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ABSTRACT

Volume I of this report presents the results of a
research program to evaluate and develop water wave theories
for engineering application. A second volume of this
report presents wave tables developed for preliminary design
in offshore problems.

Volume I describes: (1) an evaluation of the degree
to which various available wave theories satisfy the
nonlinear water wave mathematical formulation and (2) a
comparison of water particle velocities measured in the
laboratory with those predicted by a number of available
wave theories. The results of these studies indicated that
the Stream function wave theory provided generally better
agreement with both the mathematical formulation and the
laboratory data. Volume I also includes a number of examples
illustrating the application of the wave tables {(described
below) to offshore design problems.

Based on the evaluation phase described above, a set of
wave tables was developed and is presented as Volume II. The
tables consist of dimensionless quantities which describe
the kinematic and dynamic fields of a two dimensional

progressive water wave. In addition, quantities are included
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which are directly applicable to frequently required
design calculations and also parameters which should be of

interest to the researcher and scientist,
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I. INTRODUCTION

The following were the primary goals of the research
reported herein: (1) for given wave conditions, to estab-
lish a rational basis for selection of one of the numerous
available progressive water wave theories and (2) to
tabulate the most appropriate wave theory or theories in a
form convenient for preliminary design use., The main
emphasis of this investigation has been an attempt to assist
the engineer in his selection and application of wave
theories to marine design problems. The research has pro-
ceeded in several distinct phases which are described
briefly below.

An early phase of the research was related to
evaluating the analytieal validity of water wave theories;
that is, the degree to which the various available water
wave theories satisfy the equations constituting the
mathematical formulation. The results of this phase, first
published in September, 1968,! established, that of the
eight theories included in the study, the Stream function
fifth order provided the best fit over a wide range of wave
conditions. TFor very shallow water waves, the Airy and
first order Cnoidal theories provided the best fit., How-
ever, because the Stream function wave theory can be

extended to quite high orders, it was expected that it



would provide the best fit, even for most shallow water
wave conditions. Based on the results of this study, the
following phases of the study concentrated on further
exploration and development of the Stream function wave
theory for engineering application.

The second phase represented an examination of
near-breaking wave conditions using the Stream function
theory.? This problem is complicated because breaking
conditions represent a mathematical as well as a hydro-
dynamic instability and therefore the computational aspects
are not straightforward. The results of this study
indicated that of the two stability criteria, the kinematic
criterion rather than the dynamic c¢riterion governs at
breaking. It was also found that near breaking, the
pressure distribution was hydrostatic rather than charac-
terized by a zero pressure gradient as predicted by some
other studies. The complexities of the numerical computa-
tions led to an attempt to establish the breaking index for
only three relative water depths (shallow, intermediate
and deep). It was found that for shallow and deep water
waves, the bfeaking heights established from the Stream
function wave theory were up to 28% higher than those
established earlier by other investigations, For interme-
diate depth conditions, however} the breaking heights
determined in the study agreed well with those of earlier

investigations.
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The third phase of the investigation® was related
to the "experimental validity of water wave theories" as
compared to "analytical validity." The motivation of this
phase was the recent (1968) publication” of a fairly
comprehensive set of measurements of water particle veloc-
ities for shallow water waves and comparison with a number
of wave theories by Le Méhauté, et al.; a comparison with
the Stream function theory was therefore conducted as a
part of the present study. On an overall basis, the Stream
function wave theory provided a significantly better fit to
the measured water particle velocities than the other
theories. The standard deviation between the measured and
Stream function representations was 0.17 ft/sec as compared
to 0.24 ft/sec for the theory providing the next best fit.
The primary significance of this phase of the study is that
the wave conditions are in the shallow-water region where
theories other than the Stream function would be expected
to provide better comparisons with measurements. Although
this favorable comparison is not taken as demonstration of
the superiority of the Stream function for all wave condi-
tions, the results were very encouraging and to some
extent, surprising.

The final phase of the investigation has been the
development of a computer program to tabulate wave quanti-

ties that would be of value to engineers in design and that



would also be valuable to individuals concerned with the
further development and improvemént of water wave theories.
During the development of the tables, it has been found

that more meaningful information than originally anticipated
could be presented.

In the early phases of this study, dimensional
variables (i.e., water depth/(wave period)? and wave
height/ (wave period)z] were used to characterize the wave
conditions; this feature will be evident in the description
of some of the results. 1In the latter phases of the study,
a decision was made to characterize the wave conditions by
the following dimenéionless gquantities: h/Ly, and H/L,,
where h, H and Ly represent the water depth, wave height
and small amplitude deep water wave length, respectively.
The tables are developed for forty cases of (h/Ly, H/Lg}.

The results of the research are presented in two
volumes. The present report (Volume I) documents the
research results and describes the wave tables and their
- application. Volume II presents the wave tables which have
been developed for 40 cases encompassing most conditions
encountered in eﬁgineering design.

In concluding the Introduction, it should be noted
that all of the available wave theories have not been
included in the comparisons described earlier. Some of

the theories omitted were developed during the period of



this research and some have been available, but were not
compared, usually because they are not employed exten~

sively for engineering purposes.



IT. STREAM FUNCTION WAVE THEORY
Introduction

As discussed previoﬁsly, at an early stage of the
research, the study indicated that the Stream function wave
theory generally provided a better fit to the boundary
conditions and also to available laboratory measurements;
the study therefore developed into an effort to explore
and develop the Stream function wave theory for engineering
application. Prior to presenting this work, the basis for
the Stream function wave theory will be described in some
detail in an attempt to define the similarities with and
differences from other theories. It should be noted that
there are two representations of the Stream function
theory: (1) for a given wave height, H, water depth, h, and
wave period, T, a (symmetrical) representation can be devel-
oped to describe the kinematics and dynamics of the motion
and (2) for a given measured water surface displacement,
n({t) representing a single oscillation (e.g., trough-to-
trough), a representation can be determined which completely
defines the kinematics and dynamics of the wave motion.

The first case is, of course, of more interest to

designers, whereas in another application, the second case



has been employed for the analysis of hurricane-generated
wave and wave force data. Only the first mode has been

explored under the present study.
Formulation

The water wave phenémenon of interest here can be
idealized as a two-dimensional boundary value problem of
ideal flow. The assumption of ideal flow is essential to
a mathematical formulation which can be readily solved by
known techniques. See Fig., 1 for a definition of terms

employed in the formulation.

Differential Equation

Ideal flow incorporates the assumptions of an
incompressible fluid and irrotational motion. For pressures
normally experienced in progressive water wave motions, the
incompressibility assumption can be shown to be guite valid;
shock pressures due to a wave breaking against a seawall
may be an important exception; however, that case is not
encompassed by the results of this research. There may
be some gquestion regarding the assumption of irrotational
flow. Probably the best reason for this consideration at
this stage is that it does allow formulation of a boundary
value problem which can be solved in an approximate manner.
The solutions can then be compared with measurements to
determine the apparent need for the refinement to include

a non-zero rotation.
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The differential equation {DE) for two-dimensional
ideal flow is the Laplace eguation and can be presented in

terms of either the velocity potential, ¢ or stream func-

tion, V¥,
Vi¢ = 0 (1)
Vi = 0 (2)
where, in two dimensions
2 2
V2 = ax + —-gzz (3)



and ¢ and y are defined in terms of the velocity components

u and w (see Fig. 1) as

_ 3¢_ 3!1)
u__-a.--.....__..
— ad)_ Blb
W = e = 4 e . ()

Boundary Conditions

Two types of boundary_cohditions are required on
'the upper and lower surfaces; for the present study, it
will be assumed that the depth is uniform. The kinematic
boundary condition applies to both boundaries and simply
requires that the components of flow at these boundaries
be in accordance with the geometry and motion (if any) of
the boundaries. This condition can be stated as follows
Bottom boundary condition (BBC)

w =20, z = ~h : (5)

Kinematie free surface boundary condition (KFSBC)

an on _ _ -
3E + UH =w, 2 = nix,t) . (6)

Dynamie free surface boundary condition (DFSBC)

The remaining free surfacé boundary condition is
the so-called dynamic free surface boundary condition
(DFSBC) and requires that the pressure immediately below
the free surface be uniform and equal to the atmospheric

pressure, pg .



Pa 1 1 3¢ -
n + 55 + ?E'[uz + w?) - 3 3t - constant = Q',

z = nix,t) (7)

In the above formulation, it is tacitly assumed that surface
tension effects are negligible. It is customary to incor-
porate the atmospheric pressure term into Ehe constant, Q',

to Yield a new constant, Q
& (u? 2y . 1 8¢ _
n+2g(u +W) gTE—Q (8)

In the formulation preseﬁted, no requirements have
been placed on the permanence of wave form, that is, the
wave could change form as it propagates due to the relative
motion and interference of components propagating with
various phase speeds. The treatment of this general
problem including the nonlinearities is quite complex and
was not the subject of this research. Rather, in the
present.investigation, it is assumed that the wave propa-
gates with constant speed, C, and without change of form.
It is then possible to choose a coordinate system
propagating with the speed of and in'the same direction as
the wave, and relative to this coordinate system, the
motion does not change and is therefore steady. The time
dependency in the formulation vanishes, the horizontal
velocity component with respect to the moving coordinate

system is u-C; and the formulation may be summarized as:
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DE: V2%¢ = V2p =0 (9)

( BBC: w =0, 2 =-h (10)
. AN W =
KFSBC: 53 = g—@r % = n(x) (11)
DFSBC: n + 2—1— (tu-C)? + w?)
Boundary g
Conditions 2
] —.z.é.=Q' z=‘-n(X) . (12)
Motion is periodic in x with
spatial periodicity of the
| wave length, L. (13)

in order to avoid any misimpressions regarding the
assumptions and formulation presented here and those
employed in other investigations of nonlinear waves, it is
noted that the formulation incorporating the assumption of
propagation without chanée of form is common to the
development of all the following nonlinear water wave
theories:

Stokes 2nd, and higher order wave theories

Cnoidal lst and 2nd order theories by Keulegan &
Patterson, Laitone, etc.

Solitary wave theory, lst order by Boussinesq

Solitary wave theory, 2nd order by McCowan

Stream function wave theory by von Schwind and Reid
To reiterate, analytical validity will be based on the
degree to which a theory satisfies the boundary value
problem formulation, Equations (9) - (13). If a theory

could be found which provided exact agreement to the
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formulations, then the analytical validity would be
perfect. There is no guarantee that good analytical
validity ensures that a theory will provide a good repre-
sentation of the natural phenomenon because implicit in
the formulation are the assumptions that capillary and
rotation forces and other effects are negligible. Ezperi-
mental validity will be based on the agreement between wave

theories and measured data.
The Stream Funetion Solution

For the formulation expressed in Eguations (9) -

(13), a Stream function solution may be expressed as:

NN

v(x,2) =72z + )] X(n) sinh E%E (h + z)] cos [g%g x]
n=1

L il

(14)

Evaluating this expression on the free surface, i.e.,

setting z = n, we find

NN
} X(n) sinh [

2mn (h + n)] cos [31& x]
n=1

L L

(!

1'I=%‘Pn“
(15)

where NN represents the "order" of the representation, i.e.,
the number of terms contributing to the series expression,

wn represents the (constant) value of the Stream function

- 12 -



on the free surface, L is the (undetermined) wave length,
and the X(n) represent, at this stage, undetermined
coefficients.

For particular wave conditions, it is regarded
that the wave height, period and water depth are specified.
Equation (14) exactly satisfies the governiﬁg differential
equation and the bottom and free surface kinematic boundary
conditions for arbitrary values of L, ¥, and the X(n)
coefficients. The Stream function expression is also
periodic in x with wave length, L. The only remaining
boundary condition is the dynamic free-surface boundary
condition; the parameters L and the X(n)'s are to be
chosen such that this boundary condition is best satisfied
for a specified wave height,

The procedure for determining the unknown parameters,
which can be considered as a nonlinear numerical perturba-

tion procedure, is presented in Appendix I.
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IITI. EVALUATION OF VALIDITIES OF WAVE THEORIES
Introduction

As discussed earlier, there are two types of
validity that were examined. "Analytical validity" is
based on the degree to which a theory satisfies the
governing equations (of the boundary value problem formu-
lation). Good analytical validity, however, does not
necessarily imply good representation of the natural
phenomenon. "Experimental validity" is based on the agree-
ment between a theory and measurements, To date, some
reasonably good laboratory data are available, and at
least two field measurements of water particle velocities
are reportedly underway (as of 1972) in the petroleum
industry, and hopefully, will be available within the next
few yearé.

Discussion of Differences Between Stream Function and
Other Wave Theories

In later paragraphs of this section, it will be
shown that the Stream function wave theory provides a
better fit than other theories to the boundary conditions
and also provides a better fit to laboratory measurements

of water particle velocities; it is therefore worthwhile
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to compare some of the inherent features of the Stream
function and other theories., Although it is difficult to
discuss all other theories in general statements, an
attempt will be made to present the more significant
representative differences.

Consider, as an example, the Stokes higher order
wave theories. The general form of the solution exactly
satisfies the differential equation, the bottom boundary
condition and, of course, is properly periodic in the
x-direction. The solution does not provide exact fits to
either the kinematic or dynamic free surface boundary
conditions. Suppose that the (n-1)th order solution is
known and that the nih order theory is to be developed.
The nth coefficients are determined such that they minimize
the errors in the two free surface boundary conditions at
the (n-1l)¢h order. A significant problem is that the
configuration of the nth order water surface is not known,
a priori; it is therefore necessary to best satisfy the
boundary conditions on an approximate expansion of the nth
order water surface. The apparent effect of minimizing
the errors present on the approximate nth order water
surface is that the resulting theory of a given order, if
convergent, may not provide the best fit possible for the
number of terms (order) included.

