides additional gas-springs, are prevented by geometrical constraints.

• Current control strategies capable of increased effectiveness at largely off-tuned frequencies are
limited to active control; requiring large amounts of energy supply and components.

1.4 Research objective and scope

Main objective

Reduction of wave-induced vibrations during OWT installation by a novel non-invasive2 strategy for
period adjustment of off-tuned TLCDs: passive/semi-active3 airflow obstruction.

1Effectiveness is the ability of the damper to reduce dynamic vibrations of the host system.
2Non-invasive modifications are defined to have a negligible effect on the operational damper’s design and effectiveness.
3Semi-active devices have means of control but cannot add mechanical energy into the system through its actuators.
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Scope

In order to evaluate the main objective, numerical time-domain simulations are performed on the OWT
support structure including the modified TLCD. For this, first a numerical model describing the dynamical
behaviour of the Airflow Obstructed Tuned Liquid Column Damper (AO-TLCD) is required. For efficient
analysis, this model requires sufficient simplicity.

Therefore, the first part of this research focusses on the passive stand-alone TLCD. For this, two sub-
objectives can be identified: ‘development and validation of a simple4 numerical model’ and ‘investigation
of the dynamical behaviour of the passive AO-TLCD’. The modification mainly involves gas dynamics;
potentially requiring complex and computationally expensive models. Several assumptions, like quasi-
steady gas-flow and polytropic compression, are made. Thereafter, these assumptions are justified
through validation of the passive AO-TLCD model using small-scale experimental data.

The second part of this research aims to fulfil the main objective of this research. Again, two sub-
objectives can be identified: ‘robust period adjustment of the AO-TLCD’ and ‘evaluation of the effect of
the AO-TLCD on installation workability’. To ensure robust performance, semi-active control of the
airflow obstruction is investigated. The main focus is on actuator implementation and general feasibility.
Advanced control theory is outside the scope of this research. Therefore, control is limited to two sub-
optimal state-feedback strategies with on/off actuators. For the evaluation of the installation workability,
the same level of detail is assumed for the OWT. A modal reduced form of a support structure model
is used. Of which, soil-structure interaction is approximated through p-y curves. Due to the inherent
non-linear nature of the semi-active modification, the effects are investigated for a single case study and
a limited set of environmental conditions.

To further ensure robustness and general applicability of the AO-TLCD strategy. Its performance and
stability is analysed through a more general framework of periodic time varying systems.

1.5 Thesis outline

As mentioned in the previous section, this thesis has been split up in two parts based on the structural
control strategy. Part I is limited to the modelling and the behaviour of a stand-alone passive AO-TLCD.
Part II introduces semi-active control of the AO-TLCD and evaluates its performance for OWT installation.

The first part starts in Chapter 2 with an introduction to structural control in general. Furthermore,
current and proposed methods for period adjustment of a TLCD are discussed. In Chapter 3 the proposed
modification is investigated in greater depth. The model of a stand-alone passive AO-TLCD is derived. A
brief review of gas dynamics modelling is also given. To finalize part I, the AO-TLCD model is validated
in Chapter 4 using data from small-scale experiments.

The second part starts in Chapter 5, with a review of semi-active structural control and control theory.
Afterwards, in Chapter 6, additional information is given on OWT installation and modelling of OWTs
during this phase. Moreover, the semi-active AO-TLCD is coupled to the OWT model. Part II is concluded
in Chapter 7 with results from an installation phase case study including the fully coupled AO-TLCD
model.

In order to obtain a broader analysis of the performance and stability of the semi-active AO-TLCD,
the damper is analysed through a more general framework of periodic time variant systems in Chapter
8.

In Chapter 9, the main conclusions of this research are listed and recommendations for future work
are given.

4A simple numerical model is assumed to be limited to a set of algebraic- and ordinary differential equations with a limited
amount of degrees of freedom.
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Passive TLCD modification
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Chapter 2

Dynamic Vibration Absorbers

Dynamic vibration absorbers and their dynamic interaction with structures lie at the basis of this thesis
work. Consequently, this first chapter focusses on understanding the behaviour of such devices. For this,
a portion of the chapter is devoted to Tuned Mass Dampers (TMDs), as their working principle largely
dictates the workings of Tuned Liquid Column Dampers (TLCDs). In essence, the TLCD can be considered
as a specific class of TMDs.

First, the classification of vibration absorbers is defined. Afterwards, Section 2.2 explains the working
principle and dynamical behaviour of TMDs. In Section 2.3, the Equations of Motion of TLCDs are given.
Additionally, a comparison with regular TMDs is made. Afterwards, in Section 2.4 a review is given on
existing and new modifications for period adjustment of TLCDs. In this review, (semi)-active methods
are included briefly for completeness.

2.1 Structural control

Structural control of civil structures is a rich field of research. Numerous classes of strategies and devices
have been proposed, tested and applied in structures like high-rise buildings and bridges. This research
focusses on a single class of structural control devices: dynamic vibration absorbers (VAs), since these
are applicable in offshore wind turbines (OWTs).

Application of VAs in OWTs is in a more exploratory phase. The main difference with onshore
applications is that they should be designed to mitigate wave-induced vibrations instead of more broad
band wind and seismic vibrations. Furthermore, targeted frequencies are generally lower and spatial
restrictions are larger.

Classification structural control

Structural control through VAs can be classified in terms of type of control [4], as is seen in Figure 2.1.
The main focus of this research is on passive and semi-active devices.

• Passive devices are most simplistic but require careful tuning. The dynamic properties of a passive
device are determined by its geometrical design. In this research, damper modifications are
considered passive when they occur on much larger time scales than the natural period of the
device.

• Active devices require additional components like sensors, computers and (force)-actuators. This
enables the device to deal with off-tuning and vastly out-perform passive devices. Drawbacks are
that they require many components and large amounts of energy. Moreover, they can potentially
to destabilize the host structure.
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• Semi-active devices cannot add mechanical energy into the system through its actuator. Instead
passive device parameters, like damping, can be controlled and changed in real-time. As a
consequence, energy requirements are minimal and destabilization of the host is impossible. Semi-
active devices generally out-perform their passive counterparts and can deal with off-tuning. In
case of a failure in the control components, a passive system remains.

Figure 2.1: Classification structural control strategies (s = sensor, a = actuator, con = controller) [14].

2.2 Tuned Mass Dampers

The working principle of a passive TMD can be best explained through a linear 2DoF system as depicted
in Figure 2.2. Here the host system and the absorber are denoted by subscripts S and A respectively.
The equations of motion are given by Equation 2.1. Here, u = w − x is the relative displacement of the
damper and µ = m/M indicates the TMD mass ratio. As a result, the natural frequency of the host and
the absorber can be expressed as ω2

S = kS/M and ω2
A = kA/m, respectively. The damping ratio ζ is

obtained in the same fashion.
The idea behind a TMD, or VAs in general, is that the damper is excited by the host structure, in effect

absorbing part of its energy. Subsequently, this energy is dissipated by additional mechanisms introduced
by the damper. The behaviour of the 2DoF system largely depend on the damper parameters. For a
properly designed damper, the dynamic characteristics of the host system can be improved significantly.[
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ẅ
ü
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Figure 2.2: Single DoF host structure with a passive TMD.

A good understanding of the effect of the TMD can be obtained by through the energy balance of
the host system. For the steady-state response of a stationary stochastic excited system, the expectation



E[.] of kinetic and potential energy must go to zero, resulting in Equation 2.2. For the damper energy
flow, an equivalent additional linear damping can be defined by matching the energies with such a fictive
damping (Equation 2.3). The full derivation can be found in Appendix A.1.

2ζsωsE [ẇẇ] + µE [üẇ] =
1

M
E [F (t)ẇ] (2.2)

∆ζs =
µ · E [üẇ]

2ωs · E [ẇ2]
(2.3)

Equation 2.3 shows how the additional dissipation is influenced by the damper parameters. For
optimal performance, the phase difference between ẇ and ü must be kept at a minimum while the
magnitude of the forcing term should be as high as possible. This requires a natural frequency close to
that of the host and low TMD damping. Though, for low internal damping, the effect of the damper may
be too narrow banded. Therefore, an optimal damping value exists, depending on the type of excitation.

An approach for finding these optimal parameters was first introduced by Den Hartog [15] and
later expanded for additional types of excitations by Constantinou [16]. Both methods assume an
undamped host structure and optimal performance over the whole frequency band. Therefore, it may
not be applicable for narrow-banded excitation. Such excitations require either numerical optimization
or optimal parameter definitions using higher order filters [17]. Moreover, constraints may require
reduction of the TMD response through increased damping.

In Figure 2.3 the dynamic amplification of a lightly damped host structure, including an optimally
tuned TMD, is given as a function of the excitation ratio γ for different damping values1. The optimal
tuning ratio δ and damping ζA were computed for a statistically random excitation and are listed in
Equation 2.4. Infinite internal damping, ζA = ∞, represents the stand-alone host system including
damper mass.
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Figure 2.3: Dynamic amplification host structure with optimally tuned TMD as a function of ζA.

δopt =

√
1 + 0.5µ

(1 + µ)2

ζA,opt =

√
µ(1 + 0.75µ)

4(1 + µ)(1 + 0.5µ)

(2.4)

1In this research, the use of ‘damping’ without any further clarification always refers to the TLCD. Alternatively ‘internal
damping’ may be used. For inherent structural damping, always some reference to the host or structure is given. Damping
added by the TLCD to the host, equivalent structural damping, will be referred to as ‘effectiveness’.



2.3 Tuned Liquid Column Dampers

With the working principle for a linear TMD defined, we can start looking at the similarities and
differences of a TLCD.

2.3.1 General description

A tuned liquid column damper, generally is a U-shaped container containing a Newtonian liquid, as can
be seen in Figure 2.4. Unlike a TMD, it does not require additional components to represent a full mass-
dashpot-spring system. Stiffness results from the restoring weight of the liquid and damping is a result
of viscous and turbulent pressure losses along the streamline. Additional stiffness and damping can be
obtained through sealing of the gas compartments and the use of orifices in the liquid, respectively. The
TLCD can be closed from the environment to prevent corrosion, as long as the interconnecting pipe
conveys free gas flow.

The simplicity of the TLCD can be an advantage, especially in offshore applications where high
reliability is of importance. A disadvantage, for the application in OWTs, is the required volume to
obtain the desired mass ratio, due to the relatively low density of the liquid compared to TMD masses
comprised of steel or concrete.

Figure 2.4: Regular sealable TLCD attached to host with accelerations ẅ [5].

2.3.2 Equation of motion

Assumptions have to be made in order to derive the equations of motion of the TLCD. Most importantly,
we assume that the liquid is incompressible and moves uniformly across a streamline. The viscous and
turbulent losses are combined into a single headloss parameter δL dependent on the TLCD configuration.
For a TLCD without orifice, the turbulent losses caused by liquid moving between horizontal and
inclined/vertical sections are most dominant [18].

Using Lagrange one can derive the equation of motion for a TLCD illustrated in Figure 2.4, including
the possibility of sealed gas compartments. Fluid properties and displacements are generally denoted
by subscript f . An U-shaped container with β = 90◦ is assumed, which simplifies the equations for the
reaction forces and parameters.

üf + δL|u̇f |u̇f +
∆p

ρfLeff
+ ω2

Auf = −κẅ (2.5)



Reaction forces The conservation of momentum is used to derive the reaction forces [5] listed in
Equation 2.6 to Equation 2.7. Here, mf denotes the fluid mass. The vertical force in Equation 2.7
excludes gravitational forces.

fx = −mf (ẅ + κ̄ü) (2.6)

fz = 0 (2.7)

Parameters The main parameters of the TLCD are listed in Equation 2.8 - 2.12. The effective length,
Leff , can be viewed as the equivalent energy length of the fluid. The equivalent mass length, Lem, is
related to the fluid mass mf through the vertical TLCD area AH . Both lengths, are influenced by the
area ratio α = AH/AB . The headloss coefficient δL is obtained experimentally. Though, Equation 2.11
provides insight in the geometric scaling of the headloss for constant fluid resistance λ. Finally, geometric
factors influencing the reaction forces are listed in Equation 2.12.

Leff = 2H + αB (2.8)

Lem = 2H + α−1B (2.9)

ωA =

√
2g

Leff
(2.10)

δL =
λ

2Leff
(2.11)

κ =
B

Leff
, κ̄ =

B

Lem
(2.12)

Gas pressure The pressure difference for a sealed TLCD, or Tuned Liquid Column Gas Damper
(TLCGD), can be approximated by Equation 2.13. Where, ε is the inverse linear gas-spring stiffness.
The gas compartments are studied in more detail in Section 3.3.

∆p = p2 − p1 = ε−1uf (2.13)

2.3.3 Comparison with the linear TMD

The main differences between the TLCD and the TMD described in Section 2.2 are: its non-linear
damping and the introduction of geometry factors in the coupling forces. First, the efficiencies of
both dampers are compared based on the geometry factors. Afterwards, the non-linear damping
characteristics are analysed further.

Geometry

An analogy between a linearised TLCD and a TMD can be made that shows the influence of the geometric
parameters listed in Equation 2.12. The most important result of this transformation is the introduction
of the active mass mact and the passive mass mpas [5] (not to be confused with the classification in
Section 2.1). For a larger value of κκ̄, the equivalent TMD mass ratio of the TLCD decreases, reducing
its effectiveness directly [19]. The active mass can be maximized by increasing the horizontal mass of
the TLCD through the width B and the ratio α. For OWT applications this can be relatively difficult
compared to onshore civil structures, as the low natural frequency and space restrictions require a high
value of α. For the remainder of this research whenever the mass ratio is quantified it is expressed as in
Equation 2.16. Though in most equations, the normal modal mass ratio µ is used.



mact = κκ̄mf (2.14)

mpas = mf −mact (2.15)

µEq,TMD =
κκ̄µ

1 + µ(1− κκ̄)
(2.16)

Damping

In reality the TLCD damping is not linear as was assumed in the previous paragraph. Though, its
non-linearity can be linearised with reasonable accuracy for a stationary excitation. The derivation of
Equation 2.17 can be found in Appendix A.1. In Equation 2.17, Uf0 expresses the observed or expected
liquid displacement amplitude of the non-linear TLCD response. In Equation 2.18, σu̇f is the liquid
velocity standard deviation of the non-linear TLCD response.

1. Using harmonic linearisation (e.g. equivalent dissipated energy in one cycle or harmonic balancing)
[5] [18]:

ζA =
4

3π

ω

ωA
Uf0δL with Uf0 = max(uf ) for irregular excitation (2.17)

2. Using statistical linearisation (assuming Gaussian random white-noise excitation) [17] :

ζA =
δL
ωA

√
2

π
σu̇f (2.18)

The design of an optimal TLCD is a cumbersome process due to its non-linear damping, as the optimal
headloss coefficient is inversely proportional to the excitation intensity [18]. This results in sub-optimal
performance of the damper at excitations deviating from its ‘design’ excitation.

To illustrate this, approximate effectiveness graphs can be very useful. Moreover, these graphs provide
insight in the effect of internal TLCD properties on the host in general. In Figure 2.5, such a graph is
given. Here, the structural damping of the host is 4% LogDec and the equivalent mass ratio is 1.1%,
corresponding to one of the case-studies defined later in this research.

Assuming white noise excitation of the host, a frequency domain approximation can be computed
for the effectiveness of the TLCD using Equation 2.3. The effectiveness depends on the internal linear
damping indicated on the x-axis and the tuning ratio of the TLCD, indicated by different lines.
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Figure 2.5: Effectiveness TLCD attached to a white noise excited host structure, for variable damping and
tuning, including typical operational regions of the OWT.



A typical region of an operational TLCD has been indicated by the orange area. Tuning may vary
across OWTs in a single offshore wind farm due to uncertainties and variations of the host natural
frequency across the farm. The linearised damping, for a single OWT varies depending on the excitation
intensity. A properly designed TLCD, is generally over-damped 2 and have near optimal tuning.

A possible region for a TLCD during installation is indicated by the blue area. The TLCD is off-tuned
due to an increase of the structure’s natural frequency. The TLCD is under-damped because critical load
cases during installation are milder compared to dominant fatigue load cases. Consequently, resulting in
a lower linearised damping.

The effect of different OWT phases on the internal properties of the TLCD is discussed and demon-
strated further in Chapter 6.

2.4 Period adjustment strategies

To illustrate the narrow-banded effect of the damper further, the effectiveness of an optimally damped
TLCD is plotted in Figure 2.6 against the normalized host frequency. Three different passive settings
can be obtained for a single TLCD design through sealing of the gas compartments containing air at
atmospheric conditions:

• Open TLCD: Both gas compartments of the TLCD are fully open or connected by an interconnecting
pipe conveying free flow.

• 1-sided sealed TLCD: A single gas compartment is fully closed while the other compartment is fully
open to the surroundings.

• 2-sided sealed TLCD: Both gas compartments are fully closed.

Again, typical operational and installation frequencies have been indicated with orange and blue areas
respectively. The host frequency has been normalized by the ‘regular’ open TLCD.
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Figure 2.6: Effectiveness optimally damped TLCGD attached to a white noise excited host structure,
including operational regions OWT.

Natural frequencies of multiple installation steps lie in the region indicated by blue. In some cases,
such low damper effectiveness could be detrimental for the installation workability. For the case study
presented at the end of this thesis, a workability decrease up to 50% is observed for the worst-case
scenario. Therefore, additional methods are required to adjust the natural period of the damper.

2With respect to the TLCD, ‘over-damped’ refers to damping values larger than optimal. ‘Under-damped’ conditions refer to
damping values smaller than optimal. In this definition, optimal damping is based on the optimally tuned TLCD.



2.4.1 Current methods

Existing and proposed period-adjustment strategies are divided up into three classes based on the
location where it is applied. An overview of these methods and their constraints is given in Table 2.1.

Additional devices

The first class of modifications was proposed by Teramura [20] and can be found in Figure 2.7.
Additional mechanisms are introduced to control the gas-spring stiffness: the secondary TLCD and the
valve/pendulum stiffness. This method is assumed to be too exotic for an offshore application due to the
relatively high number of components.

Figure 2.7: Concept for Period-Adjustment Liquid Column Damper (LCD-PA) [20].

Gas compartments

The second class of methods found in literature, is based on further modification of the gas-springs. Two
ways to to achieve this are: modification of the compartment’s volume and pressurization.

An increase of the gas compartment’s volume, effectively decreases the gas-spring stiffness. This has
also been shown to work with consecutive gas volumes that can be switched to tune to a multitude of
frequencies [21]. The downside is the requirement for a potentially large additional gas volume. The
normalized additional gas volume Vadd required for the design in this research, can be seen in Figure
2.8.

Pre-pressurization of the gas compartments has also been shown to be an effective way to change
the gas-spring stiffness [5]. When the sealed frequency needs to be reduced, this requires lower than
atmospheric pressures, potentially resulting in large hoop stresses and buckling [22].

An active counterpart of the TLCGD has also been investigated and can be effective for period
adjustment [6].

Liquid compartments

Semi-active strategies that utilize control of the fluid’s viscosity, through magneto rheological (MR) fluids
[23], are considered too expensive and invasive for the operational TLCD.

Various research has been performed on using semi-active control of a variable orifice [17][24]. Since
this method only provides limited control over the viscous damping forces in the TLCD, its application
for period adjustment is limited.

Most recently a novel semi-active strategy has been proposed to obtain control over the natural
frequency and damping of a TLCD [7]. Movable panels were installed in the vertical columns resulting
in a variable effective length of the TLCD. The strategy is deemed un-practical due to the potentially
complex geometry of a TLCD fitted in an OWT. Moreover, immersed moving components are considered
too unreliable for offshore applications.
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Figure 2.8: Additional gas volume requirement for period adjustment TLCD.

2.4.2 Additional methods

All of the above methods violate at least one of the following restrictions formulated in the problem
statement:

• Operational effectiveness TLCD affected

• Geometrical constraint

• Large number of (unreliable) additional components

• High energy requirements

Two additional methods are discussed, both based more or less on existing methods. These variations
alleviate one or more of the constraints listed above.

Additional spring-element

A passive method based on a simplification of the LCD-PA proposed by Teramura, would be to use a spring
in series with the gas-spring. This could be achieved through some kind of piston or a impermeable
flexible membrane in the gas compartments. In this manner, the large number of components of the
LCD-PA concept is reduced. A schematic overview is given in Figure 2.9.

Figure 2.9: Additional spring-element concept for period adjustment TLCD.



