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Abstract

Anthropogenic underwater noise generated by pile driving has been an issue of serious concern
for a long period of time. The underwater noise pollution from pile driving could pose a threat
to marine mammals. To reduce the low-frequency noise, many offshore companies develop
various treatments and alternatives for pile driving. In this study, the focus is placed on a
resonator-based noise mitigation technique.

The first part of the thesis focuses on the investigation of the existing resonator-based noise
mitigation systems. A mathematical expression for the resonance frequency of an individual
open-ended resonator is derived. To validate this expression, a finite element model is built in
COMSOL. To compare the acoustic performance with the HSD, a finite element model is also
built for the HSD mitigation system. To describe the acoustic performance of the resonators
for generic use, the frequency response function of an open-ended resonator is analytically
derived based on the assumption that the resonator behaves as a linear SDoF system. The
derivation of the parameters of the equivalent SDoF system representing each individual
resonator is based on appropriate fitting of numerical results obtained in COMSOL.

The second part of the thesis deals with the development of a new design of a resonator system
named Qiu. To install the resonator system in a more flexible way, the air is encapsulated in
the resonator. A finite element model is also developed in COMSOL for the Qiu resonator.

In the last part of the thesis, a three-dimensional vibroacoustic model is developed in order
to find the optimal properties of the underwater resonator and to improve the existing noise
mitigation techniques. The model requires the proper description of the noise source, the
resonator and the acoustic waveguide. The normal mode method is used to compose the
Green’s function of the waveguide. The boundary element method is then employed in order
to obtain the total pressure field. The frequency response functions derived in the first part
of the thesis are subsequently used to describe the acoustic behaviour of the resonators. A
parametric study is presented in order to define the principal factors for effective noise mitiga-
tion. In addition, the several cases are investigated in order to obtain the optimal properties
of the resonator and the optimum configuration of the array of resonators surrounding the
sound source to maximise noise reduction.
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Chapter 1

Introduction

1.1 Problem statement and motivations

Anthropogenic noise from offshore pile driving has become a serious issue for the marine en-
vironment. With the growing demand for renewable energy, the construction work of offshore
wind farms tends to have a larger scale by using foundation piles with larger diameters. When
driving these large foundation piles into the soil, a great deal of noise could be radiated from
the pile-water and pile-soil interface at low acoustic frequencies, i.e. usually below 400 Hz.
The underwater noise pollution generated by this percussive piling threatens marine mam-
mals, especially the low-frequency noises, which could severely interfere with their foraging
and migrating behaviour, and damage their hearing [9, 10].

In the light of the significant research on noise propagation and noise prediction, the mitigation
of the underwater noise could be achieved in the following two ways; either control the noise
at the source or block the noise transmission path. Many offshore companies provide various
treatment and alternatives to pile driving. Based on the primary noise path in the water
region, several noise mitigation techniques have been developed. By forming a freely rising
bubble curtain around the pile, a significant impedance mismatch can be created so that the
radiated sound waves are reflected, refracted and scattered along the interface between two
mediums leading to noise reduction. A sound reduction prediction model with the use of
Air Bubble Curtain (ABC) was proposed earlier by Tsouvalas and Metrikine [11]. Whereas
the resonance of individual bubbles [12, 13] stimulated by the sound waves do not contribute
to the absorption of the energy. This is due to the resonance frequencies of free individual
bubbles are usually above 1 kHz, which is out of the target frequency range in most practical
cases. The degree of contribution of each mechanism, i.e. reflection or absorption, to the final
noise reduction depends on the frequency content of the radiated sound in relation to the size
of the released air-bubbles in the mixture. By using nets of air-filled balloons and PE-foam
elements, the Hydro-Sound Damper (HSD) can absorb the energy through the resonance of
balloons, dissipation and material damping of foam elements [14]. The open-ended resonator
is another promising way to mitigate the noise. It works in the same way as Helmholtz
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resonators, since the encapsulated air can undergo driven oscillations and the sound can be
re-radiated from the air-water interface at the opening [6].

Figure 1.1: The resonator-based noise mitigation system

Besides the approaches, in this study, a new resonator-based noise mitigation technique is
proposed capable of effectively blocking the primary noise path in water region, as shown in
Figure 1.1.

1.2 Scope of the study and research questions

To answer this central research question: how to mitigate the noise from pile driving
by using an underwater resonator system? There are a series of objectives and research
steps need to be taken.
In the light of the noise mitigation techniques developed by offshore practitioners, the first
objective is to investigate the principle mechanism of the underwater resonators. This goal
can be achieved by answering the following sub-questions:

1. How does a free air bubble, an encapsulated air bubble and an open-ended resonator
attenuate the sound?

2. How to determine the resonance frequency from the underwater resonator?

3. What are the advantages and disadvantages of the current noise mitigation techniques?

4. In what aspect can we improve the design of marine resonators?

The next step is to propose a new design and implement it in a finite element model (COMSOL
Multiphysics). By answering the following questions, we will be able to achieve the second
objective:
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1. How to tune the new resonator to the target resonant frequency?

2. What type of the material we prefer to use for the resonator?

3. What is the response of the resonator in frequency domain?

Then, a critical step is to develop a 3-D acoustically coupled model for the prediction of noise
reduction by the resonator-based noise mitigation system. To obtain this objective, we have
the following question:

1. How to describe the sound source?

2. How to determine the frequency response of the resonator?

3. How to couple the resonators into the field containing the noise source?

4. What are the critical parameters for the design of a resonator-based noise mitigation
system?

Finally, the objective that cannot be neglected is to provide recommendations for the future
development of the model and advice for the offshore practitioners.

1. How to improve the acoustically coupled model?

2. How to describe the behaviour of the resonator more precisely?

3. How to improve the design of noise mitigation system?

4. What are the other application extensions that can be applied to the present model?

1.3 Thesis outline

This study first aims to propose a new type of resonator for mitigating underwater noise and
develop a finite element underwater acoustic model for a single resonator.

In Chapter 2, the state of art in noise mitigation techniques is introduced to have a solid
theoretical background for this study. The main mechanisms behind a free air bubble curtain,
an encapsulated air bubble and the open-end resonators are investigated. The strength and
drawbacks of those noise reduction systems are analysed.

In Chapter 3, the underlying physics of the noise reduction by the application of the open-
ended resonator is investigated into depth. The theory of the resonance frequency for the
underwater open-ended resonator is presented. Also, a finite-element model in COMSOL
Multiphysics is developed for the open-ended resonator, which is used to validate the theory of
the resonant frequency of this new type of resonators. A parametric study for the open-ended
resonator and the encapsulated air bubble was conducted to find the optimum configuration
for the targeted frequency range. The frequency response functions are derived analytically
for the various open-ended resonators. The derivation is based on appropriate fitting of
numerical results obtained in COMSOL. This could provide us the acoustic performance of
the individual resonator for the construction of the analytical model in Chapter 6.
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Figure 1.2: The thesis structure

In Chapter 4, a new design of resonator, named Qiu is proposed, and a finite element model is
developed for the prediction of the effective noise reduction. The acoustic performance of the
Qiu resonator is investigated by using software package COMSOL. Subsequently, the noise
reduction for varying opening radius of the Qiu resonator is analysed.

In Chapter 5, a 2-D axisymmetric sound propagation model is developed for the well-known
benchmark case for the field containing a point source and a line source, respectively. The
derivation of the Green’s function and the boundary conditions are presented. The solutions
are verified through a finite-element model in COMSOL Multiphysics, which is based on the
same configuration of the domain.

In Chapter 6, a 3-D acoustically coupled model for the prediction of the noise reduction
by the application of a resonator-base noise mitigation system is developed. In this model, a
monopole point source is used for the noise source. At this stage, we assume that the frequency
response function of the resonators is given by the underwater open-ended resonator.

In Chapter 7, a parametric study based on the 3-D noise reduction prediction model is
presented for the individual resonator and the arrays of resonators. This study provides
insight on the determination of the optimal parameters for the design of the system.

In Chapter 8, the application of the 3-D noise reduction model is presented for several cases.
Finally, in Chapter 9, the conclusion of findings and the recommendations from the academic
and the industrial point of view are summarised. Also, the remaining challenges for the future
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development of noise mitigation techniques are discussed.
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Chapter 2

The state of the art in noise
mitigation

As we discussed in Chapter 1, the underlying physics of the noise generation from pile driving
and various noise reduction techniques provide the basis for the further investigation in this
thesis. Therefore, the theme of this chapter will focus on the noise radiated from pile driving
and noise mitigation techniques. In the first section, the principal mechanism of noise gener-
ated from impact hammering are discussed and several noise prediction models for offshore
pile driving are presented. In the second section, the main mechanism of present noise mitiga-
tion systems is analysed. The advantages and limits of individual noise abatement techniques
are discussed. In addition, some recommendations are proposed by the author.

2.1 Underwater noise from offshore piling

On the background of increasing demand for the construction of large-scale offshore wind
farms (OWF), anthropogenic noise emission has been a serious issue urgent for solutions.
The tremendous investigations for the mechanism of underwater noise from offshore pile
driving have been achieved in recent years. Due to the complexity of the shallow water
environment, i.e. scattering at the sea surface, reflections, refractions and the influence of the
soil conditions, the sound wave propagation in shallow water has always been a challenging
topic. In addition, the investigation of offshore pile driving requires a reliable description
incorporating the interactions between three mediums, pile, water and soil. This increases
the complexity to the problem even further.

In 2011, a numerical model for the prediction of underwater noise generated by impact pile
driving was developed by Reinhall and Dahl [1]. The model was created by using FE technique
in COMSOL Multiphysics and was simulated in an axisymmetric shallow water waveguide.
Both water and sediment were described as linear acoustic fluids in this study. In addition,
to save the computational effort for the prediction of sound propagation in the far-field, a
parabolic equation model was also developed.
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Figure 2.1: Sould radiation process from the pile simulated by Reinhall and Dahl [1]: the
graphs are after 3,6,10 and 16 ms after the hammering.

This study has shown that the dominant underwater noise from pile driving is due to radially
expanding wavefronts caused by the radial displacement motion of the pile in the form of a
Mach cone in the water and sediment region. Following the hammer strike at the top of the
pile, the waves move down to the bottom of the pile at a supersonic speed around 5015 m/s.
Subsequently, the waves are reflected upwards after reaching the tip of the pile. The acoustic
radiation of the sound is shown in Figure 2.1 [1] at a series of time after impact hammering.

Based on the research method introduced by Reinhall and Dahl [1], many investigations of
noise prediction by offshore pile driving have done in recent years. Although the noise predic-
tion model mentioned above could simulate the water region with proper acoustic properties,
the acoustic description of the soil region is not always justified. To predict the underwa-
ter noise for a more generic system, a linear semi-analytical model for the prediction of the
underwater noise from offshore pile driving was introduced by Tsouvalas and Metrikine [15].
It is worth to mention that the seabed is modeled as springs and dashpots in all directions,
which requires an accurate estimation of the equivalent spring and dashpot coefficients for
the soil.

Following on the model above, Tsouvalas and Metrikine continued their investigation with
a three dimensional pile-water-soil interaction model to provide a more generic description
of the soil region by using only basic soil properties, as shown in Figure 2.2 [2]. In the new
model, the soil is described as a three dimensional elastic continuum. Based on the validation
by offshore measurements, the results of the study show that the model can achieve a reliable
prediction of the sound pressure level in the fluid and the vibration in the sediment. Scholte
waves are found to be generated in the vicinity of the seabed-water interface which carry
energy in the low-frequency range.
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Figure 2.2: Sould radiation process from a pile with a dsameter of 5 m and a soil with
Es = 100MPa simulated by Tsouvalas and Metrikine [2]: the graphs are after 4, 8, 14, 20
and 55 ms after the hammering.

The above-discussed findings provide the solid understanding of the underlying physics of the
underwater noise from impact pile driving. The results from these studies could help us, in a
large extent, design more efficient noise mitigation systems. This is what this thesis aims to
achieve.

2.2 Underwater noise mitigation

Following the discussions in the last section, it is important first to understand the underlying
physics of how the acoustic energy from a noise source can be radiated into the underwater
environment. With the knowledge of the noise generation mechanism by offshore pile driving,
we realize that there are two principal ways to mitigate underwater noise. One is to control the
sound generation at the noise source, and the other is to block the primary sound transmission
path in the water region.

To mitigate the noise at the source, there are multiple alternatives for the traditional hammer,
i.e. vibratory piling and blue piling. Typical radiation patterns resulting from vibratory
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Figure 2.3: Fistuca BV: Undergoing different phases of the piling cycle

hammering are introduced by Tsouvalas and Metrikine [16]. The Blue Piling technology was
developed by Fistuca BV aiming to achieve silent installation without the use of a noise
mitigation system. Being different from the conventional hammers, a large water column is
used to drive the pile into the soil. A gas combustion could effectively drive the water column
up and fall automatically given the force of gravity. The detailed process of the working
mechanism is shown in the Figure 2.3. In addition, the control of the sound at the source can
be achieved by modifying the duration of the impact.

The second critical method is by blocking the primary noise path in the water region. This
study aims to achieve the noise reduction based on this principal method. In the remaining
part of this section, we are going to analyse the following noise mitigation techniques: (1) the
air bubble curtain; (2) the noise mitigation screen; (3) the hydro-sound damper system; (4)
the open-ended resonator system.

The secondary sound path at the seabed-water interface [2] is through Scholte waves carrying
significant acoustic energy in the low frequencies. In the existing noise mitigation techniques,
there is still no evidence that could prove the effectiveness of the absorption of the acoustic
energy from the Scholte waves. But it also provides a new insight into the investigation of
improving the mitigation techniques for the low-frequency sound waves through targeting the
Scholte waves at the seabed interface. This is not in the scope of this thesis.
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Figure 2.4: Hydrotechnik Lübeck: the Big Bubble Curtain with a jack-up vessel by at the
OWF Borkum West II (Photo: Trianel / Hero Lang)

2.2.1 Air-bubble curtain

The Big Bubble Curtain (BBC) has been one of the most widely-used noise mitigation sys-
tems. As shown in the Figure 2.4, a BBC is formed by free rising bubbles generated by
compressed air injected from the perforated tube pre-installed at the seabed. As the acous-
tic impedance can be expressed as Z = ρc, the use of the air-bubble curtain will create a
significant impedance mismatch between the water and the bubbly liquid by modifying the
density and sound speed in the mixture. The air-bubble curtain aims at enclosing the noise
source in the interior domain and therefore reduce the sound pressure level in the exterior
fluid domain. Whereas the resonance of the individual bubble plays a negligible role for the
contribution to the sound reduction. The reason is that the target frequency range is away
from the resonance frequencies of the free air bubbles. If we consider air bubbles with large-
range radii from about 5µm to 3mm, the resonance frequency of the bubble in the mixture
can range from 20Hz to 10 MHz [12]. However, for a typical air bubble with radii of 1000 µm
in the mixture, the resonance frequency varies from 3.25 kHz to 6 kHz, provided a 30 meter
water-depth field is given [3], which is way beyond the target frequency of about f < 500Hz
for the installation of large monopiles.

There are abundant theoretical investigations on the acoustic behaviour of air bubbles in
water. Among those studies, to predict the noise reduction by the application of air-bubble
curtain in offshore pile driving, Tsouvalas and Metrikine [3] developed a three-dimensional
semi-analytical model. Their study aims to investigate the physical mechanism of the noise
reduction and examine the influence of key parameters of the system. Therefore, it could
provide a solid theoretical background for the improvement of the air-bubble curtain. In
this model, the air bubble curtain is modelled as the homogeneous fluid layer with modified
compressibility and density as shown in the Figure 2.5 [11]. The results of this study show
that this method largely depends on how much air is supplied and the bubble size, which
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Figure 2.5: The geometry of the model by Tsouvalas and Metrikine [3], which consist of four
domains, the pile, the interior fluid and sediment domain, the region containing air bubble
curtain and underlying soil and the exterior domain.

can be costly and more efficient for high-frequency waves. In addition, the contribution of
this mechanism to the noise reduction is still questionable during the installation of large
monopiles.

2.2.2 Noise mitigation screen

The principal mechanism of Noise Mitigation Screen (NMS) is a shielding effect created by
using a double-walled cylindrical shell around the pile, as shown in Figure 2.6 [4]. The
relatively low-density air could fill in the space between the two walls. By doing this, the
outer wall of the screen would remain much less affected by the vibration of the inner wall.
The system is developed by IHC offshore systems and has been used in several commercial
projects.

However, in the present design, soil vibrations are not blocked by NMS. This method is
relatively costly and not flexible enough for different size piles. Also, based on the structure
of the noise mitigation screen, the installation for NMS itself is quite challenging [3].

2.2.3 Hydro-sound damper

Hydro-Sound Damper (HSD) was developed by Offnoise-Solution GmbH between 2007 and
2010 to reduce the offshore piling noise, as shown in Figure 2.7. The system consists of encap-
sulated air balloons and PE-foam with high dissipation on the impact sound. The resonance
frequency can be determined by using the proper sized elastic balls. The damping ratio can
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(a) The IHC noise mitigation screen
(NMS) for noise mitigation at the OWF
Riffgat

(b) Broadband noise sum level measured at 750m during
piling at the OWF Riffgat

Figure 2.6: IHC: Noise Mitigation Screen [4].

(a) The hydro-sound damper system for noise
mitigation at OWF Amrumbank West

(b) The schematic for the deployment of HSD-
system

Figure 2.7: Offnoise-Solution GmbH: HSD-system [5].

be well-controlled through the PE-foam elements. The energy can be absorbed through the
resonance of balloons, dissipation and material damping of foam elements. Compared with
Air-Bubble Curtain, HSD-system is independent on the compressed air. Therefore, there is
no need to supply air-compressor from the installation vessel. Besides, with the use of nets
of air-filled balloons, the system will not be influenced by tidal currents. This provides an
efficient alternative for the air-bubble curtain.