As a comparison with the preceding discussion of

the Stokes' theory, consider the corresponding features of
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a Stream function theory solution. The general form of

the soclution exactly satisfies all of the boundary value
problem requirements except the DFSBC; at this stage, one
inherent advantage of the Stream function theory is evident
which is that all of the "free" parameters can be chosen

to provide a best fit to the DFSBC. A second and important
inherent advantage is that for a given nth order wave
theory, all of the coefficients are chosen such that they
best satisfy the boundary condition on the nthk order water
surface. . The distinction is that because a numerical
iteration approach is used, the nth order wave form is
known (through iteration) at that order of solution.

Other advantages of the Stream function wave theory are
that a solution can readily be obtained to any reasonable
order, and that a measure of the fit to the one remaining
boundary condition is more or less automatically obtained
in the course of the solution. Also, the form of the

terms in the solution is inherently better for representing
nonlinear waves due to the n term appearing in the argument
of the hyperbolic sine term (cf. Equation (15)). The
disadvantage ¢f the Stream function wave theory is that,
unless tabulated parameters are available, it does require
the use of a digital computer with a reasonably large
memory. The complexity of other nonlinear theories,
however, generally also requires the use of a high speed

computer. It is noted that a similar but different Stream
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function wave theory has been developed and reported by

Von Schwind and Reid ° subsequent to the analytical validity
study reported herein and employs a definition of the

DFSBC error which is different than that in the present
study. The paper by Von Schwind and Reid presents boundary
condition errors for three wave cases; a comparison between
their errors and those resulting from the Stream function

theory described herein will be presented.
Analytical Validity

The analytical validity of a particular wave theory
has been previously defined as the degree to which the
theory satisfies the defining equations, i.e., Equations (9) -
(13). Again, for the sake of emphasis, it is noted that a
theory providing an exact fit to the boundary conditions
would have a perfect analytical validity, however, due to
assumptions of ideal flow, etc., in the formulation of the
prcoblem, a perfect analytical validity does not ensure
that the theory would provide a good representation of the
laboratory or field phenomenon. The reason for viewing the
problem in two steps, i.e., analytical and experimental
validity, is that thé results of the analytical validity
test would at least tend to indicate the relative appli-
cability of the available wave theories for particular wave

conditions and also the results would provide guidance
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whether the most fruitful approach would be directed
toward a more representative formulation of water wave
theories or toward the improvement of the solutions of

existing formulations.

Definition of Boundary Condition Errors

Most wave theories exactly satisfy the governing
differential equation and bottom boundary condition,
although some the solutions only approximately satisfy the
differential equation. Table A lists a number of the
theories available for design use and also indicates the
conditions of the formulation which are satisfied exactly
by each of the theories. Inspection of Table A shows that
the two nonlinear (free éurface) boundary conditions
provide the best basis for assessing the analytical validity
because no theory exactly satisfies both of these conditions.

Errors based on the dynamic and kinematic free surface
boundary conditions, are defined as functions of phase
angle (8) as follows:

e1(0) = 30 - ¥ (16)

i

[(w-C)2+wl-S -5 (17)

€2(06)Y = n + 29

NIP—'
Te}
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Water Wave Theories Included in Evaluation

TABLE A

Presented in Reference 1

Theory

Exactly Satisfies

DE

BBC KFSBC

DFSBC

Reference

Linear Wave Theory
(Aixy)

Third Order Stokes
(Skjelbreia and
Hendrickson, as
summarized by Le
Méhauté and Webb)

Fifth Order Stokes
(Skjelbreia and
Hendrickson)

First Order Cnoidal
{Laitone)

Second Order
Cnoidal (Laitone)

First Order Solitary

(Boussinesqg, as
Summarized by
Munk)

10

Second Order Solitary

(McCowan as
Summarized by
Munk)

10

Stream Function
- Numerical Wave
Theory (Dean)
Fifth Order

11
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where Q represents the mean value of the quantity Q
(Bernoulli "constant") defined in Equation (12). "Overall"
errors are defined as the root mean squares of the

digtributed errors,

1
E, Q\J% I e, * = €1 (18)

J

Ne—: 44

1
J p——
E, z‘\/% I ex? 5\/522 (19)

j=1 3

where j represents sampling at various (evenly spaced)

phase angles,

Results of Analytical Validity Comparison
Most of the results of the study of analytical
validity carried out under this project has been published
elsewhere! and therefore will only be reviewed briefly here.
The study included forty wave cases as shown in
Figure 2. For each of these cases, the overall errors, E;
and E; were calculated for the wave theories shown in
Table A. The overall dynanic free surface boundary
condition errors were made dimensionless by dividing by the

wave height, H, i.e.

E,'! = E,/H (20)
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The overall kinematic free surface boundary condition error
is dimensionless as defined in Equation (18).

Plots of the dimensionless kinematic and dynamic
free surface boundary condition errors are presented in
Figures 3, 4, 5, and 6 for Cases of H/HB = 0.25 and 1.0
(HB = breaking wave height). It is noted that the KFSBC
error is identically zero for the Stream function and McCowan
theories.

As stated previously, it is difficult to select a
single index that would clearly be representative of the
overall validity of all wave theories. However, an index
was chosen which provided an especially severe test for
the Stream function wave theory, and yet this theory emerged
as providing the best general analytical validity.

The following evaluation plan was adopted, the
results of which would be somewhat biased against the Stream
function wave theory. Most of the wave theories do not
satisfy exactly either the DFSBC or KFSBC, however, the
Stream function theory does satisfy exactly the KFSBC. It
therefore seems reasonable that if the Stream function wave
theory can be shown to compare favorably against other
theories on the basis of only the DFSBC, then it should
provide an even better analytical validity than the
comparison shows.

In the analytical validity investigation, the eight

wave theories shown in Table A were examined. Because the
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fifth order was the highest of the Stokes theories available,
it was somewhat arbitrarily decided to include the Stream
function wave theory only to the fifth order.

The evaluation was then based on comparisons presented
in Figures 3, 4, 5, and 6 and also on the corresponding
figures for H/HB = 0,50 and 0.75, which are'not presented
here. The results of this study are shown in Figures 7 and 8.

Figure 7 presents the results for all theories
excluding the Stream function wave theory. It is seen that
the Stokes V theory provides the best fit for deep water,
the Airy theory provides the best fit in a portion of the
intermediate and shallow water ranges and the first order
Cnoidal wave theory generally provides the best fit in the
shallow water range.

Figure 8 presents the same type of information, only
the fifth order Stream function theory is included and
provides the best fit over a wide range including all of the
intermediate and deep water wave regions and also a
significant portion of the shallow water range inciuded in
the comparison. The Airy wave theory provides the best fit
for a small portion of the shallow water near-breaking waves
and the first order Cnocidal wave theory provides the best
fit for the remainder of the shallow-water region.

In evaluating the results obtained in the shallow

water region, it is noted that one eighth order Stream
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function wave theory was calculated for breaking wave
conditions and h/T? = 0.1 ft/sec? as shown in Fig. 6.
Inspection of this figure indicates that the use of higher
order Stream function wave theories would extend the range
of best validity of this theory to considerably shallower
conditions (Fig. 8).
Comparison with Stream funetion theory developed

by Von Schwind and Reid

As noted earlier, Von Schwind and Reid® have

developed a Stream function theory with basic similarities
to that employed in the present study. The principal
difference between the two theories is that Von Schwind
and Reid transform their problem to and carry out their
solution in the complex.plane. It is noted that their
solution in terms of wave length and coefficients is also
obtained by iteration. The DFSBC error definition used
by von Schwind and Reid was originally defined by
Chappelear!? and is somewhat different than that employed

here (Equation 17} and is

€2 (6)

It is noted by comparison of Equations (17) and (17a),
that the agetual distribution of DFSBC errors would appear
as numerically smaller based on Equation {(17a) due to the
water depth and Bernoulli constant appearing in the
denominator.
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Vvon Schwind and Reid presented distributed DFSBC
errors for three sets of wave conditions. Errors were
calculated for the same wave conditions using the present
theory. Figures 9, 10, and 1l are reproduced from Von
Schwind and Reid®and the maximum errors obtained by the
present theory {indicated University of Florida) are shown
for each wave case. The maximum UF errors obtained are
so small that it would not be worthwhile to show them
graphically. Note that all errors (e:) shown in Figs.

9, 10, and 11 are based on Equation (17a). The reason that
the errors obtained by the present theory are smaller
than those obtained by Von Schwind and Reid is not known.
With a numerical solution, it is possible to obtain a
low error (down to some limit) by increasing the order of
the theory or by increasing the number of iterations used
to obtain the solution. For the three cases shown in
Figs. 9-11, the University of Florida waves were seventh
order and each solution was obtained by 15 iterations; the
corresponding values for the Von Schwind-Reid waves are
not known.
Conclusions Resulting from the Analytical

Validity Study

The analytical validity evaluation is based on
the degree té which the various theories satisfy the
governing equations in the boundary valué problem

formulation. It is stressed again that there is no
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guarantee that a theory providing a good analytical
validity will necessarily represent well the features
of the natural wave phenomenon. The reason, of course,
is there there are assumptions (negligible viscosity
and capillary effects) introduced into the governing
equations which may adversely affect the degree to which
the formulation represents real wave motion. The purpose
of the analytical validity study, rather, was to attempt
to resolve the question of whether the theories developed
for the same formulation and for various regions of
relative depth do indeed provide the best fit in these
regions. Also this study, combined with some additional
‘studies reported later in this report do aid in
determining whether the most critical need in wave theory
research is in the improvement of the formulation or in
the development of improved solutions to the existing
formulation.
The results of the analytical validity study have
shown that:?*
1. The general status of wave theories for h/T? >
0.2 ft/seczfor instance, is much more
satisfactory than for the smaller values of
h/T?, 1In particular, for the larger relative
depths, there is reasonable consistency between
the fits to the dynamic free surface boundary
condition and the maximum drag force as

calculated by the various theories including a
seventh order Stream function theory. In

*Pphe reader is referred to Reference 1 for reinforcement
of statements presented.
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shallow water, it is not clear that the boundary
condition fit is an appropriate measure of wave
theory validity, unless the associated errors are
very small. In particular, the Airy wave theory
provides a relatively good fit to the boundary
conditions in shallow water; however this theory
does not represent many of the observed features
of shallow water waves including the strong
skewness of the wave profile about the mean
water level,.

The Stokes higher order wave theories converge

to accurate representations of wave motion in
deep water; however, in intermediate and shallow
water, the boundary condition fits are relatively
poor. Furthermore, no fifth order Stokes theory
solution could be found for shallow water waves
or the smaller values cof the intermediate depth
ranges. The limiting value of h/T? for which

a solution exists, depends on H/T? and was in the
range of 0.1 < h/T? < 0.5 ft/sec? for the
conditions examined.

Finally, it is observed that the second order
Cnoidal theory provided a worse fit to the
boundary conditions than the first order Cnoidal
theory for all wave conditions examined. There
are other versions of Cnoidal theories; the
boundary condition fits of these theories have
not been evaluated in this study.

The Stream function wave theory described in
this report provides good analytical validity
over a wide range of wave conditions.

Ezperimental Validity

As previously described, experimental validity

is based on the comparison of theoretical predictions

and measured wave phenomena. If it could be generally

shown that the theory providing the best analytical

validity also provides the best experimental validity,

then one could conclude that the formulation is valid and
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that errors in the boundary conditions are also good
indicators of experimental validity. If the differences
between the theory and experiments were of the same order
as the estimated experimental error, and if this could be
shown to be the situation generally, then the most
productive direction in water wave research on this problem
would be improved measurements. If however, the dis-
agreement between theory and experiment is much larger
than can be attributed to experimental error and,
especially if this difference were of considerable
engineering significance, then additional efforts on the
formulation and solution of water wave theories would be
indicated.

The availability of data is inadegquate to carry
out a comprehensive evaluation of experimental validity
over all ranges of relative depth and heights of
engineering importance. Le M8hauté et al.,* have carried
out a measurement program in which distributions over
depth of horizontal water particle velocities were
measured ﬁnder the crest phase position of fairly high
waves in the shallow and intermediate depth range. The
results included measured horizontal water particle
velocity distributions for eight cases, and also a vertical
water particle velocity distribution for one case, and

one measured wave profile. Le Méhauté et al., compared
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a number of wave theories with their data, however the
Stream function theory was not included; the experimental
validity reported in this study was based on a comparisocn
of the Stream function wave theory with the data
described earlier. It should be emphasized that the only
addition to the paper by Le Méhauté et al., presented in
Reference 4 is (1) comparison of the Stream function wave
theory with the data and (2) calculations which represent
the overall agreement between the data and several of the
theories., 1In the Stream function horizontal velocity
component profiles presented, a uniform mass transport
velocity has been subtracted out, whereas due to time
limitations, the other theoretical velocity distributions
were simply plotted from Reference 4. It is not clear
whether or not the mass transport term should be
subtracted out; although the experiments were conducted
in a closed tank, the data were taken before waves
reflected from the beach had propagated back to the tank
test section and the zero net flow over depth had probably
not been established completely.

In all; data for 10 different wave conditions
are available. These waves are in the shallow and
intermediate relative depth regions, and according to the
conventional breaking criteria, the wave heights range

from 0.43 to 0.70 of the breaking height. The wave

- 38 =~



conditions are shown as points in Fig. 12 where isolines
representing various ratios of wave height to breaking
wave height are also presented. It is emphasized that
the breaking wave height in Fig. 12 is the conventional
breaking height: i.e., H/h = 0.78 in shallow water
(McCowan) ! ?; H/L = 0.142 in deep water (Michell)la; in the
intermediate range the breaking limit was first established
by Reid and Bretschneider!® by interpolating on the basis
of measured data and is presented in a number of more
available references®’!®. A recent paper by Divoky et al.,'®
reports an experimentally determined shallow water breaking
limit of approximately HB/h = 0.60 to 0.66 as compared
to the conventional value of 0.78. The recent experiments
resulting in the lower value were obtained with a
laterally converging wave channel. Certainly it is
apparent that more work is needed to better resolve wave
breaking limits.