Neglecting mass/damping of the piston and assuming a linear spring, Equation 2.19 is obtained for
the natural frequency of the TLCD. The factor fp introduces additional control over the natural frequency
compared to a regular sealed TLCD. Here, kp is the piston spring stiffness, ε is the original inverse gas-
spring stiffness and β2

p is the area ratio between the piston AP and the vertical compartment AH . The
piston displacement up can be found according to Equation 2.20. Note that reduction of the gas spring
stiffness requires large values for fp which may result in large piston displacements. The complete
derivation can be found in Appendix A.2.

ω2
A =

2g

Leff
+

1− fp
ερfLeff

(2.19)

up = fp
1

β2
p

uf (2.20)

fp =
1

1 +
V0kp
np0A2

p

(2.21)

For the target TLCD response, large piston deflections/volumes may occur in case of period adjust-
ment to low frequencies. For extreme TLCD responses, expected piston deflections may be even larger, or
the spring should contain hardening characteristics. It is deemed un-practical to implement an adjustable
spring in the gas compartments including these requirements.

Air-obstruction

Passive or semi-active variations on the active TLCGD may also be able to achieve effectiveness at
intermediate frequencies. These variations, that can be achieved through controllable valves in the
gas system, do not violate the energy requirement constraint. Furthermore, additional components are
kept relatively low and all modifications can be made away from the regular TLCD, in the gas system.
Lastly, the vast amount of research performed on TLCGDs including experimental validation make it an
attractive option. In the next chapter, and the remainder of this research, this Airflow Obstructed Tuned
Liquid Column Damper (AO-TLCD) is studied in greater depth.

Overview

An overview of the strategies mentioned in this section is given in Table 2.1. Here, a minus indicates
violation of one of the constraints mentioned in Chapter 1.

Table 2.1: Morphological overview of existing and new TLCD modifications (+ : good , 0 = neutral , - =
violation constraint, none = N/A ).

Modifications Effectiveness PA Op. effectiveness Geometrical Components Energy
LCD-PA 0 0 + -
Passive TLCGD + + - 0
Active TLCGD + + 0 - -
Vertical compartments - + + - 0
Semi-active damping - + + 0 0
Spring series + + - +
AO-TLCD + + + 0 0





Chapter 3

Modelling of Airflow Obstructed TLCDs

In the previous chapter a new TLCD period adjustment strategy was introduced. This chapter elaborates
further on this airflow obstruction (AO) strategy, including the derivation of a numerical model and the
physics behind it.

Firstly, a more detailed overview of the strategy and its underlying modelling assumptions are given.
In Section 3.2 some fundamentals on gas dynamics and compressible flow are briefly discussed. Section
3.3 - 3.5 apply and simplify these fundamental concepts into the pressure and massflow equations.
Afterwards, in Section 3.6 these ‘ingredients’ are used for the derivation of the AO-TLCD model.
Additionally, further analyses are performed to increase the understanding of the behaviour of the airflow
system.

3.1 Working principle and assumptions AO-TLCD

Compared to the sealed TLCD, gas pressures are released partially through massflow. As a result,
the restoring force on the liquid can be influenced and reduced, resulting in modified behaviour and
properties of the TLCD. A representation can be found in Figure 3.1. For now, the AO-TLCD is still
assumed to be passive. In other words, the properties of the control valve can only be changed on time
scales far greater than the damper its natural period.

Figure 3.1: Overview of AO-TLCD with control valves.
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3.1.1 Assumptions

For a numerical model to be derived, assumptions have to be made regarding the behaviour of the gas.
These are the following:

Quasi-steady

Temporal variations in the flow are much smaller than spatial variations, and can be neglected. The
flow in-between the two reservoirs ‘responds’ instantaneous to reservoir conditions. This assumption is
explained in greater depth in Section 3.2.2.

Compression

Uniform reservoir conditions are assumed. Furthermore, the compression follows polytropic relations. A
more thorough review is given in Section 3.3.

Massflow

For the massflow we assume:

• Subsonic: The flow does not become supersonic. No discontinuities exist in the pressures across
the total gas volume.

• Adiabatic flow: There is no net heat exchange; even though heat is generated through viscous
losses.

• (In)-compressibility: The flow’s properties may change as a function of the flow speed.

• Quasi-1D: The flow can be analysed along one-dimensional streamlines.

• Viscid: Losses occur in the system. Turbulent losses can be approximated through empirical
relations.

Some of the flow equations derived in Section 3.4 may also assume isentropic conditions, meaning
that the flow is reversible and adiabatic (not viscid). This holds as long as the bulk of the flow is not
affected by irreversible effects. In other words: as long as the boundary layer is small.

Other assumptions

The additional volume of the gas system is neglected.

3.2 Brief review of gas dynamics

Since the application of this thesis is outside the field of gas dynamics, a brief review on its relevant
fundamentals is given. This review encompasses terminology required to formulate the model of the AO-
TLCD. Moreover, it includes the laws of conservation, thermodynamics and the concept of compressible
flow. The latter is mainly used as a basis to formulate the compressible massflow equations in Section
3.4. In the end, these compressible forms are only used for the justification of the simplified forms in
Section 3.5.



Terminology

For gas properties like pressures, temperatures and densities different reference definitions exist. The
difference between these definitions is important for the upcoming sections. Below an example is given
for the pressure p at location i.

• pi Static: These refer to the properties which are ‘felt’ for a reference frame moving along the gas
at local velocity. If a property is referred to without further specification it can be interpreted to be
static. These properties are often also referred to as local properties.

• p0i Stagnation: These refer to the properties if the flow would be brought to a rest isentropically.
The difference between the static and the stagnation pressure is the dynamic pressure.

• pti Total: The total properties are generally the same as the stagnation properties. The exception
is the total pressure, which also includes the gravitational pressure. For gasses the gravitational
forces can be neglected, so the terms total and stagnation can be interchanged.

• p∗i Sonic: The static properties at sonic speed.

Additionally the terms are illustrated in Equation 3.1 using the Bernoulli equation, which is a
derivation of the energy equation. Here, H represents the total head of the system.

pt︸︷︷︸
total

= Hρg =

stagnation︷ ︸︸ ︷
pi︸︷︷︸

static

+ 0.5ρv2︸ ︷︷ ︸
dynamic

+zρg (3.1)

3.2.1 Fundamental equations

Below the conservation laws and the state relation for a caloric perfect gas are given. The conservation
laws are given in a steady one-dimensional form. Depending on the equation, additional assumptions
are included. An extended review of the fundamental equations, including the general derivative form of
the conservation laws, can be found in Appendix A.3. For a thorough review of the conservation laws and
thermodynamics the interested reader is referred to Chapter 2 and Chapter 7 of Anderson, respectively
[25].

Laws of conservation

A steady 1D integral form of the conservation of mass, i.e. the continuity equation, is given in Equation
3.2. Here, ρ is the static density, v is the velocity and C is a constant.

ρAv = C (3.2)

A steady 1D derivative form of the conservation of momentum is given in Equation 3.3 Here, fx can be
a combination of forces acting in the x-direction (e.g. wall friction).

ρv
∂v

∂x
= −∂p

∂x
+ ρfx (3.3)

An isentropic steady 1D integral form of the conservation of energy is given in Equation 3.4. Here h
denotes the enthalpy.

h+ 0.5v2 = C (3.4)

Thermodynamics

The equation of state for a perfect gas, or the ‘ideal gas law’, is given by Equation 3.5 . Here, R is the
specific gas constant.

p = ρRT (3.5)



3.2.2 Compressible flow

Depending on the dimensions and design of the airflow system, the gas flow may become compressible.
A flow is said to be compressible when “changes in fluid momentum cause important variations in the
fluid pressure and density” [26]. For low-speed flow of a gas “the actual magnitude of the pressure
changes throughout the flow field is small compared with the pressure itself” [25].

Incompressible flow obeys purely mechanical laws and does not require thermodynamic considera-
tions, while compressible flow is dependent on thermodynamics. The relation for incompressibility can
be derived from the continuity equation in its steady derivative form and is given by Equation 3.6.

5 (ρv) = 0→ v
∂ρ

∂x
� ρ

∂v

∂x
(3.6)

Classification compressible flow regimes

Below the classification of compressible flow regimes is listed. Here, M is the Mach number. Depending
on the design, the AO-TLCD is either in the incompressible or in the sub-sonic region.

• Incompressible flow (M<0.3): Property variations due to momentum can be neglected.

• Subsonic flow (0.3<M<1): The flow must be assumed compressible.

• Transonic flow (0.8<M<1.2): Shock waves may appear and lead to rapid increase of losses. This
type of flow can be hard to analyse.

• Supersonic flow (1<M<3): Shock waves are generally present.

Speed of sound

The speed of sound c, or wave speed, can be derived by analysing the flow properties across a pressure
wave. By combining the continuity equation (neglecting higher order terms) with the momentum
equation (neglecting viscous stresses and assuming steady flow) and using isentropic relations, Equation
3.7 is obtained. Here, γ is the isentropic constant which is equal to 1.4 for air around atmospheric
conditions.

c =
√
γRT (3.7)

For a caloric perfect gas, the local speed of sound only depends on the local temperature.

c = c0

(
T

T0

)0.5

(3.8)

The local Mach number is defined as:

M =
v

c
(3.9)

Quasi-steady

In essence, quasi-steady means that the time is ‘frozen’ at every instant and the problem is solved as if it
were steady. In reality compression and flow does not occur instantaneous.

Instead, a pressure wave is formed that moves across the gas at the local wave speed. Therefore, two
separate locations in a gas can only ‘communicate’ with each other with the speed of sound. For our
application, the time for a pressure wave to move in-between the two gas compartments is far smaller
than the natural period of the TLCD (Lduct · c−1 << 0.01Tn). Therefore, quasi-steady conditions can be
assumed.



Isentropic compressible flow

As described at the start of this chapter, gas properties may vary due to a change in the fluid’s momentum.
Compared to their stagnation properties, local properties decrease as a function of the Mach number.
Assuming isentropic conditions these relations can be derived. They can be found in Appendix A.3.

3.3 Compression

Compression of the gas is also assumed to occur quasi-steady (e.g. the compartments have uniform
properties). During compression, temperature changes as a result of the work performed on the gas. The
amount of heat exchange with the environment, as a result of the temperature changes, influences the
actual pressures. For an ideal gas compression can be described by the polytropic process, which assumes
heat exchange to be proportional to the compressive work. Therefore, it lies in-between isentropic
compression (very fast and thus no heat exchange) and isothermal compression (very slow and thus
maximum heat exchange).

Polytropic index

The polytropic assumption for passive TLCGDs, has been validated experimentally. In small-scale
experiments a polytropic index of 1.2 was obtained [22]. Though, the polytropic index is influenced
by frequency (compressive speed), TLCD geometry (scaling laws), TLCD material and other properties.
As mentioned by Hochrainer: “it depends on each TLCGD design, the polytropic index 1 ≤ n ≤ 1.4 is
determined experimentally in practical applications” [6]

Polytropic relations

The polytropic relation along a streamline is given by Equation 3.10. In Equation 3.11 the integral form
of this relation is given. Here, heff = V0/AH is the effective height of the gas compartment depending
on the initial volume V0. The total mass that has been displaced is indicated by ∆m. In general the
reservoir conditions in both compartments are fully determined with only two known variables (e.g.:
p01, uf ).

General form:
p

ρn
= C (3.10)

Integral form: p0i = p0

(
(1−∆m/m0)

(1− uf/heff )

)n
(3.11)

The differential form, given by Equation 3.12, is found by combining the time derivative of the
massflow and the density. Here, V = V0 − Ahuf is the instantaneous volume of the gas compartment.
Similarly, m and h are the instantaneous mass and height.

ṁ =
d(ρV )

dt
= V ρ̇+ ρV̇ = m

(
u̇f
h

+
ρ̇

ρ

)
ρ̇ =

dρ

dt
=

d

dt

(
ρ0

(
p

p0

)n−1)
=
ρṗ

np

ṗi = npi

(
u̇f
hi
− ṁ

mi

)
(3.12)



3.4 Massflow

This section focusses on massflow in-between two gas reservoirs with differing reservoir conditions.
First, the working principle behind the massflow is explained. Afterwards, derivations of incompressible
and compressible flow equations are presented. Inviscid flow, i.e. reversible flow, is not covered in this
research, as it does not represent realistic massflow. Especially not in case when controllable valves are
used.

3.4.1 Working principle

Massflow occurs when upstream reservoir pressures differ from downstream conditions by ∆p. For the
momentum to be at balance, the static exit pressure pe must equal the downstream reservoir pressure
p02. In other words, ∆p can be balanced by two mechanisms: by viscid losses across the flow or by an
increase in dynamic pressure.

Equation 3.13 shows the effect of these two mechanisms. Here, ∆p describes the pressure difference
between the two gas reservoirs with index 1 and 2. The pressure losses ploss occur due to flow between
upstream reservoir 1 and exit e. The increase of dynamic pressure influences the ratio between the local
and the stagnation pressures at the exit e.

∆p = p01 − (p01 − ploss)
(
pe
p0e

)
(3.13)

3.4.2 Incompressible flow

So-called ‘local losses’ are often the most dominant dissipative mechanism in an incompressible flow.
These losses result from complex flow patterns due to geometry changes (e.g. sudden exits/entrances,
bends and valves). For some flow elements, these losses can be approximated through empirical
correlations (instead of CFD simulations). Average design values for these loss factors can be found
in numerous engineering handbooks. More specific values can be found in manufacturers brochures. In
this research the loss factor definition K is used together with average design values [27]. This results
in Equation 3.14. Manufacturers often use factors Kv or Cv. The relation between these definitions and
the values used for K, can be found in Appendix A.4.1.

ploss = 0.5
∑

Kρ1v2
1 (3.14)

Additionally, friction occurs across the walls. Wall shear stresses are assumed to be correlated by
the Darcy friction factor f , which is found in the Moody chart [28]. For the fully turbulent regime this
simplifies into a velocity independent loss factor. Here, L and D denote the length and diameter of the
duct, respectively.

Kfriction =
f̄L

D
(3.15)

In Equation 3.16, Equation 3.14 is written in terms of massflow. Here nv,jβ2
j is the area ratio between

the nominal flow area at location j and the reservoir area. Dynamic outlet losses need to be taken into
account by either an additional factor K equal to 1 or by an empirical correlation for losses due to a
sudden exit (often close to 1).

ṁ = AHnv,jβ
2
j sgn(∆p)

√
2ρ1|∆p|∑

Kj
(3.16)



3.4.3 Compressible flow

Depending on the flow, effects due to compressibility may not be negligible. Compressible flow equations
can result in completely different conditions. Therefore, it is important to define these equations and to
compare their results with the incompressible flow equations.

Similar to incompressible flow we can derive analytical expressions for the massflow when assuming
a Moody-type pipe friction problem. Specifically one with “large changes in kinetic energy and enthalpy”
[27]. Due to compressibility and viscid losses, both the gas’ local and stagnation density drop across the
flow. As a result, downstream flow velocities increase. Inclusion of these effects in the steady momentum
equation yields the Fanno flow equations. Below a brief summary of the results is given. For a more
thorough review, the reader is referred to Chapter 9 of White [27].

(
f̄L

D

)
i,ref

=
1−M2

i

γM2
i

+
γ + 1

2γ
ln

(
(γ + 1)M2

i

2 + (γ − 1)M2
i

)
(3.17)

pi
p∗

=
1

Mi

√
γ + 1

2 + (γ − 1)M2
i

,
p2

p1
=
p2

p∗
p∗

p1
(3.18)(

f̄L

D

)
2,ref

=

(
f̄L

D

)
1,ref

− f̄L

D
(3.19)

If the length of the duct is larger than the so-called critical length L∗, exit flow velocities approach
sonic conditions. Contrary to nozzles, the flow cannot become supersonic. Further losses require an
increase in entropy, which is at its maximum at the sonic point. Consequently, the massflow will start to
choke. Further decrease of the back-pressure does not change the massflow. Oblique shock-waves may
occur at the exit.

if L > L∗ →
(
f̄L

D

)
1,ref

=

(
f̄L∗

D

)
(3.20)

Alternatively, the equations can be rewritten into terms of initial and final properties. In combination
with the isentropic compressible flow Equations A.35 - A.37, these can be used for more direct
computation of the pressure drop. However, a closed form for the massflow for a given pressure drop
does not exist. Hence, interpolation or iteration is required.

p02

p01
=
M1

M2

(
T2

T1

) γ+1
2(1−γ)

(3.21)

T2

T1
=

1 + 0.5 (γ − 1)M2
1

1 + 0.5 (γ − 1)M2
2

(3.22)

To include local losses, the friction losses in Equation 3.19 can be replaced by the total loss factor K.
Although, the range of Mach numbers where this formulation is valid depends on the range for which
the empirical factor K has been derived for.



3.5 Modelling simplifications airflow obstruction

In order to enhance computational speed and to analyse the behaviour of the AO-TLCD more thoroughly,
further simplifications of the numerical model are required. In this section, the pressure and massflow
equations are simplified. Moreover, the range for which these expressions are accurate is investigated.

Pressures

Linear expressions for the pressures can be obtained through the time derivative of the Taylor series
expansion of Equation 3.11 or by assuming constant reservoir conditions for Equation 3.12. As liquid
displacement and massflow are opposite for both compartments, the pressure difference can be expressed
according to Equation 3.23. Here, ε is the inverse air spring stiffness given by Equation 3.24. Here, Nc
indicates the number of closed compartments.

∆ṗ ≈ np0Nc

(
u̇

heff
− ṁ

m0

)
= ε−1

(
u̇− ṁ

ρ0AH

)
(3.23)

ε =
heff
np0Nc

(3.24)

The linear expression for the pressure difference is accurate for a large range of inputs, as is shown
in Figure 3.2. Pressure differences are given for constant mass and constant reservoir volume on the left
and on the right, respectively. For a 2-sided sealed TLCD, errors due to volume changes are dominant and
smaller than 10% for normalized displacements χ smaller than 0.3. For χ > 0.3, the linear expression
may still be accurate in case the displaced mass is also large (resulting in low pressures).

In some cases the potential energy of the gas springs may be more important than the magnitude
of the pressures. Using the equivalent linearisation method given in Appendix A.1, one can derive a
linear pressure relation with the same potential energy as its non-linear counterpart. For χ = 0.3, this
equivalent stiffness shows an even better agreement with Equation 3.23.

For a 1-sided sealed TLCD, errors in the pressure magnitude are larger. While, the error in equivalent
energy flow over a whole cycle is the same as for 2-sided sealed TLCDs. Therefore, above assumptions
may not hold in case a TLCD is intermittently closed 1-sided in an a-symmetric manner during a single
cycle.
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Figure 3.2: Comparison linear pressure and equivalent linear pressure with non-linear form for a two-sided
sealed TLCD with n=1.2.



Massflow

The incompressible massflow Equation 3.16 can be simplified further when the reservoir pressures are
computed with the linear polytropic relation. Additionally, changes in the upstream density can be
neglected, result in Equation 3.25. A flow obstruction parameter KO is introduced to address multiple
flow elements with different nominal diameters. The full derivation can be found in Appendix A.4.3.

ṁ =
AHρ0

KO
sgn(∆p)|∆p|0.5 (3.25)

KO =

√√√√∑
j

(
Kj

n2
v,jβ

4
j

)
ρ0

2
(3.26)

In Figure 3.3, Equation 3.25 is compared with the incompressible and compressible massflow
equations derived in Section 3.4. The massflow is given for pressure differences across the two
reservoirs. Moreover, the corresponding normalized liquid displacements required for such compression,
are indicated. For this, the non-linear polytropic relation was used with zero massflow. As a result the
relation between χ and ∆p in Figure 3.3b corresponds to Figure 3.2a. Hence, it illustrates the massflow
rate from a previously sealed reservoir at the moment of instantaneous opening of the valve.

Errors for the simplified massflow equation can get up to 15% for χ < 0.3, especially for 1-sided
under-pressures. Though, the conditions in Figure 3.3 are extremely rare and temporary. These
conditions can only occur for strong TLCD responses in combination with very sudden changes in the
valve opening. Moreover, for such a release, pressures will decrease quickly to acceptable values (with
respect to the error margin).
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Figure 3.3: Comparison massflow equations for very low obstruction with n=1.2.



Massflow release

To illustrate this, such a release is shown in Figure 3.4. Here the pressure release can be found for a 1-
sided sealed TLCD, compressed up to ∆p = −27kPa (χ ≈ −0.3). On the left, valves open instantaneously.
On the right, valve dynamics are included using a critically damped second order low-pass filter with a
normalized rise time of 8.7% of the TLCD natural period (time to open/close for 95%). The ‘non-linear’
massflow equations were used in combination with non-linear pressure differential Equation 3.12. While
the simplified massflow equation was combined with the linear differential form. As a consequence, both
the error in massflow and the error due to decompression are tested.