The studies based on HSD has been discussed by Elmer and Savery mainly through measure-
ments and offshore tests, which already shows that the noise reductions between 10 dB(SEL)
and more than 20 dB(SEL) have been achieved from Figure 2.8 [5]. It is also worth to be
mentioned that the HSD-system could be considered as a potential noise mitigation technique
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(a) A vibrating air-filled HSD (b) 1/3 SEL spectra of underwater piling noise
with and without HSD-system

Figure 2.8: Offnoise-Solution GmbH [5]: measurement and offshore test using HSD.

for the Scholte waves at the seabed interface due to its nets configurations and is easy to be
deployed on the seabed [3]. However, compared with Air-Bubble Curtain and Noise Mitiga-
tion Screen (developed by IHC Offshore Systems), HSD-system is still lack of rich experience
gained in offshore commercial projects.

2.2.4 Open-ended resonator

The innovative open-ended resonators were developed by AdBm Technologies and the Uni-
versity of Texas at Austin[6]. The acoustic behaviour of both the open-ended resonators
and the encapsulated air bubbles was investigated through laboratory tests and open-water
tests. This aims to compare the performance of two noise mitigation techniques and provide
a resonator-based noise mitigation system for offshore pile driving.

Figure 2.9: The geometry for general underwater Helmholtz resonator and 1DOFS [6].

The open-ended resonators have the same primary mechanism as the Helmholtz resonators
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that have been widely used in airborne noise reduction. In the 1850s, the first Helmholtz
resonator is created by Hermann von Helmholtz, a German physicist who made the significant
contributions in acoustics and other scientific fields. The phenomenon of traditional Helmholtz
resonator can be described as follows: provided that you have a specific volume rigid bottle
with an open-end and a small neck, when you blow the bottle, the air column at the neck of
the bottle will resonate at a particular frequency and you could hear it clearly. Therefore, a
particular frequency from the complex sound is picked up through a certain configuration of
the Helmholtz resonator.
Nowadays, the application of Helmholtz resonators can be used in architectural acoustics
to mitigate the undesirable sound or be used as exhaust resonators to alter the note of the
sound of motorcycle and car exhaust. Although the application of the Helmholtz resonator
is rather limited to be used in the mitigation of the underwater noise, the primary working
mechanism is based on the same fundamental physics. As shown in Figure 2.9, the resonator
is schematically depicted as a rigid cylinder tube with an opening end. When the open-ended
resonator is deployed into the water with the open end facing the seabed, the air will be
encapsulated and compressed in the container. This creates an analogous single-degree-of-
freedom system. By using the specific shape and volume of the resonator, one can tune the
resonator to the target frequency. For low-frequency sound waves (f<500 Hz), the dimension
of the open-ended resonator is relatively small compared with the wave length above 3 m.
Therefore, the air will play the role of the massless spring in the ideal single-degree-of-freedom
system. The point mass can be seen as the water column in the open-ended resonator.

(a) The geometry of the lake measurements (b) Depth averaged noise reduction for arrays of
resonator with various void fractions depicted in
thr graph

Figure 2.10: AdBm Technologies [6]: Lake tests in Austin, Texas.

In order to compare the acoustic behaviour of an individual open-ended resonator and encap-
sulated air bubble, a laboratory test was first made to measure the resonance frequency and
the quality factor. The results showed that acoustic performance is well-predicted by Church’s
model [13]. The open-ended resonator has the similar primary resonance frequency with the
encapsulated bubble, but only with 1/12th of the volume of the air encapsulated, compared
with the encapsulated bubble. This indicates that the use of open-ended resonators could
mostly save the amount of ballast to compensate for the buoyancy of the air. In addition,
the open-ended resonator has a secondary, lower resonance frequency and both the primary
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and secondary resonance frequencies have a higher Q factor compared with encapsulated air
bubbles. A resonator with a higher Q is considered to be a better oscillator and attenuator.
However, the appearance of two resonance peaks still need further investigation to have a
solid physical explanation [6].

Other open-water measurements were also made by AdBm Technologies in Lake Travis, near
Austin, Texas. Arrays of both open-ended resonators and encapsulated air bubbles were
attached to the steel frame with a noise source placed in the middle of the frame. The results
from this tests show that with the same void fraction of two resonators, the open-ended
resonators have better performance for the noise reduction. Therefore, to achieve the same
level of noise reduction, the open-ended resonators will need approximately four times less
ballast. The results also indicate a broadband reduction from 100 Hz to 1000 Hz as shown in
Figure 2.10 [6].

Figure 2.11: The photo of the open-ended resonator panel in offshore demonstration tests
[7].

An offshore demonstration test of the open-ended resonator based noise abatement system
was conducted by AdBm Technologies in cooperation with Ballast Nedam, during pile driving
operations for the Butendiek Offshore Wind Farm. The tests aimed to demonstrate the
deployment in the North sea environment and the acoustic performance of the open-ended
resonators for offshore pile driving.

As shown in the Figure 2.11[7], the demonstration panel consists of 240 open-ended resonators
was deployed at the location of 385 m away from monopile BU-32 and 285 m and 750 m away
from monopile BU-21. The results shown in the Figure 2.12 [7] were for the monopile BU-
21. The one-third-octave band level reduction at both sites indicates an adequate acoustic
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(a) The configuration of the offshore demonstration
tests.

(b) Depth averaged noise reduction for arrays of
resonator with various void fractions depicted in
thr graph

Figure 2.12: AdBm Technologies: Offshore demonstration tests for monopile BU-21 at
Butendiek Offshore Wind Farm [7].

performance of noise reduction, which demonstrates the open-ended resonator as a potential
alternative to the present noise mitigation techniques. It is worth mentioning that, com-
pared with the traditional noise abatement techniques, the resonator-based noise mitigation
system can mitigate broadband underwater sound, especially the low-frequency sound waves
below 400 Hz. This indicates the new noise mitigation technique can be used for large scale
construction of the wind farm.

However, compared with the aforementioned noise mitigation techniques, the open-ended
resonator system is still lacking experience in commercial projects. In the opinion of the
author, further theoretical and numerical investigations are needed in order to optimise the
configuration of the system and develop more effective deployment methods. Full-scale tests
for the complete system can be conducted to verify the applicability of the system for the
commercial projects.

From the discussion above, the open-ended resonator is proved to be a promising way to
mitigate the noise. Apart from using individual noise mitigation techniques, combinations of
two different noise mitigation systems can be exploited to provide a multi-barrier [3]. Such a
composite noise mitigation system consists of an open-ended resonator system in the vicinity
of the pile and an air-bubble curtain at larger distance from the pile.
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Chapter 3

Modified Helmholtz Resonator and
Hydro-Sound Damper

In Chapter 3, the underlying physics of the noise reduction by the application of the open-
ended resonator is investigated. The theory of the resonance frequency for the underwater
open-ended resonator is presented. In addition, a finite-element model in COMSOL Multi-
physics is developed for the open-ended resonator, which is used to validate the theory of the
resonant frequency of this new type of resonators. A parametric study for the open-ended res-
onator and the encapsulated air bubble was conducted to find the optimum configuration for
the targeted frequency range. The frequency response function for the open-ended resonators
with various resonant frequencies was derived.

3.1 Underwater Helmholtz resonator

In Chapter 2, we already discussed the underlying physics of noise reduction by open-ended
resonators, which follows the same primary mechanism of absorbing the energy from the
sound waves into oscillations of the resonators. In order to tune the resonance at our target
frequency, the rigorous mathematical derivation of the resonance frequency from the particular
configuration of the resonator is presented. The calculation is based on the classical formula
for the resonance frequencies of a Helmholtz resonator, which was derived a hundred years ago.
The traditional formula for the calculation of resonant frequency of a Helmholtz resonator is
as follows [8]:

f = c

2π

√
A

V (Lneck + α) (3.1)

where c is sound speed in the air, A is the area of an aperture, V is the volume of the resonator,
α is the end correction factor, Lneck is the length of the neck of the resonator.
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In order to verify the theoretical expression of the resonance frequency and obtain the acoustic
performance of the open-ended resonators, a finite element model was developed in the soft-
ware package COMSOL. Assuming a linear behaviour of the fluid-resonator system, it suffices
to examine the response in the frequency domain. The numerical results of the calculation of
the resonance frequencies will be verified by the comparison with analytical solutions for the
open-ended resonator.

3.1.1 Classical formula

Before we derive the resonance frequency of open-ended resonator, it is advisable to briefly
review the derivation of the resonance frequency for Helmholtz resonator. This can be found
in many books dealing with an introduction to acoustics.

Figure 3.1: Mechanical and acoustical analogy of a Helmholtz resonator[8]

First, let us consider a basic force balance:

~F = m~a (3.2)

where m is mass m = ρVneck = ρALneck, and ~a is accelaration. One can therefore write

d2x

dt2
= F

m
(3.3)

According to Laplace, when sound travels in a gas, there is no time for heat conduction in
the medium and so the propagation of sound is adiabatic. For an adiabatic process, the
mathematical equation for the ideal gas can be expressed as:

P

P0
= −γ∆V

V
(3.4)

where P0 is atmosphereric pressure, γ is the ratio of specific heats under constant pressure
and volume, ∆V is the increment for the volume ∆V = −Ax, where A is the cross-sectional
area and x is displacement. Solving for P yields:

P = γ
AxP0
V

(3.5)
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where x(t) = Im(eiωt) or Re(eiωt), and ω is angular frequency. By substition of the above
relation into F, we have

F = PA = γ
AxP0
V

A = γ
A2xP0
V

(3.6)

Now, Eq. (3.3) becomes

d2x

dt2
=

γA
2xP0
V

ρALneck
(3.7)

−ω2Im(eiωt) = γAP0
ρV Lneck

Im(eiωt) (3.8)

−ω2 = γAP0
ρV Lneck

(3.9)

−4π2f2 = γAP0
ρV Lneck

(3.10)

f2 = − 1
4π2

γAP0
ρV Lneck

(3.11)

Hence, the resonance frequency is obtained as:

f = 1
2π

√
γAP0
ρV Lneck

(3.12)

The sound of speed is defined as c =
√
γ P0
ρ :

f = 1
2π

√
γAP0
ρV Lneck

= 1
2π

√
γ
P0
ρ

√
A

V Lneck
= c

2π

√
A

V Lneck
(3.13)

Hence, the classical formula for resonance frequency of Helmholtz resonator without end
correction is obtained.

3.1.2 End correction

It is worth to mention the importance of the end correction, since without considering α,
it could lead to a certain discrepancy between the theoretical resonance frequency and the
measured one. Let us focus on the interaction of the fluid and the resonator.

As the fluid exits the neck of the resonator, the acoustic waves disperse, and the acoustic
pressure drops. Because the waves will continue to move along the neck and remain its initial
motion, physically they will not disperse immediately. Therefore, the fluid still occupies the
region downstream of the neck. In order to compensate for this end correction, an additional
factor will be added to the length of the neck. We consider that the additional inertia could
lead to an effective increase in Lneck by γa, where a is the radius of the opening end [17].
Thus, the total length of the lumped-parameter inertance Lneck will be

L′neck = Lneck + γa (3.14)
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The value of γ has the following range as:

0.61 < γ < 0.85 (3.15)

The lower limit corresponds to an unflanged pipe while the upper limit corresponds to a pipe
end with an infinite baffle (flanged).

Thus, in our case, we choose γ = 0.61. Now, the theoretical expression for the resonance
frequency of the open-ended resonator is derived as:

f = c

2π

√
A

V (Lneck + γa) (3.16)

3.1.3 Derivation of the resonance frequency for underwater resonators

Under atmospheric pressure, at sea level and at 15◦C, the density of air is approximately
1.225 kg/m3. However, since the air column encapsulated in the resonator is under static
hydraulic pressure and plus atmosphere pressure (unit of Pa), as:

P = ρgh+ 105 (3.17)

According to the relationship between density, pressure and temperature, we have the density
of air modified as:

ρair = P

R · T
(3.18)

where R is specific gas constant, for dry air R is equal to 287J/(K ∗kg), T is the temperature
in the unit of K. We could assume the temperature is 15◦C, that is 288K.

In vibrations that give rise to sound, however, the changes are fast and so the temperature
rises on compression, giving a larger change in pressure. Physically it can be considered as an
adiabatic process, meaning that heat has no time to move, and the resulting equation involves
a constant γ, the ratio of specific heats, which is about 1.4 for air.

As a result, the pressure change p produced by a small volume change δV is just:

P

P0
= −γ∆V

Va
(3.19)

Now the mass m is moved by the difference in pressure between the top and bottom of the
neck, i.e. a nett force P · S, so we write Newton’s law for the acceleration a:

~F = m~a (3.20)
d2x

dt2
=F

m
= P · S

mw
(3.21)

where mw is the mass of water column inside the resonator, or the acoustic mass:

mw = ρwSL (3.22)
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where L is the length of the water column. It is worth mentioning that due to the static
pressure, L(h) is a depth-dependent value, a function of h. Thus, by substituting ~F , P and
mw, we have

d2x

dt2
= P · S

ρwL
= − γP0S

VaγwL
x (3.23)

Assume x(t) = Im(Ã · eiωt), substitute into the upper equation, we obtain:

−ω2Im(Ã · eiωt) = − γ(P0S

VaρwL
Im(Ã · eiωt) (3.24)

Thus,

ω2 = γP0S

VaρwL
(3.25)

f = 1
2π

√
γP0S

VaρwL
(3.26)

Since c =
√

∂P
∂ρ , we obtain that:

f = cair
2π

√
γS

VaL
(3.27)

Because ρair = P0/R · T , by substituting it into the volume of air, we obtain that

Va = ma

ρa
= maRT

P0
= ρaRT

P0
Vr (3.28)

where ρa = 1.225kg/m3, Vr is the volume of the resonator, we could also add a factor to
compansate for the loss of air during the installation process.

After substitution. we obtain that:

f = 1
2π

√
γP0S

VaρwL
(3.29)

= 1
2π

√
γP 2

0 S

ρaRTρwLVr
(3.30)

= P0
2π

√
γS

ρaRTρwLVr
(3.31)

(3.32)

Considering the influence of the end correction, we could rewrite the expression as:

f = ρwgh+ 105

2π

√
γS

ρaRTρw(L+ α)Vr
(3.33)
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Figure 3.2: The influence of the volume for the open-ended resonator

Hence, the resonance frequency of underwater open-ended resonator is obtained.

Before the discussion, first we need to define a factor for the configuration of the resonator,
which is slenderness ratio and is define as:

β = Length

Diameter
(3.34)

In order to investigate the sensitivity of the configuration on the resonance frequency of
Helmholtz resonator. We plotted the resonance frequency of the open-ended resonator at
water depth from 0 m to 40 m. Given the form of Eq. (3.33), we realize that L is also a
function of h, we have

L = Vwater
S

= Vr − Va
S

(3.35)

=
(1− ρaRT

P0
)Vr

S
(3.36)

= Vr
S

(1− ρaRT

P0
) (3.37)

= Vr
S

(1− ρaRT

ρwgh+ 105 ) (3.38)

In order to have a clear view of the tendency of the curve, we could define the following two
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(a) (b)

Figure 3.3: Sensitivity of water depth to the solutions: (a) η− 1
2 (h); (b)P0(h) · η(h).

variables and plot them by assuming β = 1.5, V = 50cm3 for as shown in Figure 3.3:

η = 1− ρaRT

ρwgh+ 105 (3.39)

P0 · η = (ρwgh+ 105) · η−
1
2 (3.40)

It shows that due to the influence of the static pressure, when the water depth is above 5
meters, the compression of the air column has a significant influence on the η−

1
2 (h). Therefore

it causes a turning point on the curve around h = 5m. When the water depth is below 5
meters, η−

1
2 (h) changes steadily and converge to 1 as shown in Figure 3.3(a). Therefore, when

P0 is relatively large, the resonance frequency - depth curve is nearly in a linear relationship
as shown in the Figure 3.2.
The volume of resonator mainly influences the frequency range of the resonator. The graph
shows that the resonators with higher volume can give lower resonance frequency. The poten-
tial reason can be that by an increase of the size of the resonator air volume, the water mass
inside the resonator can move more freely. Physically, the density of the air encapsulated
in the resonator remains the same, in deeper water, the stiffness of the air has a positive
correlation with the air density. However, the mass of the water column in the resonator
increases with the volume of the resonator. From the definition of the resonance frequency
ω0 =

√
k
m , it is not difficult to find that the resonant frequencies shift to lower range.

Another dominating factor for tuning the resonance frequency is the slenderness ratio β(=L/2a)
as shown in Figure 3.4. By changing the β from 0.3 to 1.1, the shape of a resonator is stretched
under the same volume 216.8cm3. We could observe from Figure 3.4 that the increase of β
will cause the resonance frequency more consistent in depth.
Figure 3.4 also shows that the higher the slenderness ratio is, the lower the resonance frequency
will be. The partial reason can be the end correction γa. For small β, the resonator has a
relatively large cross-sectional area, which leads to a larger end correction influence. Thus,
physically, for resonators with a large cross-sectional area, more additional fluid will set into
motion due to the inertia.

Master of Science Thesis



26 Modified Helmholtz Resonator and Hydro-Sound Damper

Figure 3.4: The influence of the lenderness ratio for the open-ended resonator

We could also find the reason directly from the analytical solution for the resonance frequency.
By increasing the slenderness ratio, α = Area

Length decreases, which lead to the decrease of the
resonance frequency as shown in Figure 3.5.

3.1.4 A 3-D finite element model for an Open-Ended Resonator

A 3-D finite element model for a single Open-Ended Resonator was developed in COMSOL
Multiphysics. The resonator has the same cylindrical configuration with an opening end as
shown in Figure 3.8. The detailed geometrical parameters are given in Table 3.1. The air
volume can be directly determined by the water depth. The waveguide consists of four rigid
surface boundaries as shown in Figure 3.6. The plane wave radiation condition is adopted on
both inlet and outlet boundary, which could allow the incoming plane wave travel through
the inlet to outlet and allow the sound waves leave the domain with minimal reflections. The
shell of the open-ended resonator is modelled as the perfectly rigid boundary.