Table B presents the comparison results included
in the experimental validity evaluation. The eight
comparisons of horizontal water particle velocity are
presented in Figs. 13-20; the vertical velocity comparison
is presented in Fig. 21; and the wave profile is presented
in Fig. 22.

Inspection of Figs. 13-20 indicates that the
Stream function theory is in reasonable agreement with

the data. It is noteworthy that the shallow water wave
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TABLE B

Experimental Waves; Characteristics and Variables Measured

Wave Characteristics

Compared
Case H T h Ratio of Wave Height in Figure

No. {ft) (sec)! (ft) to Breaking Height Variable Measured No.

1 0.255| 1.16 | 0.587 0.56 Horizontal Water Particle 13
Velocity Component at Crest

2 0.260 1} 2.2 0.619 0.54 Horizontal Water Particle 14
Velocity Component at Crest

3 0.232} 3.06 |0.59%6 0.50 Horizontal Water Particle 15
Velocity Component at Crest

4 0.241 | 3.58 | 0.556 0.56 Horizontal Water Particle 16
Velocity Component at Crest

5 0.293 | 1.16 } 0.587 0.64 Horizontal Water Particle 17
Velocity Component at Crest

6 0.3231] 2.2 0.619 0.67 Horizontal Water Particle 18
Velocity Component at Crest

7 0.293 | 3.06 | 0.595 0.64 Horizontal Water Particle 19
Velocity Component at Crest

8 0.304 | 3.58 [ 0.555 0.70 Horizontal Water Particle 20
Velocity Component at Crest

9 0.241 | 3.58 | 0.556 0.43 Vertical Water Particle 21

Velocity Component*
10 0.271] 1.6 0.586 0.60 Wave Profile 22

*Maximum velocity,

regardless of phase angle.
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theories which should provide good fits to the data are
so poor. Another interesting feature of the comparison
is that the linear (Airy) wave theory agrees better with
the data than would be expected. Of the twelve theories
included in the comparison, the better agreements with
data were provided by the following'five theories: Airy,
Keulegan and Patterson Cnoidal wave theory, Goda, Long
Wave and Stream function. These five theories were then
selected for further examination of their agreement with
the data. The standard deviations between each of these
theories and the data were calculated and are presented in
Table C where it is seen that the Stream function theory
provided the best fit to the data, followed, in order,
by the Goda, Keulegan and Patterson Cnoidal, Airy, and
the Long Wave Theories. The Goda "theory" is actually a
series representation in which the analytical forms of the
terms comprising the series are the same as the hyperbolic
and trigonometric functions in the Stokes theories, however
the coefficients modifying these terms were determined
empirically via wave tank experiments. Additional
calculations, not presented here, showed that, assuming
the data were valid, on the average the Stream function
wave theory would overpredict the maximum total drag force
on a vertical cylinder by 21%.

Data representing the vertical velécity

distribution with depth are available for only one set of
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TABLE C

Standard Deviation of Differences Between Horizontal
Velocities: Measured vs. Predicted

Standard Deviation, o {ft/sec)
Theory

Case No. v Airy Long Wave Goda K & P Cnoidal
1 0.22% 0.232 0.328 0.413 0.396
2 0.139  0.234 0.297 0.146 0.211
3 0.096 0.470 0.468 0.206 0.155
4 0.126 0.442 0.453 0.134 0.136
5 0.245 0.225 0.291 0.357 0.487
6 0.216 0.181 0.244 0.085 0.469
7 0.123 0.493 0.513 0.316 0.188
8 0.183 0.418 0.434 0.215 0.272

Average 0.170 0.337 0.379 0.235 0.289
_\/1 g .

o =\/3 jzl (4 - ug)

= measured velocity component

= theoretical velocity component

o o F

= number of levels considered for each case {14 to 15)
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wave conditions, see Fig. 21. The McCowan theory provides
the best fit to the data, with the next best fit associated
with the Stream function wave theory. Differences between
the McCowan and Stream function wave theories, however,
are quite small and it is probably not justified to draw
conclusions from only one set of data. Interpreted in
terms of vertical drag forces on a horizontal cylinder,
the Stream function would underpredict the forces by 30%.

The one set of wave profile data are compared with
the various theories in Fig. 22. Although no detailed
comparisons were made, it appears that the Stream function
theory is in as good or better agreement than any of the
other theories shown.
Conelusions Resulting from the Experimental

Validity Study

Comparisons of Stream function wave theory
predictions with measurements of velocity components and
" one wave form representing intermediate and shallow water
waves indicate reasonably good agreement. Interpreted on
the basis of maximum horizontal drag force components, the
Stream function theory would over predict by an average
of 21%. Recognizing that the experimental accuracy is
approximately 5%, these results are considered reasonable
for engineering applications. The predicted maximum

vertical drag forces on a horizontal cylinder would be too
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small by 30%; however, this statement is based on a
comparison with only one set of data. Good qualitative
agreement was found between measured and predicted wave
profiles.

Finally, based on the results of both the analytical
and experimental validity studies, it is concluded that on
the basis of available information, the Stream function
wave theory is best sulted for engineering design purposes,
Based on this conclusion, it was decided to tabulate
variables that would be of use in engineering design as
calculated from the Stream function wave theory. The next

gection describes the wvariables included in the tables.
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IV. DESCRIPTION OF TABLES
Introduction

An attempt has been made to include in the tables
those variables of greatest present engineering interest
and application. 1In addition, other variables were included
which would be relevant to checking the relative analytical
validity of other theories or variables which were of
scientific interest and could concelvably be required for
engineering in the future., Variables have been included
which describe the detailed kinematics of the waves and
also which represent, e.g., the integrated effect of the
flow on a structural member.

It is not possible to assemble in concise tabular
form, all variables which could be of engineering use, For
example, it is feasible to tabulate the dimensionless drag
force for all vertical piling extending from the bottom up
to a certain level, It would not bhe feasible, however, to
concisely tabulate the total drag force on members with all
possible inclinations relative to a vertical.

Forty sets of dimensionless wave conditions were
selected for tabulation. Each case is characterized by

values of h/L, and H/Ly,. The parameter h/L, ranged from

- 5 -



0.002 to 2.0 and covered the relative depth range from
shallow to deep water. The parameter H/L; included wave
steepnesses ratios: 0.25, 0.5, 0.75 and 1.0 of the
breaking wave steepness for each of the ten h/L; values
tabulated. Figure 23 shows the dimensionless wave
conditions selected for tabulation and also indicates the
referencing notation for the various cases.

All tabulated variables are presented in
dimensionless form. The description of these variables is
presented in the following paragraphs and in Tables D, E
and F, where generally the foliowing are included: the
equation for the variable, the dimensionless form of the
variable, an equation number for reference purposes, and
the table number in the wave tables. To reduce confusion,
it should be noted that the tables presented in this
report are denoted by Arabic letters, whereas the wave

tables are identified by Roman numerals.
Variables Presented in Tabular Form

There are three classes of variables that are
tabulated: (1) Internal field wvariables, depending on 6
and S, {2) Variables depending on 8 only, and (3) "Overall"
variables which have a single value for the entire wave,

for example the wave length.
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TABLE D

Internal Field Variables
(Functions of 6 and §)

Fp(8,5)

Note:

2
Cp = drag coefficient; D = piling diameter:;

p = mass density of water

Dimensionless Equation Presenteé—j
Variable Expression for Variable Form No. in Table
| Horizontal Water NN an 2m 1
Particle Velocity, u(e,s) = -} x(n) {= n| cosh |= n 8] cos nb u {(21) I
L L H/T
u(e's) n=}1
Vertical Water NN 2 Py 1
Particle Velocity, w({8,5) = - ] X{(n) [TT n] sinh [7: n S] sin nb l ] w (22} II
= H/T
w (8,5} n=1
Horizontal Water
: . Du _ _ LY Ju 1 Du
| Partgﬁle Acceleration, oF = {u - Q) AR v [ﬁ757] ot (23) III
! Dt Note: C = L/T
-
|
i :
. Vertical Watex
: Dw _ - aw oW 1) Dw
! Partssle Acceleration, bE = (u Cc) T + W 7z [E7TT} BE (24) v
g Bt
i
!
! Drag Force Component CppD S 2
| up to a Level, S, Fo(8,S) = ——— I u|ulds’ (25) v
{ 0
l
L
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TABLE D—Continued

Dimensionless Equation Presented
Variable Expression for Variable Form No. in Table
Inertia Force CMDHDZ 8 bu . 4
= - 1
gg?ggnegt up to a FI (G,S) — IO ot das [Wm} FI (26) vI
L r
Fr(0,8) Note: Cy = inertia coefficient
Drag Moment Component CDpD 5 2
up to a Level, S, M {8,5) = —— J S'u|u|ds’ T SO THIT M, zn VI
M, {6,5) 0 D
Inertia Moment C..pmD? s
Component up to a = M y Du ' 4
Level, S, MI(B’S) § IO s Dt das chﬂD!(HFT”h! MI (28) viiz
MI(B,S)
Dynamic Pressure — o 5 2
Component pD(B,S) = yQ - 3 [(u -~ )+ w?) o+ 5 c? [YH] Pp {29) IX
Py 0.5)

Note: vy = specific weight of water = pg;

Q is defined in Eq. (17).
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TABLE E

Variables Depending on 8 Only

Dimensionless Egquation Presented
Variable Expression for Variable Form No. in Table
Water Surface T T NN 27 1
Displacement, n{e) = T ¢n Z X(n) sinh 5 n{h + n)] cos (nd) [HJ n{8) (30) I - IX
n{9} n=1
Total Drag Force 2 \'4
Component, Same as Eg. (25), except upper limit is h + n{@} lc 5TH ] Fp (31} (labeled
CoeD TH/T) 2k, " "
Fp (8) Surface")
Total Inertia 4 Vi
Force Component, Same as Eg. {(26), except upper limit is h + n{g&} [E_3F57T37TTTEJ Fr (32) {labeled
FI(O) M "Surface")
Total Drag 2 VII
Moment Component,! Same as Eg. (27), except upper limit is h + n(9) [E__5T§7TTTTFJ Mp (32) {labeled
Mp(8) P "Surface")
Total Inertia 4 VIII
Moment Component,| Same as Eg. {28} except upper limit is h + n(8) [E—_?577§7TTTETJ M1 (34) {labeled
MI(@) MPe "Surface")
Kinematic Free : : : X
Surface Boundary £, (8) = n _ _ W Eigrgfzég:igigz:sls (35) Ttem 1
Condition Exror, ! Ix u-¢ Linear Theory
€. (8) form Item 2

Stream Func-
tion Theory
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TABLE E——Continued

Dimensionless Equation Presented 4]
variable Expression for Variable Form No. in Table
e2(8) = Q(8) -~ @ 1 X
{EJ €2 (36) Item 2,
Linear Theory
Item 4,

Dynamic Free

Surface Boundary

Condition Error,
£21{8)

Note: © = Q(8)

Stream Func-
tion Theory
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TABLE F

Overall variables

(Do Not Depend on 6 or 5}

. Dimensionless Equation Presented
Variable Expression for Variable Form No. in Table
Wave Length, L is determined from Stream function soluticn 27 L (37} XI
L (no explicit expression) gT! Item 1
Average Potential 2m 8
Energy, PE = 33'1; J n*(s} 4se —.| PE {38) XI
PE ° YH Item 2
Average Kinetic 2n h+n( . 2) 8
Energy KE = ] ! u* + w®) ds ds ——1| KE (39) X1
KE L o yH Item 3
Average Total 8
Energy, TE = PE + KE —t TE (40) XI
TE YH Item 4
Average Total 1 21 ch+n - R g
Energy Flux, F = I J u[p + pgz + S(u® + w*)| dS as {41) XI
F w I, D z yuirsr) TE Item 5
TE
Group Velocity, FTB (1
C C. = T 7T C {42) I
G G ] G Item 6
I
Average Momentum 27 th+n . .
M oo J J pu ds do 8L/TY (43) X1 |
LI | YH item 7 }




TABLE FP—Lontinued

. Dimensionless Equation Presented
Variable Expression for Variable Form No. in Table
Average Momentum 1 27 th+n . 8
Flux, in wave F = J J [p + pu ] ds ds — F (44) XI
Direction, Fy ™x Zn 0 Jo D YH Mz Item 8
b
Average Momentum 3 27 ch+n 8
Flux, Transverse Fp = == J J p. 45 dg —| F (45) X1
to Wave Direction y T lolo D YH my Item 9
Frm
¥
Roct-Mean-~-Square
(RMS) and Maximum Expression
(Max) Kinematic See Eg. (35) Given iB in (46) X1
Free Surfacc Boundary Dimensionless Items 10 &
Condition Errors, Form 12
=
v 3 and Igllmax
RMS and Max Dynamic
Free Surface Boundary See Eg. (36) 1 A= (47) X1
Condition Errors, i 7€ and items 11 &
13
/=T
Eq and IEzz 1
max 5 Iﬁzlmax
Kinematic Free u 8 = g° Expression
Surface Breaking B, = g u evaluated at [S = h + n] Given is in (48) XI
Parameter, B: Dimensionless Item 14
Form
Dynamic ° ~face = 0° Expression
Breakir- :r By = - i g%, %% evaluated at [g - g . ] Given is in (49} X1
5, g n Dimensionless Item 15
Form
Note: In addition to values tabulated, the results include combined refraction/shoaling effects over idealized

bathymetry; these results are presented in graphical form and will be described later.