As expected, errors are negligible due to an improvement of the regime during the release. Addition-
ally, the agreement between the different formulations is improved further due to inclusion of actuator
dynamics. During intermediate opening of the valve, obstruction is larger. Pressure differences across
the valve can be maintained using lower flow speeds. Therefore, the flow is less compressible, effectively
improving the regime illustrated in Figure 3.3
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Figure 3.4: Comparison massflow equations for pressure release from previously 1-sided compressed
compartment with n=1.2.

3.6 Stand-alone model AO-TLCD

Using the simplified expressions for pressure and massflow as described in Equation 3.23 and Equation
3.25 we arrive at the equations of motion.

üf + δL|u̇f |u̇f +
∆p

ρwLeff
+ ω2

Auf = −κẅ (3.27)

∆ṗ+
1

ε

ṁ

AHρ0
=

1

ε
u̇f (3.28)

ṁ = f (∆p) =
AHρ0

KO
sgn(∆p)|∆p|0.5 (3.29)



Equation 3.27 - 3.29 can be rewritten into their first-order differential form. Here the state x is given
by Equation 3.30.

x =
[
uf ∆p u̇

]T
(3.30)

ẋ = −

 0 0 −1
0 0 − 1

ε
ω2
A

1
ρwLeff

δL|x3|

x +

 0
0
κẅ

+

 0
−f (∆p)

0

 (3.31)

Low obstruction

In line with one of the constraints, the operational effectiveness of the TLCD must remain unaffected by
the proposed modification. Moreover, we must find a way to size the air system accordingly. For this, the
effect of the fully open airflow system on the TLCD can be approximated.

For these conditions we assume the pressure difference across the reservoirs to be negligible. As a
consequence, we may assume the gas flows freely and in phase with the liquid velocities. Contradictory,
it is still assumed losses occur due to this flow. Since they are in phase with liquid velocities, these losses
result in additional internal damping of the TLCD. This effect has also been observed by Hochrainer in
experiments with fully open TLCGDs [6].

Assuming a linear response, we can derive Equation 3.32 for the additional headloss ∆δL introduced
by the airflow system. The full derivation can be found in Appendix A.1.3.

∆δL =
K2
O

ρWLeff
(3.32)

Linear pressure drop valves

In case the pressure drop over the valves is assumed linear with respect to massflow, differential Equation
3.28 can be solved to gain more insight in the effect and dependencies of the air system. In the frequency
domain, the linear form of Equation 3.29 results in the complex amplitude of the pressures. Relations
for additional damping and stiffness can be obtained and the air-system DoF can be eliminated.

The results show that for passive (linear) airflow obstruction the additional damping and stiffness
are related [29][30]. As a consequence, they cannot be modified independently without violating
constraints.

These valves exist in the forms of permeable membranes (commercially available carpets) and
honeycomb filters.





Chapter 4

Validation and dynamic behaviour
passive AO-TLCD model

The purpose of this chapter is two fold: validation of the proposed AO-TLCD model and analysis of
the passive airflow obstructed behaviour. These two purposes are closely related because the validation
requires interpretation of the AO-TLCD’s behaviour.

Validation is performed using small-scale experimental data. First, this experimental set-up and its
limitations are discussed in Section 4.1. Afterwards, results are given and analysed. Section 4.2 treats
the validation of the numerical model. Section 4.3 shows a more in-depth analysis of the AO-TLCD’s
behaviour. At the end of this chapter, in Section 4.5, the results for part I of this research are summarized
and discussed. Furthermore, some additional observations and recommendations are made, including
the reason for part II of this research: semi-active damper modifications.

4.1 Experimental set-up

The main goal of experimental validation is to check assumptions regarding the massflow and its
effects on the gas pressures. The validation regarding compression is of less importance, as polytropic
compression of TLCGDs has already been validated in experimental studies [22]. Assumptions regarding
compressible flow could not be checked with the experimental data because flow-speeds were low due
to its small-scale set-up.

4.1.1 Set-up

The small-scale set-up can be found in Figure 4.1 and 4.2. A sine-sweep was performed on multiple air-
system set-ups, which can be found in Table 4.1. The steady-state response of the damper was obtained
using ultrasonic displacement sensors and pressure sensors. Liquid displacements were measured on
both sides.

Table 4.1: Air-system set-ups used for verification.

# Set-up nClose Obstruction Comment
1 Open 0 No Only numerical
2 1sided-closed 1 ∞ Only numerical
3 2 valves 1 Medium
4 4 valves 1 Low
5 6 valves 1 Low
6 Interconnecting pipe 2 Very low Used for calibration
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Figure 4.1: Diagram experimental set-up. Figure 4.2: Actual experimental set-up.

4.1.2 Calibration numerical model

Some damper and flow parameters require calibration to ensure good comparison between the numerical
model with the experimental data. This mainly includes geometric factors, the headloss and the valve
loss factors. It was found that the losses introduced by the interconnecting pipe of set-up number 6 were
significant. As a result, the headloss coefficient could not be calibrated. Instead it was assumed to be 0.5,
which is a conservative estimation based on theoretical loss factors [27]. An overview of the calibration
is given in Table 4.2. More detailed information can be found in Appendix A.5.

Table 4.2: Calibrated parameters for numerical model obtained with experimental data.

Parameter Value Unit Deterimined from Comment
κ 0.46 [−] High frequency response
Kvalve 7 [−] max(∆p), max(u̇f )
δL 0.5 [m−1] Loss factors [27] Rough estimation

4.1.3 Limitations experimental data

The major limitation of the available experimental data is disturbance of the ultrasonic liquid displace-
ment sensors. In general ultrasonic measurements of the liquid displacements were not smooth as can
be seen in Figure A.4. This was mainly observed at high frequencies due to increased sloshing and liquid
velocities.

Visual observations verified a non-smooth liquid surface. Splashing liquid droplets are most likely
the main cause of these disturbances. Measurement of the distance to these droplets causes an over-
estimation of the liquid displacement by the ultrasonic sensors. Furthermore, this may have affected the
shape of the measured signal, resulting in potential phase-shifts. Both may have had an effect on the
calibration of the parameters and the comparison of the steady-state response.



4.2 Verification and validation of the AO-TLCD model

In this section the implementation of the AO-TLCD model and its accuracy is verified and validated.

4.2.1 Comparison frequency- and time domain

First, the implementation is checked using the numerical model alone. The steady-state results of the
non-linear model can be compared to the (iterative) frequency domain solution. Furthermore, the
natural frequencies of the TLCD can be checked.

In Figure 4.3 the steady-state response of the liquid is displayed for the ’open’ and ’1-sided closed’
set-up. Furthermore, the airflow system was included for negligible obstruction and for very large
obstruction. Both the dynamic amplification and phase lag relate the liquid displacement to the shaker
table displacements.

From these results it can be concluded that the model has been implemented correctly because the
same steady-state response is observed for the linear and non-linear solution. Furthermore, the very low
and very high obstructed AO-TLCD approximately corresponds to the ”open” and ”1-sided closed” set-up
respectively.
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Figure 4.3: Numerical steady state response comparison of the liquid displacements for open/sealed TLCD
and very low-/high obstructed AO-TLCD.



4.2.2 Steady-state response liquid

The airflow obstruction still requires validation. Errors in the AO modelling and coupling can potentially
have a large influence on the liquid response. Hence, the steady-state response of the liquid is compared
first in Figure 4.4 for the cases found in Table 4.1. Numerical results were obtained using the simplified
AO-TLCD equations with the parameters listed in Section 4.1.2. Experimental results are indicated by
dashed lines.

Both qualitatively as quantitatively, a good agreement is found for the dynamic amplification of the
liquid displacements. These specific set-ups predominantly introduce additional damping in the TLCD.
For the ‘2 valves’ set-up some resonance occurs at high frequencies. The steady-state response was
observed to be very sensitive to changing obstruction parameters. Therefore, errors in the calibration
and in the measurements may cause deviations.

For a 2 DoF system, we expect a phase-lag transition between 0 and 180 degrees around the natural
frequency. High internal damping results in smoother transitions. The experimental results deviate
somewhat from this expectation. A phase-shift is observed at the natural frequency. As this phase-shift
increases for higher frequencies, it is concluded that it is a result of distorted liquid displacement sensors
mentioned in Section 4.1.2.
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Figure 4.4: Numerical and experimental steady state response of the liquid displacements for variable
number of open valves.



4.2.3 Steady-state response pressures

For additional validation, the steady-state response of the pressures is compared. Moreover, it is used to
explain the physical behaviour behind the observed damped response in Figure 4.4.

In Figure 4.5 the peak pressures and phase-lag between the pressures and liquid displacements are
shown. The phase-shift described in the previous section would distort the phase-lag between the
pressures and the liquid. Therefore, the experimental pressure’s phase is compared to the numerical
liquid displacement phase instead.

Qualitatively and somewhat quantitatively, the same behaviour is observed. The sensitivity to AO
parameters is also true for the pressures. For example, a lower headloss coefficient and a slightly
larger obstruction parameter increases the pressures while maintaining a similar liquid response. The
quantitative difference of the phase-lag remains mostly unexplained.

Figure 4.5 gives better insight in the behaviour of the passive AO-TLCD. At low-obstruction and/or
low compressive velocities, almost all mass flows through the valves. Pressure magnitudes are small
and out-of-phase with the liquid displacements. Effectively, adding (non-linear) damping to the TLCD.
For high obstruction and/or high compressive velocities, mass hardly flows through the valves. Pressure
magnitudes are larger and move in-phase with the liquid displacements. Effectively adding stiffness to
the TLCD.

One can conclude that the airflow system has strong dependencies on the obstruction parameter, the
excitation intensity and the excitation frequency. Furthermore, control over the stiffness/damping ratio
is most likely very limited, since a phase-lag close to zero can’t be obtained without near closed pressure
magnitudes.
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Figure 4.5: Numerical and experimental steady state response of the pressure difference for variable number
of open valves.



4.3 Additional analysis

In this section some additional analyses are given to provide more insight in the behaviour of the passive
AO-TLCD. For this, only numerical results are used.

4.3.1 Equivalent parameters AO-TLCD

To quantify the effect of the air-system, the equivalent parameters are shown in Figure 4.6. In order
to show a more favourable configuration in terms of period adjustment, additionally a set-up with
nvalve = 0.5 is shown. Obviously, half a valve is not realistic. However, an equivalent KO can be
obtained by varying the area or loss factor of the valve.

A clear relation can be seen between additional damping and stiffness, as is expected from the
pressure phase-lag. Resonance was not observed at intermediate frequencies in the steady-state response,
due to highly dissipative nature of the air-system. As a result of the damped response, the passive AO-
TLCD is not able to provide a significant reaction force to the host system.
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Figure 4.6: Numerical results for equivalent parameters of the AO-TLCD with variable number of open
valves.

4.3.2 Dissipative mechanism airflow obstruction

The dissipative nature of the AO-TLCD can be explained by the viscous losses in the air-system. Heat is
generated through energy dissipation, which radiates outwards and into the liquid. In order to verify
that the viscous losses account for the damping observed in the AO-TLCD, energy is compared in Figure
4.7. Here the average work performed on the liquid by the pressures is indicated by a solid line. The
mean viscous dissipation in the air-system is indicated by markers.

The produced heat may affect the polytropic pressure relation, as increased temperature of the gas
can affect the pressures. Though, from the validation in Section 4.2 we can conclude that these effects
are negligible.

4.3.3 Flow regime

Both the pressures and massflow are within their simplified regime. The flow speeds were computed
to be far below the sub-sonic region, with M < 0.05 for all simulations. Furthermore, the regime was
checked using graphs as in Figure 3.3.
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4.4 Modification valves

Modifications of the valves to obtain different flow behaviour does change the dissipative nature of the
passive AO-TLCD:

• Design for compressible flow conditions, may improve the dissipative nature of the air-system. The
increased non-linear relation of the massflow, decreases massflow at peak pressures. This yields a
relative increase of the pressures at peak liquid displacement compared to the liquid zero-crossing.
This improves the phase-lag of the pressures. However, dependencies to the excitation become
significantly larger.

• The other way around, valves with a linear pressure drop with respect to the massflow, decrease
dependencies on excitation, but negatively affect the damping/frequency ratio.

4.5 Discussion

In this section the observations and conclusions made in this chapter are summarized briefly. At the
end, part I is concluded with the motivation for the second part of this thesis: semi-active control of the
AO-TLCD.

Modelling of the airflow obstruction

Even though the response showed to be quite sensitive to the AO parameters, numerical results for the
steady state response of the AO-TLCD showed good agreement with experimental data. Hence, we can
conclude that the response of a passive AO-TLCD can be accurately predicted using the simplified model
for the airflow obstruction.

Dynamical behaviour of the passive AO-TLCD

Passive AO can have a large influence on both the TLCD’s stiffness and damping (Figure 4.6) –
although, not independently. Passive period adjustment, to frequencies in-between the ‘open’ and
‘closed’ configuration, introduces large amount of dissipation into the system. The magnitude of the
pressures and its phase-lag with the liquid displacements, are closely related (Figure 4.5). As a result,
independent influence of the stiffness and damping, through AO, is limited. These observations, confirm
the expectations based on valves with linear pressure drop, at the end of Chapter 3.



The response of the passive AO-TLCD is largely dependent on its properties and on the rate of
compression. Hence, it is assumed to be impossible to design a passive AO-TLCD for varying excitation
intensities.

Application of the passive AO-TLCD

As a result of the additional dissipation, the AO-TLCD is not effective at supplying a significant reaction
force to the host system. Hence, period adjustment using passive air-flow obstruction is not a viable
strategy. Though, the AO-TLCD could be used in the design process for adjustment of the headloss.
Which in current practice, is designed through the geometry of the TLCD and optional orifices in the
liquid.

Further development of the AO-TLCD

For the period adjustment strategy to be effective, more control over the massflow is required. The use
of a semi-active control strategy is employed because:

• The dissipative nature of the AO-TLCD needs to be reduced.

• The AO-TLCD should be effective independent of the excitation frequency/intensity. Especially, if
one considers time variant excitation of the host structure.

The semi-active AO-TLCD is assumed to be of low complexity compared to current adjustment
methods for TLCDs and within the constraints listed in Chapter 1.



Part II

Semi-Active TLCD modification for
OWT installation

37



Chapter 5

Semi-active control

The first part of this research showed that, without some form of control, the AO strategy is ineffective for
period adjustment. Although (semi)-active devices are a relatively new concept in the bottom-founded
offshore industry, these devices have been successfully deployed in the Civil industry for decades [3].
That is why these existing methods and their working principles are reviewed first. While control
theory is treated later in this chapter and limited to the application of simple control laws. Fundamental
concepts like observability and controllability are not included, as the main focus of this research is the
technical feasibility of the period adjustment strategy, and not the fundamental control theory behind it.

Section 5.1 starts with the general idea behind semi-active control. Afterwards, existing methods
for semi-active and active structural control are reviewed. Of which, methods for TLCDs are the main
focus. The section concludes with a comparison of these methods with the semi-active control of TLCDs
through airflow obstruction. Section 5.2 treats the modelling of semi-active AO-TLCDs. Multiple state-
space representations are given of the AO-TLCD model, including a linear approximation. Moreover,
the modelling input, realistic actuators and sensors are discussed. The chapter concludes with more
theoretical control theory in Section 5.3, where an overview is given on potential control laws.

5.1 Semi-active structural control devices

This section elaborates further on (semi)-active devices, as they were only briefly discussed in Section
2.4. First semi-active control is discussed in general, including its features and limitations. Afterwards,
relevant existing semi-active devices are reviewed. In this review, the focus is on the physical implemen-
tation and the general effectiveness of these devices.

General properties As previously defined, semi-active control strategies cannot add mechanical energy
to the system through its actuators. This dissipative constraint is also referred to as the passivity
constraint.

Essentially, one can change passive properties of the system on small time scales; in case this does not
increase the overall mechanical energy. Still, large amounts of control can be obtained over the dynamic
system. Generally, semi-active systems out-perform their passive counterparts. Moreover, they can be
effective for a wide range of time-variant excitations and host system properties.

Advantages Semi-active devices are more capable of reducing peak responses in the transient regime.
Multiple modes can be damped by a single device. Making it better suited for vibration reduction of
excitations that are not stationary, like wind gusts, seismic activities or slamming waves [17].

The passivity constraint is both its limitation as its feature. On the downside, the freedom of the
control input is limited, which may result in low effectiveness compared to an active system.
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However, contrary to active systems, the host system cannot be de-stabilized, even if the controller
is not implemented properly. To be more concise; semi-active devices “are proven to be unconditionally
stable, regardless of the accuracy of the modal state information” [31].

Additionally, significantly less energy is required to operate the device. Often they can operate on
battery power [3]. Compared to active devices, small actuators and a small number of sensors are
required. In case energy supply or control components fail, a passive system remains.

Limitations Compared to passive systems drawbacks are clear. The requirement for additional
components like sensors, actuators, controllers and energy sources increase complexity and reduce the
reliability of the complete system.

5.1.1 Viscous Dampers

One type of semi-active structural control devices, outside the dynamic vibration absorbers field, are
viscous dampers directly attached to structures/systems. These dampers are generally of the magneto
rheological (MR) fluid or electro rheological (ER) fluid kind. An example is displayed in Figure 5.1 and
Figure 5.2.

These devices are relevant to our application, because they have the ability to store/release energy
from and back to the host. The AO-TLCD possesses similar properties, as energy can be stored in the
gas and released back into the system. Some of the research in this field focusses on shaping of force-
deformation loops [32] [33], which can be particularly insight-full to the semi-active nature of the AO-
TLCD.

Figure 5.1: MR-fluid damper device [34].
Figure 5.2: MR-fluid damper attached to a multi-
story structure [35].

5.1.2 Tuned mass dampers

The actuator implementation of semi-active TMDs (STMDs) is different than for TLCDs. Still, some
parallels exist between these devices. Especially, with regard to effectiveness, modelling and control
laws.

Suspensions A lot of work has been performed on semi-active applications in the field of (vehicle)
suspensions [36]. Depending on the model detail, these systems can be very similar to STMDs. Contrary
to the application of semi-active VAs for civil structures, a great deal of control laws have been developed
and studied. Especially more complex control laws have been investigated [37].

TMD: controllable component Any TMD generally requires a damper-component, like a hydraulic
fluid damper. Depending on the type of TMD, a spring-like component may also be required. As a



result, most (semi)-active methods for TMDs focus on actuation through these components. Two main
components exist: variable orifice- and controllable fluid dampers. The former is illustrated in Figure
5.3. For variable orifice dampers, resistance in a hydraulic fluid damper is controlled. For controllable
fluid dampers, viscosity is controlled using MR/ER-fluids. These devices are semi-active by nature and
give some control over the damping force (within certain bounds).

TMD: variable stiffness A different type of STMD, the semi-active continuously and independently
variable stiffness (SAIVS) device, is illustrated in Figure 5.4 [38][39][40]. The SAIVS proposed by Sun
[40] is capable of complete continuous stiffness control and limited on/off damping control.

Most notable, is that recently, this STMD has been studied for its application to monopile-foundation
type OWTs for multi-hazards [13]. The STMD out-performed its passive counterpart. Moreover, it
was consistently effective in reducing the tower response during foundation damage (changing natural
frequencies). Lastly, a smaller damper stroke was observed.

Figure 5.3: Variable orifice damper [3]. Figure 5.4: Variable stiffness STMD [40].

5.1.3 Tuned Liquid Column Damper

Obviously, (semi)-active modifications of the TLCD are most relevant to our application. Firstly, strategies
aimed at controlling the internal damping are listed. These strategies generally aim to increase the
effectiveness of a tuned TLCD and to decrease its non-linear characteristics. Thereafter, a semi-active
and active strategy capable of period adjustment are given.

Variable damping

Variable damping strategies for TLCDs are very similar to their TMD counterparts. Instead of controlling
the hydraulic fluid damper component, the TLCD fluid is controlled directly. Equivalent to the STMD
approaches, this happens through either variable orifices or through controllable fluids.

Variable orifice One of the first semi-active TLCDs was introduced by Yalla [24][41]. The damping
force of the TLCD is controlled through a controllable valve/orifice in the fluid as is illustrated in Figure
5.5. For white-noise excitation, an improvement of 10-15% over passive systems was observed.

A broad scope of control strategies and assumptions have been tested for this strategy. Most
interestingly, bang-bang control (i.e. on/off actuators), performed as well as continuously varying
actuators. The use of simple control laws with limited sensor input and included actuator dynamics,
still resulted in promising results.