The incident Sound Pressure Level in this section is defined as:

SPL = 10 log p2

pr2 (3.41)

where pr is the presently accepted reference sound pressure level equal to 1µPa or 10−6Pa.
Since we are dealing with harmonic waves, the rms value of a sinusoidal process is 1/

√
2 of

Master of Science Thesis



3.1 Underwater Helmholtz resonator 27

Table 3.1: Material properties and geometrical parameters for Open-Ended Resonator
model

Parameter Value Unit Description
d 10 m Water depth
Wd 0.5 m Y-Width of the fluid domain
Hd 0.5 m Z-Height of the fluid domain
Ld 6 m X-Length of the fluid domain
V 216.18 ×10−6 m3 Volume of the resonator
SF 0.539 - Slenderness ratio
a V

2πSF
1/3 - Radius of the resonator

cw 1485 m/s Speed of sound in the water
ρw 1× 103 kg/m3 Density of water
ca 343 m/s Speed of sound in the air
Pa 1 atm Absolute pressure /Atmosphere
ρa 1.225 kg/m3 Density of air
p0 1 Pa Incident wave pressure
θ pi/2 rad Angle of incident wave
kx 0 - x-wave propagation direction
ky sin(theta) - y-wave propagation direction
kz cos(theta) - z-wave propagation direction
x0 0.2 m x center coordinate
y0 5 m y center coordinate
z0 0.2 m z center coordinate
fmin 1 Hz Minimum value for frequency sweep
fmax 300 Hz Maximum value for frequency sweep
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Figure 3.5: The influence of the slenderness on α

(a) (b)

Figure 3.6

the its amplitude, so that the SPL can be expressed as:

SPL = 10 log p
2
rms

pr2 = 10 log 0.5Pin2

pr2 = 10 log(0.5× 1× 1012) = 117dB (3.42)
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Table 3.2: Case study for the resonance frequencies at various water depth

Case
Water
depth
(m)

Resonance frequency in
3-D COMSOL model
(Hz)

Theoretical resonance
frequency without end
correction (Hz)

Theoretical resonance
frequency with end
correction(Hz)

1 10 85 123.4 83.7
2 25 136 178.9 132.8
3 40 187 240.6 183.2

Table 3.3: Case study for the resonance frequencies at various volumes of open-ended
resonators

Case Volume (cm3)
Resonance frequency in
3-D COMSOL model
(Hz)

Theoretical resonance
frequency with end
correction(Hz)

1 100 250 245.36
2 216 190 189.76
3 400 161 154.6
4 600 136 135
3 800 130 122.68

3.1.5 Results and discussion

The first simulation test is to investigate the influence of the water depth to the open-ended
resonator. Based on the same configuration of the resonator, the calculation of the resonance
frequency also is given by using the theoretical solution with end correction and without
end correction, respectively. As seen in Table 3.2, the results show that there is a large
discrepancy between the COMSOL simulation and the theoretical model without considering
the end correction. When the theoretical solution includes the end correction factor, the
analytical results provided a reasonable agreement with the numerical results recording to
the predicted resonance frequency. In the second numerical test with resonators of various
volumes as shown in Table 3.3, the prediction of the resonance fequency is closely related to
the one based on the theoretical expression.

In order to check the accuracy of the analytical solution of the resonance frequency, the error
between the numerical solutions and the analytical solutions can be defined as:

∆ferror = |fanalytical − fnumerical|
fnumerical

(3.43)

As shown in Figure 3.7, ∆ferror shows that the deviation is within the acceptable margin.
Therefore, Eq. (3.16) can be considered accurate on the basis of the discussions above.

3.2 Hydro-sound Damper

In this section, the theory of the hydro-sound damper will be discussed. The Church’s model
will be introduced in order to compare the numerical results from COMSOL. To have a
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(a) (b)

(c)

Figure 3.7: Open-Ended Resonator model: the average sound pressure level (dB re 1µPa)
at the outlet boundary for water depth at 10 m, 20 m, 30 m, 40m, respectively.

better understanding of Hydro-sound damper system, a FE model for a single hydro-sound
damper was built in COMSOL. The acoustic behaviour of the resonators is strongly frequency
dependent. Hence, the discussion will be based on frequency-domain simulations only. The
numerical results of the calculation of the resonance frequencies are verified by comparison
with several analytical solutions for both the open-ended resonator model and the hydro-sound
damper model.

3.2.1 Church model

To develop a new noise abatement system, it is advisable to investigate the existing resonator-
based noise mitigation techniques. Thus, except for the open-ended resonators, the study of
encapsulated air bubbles or hydro-sound dampers is another preliminary step for the devel-
opment of the new design. This section aims to study the acoustic behaviour of an air bubble
enclosed by an elastic surface layer.
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Figure 3.8: The schematic of an encapsulated air bubble with an elastic surface layer

The rigorous theoretical model proposed by Church describes the sound propagation in bubbly
liquids, where the bubbles are encapsulated by the solid elastic shell. In the Figure 3.8, it
shows the composition of a gas bubble, where G =gas, L =liquid, S =shell, 1 and 2 indicate
the interfaces between gas and shell, and shell and liquid, respectively. Although the model
was originally developed to describe the acoustic behaviour of the micro bubbles, it seems
reasonable to assume that Church theory should equally apply to very large encapsulated
bubbles with radii greater than a few centimeters when certain conditions are met.
In this paper, an analytical solution to the equation that describes the behaviour of a gas
bubble surrounded by a layer of elastic, damped solid is obtained. The prediction for the
resonance frequency and the propagation of the sound waves are presented. The detailed
discussion and expressions can be found in [13].
The velocity in the complex sound mixture is given by cm = ω/km, where km is the wave
number in the bubbly mixture, which it can be expressed as:

c2

c2
m

= 1 + 4πc2ρL
αρS

∫
R01f(R01)dR01
ω2

0 − ω2 + iδtω
(3.44)

where ρL is the density of the liquid, ρs is the density of the solid, α is defined as [1 +
(ρL−ρs

ρs
)R01
R02

], Rs represents the initial thickness of the solid layer, Rs = R02 − R01, R02 and
R01 is the outer and inner radius, respectively. The damping contant can be expressed as
δt = δd + 2(bt + ba), δd = 4[VSµS+R3

01µL

R3
02

](ρSR2
01α)−1. The term f(R01)dR01 is the number of

bubbles per unit volume with radii between R01 and R01 + dR01.
The results of Church model presented below are for individual resonators, and are compared
with the results from the finite element model in COMSOL Multiphysics. Thus, the resonance
frequency and attenuation are obtained as:

ω2
0 = (ρSR2

01α)−1
(

3κP0 −
2σ
R01
− 2σ2R

3
01

R4
02

+ 4VsGs
R3

02
[1 + Z(1 + 3R3

01
R3

02
)]
)

(3.45)

A = 20log10eIm(km) (3.46)
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where Vs is R3
02 − R3

01, σ is the interfacial tension, κ is the polytropix exponent, Gs is the
modulus of rigidity.

The results from this study [13] show that the both the resonance frequencies and the atten-
uation coefficient of an individual encapsulated air bubble can be influenced by the rigidity
of the shell. For an encapsulated bubble with a higher stiffness, the resonance frequency will
increase while the attenuation will decrease.

The shell material properties that affect acoustic behaviour are taken into account in the
model [13] as the shell density, thickness, shear modulus, viscous damping and interfacial
tension. The discussion of the calculation of the resonance frequencies will be found in 3.1.5.

3.2.2 Commander and Prosperetti model

Besides the Church model, Commander and Prosperetti [12] developed a rigorous mathemat-
ical model for the prediction of the propagation of the pressure waves in bubbly liquids. The
complex sound speed in the bubbly liquid can be expressed as[12]:

c2

c2
m

= 1 + 4πc2
∫ ∞

0

af(a)da
ω2

0 − ω2 + 2ibω
(3.47)

Where c is the sound speed in the liquid, cm is the complex sound speed in the mixture, ω0
is the natural frequency ,a is the equilibrium radius of the bubble, f is the bubble population
distribution function for the per unit volume , the damping constant is given as b = bv+ba+bt,
which arises from viscous effects, acoustic effects and thermal damping, respectively. Then
the attenuation coefficient A in dB per unit length can be given by [12]:

A = 20(log10e)
ωv

c
≈ 8.68589ωv

c
(3.48)

where v is derived from c/cm = u− iv.

3.2.3 A 3-D finite element model for a Hydro-Sound Damper

The hydro-sound damper is modelled as an air bubble surrounded by an elastic surface layer.
The elastic material we use here is latex rubber, because it is one of the most widely used
elastic materials for encapsulated air-bubbles. For the offshore environment, a stronger ma-
terial is often used in order to avoid the explosion due to the large static pressure in deep
water. Hydro-Sound Dampers of different radii are modelled in the comparison study with
the open-ended resonator. The size of the hydro-sound damper will depend on the rigidity
modulus of the material and the water depth. The PE-foam is not taken into account for
this study. However, in the chapter 7, we will discuss the importance of the damping to the
absorption of the energy from the sound waves.

Similar to the boundary and radiation conditions in the open-ended resonator model, the
conditions are schematically depicted in the Figure 3.9.

We have the incident harmonic pressure wave with the applitude of 1 Pa equal tothe SPL as
117dB as we derived in Eq. (3.42).
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Table 3.4: Material properties and geometrical parameters for Hydro-Sound Damper model

Parameter Value Unit Description
d 1 m Water depth
Wd 0.5 m Y-Width of the fluid domain
Hd 0.5 m Z-Height of the fluid domain
Ld 1 m X-Length of the fluid domain
xd 0 m x location of the domain
ρw 1× 103 kg/m3 Density of water
cw 1485 m/s Speed of sound in the water
p0 1 Pa Incident wave pressure
θ pi/2 rad Angle of incident wave
kx 0 - x-wave propagation direction
ky sin(theta) - y-wave propagation direction
kz cos(theta) - z-wave propagation direction
Pa 1 atm Absolute pressure /Atmosphere
ρa 1.225 kg/m3 Density of air
ρb 1.476× 103 kg/m3 Density of latex bubble
ca 343 m/s Speed of sound in the air
Eb 9× 105 Pa Young’s modulus
ν 0.5 - Poisson ratio
Gs Eb/(2(1 + ν)) Pa Shear modulus
tt 1.6× 10−3 m Thickness of rubber
x0 0.2 m x center coordinate
y0 0.2 m y center coordinate
z0 0.2 m z center coordinate
fmin 1 Hz Minimum value for frequency sweep
fmax 300 Hz Maximum value for frequency sweep
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(a) (b)

Figure 3.9

3.2.4 Results and discussion

(a) (b)

Figure 3.10: Comparison results between analytical solutions and numerical solutions for
the encapsulated air-bubbles with different radius.

For encapsulated air-bubble, Church model and Commander and Prosperetti model were
considered in order to compare with FEM model in COMSOL Multiphysics. The thickness
of the bubble is chosen equal to 1mm. Figure 3.10 in logarithm scale shows a comparable
agreement between the analytical solution and the numerical solution, meaning that the
acoustic behavior is well predicted by both models.

The errors between the numerical solutions and the analytical solutions can be defined as:

∆ferror = |fanalytical − fnumerical|
fnumerical

(3.49)

As shown in Figure 3.10, ∆ferror shows that the deviation is within the acceptable margin.
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Therefore, both Church model and Commander and Prosperetti model can be proven to be
accurate on the basis of the discussions above.
The attenuation of the various resonators is not considered in this section. The derivation
of the attenuation coefficients of the resonators will require an accurate description on the
boundary conditions, radiation conditions and the sound source as well. Therefore, we need
to build an analytical model for the complete field containing resonators and noise source. In
order to build a more generic model for various resonators and for the purpose of developing an
optimal parameter design for the resonator-based noise mitigation system, we need to find the
frequency response function for the acoustic behaviour of the resonator. We will discuss how
to derive the transfer function for an open-ended resonator in the next section. The method
also can be applied to the other resonators, the behaviour of which can be approximated by
the theory of SDoF oscillators.

3.3 Frequency response function

In order to describe the acoustic behaviour of the resonators, we need to derive the frequency
response function, which is defined as:

X(~r, ω) = H(ω) ·P(~r, ω) (3.50)

Figure 3.11: The derivation of frequency response fuction

Then given the pressure applied on the the resonator, we could obtain the motion of the
resonator in frequency domain. For a single resonator simulated in software package COM-
SOL, we could describe the performance of the resonator by comparing it with an analogous
single-degree-of-freedom system. Because this study mainly focuses on low frequency sound
waves generated by pile driving, the water column in the resonator can be treated as a point
mass. Therefore, one can assume that the pressure on the opening end of the resonator is
equally distributed.
By extracting the average pressure on the air-water interface in the resonator computed
in COMSOL, we could derive the displacement amplitude based on the ideal gas law for an
adiabatic process. When the displacement amplitude - frequency characteristic is determined,
the frequency response function can be found by extracting the coefficient from the analogous
mass-spring-dashpot system, which can be used to develop the analytical model for the whole
resonator system.
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3.3.1 Equation of motion

It is assumed that there are M resonators located at the point ~rR1 , ~rR2 , ......, ~rRM . For a single
resonator of mass m, the water column is simplified as a lumped mass and its motion follows
the Newton’s second law as follows:

mẍRm(t) + cẋRm(t) + kxRm(t) = −p(~rRm, t)ARm (3.51)

where xRm(t) is the particle displacement, ARm is the cross sectional area of the opening end,
p(~rRm, t) is the average sound pressure over the opening area, which is assumed positive when
it points towards the fluid domain.

Applying Fourier Transform to Eq. (3.51) we obtain:

(−ω2m+ iωc+ k)x̃Rm(ω) = −p̃(~rRm, ω)ARm (3.52)

where the tilde denotes a quantity in frequency domain. The frequency-time Fourier transform
pair we use in this study is:

f(t) = 1
2π

∫ ∞
−∞

f(ω)eiωtdω (3.53)

f(ω) =
∫ ∞
−∞

f(t)e−iωtdt (3.54)

Thus, x̃Rm(ω) can be expressed by the pressure at the opening end as:

x̃Rm(ω) = −p̃(~rRm, ω)ARm
−ω2m+ iωc+ k

(3.55)

or alternatively,

x̃Rm(ω) = −ARm
−ω2 + 2iξωωn + ω2

n

· ω
2
n

k
· p̃(~rRm, ω) (3.56)

In the equation above, the term (−ARmω2
n)/k(−ω2+2iξωωn+ω2

n) can be determined by finding
the proper value of ξ, ωn and k. This will be obtained when the pressure - displacement
relation and the pressure spectrum are known.

3.3.2 Ideal gas law

Given ideal gas law, we know that the absolute pressure exerted by a given mass of an ideal gas
is inversely proportional to the volume to the power γ, provided that the process is adiabatic
and the amount of gas remain constant. For air, we can approximately choose γ being equal
to 7/5. Hence, the displacement of the water column in the resonator can be derived by:

P0V
7/5

0 = |P̃air|(V0 + ∆V )7/5 (3.57)

P0V
7/5

0 = |P̃air|(V0 − |X̃|A)7/5 (3.58)

|X̃| = V0
A

(1− [ P0

|P̃air|
]5/7) (3.59)
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in which X̃(ω) is the displacement amplitude, P0 is the underwater static pressure (which is
equal to ρwgh + 1[atm]) and V0 is the corresponding initial air volume, |P̃air| is the average
absolute pressure at the air - water interface, which consist of P0 and p′. In the finite element
model in COMSOL, P0 is used as the background pressure.

In ideal mass-spring-dashpot system, we could read out the static displacement x̃static from X
- intercept when frequency approaches zero. Thus, we could obtain the dynamic amplification
factor for the displacement as:

| X̃

x̃static
| = G(ω) (3.60)

= ((1− ω2

ω2
n

)2 + 4ξ2ω
2

ω2
n

)−
1
2 (3.61)

in which the factor G(ω) for single-degree-of-freedom-system has a well-known solution.

The term on left side of the equation is what we could obtain from the COMSOL simulation.
While the term on the right side of the equation needs to be determined by finding the proper
parameters. Through curve fitting procedure in matlab, we could achieve this directly.

In order to fit the two terms, the least-squares method is applied as:

min(f1(x)2 + f2(x)2 + f3(x)2 + ...+ fN (x)2) (3.62)

Using nonlinear least-squares solver, we could find the unknowns in the function which best
fits the data from COMSOL, the results will be shown in the next section. This equivalence
provides the two vital parameters to determine the frequency response function, which is the
damping ratio ξ and the natural frequency ωn.

Then, we could determine the stiffness coefficient and the point mass. Given the input pressure
Pin, we have:

k = F

x̃static
(3.63)

= PinA
R
m

x̃static
(3.64)

Hence, the frequency response function can be computed as:

H(ω) = −ARm
−ω2 + 2iξωωn + ω2

n

· ω
2
n

k
(3.65)

Using the frequency response function H(ω) and the excitation from the pressure at the point
of resonator , the displacement amplitude at the neck of the resonator can be obtained as:

X̃ = H(ω) · p̃(~rRm, ω) (3.66)

3.3.3 Result and discussion

The derivation of the frequency response function(or transfer function) needs to follow the
main three steps through the numerical simulation. In reality, the system parameters can
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(a) (b)

(c)

Figure 3.12: Compute the magnification factor from the pressure data in COMSOL

be derived from experiment tests as well. And the results from the numerical model (i.e.
COMSOL Multiphysics) also need to be verified through experiment in order to determine
the damping coefficient for certain material.

The first step of deriving the FRF is to obtain the pressure at the air-water interface from
the COMSOL simulation. Given the pressure applied on the air-water interface, we could
plot the relation between the Pair and frequency as shown in Figure 3.12 (a). The obtained
complex-valued results show that the phase shift take place at the resonance frequency.