Internal Field Variables Depending on © and S

The internal field wvariables are tabulated at
equally spaced dimensionless distances above the bottom,
i.e., at 8/h values of 0, 0.1, 0.2 . . . up to and
including the free surface and at 6 values of 0°, 10°, 20°,
30°, 50°, 75°, 100°, 130°, 180°, As an example, see Fig. 24
for a sample presentation of the dimensionless horizontal
velocity component field,

A description of the ent¥ies presented in Fig. 24
will serve to familiarize the reader with most of the
features of the tables. The phase angles (theta) are
listed, in degrees, as the first row. The second row lists
the dimensionless wave profile (n/B) at the corresponding
phase angles. The percen£ values listed beneath the n/H
values are the differences between the Stream function and
Airy theories, defined as

_ Stream Fn. - Airy

Stream Fn. x 100%

The main body (remaining portion) of the table lists the
dimensionless horizontal water particle velocities. The

row labeled "Surface" represents the dimensionless velocities
evaluated at the free surface; the percentage differences

for velocities are calculated as defined above for the
profile. The remaining part of the table represents the

dimensionless velocities and percentage differences
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evaluated on a grid of (6, S/h). The lack of entries for
the higher S/h and higher theta wvalues (right side of page)
is a result of the wave profile in the trough region being
lower than in the crest region (left side of page). Two
additional comments pertaining to the percentage values
will complete the description of the sample table. A per-
centage difference value of exactly 100.0% implies that the
Stream function profile occured at a (6, S/h) value,
however, the Airy profile was lower than the particular
S/h at the phase angle, 6, i.e., this grid point was not
"covered" by the Airy profile. For example, this is the
case at 8 = 0°, S/h = 1,5 and 1.6 and 6 = 180°, S/h = 0.8
and 0,9. PFinally, the asterisks indicate that the
percentage differences were not calculated because the
Stream function value was less than 5% of the maximum
Stream function value. This avoided the tabulation of
very large percentages which would have been the result of
division by a small number.

A brief description of each of the tabulated
internal field variables is presented below,
Hortizontal water particle velocity component, u(6, S)

The horizontal water particle velocity component,

u{dé, s), is defined by Equation (21).* The values u' (6, 8)

*The equations for the tabulated functions are presented in
Tables D, E and F.



tabulated, are presented (Table I) in the following

dimensionless form:
r — u(er S)
Vertical water partiele velocity component, w(6, S)
The vertical water particle velocity component,
wi(e, S),-is defined by Equation {22). The dimensionless
values tabulated (Table II), w'(6, S), are defined by:

_w(e, 8)

WO S) = Ty

Horizontal water particle acceleration, %%
The horizontal water particle acceleration, Du is

Dt’

defined in terms of the ﬁelocity components as presented in
Eguation (23). Note that the tabulated values represent
the total (or material, substantial, etc.) acceleration
consisting of the sum of the local and advective contribu-
tions. The dimensionless values tabulated (Table III),

14
g% ; are defined by:

bu’ . _1 _Du

Dt~ - Ta/T?) Dt

Vertical water particle acceleration, g%
The vertical water particle acceleration, defined
in Equation (24), is tabulated (Table IV) in the following

dimensionless form:
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Dw' . L D
Dt (H/T2) Dt

Drag force component, Fp (0, S)
The drag force compeonent up to a certain elevation,
5, is defined by Equation (25} and tabulated (Table V) in

dimensionless form as:

. 2
Fp = [chD(H/TVh] Fp

Inertia force component, Fr (6, §5)

The inertia force component up to a certain
elevation, S, i1s defined by Eguation (26) and tabulated
(Table VI) in dimensioconless form as;

F’=[ 4 \r

CMpﬁDZ(H/TZ)hJ 1

Drag moment component, Mp(8, §)

The drag moment component about the bottom due to
wave pressures acting on a vertical member extending up to
an elevation, S, is presented as Equation (27) and

presented (Table VII) in dimensionless form as;

2
= M
"D [CDDD(H/T)th} D

Inertia moment component, My(8, S§)
The inertia moment component about the bottom due

to wave pressures acting on a vertical member extending up

..69..



to an elevation, S, is defined in Equation (28) and

presented (Table VIII) in dimensionless form as:

4
o= M
M C,PTD? (H/T? )1’ 1

Dynamic pressure component, pp(8, 5)
The dynamic pressure component, defined by
Equation (29) ig tabulated (Table IX) in dimensionless

form as:

This completes the description of the field
variables (depending on 8 and S) that are included in the

tables.

Variables Depending on 6 Only
Water surface displacement, ni(9)

The water surface displacement is defined in
Eguation (30), and tabulated (Tables I-IX) in dimensionless

form as;:

Total drag force component, Fp (6)
The total drag force component is defined by

Equation (25) with the upper limit taken to be h + n(9),
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and is tabulated (Table V, labeled "SURFACE"} in

dimensionless form as:

Fp' = 2 71 FD
D CpeD (H/T) *h

Total inertia force component, Fr (€)

The total inertia force component is defined by
Equation (26) with the upper limit taken to be h + n(§),
and is tabulated (Table VI, labeled "SURFACE") in dimension-
less form as

4
| —
F1' = |cyenb? (8/T%)kR| FI

Total dragmoment component, Mp(6)

The total drag moment component is defined by
Equation (27) with the upper limit taken to be h + n (&)
and is tabulated {Table VII, labkeled "SURFACE") in dimension-

less form as

7 2 M
Mp' = C_ oD (H/T) *h D

Total tnertia moment component, Mp(8@)

The total inertia moment component is defined by
Equation (28) with an upper limit of h + n(2) and is
tabulated (Table VIII, labeled "SURFACE") in dimensionless

form as:
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4
CyqonD? (H/T?)h?

M1’ = My
Kinematic free surface boundary condition error, €;(6)

The kinematic free surface boundary condition error
is defined by Equation (35). This variable, as defined, is

in dimensionless form and is tabulated in Table X:

Item 1, Linear Wave Theory

Item 2, Stream Function Theory

Dynamic free surface boundary condition errcr, €,(0)
The dynamic free surface boundary condition error
is defined by Equation (36) and is tabulated (Table X) in

the following dimensionless form;:
' 1
€' = [ﬁ] €2
with:

Item 3, Linear Wave Theory

Item 4, Stream Function Theory

This completes the presentation of variables

depending on & only.

Overall Variables (do not depend on 6 or S)
Wave length, L
For the Stream function wave theory, there is no

definable expression for the wave length., Rather the wave
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length is determined as a part of the numerical solution
as described in Appendix I. The dimensionless wave length
is presented (Table XI, Item 1) in the following dimension-

less form:

L' = [2“2]1,
gT
Average potential energy, PE
The average potential energy is defined by
Equation (38) and is tabulated (Table XI, Item 2} in
dimensionless form as:

PE! = |——| PE
YH?

Note that the dimensionless form is defined to be
0.5 for the linear (Airy) wave theory.
Average kinetic energy, KFE

The average kinetic energy is defined by Eguation
(39), and is also tabulated (Takle XI, Item 3) in dimension-

less form as:

KE' = |——| kE
YH?

As for the dimensicnless potential energy, the
dimensionless value for the linear (Airy) wave theory is

0.5.
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Average total energy, TE

The average total energy is simply the sum of
the potential and kinetic energy contributions {Equation
(40)] and is tabulated in dimensionless form (Table XI,
Item 4) such that the difference from unity is an

indication of the deviation from the linear wave theory,

8
TE! = T
E ['Y_HT] E

Average total energy flux, FTE
The average total energy flux is defined by
Equation (41), and is tabulated (Table XI, Item 5} in

dimensionless form as:

t

_ 8
Fre = [YHZ L/T} Foe

Group veloeilty, Ca
The group velocity is defined as the ratio of
total energy flux to total energy (Equation (42)} and is

presented (Table XI, Item 6) in dimensionless form as:
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The dimensionless group velocity is defined such that for
linear wave theory the shallow and deep water values are

1.0 and 0.5, respectively.

Average momentum, M
The total average momentum is defined by
Equation (43) and is presented (Table XI, Item 7) in

dimensionless form as-:

e o= [%} i

The dimensionless momentum is defined such that for linear

wave theory, the result is unity. Note that mass transport

velocity, U = [%H] is proportional to the average momentun.

Average momentum flux in wave direction, Fm
X

The total average momentum flux in the wave
direction is defined by Equation (44) and is tabulated

(Table XI, Item 8) in the following dimensionless form:

The above definition reduces to 1}5 and 0.5 for linear

wave theory for shallow and deep water waves, respectively.
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Average momentum flux transverse to wave direction,

m
Y

The total average momentum flux in a direction
perpendicular to the wave advance direction is defined by
Equation (45) and is tabulated (Table XI, Item 9) in the

following dimensionless form:

For linear wave theory, the above definition reduces to

0.5 and 0.0 for shallow and deep water waves, respectively.

Kinematic free surface boundary condition errors, €,
The kinematic free surface boundary condition
error is defined in dimensionless form by Equation (35)
and the root-mean-square (RMS) and maximum values are
tabulated (Table XI, Items 10 and 12) as defined by

Eguation (46).

Dynamie free surface boundary condition errors, €;

The dynamic free surface boundary condition error
is defined by Equation (36) and is rendered in the
following dimensionless form:

€z
€,£=ﬁ—.
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The RMS and maximum values are tabulated (Table XI,

Items 11 and 13) as defined by Equation (47).

Kinematic free surface breaking parameter, B,
The kinematic free surface breaking parameter is
tabulated (Table XI, Item 14) as defined by Equation (48)

(dimensionless form).

Dynamic free surface breaking parameter, B,

The dynamic free surface breaking parameter is
tabulated (Table XI, Item 15) as defined by Equation (49)
in dimensionless form.

Variables Presented in Graphical Form—Combined Effect
of Shoaling and. Refraction

In addition to developing the tabulated values
previously described, the study reported herein included
the development of the combined effect of sheoaling and
refraction for nonlinear waves advancing toward shore with
a deep-water direction, ay, over bathymetry characterized
by straight and parallel contours.

It is recalled that for linear wave theory, it
is possible to separate the shoaling and refraction
effects, because neither the wave celerity, C (governing
refraction), nor the group velocity, CG (governing energy
flux), is dependent on the wave height. For nonlinear

waves, both celerity and group velocity at a certain
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location depend on the wave height as well as the wave
period and water depth. The shoaling/refraction effects
for nonlinear waves are therefore not separable and the
combined effect depends on the deep water wave steepness,
Ho/Ly,, as well as the local relative depth.

Because the shoaling-refraction results are not
readily presented in tabular form, graphs are presented
as Figs. 25, 26, 27, 28, and 29 for deep water wave
directions a, of 0°, 10°, 20°, 40°, and 60°, respectively.
A brief description of the use of these graphs follows.
A wave with a deep water direction oy, will propagate
toward shore such that the local %? will fall along a curve
characterized by the deep water value Hy/L,. At any
particular relative depth, h/L,, the local wave steepness
H/L, and direction o are read from the ordinate and
interpolated from the appropriate isolines, respectively.
The region to the lower right of the line of dots indicates
the region where use of the linear theory agrees with the
nonlinear results presented within 1% in H/L, and 1° in

wave direction, o.
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V. EXAMPLES ILLUSTRATING USE OF WAVE TABLES
Introduction

The preceding chapter has described the formats
and the various dimensionless parameters included in the
wave tables; in order to aid in the application of the
tables, examples will be presented illustrating their use.
The first example will be a problem of a near-breaking
wave interacting with an offshore structure supported by
cylindrical piling. This example will utilize those
tables which contain the wave profile and the wave forces
and moments. Additionai examples will then be presented
which will illustrate the use of most of the remaining
wave tables. Where possible, examples will be selected
to parallel problems which may occur in offshore design.
It is perhaps worthwhile to note that the tables have a
much wider applicability than can be illustrated by the
limited number of examples to be presented here. A
thorough familiarity of the information summarized in the
tables should aid in their understanding and use in many
problems involving water wave phenomena. The examples
will be presented in the English system of units, however
the tables are in dimensionless form and any system could

be used readily.
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Example 1 - Deck Elevation and Wave Forces and Moments
on an Offshore Platlform
Consider the design broblem of determining the

deck elevation and horizontal wave forces and moments upon
individual members of the offshore platform illustrated in
Fig. 30. Suppose that the design depth (mean low water +
max. tide + storm surge), h, is 41 ft, and the main
structural members of the platform and outriggers are
pilings 6 ft in diameter, with piling fenders 3 ft in
diameter. The fenders extend from 4.1 ft above the design
still water level to a depth of 8.2 ft. The outriggers
are 20.5 ft high. Suppose that analysis indicates that
the design wave will have a {(breaking) height, H, of 31.78
ft and a period, T, of 20 sec. The drag and inertia

coefficients, C_ and C for this structure are assumed

D M’
to be 1.05 and 1.5, respectively.
Toc determine which set of tables to use, calculate
h/L, and H/L,, where L, = gT?/(27w),
41

h _ _
e T15.12) (2007 ~ 0.02

31.78
(5.12) (20)¢

H _ =
T " 0.0155
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In this and most subsequent examples in this
chapter, the tables for Case 4-D will be utilized {see
Fig. 23). A sample table set for Case 4-D is included as

Appendix III.

Deck Elevation

To ensure that the deck is above the design crest
elevation; thereby avoiding unnecessarily large horizontal
and vertical forces and damage to the platform base, the

height of the lower elevation of the deck will be:

h” = h + n + h!
max

where h is the design water depth, Noax is the maximum
displacement of the wave above design still water level, and
h' is the deck freeboard (say 10 feet for this problem).
nmax will occur at zero phase angle (8 = 0°) and from any
of the first 9 tables, eta/height = .89 for 6 = 0°.
Therefore, Mpax = .89 (H) = 28.3 ft and h" = h + n
+ h' = 41 + 28.3 + 10 = 79,3 ft. The platform will be
constructed so ﬁhe lower deck elevation will be 79.3 feet
above the bottom.