Controllable fluid Ni studied the use of a MR-fluid inside the TLCD. The damping was influenced
through semi-active control of the fluid’s viscosity [23][42], as in Figure 5.6. The use of a clipped-
optimal feedback strategy showed “significant response reduction in terms of displacement, interstory
drift and acceleration, in comparison with a passive TLCD.”

Figure 5.5: Variable orifice TLCD [41]. Figure 5.6: MR-TLCD [23].

Variable stiffness

Most recently, Altay investigated and validated a method for period/damping adjustment of TLCDs using
movable panels in the vertical columns as can be seen in Figure 5.7 [7]. Though, in this research the
controllable range was minimal. Furthermore, its effectiveness for full-scale applications is yet to be
determined.

Active devices

As stated in Section 2.4.2, the AO-TLCD can be seen as a variation on the active TLCGD developed by
Hochrainer [6][43], which is shown in Figure 5.8. Experiments with the active TLCGD showed that it
was able to counteract multiple modes. In other words, effectiveness at largely off-tuned frequencies
was obtained. While the numerical studies utilized an optimal feedback control law, experiments were
performed using a limited state PD controller (proportional/derivative feedback). Additionally, the
effectiveness of the active strategy was validated; while dynamics of the valve, massflow and pressures
were mostly unaccounted for. Instead they assumed the pressure input to be proportional to the valve
opening (using ‘proportional valves’).

Figure 5.7: Variable column TLCD [7]. Figure 5.8: Tuned liquid column gas damper [6].



5.1.4 Semi-active airflow obstruction

The first two semi-active strategies for TLCDs focus on controlling the damping inside the TLCD. These
methods only provide limited control over the viscous damping forces in the TLCD. This can be an
effective approach of increasing the effectiveness of an already tuned passive system. Though, its
capabilities for period adjustment are limited.

For the variable column TLCD, tuning has only been obtained for a limited range of frequencies.
Moreover, its full-scale implementation for an OWT is assumed to be impractical, as the actual TLCD
design will be of a more complex shape. The semi-active AO-TLCD is still considered the most viable
option for non-invasive period adjustment for low frequency TLCDs.

Why it should work From the passive AO-TLCD results and from the research presented in this section
we can conclude that the semi-active AO-TLCD strategy is promising because:

• Passive AO has a large influence on the internal stiffness and damping of the TLCD.

• In the field of directly applied MR-dampers, semi-active strategies were effective in storing energy
from and releasing energy back to the host system. Effectively, providing control over the stiffness
of the structure.

• Semi-active strategies consistently outperform their passive counterparts. Numerical investigation
of period adjustment of STMDs for OWTs produced positive results [13].

• Period adjustment using the active counter-part of the AO-TLCD has been numerically analysed
and experimentally validated [6][43].

• Neglecting dynamics and many non-linearities in the actuator/gas-system, effectiveness of the
active TLCGD was maintained [6]. Suggesting that unmodelled dynamics of the AO-TLCD will
not likely play a significant role in its effectiveness.

• The use of variable orifice TLCDs, which also includes a controllable valve, has been shown to work
for simple control laws, limited sensor output and included actuator dynamics [17].

Limitations The indirect control input through an additional degree of freedom (the pressures), may
prove problematic, as the restoring force magnitude can’t be increased instantaneously. The non-
linearities of the gas-system further complicate potential control laws. Additionally, it may be hard
to obtain fully independent control over damping and stiffness.

Lastly, the actuators may be a limiting factor. Potentially large, periodically switched valves have to
be employed in an offshore environment. Required closing-times and total number of valve cycles may
be unrealistic. This is discussed briefly in Section 7.5, though quantitative analyses of such practical
limitations are not included in this research.

5.2 Modelling and control components

With more insight in the implementation, we can now start looking at the model of the AO-TLCD. Semi-
active strategies are inherently non-linear. Unfortunately, a large portion of control theory is based on
linear systems. In our case, the number of non-linearities largely depends on assumptions regarding the
actuator implementation. Therefore, this is the main focus of this section, namely its effects on the model
complexity and on the passivity constraint. At the end of this section, the ‘gap’ between the model and
the actual actuators and sensors is treated shortly.



5.2.1 Model semi-active AO-TLCD

Linear control theory is far less complex than its non-linear counterparts. In our case, linearisation of the
system can be problematic for the massflow equation, as its derivative is infinite around zero. In order to
apply linear theory, additional assumptions are required. Below, different state-space representations and
actuator definitions are given. The different actuator definitions are mainly focused on the input bounds
enforced by the passivity constraint. The bounding/saturation of a reference input to these bounds is
referred to as clipping. The effect of clipping on the dynamical behaviour of the system is explained later
in Section 5.3.

Non-linear system Combining Equation 3.31 and Equation 2.6, the state-space of a non-linear AO-
TLCD attached to a SDoF host structure is obtained (Equation 5.1 to Equation 5.3). Here, F (t) are
the external forces acting on the SDoF host structure. For this NL system, where the inverse obstruction
parameterKoi of the valve is controlled (Equation 5.4), the clipping is given by the saturation in Equation
5.5. Here, ? indicates the reference unclipped input (a potentially active input). Note that, according
to control theory conventions, the input is denoted by u. Therefore, the liquid displacement is always
denoted by subscript f .
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o = Koi (5.4)
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(5.5)

Linear system Instead of the inverse obstruction, we assume the massflow to be the input. In other
words, it is assumed that the massflow can be controlled directly. Together with the linearised TLCD
damping this results in the linear system in Equation 5.6. The new clipping law is given by Equation 5.7.
In order to follow the reference input, accurate measurements of the pressures are required.
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u = SAT [ṁ?] =

 0
ṁ?

ṁmax

if ṁ? · sgn(∆p) ≤ 0
if 0 < ṁ? · sgn(∆p) < |ṁmax|
if |ṁmax| ≤ ṁ? · sgn(∆p)

ṁmax = f(∆p,Koi,max)

Koi = f(∆p, ṁ)

(5.7)

On/off actuators The need for exact pressure measurements can be eliminated by using bang-bang
control, i.e. on/off valves, as is indicated in Equation 5.8. Since only two valve settings exist, only
the sign of the pressures is required to perform the clipping. In the ‘open’ configuration, the pressure
magnitude may be low. As a result, sensor noise may be problematic for accurate determination of the
sign. In practice, the sign could be predicted from other states using an estimator.

SAT [ṁ?] =

{
0

ṁmax

if ṁ? · sgn(∆p) ≤ 0
if ṁ? · sgn(∆p) > 0

−→ u = Koi =

{
0

Koi,max

if sgn(ṁ? ·∆p) ≤ 0
if sgn(ṁ? ·∆p) > 0

(5.8)

The semi-active AO-TLCD is modelled with the non-linear model given by Equation 5.2 and with the
clipping law given by Equation 5.8. Though, massflow may still be assumed as the input computed by a
control law. The resulting active massflow input, can be clipped and mapped to the obstruction parameter
input. Additionally, the complete linear state-space in Equation 5.6 may be used for the control law, e.g.
to determine the control input or optimal feedback gain. Nonetheless, the resulting input is applied to
the non-linear system. Unmodelled dynamics are most likely negligible, since damping non-linearities
are weak.

5.2.2 Actuators

In reality we do not have direct control over the massflow, nor over the valve obstruction. Most likely,
valves will be operated hydraulically or magnetically in a continuous manner. The position control of the
valve, has its own dynamic properties and response.

Semi-active control, prevents the accumulation of modelling errors in the system. The use of feedback
control, provides additional corrective capabilities regarding unmodelled dynamics.

The obstruction parameter has a non-linear relation with respect to the valve position. Still, a linear
dependency can be fitted with reasonable accuracy. For bang-bang control non-linearities are weaker, as
the open/closed obstruction are known. Only during closing/opening, some modelling errors are made.

Hochrainer obtained good controller performance neglecting many of these dependencies [6].
Therefore, the complete set of dynamic effects and non-linearities, from the actual controllable input
to the valve obstruction parameter, is only taken into account through an over-damped low pass filter for
the valve obstruction parameter.

5.2.3 Sensors

The main objective of the damper modification is only temporary. Therefore, low complexity is key, ergo
the number of sensors should be limited.

Host accelerations and gas pressures can be measured with relative ease. Somewhat more difficult
are: accurate measurements of the liquid displacement (e.g. wave gauges or pressure sensors) or
accurate measurements of the massflow (e.g. massflow sensors or pilot tubes and temperature sensors).

Proving the feasibility of the semi-active AO-TLCD and investigating the dynamic effects of this
implementation is more important than robust controller design. In the research available on semi-active
TLCDs, a reduction of sensors or inclusion of sensor noise only led to a minor decrease in effectiveness.
Inclusion of incomplete measurement requires the use of observers/estimators, which complicates the
control laws and theory. Therefore, the full state is assumed to be available for control.



5.3 Control laws

With the model and input defined, we still require a way of determining the control action. This section
treats these potential control laws. To provide more insight in what comprised a good control law, the
effects of the semi-active constraint on the damper are discussed in Section 5.3.1. Afterwards, two semi-
active control laws are derived. In Section 5.3.5 an overview is given on the control laws used in the
remainder of this research.

5.3.1 Passivity constraint

The passivity constraint is typically enforced through the actuator. For example, when controlling the
internal damping of a TLCD through its orifice, a damping force opposite to the liquid velocities can’t
be obtained. For the AO-TLCD this is also true. Independent of the valve setting, gas will never flow
upstream. In other words, gas cannot be pumped by simply changing the closing of the valve. The
passivity constraint is given, in terms of power P (t), in Equation 5.9.

P (t) = −∆p · ṁ/ρ0 ≤ 0 (5.9)

Depending on the control law, this constraint is not always ‘build into’ the controller and/or the
numerical model. Control actions, i.e. inputs, may be requested that violate the passivity constraint
(and are often non-physical). Therefore, the input, or the controlled parameter has to be bounded. This
bounding is referred to as clipping in the semi-active control literature.

Depending on the control law and the objective, this clipping may result in undesired dissipation.
This is specifically true for actuators that can store energy from and release energy back to the system.
During a cycle, the control force may not be able to follow the same force-displacement trajectory for
the storage and release of energy, respectively. Effectively, ‘forming’ hysteresis loops. When the main
objective is to provide additional stiffness, this may be an undesired side-effect.

Clipping for the AO-TLCD In the case of the AO-TLCD this undesired effect can be analysed from
multiple angles. Directly from the actuator perspective or from the force acting on the to-be controlled
system. In Figure 5.9 this is illustrated through a force-displacement/velocity diagram for a to be
followed reference stiffness. Only forces resulting from the pressures are shown. The pressure-force
has been normalized by its fully closed magnitude.

First the constraint is analysed through the TLCD perspective. in Figure 5.9a. From A to B, a desired
intermediate reference stiffness can be followed by releasing gas with respect to sealed conditions. At
point B, liquid velocities become negative. For the pressures to de-compress with a smaller stiffness
(i.e. less quickly than for the fully sealed air-spring), mass has to flow back into the compartment. Since
pressures are still positive, this is not possible. At best, the requested input can be clipped to its minimum
(zero massflow). The formed hysteresis loop effectively dissipates energy from the TLCD.

From the actuator perspective, illustrated on the right, energy stored in the gas is dissipated through
massflow. This is clearly visible through the force-velocity trajectory, which is only present in the
dissipative quadrants. The dissipated energy must result in additional damping for the TLCD.
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Figure 5.9: Force-displacement/velocity diagrams: Clipping of AO-TLCD input for a followed reference
stiffness.

Minimal clipping It may be better to close the valves completely for only a small period of time
around the peak displacement. This has been illustrated in Figure 5.10 with force-displacement/velocity
trajectories with respect to the liquid. Valves are switched around atmospheric conditions. As a
consequence, no massflow occurs at the moment of switching. In other words: no dissipation is
introduced through actuation. By selecting the correct closing time, the desired amount of energy can
be stored and released to the liquid to achieve the desired equivalent stiffness.
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Figure 5.10: Force-displacement/velocity diagram of pressure-force on liquid: minimal clipping of AO-TLCD
input.

Goal For the application to OWTs, shaping of the force-displacement loop as illustrated above, is not
applicable. Stochastic loads generally require a more general approach. However, the approach gives



insight in the semi-active constraints and its physical implications for the AO-TLCD. In most cases, gas
flow has undesirable effects, as it negatively affects the TLCD its reaction force through dissipation.

The rewritten EoM of the host structure, in Equation 5.10, shows that the pressures also have a direct
effect on the host system. Therefore, some cases may exist where positively affecting the host vibrations
outweighs negative effects on the dynamic behaviour of the TLCD with respect to the host. For additional
clarity, this is illustrated in Figure 5.11. Though it is assumed, that in general, a good control law for the
AO-TLCD minimizes viscous dissipation by the gas while maximizing its force on the host and TLCD.

ẅ + 2ζSωSẇ + ω2
Sw−µκ̄δL|u̇f |u̇f − µκ̄ω2

Auf︸ ︷︷ ︸
indirect

−µκ̄ ∆p

ρfLeff︸ ︷︷ ︸
direct

= F (t)/M (5.10)

∆p uf w
Input

F∆p,uf
F(uf ,u̇f ),w

F∆p,w

Füf ,w

+

+

Figure 5.11: Schematic overview of effect of pressures on host and liquid.

5.3.2 Hybrid control

Hybrid systems, or hybrid control, combine continuous dynamics with discrete actions [44]. In simpler
terms: a system is switched between modes based on simple (state dependent) rules. In the case of the
on/off semi-active AO-TLCD this results in the simplistic model in Figure 5.12. The switching rules can
incorporate the semi-active nature by themselves. In that case, no further clipping treatment of the input
is required.

Open mode Closed mode

fclose = true

fopen = true

Figure 5.12: Schematic overview simple hybrid system.

Liquid based Intermittent closing, solely based on liquid displacements, is not a viable option for the
semi-active AO-TLCD. The effectiveness of the damper can be quite sensitive to the switching moment
and the total closing time. These switching moments and closing times are relatively unpredictable due
to the stochastic excitation and the change of the system’s properties.

A simplification of this method, switching only at zero-crossings of the liquid, eliminates this
unpredictability. Though, the obtained equivalent frequency is constant (if the control is performed
perfectly). Depending on which sides are closed and opened, the TLCD can be tuned to one of three
additional ‘semi-passive’ frequencies.

Energy based Hybrid control laws for semi-active vibration absorbers are often based on energy flow.
For example: Maximum energy absorption from the host can be the objective. Only if a control action
can increase the absorption with respect to the host, it is performed. In the field of viscous dampers and
suspensions a specific form is referred to as ‘skyhook control’ [45]. This hybrid control law for a viscous
damper can be found in Equation 5.12 [46]. Here, the host displacements are denoted by subscript



s. The viscous actuating force is dependent on the relative displacements between host and damper,
denoted by subscript rel.

Factuator,s = c ∗ ẋrel (5.11)

c =

{
cmin
cmax

if ẋs · ẋrel ≤ 0
if ẋs · ẋrel > 0

(5.12)

In the case of the AO-TLCD, the same logic can be applied. When the pressures extract energy from
the host and its force can be increased through closing, the valves are closed. This has been illustrated
in Figure 5.13. The resulting control law can be found in Equation 5.14. Note that when the valves are
open, pressures move in phase with the liquid displacements. As a result, the pressure sign before closing
is equivalent to the direction of compression after closing.

F∆p,w = −µκ̄AH∆p

ṗ = u̇f/ε− f(Koi,∆p)
(5.13)

Koi =

{
Koi,max

0
if − ẇ ·∆p ≤ 0
if − ẇ ·∆p > 0

(5.14)

Energy flow
host → gas

Increase
magnitude

Decrease
magnitude

sgn(∆p · ẇ)

Positive

Negative

Close valve

Open valve

Figure 5.13: Simplified schematic of non-optimal hybrid control scheme.

Above control law does not account for potentially negative side-effects of the control action on the
liquid its motion. The work performed by the pressure-force on the liquid, may result in a non-optimal
phase-lag between the liquid and the host. Moreover, large amounts of energy may be dissipated, as
above law may result in opening of the valve when energy is stored in the gas.

The host accelerations approximately have a 90 degree phase shift with the host velocities. Consid-
ering available measurements, the alternative form given in Equation 5.15 is preferred. As a result,
valves are closed when the host velocities are large, resulting in large energy flow from the host to the
gas.

Moreover, the resulting law is more favourable with respect to the liquid. The valve opening, is
generally triggered by the pressure sign change, effectively minimizing the potential side effects of
dissipation on the liquid motion. Hence, the control law optimizes for both the host (increase the energy
absorption) and for the TLCD (only add stiffness). A simplified diagram can be found in Figure 5.14.

Koi =

{
Koi,max

0
if ẅ ·∆p ≤ 0
if ẅ ·∆p > 0

(5.15)

Energy flow
host → gas

Minimal
dissipation

Increase
magnitude

Switch

≈ maximum

Zero crossing

Close valve

Open valve

Figure 5.14: Simplified schematic of improved and final hybrid control scheme.



5.3.3 Optimal control

Many common control strategies can be classified as ‘optimal’ control. It deals with finding the optimal
control given some performance criterion. The most commonly used method is, the ‘linear quadratic
regulator’ (LQR). This approach is in essence an automated approach of finding the optimal full-state
feedback gains for a given quadratic state- and input dependent cost function.

Especially in the field of vibration absorbers this approach is commonly used for (semi)-active control.
Hochrainer applied LQR feedback for the active TLCGD [5]. Both semi-active TLCD concepts also used
LQR for determining the control reference input [23][41].

LQR

What actually comprises ‘optimal’ control always depends on the given objective. The LQR scheme tries
to find a solution that drives all states to zero at minimal cost. Consequently, the resulting state feedback
depends on the choice of the cost function. A general form of this cost function, J , is given in Equation
5.16. Though, other forms of the cost criteria “might, in practice reflect the desired objectives better”
[47]

In Equation 5.16, both Q and R should be positive (semi)-definite. In case Q and R are diagonal
with positive individual weights, this is always valid. Moreover, all inputs must be penalized to solve the
LQR problem. Without a penalty, requested inputs would potentially go to infinity.

The LQR approach assumes a linear system with full state feedback. Therefore, it results in active
control of the system. Clipping of the control input results in sub-optimal performance as is discussed
later.

J = lim
T→∞

{∫ T

0

(xTQx + uTRu)dt

}
(5.16)

The optimal feedback gain is found through the algebraic Riccati equation. For now, it is only relevant
to know that the solution to the Ricatti equation; produces a stable and optimal state feedback gain for
the given cost function. The resulting active system is given by Equation 5.17. Here, Kg is the feedback
gain and B is the state-space input vector.

ẋ = (A−BKg)x + f(t) (5.17)

Proper design of the weighing matrices can be a quite cumbersome and iterative process. A selection
method for Q based on mechanical energy is mentioned by Wang [48]. Here Q is based on the mass
and stiffness matrix including additional scaling. In that manner, the states are penalized based on their
mechanical energy. This can be especially useful for MDoF host models.

The states introduced by the damper were scaled independently. Lower weights on damper states
and input, increase the damper response and energy consumption and result in reduced response of the
host. For an active scheme, one can use transfer functions or bode plots to find the desired weighing
matrices.

The semi-active scheme does not consume energy. Moreover, low semi-active damper strokes are
reported in literature. As a consequence, the individual weights for the liquid, pressures and input can
be chosen much lower than for a typical active design. It should be noted that the units of states and
inputs should be taken into account for the weight selection. The final form of the weighing matrices
can be found in Equation 5.18.

Q = diag( K1,1 qL ∗K2,2 qp M1,1 qL ∗M2,2)

R = r
(5.18)

For the active system, with qL = 0.05 and qp = r = 1e− 7 very high response reduction of the host is
obtained, while maintaining liquid displacements within acceptable limits. The dynamic amplification of
the host and the transfer function of the liquid are given in Figure 5.15. The off-tuned and tuned passive
TLCD are given as a reference. The transfer function of the liquid has been normalized by the maximum



magnitude for tuned conditions. For the LQR scheme, and the transfer functions, a typical linear TLCD
damping value was used.
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Figure 5.15: Frequency response of active LQR controlled AO-TLCD and passive TLCDs for the host and
liquid displacements.

Clipped-LQR

For semi-active control, the active state feedback requires clipping. Such a clipped-LQR (C-LQR) system
“only emulates the active system when the control force is dissipative” [41]. Obviously some performance
is lost by changing the control input. According to Tseng: “The so-called ‘clipped optimal’ solution
is not optimal, although its performance is generally quite close to that of the time-varying solution”.
“In practice, sub-optimal control laws such as the ‘clipped optimal’ method .... are fine engineering
approximations.” [49].