Through ideal gas law, we obtain the relation between the displacement amplitude of the
water column and the pressure at the air-water interface. Based on the relation, the displace-
ment amplitude can be derived as shown in Figure 3.12 (b). Therefore, we could derive the
magnification factor based on the numerical results from COMSOL in Figure 3.12 (c).

The second step of deriving the FRF is to find the appropriate parameter, damping ratio ξ
and natural frequency ωn by fitting the numerical results from COMSOL model as shown in
Figure 3.13.
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(a) (b)

Figure 3.13: Fitting the line and compute Frequency Response Function

Finally, by substituting the critical parameters back into the expression for the frequency
response function, now we could obtain the FRF for individual resonator. The results also
show that the mass we derived from the fitting have a good agreement with the mass of water
column in the resonator, which also confirm our assumption that the resonator works as a
linear SDoF system.
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Chapter 4

Qiu Resonator

Based on the previous study of the existing resonator-based noise mitigation systems, a new
structure called "Qiu" resonator is proposed, which aims to make the deployment of the
resonator system easier and be able to handle marine environment. Thus, the Qiu resonator
exploits a layer of membrane to encapsulate the air in the resonator. By using a layer of rigid
shell on the outer surface, it makes the resonator more robust and durable.

To have a better understanding of the acoustic performance of the Qiu resonator, a finite
element model was built in COMSOL Multiphysics. The parametric study was used to inves-
tigate the dominating factors for this new technique. Based on the results of this preliminary
study, some recommendations for the existing noise mitigation techniques are made.

This study does not aim to propose the most optimal design of underwater resonators, but to
provide one possibility of many potential designs. In order to achieve the "optimal" design, a
3-D acoustically coupled noise reduction prediction model is developed by the author, which
could find the optimal parameters of the resonator and to improve the design of existing
systems. This will be discussed further in Chapter 6 and 7.

4.1 Modelling method

4.1.1 Geometry

The model was created in COMSOL and exercised over a range of parameters. The resonator
consists of an outer shell, cylindrical inlet and an inner ball made from rubber (schematically
depicted in Figure 4.1). The resonator is acoustically coupled to the waveguide driven by a
harmonically oscillating plane pressure wave p0(t) = p0e

iωt at the inlet of the domain.

The air is encapsulated in the interlayer by the outer shell and inner rubber ball. Because the
air can be seen as weightless in this case (its mass is considerably less compared to the water
mass), it works as the spring element in the ideal SDoF system as shown in Figure 4.1. In this
study, the focus is placed on the pressure waves in the low-frequency range, i.e. < 300Hz.
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Figure 4.1: Qiu Resonator

So, the wave lengths are much longer ompared to the size of the resonator. The water filled
inner ball can act as the point mass in the system excited by the oscillating pressure at the
inlet. The membrane is used for enclosing the air and is flexible enough to allow the water
to move as freely as possible. With the use of a membrane, the deployment of the resonator
system can be simple and convenient compared to the open-ended resonator. Note that the
model is defined by a series of geometric parameters. This makes it easy to quickly include
parametric sweeps in the geometry, which could be used to tune the resonator to the target
frequency. In this study, the generated pressure field for different resonator configurations is
analysed. The inner rubber ball is defined as a hyperelastic membrane in which nonlinear
behaviour dominates.

4.1.2 Model Solvers

The Pressure Acoustics, Frequency Domain interface is used to compute the pressure variation
for the propagation of acoustic waves in fluids at quiescent background conditions. It is suited
for this frequency-domain simulation with harmonic variations of the pressure field.

The physics interface can be used for linear acoustics described by a scalar pressure variable.
It includes domain conditions to model losses in a homogenised way. Domain features also
include radiation conditions, incident acoustic fields, as well as domain monopole and dipole
sources. In this study, the plane wave radiation of the acoustic waves is used into this model,
and an incident pressure field is added on the inlet boundary.

The Frequency Domain solver, solves the situation in which the acoustic domain is subjected
to harmonic excitation at a set of specified excitation frequencies. While this can be time-
consuming for larger frequency sweeps, the numerical solution is calculated explicitly at every
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frequency. So the solutions obtained by this solver can always be expected to be correct by
assuming convergence of the model and appropriate meshing.

4.1.3 Mesh

It is widely accepted that the element size in element-based acoustic computations should be
related to the wavelength. The idea of using a fixed number of elements per wavelength is
most likely a consequence of Shannon’s sampling theorem. This theorem is of fundamental
importance in vibration and acoustics for experimental measurements and frequency detec-
tion. As a commonly applied rule of thumb, at least five quadratic elements should be used
to capture accurately each wave length. Therefore, the maximum mesh size is set to 1/5 of
the shortest wavelengths present, λwater = cwater/fmax or λair = cair/fmax.

4.2 Model description and governing equations

4.2.1 Fluid domain

In reality, the ocean environment consists of different layered media with properties that
change abruptly at the seabed level while the sound speed varies more or less continuously
in the water column. However, in this study we simplify the ocean environment to a homo-
geneous fluid domain as shown in Figure 4.2 in order to focus on the behaviour of a single
resonator element. The homogeneous layer is bounded by four rigid boundaries and two radi-
ation boundaries. On the inlet boundary, the waveguide is exposed to a series of harmonically
oscillating pressures over a frequency range. Sound leave the domain freely from the outlet
boundary.

The environmental body forces such as gravity and magnetism are of no significance to acous-
tic propagation except for the effect of gravity on the sound speed variation in depth [18].
In this study, we assume that the sound speed is constant over depth as 1500m/s. The only
body forces of importance are the acoustic sources.

Pressure Acoustic frequency domain interface was used for the entire domain, except for
the membrane, which is defined on the boundary of the inner rubber ball. This interface is
perfectly used to compute the pressure variation for the propagation of the acoustic waves in
the quiescent fluid domain. The pressure acoustic interface solves the Helmholtz equation in
the frequency domain for a given frequency.

∇(1
ρ

(∇pt))−
k2pt
ρ

= Qm (4.1)

in which with pt = p + pb, k = |k| = ω
c . The sound pressure p represents the acoustic

variation or excess pressure. Based on the assumption of no fluid flow, the ambient pressure
is the static absolute pressure, pb is the background acoustic pressure. The total pressure pt
is the sum of the excess pressure p, i.e. dynamic component, and the background pressure pb.

In this study, we simplify the waveguide to be bounded by four rigid boundaries while the
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Figure 4.2: Geometry of the model
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plane wave radiation condition is applied to the outlet boundaries and an incident pressure
field is added on the inlet. This implies the following boundary conditions for the fluid domain:

1. Rigid boundary condition at four faces parallel with the waveguide, a Neumann bound-
ary condition is imposed as:

∂p

∂n
= 0 (4.2)

2. Outlet boundary condition: Plane wave radiation condition allows an outgoing plane
wave to leave the modelling domain with minimal reflections when the angle of incidence
is near to normal. The second-order radiation boundary conditions in the frequency
domain are defined below:

− n(−1
ρ

(∇pt)) + i
k

ρ
p+ i

2kρ∆T p = n(1
ρ

(∇pi)) + i
k

ρ
pi + i

2kρ∆T pi (4.3)

in which ∆T at a given point on the boundary denotes the Laplace operator in the
tangent plane at that particular point.

3. Inlet boundary condition, an incident pressure field is added on one of the plane wave
radiation boundaries as:

pi = p0e
−ikr (4.4)

where p0 is the wave amplitude, k is the wave vector and r is the location of the
boundary.

4.2.2 Qiu resonator

The Qiu resonator is modelled by together using membrane and pressure acoustics in the
frequency domain. The outer rigid shell is defined by an interior sound hard boundary
in pressure acoustics node, and the inner rubber sheet is defined as linear elastic material
or hyperelastic material in membrane node. The hyperelastic material subnode adds the
equations for hyper-elasticity at large strains. Hyperelastic materials can be suitable for
modelling rubber and other polymers. This material is available in the Solid Mechanics and
Membrane interfaces. By using Mooney-Rivlin model for the rubber, the model parameters
C10 and C01, the initial bulk modulus κ are determined based on the rubber material.
This implies the conditions for the resonator boundaries as the following:

1. Rigid shell: the Interior Sound Hard Boundary adds a boundary condition for a sound
hard boundary or wall on interior boundaries. This implies the normal component of
the acceleration is zero:

∇(1
ρ

(∇pt))1 = 0 (4.5)

∇(1
ρ

(∇pt))2 = 0 (4.6)

where the subscripts 1 and 2 represent the two sides of the boundary.

2. Membrane: For a linear elastic material, Hooke’s law relates the stress tensor to the
elastic strain tensor. While for hyperelastic material, nonlinear behaviour will domi-
nate. This condition could be defined under membrane node with different material
parameters.
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4.2.3 Multiphysics Interfaces

The Multiphysics interface was defined as acoustic-structure boundary coupling. The coupling
includes the fluid load on the structure and the structural acceleration as experienced by the
fluid. For thin interior structures like shells or membranes with fluid on both sides, a slit is
added to the pressure variable and care is taken to couple the interior and exterior sides. This
mathematically implies the boundary conditions as:

1. Interior boundary: the acoustic load is given by the pressure drop across the thin
membrane as

− n·(−1
ρ

(∇pt))1 = n·utt (4.7)

− n·(−1
ρ

(∇pt))2 = −n·utt (4.8)

FA = (pt,1 − pt,2)·n (4.9)

where utt is the structural acceleration, n is the surface normal, pt is the total acoustic
pressure and FA is the unit load on the membrane.

2. Exterior boundary condition reads:

−n·(−1
ρ

(∇pt)) = −n·utt (4.10)

FA = pt·n (4.11)

4.3 Parametric Study of the Qiu resonator

In this section, the response of the resonator and the generated wave field are analysed for
a given incident pressure field. The set of material properties and geometric parameters are
shown in Table 4.1. The water depth, opening radius and membrane thickness are considered
separately for determining the behaviour of the resonator. For design purposes, the target
resonance frequency and noise reduction for varying parameters are investigated in this study.

The incident Sound Pressure Level in this section is the same as Eq. (3.42).

4.3.1 Influence of the water depth of the resonator

Assume that in initial condition there is no pressure difference on the two side of membrane,
both under 1 atm. Given the following conditions:

P0 = 1atm = 1× 105Pa (4.12)
Pin = Pwater = ρwgh+ P0 (4.13)
Pout = Pair = ρa(r)·R·T (4.14)
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Table 4.1: Material properties and geometrical parameters

Parameter Value Unit Description
d 1 m Water depth
Wd 1 m Y-Width of the fluid domain
Hd 1 m Z-Height of the fluid domain
Ld 1 m X-Length of the fluid domain
xd 0 m x location of the domain
ρw 1× 103 kg/m3 Density of water
cw 1485 m/s Speed of sound in the water
p0 1 Pa Incident wave pressure
θ pi/2 rad Angle of incident wave to y positive direction
kx 0 - x-wave propagation direction
ky sin(theta) - y-wave propagation direction
kz cos(theta) - z-wave propagation direction
T 293.25 K Temperature
Pa 1 atm Absolute pressure /Atmosphere
Ro 0.10 m Outer radius
Ri 0.04 m Inner radius
Ls 0.01 m Depth of indentation
dd 0.02 m Open ended radius
x0 0.2 m x center coordinate
y0 0.2 m y center coordinate
z0 0.2 m z center coordinate
ρa 1.225 kg/m3 Density of air
ρb 1.1× 103 kg/m3 Density of latex bubble
ca 343 m/s Speed of sound in the air
Eb 9× 105 Pa Young’s modulus
ν 0.5 - Poisson ratio
Gs Eb/(2(1 + ν)) Pa Shear modulus
tt 1× 10−3 m Thickness of rubber
fmin 1 Hz Minimum value for frequency sweep
fmax 500 Hz Maximum value for frequency sweep
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Table 4.2: Parametric sweep for various water depth

Case Outer Radius (cm) Inner Radius (cm) Water depth (m)
1 10 8.38 10
2 10 8.58 20
3 10 8.71 30
4 10 8.81 40

(a) Bubble radius (b) Air density

Figure 4.3: Bubble radius and air density change with water depth

where R is specific gas constant, for dry air R is equal to 287 J/(K·kg), T is the temperature
in the unit of K. We could assume the temperature is 10 ◦C that is 283 K.

Pin = Pout + PB (4.15)
Pwater = Pair + PB (4.16)
PB = Pwater − Pair (4.17)

With the increase of water depth Z, three terms will increase respectively. At the same time,
PB also satisfy the following condition:

PB(r) = 2s1
d0
r0

(r0
r
− (r0

r
)7)(1− s1

s−1
( r
r0

)2) (4.18)

Thus, we could obtain the relation with two variables r and z as:

PB(r) = Pwater(z)− Pair(r)

By iteration both right term and left term, we could reach the equilibrium at a given water
depth and find the exact radius satisfying the upper equation. The results for the cases
examined here are summarised in Table 4.2.

From Figure 4.3a, we know that the size of rubber bubble changes with water depth, which
could result in depth-dependent resonance frequency and behaviour. The density of air in-
creases with water depth also shown in Figure 4.3b.
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Table 4.3: Parametric sweep for various opening radius

Case
Opening
Radius
(cm)

Outer
Radius
(cm)

Inner
Radius
(cm)

Water Volume (m3) Air Volume (m3)

1 1 5 4 2.48× 10−4 2.23× 10−4

2 2 5 4 2.48× 10−4 2.23× 10−4

3 2.5 5 4 2.48× 10−4 2.23× 10−4

4 3.5 5 4 2.48× 10−4 2.23× 10−4

Table 4.4: Parametric sweep for various thickness of membrane

Case Membrane thickness (m)
1 5× 10−4

2 1× 10−3

3 2× 10−3

4 5× 10−3

4.3.2 Influence of the opening radius of the resonator

The opening radius have influence on the behaviour of the resonator by changing the con-
tact area with the incoming waves and the motion of the inner water column. The chosen
parameters are shown in Table 4.3. By changing the opening radius, the water volume, air
volume and other parameters remain same. In this study, there are multi-peaks of resonance
frequency with the increasing of the opening radius. The reason might be due to the fact
that by increasing the opening area, the system no longer works as single degree of freedom
system, thus multiple peaks appear in the computed frequency range.

In this study, the incident SPL is the 117 dB. In order to compare performance of the system
for different opening radius, we kept the water and air volume constant by keeping outer
and inner radius unchanged. Some damping is also included on the membrane to eliminate
the multiple peaks in the frequency response function. The results, which are summarised
in Figure 4.4, show that with the increase of the opening radius, the contact area with the
incident pressure increase.

4.3.3 Influence of the membrane thickness of the resonator

The membrane works with air-volume together as spring in an ideal SDoF system. This is a
critical parameter in the determination of the resonance frequency and the attenuation. Dif-
ferent thicknesses are investigated, while the material properties and the other geometrical
parameters remain unchanged. With the increase of the thickness of the membrane, the reso-
nance frequency shift to higher values and the attenuation significantly increases for a thicker
membrane. The results in both linear and logarithmic scales are shown in the Figure 4.5.
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Figure 4.4: Sound Pressure Level( dB re 1µPa ) as function of frequency on logarithmic
scales for various opening radius 0.01m, 0.02m, 0.025m and 0.035m.

(a) linear scales (b) logarithmic scales

Figure 4.5: Sound Pressure Level( dB re 1µPa ) as function of frequency for various mem-
brane thickness 5E-4m, 1E-3m, 2E-3m, 5E-3m.
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4.4 Conclusion and recommendations

In this chapter, we developed a new type of resonator, named Qiu resonator. This technique
could absorb the energy into oscillating the resonator by using the resonance effect. Different
from the open-ended resonator, the air is encapsulated by a layer of membrane by using
hyperelastic materials. In this configuration, the resonance frequency does not depend solely
on the air and water columns. The material of the membrane and the opening-end of the
radius can also influence the behaviour of the Qiu resonator.

Based on the parametric study in this section, the following conclusions are drawn:

• Opening radius influences both noise reduction and resonance frequency. The contact
surface area between the resonator and the incident waves increase with the opening
radius. This could physically cause the increase of the noise reduction level. The reason
of the change of the resonance frequency will need further investigation.

• Based on the configuration, we could find the resonant frequency can be tuned through
the ratio of air and water volumes. With the increase of the air volume, the stiffness
of the air column is reduced, and the resonance frequency shift to the lower values;
with the increase in the water volume, the SDoF mass is increasing, which results in
the decrease of the resonance frequency. The influence of the water depth is similar to
the air volume; in deeper water, the air density increases, the stiffness of the air also
increases, which makes the resonance frequency to rise.

• The behaviour depends also on the material properties of the membrane: by using a
thicker layer, the resonance frequency can increase, this is physically attributed to the
higher stiffness of the system. By adding the damping in the membrane, noise reduction
is less efficient. However, a relatively broad band of attenuation is achieved.
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Chapter 5

3-D cylindrically symmetric sound
propagation model

To find the optimal properties of an underwater resonator, to be compatible with the different
resonator-based systems and to optimise the design of the existing techniques, we develop a
3-D acoustically coupled prediction model for the noise reduction by the application of a
resonator-based noise mitigation system. This model would require an accurate description
of the noise source, the resonators and the waveguide. Because this study focuses on the
behaviour of the resonators, we could simplify the model by using a point source or line
source to replace the actual noise source.

Figure 5.1: The waveguide for 3-D cylindrically symmetric point source and line source
field

Master of Science Thesis



54 3-D cylindrically symmetric sound propagation model

Hence, a 3-D cylindrically symmetric sound propagation model is proposed by the author
first to describe the noise source, which is schematically depicted in Figure 5.1. In order to
describe the point source in the waveguide, the Green’s function is composed, which satisfies
the pressure release boundary, rigid boundary and radiation conditions. The solution can be
verified through finite element model in COMSOL Multiphysics by comparing the distribution
of pressure field in the form of the sound pressure level in the frequency domain. The validation
of the model for a line source is also presented in this section.