In determining the forces and moments, it is assumed
that the piling are sufficiently far apart to be considered

isolated. First, the forces acting upon geveral structural

members will be determined. The total force, FT(G,S),will
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be a summation of the drag force, FD(B,S),and inertia
force, FI(G,S),components at any particular phase angle.
Each component will be presented graphically; the
components will then be added to establish the total force,
and the maximum force acting upon each member will be

obtained from the graph.

Forces on Member "a'
In the case of the outrigger, Member a, the drag

force is given by:

uju|ds’

where D is the piling diameter, Sa (= 20.5") is the height
of the outrigger above bottom, and p = mass density of
sea water, 1.99 slugs/ft?®. In order to determine FD(G,Sa),

select the tabulated dimensionless drag value for the

s
-2

h

the dimensionless force by:

force, FD'(G,Sa),at depth = 0.5 from Table V and multiply

chD(H/T)Zh
2

2
CpeP(H/T)"h 3 05(1.99) (6) (31.78/20) 241 _ (648.9 1bs

) 2 - |0.6489 kips
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The inertia force on Member a is given by:

2 S
P (6.5 ) = CMpﬂD a Du
I'"""a 4

0

In order to determine FI(B,Sa), select the tabulated

value of the dimensionless inertia force, FI'(B,S),for a
S

relative depth T? = .5 from Table VI and multiply the

dimensionless force by:

2 2
CyP™P" (B/T™IR (94,9 1bs
i 0.2749 kips

The total force will be determined by summation of
FI(B,Sa) and FD(B,Sa) at each phase angle, 6. The force
calculations are summarized in Table G and the forces

are plotted in Figure 31,

Forces on Member "b"

Next, consider the horizontal forces acting on the
main support piling. 1In this case, the forces are
integrated from 0 to h + n(6). In order to determine
FD(S), multiply the tabulated value for the dimensionless
total drag force, FD'(G) (indicated "Surface" in Table V)

by the same constant as for Member a , i.e.

CDpD(H/T)zh
2

= 0.6849 kips
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TABLE G

Horizontal Wave Forces on Member "a"

6(°) 0 10 20 30 50 75 100 130 180

FD’ 36.31 29.00 14.60 4.30 - 0.04 -1.14 -1.54 -l.62 -1.60

FD(kips) 23.56 18.81 9.47 2,79 - 0.03 -0.74 -1.00 -~-1.05 -1.04

FI' 0.0 22.59 36.36 36.63 17.25 3.76 0.67 0.12 0.0

FI(kips) 0.0 6.21 10.00 10,07 4.74 1.03 0.18 0.03 0.0

FT(kips) 23.56 25.02 19.47 12.86 4,71 0.29 -0.82 -1.02 -1.04

Similarly, FI(B) is found by multiplying the tabulated

value, FI'(B), indicated 'Surface” in Table VI by

CyP™D* (H/T*)h

7) = 0.2749 kips

The calculated forces are summarized in Table H

and are plotted in Figure 32.

Forces on Member "o"

Finally, consider structural Member c, the
fender. The computation for this member is a combination
of the two previous methods since it is sometimes over-topped

by the wave. The forces are integrated from Scl =32.8 ft to
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TABLE H

Horizontal Wave Forces on Member "b"

B (°) o 10 20 30 50 15 100 130
FD' 242.39 119.80 37.00 7.72 - 0,25 =2.19 =2.,84 -2.,95 =-2.92
FD(kips) 157.3 77.7 24.0 5.0 - 0.2 -1l.4 -1.8 -1.9 -1.
FI' 0.0 112.13 113.47 84.55 30.12 6.08 1.03 0.27
FI(kips) 0.0 30.8 31.2 23.2 8.3 1.7 0.3 0.1
FT(kips) 157.3 108.5 55.2 28.2 8.1 0.3 -1.5 -1.8 -1.
Scz = 45.1 ft; therefore, the force acting on an

imaginary piling up to the bottom of the fender is subtracted ’

from a similar term for the top of the fender. The
dimensionless forces are obtained by subtracting the
dimensionless force components pertaining to the bottom
of the member from those pertaining to the top. If the
top of the member is submerged, the value at Séz = 1.1
should be used; for times that the top is not submerged,
the value indicated "Surface" should be employed for 5;2.
Note that the selection of the propér value for the member

upper elevation follows readily from the tables; the values

at Séz = 1.1 are used at phase angles where they are
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tabulated (0 < 6 < 20°) and the values labeled "Surface"
are used for the remaining phase angles (30° < 8 < 180°). '
Summarizing, for each phase angle, the net

dimensionless force components on Member ¢ are obtained by:

Dy Dy Dy,
Fr = F! - 7!
In Iy i

where the subscripts N, U and L indicate net, upper and
lower, respectively. The dimensionalizing constant for drag

force for the member is calculated (recalling that D = 37)

CDpD(H/T>2h
)

= 0.3245 kips
and for the inertia force component

CMpﬁDz(H/Tz)h

. = 0.0687 kips

The required calculations are summarized in Table I and the
results are shown in Figure 33.

The maximum horizontal wave induced forces are now
available for the design wave and may be used in further

design analysis. They are summarized in Table J.
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TABLE I

Horizontal Wave Forces on Member "¢

8 (°) o 10 20 30 50 75 100 130 150
FD ! 99,73 75.87 33.17 7.72 =~ 0.25 -2,19 -2.84 =-2.95 -2.92
U e .
FD f 63.34 49,68 23.72 6.40 - 0.14 -1.87 -2.48 -2.59 =2.56
L
F_'=
DN
FD '—FD 36.39 26.19 9.45 1.32 - 0.11 -0.32 -0.36 -0.36 =0.36
U L
FD(kips) 11.81 8.50 3.07 0.43 - 0.04 -0.10 -0.12 =-0.12 -0.12
FI ! 0.0 65.78 96.88 84.55 30.12  6.08 1.03 0.27 0.0
U
FI ' 0.0 40.55 62.97 60.49 26.23 5.53 0.96 0.22 0.0
L
F_ ' =
IN
F_ '-F 0.0 25.23 33.91 24,06 3.89 0.55 0.07 0.05 0.0
I I
U L
FI(kips) 0.0 1.73 2.33 1.65 0.27 0.04 0.0 0.0 0.0
FT(kips) 11.81 10.23 5.40 2,08 0.23 =-0.06 -0.11 -0.11 -0.12
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TABLE J

Summary of Maximum Wave Forces on
Several Platform Components

Phase Angle of
Maximum Force, Fon {kips)
Member em(°) max
a 7° 25.1
b 1° 160
C 1° 12.3

Note: Phase angles and maximum forces
obtained by interpolation from
Figures 31, 32 and 33.
Moments on Member '"g"
The moments due to the wave forces acting on the

structure are also essential in design. For any member,

the moment about the mudline is defined as:

Ss S S,
M (8) = J S aF,(9,5) J S aFp(0,8) + J S dF (8,5)
S, S, S,

MD(B) + MI(G)

where

52

M (0) = £CDD f s ululds
2 g
1

and

2 Sz
M_(8,5) = CmpmD [ s DY 3g



Consider the total moment about the mudline on the
outrigger (Member a). In this case S, = 0, and 52 = 84
= 0.5 h. To determine the drag moment, MD(G), multiply the
dimensionless tabulated value for the drag moment, MD'(S),

listed at depth Sa/h = .5 in Table VII, by

CpPD (H/T) *h* 26606 for Mp in ft-1bs
2 = |26.606 for Mp in ft-kips

Similarly, multiply M;(8) listed at depth 5 /h = .5 in Table

VIII by

CMpﬂDZ(H/Tz)hz 11272 for My in ft-lbs
q = {11.272 for My in ft-kips

to obtain MI(G). These moments are added to obtain MT(S),

as shown in Table K and Figure 34.

TABLE K

Wave Moments (About Mudline) on Member "a'

8(°) 0 10 20 30 50 75 100 130 180
Mé 9,31 7.40  3.67 1.05 - 0.01 - 0.29 -~ 0.39 - 0.40 - 0.40
MD(ft-
kips) 247.7 196.9 97.6 27.9 - 0.3 - 7.7 -10.4 -10.6 ~-10.6
M£ 0.0 5.85 9,32 9,26 4,25 0.92 0.1l6 0.03 0.0
MI(ft—
kips) 0.0 65.9 105.1 104.4 47.9 10.4 1.8 0.3 0.0
MT(ft-
kips} 247.7 262.8 202.7 132.3 47.6 + 2.7 - 8.6 -10.3 =10.6
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Moments on Member "bV

Next consider the moment on the main structural
piling (Member b). The limits of integration are from 0 to
h + n{8). Therefore, take the tabulated values labeled
"Surface" from Table VII, (Mﬁ(e)], and Table VIII, (Mi(e)],

and multiply by

chD(H/T)2h2
2

= 26,606 for Mp in ft-kips

and

CManZ(H/Tz)h2
3

= 11.272 for M; in ft-kips

in order to obtain MD(B) and MI(G). The two moments are
added to obtain MT(B) as indicated in Table L and plotted in

Figure 35.

TABLE L

Wave Moments (Abocut Mudline) on Member "b"

9(°) 0 10 20 30 50 75 100 130 180
Ms 268,1 102.6 23.0 3.6 - 0.2 -1.0 -1.3 =-1.3 - 1.
MD(ft-
kips) 7133 2730 612 96 - 5 -27 -35 -35 -35
Mi 0.0 101.7 78.5 47.5 13.5 2.5 0.4 0.1 0.0
MI(ft—
kips) 0.0 1146 885 535 152 28 5 1 0.
MT(ft— _
kips) 7133 3876 1497 631 147 1 -30 -34 -35
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Moments on Member "oV

The fender has the same limits of integration for
moment calculation as for the force calculation and is
determined in a similar manner. However, the tabulated
moments,MS(B,S) and Mi(G,S),are taken from Tables VII and
VIII. The total moment acting on the fender is found by:
MT(G) = MD(S) + MI(G). The calculations are summarized in

Table M and are plotted in Figure 36.

TABLE M

Wave Moments (About Mudline) on Member "c"

8 {°) 0 10 20 30 50 75 100 130 180

MS 61.94 46,01 18.59 3.63 - 0.18 -1.04 =-1.31 -1.35 =-1.33
U

MS 27.04 20.94 9.61 2.40 - 0.08 =-0.77 =-1.00 -1.04 =-1.02
L

M =

DN

Mé —Mé 34,90 25.07 8.98 1.23 - 0.1i0 =-0.27 -0.31 =-0.31 -0.31
U L

My

(ft-kips) | 464 334 119 16 -1 -4 -4 -4 -4

M£ 0.0 41.87 59.20 47.47 13.45 2.52 0. 40 0.14 0.0
U

Mi 0.0 17.66 26.76 24.82 10.04 2.05 0.34 0.10 0.0
L

M! =

IN

Mi -M£ 0.0 24.21 32.44 22,65 3.41 0.47 0.06 0.04 0.0
U L

M

I

(ft-kips) 0.0 68 91 64 10 i 0 0 0.0

MT

(ft-kips) {464 402 210 80 9 -3 -4 -4 -4
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The maximum calculated forces and moments on the
three platform members due to the design wave are summarized

in Table N.

TABLE N

Summary of Maximum Wave Forces and Moments

Fp (8,8) Mr (9,8)
Member 0 (kips) 6 (ft-kips)
a 7° 25.1 5° 267
b 1l° 160 1° 7140
c 1° 12,3 1¢° 475
Example 2 - Wave Characteristics, Kinematics and Pressure

Fields

This example describes the use of the tables for
calculating various parameters associated with a periodic
wave. These parameters include the wave length and the
kinematic and pressure fields.
Wave Length

The wave length is presented in dimensionless form
in Table XI of the sample output and is determined as

follows:

For example, for the same wave considered in Example 1,
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L' = 0.422 and T = 20 sec. The wave length is therefore:

L = 5.12 (20)%(0.422) = 864.3 ft
Wave Profile
The dimensionless wave profile, n’(8), is tabulated

in each of Tables I - IX and is defined as,

; _ni{e)
n(e)—H

therefore
n{é) =n’'{8) . H

The wave profile calculation for Case 4-D is
summarized in Table O and is plotted in Figure 37. Note
that n is an even function of 6.

Water Particle Kinematics

The water particle kinematics will be calculated
for Case 4-D as presented in the sample output. Thesé
kinematics will be calculated for mid-depth (i.e., 20.5 ft
above the bottom). The dimensionless forms of these
variables are presented in Tables I - IV of the sample out-

put. The dimensionless water particle velocities are

defined as

, -u(8,s)
u'(8,8) =7
and
_w(e,8)
W' (e ,S):’WT——
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TABLE O

Calculated Wave Profile, Kinematics, and Dynamic Pressure (All Kinematics and
Dynamic Pressure Calculated at Mid-Depth)

50T

8(°)
Dimensionalizing
Variable Constant 0 10 20 30 50 75 100 130 180
n' H = 31.78 ft 0.89 0.58 0.28 0.10 - 0.06 - 0.10 - ©0.11 - ©0.11 - 0.11
nift) 28.28 18.43 8.90 3.18 -1.90 - 3,18 - 3.50 - 3.50 - 3.50
u' H/T = 31.78/20 8.97 7.94 5.46 2.80 -~ 0.42 - 1.54 -~ 1.76 - 1.80 - 1.79
u(ft/sec) = 1.589 ft/sec |14.25 12.62 8.68 4.45 - 0.67 - 2,45 - 2.80 ~ 2.8 - 2.84
w' Same as for u, 0.0 1.46 2,14 1,95 .81 0.17 0.03 0.01 0.0
w(ft/sec) = 1.589 ft/sec 0.0 2.32  3.40  3.10 1.29 0.27 0.05 0.02 0.0
* Du’

2 _
Dt H/T® = 31.78/(20f] 0.0 51.89 80.18 76.41  32.40 6.73 1.16 0.28 0.0
g%(ft/secz) = 0.07945

ft/sec? 0.0 4.12 6.37 6.07 2.57 0.53 0.09 0.02 0.0
pw' Du
= same as for -, [39.21 -25.66 2.27 21.80 18.01 4.04 1.04 0.04 -~ 0.28°
%%(ft/secz) = 0.07945

ft/sec? -3.11 - 2.03 0.18 1.73 1.43 0.32 0.08 0.00 =~ 0.02
P %? = iﬁfliglézgl- 1.030 0.930 0.673 0.372 - 0.035 - 0.189 - 0.221 - 0.226 - 0.225
pD(lb/ftz) = 1017 1lb/ft? 1048 946 684 378 -36 -192 -225 -230 -229
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and the dimensionless water particle total accelerations are

defined as

' bu
bu) ' . Dt
Dt - H/T?
and
' Dw
pw) ' . BE
Dt © H/T2

Note that these are functions of 8 and S, however, for
convenience, the dependence has not been indicated in the
above expressions. The calculations of the water particle
velocities and accelerations over the range 0°< 6 <180°,
are alsc summarized in Table O and plotted in Figure 37.