The clipping of a continuous C-LQR and an on/off C-LQR scheme are given by Equation 5.7 and
Equation 5.8 respectively. In Figure 5.16, the active LQR input and the continuous C-LQR input are
compared for a stochastic load case. For the semi-active scheme, both the clipped and unclipped input
is shown. The effect of clipping on the states, is clearly visible through the increased magnitude of the
reference control inputs. As a result, the clipped control input is almost equivalent to its on/off variant.
Therefore, only the on/off C-LQR scheme is investigated further.
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5.3.4 Advanced methods

As noted before, both methods are not optimal in their performance. The hybrid method is not obtained
using any cost function or mathematical optimisation. The LQR method does not account for the semi-
active nature and bounds of the AO-TLCD.

In order to achieve optimal semi-active control (with respect to some cost function), more advanced
control theory is required. In general a time-varying solution is required, as is stated by Tseng [49]. One
of these methods would be model predictive control (MPC). Control actions are based on a finite time
horizon instead of an infinite one as in Equation 5.16. The semi-active bounds can be included more
easily in such a discrete time and finite horizon method.

Since robust/optimal controller design is not the main focus of this research, these more advanced
methods are not investigated further.

5.3.5 Overview

In Table 5.1 an overview is given on the control laws used in the case study in Chapter 7. Here, ‘aplied to’
and ‘based on’ refer to which AO-TLCD model is used for the computation of the input and the response,
respectively. The control inputs are determined according to Equation 5.19 - 5.21.

Hybrid: u = Koi =

{
Koi,max

0
if ẅ ·∆p ≤ 0
if ẅ ·∆p > 0

(5.19)

Active LQR: u = ṁ? = −KgBx (5.20)

Clipped-LQR: u = Koi =

{
0

Koi,max

if sgn(ṁ? ·∆p) ≤ 0
if sgn(ṁ? ·∆p) > 0

(5.21)



Table 5.1: Overview of control laws used in case study.

Control law Performance Number of sensors Based on Applied to Comment
Hybrid ‘Sub-optimal’ SA 2 Non-linear Non-linear
Active ‘Optimal’ active 5 Linear Non-linear Reference
Clipped-LQR on/off ‘Sub-optimal’ SA 5 Linear Non-linear



Chapter 6

Modelling of OWT installation with
semi-active AO-TLCDs

The non-linear nature of semi-active control results in an excitation-dependent response. For the control
strategy to be tested successfully for the OWT application, a coupled support structure and damper model
needs to be deployed including stochastic environmental loading. In addition, the ‘working points’ of the
TLCD depend on differences between its operational design and the installation phases.

Section 6.1 discusses the installation steps of an OWT and the effectiveness of a passive TLCD during
these steps. Based on these two factors, the installation step for the case study is selected. In Section 6.2
details are given on the modelling of the support structure and its environmental loads. Afterwards, in
Section 6.3, the model from Chapter 3 including the control law from the previous chapter is combined
into the fully coupled AO-TLCD model. Furthermore, the final modal reduced form is presented. At the
end of this chapter, in Section 6.4, the benchmark results are presented.

6.1 Installation case study

During installation, the support structure’s mass and frequency change as components are added. In
Table 6.1 typical values for these changes can be found for multiple installation steps. The properties
have been normalized by the fully installed support structure. The frequency variations for a single step
are a result of potential variations within an offshore wind farm.

Table 6.1: Overview normalized properties of support structure during installation steps.

Phase Normalized frequency Normalized modal mass
No nacelle 2.1 - 3.2 0.23
No hub 1.2 - 1.6 0.67
No blades 1.1 - 1.4 0.85
Fully installed 1.0 - 1.2 1

Site The required effectiveness of the TLCD largely depends on the specific site conditions. For very
shallow sites, wave-induced vibrations are less problematic. For such sites, a damper may not be cost-
effective for the operational phase; let alone for the installation phase. In order to analyse the potential
benefit a deep-water offshore wind farm site was selected which is located in the North Sea.

Workability For us to differentiate between sufficient and insufficient effectiveness, the goal of the
research has to be quantified in more detail. Installation workability can be dependent on many variables.
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However, the focus of this research is on wave-induced vibrations only. To be more specific, only the
wave-induced vibrations that occur when all other variables allow for installation are important.

To visualize the effect of wave induced vibrations on the workability; probability of non-exceedance
plots were created for the case study site (i.e. workability plots). Response to a 20 year set of wave-
conditions were computed with a frequency domain tool. In Figure 6.1 this workability can be found,
filtered for wind speeds below 16 m/s. Here, the results are shown scaled to 4 % LogDec equivalent
structural damping.
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Figure 6.1: Installation workability graph for case study site for wind-speeds v < 16m/s.

As a rule of thumb, 90 % non-exceedance of 0.25m for the tower top displacements can be used as a
limit for installation. This corresponds to a standard deviation of approximately 0.15m.

The hub-installation is most critical. Without any damper, 50% of the responses exceed the
installation limit. Compared to the fully installed OWT, overlapping wave spectra are milder for this
step. However, these conditions are more likely to occur.

Sensitivity to effectiveness The response of a lightly damped linear single DoF structure to white noise
excitation with spectral density Sf can be approximated by Equation 6.1 [19][50]. From this, Equation
6.2 can be derived for the displacement variation as a function of structural damping variation. This
relation has been verified for the case illustrated in Figure 6.1 with simulations for different values of
structural damping. To provide insight in the effects of the damper, an additional axis is included in
Figure 6.1, that shows the approximate scaling of the installation limit for different equivalent structural
damping values. For example, for 16% LogDec, TT displacements are approximately reduced by 50%.
The regular x-axis, including the installation limit, shifts with respect to the non-exceedance plots. For
this example, this would results in approximately 75% workability for the hub-installation step.

σw =

√
πSf

2ω3
sζs,eq

(6.1)

σw,new
σw,old

=

√
ζs,eq,old
ζs,eq,new

(6.2)



TLCD effectiveness In terms of TLCD effectiveness the hub-installation step is also most critical. In
Figure 6.2 the hub installation step is indicated in the passive TLCD effectiveness graphs from Chapter
2. The TLCD is most likely under-damped during installation. Low internal damping results in a more
narrow-banded effect of the passive TLCD. Therefore, Figure 6.2 may give an optimistic view.

For hub installation, the workability is hardly improved. For the other installation steps, the
availability is higher than indicated in figure 6.1, as the equivalent damping is larger due to less off-
tuning of the TLCD.
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Figure 6.2: Effectiveness optimally damped TLCGD attached to a white noise excited host structure,
including hub-installation frequency.

6.2 Modelling of offshore wind turbines

In this section the OWT model is discussed, including environmental loads.

Structural model

The support structure is modelled with Timoshenko beams. Across different installation steps, the model
is modified exclusively at the tower top node. The point mass is changed according to the installed mass.
Moments of inertia are scaled linearly with respect to the point mass at the tower top.

The structure is constraint at the pile tip for displacements and rotations in the z-direction. Other
boundary conditions are applied through the soil-structure interaction, which is approximated by p-y
curves.

Soil-structure interaction is the main contributor to the structural damping of an OWT. For installation
steps, with reduced mass, modal damping may be larger than typical operational values. Nonetheless,
additional damping may still be required. Currently no good estimates for the damping during
installation exist. Therefore, a typical operational value of 4% LogDec structural damping is assumed.

Environmental loading

Only hydrodynamic wave loads are of importance for accurate testing of the damper’s behaviour.
Vibration absorbers mainly target dynamic amplification and have a narrow banded effect. Therefore,
currents can be neglected. The aerodynamic load spectrum is significantly lower than the first natural
frequency of the support structure. Moreover, aerodynamic loads are negligible during installation/idling
cases.



The wave load time series were generated using in-house tools from Siemens Gamesa Renewable
Energy. Wave kinematics were obtained from the Johnswap spectrum using stream function wave
theory. Wave load time series were computed using Morison’s equations including Mach Fuchs theory
for diffraction. Afterwards, these loads were translated to the a finite element model of the structure.
Lastly, these in-house tools were used to compute the modal reduction of the full structural model.

Load cases Time domain computation limits the amount of load cases that can be analysed. Four
representative load cases with high occurrence were selected in a range around the natural frequency
of the structure and with some spread on the significant wave height Hs. An overview can be found
in Table 6.2. Here the peak natural frequencies of the wave spectrum are normalized by the natural
frequency of the hub-installation support structure.

Additionally, tower-top standard deviations were obtained for the stand-alone hub installation
support structure. The response was computed using multiple time-domain simulations for the full model
with a certified in-house tool. The total weight of a bi-directional TLCD was added to the stand-alone
support structure.

Clearly, load case III is most critical. Based on Equation 6.2, an equivalent structural damping of 18%
LogDec is required to meet the installation limit. Such effectiveness would require near optimal-passive
performance of the semi-active damper.

Table 6.2: Hydrodynamic load cases and stand-alone tower response including total weight TLCD.

Load case I II III IV
Hs [m] 0.875 1.375 1.875 2.625
Normalized peak frequency [-] 1.38 1.18 0.93 0.74
St. dev. TT displacements [m] 0.044 0.137 0.292 0.214
St. dev. TT accelerations [m] 0.057 0.173 0.355 0.259
Required additional damping [% LogDec] - - 18 9

6.3 Coupled model of OWT and AO-TLCD

An overview of the complete model can be found in figure 6.3.

Full model

The SA AO-TLCD model is attached to the full model at specific locations through the coupling forces
with position vector s. No direct coupling exists between the host and the air system for the form given
in Equation 6.3. In case the TLCD location does not correspond to a structural node of the support
structure, the interaction forces are distributed linearly over the two nearest nodes.

Mẅ + Cẇ + Kw = F(t)− s ·mf (sT ẅ + κ̄ü)

üf + δL|u̇f |u̇f +
∆p

ρfLeff
+ ω2

Auf = −κsT ẅ

s = [0, .., 1, ..., 0]T

(6.3)

Modal reduced form

Modal reduction is performed on the stand-alone OWT. The total mass of the TLCD perpendicular to
the modal direction, is added as a point mass. The structural mass of the TLCD parallel to the modal
direction is also added. The structural TLCD mass is assumed to be 40% of the total TLCD mass (the
fluid mass is 60%).



The TLCD is coupled through the reaction forces using the position vector and the mode shapes. The
final modal reduced coupled AO-TLCD model is given by Equation 6.4. Here, the modal coordinate of
mode j is indicated by qj , the mode shape of mode j by φφφj , actuator properties are denoted by subscript
v, the input is indicated by u and the liquid displacements are indicated by uf . Actuator dynamics can be
eliminated by setting the inertia and damping of the actuator to zero. Consequently, directly controlling
Koi in the pressure DoF. Additional generalized parameters are introduced for mode j according to
Equation 6.5 to Equation 6.7.

It is assumed that the effects of not taking the sub-structure interface into account during the
reduction has negligible effects on the response.


1 + µgen µgenκ̄/(φφφ

T
j s) 0 0

κsTφφφj 1 0 0
0 0 0 0
0 0 0 1



q̈j
üf
∆p̈

K̈oi

+


2ζsωj 0 0 0

0 δL|u̇f | 0 0
0 ε−1 0 0
0 0 0 2ζvωV



q̇j
u̇f
∆ṗ

K̇oi



+
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ω2
j 0 0 0

ω2
A (ρfLeff )−1 0
0 0 0
0 0 ω2

V
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qj
uL
∆p
Koi

 =
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fgen

0
0
0

+
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0
0
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ω2
V u

+


0
0

−ε−1Koisgn(∆p)|∆p|0.5
0


(6.4)

µgen =
φφφTj smfs

Tφφφj

φφφTj Mφφφj
= (φφφTj s)2µ (6.5)

ωj =
φφφTj Kφφφj

φφφTj Mφφφj
(6.6)

fgen =
φφφTj F(t)

φφφTj Mφφφj
(6.7)

The generalized modal mass ratio µgen which affects the TLCD effectiveness, is lower when the TLCD
is located below the tower top, since the modal contribution of the TLCD reaction force, φφφTj s, is never
larger than 1. In the case study an equivalent TMD generalized modal mass ratio of 1.1% was used. In
other words, the TLCD from the case study is approximately equivalent to a TMD with a modal mass
ratio of 1.1% located at the tower top.

6.4 Verification and benchmark coupled model

The modes of the support structure are widely spaced. Significant excitation of the second mode by the
non-linear SA damper is unlikely. Using only a single mode for the stand-alone support structure, tower
top standard deviations were obtained within 1% of the full model solution.

In Figure 6.4 the tower top and liquid displacements can be found for the benchmark solutions. This
includes: the stand-alone tower including TLCD weight, the off-tuned passive TLCD designed for the
operational life and an optimally tuned passive TLCD. The fully open air-system used by the AO-TLCD,
introduces additional damping. For both passive TLCD set-ups, the internal damping matches that of
the fully open passive AO-TLCD. Consequently, the effectiveness of the off-tuned TLCD is somewhat
over-estimated.
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Figure 6.3: Diagram OWT-coupled SA AO-TLCD.
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TLCD effectiveness Equivalent properties were analysed for both the host and the TLCD. The resulting
‘working points’ are indicated by markers in figure 6.5. The effectiveness of a linear TLCD for white
noise excitation is also given. The off-tuned and tuned conditions are indicated by blue and orange
respectively.

As expected, the passive TLCD is under-damped during the installation phase. Since additional
damping has been added to account for the fully open air system, the actual TLCD damping is even
lower.

For load case III, a large deviation in effectiveness is observed for the tuned TLCD compared to
the white-noise approximation. For other working points only slight deviations are observed. These
deviations can be contributed to the narrow banded excitation in combination with the narrow banded
effect of an under-damped TLCD. As a result, the differences are large for load case III, with a peak
frequency near the support structure and tuned TLCD their natural frequencies.
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Chapter 7

Results Case Study

First, the results for the hub-installation case study are presented using ideal controller assumptions.
Section 7.1 focusses on some general statistical results across all load cases. Section 7.2 includes more
in depth analysis of load case III, the most critical load case. Afterwards, Section 7.3 and Section 7.4
focus on model sensitivities to stiffness variations and actuator dynamics, respectively. In Section 7.5 the
results are discussed further, including some additional context.

7.1 General statistical results

To provide a good overview on the semi-active strategies their performance, some statistical data
is presented first. The benchmark solutions and the active LQR controller have been included for
comparison. In Figure 7.1 the average standard deviations of the tower top displacements can be found.
Both semi-active control strategies, out-perform the optimal passive damper.
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Figure 7.1: Average standard deviation TT displacements semi-active across seeds.

More detailed information can be found in Table 7.1 for load case III. Here the standard deviation
reduction can be found compared to the stand-alone support structure. The liquid displacement standard
deviations have been normalized by the effective height of the gas compartment. Lastly, the equivalent
structural damping, i.e. effectiveness, is included.

The semi-active strategies show similar TLCD strokes for increased effectiveness. Only the active LQR
scheme results in a significant TLCD response increase.
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The active LQR scheme vastly out-performs its clipped-LQR counterpart. This can be mostly
contributed to the weights chosen to determine the optimal feedback. Low penalties for the liquid
response and the input were used because these were not likely to be constraints for the semi-active
strategy. If the design of an active control scheme was the objective, larger penalties for these states
would be preferred to limit energy consumption and the liquid response. This would also result in a less
optimistic performance of the active scheme compared to the semi-active strategies.

Table 7.1: Performance passive and semi-active strategies for load case III.

Strategy σw,TT reduction [%] Effectiveness [% crit] σχf [m]
Passive off-tuned -22 1.04 0.07
Passive tuned -53 3.70 0.10
Hybrid -60 4.54 0.10
Clipped-LQR on/off -63 5.46 0.11
Active LQR -90 - 0.19

Spread time-domain responses

As noted in the previous chapter, both the environmental loads and the dynamic systems are narrow
banded. Depending on its statistical parameters and its specific realisation, the wave spectrum intensity
may deviate largely across the frequency band of the host. Especially the lightly damped set-ups
experience large deviations across different seeds.

The 90% confidence error of the mean tower top standard deviations can be computed according to
Equation 7.1. Here, tN is the 90% student’s t-distribution for N number of simulations. The errors are
normalized by the mean of the standard deviations. The convergence of this confidence error is displayed
in Figure 7.2 for load case III across all set-ups. Twelve different seeds per load case are assumed to be
sufficient for accurate estimation of any average performance indicators.

90% confidence error = tN
std(σw,N )√
Nmean(σw,N )

(7.1)
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Figure 7.2: Convergence mean tower-top displacement standard deviations for load case III.



7.2 Additional observations

In this section the results are analysed in more detail. First, the response of the host is analysed in the
frequency domain across all set-ups. Afterwards, the controller behaviour is illustrated in time-domain.

Dynamic amplification host

The dynamic amplification of the host displacements for load case III can be found in Figure 7.3. The
dynamic amplification was obtained using multiple seeds. All dynamic amplifications are according to
expectations.
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Figure 7.3: Dynamic amplification host for all set-ups for load case III.

Controller behaviour

In order to get a proper insight in the controller behaviour, the force-displacement/velocity diagrams are
given for the hybrid controller in Figure 7.4. A single simulation of ‘critical’ load case III is shown.

To isolate the behaviour of the controller, the pressure-force trajectories are given with respect to both
the liquid and the host. Across all diagrams, the pressure-force has been normalised by the maximum
restoring force due to the liquid its weight. A small portion of the total time-series has been highlighted
for clarity.

With respect to the liquid, the control law behaves as intended. This is clearly visible in the force-
displacement diagram in the top left. The valves are closed around the peak liquid displacement,
temporarily ‘adding’ a secondary stiffness. The other part of the cycle, some equivalent damping is
‘added’ through the losses in the air-system. No additional hysteresis is observed around the switching
of the valves. In the force-velocity diagram in the bottom left, it can be observed that the additional
damping is slightly non-linear.

With respect to the host, the control law also behaves accordingly. This can be mostly observed
through the force-velocity diagram in the bottom right. The trajectories are mostly present in the
‘dissipative’ quadrants. As the hybrid control law did not prohibit energy release back to the host, some



trajectories go through the ‘active’ quadrants. Note that these quadrants do not violate the passivity
constraint because the energy is only released back to the host and not introduced through the actuator.

For the control action, an optimum has to be found between direct dissipation from the host and
optimal liquid response. It is assumed that the minimal viscous dissipation observed in the gas system,
out-ways the energy-flow back to the host. In other words, for this specific case the valve opening is
performed optimally. Though, it is unclear if the closing of the valve is optimal. As different closing cycle
lengths may result in a larger effectiveness of the semi-active damper.
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Figure 7.4: Force-displacement/velocity diagrams for hybrid control strategy load case III seed 1.

The on/off clipped-LQR scheme shows almost exactly the same behaviour and can be found in Figure
B.1. For the clipped-LQR scheme, slightly less presence in the active quadrants w.r.t. the host is observed.
Furthermore, slightly larger forces, i.e. larger closing cycles, are observed. Even though the additional
host vibration reduction is small, it confirms the suspicion that the hybrid valve closing is not optimal.



7.3 Sensitivity to frequency variations

The sensitivity to passive TLCD frequency variation is investigated to check the robustness of the
proposed strategies.

Method for frequency variation The frequency of the TLCD is adjusted exclusively through an
additional variable in the TLCD equation of motion. As a result, all geometric factors, including the TMD
equivalent modal mass ratio remain the same. The stand-alone host including the environmental loads
are also unaffected. Since the air-system also remains the same, the natural frequency ratio between
the two TLCD modes (open and closed) does change. The computed LQR feedback gain changes due to
changes in the TLCD frequency.

Results The sensitivity to TLCD natural frequency variations is shown in detail in Figure 7.5 for load
case III. Both the hybrid and clipped-LQR strategies are effective over a wide range of off-tuning.
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Figure 7.5: Sensitivity of semi-active control strategies to adjusted ‘open’ TLCD stiffness for load case III.

For more insight, the equivalent internal properties have been illustrated in Figure 7.6. At optimal
tuning, both the passive and semi-active systems have near-optimal internal damping. One can
conclude, that the increased effectiveness for the semi-active strategy is not solely due to improved
TLCD parameters; but due to its semi-active nature. Hence, the semi-active damper out-performs its
passive counterpart.
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7.4 Sensitivity to actuator dynamics

Until now, actuator dynamics have been neglected. Inclusion of the actuators may give rise to additional
dynamic behaviour. Slow closing/opening of the valves introduces additional dissipation in the system.
Large delays in the control action, may render the semi-active strategy completely ineffective.