5.1 Governing eqaution

The homogeneous wave equations describe the motion of the fluid for the free field regarding
velocity potential and displacement potential as the following equation,

∇2φ(r, z, t)− 1
c2
∂2φ(r, z, t)

∂t2
= 0 (5.1)

∇2ψ(r, z, t)− 1
c2
∂2ψ(r, z, t)

∂t2
= 0 (5.2)

in which φ(r, z, t) is the velocity potential, ψ(r, z, t) is the displacement potential, p(r, z, t)
is the pressure, c is the sound speed at the fluid domain and ∇2 is the Laplacian operator
defined in the cylindrical coordinate system. We assume the sound speed and density of the
water constant over the water depth.

The dimension of the wave equation can then be reduced by the use of the frequency-time
Fourier transform pair,

f(t) = 1
2π

∫ ∞
−∞

f̃(ω)eiωtdω (5.3)

f̃(ω) =
∫ ∞
−∞

f(t)e−iωtdt (5.4)

leading to the Helmholtz equation, or frequency domain wave equation, in which f(t) is
understood here as the examined quantity, i.e. the pressure of the fluid.

∇2φ̃(r, z, ω) + k2φ̃(r, z, ω) = 0 (5.5)
∇2ψ̃(r, z, ω) + k2ψ̃(r, z, ω) = 0 (5.6)
∇2p̃(r, z, ω) + k2p̃(r, z, ω) = 0 (5.7)

with k2 = ω2/c2. From linearized Euler equations, we obtain the following expression for the
pressure, velocity and displacement in terms of velocity potential and displacement potential,

p(r, z, t) = −ρw
∂φ

∂t
= −ρw

∂2ψ

∂t2
(5.8)

~v = ∇φ (5.9)
~u = ∇ψ (5.10)
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In frequency domain, the velocity and pressure fields are related to the scalar potential as
follows:

p̃(r, z, ω) = −iωρwφ̃(r, z, ω) (5.11)

ṽ = ∇φ̃, with : ∇ = ∂

∂r
r̂ + ∂

∂z
ẑ (5.12)

In Eq. (5.11), r̂ and ẑ define the unit vectors along the radial and vertical directions respec-
tively. The tilde over the pressure, velocity, velocity potential and displacement potential
denotes the complex amplitude in the frequency domain.

5.2 Boundary and Interface conditions

The fluid motion must satisfy the homogeneous Helmholtz equation, the radiation condition
at infinity, the boundary condition at the sea surface, the seabed and the interface condition
at the fluid-shell contact surface.

5.2.1 Perfectly Free Boundary

The free surface condition is an approximation for the surface boundary condition at z = 0.
Although there is the atmosphere above the ocean, the impedance contrast is so large that
there is no need for modelling the atmosphere. For acoustic medium this yields an Dirichlet
boundary condition as:

p̃(r, z1, ω) = 0 (5.13)
Thus, both velocity potential and displacement potential must vanish:

φ̃(r, z1, ω) = 0 (5.14)
ψ̃(r, z1, ω) = 0 (5.15)

5.2.2 Perfectly Rigid Boundary

The bottom boundary condition assume that the seabed at z = z2 is perfectly rigid, which
leads to a Neumann boundary condition as:

ṽz(r, z2, ω) = 0 (5.16)
∂φ̃

∂z
= 0 (5.17)

Although the acoustic impedance of the seabed can be measured, we assume the rigid bottom
as an approximation for the boundary condition to simplify the simulation.

5.2.3 Radiation Condition

The radiation condition at r →∞ read:

lim
r→∞

r(∂φ̃
∂r

+ ikφ̃) = 0 (5.18)
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5.2.4 Interface Condition

The velocity of the fluid at the any radius r = r1 can be obtained from a 3-D noise prediction
model for offshore pile driving given by Tsouvalas(2015). Thus, we obtain both the velocity
and pressure at the interface as:

ṽ(r1, z, ω) = V0 (5.19)
p̃(r1, z, ω) = P0 (5.20)

5.3 The Green’s function

The Green’s function should inherently satisfy the sea surface and seabed boundary condi-
tions, and the radiation conditions. By doing this, the Green’s function could provide us the
contribution of the pressure at field point (or receiver point) ~r from a simple point source at
~r0. Therefore, the critical issue here is to find the analytical solution for Green’s function
which satisfies the afore mentioned boundary conditions. The derivation for the solution to
this problem is discussed as below.

5.3.1 The modal equation

We introduce the general Green’s function as:

Gω(~r, ~r0) = gω(~r, ~r0) +Hω(~r) (5.21)

where Hω(~r) is any function satisfying the homogeneous Helmholtz equation as:

[∇2 + k2]Hω(~r) = 0 (5.22)

The Green’s function satisfying the same inhomegenous Helmholtz equation as the particular
solution gω(~r, ~r0):

[∇2 + k2]Gω(~r, ~r0) = −δ(r)δ(z − zs)2πr (5.23)

Using the technique of separation of variables, we seek a solution of the homogeneous
equation in the form of:

Hω(~r) = Φ(r)Ψ(z) (5.24)

substituting the Eq. (5.24) into the Eq. (5.23),

Ψ(z)1
r

d

dr
(rdΦ(r)

dr
) + Φ(r)d

2Ψ(z)
dz2 + k2Φ(r)Ψ(z) = 0 (5.25)

All the partial derivatives have become ordinary derivatives and dividing through by Φ(r)Ψ(z)
we find,

1
Φ(r) [1

r

d

dr
(rdΦ(r)

dr
)] + 1

Ψ(z) [d
2Ψ(z)
dz2 + k2Ψ(z)] = 0 (5.26)
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The contents in the square brackets are function of r and z, respectively. Thus, the only way
the above equation can be satisfied is that each term is equal to a constant. Denoting this
separation constant by k2

rm, we obtain the modal equation from the function of z,

1
Ψm(z) [d

2Ψm(z)
∂z2 + k2Ψm(z)] = k2

rm (5.27)

d2Ψm(z)
dz2 + (k2 − k2

rm)Ψm(z) = 0 (5.28)

d2Ψm(z)
dz2 + k2

zmΨm(z) = 0 (5.29)

with Ψ(z1) = 0 dΨ(z)
dz
|z=z2 = 0 (5.30)

in which the vertical wavenumber kzm =
√
k2 − k2

rm =
√

(ω2/c2)− k2
rm. The modal quation is

a classical Sturm-Liouville eigenvalue problem. Thus we could obtain the following properties
of this problem:

• The Ψm(z) is an eigenfunction and k2
rm is an eigenvalue

• There are infinite number of eigenvalues

• Ψm(z) can be normalized by: ∫ z2

z1

Ψ2
m(z)
ρ(z) dz = 1 (5.31)

• The eigenfunctions corresponding to different eigenvalues are orthogonal:∫ z2

z1

Ψm(z)Ψn(z)
ρ(z) dz = 0 (5.32)

The principle problem is now to solve the Eq. (5.27) for the normal modes Ψm(z). The general
solution is

Ψm(z) = A sin(kzm(z − 0)) +B cos(kzm(z − 0)) (5.33)

From section 5.2.1, the pressure release boundary condition implies that p̃(r, z1, ω) = 0, so

Ψm(z1) = 0 (5.34)

This yields B = 0. And the bottom boundary condition at z = z2 in section 5.2.2 leads to

∂Ψ
∂z

= 0 (5.35)

Akzm cos(kzm(z2 − z1)) = 0 (5.36)
Akzm cos(kzmD) = 0 (5.37)

with D being the water depth. Thus, either A is zero (the trivial solution) or we must have

kzmD = (m− 1
2)π, m = 1, 2, ... (5.38)
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Because the modes are normalized, we have the Eq. (5.31) that:∫ z2

z1

Ψ2
m(z)
ρ(z) dz = 1 (5.39)∫ z2

z1

[A sin(kzm(z − z1))]2

ρ(z) dz = 1 (5.40)∫ D

0

[A sin(kzmz′)]2

ρ(z′) dz′ = 1 (5.41)

Since we assume the density of the fluid constant over the water depth, ρ(z) = ρ, thus we can
obtain that:

A2

ρ

∫ D

0
sin2(kzmz′)dz′ = 1 (5.42)

Given sin2(α) = 1−cos(2α)
2 , we obtain that:

A2

ρ

∫ D

0

1− cos(2kzmz′)
2 dz′ = 1 (5.43)

A2

ρ

D − cos(2kzmD)/2kzm
2 = 1 (5.44)

in which due to 2kzmD = (2m − 1)π. This leads to cos(2kzmD) = 0, thus, A =
√

2ρ
D . The

corresponding eigenfunctions are given by

Ψm(z) =
√

2ρ
D

sin(kzm(z − z1)) (5.45)

The function satisfy both boundary conditions.

5.3.2 The radial equation

We can represent an arbitrary function as a sum of the normal modes, thus, we have the
Green’s function as:

Gω(~r, ~r0) =
∞∑
m=1

Φm(R)Ψm(Z) (5.46)

where R = r−r0, and Z = z−z0. The source is at z0 = zs, r0 = 0, therefore, R = r, Z = z−zs.
From the starting point, the inhomogeneous Helmholtz Equation in cylindrical coordinate:

1
r

∂

∂r
(r∂Gω(~r, ~r0)

∂r
) + ∂2Gω(~r, ~r0)

∂z2 + ω2

c2 Gω(~r, ~r0) = −δ(r)δ(z − zs)2πr (5.47)

After applying the separation of variables and substituting the function of z by k2
rm, we obtain

that: ∞∑
m=1

(Ψm(Z)1
r

d

dr
(rdΦm(R)

dr
) + k2

rmΦm(R)Ψm(Z)) = −δ(r)δ(z − zs)2πR (5.48)

Applying the operator: ∫ D

0
(· )Ψn(Z)

ρ
dz (5.49)
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5.4 Point source and line source in the free field 59

Due to the orthogonality of the Sturm-Liouville problems and normalized Eq. (5.31), only
nth term in the sum remains, yielding:

1
r

d

dr
(rdΦn(r)

dr
) + k2

rnΦn(r) = δ(r)Ψn(zs)
2πrρ (5.50)

Now we have the above function as the Bessel function, the solution is given in terms of a
Hankel function as:

Φn(r) = i

4ρΨn(zs)H(2)
0 (krnr) (5.51)

with the time dependence of the form exp(iωt), we take the Hankel function of the second
kind for the outgoing waves, which is determined by the radiating condition as r →∞.
Using asymptotic approximation to the Hankel function,

H
(1)
0 (kr) =

√
2
krπ

ei(kr−π/4) (5.52)

H
(2)
0 (kr) =

√
2
krπ

e−i(kr−π/4) (5.53)

Now, we obtain the Green’s function at ~r0 = ~rs = (0, zs) as:

Gω(~r, ~rs) =
∞∑
m=1

i

2D sin(kzm(zs)) sin(kzm(z))H(2)
0 (krm(r − 0)) (5.54)

Gω(~r, ~r0) =
∞∑
m=1

i

2D sin(kzm(z0)) sin(kzm(z))H(2)
0 (krm(r − r0)) (5.55)

where kzm = 2m−1
2D π and krm =

√
k2 − k2

zm.

5.4 Point source and line source in the free field

As a case of the use of Green’s theorem to boundary value problem, we first apply it to the
simple case of a point source in the field without the resonator system. The point source is
uniform and equally strong in all directions. It is located on the axis of symmetry. Thus, the
pressure Helmholtz equation in two dimension for the domain can be read as:

∇2p̃(r, z, ω) + k2p̃(r, z, ω) = f̃(r, z, ω) (5.56)

Now, we introduce the Green’s function, which is a sum of a particular solution such as
gω(~r, ~r0) and a homogeneous solution Hω(~r), with the superposition of the two solutions
satisfying the two boundary conditions as well as the radiation condition. Therefore, we have
the general Green’s function reads:

Gω(~r, ~r0) = gω(~r, ~r0) +Hω(~r) (5.57)

where gω(~r, ~r0) is a particular solution satisfying the same in-homogeneous Helmholtz equation
as, Gω(~r, ~r0),

[∇2 + k2]gω(~r, ~r0) = −δ(~r − ~r0) (5.58)
[∇2 + k2]Gω(~r, ~r0) = −δ(~r − ~r0) (5.59)
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60 3-D cylindrically symmetric sound propagation model

and Hω(~r) is any function satisfying the homogeneous Helmholtz equation,

[∇2 + k2]gω(~r, ~r0) = −δ(~r − ~r0) (5.60)

For a simple point source, the source term is expressed as:

f̃(~r) = Sωδ(~r − ~rs) (5.61)

in which ~rs = (0, zs) being the vector of the source location, Sω is the source strength. Here
we normalize the source to yield a unit pressure at r = 1 by using Sω = −4π, and we could
modify the pressure amplitude by multiplying a constant on the source strength later on.
Then we have:

1
r

∂

∂r
(r∂gω
∂r

) + ∂2gω
∂z2 + ω2

c2 gω = −δ(r − 0)δ(z − zs)
2πr (5.62)

After we solve the Green’s function, the field can be determined as,

p̃(r, ω) = −
∫
V
SωGω(~r, ~r0)dV0 (5.63)

This can be easily verified as:

[∇2 + k2]p̃(r, ω) = −
∫
V
Sω[∇2 + k2]Gω(~r, ~r0)dV0 (5.64)

=
∫
V
Sωδ(~r − ~r0)dV0 = f̃(~r0) (5.65)

After we solve the Green’s function, the field can be determined as,

p̃(r, ω) = −
∫
V
f̃(~r0)Gω(~r, ~r0)dV0 (5.66)

Similarly, the pressure filed for a line source is given as:

p̃((~r, ω) = −
∫
V
f̃(~r0)Gω(~r, ~r0)dV0 (5.67)

= −
∫ z1

z2
SωGω(~r, ~rs)dz0 (5.68)

5.5 Results and discussion

5.5.1 Point source and line source field

In the previous section, by using the Normal Mode (NM) method we have obtained the Green’s
function, which could satisfy the homogeneous Helmholtz equation given the boundary and
radiation conditions. Because the field containing a point source or a homogeneous line source
has a simple boundary geometry and homogeneous boundary conditions, the pressure field
can be easily described by using Green’s function in this study.
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(a) (b)

Figure 5.2: Absolute pressure in the point source field

(a) (b)

Figure 5.3: Absolute pressure in the line source field
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62 3-D cylindrically symmetric sound propagation model

(a) COMSOL Model at 100 Hz (b) Analytical model at 100 Hz

(c) COMSOL Model at 150 Hz (d) Analytical model at 150 Hz

(e) COMSOL Model at 1000 Hz (f) Analytical model at 1000 Hz

Figure 5.4: Sound pressure level (dB re 1µ Pa) in the point source field
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(a) COMSOL Model at 100 Hz (b) Analytical model at 100 Hz

(c) COMSOL Model at 150 Hz (d) Analytical model at 150 Hz

(e) COMSOL Model at 1000 Hz (f) Analytical model at 1000 Hz

Figure 5.5: Sound pressure level (dB re 1µ Pa) in line source field
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64 3-D cylindrically symmetric sound propagation model

Both the results from the analytical model and finite element model are obtained. The sound
pressure level for two models are compared at different locations and different frequencies.

In this study, we built an analytical model with a dimension (r, z) = (10m, 8m), the derivation
of the governing equations has been discussed. A point source is located at the middle of the
domain at 4-meter water depth. The results from the two models for the sound pressure level
at the two points at the frequency as 100 Hz and 1020 Hz are compared. The margin of error
indicates the reliability of the analytical model. Hence, the implementation of the analytical
model in matlab for the point source could be validated through the finite element model.
The same conclusion can be drawn from the plots of the sound pressure level distribution
at the cross section of the 3-D cylindrically symmetric field. As shown in these three figures
at different frequencies, the patterns of the pressure distribution have a excellent agreement
between finite element model in COMSOL Multiphysics and analytical model.

The same validation cases are carried out for line source field. The line source is located along
the z-axis coordinate from sea surface to the sea bottom. As shown in the Figure 5.3 and
Figure 5.5, the results show that the analytical model could well describe the line source filed.

5.5.2 The dispersion relation

The dispersion relation relates the angular frequency ω to the horizontal wavenumber krm for
this specific case as:

krm =
√

(ω
c

)2 − [(m− 1
2) π
D

]2, m = 1, 2, ... (5.69)

Thus, there are two groups of modes need to be considered. The propagating modes represent
the real horizontal wavenumber, which are propagating horizontally away from the source.
The evanescent modes represent the imaginary wavenumber, which are exponentially decay-
ing in range.

Propagating modes : for m <
kD

π
+ 1

2 , krm is real

Evanescent modes : for m >
kD

π
+ 1

2 , krm is imaginary

Thus, given the dispersion relation, we find the roots for the waveguide as the following
Figure 5.6. It is evident that with the larger frequency, the propagating modes increase.

In addition, the wavenumbers relate to frquency in a nonlinear way with the strong frequency-
dependent propagation. The relations are shown in the Figure 5.7 as frequency versus krm.

5.5.3 The number of modes

Given the form of the analytical solutions, we know that each normal mode can be viewed as
a traveling wave in the horizontal direction and a standing wave along the depth. Therefore,
the more modes one use in the model, the more accurate and convergent the results will be.
However, the high dimensions of the system would require large computational effort. Thus,
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(a) (b)

Figure 5.6: Roots of the dispersion relation for the waveguide: (a) f = 200 Hz, (b) f =
500 Hz

(a) (b)

Figure 5.7: f − krm diagram for the waveguide corresponding to the propagating modes:
(a) 8 m water depth, (b) 40 m water depth

in order to save the computational time, we need to determine the minimum number of modes
that could achieve the sufficient accuracy for the results.