It will be noted that in the tables of wave functions;
the variables are only presented for phase angles ranging
between zero degrees and le degrees. All of the variables
are either symmetrical or anti-symmetrical about a phase
angle of zero degrees. The variables that are symmetrical
include: the water surface profile, the horizontal component
of water particle velocity and the vertical component of
water particle acceleration. The anti-symmetrical variables
inclqde the vertical component of velocity and the horizontal
component of water particle acceleration.

Dynamic Pressure
The dynamic pressure was also Calculated at a

distance of 20.5 ft above the bottom. The dimensionless

-~

_logﬁ



form of this variable is

and is presented in Table IX of the sample output. The
calculations are summarized in Table O of this report and
presented in graphical form in Figure 37. Note that Pp is

an even function of 6.
Example 3 - Free Surface Boundary Condition Errors

The free surface boundary condition errors and the
reascn for examining and tabulating these errors have been
described in Section II. By way of illustrating the use of
tables to calculate the free surface boundary condition
errors, both the distributed errors on the free surface and
the root mean square and maximum errors as gross measures of
these errors will be presented. The distributed kinematic
and dynamic free surface boundary condition errors are
presented in Table X, Items 1-4 of the sample output and the
root mean square errors and maximum errors are presented in

Table XI, Items 10-13,

Distributed Boundary Condition Errors

The calculations of the distributed boundary
condition errors are presented in Table P and Figure 38
of this report. It is noted that the kinematic free surface

boundary condition errors as defined and presented in the
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0TT

TABLE P

Free Surface Boundary Condition Errors

6(°) 0 10 20 30 50 75 100 130 180

a) KFSBC Error, Linear Wave Theory, Table X, Item (1)

€] = €1 0.0 0.035 0.064 0.081 0.079 0.032 ~-0.018 -0.042 0.0
b) KFSBC Errors, Stream Function Theory, Table X, Item (2)

€] = €1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
¢) DFSBC Errors, Linear Wave Theory, Table X, Item (3)

€9 = £3/H  0.,0385 0.0366 0.0309 0.0222 -0.0007 -0.0265 -0.0331 0.0004 0.0284

ep (ft) 1.224 1.163 0.982 0.706 -0.022 -0.842 -1.052 0.013 0.903
d) DFSBC Error, Stream Function Wave Theory, Table X, Item (4)

cé = e3/H 0.0289 -0,0112 -0.0108 ~0.0039 0.0007 0.0002 0.0020 .0013 0.0003

ea(ft) 0.918 -0.356 -0.343 -0.124 0.022 0.006 0.064 0.041 0.010
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wave tables (Table X, Items 1 and 2) are in dimensionless
form. However, the dynamic free surface boundary condition
errors (Table X, Items 3 and 4 of wave tables) are dimen-
sional as illustrated in the sample calculations accompany-
ing Table P. The calculations of the root-mean-sqguare
(RMS) and maximum kinematic dynamic free surface boundary

condition errxors are presented below.

Overall Kimematic Free Surface Boundary Condition Errors
The RMS kinematic free surface boundary condition

errors are presented as Item 10 in Table XI, i.e.

J

€12 = .0475 (Linear Wave Theory)
€12 = 0.0 (Stream Function Wave Theory)

The maximum KFSBC error is obtained from Item 12 of Table

X1,

I

|51|

max 0.0856 (Linear Wave Theory)

Iellmax = 0.0 (Stream Function Wave Theory)

Overall Dynamic Free Surface Boundary Condition Errors
The RMS DFSBC errors are presented in dimensionless

form as Item 11 in Table XI, i.e.

Ye22/H = 0.0241
(Linear Wave Theory)
€227 = 0.765 ft
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0.0048

m
~
~

fas]

il

(Stream Function Wave Theory)

0.153 ft

m
[\
Il

The maximum DFSBC errors, obtained from Table XI, Item 13

are

£
l_%lmax_ = 0.0385
(Linear Wave Theory)
les | = 1,224 ft |
max
€ R
l—é—'—mﬁL= 0.0289
(Stream Function Wave Theory)
le2| = 0.918 ft |
max

With regard to interpretation of the boundary condition
errors, in accordance with the discussion in Section II, if
the boundary condition errors for any given theory were
found to be generally better than for the Stream function
theory, then it could be concluded that at least the ana-
lytical validity of that wave theory would be better and as
discussed earlier, there is some evidence to indicate that
the analytical wave theory is a good indicator of the
experimental validity (or of the wave phenomenon in nature}.
Example 4 - Calculation of Energy, Momentum, and
Energy and Momentum Fluxes
The tabulations of average potential, kinetic, and

total energy and energy fluxes and average momentum and
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momentum fluxes are presented in Table XI. The calculation
of these quantities in dimensional form is relatively
straightforward and will simply be presented without

discussion.

Average Potential Energy (Table XI, Item 2)
PE

PET = '(Y_H278_T= 0.213

0.213(8080) = 1721 ft-1lb/ft?

It

PE

Average Kinetic Energy (Table XI, Item 3)
KE

KE' = —(_Y—Hz7m—= 0.254

0.254(8080) = 2052 ft-1b/ft?

KE

Total Energy (Table XI, Item 4)
TE  _

TE' = -(Y_HW— 0.467

TE

0.467(8080) = 3773 ft-1b/ft’?

Energy Flux (Table XI, Item §5)
Frg

’ — —
Fop = YAZ L] © 0.447
g8 T
Fop = 0.447(349166) = 156077 ft-1lbs/(ft-sec)

Group Velocity (Table XI, Item 6)

C
ro= =
CG = TE%TT = 0.957

C 0.957(43.21) = 41.36 ft/sec

G
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Average Momentum (Table XI, Item 7)
M

I 8 ii

M 0.505(187) = 94.42 lb-sec/ft?

it

Average HMomentum Flux in Wave Direction (Table XI, Item 8)

me
Fr = —X_ = 0.603
m vH
%5
F, = 0.603(8080) = 4872 1b/ft

X

The average momentum flux has been recognized in
recent years as an important dynamic quantity and is
related to wave set-up within the surf zone and also is an
important factor in the longshore transport of littoral
material.
Average Momentum Flux Transverse to Wave Direction (TPable

XI, Item &)

F! = Y_ = 0.156

F. = 0.156(8080) = 1260

From the momentum flux components presented it is
possible to obtain any component of the radiation stress

tensor.}!’

Example 5 - Free Surface Breaking Parameters

The free surface breaking parameters as defined by
Equations (48) and (49) are based on two stability consid-

erations., The kinematic free surface breaking parameter is
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defined in terms of the speed of a water particle on the
surface at the crest relative to the wave form speed. If
this parameter should equal unity, then the wave is
regarded as being unstable due to kinematic considerations.
The dynamic free surface breaking parameter is defined as
the ratio of the vertical acceleration of a water particle
on the surface at the wave crest relative to the accelera-
tion of gravity. The interpretation is that if this
parameter should equal unity, then the pressure immediately
under the crest would be zero and if the parameter should
exceed unity, then according to the equations of motion,
the pressure beneath the wave crest would be negative
which is unrealistic and would indicate an unstable water
surface,

It should be noted that the theory employed in the
study is composed of a finite series of terms; in order to
adequately define an instability formally, it may be
necessary to extend the representation to include an
infinite number of terms. The results presented here with
regard to the free surface breaking parameters, should be
interpreted accordingly. For the sample output (Case 4-D),
it is seen (Table XI, Item 14) that the kinematic free
surface bfeaking parameters for the linear and Stream
function representationsare 0.429 and 0.733, respectively.
The corresponding values (Table XI, Item_lS) for the

dynamic free surface breaking parameter are 0.0409 and

-
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0.286, respectively. The wave height associated with this
case is approximately 0.78 of the depth and according to

the McCowan criterion, the wave would be breaking.
Exagmple 6 - Combined Shoaling/Refraction

The reader is reminded that the shoaling/refraction
results were not tabulated, but are presented for various
deep water directions in graphical form as Figures 25, 26,

27, 28 and 29 of this report.

Example 6-a
Consider a deep water wave propagating over
bathymetry characterized by straight and parallel contours;

the deep-water wave conditions considered are:

Hg = 11.52 ft
T = 15 sec
ag = 40°

Suppose that we wish to find the wave height and direction
in a water depth of 30 ft and also the wave height, water
depth and wave direction at breaking. Figure 28 is
applicable for a deep water wave direction of 40°. The

deep water wave length L, is calculated as

- 9 2 _ 32.17 s _
Ly = 5o T = 5.3832 (15) = 1152 ft
therefore
Hyp
— = 0.01



and for h = 30 ft

h _ 30 _
i‘;’ = {183 = 0.0260

The line for Hy/Ly, = 0.01 is simply followed to the left
to the intersection with h/L, = 0.0260. At this inter-

section,

H _

T - 0.0119

H = (0.0119) (1152) = 13.71 ft
o = 17°

The second part of the example requires the breaking depth,
height and angle. For this, the Hy/Ly = 0.0l curve inter-

sects the breaking curve at

g% = 0.0199
therefore
g% = 0.0147
oy = 17°
therefore
Hy = 0.0147(1152) = 16.9 ft

h, = 0.0190(1152) = 21.9 f£ft
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Example 6-b

Suppose that a wave is observed in intermediate
depth water and it is desired to determine the height at
any other depth such as deep water, breaking or any depth
of interest., For this example, the values of H/L, and h/L,
are calculated from the observed wave height and period and
water depth. If the observed direction corresponds to one
of the graphs available, then one proceeds as before in
Example 6-a. If the observed point is not in accordance
with any of the graphs available, then an interpolative
procedure is required. As an example, consider the follow-

ing observed wave characteristics

H = 20 ft
h = 60 ft
T = 12 sec
o = 11°

and it is desired to calculate the wave height and direction

in a water depth of 40 ft. From the observed information

L, = 737.3
H/L, = 0.0271

h/Le = 0.0814 (h = 60 ft)
h/L, = 0.0542 (h = 40 ft)

Examining the available figures, it is seen that

the deep water wave direction is in the range 10° < g4y < 20°.
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As a close approximation, the problem is solved for a, = 10°
and oo = 20° and the desired results obtalned by interpola-
tion. For oy = 10°, from Figure 26, a line passing through
H/L, = 0.0271, h/L, = 0.0814 is sketched with the same
approximate shape as those for Hy/L, = 0.02 and 0.04 to
determine H/Lg¢ = 0.033 and o = 6.2° for h/L, = 0.0542,

The corresponding values for ay = 20° are H/Ly, = 0.031 and

a = 12°, The procedure is shown graphically in Figure 39
for ag = 10°, Because for oy = 10° and 20°, the a values
corresponding to h/Ly, = 0,0814 and H/L, = 0.0271 are 6.8

and 13°, respectively and the desired o for these conditions
is 11°, the wvalues of H/L; and a for h = 40 ft may be
determined by linear interpolation as

( 130 — 6.80) - 6.80) = 0-032

0.033 +

H
Ly

or

=
I

(737.3)(0.032) = 23.6 ft

and

(12° 6.2°)
{13° - 6.8°)

a = 6.2° + (11° - 6.8°) = 10.1°

As a final remark in the discussion of the shoaling/
refraction results, it should be noted that dissipative
mechanisms such as percolation and bottom friction are not

included in these results and in many cases these latter
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effects will be of greater significance- than the nonlinear
effects on the celerity and group velocity which represént
the difference between the results presented here and the

linear wave theory.
Example 7 - Use of Tables for Nontabulated Wave Conditions

Most of the previous examples have been presented
for wave conditions which were available as one of the 40
tabulated cases, i.e., Case 4-D. It is anticipated that the
tabulations will be used primarily for preliminary design
and therefore that the 40 cases may provide adeguate infor-
mation for this purpose without interpolation. Final
design of, for example, a platform supported by battered
piling would probably be. carried out by establishing a
Stream function or other wave theory representation for the
particular wave conditions selected for design.

On occasion, it may be desired to interpolate
between the cases presented in the tables for wave conditions
that are substantially different than one of the 40 cases,
Several numerical and graphical interpolation methods were
explored with a goal of obtaining a simple method which
vielded reasonably accurate results. Because most wave
variables of interest are nonlinear, numerical schemes
which utilized linear interpolation proved to be inaccurate.
The best procedure was found to be a rather simple graphical

procedure which generally yields results within 5%.
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| Method

The method utilizes the tabulated parameters of
interest for the H/Hp values above and below the value of
interest at the two lower and two higher h/L, tabulated
values; in all for each parameter desired, the interpolated
value is based on values of that parameter for eight
tabulated wave conditions. The method is outlined in the
following paragraphs and illustrated by two examples.