First, the method is discussed briefly. Afterwards, the results for the closing time sensitivity are
presented for load case III. At the end of this section, the behaviour of the ‘slow’ actuator is compared to
the instantaneous control for a single simulation.

Method for actuator dynamics As mentioned in Section 6.3, a second order low pass filter is used for
the actuator dynamics. The rise time tr is varied, which represents the duration for the valve to respond
up to 95% for a step input. In all cases the actuator frequency is much larger than the natural frequency
of the support structure. Therefore, dynamical interaction does not occur.

For two typical valves, the step response is given in Figure 7.7. For the valves, the rise times have been
normalized by the support structure its natural period. A rise time of 10% is already quite considerable,
as valves are switched multiple times per cycle.
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Figure 7.7: Step response of a ‘slow’ and ‘fast’ actuator to control input.

General results The sensitivity to normalized rise-time is shown in detail in Figure 7.8 for load case
III. As actuator dynamics are likely to be uncertain, they were not included in the LQR feedback gain
determination. In other words: unlike for the frequency sensitivity, the same feedback gain was used
across all C-LQR simulations.

Both control strategies have reasonable performance up to large valve closing times. Further
improvements can potentially be achieved through inclusion of the actuator dynamics in the LQR scheme
or by using more advanced control schemes.
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Figure 7.9: Force-displacement/velocity trajectory comparison hybrid control strategy with and without
actuator dynamics for load case III seed 1.



Specific results To show the effect of the actuator dynamics on the control action, a comparison
between the instantaneous and the ‘slow’ actuator is given in Figure 7.9. Both cases are normalized
with respect to the instantaneous actuator set-up. Across all diagrams, forces are normalized with the
maximum liquid weight restoring force. Displacements are normalized by their maximum. Again, part
of the total time-series has been highlighted.

Most of the differences between the two cases can be explained with respect to the liquid. For the
slow actuator, less pressure is built up. Partly due to delayed closing and partly due to pressure release
during the closing. The reduction in pressure magnitude is most clearly visible in the force-velocity
diagram in the bottom left. Furthermore, energy is dissipated around the closing, resulting in additional
internal damping in the TLCD. In the force-displacement diagram, this is illustrated by the additional
area described by the hysteresis loop around the valve closing/opening.

Except for the lower force magnitude, the effects with respect to the host are less clear. Delay on
valve opening seems to increase the presence in the active quadrants slightly.

7.5 Discussion

In this section the observations made in this chapter are summarized and discussed briefly. Moreover,
towards the end of this section additional context is given to the results and on the general development
of the SA AO-TLCD.

Controller performance Figure 7.4 and Figure B.1 demonstrated that both control schemes minimize
viscous dissipation in the gas system, i.e. massflow of the gas. This suggest that the assumptions in
Chapter 5 on what comprises good semi-active control of the AO-TLCD are correct. Consequently, one
can conclude that qualitatively, both control schemes are well designed.

For the clipped-LQR scheme, a slightly unpredictable sensitivity to its cost function was observed.
Smaller weights for the control input or liquid response, did not necessarily result in improved response
with respect to the host. The deviations in the effectiveness of the clipped-LQR control were not
significant enough to result in different conclusions. However, it does confirm that quantitatively both
control laws are sub-optimal in their performance.

Effectiveness period adjustment The semi-active AO-TLCD is able to reduce host vibrations by around
60% independent of the excitation intensity and the degree of passive off-tuning (Figure 7.1 and Figure
7.5). Moreover, for tuning ratios larger than 1, the semi-active damper out-performed its passive
counterpart by more than 10%. The latter is in agreement with literature on semi-active VAs in general
and for OWTs in specific [13].

Installation workability Because the performance is independent of the TLCD’s passive natural
frequency, we can conclude that a tower-top standard deviation reduction of 60% can be achieved across
all installation steps. Looking at Figure 6.1, this results in a workability increase up to 90%.

Actuator dynamics and valve sizing As for the variable orifice TLCD [41], sensitivity to actuator
dynamics is relatively low (Figure 7.8). Still, full-scale applications in civil structures may require large
valves. Low frequency cyclic switching is not a standard application for valves of these sizes. This, or the
performance loss due to actuator dynamics in general, can be mitigated partially by proper design of the
valves and the controller.

Additional resistance in the fully open air system, for smaller valves, may be worthwhile in case of
faster actuation. In other words, a decrease in actuator losses may outweigh an increase in losses due
to passive obstruction. Furthermore, performance improvements may be achieved through inclusion of
actuator dynamics in the controller design.



SA AO-TLCD for the operational phase The additional effectiveness around tuned conditions is low
for the proposed control strategies. Potential losses due to sensor noise, limited sensor data, un-modelled
dynamics and actuator dynamics make it even less attractive. In case internal damping is a constraint
for the operational phase, the air-system including a sufficiently fast actuator, may introduce to much
additional headloss. Furthermore, additional components may reduce the overall reliability of the OWT.

Still, an improvement of only 10% assumes the passive TLCD to perform optimally over its operational
lifetime. As was demonstrated in Figure 2.5, this is not the case. Furthermore, research suggests that
semi-active control may prove more beneficial for extreme or transient load cases. Therefore, it may still
be worthwhile to investigate the application of the SA AO-TLCD for the OWT’s operational life.

Off-tuned by design Improving geometric factors, resulting in a larger equivalent TMD mass ratio,
would result in larger ‘open’ TLCD frequencies. The semi-active strategies are not effective for passive
tuning ratios significantly larger than 1. Therefore, one can not find a more optimal geometric
operational TLCD design by including the semi-active AO-TLCD.

Activation levels Requirements on components may be improved through the use of activation levels.
In other words, the

For both its application to installation and the operational life of an OWT, For the purpose of increased
workability, the semi-active AO-TLCD is only required to reduce wave-induced vibrations above a certain
threshold, during the actual installation. With the host measurements, an activation level for the
semi-active strategy can be set, above which the controller is active. Below this level, a passive AO-
TLCD setting can be set, with optimal internal damping for the off-tuned conditions. In this manner,
requirements on the components, like energy supply and number of valve switching, can be reduced.





Chapter 8

Periodically time-variant systems
framework

In the previous chapter the performance of non-linear semi-active AO-TLCDs was evaluated for two
sub-optimal control schemes. Robust performance of the AO-TLCD was obtained, though real insight
in the dynamical system was not obtained. As a result, performance and stability were only measured
qualitatively, in a post a-priori manner. As the observed response was not chaotic, more insight can be
gained by further simplification and generalisation of the SA AO-TLCD. This chapter places the semi-
active system in a periodic linear time-variant (LTV) systems framework.

Firstly, the definition of a general LTV system is given in Section 8.1, including an overview of the
methods for analysis of such systems. Afterwards, in Section 8.2 a numerical approximation method is
treated based on Floquet’s theorem. In order to strengthen the understanding of LTV systems and to
compare the numerical method with literature, the approximation method is applied to SDoF systems
in Section 8.3. Finally, in Section 8.4 the semi-active AO-TLCD is simplified to a homogeneous periodic
LTV system and analysed with a Floquet based approximation method. The solution is analysed for both
stability and performance. Lastly, in Section 8.5 the results are discussed and compared with case study
results from Chapter 7.

8.1 Linear time varying systems

A great deal of dynamical systems can be described as linear ordinary differential equations with
(periodically) varying coefficients, i.e. periodic linear time-variant (LTV) systems. For this chapter we
are most interested in the general response and stability of the AO-TLCD. For this, the homogeneous
system is sufficient. A general description of a homogeneous LTV system is given in Equation 8.1. The
matrix A can be a periodically varying matrix with period T according to Equation 8.21.

ẋ = A(t)x (8.1)

A(t+ T ) = A(t) (8.2)

The system A is linked to a dynamical second order system as is given in Equation 8.3. Here, M
indicates the mass matrix. The variational parts of the stiffness and damping matrices are indicated with
K∗ and C∗ each varying with a period T .

A(t) = M−1

[
0 I

−(K + K∗(t)) −(C + C∗(t))

]
(8.3)

1With respect to LTV systems, the period T is reserved for the modulation period. Any other periods will be denoted by
additional subscripts.
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Depending on the objective, various ways exist to solve these systems. Though, most involve some
kind of approximation - namely finite series, perturbations or numerical approximations. With regards
to stability, most methods can be classified under the following [51]:

• Hill’s method of infinite determinants

• Perturbation methods (including method of multiple scales)

• Floquet theorem

The former method can be cumbersome when applied to complex or MDoF systems. The second
class of methods, e.g. the Lindstedt Poincoire method, is limited to cases where the “periodicity in the
coefficients of the system, can be expressed in terms of some small parameter” [51]. The latter is from a
numerical point of view very attractive and relatively straightforward. Moreover, besides analysis of the
stability some methods allow for computation of the system its response.

8.2 Stability of LTV systems

In this section a brief review on the solution of LTV systems is given. Of which the main focus is on
the stability of periodic LTV systems. As noted in the previous section, approximation methods based on
Floquet’s theorem are treated.

8.2.1 Solution of LTV systems

A set of linearly independent solutions of a linear system, as described in Equation 8.1, can be put in a
n × n matrix, called the fundamental matrix φφφ(t). Since the solutions are independent, the determinant
of this matrix, the Wronskian w, must be non-zero.

φφφ(t) ≡ [x1(t),x2(t), ...,xn(t)] (8.4)

The transition matrix Φ, or principle matrix, is defined to relate the (transient) response at time t to
the initial values at time t0 (Equation 8.5). In other words, a single term in Φ relates state j at time t
to the initial value of state i at time t0 [52]. The transition matrix can be derived from the fundamental
matrix according to Equation 8.6. In essence, the inverse of the fundamental matrix φφφ−1(t0), eliminates
potential linear transformations of independent solutions in the fundamental matrix.

x(t) = Φ(t, t0)x(t0) (8.5)

Φ(t, t0) = φφφ(t)φφφ−1(t0) (8.6)

From Equation 8.6 we can derive that the transition matrix can be split up into consecutive parts as is
given in Equation 8.7. Additionally, the transition matrix equals identity at t = t0. Both these properties
also become clear by solving x at discrete times according to Equation 8.5.

Φ(t, t0) = Φ(t, t1)Φ(t1, t0) (8.7)

Since Φ contains linearly independent solutions of x, one can also state that

Φ̇(t, t0) = A(t)Φ(t, t0) (8.8)

Any linear combination of Φ through a constant non-singular matrix C is also a transition matrix of
A(t), since Equation 8.8 still holds. Though it is important to note that a transition matrix of A(t + τ)
may not be a transition matrix of A(t). In other words, the fundamental solution set of the system
changes due to time varying properties.



8.2.2 Floquet theorem and stability criterion

In case the LTV system is periodic according to Equation 8.2, Floquet theorem can be applied. As
indicated at the start of this chapter, the main purpose of Floquet’s theorem is to determine the stability
of a periodic LTV system. The two main consequences of the theorem are [53]:

• The stability can be determined through knowledge of the transition matrix at the end of a single
period (Φ(T, 0)).

• The solution of the homogeneous system at any time can be determined with knowledge of the
transition matrix over a single period (Φ(t, 0) with 0 ≤ t ≤ T ).

In the remainder of this section, above consequences are derived and discussed in greater depth.
Moreover, stability criteria are given.

Definitions

Due to periodicity of the system matrix, Equation 8.8 yields that the transition matrices across a period
T are related through a constant non-singular matrix C.

Φ(t+ T, t0) = Φ(t, t0)C (8.9)

Using Equation 8.7, we can define that this matrix C must be related to the transition matrix at the
end of a single period, called the growth matrix. Moreover, we define a constant matrix R as is given in
Equation 8.10. Where, for notational simplicity Φ0(t) denotes Φ(t, t0) with t0 = 0 and x(t0) = x0.

Φ0(T ) = CCC ≡ exp(RT ) (8.10)

Moreover we define that there exists a non-singular matrix P(t) that relates the transition matrix to
the constant matrix R as in Equation 8.11. It can be shown that this matrix P(t) also is periodic with
period T .

Φ0(t) ≡ P(t)exp(Rt) (8.11)

It is important to note that R only defines the system at the end of each period T . Only at these
instances the solution of x can be computed directly, as P(t) cannot be proven to equal identity at other
instants. Therefore, it does not describe the response at other instants. Hence, the matrix may not
correspond to the approximate or average system of A(t).

Stability

Using these definitions, we can rewrite the solution of the homogeneous system as

x(t′ + sT ) = Φ0(t′)Φ0(T )sx0 (8.12)

where s denotes the number of complete periods and 0 < t′ < T . Looking at Equation 8.12 it clear that
the growth matrix, or the constant matrix R, define stability. The n-distinct eigenvalues of the growth
matrix, Λi, are called the characteristic multipliers. The n-distinct eigenvalues of R, λi, are called the
characteristic exponents. These two are related according to equation 8.13.

Λi = exp(λiT ) (8.13)

The criteria for global asymptotic stability (GAS) are given by Equation 8.14.

|Λi| ≤ 1 or Re(λi) ≤ 0 for i = 1, 2, ..., n (8.14)



Performance

As stated before, full knowledge of the transition matrix over a single period provides the solution at any
time instant. Though, analysing the performance of a certain system with knowledge of the transition
matrix, without obtaining the full time-domain solution, may prove difficult.

The growth matrix, or the matrix R, only describe x at t = sT . Therefore, its eigenvalues may not
represent the average system of A(t). Moreover, in case of MDoF systems eigenvalues may be hard to
relate to physical properties, like equivalent damping. Lastly, the modulation period T may be unrelated
to the natural period(s) of the system. Looking at the states at time sT may not represent a full cycle of
a certain state.

8.2.3 Approximation of the transition matrix

One of the most straightforward method for computing the growth matrix has been proposed by Hsu
[54]. Additional overviews of this method and more practical applications have also been provided in
literature [51] [55].

The periodic continuous, or piecewise continuous, system A(t) is approximated through a series of
step functions. The period T is discretised into K parts with a constant matrix Ak. In Figure 8.1 a visual
representation is given in case just a single parameter is periodic.
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Figure 8.1: Discretised system matrix A(t) over period T with a single periodic parameter.

The constant system Ak is computed according to Equation 8.15, which is in essence just the average
of A(t) over time interval ∆k which is defined between tk−1 and tk.

Ak =
1

∆k

∫ tk

tk−1

A(s)ds (8.15)

Thus, the system from Equation 8.1 is approximated by Equation 8.16. Where, the discrete Ak is put
in a piecewise continuous form through a summation of heaviside step functions as in Equation 8.17.
The subscript A indicates an approximate solution.

ẋA(t; k) = A(t; k)xA(t; k) (8.16)

A(t; k) =

∞∑
m=−∞

K∑
k=1

Ak [U(t− sT − tk−1)− U(t− sT − tk)] (8.17)

The theory for linear time-invariant (LTI) systems allows us to write the general solution of a first
order system as in Equation 8.18. Where the exponential is the matrix exponential, which is computed
through the power series expansion given in Equation 8.19.

x(t) = eAtx(0) (8.18)

eAt =

∞∑
n=0

1

n!
(At)2 = I + At+ 0.5A2t2 +O(3) (8.19)



Using the general solution for the discrete system in Equation 8.16, the approximate solution during a
single period can be written according to Equation 8.20 and Equation 8.21. By evaluating the transition
matrix up to k = K, the growth matrix is obtained. Floquet theorem can be used for analysis, though its
accuracy depends on various factors.

As K → ∞ the approximate transition matrix goes to the actual solution [54]. For a piecewise
continuous system A(t), errors solely depend on the Taylor series in Equation 8.15. For a continuous
system A(t), errors are of the order O(∆2) [54].

xA(t′; k) = ΦA(t′; k)x(0) (8.20)

ΦA(t′; k) = eAk∆keAk−1∆k−1 ...eA1∆1 (8.21)

where 0 ≤ t′ ≤ T (8.22)

8.3 Modulation of Single DoF systems

To further strengthen the understanding of periodic LTV systems, Floquet’s theorem is applied to SDoF
second order differential equations. The main advantage of these SDoF systems, is that the fundamental
matrix can be obtained analytically and does not require the use of the matrix exponential. Moreover,
obtained results are more general and can be compared with literature. The main disadvantage is that
the results may be too general and not applicable to actual dynamical systems.

Firstly, in Section 8.3.1, stiffness is modulated in a discrete manner. The main purpose is comparison
of the numerical method with literature. Afterwards, in Section 8.3.2, damping is modulated. The main
purpose is to study modulation of damping in general. Both SDoF systems do not represent the physical
behaviour of the AO-TLCD.

8.3.1 Stiffness modulation

One of the most commonly studied periodic differential equation is ‘Hill’s equation’. It can represent a
variety of physical phenomena including an (inverted) pendulum with vertical excitation of its hanging
point. The EoM is given by Equation 8.23, where the time-scale τ is normalized based on the modulation
frequency. Furthermore, the squared frequency ratio δ, the normalized damping ratio γ and the
modulation depth ε are introduced.

ẍ+ γẋ+ (δ + εp(τ))x = 0 (8.23)

p(τ + 2π) = p(τ) (8.24)

τ = 2Ωt , γ = 2ζω/2Ω = ζδ , δ = (ω/2Ω)2 , ε = (k∗/m2Ω)2 (8.25)

Depending on the modulation shape p(τ) and the depth of modulation ε, different methods can be
applied to analyse the stability.

Meissner’s equation

A special form of Hill’s equation is Meissner’s equation. It assumes a piecewise modulation shape as is
given by Equation 8.26 and illustrated in Figure 8.2. In this form, the growth matrix can be obtained
analytically with relative ease.

p(τ) = sgn(cos(τ)) (8.26)
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Figure 8.2: Shape of modulation signal p(t) of Meissner’s equation.

The system can be described by two time invariant systems, with different constants. Their first
order form is given in Equation 8.27. Here A+ and A− represent the system for positive and negative
modulation, respectively.

A± =

[
0 1

−(δ ± ε) −γ)

]
(8.27)

The general solution is given by Equation 8.28. Here r1,2 represent the complex roots, or eigenvalues,
of Equation 8.27. These can be obtained directly from the second order form or through solving the
eigenvalue problem of the first order system.

x(t) = c1exp(r1t) + c2exp(r2t) (8.28)

As explained in section 8.2.2 one can use the eigenvectors as independent solutions to form the
fundamental matrix and subsequently compute the transition matrix. Alternatively, Equation 8.28 can
be solved for a unit displacement and unit velocity separately. In this manner, the transition matrix can
be found directly.

In Equation 8.29, these two solutions are indicated by xi with i = 1, 2 each having their own solutions
c1i and c2i to the initial value problem. To complete the set, ẋi is obtained through differentiation. ∆t is
the time interval over which A+ and A− act. The full derivation can be found in Appendix A.6.

Φ±0 (t) =

[
x1 x2

ẋ1 ẋ2

]
=

[
c11exp(r1∆t) + c12exp(r2∆t) c21exp(r1∆t) + c22exp(r2∆t)

c11r1exp(r1∆t) + c12r2exp(r2∆t) c21r1exp(r1∆t) + c22r2exp(r2∆t)

]
(8.29)

where: c11 =
r2

r2 − r1
, c12 = − r1

r2 − r1
, c21 =

1

r1 − r2
, c22 = − 1

r1 − r2

The growth matrix can be obtained through multiplication of the fundamental matrices over a half
period. Logically, these two fundamental matrices each depend on their own set of eigenvalues in case
ε > 0.

Φ0(T ) = Φ+
0 (0.5T )Φ−0 (0.5T ) (8.30)

The stability diagram is given in Figure 8.3 for different damping values. Here, some unstable regions
are indicated by U . Existence of instability ‘pockets’, indicated by U∗, depends on damping. The results
agree with other methods found in literature [56]. The origins of the stability ‘tongues’ correspond
to ω = n ∗ Ω with n = 0, 1, ..., i. Additional damping mainly reduces instabilities that occur at low
modulation depth.

8.3.2 Damping modulation

In an analogous manner, modulation of the dissipative term in Equation 8.23 can be investigated. By
studying Equation 8.31, some conclusions can be drawn on damping modulation in general. These
conclusions can be extended to semi-active damping control of MDoF systems.

ẍ+ (γẋ+ εp(τ)) + δx = 0 (8.31)

p(τ + 2π) = p(t) (8.32)

τ = 2Ωt , γ = ζδ , δ = (ω/2Ω)2 , ε = ∆ζ · δ (8.33)
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Figure 8.3: Stability chart for Meissner’s equation with variable damping.