Based on the several case studies shown in Figure 5.8, we found that the convergence of
the results will depend on the frequency, water depth and the number of modes we use. In
this study, we focus on the low-frequency sound waves(below 500 Hz) and shallow water
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66 3-D cylindrically symmetric sound propagation model

(a) (b)

Figure 5.8: Absolute pressure corresponding to the number of the vertical modes: (a) Point
(r,z)=(1 km,5 m) in 10 m water-depth waveguide, (b) Point (r,z)=(1 km,20 m) in 40 m
water-depth waveguide

environment. Therefore, we decide to use 50 modes in the computation of the pressure field
in the present model. The mesh size itself won’t influence the convergence of the results but
will affect the grid resolution of the pressure distribution figures.
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Chapter 6

3-D noise reduction prediction
model

Now we can develop the 3-D acoustically coupled model containing both the resonator system
and noise source. The noise source can be substituted by the point source or line source as
mentioned in Chapter 5. The behaviour of the resonator will be described by the frequency
response function given by the finite element model of the open-ended resonator in this case.

Figure 6.1: The resonator-based noise mitigation system
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68 3-D noise reduction prediction model

The boundary element method is used for simulation purposes. The pressure field can be
obtained through the boundary integral equation, which consists of the contribution to the
pressure field from the opening-end of the resonator and the contribution from the noise
source or point source in this case. The waveguide for this model is schematically depicted in
the Figure 6.1.

Based on these governing equation, the Green’s function is constructed in 3-D. Then, the
boundary integral equation can be decomposed into the sum of all the resonators in the
domain. Since the resonator and the sound source are coupled, and the individual resonator
also coupled with other resonators, a matrix equation is formed to find the pressure at the site
of the resonator first. By substituting the pressure and the normal derivative of the pressure
back into the boundary integral equation, we finally could obtain the pressure field anywhere
in the acoustic domain.

6.1 Green’s function for 3-D cylindrical coordinate

In 3D cylindrical coordinate, the Laplacian operator ∇2 is defined as:

∇2 = ∂2

∂r2 + 1
r

∂

∂r
+ 1
r2

∂

∂φ2 + ∂2

∂z2 (6.1)

The homogeneous Helmholtz equation in terms of homogeneous solution Hω(~r) of the Green’s
function is given as:

1
r

∂

∂r

(
r
∂Hω(~r)
∂r

)
+ 1
r2
∂2Hω(~r)
∂φ2 + ∂2Hω(~r)

∂z2 + k2Hω(~r) = 0 (6.2)

where ~r represent (r, φ, z). We could solve this equation by using the method of separation
of variables:

Hω(~r) = R(r)Φ(φ)Z(z) (6.3)

Substituting and dividing the above equation, we could find:

1
rR

∂

∂r

(
r
∂R

∂r

)
+ 1
r2Φ

∂2Φ
∂φ2 + 1

Z

∂2Z

∂z2 + k2 = 0 (6.4)

The third term is independent of r and φ, thus we could denote this term equal to a separation
constant as k2

rm,

d2Z(z)
dlz2 + (k2 − k2

rm)Z(z) = 0 (6.5)

d2Z(z)
dz2 + k2

zmZ(z) = 0 (6.6)

where the vertical wavenumber kzm =
√
k2 − k2

rm =
√

(ω2/c2)− k2
rm. Thus, we obtain the

same modal equation when we solve the two dimensional coordinate wave equation as:

kzm =
(m− 1

2)π
D

, m = 1, 2, ... (6.7)

Master of Science Thesis



6.1 Green’s function for 3-D cylindrical coordinate 69

where D is water depth. The solution for the modal equation is given in the same form when
we solve the two dimensional wave equation as:

Zm(z) =
√

2ρ
D

sin(kzm(z − z1)), z1 = 0 (6.8)

The function satisfy both boundary conditions. This leaves:

1
rR

d

dlr

(
r
dR

dlr

)
+ 1
r2Φ

d2Φ
dφ2 + k2 − k2

z = 0 (6.9)

Now, we could define the radial wave number as:

k2
r = k2 − k2

z (6.10)

Multiplying the resulting equation by r2 to find:

r

R

d

dr

(
r
dR

dr

)
+ 1

Φ
d2Φ
dφ2 + k2

rr
2 = 0 (6.11)

In the above equation, we find the second term is independent of r and z, so we could denote
it as:

1
Φ
d2Φ
dφ2 = −n2 (6.12)

Since there is no limit in φ direction, the periodic boundary condition and initial condition
is imposed as:

Φ(φ) = Φ(φ+ 2π) (6.13)
Φ(0) = 1 (6.14)

The solution for Φ(φ) can be given as the circumferential eigenfunction,

Φ(φ) = encos(nφ) (6.15)

where en is defined as follows:

en =


1√
2π , n = 0

1√
π
, n 6= 0

(6.16)

By applying the method of separation of variables, now we have an ordinary differential
equation in r direction only,

r

R

d

dr

(
r
dR

dr

)
+[(krr)2 − n2]R = 0 (6.17)

The remaining equation is a Bessel’s Equation of order n. We could rewrite the equation as:

ξ
∂

∂ξ

(
ξ
∂R

∂ξ

)
+(ξ2 − n2)R = 0 (6.18)

The solution is given in terms of the Hankel function of order n and of the second kind
to represent the outgoing traveling wave (when we factor out the time dependence through
Fourier transform by eiωt):

H(2)
n (krr) = Jn(krr)− iYn(krr) (6.19)
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where Jn and Yn are the Bessel’s function of the first kind and the second kind respectively.
Theoretically, the solutions to the Bessel equation can be expressed as any linear combination
of Jn, Yn, H(1)

n andH(2)
n [19]. However, it is worth to mention that only the linear independent

pair of functions need to be chosen in order to avoid the numerical instability of the solution.
For the case of short ranges and high circumferential order, the normalization of the Hankel
and Bessel functions need to be applied to avoid the loss of distinctions between two functions
we choose [20].

Now, the in-homogeneous three dimensional Helmholtz equation for a point source can be
represented as:

1
r

∂

∂r

(
r
∂Gω(~r, ~r0)

∂r

)
+ 1
r2
∂2Gω(~r, ~r0)

∂φ2 + ∂2Gω(~r, ~r0)
∂z2 + k2Gω(~r, ~r0)

= −δ(r − r0)δ(z − z0)δ(φ− φ0)
r

(6.20)

Using the normal mode method,the solution is given in the form of radial and depth eigen-
function:

Gω(~r, ~r0) =
∞∑
n=0

∞∑
m=1

Rmn(r, r0)Φn(φ, φ0)Zm(z, z0) (6.21)

By substituting Eq. (6.21) to Eq. (6.20), and applying the modal equation,

d2Z

dz2 + k2
zmZ = 0, m = 1, 2, ... (6.22)

and the equation in terms of the azimuth,

d2Φ
dφ2 + n2Φ = 0, n = 0, 1, 2, ... (6.23)

This yields the modal form of the Helmholtz equation,
∞∑
n=0

∞∑
m=1

[1
r

d

dr

(
r
dRmn(r, r0)

dr

)
+
(
k2
rn −

n2

r2

)
Rmn(r, r0)

]
Φn(φ, φ0)Zm(z, z0)

= −δ(r − r0)δ(z − z0)δ(φ− φ0)
r

(6.24)

Next, by applying the operator ∫ D

0
(· )Zν(z)

ρ
dz (6.25)

and the operator ∫ π

−π
(· )Φµ(φ)dφ (6.26)

to Eq. (6.20), because the orthogonality property for the modes and the assumption of the
normalized modes, we obtain the radial equation as follows:

1
r

d

dr

(
r
dRmn(r − r0)

dr

)
+
(
k2
rn −

n2

r2

)
Rmn(r, r0)

= −δ(r − r0)Φn(φ0)Zm(z0)
rρ

(6.27)
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Now, we need to solve the above equation for Rmn(r, r0), which is the Bessel’s Equation of
order n as we discussed above. The solution is expressed in the form of Hankel function as:

Rmn(r, r0) = Amn
Φn(φ0)Zm(z0)

ρ
H2
n(krm(r − r0)) (6.28)

This solution is numerically unstable for n > krmr, because the Hankel functions approach
infinity very quickly for high circumferential orders.

For a point source, the pressure is 3-D cylindrically symmetric solution. which is only related
to the depth modes. Because the incident field produced by the point source needs not be
summed up with respect to the azimuthal index n, the solution is simplified by,

Rm(r, r0) = Am
Zm(z0)
ρ

H2
0 (wm) (6.29)

where
wm = krmr

′ (6.30)

and r′ is the range of a point in the field with respect to the source,

r′ =
√
r2

0 + r2 − 2r0r cos(φ0 − φ) (6.31)

Hence, a solution to the inhomogeneous Helmholtz equation can be expressed in the following
form:

Gω(~r, ~r0) =
∞∑
m=1

[
i

2D sin(kzmz0) sin(kzmz)H(2)
0 (krmr′)

]
(6.32)

6.2 Point source and line source field

In the previous section, we already obtained the Green’s function satisfying the in-homogeneous
3D Helmholtz equation. Hence the pressure field for a point source can be expressed as:

p̃(r, ω) = −
∫
V
f̃(~r0)Gω(~r, ~r0)dV0 (6.33)

= −SωGω(~r, ~rs) (6.34)

Similarly, the pressure filed for a line source is given by:

p̃((~r, ω) = −
∫
V
f̃(~r0)Gω(~r, ~r0)dV0 (6.35)

= −
∫ z1

z2
SωGω(~r, ~rs)dz0 (6.36)

6.3 3-D acoustic coupling model for a resonator-based noise
mitigation system

The new designed resonator-based system can be seen as multi-array of Helmholtz resonators.
Although the coupling between a Helmholtz resonator and the underwater environment is
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lacking enough investigations. The various transmission mediums do not change the ab-
sorption mechanism of the resonators. Thus, the present model is based on the acoustically
coupled interaction between the underwater Helmholtz resonators and the noise source.
Analytical solutions of the underwater pressure field and source strength out of the resonator
are derived without other hypotheses but just using mathematical manipulation. As we
already mentioned in the previous chapter, we could use the single-degree-of-freedom mass-
spring-dashpot system to describe the behaviour of resonators provided that the geometric
dimensions of the resonator are very small compared to the targeted sound wavelength. For
different tuned and shaped resonators, we only need to adjust the parameters to fit the noise
control performance.
As for the description of the waveguide, the noise source and the resonator have been obtained
in the previous sections. Now we could formulate the pressure field for the whole field with
arrays of resonators. The Boundary Element Method will be exploited, the formulation of
the matrix equation will be discussed in the section below.

6.3.1 Governing equation

Using the Boundary Element Method, the pressure field can be expressed by a superposition
of noise source and resonators through integrals. Boundary Element Method uses a discreti-
sation of Green’s theorem showing the field in a volume regarding an integral of the field and
its derivative on the boundary. Thus, a real boundary separating an interior region from an
exterior region is defined in such a way that the boundary integral can be used. Only the
boundary of the exterior domain needs to be discretised since the boundary integral formu-
lation inherently satisfies the wave equation throughout the volume as well as the radiation
conditions at infinity.
In this case, we could find a Green’s function Gω(~r, ~r0) that satisfies the perfectly free surface
condition, perfectly rigid boundary condition and radiation condition. The pressure field can
be expressed by Green’s theorem as:

p̃(~r, ω) =
∫
S

[
Gω(~r, ~r0)∂p̃(~r0)

~n0
− p̃(~r0)∂Gω(~r, ~r0)

~n0

]
dS0

−
∫
V
f̃(~rs0)Gω(~r, ~rs0)dVs0

(6.37)

In 3D cases, the normal derivative of the pressure and the Green’s function is not necessarily
to the positive z direction, but will depend on the position we deploy the resonator. In order
to be compatible with different design purposes, we assume the normal vector to the opening
end as ~n0 = (êr, êz, êφ). Next, the derivative of the Green’s function can be formulated:

∂Gω(~r, ~r0)
∂z

=
∞∑
m=1

[
Am

∂Zm(z)
∂z

Zm(z0)H(2)
0 (krmr′)

]
(6.38)

∂Gω(~r, ~r0)
∂r

=
∞∑
m=1

[
AmZm(z)Zm(z0)∂H

(2)
0 (wn)
∂wn

∂wn
∂r

]

=
∞∑
m=1

[
−AmZm(z)Zm(z0)∂wn

∂r
H

(2)
1 (wn)

] (6.39)
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Figure 6.2: The waveguide containing an array of resonators

∂Gω(~r, ~r0)
∂φ

=
∞∑
m=1

[
AmZm(z)Zm(z0)∂H

(2)
0 (wn)
∂wn

∂wn
∂φ

]

=
∞∑
m=1

[
−AmZm(z)Zm(z0)∂wn

∂φ
H

(2)
1 (wn)

] (6.40)
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where

∂Zm(z)
∂z

= kzm cos(kzm(z − z1)) (6.41)

∂H
(2)
0 (wn)
∂wn

= −H(2)
1 (wn) (6.42)

∂wn
∂r

= 1
2krm · r

′−1(2r − 2rs cos(φ0 − φ)) (6.43)

∂wn
∂φ

= 1
2krm · r

′−1(−2rrs sin(φ0 − φ)) (6.44)

Hence, the normal derivative of the Green’s function can be expressed as:

∂Gω(~r, ~r0)
∂n

= ∂Gω(~r, ~r0)
∂r

êr + ∂Gω(~r, ~r0)
∂z

êz + ∂Gω(~r, ~r0)
∂φ

êφ (6.45)

For the sake of simplicity, we assume that the pressure on the surface of the opening end
is equally distributed, thus we could take the first integral as the surface area multiply the
pressure contribution at the center point. After substituting Eq. (6.38) to Eq. (6.45).

Next, we are able to search for the pressure at the center point of the open-end of the
resonator. By substituting the location of the field point and the source point as ~r = ~r0 =
~rR = (rR, zR, φR), the boundary integral equation becomes:

p̃(~rR, ω) ≈ αSR
[
Gω(~rR, ~rR)ρω2x̃R(ω)− p̃(~rR)∂Gω(~rR, ~rR)

∂n

]
+ SωGω(~rR, ~rS)

(6.46)

Using the transfer function, we obtain:

p̃(~rR, ω) ≈ αSR(Gω(~rR, ~rR)ρω2H(ω)p̃(~rR)− p̃(~rR)∂Gω(~rR, ~rR)
∂z

)

+ SωGω(~rR, ~rS)
(6.47)

Now, we could obtain the pressure at ~rR,

p̃(~rR, ω) = qR[LR]−1 (6.48)

Hence, back to the boundary integral equation, after substitution of the pressure at the
location of the resonator, the pressure field containing a single resonator and a point source
can be given by:

p̃(~r, ω) =
M∑
n=1

{∫
SR

n

[
Gω(~r, ~rn0)

∂p̃(~rRn0)
∂nn0

− p̃(~rRn0)∂Gω(~r, ~rn0)
∂nn0

]
dSn0

}
−
∫
V
f̃(~rs0)Gω(~r, ~rs0)dVs0

(6.49)
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6.3.2 An array of resonators

For applying an array of resonators, we need to consider the coupling between each resonator.
First, we formulate the boundary integral equation for a number of resonators, each denoted
by the index ”m”:

p̃(~rRm, ω) =
M∑
n=1

{∫
SR

n

[
Gω(~rRm, ~rn0)

∂p̃(~rRn0)
∂~n0

− p̃(~rRn0)∂Gω(~rRm, ~rn0)
∂~n0

]
dS0

}
−
∫
V
f̃(~rS)Gω(~rRm, ~rS)dVS

(6.50)

where ~rRm is the location of the resonator number m, SRn represent the surface area of the
resonator with index ”n”.

Then, we substitute the spatial derivative of the pressure by the equation we obtained above,

p̃(~rRm, ω) ≈
M∑
n=1

αSRn

(
Gω(~rRm, ~rRn )ρω2H(ω)p̃(~rRn )− p̃(~rRn )∂Gω(~rRm, ~rRn )

∂z

)
+ SωGω(~rRm, ~rS)

(6.51)

We could move the terms related to number m resonator to the left hand side of the equation,(
1− αSRm(Gω(~rRm, ~rRm)ρω2H(ω)− ∂Gω(~rRm, ~rRm)

∂z
)
)
p̃(~rRm, ω) =

M∑
n=1

αSRn

(
Gω(~rRm, ~rRn )ρω2H(ω)p̃(~rRn )− p̃(~rRn )∂Gω(~rRm, ~rRn )

∂z

)
+ SωGω(~rRm, ~rS)

(6.52)

The above equation is valid for all the resonators in the array, thus we could formulate the
similar linear algebraic equation as:

LRM · p̃(~rRM , ω) = qRM (6.53)
ARm = 1 (6.54)

BRm,n = −αSRnGω(~rRm, ~rRn )ρω2H(ω) + ∂Gω(~rRm, ~rRn )
∂z

(6.55)

qRm = SωGω(~rRm, ~rS) (6.56)

Thus, the corresponding M algebraic equations is shown as:

LR · p̃ = qR (6.57)


LR1,1 LR1,2 · · · LR1,M
LR2,1 LR2,2 · · · LR2,M
... . . . ...

...
LRM,1 LRM,2 · · · LRM,M

 ·

p̃(~rR1 , ω)
p̃(~rR2 , ω)

...
p̃(~rRM , ω)

 =


q(~rR1 , ω)
q(~rR2 , ω)

...
q(~rRM , ω)

 (6.58)
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Where the operator LR can be formulated as the sum of AR and BR,

LR = AR + BR (6.59)

AR =


1 0 · · · 0
0 1 · · · 0
...

... . . . 0
0 0 · · · 1

 (6.60)

BR =


BR1,1 BR1,2 · · · BR1,M
BR2,1 BR2,2 · · · BR2,M
... . . . ...