Suppose that the wave height, period and water
depth selected for design are Hp, Tp, and hp, respectively.
The design wave steepness and relative depth are calculated

as:

P
Lop

hp

Relative Depth: Ton

Wave Steepness:

-
v

where

= 2 2
LuD 27 TD

The relative depth and wave steepness are plotted
on Figure 40 to establish which wave cases should be used
for design. For the example shown H/LoD = 0.086 and
h/Lep = 0.313. This point falls between H/Hpg values denoted
as "B" and "C" (i.e. 50% and 75% of breaking heights,
respectively) and between tabulated h/Ly values denoted as
Cases 7 and 8. The interpolation would therefore be based
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on the tabulated parameter of interest for Cases 6-B, 6-C,
7-B, 7-C, 8-B, 8-C, 9~B and 9-C.

The interpolation proceeds as follows. An auxiliary
plot is made of the variable of interest, e.g. the total
dimensionless drag force at 6 = 0° {denoted F5(0°, Surf.)).
This plot provides a continuous distribution of F5(0°, Surf )
versus h/Lo for relative breaking heights B and C. Inter-
polated Fs values are then obtained from the auxiliary plot
for the h/L,; design value (0.313). The interpolation for
the design wave steepness requires measuring (Figure 40)
the vertical linear distance from the B and C lines to the
design H/L, of interest; denote these values, A, and A,,

respectively. Weighting factors, W, are then established as

— Az
WL = —Al—_l_—A—z— (50)

= b5y
WU T A+ A

The interpolated FS value is finally determined as
r _ ] 4

where the subscripts, D, L and U outside the parentheses

dencte: "Design," "Lower" Case B), and "Upper"” LCase C),

respectively.
Example 7-a - Numerical Illustration of Interpolatior
Procedure
Consider the following wave conditions selected

for design
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44 ft

jary
1l

D
TD = 10 sec
hD = 160 ft

which yield

Lo =—-%T2=512 ft

D~ 3
h
—D - 0.313
Top
H
E—D— = 0.0859
°D

and suppose that we require the maximum dimensionless drag
force on a piling that extends from the bottom up above the
crest level. This maximum value would occur at & = 0° and
is the value labeled "SURFACE" in the tabulations. Plotting
of the wave steepness and relative depth on Figure 40
indicates that the design values are spanned by Cases 7-B,
7-C, 8-B and 8-C. In accordance with the preceding section
the values of Fp (0°, Surf.) for Cases 6-B, 6-c, 7-B, 7-C,
8-B, 8~C, 9-B and 9-C are required for interbolation and
are summarized in Table Q.

The values in Table Q are presented as an auxiliary
plot in Figure 41. Interpclation at the design h/L; of
0.313 yields the following values of FS for relative

breaking of 50% and 75% respectively.

|
e
Ne]
(=)

Relative Breaking of 50% (Line B): (FS)L =

il

2}
|
(=]

Relative Breaking of 75% (Line C): (Fﬁ)U
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00}
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FIGURE 4|  AUXILIARY PLOT OF F' FOR
EXAMPLE 7-a
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TABLE Q

!

Summary of F_(0°, Surf,) Required for Example 7-a

D
Case F5(0°, Surtf. )
6-B 22,37
6-C 28.79
7-B 8.60
7-C 11.31
8-B 2,71
8-C 3.53
9-B 1.33
9-C -1.72

In order to interpolate to the design H/L,, the
distances A; and A; are measured from Figure 40. For this

example, these are found to be

Aj 0.32 in

I

The weighting values are then (Eg. 50)

_ Ap _
W o= i = 0.744
W. = —21_ - g.256

U A1 + A

and the interpolated value of Fg is
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]

(Fp) | = WL(Fp) + Wy(Fp)y

(0.744) (4.90) + (0.256) (6.10)

= 5.21

In order to evaluate this interpolated value, a
Stream function soiution was developed for the conditions
. 0of interest and Fﬁ from the actual solution was found to be
5.04 or a difference of about 3.4%.

More comprehensive evaluations of the accuracy of

the interpolation method are presented in the next example.

Example 7?-b - Assessment of the Interpolation Method

In order to present a more extensive evaluation of
the accuracy of the interpolation method, two special cases
(one shallow water and one deep water) were selected for

evaluation. The wave characteristics for these two cases

are presented in Table R.

TABLE R

Wave Characteristics Selected for Accuracy
Evaluation of Interpolation Method

Wave Height, Wave Period, Water Depth,
Case H(ft) T (sec) h(ft)
L — _— . e —
S-1
(Shallow Water) 19 20 30
-2 :
{Deep Water) 44 10 160
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Using the procedure described, interpolated wvalues
of a number of quantities of interest were developed and
compared with values obtained by Stream function solutions
at the wave conditions ¢f interest. Table S presents a
summary of the percentage differences between the solution
and interpolated values.

As an overall statement regarding the interpolation,
it is noted that Table S indicates that the procedure
presented generally provides results which are within 5%,
however, differences up to 10% could occur. One final
comment concerning the consistency of the tabulated values
is in order. In preparing the auxiliary plots, it was
usually found that a line could be drawn through the four
points within 2 to 3%, except for the breaking wave height,
H/Hg = 1.0 in which case the maximum deviations could
amount to +5 3. The probable explanation for this deviation
is that: (1) the-calculated wave heights for the tabulated
cases were allowed to deviate from the desired values by
1%, and (2) the different orders to represent different
cases could cause a difference in kiﬁematics of 1 to 2%.
The effects noted above could conceivably amount to devia-
tions of #5% for those variables which are inherently
nonlinear, e.g. drag forces or wave breaking parameters.

This completes the section illustrating the use of
the wave tables. It should be recognized, however, that

only the more simple examples have been presented and that
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TABLE S

Summary of Percentage Differences Between Values
Determined by Stream Function Solutions
and by Interpolation

Dimensionless Variable?

Percentage Differenceb

Case S-1

Case 5-2

u’(0°, 0.5); Horiz. Vel.
Comp., Zero Phase Angle,
Mid-Depth

F5(0°, Surf), Max. Drag
Force Component, Acting
Over Entire Depth

t
Fy(l0°, Surf), Inertia
Force Compcnent

F£(75°, Surf), Inertia
Force Component

Mf(0°, Surf), Max. Drag
Moment Component About
Mudline

M£(10°, Surf), Inertia
Moment Component

M£(75°, Surf), Inertia
Moment Component

Pﬂ(O°, 0.5), Dynamic
Pressure Component,
Zero Phase Angle,
Mid-Depth

pp(180°, 0.5), Dynamic
Pressure Component,
Trough Phase Position,
Mid-Depth

L', Wave Length

+3.9%

+6.7%
+1.3%

Not Evaluated

+4.5%
+2.2%

Nof Evaluated

<1l%

<l%

1.1%

-4.6%

<1%

+3.4%

Not Evaluated

~3.9%

+3.6%

Not Evaluated

~3.7%

-2.4%

-2.8%
<1l%

-3.7%

TE', Total Energy
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TABLE S—Continued

Percentage Differenceb

Dimensionless Variable? Case 5-1 Case S5-2
FfE, Total Energy Flux -4.2% +3.5%
M', Momentum ~4.1% -2.2%

Fﬁx, Momentum Flux in
Wave Direction -3.7% -2.6%

Fé Momentum Flux
Transverse to

Wave Direction -1.7% <1%

yl

KFSBP, Kinematic Free
Surface Breaking
Parameter 8.4% +4.4%

DFSBP, Dynamic Free
Surface Breaking
Parameter 1.4% <1%

Grefer to Tables D, E, and F for a more complete description
of the dimensionless variables.

bg piff, = lnterp. Value - Stream Fn. Soln.

Stream Fn. S0in, 100%
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the tables can be effectively applied to the solution of
situations which are considerably broader and more complex

than those examined in this section.
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VI. SUMMARY

This report presents the results of an investigation
which has demonstrated that the Stream function wave theory
provides a generally better representation of periodic wave
phenomena than other wave theories examined. As a result of
this indication, tables have been prepared, based on the
Stream function wave theory and including parameters which
should be an aid in preliminary offshore design. The tables
also include parameters which are presently of greatest
interest to researchers.

Because of its simplicity, the linear wave theory is
widely used for many calculations over all ranges of relative
depth., This study has identified that, for a number of
variables, there are substantial differences between the linear
and Stream function wave theories. Although this point has
not been amplified in this report, inspection of the tables
will substantiate this conclusion. The identification of
these differences should be of assistance in planning experi-
mental programs to provide definitive research results.

If the set of tables 1s extensively applied, as is
hoped, undoubtedly the users will note shortcomings, omissions
or develop recommendations directed toward the improved

usefulness, applicability or efficiency of the tables. The
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author would welcome information of this type in order
that future work may benefit by as wide a range of user's

needs as possible.
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NUMERICAL SOLUTION

APPENDIX I

OF STREAM FUNCTION PARAMETERS



Introduction

This appendix outlines the method of determining
numerical values for the parameters in the general form
of the Stream function solution. The numerical solution
requires the use of a reasonably high speed, large memory

computer.
Review of Problem Formulation

The problem of a two-dimensional, periodic wave
propagating in water of uniform depth has been discussed
in Section II of the main body of this report. If the
water is incompressible and the motion irrotational, then
the following boundary value problem can be established for
an "arrested" wave system.

Differential Equation (DE):
V2y = 0 (1-1)
[Bottom Boundary Condition (BBC):

w=20, z=-h (1-2)

Kinematic Free Surface Boundary
Condition (KFSEBC):

an _ W

Boundary 9 u-C'
Conditions

z = n(x) (1-3)

Dynamic Free Surface Boundary
Condition (DFSBC):

n o+ i (u-C)2+w2]--c~2—=Q z = n(x)
2g 2g '
(1-4)
Motion is periodic in x with spatial
lperiodicity of the wave length, L. (1-5)
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Equations (1-1) - (I-5) represent the common formulation
for all of the classical nonlinear water wave problems in
which it is assumed that the wave pfopagates without
change of form and a reference coordinate system has been
chosen which travels with the wave form. For a specified
wave height, water depth and wave period, the goal then
is to determine as exact as possible a solution to the

formulation.,
Stream Function Solution

The general form of the Stream function solution
is
NN
z + ) X(n) sinh [

2m gy z,] cos [Zm x]
L
n=1

L

s

pi{x,z) =

{I-6}

The water displacement, n, is determined by setting

z = 1 in Equation (I-6).

N 2 2
z X(n) sinh el (h + n)] cos [—%E x]
n=1

3

=X -

N L

{(1-7)

where wn is the (constant) wvalue of the Stream function on

the free surface. The velocity components are defined by:
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u-C=-§i (I-8)

w =+ 20 (1-9)

In continuing the quest to determine a solution
which satisfies Equations (I-1) to (I-5) as faithfully as
possible, it is noted that for arbitrary values of: wn, L,
and the X(n)'s, the Stream function solution exactly
satisfies all of the requirements of the formulation
except the DFSBC, Equation (I-4), All of the effort can
therefore be directed to determining these "free" variables
such that they represent the specified wave height and
also "best" satisfy Equation (I-4). The approach that is
employed is numerical iteration, in which a trial solution
is regarded as available and at each step of the iteration,
the "free" variables are modified to improve the solution.

As a preliminary step, an error is defined in the

one-remaining unsatisfied boundary condition
J .
E=z2 ] (0 - D)7 (I-10)
where the Qj's represent equally spaced (in 6) wvalues of
the quantity in Equation (I-4), and O represents the

average of the Qj's. I1f, for example, J = 41, and the

free variables could be adjusted so that E was very small,
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then the associated solution would provide a good fit to
the complete formulation at these 41 points, and
computations have shown that the fit at other phase

angles would be comparably good. The problem therefore
has evolved into one of minimizing the total error E. The
procedure used is a least squares procedure, which reguires

formally that

oF _

3T T 0 (I~11)
33 _ : _
?f(n) = 0 {(I-12)

{the paraméter wn is not determined by the least squares
procedure, but is selected such that the mean water level
is not changed by the other variables selected; this will
be discussed later.) Examinatidn of Equations (I-11) and
(I-12) further will indicate that the usual least squares
procedure is not applicable,.because the error is not
defined as a gquadratic function of the unknowns; this
problem then falls in the category of a nonlinear leasf
squares problem.

The problem was linearized as follows. Suppose
that at the kth iteration, a trial solution is available.

The objective is to select changes in the unknowns such
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that the errors will be reduced. If this were a linear
least squares problem, only one iteration would be required.
Expressing the gquantity Q in terms of small changes in the

unknowns (to be determined at the kth jteration).

NN 5ok an
k+1 _ .k i j _
Qj = Qj + E % (a AX (n) + ""laL AL (1-13)
n=1
where
30 . _ 3Q _3n 9Q _9u 30 dw -
3X ()~ 3n 3x(a) T 3u 3X(n) | 3w 3X(m) (I-14)
20 _ 20 2n , 90 du _ 90 dw . 39 BC _
35T~ 3n 3L T 3u 3L T 3w 3L T 3C 3T (1-15)
9Q 23Q . .
where the I’ Su are obtained from Equation (I-4) and the
an Ju

SXIny ! SXImy’ etc., are obtained from Equations (I-7),
(1-8) r etc-

Rewriting the least squares procedure in terms of

the unknowns: AL and AX (n)

oF

SAL ~ 0 _ (I-16)
oE _ _ _
m(—n—j- =0, n=1,...NN (1-17)
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Equations (I-16) and (I-17) represent a set of
NN + 1 linear simultaneous equations in terms of the
NN + 1 unknowns. After each iteratidn, the water surface
is recalculated, by iteration, from Egquation (I-7) and wn

is redetermined such that
[ ndx =0 (I-18)

which can be expressed in integral form as

L/2
¢n = % } X(n) sinh (2%5 {h + n)] cos [2%2 x] dx

0 (1-19)

where, in the computations, a Simpson's rule approximation
to Equation (I-19) is used.