For a sinusoidal shape of p(τ), analytical and numerical approximations exist in literature. The
main result is that “instability is possible in a system for which the average dissipation is positive”[57].
However, a system can only become unstable in case damping is negative over at least part of the cycle.
The latter statement is quite obvious, as without negative damping, no energy can be introduced through
the parametric forcing term.

The limit of the modulation depth, for which the system becomes unstable, depends on the shape of
the modulation signal p(τ). For a sinusoidal shape, the system is unstable for ε > 2γ at the most critical
modulation frequency δ = 0.25 [57][58].

For an on average undamped system, instabilities only originate from uneven modulation frequency
ratios (ω = nΩ with n = 1, 3, ...) [58].

Analogous to the previous section, stability curves for square modulation are obtained and can be
found in Figure B.2. Furthermore, the relation for a sinusoidal shape have been duplicated using
Equation 8.29 using the approach illustrated in Figure 8.1.

8.4 Semi-active AO-TLCD

Proper analysis of the behaviour of the semi-active AO-TLCD requires more degrees of freedom.
Attempting to obtain an equivalent SDoF system with damping/stiffness modulation will be an unfruitful
exercise. The system will be too specific to make general statements and to simplistic to ensure
representation of the AO-TLCD.

In this section the semi-active AO-TLCD is simplified to a MDoF periodic LTV system and analysed for
its stability and performance using the numerical approximation method given in Section 8.2.

Homogeneous periodic LTV form of the AO-TLCD

As mentioned before, modulation of stiffness does not represent the AO-TLCD. The restoring force of the
gas-spring is contained in an additional degree of freedom. With respect to the liquid, the equivalent
additional ‘spring element’ will depend on the closing moment. This has been visualized with an
equivalent system in Figure 8.4, where uc is the fluid displacement at the moment of closing. Hence, the
restoring force for this representative system will depend on the relative displacement ugas = uf − uc.

Moreover, free modulation of the damping is also not applicable to the semi-active system. Negative
damping values can’t be obtained through semi-active actuators like valves. Consequently, the additional
damping c∗, will always be larger than zero.
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Figure 8.4: Diagram of the periodically varying LTV semi-active AO-TLCD.

The on/off control, can be simplified to a square modulation signal. Both k∗ and c∗ are assumed to
switch between zero and its maximum value. The resulting modulation signal p(t) is shown in Figure
8.5. Here, the duty cycle D is the modulation width w normalized by the period T . The signal is shown
for a duty cycle of 30% over two modulation periods.

0 T 2T

w

Time [s]

Figure 8.5: Square modulation signal over two modulation periods with D = 0.3.

With these definitions the linear system from Equation 5.6 can be transformed to the desired form in
Equation 8.34. For simplicity the opposite modulation signal is denoted as p−(t) = 1 − p(t). Looking at
the pressures, the gas spring and the massflow are switched on and off intermittently by the modulation
depth ω2∗

A . To ensure instantaneous decoupling of the gas-spring, the reaction force is also modulated.
Lastly, the damping modulation depth ζ∗A is in essence the resistance of the ‘open’ gas system.

ẋ = −M−1


0 0 0 −1 0
0 0 0 0 −1
0 0 |ω2∗

A |ρfLeff Koi
AHρ0

· p−(t) 0 −ω2∗
A ρfLeff · p(t)

ω2
S 0 0 2ζsωs 0
0 ω2

A ω2∗
A · p(t) 0 2ωA (ζA + ζ∗A · p−(t))

x (8.34)

Without modulation, e.g. a duty cycle equal to zero or one, the transient response of the LTV model
is identical to that of the non-linear model. For the SA AO-TLCD, the response of the on/off C-LQR
AO-TLCD can be described with reasonable accuracy. In Appendix B.2.2, Figure B.3, a time-domain
comparison can be found for an unit initial displacement of the host.

Modulation of the AO-TLCD

In Chapter 7, the SA AO-TLCD was controlled by two sub-optimal schemes resulting in quasi-periodical
modulation. Moreover, only one design was used for the gas system. In this section we will modulate
the homogeneous LTV system from Equation 8.34 for a broader range of variables. These variables, and
some additional assumptions, can be found in Table 8.1.



The main variables are the duty cycle D and the modulation depth. The duty cycle, represents all
closing cycles between fully open and fully closed. The modulation depth ω2∗

A , related to the air spring
stiffness, is evaluated up to negative values in order to assess the limits of the system in terms of stability.

Especially for the evaluation of the performance, the phase tφ of the modulation signal may be of
importance. For the whole range of phase shifts, the worst and best case scenario are extracted in terms
of stability and performance, respectively. This will be explained later in more detail.

The modulation frequency is set to two times the host natural frequency (δ = 0.25). Typically this
is the most critical modulation frequency with respect to stability. Furthermore, this corresponds to
the semi-active control defined in Chapter 5. At different modulation frequencies, the system is in all
likelihood more stable with respect to parametric resonance and less optimal in terms of performance.
Ill-design of the controller, i.e. deviating modulation frequencies, enhances the dissipative nature of the
AO; further increasing the stability.

From the SDoF results in Section 8.3.2, we can conclude that positive modulation of damping will
not increase instabilities. Therefore, the modulation depth of the damping is assumed to be constant and
equal to 50% of the internal TLCD damping, corresponding to the fully open valves in the case study.

Table 8.1: Variables and constants used in the stability and performance analysis of the LTV SA AO-TLCD.

Name Variable Range Units
Modulation depth stiffness ω∗A/ωA [-1 10] [-]
Duty cycle D [0 1] [-]
Modulation signal phase tφ [0 T] [s]
Modulation frequency δ 0.25 [-]
Modulation depth damping ζ∗A/ζA 0.5 [-]

Evaluation of stability and performance

With the representative periodic LTV model and the modulation parameters defined, we still need to
define the evaluation of the system. An overview of the computational procedure can be found in Figure
8.6.

For all combinations of variables listed in Table 8.1, the growth matrix Φ0(T ) is obtained. Stability
can be evaluated directly from the characteristic multipliers using Equation 8.14.

As mentioned in Section 8.2.2, evaluation of the performance is less straightforward. States have a
combined response, i.e. the system has its own set of modes. One cannot assume that states respond
with the same frequency as they would individually. As a consequence, the states will not be at a constant
phase at t = sT where the response can be computed. To overcome this, the total mechanical energy E
in the system is computed at t = sT . For this, the response is computed for an initial unit displacement
of the host structure. In Appendix B.2.2, Figure B.4, this is visualized through the comparison of a time-
domain solution obtained using the complete transition matrix, and the periodic solution obtained with
the growth matrix.

The host time-domain response is not known. Therefore, the approach of finding the equivalent
structural damping used in the first two parts of this research, cannot be applied. Instead the dissipated
energy over s cycles is matched with the dissipated energy for a SDoF host structure. For this the general
solution for a unit displacement and its derivative are used, listed in the first column of Equation 8.29.

Results

The stability and performance is shown in Figure 8.7. Here, the duty cycle is plotted on the x-axis.
Where, D = 0 and D = 1 represents the fully open and closed system, respectively. The y-axis indicates
the depth of modulation, i.e. the normalised gas-spring stiffness. Unstable regions are indicated by black.

For the stable regions the equivalent structural damping, i.e. the effectiveness, is plotted in % critical.
Points corresponding to the two passive TLCD set-ups are indicated. Lastly, the depth of modulation
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corresponding to the gas-spring stiffness in the case study is given. Duty cycles observed in the case
study for the semi-active damper can be found in Figure B.7. For load case III, 50% of the case study
duty cycles lie within 0.4 and 0.5.
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Figure 8.7: Stability and performance of the periodical LTV system.

In Table 8.2, specific points corresponding to the benchmark solutions of the TLCD can be found.
The results are almost identical to Table 7.1. In Appendix B.2.2, Figure B.5, one can find a cross section
of Figure 8.7 at D = 1, corresponding to the passive TLCD without additional air system damping.
Furthermore, cross sections are included in Figure B.6 for a modulation depth equivalent to zero and to
the SA AO-TLCD used in the case study.



Table 8.2: Effectiveness of the LTV system at specific points corresponding to passive AO-TLCD settings.

Meaning Duty cycle [-] Modulation depth [-] Effectiveness [% crit]
No TLCD 1 High 0.64
Passive off-tuned 0 Any 1.04
Passive tuned 0 0.46 3.66

8.5 Discussion

Below the results from this chapter are discussed with the main focus on the comparison with the case
study results and the link to the physical device.

Stability of the SA AO-TLCD

In Figure 8.7, it can be seen that instabilities do not occur for positive modulation, i.e. for positive gas-
spring stiffness. This is expected for a semi-active system, i.e. a system that cannot increase mechanical
energy through its actuators.

For the actual damper, a negative gas-spring stiffness cannot be obtained. Inclusion of the TLCD’s non-
linear damping improves stability. Different modulation frequencies result in less parametric resonance
and may result in large amounts of dissipation in the gas system due to improper control of the AO.
Lastly, the damping is always positive throughout its modulation and therefore it cannot result in an
unstable system.

Hence, it can be concluded that the semi-active AO-TLCD indeed is inherently stable.

Performance of the SA AO-TLCD

In Figure 8.7, regions exist with larger effectiveness than were obtained with the semi-active control laws.
However, differences are small when one considers reduction of host vibrations instead of equivalent
damping. Still, more optimal and advanced control schemes may provide additional ‘buffers’ for losses
due to actuator dynamics, limited sensor input and unmodelled dynamics.

Sensitivity of the SA AO-TLCD

From Figure 8.7 one can also conclude that the damper is not sensitive to its specific AO design. Increased
performance can be obtained for any positive gas-spring stiffness. A single AO design is effective over
quite a broad range in terms of closing cycles.

Required modelling detail

Similar results were obtained compared to the OWT installation case study. The periodic LTV model,
or an inhomogeneous variant, may be sufficient for the evaluation of the semi-active damper’s general
performance. Though, due to the constant modulation, its applicability is limited.

In case of stochastic excitation or more advanced controller implementation, constant modulation
will not represent actual control of the valves. Still, in these cases, a non-periodic inhomogeneous LTV
model may be sufficient.

For more detailed actuator implementation or precise evaluation of the effect of the damper; the
non-linear model is required.





Chapter 9

Conclusions and Recommendations

The main goal of this thesis was: ‘reduction of wave-induced vibrations during OWT installation by a novel
non-invasive strategy for period adjustment of off-tuned TLCDs’. In Chapter 2, consideration of modification
methods for TLCDs including OWT constraints resulted in a new period adjustment strategy; the Airflow
Obstructed TLCD. In the remainder of the research, this strategy was investigated and developed. The
work was structured into two parts:

1. Development and validation of a passive stand-alone AO-TLCD model.

2. The performance of a semi-active AO-TLCD and its application to OWT installation.

In Section 9.1, the conclusions are given according to the thesis its structure. Afterwards, some
recommendations are made in Section 9.2 regarding the use of the AO-TLCD and future work on its
development.

9.1 Conclusions

In this section, the conclusions from this research are summarized, including important observations.
These are further structured into separate paragraphs. Each paragraph ends with one of the main
conclusion of this research.

9.1.1 Part I: passive (stand-alone) AO-TLCD

The conclusions from part I fulfil the first two sub-objectives of this research: ‘development and validation
of a simple numerical model’ and ‘investigation of the dynamical behaviour of the passive AO-TLCD’.
Moreover, a potential application of the passive AO-TLCD is discussed.

Modelling of the passive AO-TLCD In Chapter 3, a numerical model was developed for the stand-
alone AO-TLCD. To allow for numerically efficient and insightful analyses, the goal was to develop a
simplistic model describing the gas dynamics of the AO-TLCD. Based on literature on TLCGDs, pressures
were computed through polytropic relations. Empirical relations were used for the pressure losses in the
quasi-steady massflow. Both compressible and incompressible flow were analysed.

For the operational conditions of the AO-TLCD, simplified forms of the massflow and pressure
equations have differences smaller than 10% compared to their fully non-linear and incompressible
counterparts. in In Section 4.2, the model was validated to accurately predict the steady-state response
of the passive AO-TLCD using small-scale experimental data. Hence, the use of a simplified model for
the AO-TLCD is justified.
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Dynamical behaviour of the passive AO-TLCD In Section 4.3.1 it was shown that passive AO can
have a large influence on both the TLCD’s stiffness and damping – although, not independently. A close
relation exists between the magnitude of the pressures and its phase-lag with the liquid displacements.

As a result of this dependency, adjustment to off-tuned frequencies introduces large amounts of
viscous dissipation into the system; effectively reducing the restoring force. Therefore, period adjustment
using passive airflow obstruction is not possible while maintaining significant effectiveness of the TLCD
with respect to the host.

Application of the passive AO-TLCD Typically, regular TLCDs require detailed design on the internal
resistance of the fluid compartment in order to achieve the required internal damping. For low
obstruction, a large influence of the AO-TLCD on the internal damping of the TLCD was observed;
without affecting other properties of the system. Hence, passive airflow obstruction can be used as an
alternative design parameter for internal damping of a regular TLCD.

9.1.2 Part II: Semi-active AO-TLCD for OWT installation

The conclusions from part II of this research, fulfil the third and fourth sub-objectives of this research:
‘robust period adjustment of the AO-TLCD’ and ‘evaluation of the effect of the AO-TLCD on installation
workability’. To further fulfil sub-objective three, conclusions from Chapter 8, investigation of the SA
AO-TLCD through a periodic linear time-variant (LTV) systems framework, are included. Lastly, the
main goal of this research is discussed.

Passive TLCDs for an installation casestudy In Chapter 6, an OWT installation case study is defined
for a realistic deep-water site. Overlap of the support structure’s natural frequency with highly probable
wave spectra, resulted in workability reductions as high as 50%.

For this case study, the effectiveness of a passive TLCD designed for the operational life of an OWT was
evaluated in Section 6.4. In accordance with estimations in Chapter 2, damping was only increased up
to 6% LogDec, resulting in insufficient improvement of the installation workability. Hence, modifications
of the off-tuned TLCD are required during next-generation OWT installation.

Semi-active AO-TLCD for period adjustment In order to increase the effectiveness of the damper, the
AO is controlled semi-actively. In Chapter 5 it is defined that proper semi-active control of the damper
involves minimizing the viscous dissipation of the AO-TLCD; i.e. the massflow. Based on literature
on semi-active VAs, two sub-optimal on/off control laws were defined: simplistic hybrid control and
clipped-LQR. In Section 7.2 it can be seen that both laws indeed result in minimal massflow.

In Chapter 7 the semi-active damper’s performance was evaluated for the installation case study. For
both control laws, the SA AO-TLCD was able to reduce wave induced tower-top displacements by up
to 60% for critical installation load cases. The semi-active damper out-performed its optimally tuned
passive counterpart by more than 10%. It can be concluded that semi-active AO is an effective strategy
for period adjustment.

Periodic linear time-variant systems framework The inherent stability of the semi-active damper was
further demonstrated in Chapter 8. Moreover, in Figure 8.7 similar results were obtained for the LTV
model, in terms of the equivalent structural damping, compared to the case study. The performance of
the two control laws are close to optimal, especially with respect to host vibration reduction.

For general evaluation of the SA AO-TLCD its performance, an inhomogeneous time-domain form
of the LTV model may be sufficient. Though, for complex actuator or controller implementation the
non-linear model is required.



Improvement installation workability with SA AO-TLCDs In Figure 7.5 it was demonstrated that, the
semi-active AO-TLCD is effective in reducing host vibrations, independent of its passive natural frequency.
Furthermore, low actuator speeds were not detrimental to the AO-TLCD its effectiveness. Results from
Chapter 8 further demonstrate the robustness of the proposed strategy.

Thus we can conclude that the semi-active AO-TLCD can be sufficiently effective in reducing wave-
induced vibrations over the whole OWT installation and operational frequency range.

9.2 Recommendations

For deep water sites and next-generation turbines with installation frequencies around highly probable
sea states, the implementation of semi-active AO is recommended. However, further development of the
concept is required before the SA AO-TLCD can be successfully deployed. Below some recommendations
are made regarding this future work.

Even though improvements are not sufficient, until the full development of the semi-active AO-TLCD
has been completed, temporary placement of passive airflow obstruction is recommended. As it is a
cost-effective approach for increasing the effectiveness of the damper during installation phases.

• Experimental validation of the proposed semi-active AO-TLCD is required. Most importantly,
unmodelled dynamics that are potentially introduced through semi-active control of the valves,
should be investigated. For this, proper scaling of the AO in the experimental design will be key.

• Robust controller design, using more realistic sensor data, should be investigated for the semi-
active AO-TLCD. This includes both the use of state-estimation, as the inclusion of sensor-noise on
the measurements.

• More advanced control strategies should be deployed to determine optimal semi-active control
of the AO-TLCD. Most importantly, the control strategy should include the semi-active bounds
of the AO-TLCD. This ‘optimal’ semi-active control of the AO-TLCD is required to either improve
performance or to further justify the use of the ‘sub-optimal’ control schemes proposed in this
research.

• The use of semi-active AO-TLCDs during operational life, to decrease excitation dependencies
and to reduce specific critical load case scenarios may prove beneficial. Though, investigation
of the general feasibility may be required first, including the practical considerations; namely, the
additional demands on components and the effects on the TLCD its reliability.
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Appendix A

Methods

A.1 Energy considerations extended

In this research, the mechanical system is analysed using an energy perspective multiple times, to obtain
more insight into its behaviour. This perspective is explained further in this section. First, the energy
balance of the dynamical system is given. Afterwards, equations for equivalent parameters are given.
Lastly, some of those equations are solved for specific cases assuming a linear harmonic response. For
simplicity, the liquid displacement is denoted without its subscript f .

A.1.1 Energy balance

Assuming a stationary stochastic input and ergodicity the expectation of energy flow becomes the time
average of the product of the force and velocities over a number of periods. Alternatively this can be
viewed as the time derivative of the work done by a general force. Where the work done is the integration
of a force over its displacement path.

m · E [f (t) ẋ (t)] = m ·
∫ nT

0

f (t) ẋ (t) dt = m · δ
δt

(∫
f(t, x)dx

)
(A.1)

For the host and TLCD the energy balance is given as:

E [(1 + µ) ẅẇ] + E [2ζSωsẇẇ] + E
[
ω2
swẇ

]
= −E [µκüẇ] (A.2)

E [üu̇] + E
[
δL|u̇|u̇2

]
+ E

[
∆p

ρfLeff
u̇

]
+ E

[
ω2
Auu̇

]
= −E [κẅu̇] (A.3)

For a system in steady state the expectation of the change of kinetic and potential energy must equal
zero. This becomes especially clear for the harmonically excited linear system in Equation A.11 for a
phase-lag equal to 0 and 180 degrees.

E [üu̇] = E [uu̇] = E [ẅẇ] = E [wẇ] ≈ 0

E [2ζSωsẇẇ] = −E [µκüẇ]

E
[
δL|u̇|u̇2

]
+ E

[
∆p

ρfLeff
u̇

]
= −E [κẅu̇]

(A.4)

A.1.2 Equivalent (non)-linearisation

Equivalent parameters can be found which match the same dissipative- and/or potential energy as the
non-linear terms in the dynamical system [59].

E [µκüẇ]→ ∆ζS
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E

[
∆p

ρfLeff
u̇

]
→ ∆ζA, ∆ωA

For the host, the additional equivalent linear structural damping can be described as:

∆ζs =
µ · E [üẇ]

2ωs · E [ẇ2]
(A.5)

For the TLCD, the additional equivalent damping can be described as:

∆ζA =
E [∆pu̇]

ρfLeff2ωAE [u̇2]
or ∆δL =

E [∆pu̇]

ρLeffE [|u̇|u̇2]
(A.6)

For the TLCD the regular linear damping can be described as:

ζA =
E
[
δL|u̇|u̇2

]
2ωAE [u̇2]

(A.7)

For the TLCD the additional equivalent stiffness can be derived by the potential energy, V , stored
and released during a cycle of a force (that has no net energy flow) [59]. For a force, which is partly
dissipative the equivalent frequency can be found by Equation A.9. Here ti indicate the quarter cycle
times, i.e. the zero crossings and peak displacements of the liquid.