...
BRM,1 BRM,2 · · · BRM,M

 (6.61)

Hence, the pressure amplitude for M resonators can be expressed by:

p̃ = [LRM ]−1 · qRM (6.62)

Upon substitution of the pressure at the location of the resonator back into the boundary
integral equation, the pressure field at any point in the field can be obtained:

p̃(~r, ω) =
M∑
n=1

{∫
SR

n

[
Gω(~r, ~r0)∂p̃(~r

R
n )

∂~n0
− p̃(~rRn )∂Gω(~r, ~r0)

∂~n0

]
dS0

}
−
∫
V
f̃(~r0)Gω(~r, ~r0)dV0

(6.63)

6.4 Inverse fourier transform

To obtain the evolution of the pressure field with time, applying the inverse Fourier transform
as:

p(~r, t) = 1
2π

∫ ∞
−∞

p̃(~r, ω)eiωtdω (6.64)

For nearly conjugate symmetric vectors, we compute the inverse Fourier transform faster
by specifying the ’symmetric’ option in Fast Fourier Transform, which also ensures that the
output is real.

6.5 Conclusion

In this section, a 3-D acoustically coupled noise reduction prediction model is proposed for
the application of a resonator-based noise mitigation system. The emphasis is placed on
the derivation of the pressure at the location of the individual resonator, which is coupled
between resonators and the noise source. It is worth mentioning that the resonators also are
acoustically coupled with each other. This can be obtained by solving the matrix equation.

The boundary element method could allow us to obtain the pressure field by using the integral
of the Green’s function. Compared with the finite element model, the analytical model could
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have a better performance for the large domain simulation by largely saving the computational
effort. By building an analytical method, different parameters can be easily modified. In
the next chapter, we will discuss a parametric study based on this model. The conclusions
and recommendations will be drawn in order to help improve the existing noise mitigation
techniques.
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Chapter 7

Parametric Study of noise reduction

In this chapter, the theme of parametric study is treated. Based on the three-dimensional
acoustically coupled model we developed in the last chapter, a series of properties of the sin-
gle resonator and arrays of resonators is investigated. First, in order to validate the present
analytical model, a finite element model was built in COMSOL Multiphysics. Both numerical
results and analytical results are given for further comparison and discussion. In the next
section, the influence of the damping coefficient, number of resonators and the mix combina-
tion of resonators with different resonance frequencies are investigated. Finally, the summary
of the findings can be drawn in the conclusions.

Figure 7.1: Schematic of the field 1

7.1 Validation of single resonator

In this section, the case for a single resonator in a point source field is discussed to check the
validity of the theory and this 3-D model. The analytical solutions are compared with the
results from the simulation in COMSOL Multiphysics. Considering the computational time
for the model in COMSOL Multiphysics needed to achieve sufficient accuracy, the cylindrical-
shaped waveguide with a relatively small dimension of z from 0 to 1m, r from 0 to 3m and
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φ from 0 to 2π was simulated. As shown in the Figure 7.1, the point source is placed at the
middle of the domain axis, (r, z, φ) = (0m, 0.5m, 0◦). The single resonator is at 1.5-meter
horizontal distance from the domain axis and is at the same water depth with the point
source. The boundary conditions for the waveguide are already discussed in Chapter 5.

Figure 7.2: Configuration of the resonator

In this analytical model, the resonator was defined as a mass-spring-dashpot system at point
rR. Since the behaviour of the open-ended resonator is not fundamentally influenced by the
shell and for the sake of simplification, the impact of the rigid shell is not taken into account
in this analytical model, i.e. reflections and scatterring.

Figure 7.3: The meshed waveguide and resonator

Based on the same geometry and the boundary conditions, the open-ended resonator consists
of a rigid shell, air column and water column in the finite element model in COMSOL. The
shell of the resonator was selected to be rigid, which means the derivative of the pressure
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normal to the boundary is zero. The graph of the meshed waveguide and one resonator is
shown in Figure 7.3. The resonator in this study has a resonance frequency at 117 Hz, with
the dimension of r = 3.17cm,L = 6.34cm,La = 1.3cm. Because the total volume of the
resonator is only 200cm3, we place it in a small-sized domain in order to be able to observe
the behaviour of the resonator. The configuration of the resonator is shown in the Figure 7.2.

Figure 7.4: Sound pressure level (dB re 1µPa) at point (r, z, φ) = (2.5m, 5m, 0◦) in the
field containing a single resonator

By comparing the computational time for both semi-analytical model and finite element
model, the first model could mostly save the CPU time in order to achieve a comparable
accuracy. The black and red lines are the sound pressure level in dB at point (r, z, φ) =
(2.5m, 5m, 0◦). The solid lines are the sound pressure level in the field only containing a
point source, while the dashed lines indicate the influence of the resonator. As shown in
the Figure 7.4, the phase shift in two simulations took place both at around the resonant
frequency of the single resonator, 117 Hz. However, the shape of the curves slightly deviates
at around the resonance frequency.
The deviation between the numerical solution from COMSOL model and the analytical solu-
tion from the analytical model can be possibly attributed to the following reasons:

• In the COMSOL model, the open-ended resonator has an layer of rigid shell, while
in the analytical model the resonator is simplified as an opening surface with equally
distributed pressure generated by the internal motion of the resonator. Therefore, the
frequency response function or transfer function obtained by the average pressure in the
air domain. The derivation is based on the ideal gas law and the assumption that the
pressure is equally distributed on the surface of the opening end;
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• The radiation condition in the analytical model could allow the outgoing waves leave
the domain without any reflection. Whereas in the COMSOL’s model, the cylindrical
radiation condition is used. Because the shell of the resonator and the seabed are
defined as rigid boundary, the sound waves will be reflected, refracted and scattered.
Therefore, the presure waves in the domain are no longer cylindrical waves. Some
spurious reflections will take place at the radiation boundaries in COMSOL’s model ;

• The accuracy of the fitting between the resonator in the COMSOL model and the ideal
single-degree-of-freedom system will depend on the damping ratio of the resonator. For
a resonator system with appropriate damping ratio, the fitting can be achieved with
high accuracy;

In order to check whether the deviation is mainly caused by the simplifying the pressure Pn
along the opening surface of the resonator, the distribution of the Pn and the vertical velocity
vz are obtained from COMSOL model to compare the solution from the analytical model.

(a) (b)

Figure 7.5: Comparison between the results from COMSOL model and analytical model:
(a) the pressure Pn; (b) the vertical velocity vz, where the solid black line represents the
results from the COMSOL model along the diameter of the opening end of the resonator, the
dashed black line represents the results from COMSOL model along the interface between air
and water column, the dashed red line indicate the results from the present analytical model
at the middle point of the opening end of the resonator.

As shown in Figure 7.5, we found that the mismatch could come from the numerical results
and analytical results in Pn and vz, where in COMSOL model the pressure varies on the
opening surface and in the analytical model the pressure remains constant on the opening
surface. This will cause certain disagreement between the two models. From the Figure 7.5,
the author found that the Pn derived at the first step of the model is between the pressure
at the air-water interface of the resonator and the pressure at the opening end. However, to
capture the behaviour of the resonator in a better way, it is recommended not to choose to
average the pressure along the opening end but integrate the pressure over the whole surface.
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7.2 Parametric study

In this section, we will discuss the potential factors that could influence the performance of
the resonator curtain. The discussion will start with the individual resonator. The influence
of the internal resistance of the resonator will be investigated through the comparison of using
resonators with different damping coefficients. The performance of the single resonator can
be quantified through Q factor and the noise reduction spectrum. The combination of the
resonators with multiple resonance frequencies could also improve the performance of the
resonator. To a large extent, the void fraction of the resonator system could also determine
the intensity of the noise reduction, i.e. by changing the number of the resonators or the
distance between the resonator curtain and the noise source. The direction of the resonator
has nearly no influence on the noise reduction level as we know it’s due to the relatively small
dimension of the resonator compared with the wave lengths for low-frequency sound waves.

In this study, the waveguide with 10-meter water depth and 3-meter range contains a monopole
point source in the middle of the domain. The source is monochromatic and equally strong
in all directions. The source strength of the following cases is assumed to be S = 4π with the
unit N/m. The resonator array will be deployed at the target locations for different cases. To
the author’s knowledge, the presented model could be used to determine the optimal design
of the resonator system and recommendations will be proposed for the future design. By
choosing the proper parameters for the resonator curtain, one can optimise the design of a
resonator-based noise mitigation system.

7.2.1 The influence of the internal resistance of the resonator

In this section, the influence of the internal resistance of the resonator will be investigated
through comparing resonators with different damping coefficients. In the configuration ex-
amined hereafter, the resonator is placed at (r, z, φ) = (1.5m, 5m, 0◦), while the point source
is placed in the middle of the domain. First, the frequency response function for different
resonators needs to be computed by the COMSOL model. Then by substituting the trans-
fer function into the semi-analytical model, we could obtain the sound pressure level in the
frequency domain at every point in the field.

COMSOL model

The finite element model in COMSOL Multiphysics needs to be built in order to find the
frequency response function of the open-ended resonator. It is worth mentioning that the
frequency response function for individual resonator varies in different water depths. Since
the air column in the resonator can be compressed due to the varying static pressure, this
could shift the resonance frequency to the higher range. In the following cases, we manually
tuned the resonators to the same resonance frequencies by defining the proper slenderness.
For the sake of simplicity, the same transfer function is used for the resonators at the same
resonance frequency but at different water depth. This can cause some small deviations with
the real situation due to the influence of the open area.

As shown in figure 7.8, the additional internal resistances of the resonators could be added by
using the porous material on the internal top side of the open-ended resonator. The porous
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Figure 7.6: Schematic of the field 2

elastic material can be glass fiber, glass wool and rock wool fill. The empirical poroacoustic
model we used is Delany-Bazley-Miki model. The flow resistance Rf normally ranges from
1Pa ·s/m2 to 50×103Pa ·s/m2 for the above mentioned material. It is worth to mention that
Delany-Bazley-Miki model is only applicable to the range 0.01 < X < 1, with X = ρf · f/Rf .
The other models, i.e. Zwikker-Kosten model, wood model, could also be considered for
further development of resonators.

In this study, the flow resistivities are defined as 1, 10, 100, 1000, 5000 Pa ·s/m2 for five cases,
respectively. The other properties for the resonators remain same for each case. We could
read from Figure 7.9 that when we add the material with a higher flow resistivity, more energy
is damped by the resonator. In the Figure 7.9, the average sound pressure level in the air
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Figure 7.7

Figure 7.8: Configuration of the damped resonator

domain is shown in the frequency domain. With a higher flow resistivity, the peak of the curve
dropped down, and the resonance frequency shifted to the lower range. The performances of
this series of resonators agree with the behaviour of a single-degree-of-freedom system.
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Figure 7.9: COMSOL: The average sound pressure level (dB re 1µPa) in the air domain of
the resonator with different flow resistivities
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(a) (b)

(c) (d)

(e)

Figure 7.10: Fitting magnification factors for the open-end resonators with different flow
resistivities: (a) Rf = 1Pa·s/m2; (b) Rf = 10Pa·s/m2; (c)Rf = 100Pa·s/m2; (d)Rf =
1000Pa·s/m2; (e)Rf = 5000Pa·s/m2;
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Frequency response function

Given the pressure in the air domain of the resonator, the equivalent coefficients m, ξ, k can
be derived by fitting the curve of the magnification factor in frequency domain. The theory
for the derivation of the transfer function has been discussed in the Chapter 3.

Figure 7.11: The definition of Q factor

Q factor

The Q factor of the open-ended resonator could be estimated as fc/∆f , where the bandwidth
∆f indicates f2−f1, fc is the center frequency of the response. The quality factor Q represents
the rate of the stored energy in the resonator to the energy loss. As a general rule of the
thumb, when the quality factor is less than 1

2 , the system does not oscillate and is said to be
overdamped. Similarly, a system withQ factor larger than 1

2 is considered as the underdamped
system. The intermediate quality factor represents that a system is critically damped.

Table 7.1: Acoustic behaviour for open-ended resonators with various porous materials

Index Rf (Pa·s/m2) Resonance fre-
quency(Hz) Q factor Damping

coefficient
1 1 120 240 1.56× 10−3

2 10 120 200 2.81× 10−3

3 102 120 60 7.13× 10−3

4 103 119 30 1.74× 10−2

5 5× 103 117 24 2.37× 10−2

The higher flow resistivity the porous material we use, the lower Q factor the resonator will
have. This physically means that more energy is damped by the resonator with a higher
Rf material inside. For the resonator with minimal damping coefficient, although there are
large part of the energy is stored in the resonator. The energy in the sound wave shifts
into the higher frequencies, and the motion of the resonator raises up to very high amplitude.
Although the energy would be trapped by the resonator, it also causes destructive interference
for the sound waves around the resonance frequency as shown in the figure 7.12 (a) and
(b). In contrast, when we increase the internal resistivity of the resonator, the amplitude of
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(a) (b)

(c) (d)

(e)

Figure 7.12: Sound pressure level (dB re 1µPa) at point (r, z, φ) = (2.9m, 5m, 0◦) in
the field containing one resonator with different flow resistivities: (a) Rf = 1Pa·s/m2; (b)
Rf = 10Pa·s/m2; (c)Rf = 100Pa·s/m2; (d)Rf = 1000Pa·s/m2; (e)Rf = 5000Pa·s/m2;
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(a) (b)

(c)

Figure 7.13: Sound pressure level (dB re 1µPa) at point (r, z, φ) = (2.9m, 5m, 0◦) in
the field containing two resonators with different flow resistivities: (a)Rf = 100Pa·s/m2;
(b)Rf = 1000Pa·s/m2; (c)Rf = 5000Pa·s/m2;
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the destructive interference becomes lower, while the attenuation increases. Until the flow
resistivity reaches a threshold, the peak of the noise reduction starts to reduce, and less energy
is stored in the resonator.

When there are two resonators in the domain, the influence of the internal resistance is
intensified compared to single resonators. In figure 7.13, the SPL in the field containing two
resonators with three different flow resistivities are plotted. In the above experiments, we
could see that the internal resistivity of the resonator is a critical parameter that determines
the performance of the resonator. By balancing the noise reduction level and the destructive
interference, we could find an optimum value for the damping coefficient to improve the
performance of the resonator.

Figure 7.14: The influence of the end correction on the resonator

As shown in the figure 7.14, special attention needs to be given to the influence of the end
correction of the open-ended resonator. We have discussed the physical reason of adding an
end correction factor(Chapter 3).

7.2.2 The influence of number of resonators

Similarly as the air bubble curtain system, the void fraction could be one of the critical
parameters that determine the performance of the resonator-system. However, we could
approach this problem by first considering the number of resonators in an array. This section
compares the use of a single resonator, two identical resonators, three identical resonators
and two resonators with different resonance frequencies to reduce the sound level.

In the following cases, the flow resistivities of the resonators are all defined as 5000Pa·s/m2.
The array of the resonators is put in the domain at r′ = 1m,φ = 0◦, when there is more than

Master of Science Thesis



92 Parametric Study of noise reduction

(a) (b)

(c) (d)

Figure 7.15: Sound pressure level (dB re 1µ Pa) at point (r, z, φ) = (2.9m, 5m, 0◦) in
the field containing different number of resonators with Rf = 5000Pa·s/m2: (a) Single res-
onator; (b) Two resonators; (c) Three resonators; (d) Combined two resonators with different
resonance frequency.
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(a) (b)

(c) (d)

Figure 7.16: Sound pressure level (dB re 1µPa) distribution at cross section z=5 m at
resonance frequency 117 Hz in the field containing different number of resonators: (a) Single
resonator; (b) Two resonators; (c) Three resonators; (d) Free field.
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one resonator. We keep the distance between individual resonators as 1 meter and keep the
centre of the array at 5-meter water depth. Apparently, with more resonators in the array,
the peak of the noise reduction increases and more energy is trapped by the resonators. The
sound pressure distribution at the cross section at 5-meter water depth is shown in the figure
7.16. It’s also worth to mention that the resonator array could not only influence the pressure
field on the side of the resonator but also the whole field. To the author’s knowledge, the
dimension of the resonator is much smaller than the wave length. Thus, the direction of the
opening-end has nearly no influence on the pressure wave. The resonator itself works as a
secondary sound source. Thus the influence of the resonator is equal in all directions and
propagates radially.

7.2.3 The influence of different combination of resonators

As shown in figure 7.15 (c) and (d), the use of two different types of resonators to reduce the
sound level could lead to a wider attenuation spectrum than two identical resonators. Also,
the destructive interference can be eliminated by adding another resonator in the vicinity of
the non-target frequency. The behaviour of multiple resonance frequencies gives us insight in
potential improvement of the performance of the system through an optimal combination of
a series of resonators with proper damping coefficient and resonance frequency.

In order to discuss this problem from a holistic perspective, the two cases for two and six
mixed resonators are shown below in the figure 7.18.

The sound pressure level distribution at the cross section of 5 meter water-depth is also plotted
for the case with two mixed resonators and six mixed resonators, respectively.

(a) (b)

Figure 7.17: Sound pressure level (dB re 1µPa) distribution at cross section z=5 m at
resonance frequency 117 Hz:(a) Six mixed resonators; (b) Two mixed resonators;

7.2.4 The influence of the inclined angle

As we already discussed in Chapter 3 and 6, the behaviour of the open-ended resonator can
be approximated by the theory of SDoF system. Using BEM, the contribution of the open-
ended resonator to the pressure field is given by the surface integral over the opening end of
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(a) (b)

(c) (d)

(e) (f)

Figure 7.18: Different number of resonators: (a) Two mixed resonators: SPL (dB re
1µPa) at point (r, z, φ) = (2.9m, 1m, 0◦); (b) Six mixed resonators: SPL (dB re 1µPa)
at point (r, z, φ) = (2.9m, 1m, 0◦); (c) Two resonators: SPL (dB re 1µPa) at point (r, z, φ) =
(2.9m, 5m, 0◦); (b) Six resonators: SPL (dB re 1µPa) at point (r, z, φ) = (2.9m, 5m, 0◦); (e)
Two resonators: SPL (dB re 1µPa) at point (r, z, φ) = (2.9m, 9m, 0◦); (f) Six resonators:
SPL (dB re 1µPa) at point (r, z, φ) = (2.9m, 9m, 0◦);
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the resonator. In this surface integral, the normal derivative of the pressure and the Green’s
function both depend on the local position of the resonator, in other words, the inclined angle
of the resonator.