One complete iteration comprises a simultaneous
solution for AL and the 4X(n)'s and a redetermination of
wn. Successive iterations involve exactly the same
procedure, and the iterations can be terminated when
successive reductions in the error E are small. Numerical
instabilities can occur, especially near breaking wave
conditions and, one effective procedure in these cases, is

to apply only a fraction of the AL,and AX(n)'s specified

by the least squares solution,
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One final comment should be directed toward the
problem of establishing the desired wave height. Although
it is possible to develop more sophisticated procedures
which converge on the wave height, the procedure followed
here was simply to conduct successive runs until the wave
height was within an acceptable limit-(l%) of the desired

height.
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APPENDIX II

DEVELOPMENT OF COMBINED SHOALING/REFRACTION COEFFICIENTS



Introduction

This appendix describes briefly the method
employed to calculate the combined shoaling/refraction

coefficients.
Background

The shoaling/refraction coefficients developed
are valid for a bathymetry characterized by straight and
parallel bottom contours and for a wave system which
suffers no energy losses. The two principles employed are
Snell's Law and the concept that there is no energy flux
across a wave ray, see Fig., II-1.

Snell's Law governs refraction and relates the

wave propagation speed, C, to the wave direction, o,

§igTEL = Const, = E&gzﬂl (I1-1)

in which the subscripts pertain to any arbitrary depths.
The requirement that no energy is propagated

across wave rays may be written as
[FTE cos u)1'= [FTE coSs a]z = Const; (I11-2)

in which FTE represents the energy flux per unit width in

the direction of wave propagation and the cos o term
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represents the width between adjacent wave réys. The FTE
term could be expressed as the product of the wave energy
density,TE, and the group velocity, CG,although this will
not be helpful in the effort here. In the case of linear
wave theory, it is possible to separate the refraction

and shoaling effects because neither the celerity, C,
(governing refraction) nor the group velocity, CG (governing
shoaling) depend on wave height. For our case, inspection
of Equations (II-1) and (II-2) will show that the two
phenomena are coupled through the dependency of C and CG

on the wave height.
Method

The method employed here utilizes the dimensionless

energy flux, Fon (Table XI, Item 5) and the dimensionless

wave length, L’ (Table XI, Item 1),

where

pr = _IE
TE A" L
8 T
L' = =
(gTZ/27)

Eqdation (II-1) can be rewritten in terms of the

dimensionless guantities as
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21 sin o, _ 27 sin a, _
o 7 3T, T = Const, (11-3)

However since the period is conserved, i.e., T

T2

sin a; _ sin o,
7 - 7
L, L}

= Const; (I1-4)

The energy flux relationship, Equation (II-2) can

be expressed as

] .
273
a% [%% ] [g%] FéE L' cos o = Const,

or recognizing that the period is conserved

_ 2
H roLe = -
[ ] FTE L' cos o = Const, (II-5)

Lo
Equations (II-4) and (II-5) describe the
shoaling/refraction process in terms of available
dimensionless parameters and were solved as described in

the following paragraphs.
Solution

It was found convenient to characterize a
particular incoming deep water wave by the direction, ag,

and deep water steepness, Hy/L,. The problem is to
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determine wave steepnesses at other relative depths
h/Ly such that Egquations (II-4) and (II-5) are satisfied
recalling that L' and FéE both depend on h/L, and H/L,.
For each relative depth, h/L,;, four values of L' and FéE
are available (for H/HB = 0.25, 0.5, 0.75 and 1.0, c.£f.
Figure 23} whereas a continuous distribution is required
fo; the purpose here. For each relative depth, h/Lg,
continuous distributions were obtained by fitting straight
lines between the four available points; for H/HB =0,
it was assumed that the simple linear wave theory applied,
see Figure II-2 for an example for h/L; = 0.02.

For given H,/Ly and oy, the constants in Equations
(II-4) and (II-5) are defined. The wave steepness H/L,
and direction o at any relative depth are determined by

iteration of the two following equations.

ot = ginm? [(L’)k §£%72£J (II~6)
: [+]
»
k+1 (Ho/Lo)2 (F! ), L! cos ag)
ig' =[ " : K (I1I-7)
¢ l (FéE) (L'Y" cos a

in which the superscript k+l denotes the (k+1l) th
iteration and applies to the improved estimatesof g and H/Lg.

Once these estimates are known, the parameters with the k
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subscripts on the right hand sides of Equatibns (II-8)

and (II-9}) are calculated and improved estimates of o and
H/Ly; are determined, etc. The procedure was initiated in
deep water and the wave steepness and direction calculated
at the remaining nine values of relative depth advancing
shoreward or until breaking was indicated. At each
relative depth, the iteration converged very rapidly with
three or four iterations usually sufficient. For the
first iteration at a relative depth, the initial value for
wave steepness was taken as the final value for the
preceding (greatgr) relative depth.

The sheoaling/refraction results are presented in
graphical form, for oo = 0°, 10°, 20°, 40° and 60° in
Figs. 25, 26, 27, 28 and 29, respectively. A description
of these tables is presented in Section IV and two examples

illustrating their application are given in Section V.
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APPENDIX IIX

SAMPLE SET OF WAVE TABLES FOR CASE 4-D



9sT

CASE 4-D

11TH CRDER STREAM FUNCTION WAVE THEORY

OEF INITIONS

H =
T =
oPT =
Le =
L =
PSSl =
[ =
X(NY =

WAVE HEIGHT

WAVE PERIOD

WATER DEPTH

DEEP WATER WAVE LENGTH, CALCULATED FROM LINEAR WAVE THEORY, LO®(G/6+28318)8Tes2
WAVE LENGTH

VALUE OF STREAM FUNCTION DN THE FREE SURFACE

GRAVITATIONAL CONSTANT

NTH STREAM FUNCTICN CCEFFICIENT

WAVE CHARACTERISTILS

H/LO = 0,015553

DPT/LO = 0,020000

H/DPT % 0.,777652

L/LD = Q.4224561

PSI/Z(G*H*T} = -0.002296

LISTING OF DIMENS IONLESS STREAM FUNCTION COEFFICIENTS

X{ 1)7{HxTaG)
X{ 23/{HaT2G)
XU 3V/{HaT%G)
X{ 4)1/7(HRT=G)
Xl S)/IH®TaG)
Xl 61/ (HRT*G)
Xt TY/ (HaTEG)
KU B)Y/(HaT*G)
XL )/ {HT*G)
X(10) /{HaT=G)
X{11)3/{HeY0G)

~04 342656E=-C1
~04123281€E-01
=0a499486E~02
-0.201883E-C2
~0eTBBB26E-03
~De298070E-03
=0.998972E~CA
=0eJ4I59LE-04
~0.105353E~Ca
—0.304493E-C5
=0a465501E-06
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S9T

TABLE IN<DIMENSIONLESS DYMAMIC PAESSURE COMPONENT FIELDss«2DEFINED

CASE a~D

In EQUATIDN (29)

THET A= [ Y] 10«7 20«9 300 30490 TE. 0 100.0 1200 180.0
ETA/HELGHT . 0. 889 Ce 382 De2B4 0. 101 =0s053 =0u £ 04 =0+110 -Dall2 =datt1
AJaTX 1%543X Bl-1-TT R 3 ~326.TN G51s A% 227 TR 2)1a4% =242 4% -3 8.TX
SURFACE 1719 1a188 Te 890 D211 =-Gail2 ~0a203 =0e 225 =Cs228 ~Qs 224
L1.P%=1 23 2% —48,9% —-28%. 9K aTs.8% 283.5K B2 3% =-238.9% -2T2. 8%
S/DEPTH&§ .6 120%0
100 0%
S/DEP TH=] .3 1.570
100.0%
S/DEPTHR] 4 4 Tea92 1et74
38.1% 223X
S/DEPTHE14 3 1e817 lalas
E5a5% 210X
S/0TPTHELLD 14348 lell2 -1
32.0% 15268 -4 4a K
S/0EPTHRL 1 1a288 1a080 Gud22
M2k 17252 =d1.0%
S/DEPTHEL .0 1,227 12049 Cobatd e 248
27. 2% 14e 2% =JRa0X =22La2%
S/DEPTH=OL9 1.179 14020 Qats®3 Ca282 =0«100 Q=202 =0:22% =Ge226 =0e22a
25.0% 14.5% =29.0% ~181l.9% T3J.0X 253, 9% 53.2% 10Ca0% 100.0%
S/0EPTHRO o8 1e130 Ce991 Vet Ga 312 =0e080 =-0el199 Q224 =00 226 =Qe 224
22«6k 12.8% =-2¢.5% -133.1% MRS UREX 259 7X 552 7% =718 9% 100.0%
S/DEPTHXQ,.T 1.091 Qe 969 Q.87 Caldde =t.061 ~0s19% -0a2223 =Qa228 =Da224
20.3% T1a2% -4 TX ~123.4% [TITT] ] 263421 ST 8% ~Z38.9% =371e1X
S/0EP THuG 6 1.05%58 Qa9a? QT 0358 =Qs0a0 ~Da 192 ~0a272 ~0a228 =0s22%
18, 2% GeTH =23e4% =-1193% AR Y 2854 5% B9 TX =234.8% =3ITCuOR
S/OEP THRO 3 1«20 Ce920 D872 Q372 ~0+021% -0a.189 =0.221 =0a?26 =0e 229
18. 5% BadX =22.4% =109.2% LLITRY} S 200« 4% Gledx —Z3ledX ~IoSedX
S/DEPTHAO 4 & 1a00n Ca9lS CedTH dadBs -0.187 =0e220 =0a228 ~0e22%
1%3.0% Telx =2l+AX =-101.68% 271.9% &2e 86X “228.8% =381.6%
S/DEP THaG .3 0,991 Qa901 Dab7h 0439) =Gal83 =0 220 =0a228 =0e22%
13.8X LadX =2l43X =S¢ 7X 2732 9% 83.06% =Z264AX =338 TX
S/DEP TH=0.2 Ca 079 De 553 QaBTS 0,399 -0+183 =0q220 =Qa220 -0 228
12.9% Sa0X ~21la1% =~G3,2% 273+ 0% LITES =224.9% =I5Le TR
S/DEPTH=041 QvoT72 e BOC Cob TS 0.4031 =0alR3 ~0e220 ~0e228 ~0a22%
12.4X% LYY =-20.9% ~Gle2% LI LYY 2744 3% [1P%.-1 =223a9% =J5%.5%
S/DEPTHaO L0 04969 DTaBET GabTS QeaCa =0s Q37 Q182 -0a219 =De228 -Ba22%
1R+ 2% S5.2% =20+9% =~S0a6X LLLELSS ] 276 6X Bdy 9% =227,6% =-I5%.1X




991

CASE 4=0C

TABLE MN-VARIABLES ODEPENDING ONLY CN PHASE ANCLE

THET A= Ge0 100 2040 30.0 00 7240 100.0 1300 1800

(1) DIMENSIONLESS KINEMATIC FREE SURFACE BOUNDARY CONDITION ERROR, LINEAR wAVE THEORY REPRESENTATIONs aae DEFINEC IN EQe (35}

SURFACE 00 020335157 Ge CE3667F 02080976 C:0TRTST 0.032082 -0as018241 =0 042202 =0« 000Q00

(2) DIMENSIONLESS KINEMATIC FREE SURFACE BOUNDARY CONMDITION ERROR, STREAM FUNCTTON THEORY REPRESENTATIONssse DEFINED IN EGe (D5}

SURFACE 00 -0a 000001 -0s000000 -0 000000 -0« 000000 =0+003000 G 000000 0.000000 -0s0C0000

(3) DIMENSIDNLESS DYHAMIC FREE SURFACE BOUNDARY CONDITION ERROR. LINEAR WAVE THEQRY REPRESENTATIONesee DEFINED IN EQe.(36)

SURFACE 0.028509% . 0e 036560 Cse 0309153 De 0221 84 =~Ge000722 =0+026496 ‘=0e0331232 Q.600408 Oa028376

(4) DIMENSIONLESS DYNAMIC FREE SURFACE BOUNDARY CCNDITION ERRCA. STREAM FUNCTION THEORY REPRESENTATIONssss DEFINED IN EQ, (37}

SURF ACE C.028890 =Ge011249 =0+ 010805 «0e 001892 Js QQ0668 04000236 Qe 001999 g go1250 0000322
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CASE 4-D

TABLE XILCONTINUED)=CVERALL WAVE PARAVETERSsss DC NOT OEPEND ON PHASE ANGLE OR ELEVATEON

(10} DIMENSIONLESS
LIKEAR
STREAM FURCTION

{11} DIMENSIONLESS
L INEAR
STYREAM FUNCTICN

{12) DIMENSICM.E5S
LINEAR
STREAM FUKRCTION

(13) CIMENS JOMLESS
LINEAR
STREAM FUNCTION

{14) DIMENSICNLESS
LINEAR
STREAM FURCTION

€13) DIMEMSIONLESS
LINEAR
STREAM FUNCTION

ROOT MEAN SOUARE KINEMATIC FREE SURFACE BOUNDARY CONDITICN ERROReses UEFINED IN EQUATION {(46)
CoCavans
0sCO000O

RODT MEAN SOQUARE OYNANEC FREE SURFACE ECUNCARY CONDITION ERRCResee DEFINED IN EQUATION {(47)
0.0240801
Cs004832

MAX[MUN K INEMATIC FREE SURFACE BOUNDARY CONDITION ERRQResess ODEFINED IN EQUATION (45}
0a 085603
$.000001

MAKIMUM DYNAMIC FREE SURFACE BOUNDARY CONDITICN ERRCRsuee DEFINEC (N FOUATION (a7}
0« 038%0%
da028890

KINEMATIC FREE SURFACE BREAKING PARAMETERseee DEFINED IN EQUATION (48)
Oed29147
0e732€02

DYNAMIC FREE SURFACE PREAKING PARAMETER4sesas DEFINED TN EQUATION (4%}
Ce OACETA
Qe200145