4V =

∫ umax

0

f (u) du−
∫ 0

umax

f (u) du+ ... =

4∑
1

|
∫ ti+1

ti

f (u) u̇dt| (A.8)

4V =

∫ T

0

|∆ω2
Auu̇|dt =

4∑
1

|
∫ ti+1

ti

∆p

ρfLeff
u̇dt| −

∫ T

0

∆p

ρfLeff
u̇dt (A.9)

A.1.3 Harmonic linear response

Equations listed in the previous paragraph can be solved partially in case the response is known. For a
linear response to a stationary harmonic excitation the energy flow simplifies to Equation A.11. Where
φ indicates the phase-lag between the force f(t) and the displacements u.

u(t) = U0cos(ωt) (A.10)

E [f (t) u̇ (t)] =

∫ T

0

F0cos (ωt+ φ) · U0ωsin (ωt) dt = 0.5F0U0ω

[
−sin (φ) +

∫ T

0

sin (2ωt+ φ) dt

]
(A.11)

TLCD damping

Using Equation A.11, Equation A.7 can be solved resulting in the harmonic linearisation as in Equation
A.12 [5] [18].

ζA =
4

3π

ω

ωA
U0δL (A.12)

Low-obstruction

The pressure difference across the reservoirs is assumed to be negligible. As a consequence, we may
assume the gas flows freely and in phase with the liquid velocities. Contradictory, it is still assumed
losses occur due to this flow. This results in a relation for the pressure losses due to the gas flow as a
function of the liquid velocities.



∆p ≈ 0.5ρ0Kj

(
u̇

nv, jβ2
j

)2

(A.13)

(A.14)

Using Equation A.11 the non-linear form of Equation A.6 can be solved now the flow-speeds are
known.

∆δL =
ρ0

2

Kj

nv, j2 ∗ β4
j

1

Leffρf
=

K2
O

Leffρf
(A.15)



A.2 Derivation spring-element concept

For a massless piston, with a linear spring stiffness kp equation we can assume that the piston
displacement up is linearly dependent on the liquid displacements uf . As a result, the pressures can
be approximated by Equation A.16.

∆p =
Ncnp0

V0
(AHuf −Apup) (A.16)

Since both displacements are dependent on each other the work performed by such a pressure on the
liquid and on the piston is:

Ep = 0.5∆pAHuf − 0.5∆pApup (A.17)

As a consequence the full expression for kinetic and potential energy are given by:

Ek = 0.5

(
2ρfAHH

∣∣∣∣ 0
u̇f

∣∣∣∣2 + ρfABB

∣∣∣∣u̇fα0
∣∣∣∣2
)

(A.18)

Ep = ρfgAH(H2 + u2
f ) + 0.5Nckpu

2
p +

Ncnp0

V0
· 0.5(A2

Hu
2
f +A2

pu
2
p − 2AHApufup) (A.19)

Using LaGrange, the coupled system is given by:

üf + δL|u̇f |u̇f +
2g

Leff
uf +

1

ερfLeff
(uf −

Ap
AH

up) = 0 (A.20)

−Ap
ε
uf +

A2
p

εAH
up +Nckpup = 0 (A.21)

Rewriting gives:

üf + δL|u̇f |u̇f + ω2
Auf = 0 (A.22)

ω2
A =

2g

Leff
+

1− fp
ερfLeff

(A.23)

up = fp
1

β2
p

uf (A.24)

Where

fp =
1

1 +
V0kp
np0A2

p

=
1

1 +
Nckpε
AHβ2

p

(A.25)

ε−1 =
Ncnp0

heff
(A.26)

β2
p = Ap/AH (A.27)



A.3 Extended review of gas dynamics

In this appendix, some additional equations regarding gas dynamics are given. In Section A.3.1 the laws
of conservation are given in their general derivative form. The difference between the equations listed
here and the steady 1D forms given in Section 3.2.1 can provide insight in the assumptions of Section
3.1.1. Moreover, to fully understand the physics behind concepts like compressibility, these derivative
forms are required.

In Section A.3.3 the isentropic compressible flow equations are given. These flow equations are
necessary to successfully apply the compressible flow equations in Section 3.2.2 to the AO-TLCD model.

A.3.1 Fundamental equations extended

In addition to Section A.3.1, the conservation laws are given below in their general derivative form.
Here, spatial vectors are displayed in bold. For a more thorough review of the conservation laws and
thermodynamics the interested reader is referred to Chapter 2 and Chapter 7 of Anderson respectively
[25].

Algebra

The substantial derivative, which is a derivative for a moving control volume with velocity v, is given by:

D

Dt
=

∂

∂t
+ v5 (A.28)

The divergence, which can be seen as a 3D spatial derivative, is given by

5 = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
(A.29)

where i, j, k are unit vectors in the x-, y- and z-direction, respectively.

Laws of conservation

The conservation of mass is given by the continuity equation:

1

ρ

∂ρ

∂t
+5 (ρv) = 0 (A.30)

The conservation of momentum is given by

ρ
Dv

Dt
= −5 p+ ρg + µ52 v +

1

3
µv (5v) (A.31)

where g includes the gravitational direction and µ is the viscosity of the fluid or gas. The conservation
of energy is given by

ρ
D
(
e+ 0.5v2

)
Dt

= ρq̇ −5pv + ρ (fv) (A.32)

where e and 0.5v2 indicate the internal energy and kinetic energy per unit mass, respectively. The heat
flux vector is indicated by q̇ and f are the external forces acting along velocities v.

A.3.2 Thermodynamics extended

The enthalpy for a caloric perfect gas are given by

h = cpT (A.33)

where cp is the specific heat at constant pressure. The isentropic relation, is given by Equation A.34.
Here, γ is the isentropic constant which equals 1.4 for air around atmospheric conditions.

p

ργ
(A.34)



A.3.3 Isentropic compressible flow

For a steady isentropic flow with negligible body forces, the continuity equation can be combined with
the energy equation to form an expression for the total enthalpy along a streamline. If all streamlines
originate from a common uniform free stream then total enthalpy, and thus the total temperature, is
constant for each streamline.

h+ 0.5V 2 = h0

With this definition and assuming a caloric perfect gas, the flow equation can be derived for the
temperatures as a function of the flow speed.

T0

T
= 1 +

γ − 1

2
M2 (A.35)

Using the isentropic relation given by Equation A.34, one can arrive at similar formulas for the
pressure and density [25] as a function of the flow speed.

p0i

pi
=

(
1 +

γ − 1

2
M2

)γ/(γ−1)

=

(
T0i

Ti

)γ/(γ−1)

(A.36)

ρ0i

ρi
=

(
1 +

γ − 1

2
M2

)1/(γ−1)

=

(
T0i

Ti

)1/(γ−1)

(A.37)



A.4 Massflow

A.4.1 Loss factor comparison

Often manufacturers use the flow factor Kv or flow coefficient Cv instead of the loss factor K. The flow
factor is given by

Kv = 3.6 · 104Q

√
ρ

∆p
(A.38)

where Q is the flowrate (m3/s); ∆p is the pressure loss (Pa) and ρ is the density (kg/m3). The flow
factor is related to the flow coefficient as a consequence of non-SI units:

Kv = 0.86Cv,US (A.39)

Kv = 1.03Cv,UK (A.40)

As defined before, the loss factor K is defined according to equation A.41, where v is the flow speed
(m/s) and A is the nominal area (m2).

∆p = 0.5ρKv2 =
0.5ρK

A2
Q2 (A.41)

Rewriting result in the relation between the loss factor and flow factor:

K =
2A2

3602
K−2
v (A.42)

A.4.2 Empirical expressions loss factors

A realistic approximation of the losses in the gas system, requires a good estimate of the system its loss
factor. In order to do so multiple local losses were accounted for. This was done using simple theoretical
and empirical equations/values for the loss factor found in Chapter 6 of White [27].

For area changes across the flow, formulas for ‘sudden expansion’ (SE) and ‘sudden contraction’ (SC)
were used. As a result, the flow is assumed to always flow from one finite duct to another. Moreover,
the transition is sudden and sharp edged. The approximations are given by Equation A.43 and Equation
A.44. Where β is the area ratio between the smaller and larger duct. The loss factor is related to the flow
speed in the smaller diameter duct.

In the case of the AO-TLCD, the area ratio between the vertical compartments and the interconnecting
pipe is most likely very small. As a result, the exit losses approach 1, equivalent to the loss of all kinetic
energy in the flow.

KSE = (1− β)
2 (A.43)

KSC ≈ 0.42 (1− β) (A.44)

Bends were also taken into account to have some contribution to the total loss factor. Since its loss
factor contribution depend on the gas system its geometric design, the actual values are not included
here.



A.4.3 Incompressible massflow for linear pressures

Simplification massflow equation

In this section the derivation for the simplified massflow equation is given. In addition to chapter 4,
also parallel valves are included. The regular massflow equation over a number of parallel similar flow
elements:

ṁ = AHnv,jβ
2
j sgn(∆p)

√
2ρ1|∆p|
Kj

For incompressible flow this can be rewritten assuming local and stagnation properties are the same
and given the polytropic relation. To further simplify the massflow equation we can assume to neglect
the upstream density changes. Both equations are displayed blow.

ṁ = AHnv,jβ
2
j sgn(∆p)

√√√√√2ρ0

(
p01
p0

)1/n

|∆p|
Kj

ṁ = AHnv,jβ
2
j sgn(∆p)

√
2ρ0|∆p|
Kj

Assuming linear pressures we can derive the upstream pressure from the pressure difference.

p01 = |∆p|/nc + p0

The most correct massflow equation assuming linear pressures is given below.

ṁ = AHρ0sgn(∆p)

√
2n2

v,jβ
4
j

ρ0Kj
|∆p|

( |∆p|
ncp0

+ 1

)1/n

ṁ =
AHρ0

KO
sgn(∆p)|∆p|0.5

( |∆p|
ncp0

+ 1

)0.5/n

While the simplest equation, which neglects upstream density changes, is given below.

ṁ =
AHρ0

KO
sgn(∆p)|∆p|0.5

Here the obstruction parameter is defined as:

KO =

√√√√∑
j

(
Kj

n2
v,jβ

4
j

)
ρ0

2
(Flow obstruction parameter)

The massflow equation neglecting upstream density changes has a better fit to the compressible
massflow than the more complete massflow equation. The comparison can be found in Figure A.1. Since
relative errors are small, the simple form is used for the remainder of this research.
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Figure A.1: Comparison massflow equations for very low obstruction with n=1.2.



A.5 Experimental calibration

In order to compare the numerical model with the experimental data, the correct TLCD and airflow
parameters need to be used. The calibration of these parameters is given below.

TLCD coefficients

Especially the headloss factor is considered design specific and should be obtained experimentally for
each TLCD design. But even the determination of the natural frequency and geometric factors has its
uncertainties. The actual path of the streamline indicated in Figure 2.4 may vary around the bends,
influencing both B and H.

Experimental results were available for an ”open” TLCD with interconnecting pipe. The dynamic
amplification of the liquid displacements can be seen in Figure A.2. Furthermore, using calibrated
parameters, the DAF was computed with transfer function in Equation A.45 where the linear damping
was obtained iteratively using harmonic linearisation.

HU,W =
κ(

ωA
ω

)2 − 1 + 2ζA
(
ωA
ω

)
i

(A.45)

The effective length could be obtained using the natural frequency of the ”open” TLCD. A geometric
parameter κ = 0.46 was determined from the high frequency response. The obtained geometric
parameters correspond to a streamline located around 33% in the corner. In other words, the bulk of the
moving fluid cuts the corners slightly due to fluid ”deadzones”. From the resonant response, δL = 2 can
be obtained.

For this headloss the inter-connecting pipe, which is not present in the 1-sided small-scale set-up, has
a considerable contribution. Uncertainties in the inter-connecting pipe dimensions and lack of pressure
data make an exact estimation of the effect impossible. For the experimental set-up a headloss coefficient
of δL = 0.5 is assumed instead, based on theoretical loss factors [27].
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Figure A.2: Dynamic amplification liquid. Comparison calibrated model with open experimental set-up.

Other natural frequencies

In the experiments a 1-sided closed frequency around 1.9Hz was observed. Which corresponds to
a polytropic constant around 1.2. Though, the exact frequency deviated somewhat per experiment.
Furthermore, sloshing in the vertical compartments was observed at similar frequencies due to an
unfavourable geometric design.



Loss factor

Assuming low-obstruction (forced flow), the total loss factor can be obtained with Equation A.13. For
the steady state maximum pressure difference and displacements, Figure A.3 was obtained.

For low frequencies, sensor noise is too dominant. For high frequencies and high obstruction, the
assumption of forced flow does not hold. Moreover, at these frequencies, sloshing/splashing motions
distort the liquid displacement measurement.

A total loss factor of approximately K = 8.4 is assumed. Which is approximately equivalent to a valve
loss factor of K = 7 if one excludes sudden expansion/compression. This value is within the typical loss
factor range for small nominal diameter bend globe valves, or ”angle valves” [27].
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Figure A.3: Loss factor approximation for all experiments

Limitations sensor

Figure A.4 visualises the noise and distortion of the ultrasonic liquid displacement sensors. The left,
represents a case where high amount of sloshing/splashing was observed and expected. The non-zero
mean of the two displacement sensors suggests a constant over estimation of the peak displacements.
Measurement of splashing droplets can result in such an over-estimation. Moreover, it can be seen that
the peaks have been distorted. Which results in a shift in phase lag of the liquid displacements.
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Figure A.4: Sensor noise and distortion experimental data for nv = 2, f = 1.8Hz and nv = 4, f = 0.60Hz
on the left and right, respectively.



A.6 Fundamental matrix of Meissner’s equation

The general solution of a second order system is restated in Equation A.46, including its derivative.

x(t) = c1exp(r1t) + c2exp(r2t)

ẋ(t) = c1r1exp(r1t) + c2r2exp(r2t)
(A.46)

The first solution of the fundamental matrix Φ+
0 (t) can be obtained by an initial unit displacement

x(t = 0) = 1 as in Equation A.47.
c1exp(0) + c2exp(0) = 1

c1r1exp(0) + c2r2exp(0) = 0
(A.47)

Solving Equation A.47 gives the constants for x21 and ẋ1:

c11 =
r2

r2 − r1
, c12 = − r1

r2 − r1

Analogously, the general solution can be solved for an initial velocity ẋ(t = 0) = 1. This results in the
constants for x2 and ẋ2:

c21 =
1

r1 − r2
, c22 = − 1

r1 − r2



A.7 Performance evaluation using the growth matrix

The mechanical energy E of the liquid and host is given by Equation A.48.

E = 0.5[ẇ, u̇f ]TM[ẇ, u̇f ] + 0.5[w, uf ]TK[w, uf ] + Egas (A.48)

Here, the mass and stiffness matrix are limited to the host and liquid state and given by Equation
A.49 and Equation A.50, respectively. Both matrices are scaled back to their SI units by their masses M
and meff . Note that meff is not the fluid mass but a result of the LaGrange derivation of the equations
of motion of a regular TLCD. This scaling also results in a symmetric mass matrix.

M =

[
M
meff

] [
1 + µgen µgenκ̄/(φφφ

T
j s)

κsTφφφj 1

]
(A.49)

K =

[
M
meff

] [
ω2
S 0
0 ω2

S

]
(A.50)

where: meff = nTLCDLeffAHρf (A.51)

The mechanical energy of the gas is derived from the linear gas-spring and is given in Equation A.52.

Egas = 0.5εAH∆p2 (A.52)

The mechanical energy of the SDoF system is computed using Equation A.53 using the general
solution given in Equation A.46 at t = sT .

E = 0.5M(1 + µgen)ẋ(sT )2 + 0.5M(ω2
S)x(sT )2 (A.53)



Appendix B

Figures and tables
B.1 In-depth analysis LQR strategy

In Figure B.1, forces are normalized across all diagrams with the maximum liquid weight restoring force.
Displacements are normalized by their maximum. A few cycles of the total time series are indicated more
clearly. Even less trajectories go through the active quadrants w.r.t. the host.
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Figure B.1: Force-displacement/velocity trajectories for clipped-LQR strategy for load case III seed 1.

101



B.2 Results periodic LTV framework

B.2.1 Hill’s equation

In Figure B.2 the stability graphs are shown for Equation 8.31 for a sinusoidal modulation shape on the
left and a square modulation shape on the right. For both figures, a modulation frequency ratio of 2
was used (δ = 0.25). In both graphs, the unstable and stable regions have been indicated by U and
S, respectively. In Figure B.2a, the instability criteria of ε > 2γ is clearly visible [57]. For a square
modulation signal, instabilities occur ‘earlier’.
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(a) Sinusoidal modulation shape.
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(b) Square modulation shape.

Figure B.2: Damping modulation of a second order differential equation for δ=0.25.

B.2.2 Additional results equivalent LTV model

In this appendix section additional results from the equivalent LTV model can be found. Moreover, some
comparison with the non-linear semi-active AO-TLCD model are provided.

Time domain comparison LTV and NL model

The time-domain solutions can be obtained with full knowledge of the transition matrix. In Figure B.3,
this solution is compared to a time-domain solution from the semi-active AO-TLCD model. The LTV and
the NL model are indicated by thick and dashed lines, respectively. Both models are excited by an unit
initial displacement of the host structure.

The semi-active damper is controlled through the C-LQR on/off scheme. Moreover, the same linear
damping is assumed in order to prevent strong non-linearities as a result of the large responses. For the
LTV model a duty cycle of 0.4 is assumed.

As time progresses differences between the two models grow. The separation of the gas-spring and
the additional damping in the LTV model can explain part of the differences in the pressure magnitude.
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Figure B.3: Comparison of the responses between the LTV and the NL model for D = 0.4 and C-LQR on/off
control, respectively.

Mechanical energy of the LTV model

For the same set-up as in Figure B.3 the mechanical energy is plotted in Figure B.4. Here, the solid lines
indicate the time-domain solution which is obtained using the complete transition matrix. The markers,
indicate the solution at t = sT , which is obtained with the growth matrix. The total mechanical energy
is computed as in Appendix A.48. Furthermore, the energies are split up between the host, the liquid
and the gas. For example, the energy of the host contains both the kinetic and the potential energy of
the host structure.

In Figure B.4 it is clearly visible that the solution at t = sT of the host cannot be used for the
evaluation of the performance. Individual states, e.g. the host displacement, may give an even worse
representation. Therefore, the total mechanical energy is used over a number of periods. For this, the first
few modulation periods are neglected because of improper initial conditions (resulting in an ineffective
damper around t = 0).
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Figure B.4: Comparison of the mechanical energy computed using at t = sT using the growth matrix and
solved in time-domain using the transition matrix.



Cross-sections of the performance graph

In Figure B.5 and Figure B.6 three cross-sections are shown of Figure 8.7. The passive benchmark
solutions from the case study are also indicated.

In essence, Figure B.5 shows a passive system which is fully closed. Instabilities occur for a normalized
modulation depth of minus one. In other words, the system is unstable if the total sealed TLCD its
stiffness is smaller than zero.

Figure B.6a shows the performance for variable duty cycle at a modulation depth equivalent to the
gas-spring stiffness used in the case study. An effectiveness of approximately 6% critical can be obtained.
This is a very slight improvement over the sub-optimal semi-active control schemes used in this research.

Figure B.6b shows the performance of the periodic LTV system for an already optimally tuned passive
TLCD. Again, one can conclude that the semi-active damper out-performs its passive counterpart.
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Figure B.5: Cross section of the performance figure at D = 1 corresponding to the passive TLCD.
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(a) Corresponding to the case study SA AO-TLCD design.
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(b) Corresponding to a SA AO-TLCD for an already tuned
damper.

Figure B.6: Cross section of the performance figure with variable duty cycle.



Closing times case study

In order to compare the quasi-periodic results from the case study with the periodic LTV system, data of
the closing times is required. In Figure B.7 the box plots of the duty cycles is given for all load cases. The
spread indicates the spread of the observed closing times. For the third, and most critical, load case 50%
of the data lies within 0.4 and 0.5. Corresponding to the correct range in terms of performance in Figure
8.7 or Figure B.6a.
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Figure B.7: Boxplot of ‘duty cycles’ observed in the non-linear TD simulations of the case study
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Definitions

Off-tuning A VA operating outside of its design frequency range where it is ineffective.

Period adjustment The ability of a modified VA, to increase effectiveness at off-tuned frequencies.

Passive VA Parameters can only be changed on a time-scale much larger than the damper its natural
period.

Semi-active VA Parameters of the damper can be controlled in real-time. No mechanical energy can be
added through the actuator.

Active VA Full control over the damper. Mechanical energy can be added/subtracted through an
actuator.

Damping Internal regular linear or non-linear damping of the TLCD.

Structural damping Inherent damping of the host structure.

Effectiveness Equivalent additional damping added to the host structure by a damper.

Clipping The process of limiting a desired, potentially active, control input to its semi-active and/or
physical bounds.

Bang-bang Discrete on/off control inputs. This does not necessary imply that the actuator also responds
in a discrete/instantaneous manner.

Passivity constraint The constraint for semi-active control. The control action may only dissipate
energy.

Stability All states go to zero as time goes to infinity.
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