For the sake of simplification, the surface integral in the boundary integral equation is sim-
plified by the surface area times the contribution from the central point of the opening end.
Therefore, in the present model, the first term in surface integral could not take into account
the influence of the inclined angle without modifying the FRF. Although the obtained nor-
mal derivative of the Green’s function is position-dependent, the second term in the surface
integral accounts only for a relatively small amount of the contribution from the resonator.
Therefore, in order to investigate the influence of the inclined angle, one will need to derive
the frequency response function based on the every new position of the resonator.

(a) (b)

Figure 7.19: Two positions of resonators in the acoustic domain:(a) opening end facing the
positive z direction; (b) opening end facing the negative r direction.

(a) (b)

Figure 7.20: Two positions of resonators in the acoustic domain:(a) Position 1: opening end
facing the positive z direction; (b) Position 2: opening end facing the negative r direction.

As shown in Figure 7.19, the two finite element models are developed in COMSOL in order
to investigate the acoustic behaviour of resonators in different inclined angles. The resonator
is placed at the location (r, z, φ) = (0m, 0.5m, 0◦) in the cylindrical-shaped domain with the
dimension of z from 0 to 1m, r from 0 to 3m and φ from 0 to 2π. The waveguide has the
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same configuration, boundary and radiation conditions with the validation case.

The result from this study shows that the position of the resonator has a slight influence
on the pressure field for a single point source field for this specific case. In this case, the
configuration of the resonator is relatively small compared with the long wavelength given
the low-frequency sound waves. However, in practical case, the influence of the inclined
angle still needs further investigation for the sound radiation from pile driving. The sound
waves generated by offshore piling are in the form of Mach cone or pressure cone, which is
formed with a cone angle φ around 17◦ to 18◦. Therefore, the resonator is likely to have an
optimal inclined angle, which could achieve largest noise reduction level against the Mach
cone. However, it still requires further study for the field with the use of a complete resonator
system.

7.2.5 Conclusion

In this chapter, the theme of three-dimensional noise reduction prediction model with the
use of resonator arrays is treated. The influence of the internal resistance of the resonator,
number of the resonators and different combination of resonators have been discussed.

Based on the results from this chapter, we find the critical parameters that could determine
the behaviour of the resonator system. By adding the additional internal damping in the
resonator, one could widen the frequency range of the noise reduction and eliminate the
destructive interference in the vicinity of the target frequency. By choosing a proper combi-
nation of different resonators, one can absorb more energy by the internal vibration of the
resonator and dissipate more energy by the porous material. The void fraction is another
measure index of the performance of the resonator, which is determined by both the number
of the resonators we use and the distance between the resonator system and the noise source.
Obviously, the more resonators applied, the more noise reduction one can achieve. Whereas,
the void fraction is also related to the ballast mass that is used to compensate for the buoy-
ancy of the air. Therefore, it is advisable to find the optimal structure and proper location
of the resonator-based system in order to achieve our target noise reduction level.

The present model describes solely the resonator as an ideal SDoF system. In this study
we focus on the resonance effect, which is considered as the primary mechanism of the noise
reduction. But in reality, multiple reflections, refraction, and scattering effects could also
affect the pressure field. This part would need further investigation.
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Chapter 8

Model Application

In this chapter, we will focus on several cases of the model application. The first section will
focus on finding the optimal damping ratio for a single resonator, by using the damping ratio
varying from two percent to twenty percent. This provide a case of parameter optimization
for a resonator with better performance. The second section presents a field simulation with
the use of 15 resonators in three arrays. The configuration of the field is chosen based on the
upcoming lake test. The results given in the pressure field show an effective noise reduction at
the target frequency. In the third part, the sound radiation from pile driving is represented by
using an array of the phased point sources. The obtained results of this model are found to be
in a good qualitative agreement compared to a literature example. The arrays of resonators
are used in the field to mitigate the pressure waves generated from the phased point source
signals, which could show us the process of how the resonators interfere with the propagation
of the pressure waves.

8.1 Parameter optimization

As we already discussed in the last chapter, the damping coefficient has a large influence on
the acoustic performance of the resonator. To find the appropriate damping, we compare
the behaviour of the resonators with different damping ratios. The first step is to obtain the
frequency response functions for various damping ratios. In this case, we assume that the
resonators behave like a mass-spring-dashpot system. Therefore, by changing the damping
ratio in the ideal single-degree-of-freedom system, we could directly obtain the corresponding
transfer functions as shown in Figure 8.1.

To have an overview of the behaviour of the individual resonator, we put each resonator in
the domain with the dimension of (r× z×φ) = (5m×10m×360◦). From Figure 8.4, we read
that due to the relatively small size of the resonator, the influence of the resonator to the field
is quite small, especially when the damping ratio reaches 15 pertent. Therefore, we increase
the number of the resonator to five, and compare the resonators with a damping ratio of 0.1,
0.05, 0.02, respectively. The sound pressure levels at two points (r, z, φ) = (2.9m, 5m, 0◦)
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Figure 8.1: The frequency response functions for various resonators with different damping
coefficients

and (r, z, φ) = (2.9m, 9m, 0◦) are shown in Figure 8.4, one point is close to the sea surface,
the other one is close to the seabed. We could read from the graph that, the resonator with
a damping coefficient higher than 0.05 will cause no clear destructive interference, although
the less the damping the more noise reduction level at the target frequency can be achieved.
Therefore, the resonators with five percentage damping would be recommended to be used.
However, we know that in reality the damping coefficient is relatively difficult to measure but
still we could increase proper damping through adding porous material as we discussed in the
last chapter or other foam material to achieve a better performance.

8.2 Field simulation

In this section, a field simulation for an upcoming lake test is conducted in order to estimate
the ideal noise reduction level and the proper number of resonators needed. The test will
take place in the lake with 20 meter water depth. The underwater sound waves for this test
will be generated by a marine speaker, which will be placed in the middle of the steel frame.
Several arrays of resonators will be installed on the steel frame, where is about 0.55 meter
distance from the noise source. We assume that the noise source can generate sound waves
from 1 Hz up to 300 Hz. The sound pressure level distribution at one cross section of the
field is shown in frequency domain.

By using three arrays of resonators, each array containing five resonators, at one of the target
frequencies, 153 Hz, the noise reeduction level can be achieved to more than 10 dB. From
Figure 8.2, we found that the resonator system effectively reduce the pressure level in the
field at the coherent frequency. To verify this simulation, the results from the experiment will
be needed for the further study.
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(a) (b)

Figure 8.2: Pressure field at 153 Hz (dB re 1µPa): (a) with 15 resonators; (b) without 15
resonators;
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(a) (b)

(c) (d)

(e)

Figure 8.3: Comparison of the analytical solutions of SPL (dB re 1µPa) at point (r, z, φ) =
(2.9m, 5m, 0◦): (a) Single resonator with ξ = 0.02; (b) Single resonator with ξ = 0.05;
(c)Single resonator with ξ = 0.1; (d)Single resonator with ξ = 0.15; (e)Single resonator with
ξ = 0.2;
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(a) (b)

(c) (d)

(e) (f)

Figure 8.4: Comparison of the analytical solutions of SPL (dB re 1µPa) at point 1 (r, z, φ) =
(2.9m, 5m, 0◦) and point 2 (r, z, φ) = (2.9m, 9m, 0◦) : (a) Five resonators with ξ = 0.02 at
point 1; (b) Five resonators with ξ = 0.02 at point 2; (c) Five resonators with ξ = 0.05 at
point 1; (d) Five resonators with ξ = 0.05 at point 2; (e) Five resonators with ξ = 0.1 at
point 1; (f) Five resonators with ξ = 0.1 at point 2;
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8.3 The prediction of the noise reduction with the use of a
resonator-based noise mitigation system

8.3.1 The representation of the sound radiation from pile driving

In this section, in order to represent the sound radiation from pile driving, a method of using
an array of phased point sources is used, which is introduced by Reinhall and Dahal [1]. The
pulse delay in the point source is in order to account for the waves travelling down along
the pile at the supersonic speed, cp = 5048m/s. The results from this method have shown a
qualitative agreement with results from the wavenumber integration simulation [21].

For ith point source in the array, the source in frequency domain can be expressed by[1],

si(~r, f) = G(~r, ~ri, f)A(f)ei2πfτi (8.1)

where τi represent the time delay for each point source i, which is equal to source depth
zi divided by the supersonic speed cp. A(f) is the empirical amplitude weighing spectrum,
which is used to estimate the sound radiation from pile driving.

The superposition of the array of point sources can be used to represent the sound source as,

S1(~r, f) =
N∑
i=1

si(~r, f) (8.2)

It gives the complex amplitude spectrum of the first arrival of the sound generated from the
phased point sources, which represents the form of the pressure cone or Mach cone. For the
sake of simplicity, the other subsequent arrivals are not taken into account in this study.

In this case, we choose 39 phased point sources along the pile axis with the spacing 1 meter,
the water depth for the field is 40 meter. Before the inverse Fourier transform, the pressure
field in frequency domain is zero-padded in order to achieve a fine time-step interpolation
in time domain. As shown in Figure 8.5, the pressure field is obtained in time series. The
results show that no signal can be emitted before t = τi for each point source i = 1...N . The
signal in this case is determined as a single wave with a frequency of 300Hz. Figure 8.5 shows
that the longitudinal impulse waves travel down the pile with a supersonic speed cp, which
forming the inclined Mach cone in the water column. It can be seen that the inclination of the
wavefront has been qualitatively reproduced, compared with the FE-model [1] and WI-model
[21]. Therefore, based on the comparison of the results, we can conclude that this method
is able to represent the main characteristics of the sound radiation from pile drving. It also
allows us to predict the sound pressure level at large distance from the pile axis.

8.3.2 The noise reduction prediction by using the open-ended resonator
system

Based on the representation of the sound radiation from pile driving, the wave field is inves-
tigated further with the implementation of the resonator-system for the predictions of the
noise reduction level. The domain contains an open-ended resonator-system in 10-meter wa-
ter depth, with 19 point sources spacing 0.5 meters. Various positions and configurations of
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(a) t = 1 ms (b) t = 3 ms (c) t = 5 ms (d) t = 7 ms

Figure 8.5: Pressure field in time domain with an array of 39 phased point sources

the resonator-system are used in this study in order to find the critical parameters that have
large influences on the noise reduction. The position of the resonator system has a large in-
fluence on the performance of noise reduction. In this case, the resonator-arrays are placed at
∆r = 1.5m and ∆r = 10m, respectively. Each resonator-system consists of 20 arrays equally
distributed around the source axis as a resonator curtain, in which 20 resonators are placed
on each array. For the sake of simplification, there are 10 types of resonators are used in
total. However, in the practical case, the acoustic behaviour of the open-ended resonator will
depend on the water depth and the configuration. In other words, the number of the types
of resonators can be estimated as Ndepth ·Nresonator, in which Nresonator indicates the number
of different configurations of resonators, and Ndepth represents the number of different water
depths for one resonator with a certain configuration.

As shown in Figure 8.6, the black line with asterisk indicates that the level of noise reduction
is higher when the resonator system is placed near the source axis (∆r = 1.5m), compared
with the red line when the system is placed at the far position (∆r = 10m). The number
of the resonators for two cases is identical, when the system is placed at a longer horizontal
distance from the source axis, the interval between every two arrays of resonators is increased.
Therefore, the acoustic waves can pass through the resonator curtain with less influence.

Following the discussion on the position of the resonator system, the different number of
resonators used in the system is investigated further in this case. In chapter 7, we already
discussed the influence of the number of resonators in a parametric study, in which 2, 3, 4,
6 resonators are used in the domain containing a single point source solely. In order to have
a more generic description of the field, the moving point source and the complete resonator
system are used in this case. Each system is placed in the vicinity of the source axis, at
∆r = 1.5m. As shown in Figure 8.7, the more resonators are used in the system, the higher
noise reduction level can be achieved. The blue line indicates the baseline spectrum with the
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Figure 8.6: Different positions of the resonator system: average sound pressure level (dB
re 1µPa) at r = 25meter, φ = 180◦, along 10-meter water depth.

Figure 8.7: Different numbers of the resonators applied in the system: average sound
pressure level (dB re 1µPa) at r = 25meter, φ = 180◦, along 10-meter water depth.

moving point sources solely. The orange line represents the ambient noise spectrum without
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both point sources and resonator system. The blue line with circles shows that a resonator-
system containing 800 resonators can achieve a noise reduction level more than 20 dB around
140 Hz.

Based on the discussion above, we can conclude that the one of the primary parameters that
dominating the performance of noise reduction is the void fraction of the resonator-system, in
other words, the position of the system and the number of the resonators used in the system.
The void fraction for any resonator-based noise mitigation system can be expressed as:

β =
∑M
i=1 Vair,i ·Nresonator,i

Vsystem
(8.3)

in which Vsystem indicates the volume of the field which enclosed by the resonator curtain,
Vair,i represents the volume of the air for the resonator with index i, Nresonator is the number of
each type of the resonator with index i. The results from this study show that the resonator-
system placed in the vicinity of the pile is preferable. The increase of the number of the
resonator element can improve the acoustic performance of the resonator-system.
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Chapter 9

Conclusion and Recommendations

9.1 Conclusion

This thesis aims to answer the research question, "how to mitigate the noise from pile driving
by using a resonator-based noise mitigation system". The reasoning of the research question
was discussed in the introduction (Chapter 1). To have a better understanding of the physical
mechanism of different existing noise mitigation techniques, the advantages and disadvantages
of various systems is discussed (Chapter 2). Special attention to open-ended resonators was
given due to its promising acoustic behaviour. The comparison to Hydro-Sound Damper
was investigated by finite element model in COMSOL Multiphysics. The frequency response
function also was derived based on the numerical results, which is used to describe the acoustic
behaviour of resonators in a more generic basis (Chapter 3). Chapter 4 presents Qiu resonator,
which is proposed by the author. The design is implemented in COMSOL Multiphysics,
and a parametric study was made to find the dominating parameters. A three-dimensional
acoustically coupled noise reduction prediction model was developed by the author. This
model requires the accurate description of the noise source, the acoustic behaviour of the
resonators and the waveguide. The pressure field for the point source and the line source
has been discussed in Chapter 5. The governing equations and the corresponding matrix
equations are formulated in Chapter 6. Several parametric study cases are shown in Chapter
7. Several applications of the model are discussed in Chapter 8. In this chapter, the important
conclusions and recommendations for both offshore industry and future development of the
theoretical model are discussed.
Based on the study of the existing noise mitigation techniques in Chapter 2, it shows that the
resonator-based system is a promising way to mitigate the underwater noise. The resonator-
based noise mitigation systems have the following strengths:

• Based on the offshore demonstration tests, the technique could reach relatively high
noise reduction level;

• The resonator-based system can be tuned to certain target frequencies. Therefore, this
technique especially has better performance at low-frequency underwater noise;
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• The system usually consists of arrays of resonators, which does not require a complicated
method. Therefore, the deployment system can be only simple and convenient;

• The resonator-based system is flexible enough to work with different sized piles and also
can work together with other noise mitigation systems to provide multi-barriers;

• It’s convenient to modify the structure of the resonators to block various noise paths,
so it also provides a promising option to mitigate the Scholte waves along the seabed
interface;

The existing resonator-based noise mitigation techniques also have some disadvantages, which
are worth mentioning (in the case of the HSD system and the open-ended resonator system)
:

• The present resonator-based systems all lack commercial experience;

• The study on underwater resonators used for noise reduction is rather limited. The noise
reduction level has not been predicted by any theoretical model or numerical model yet;

Therefore, this study aims to build a three-dimensional noise reduction prediction model for
the application of a resonator-based noise mitigation system.

Chapter 3 focus on the theory of underwater Helmholtz resonator (in the case of the open-
ended resonator) and verify it by the finite element model in COMSOL Multiphysics. The
numerical model for hydro-sound damper was also built in order to compare with the acoustic
behaviour of the open-ended resonator and is verified through the well-known theoretical
model, Church model and Commander and Prosperetti model. The results from this section
show that the open-ended resonator ideally behaves as a single-degree-of-freedom system, the
theoretical model has good agreement with the numerical model.

The frequency response function was also derived in chapter 3. The section shows that the
ideal mass in a mass-spring-dashpot system is close to the real weight of water column, which
can also be seen as acoustic mass. The fitting between the response from the resonator with the
response of the analogous single-degree-of-freedom mass-spring-dashpot system could provide
us the parameters correspondingly. Different coefficients can be modified by changing the
dimensions of the resonator or adding porous material with various flow resistivities.

Based on the study on the existing noise mitigation systems, a new resonator was developed in
Chapter 4, named Qiu resonator. By using a layer of hyperelastic membrane to encapsulate
the air in the resonator, the deployment system for this new resonator can be simple and
convenient. It shows that the water depth could increase the radius of the inner elastic ball
for up to 0.8 cm. However, the air density could increase 5 times as much as the initial one.
The opening radius could influence the noise reduction level by changing the contact area
with the incoming waves. While the reason for the change of resonance frequency due to the
opening radius still needs further investigation. The thickness of membrane also influences
the resonance frequency. By using a thicker membrane, the resonance frequency can shift to a
higher range. Because the stiffness of membrane can physically determine the stiffness of the
analogous SDoF system. Thus, as shown in ω =

√
k/m, by increasing the stiffness coefficient,

the resonance frequency increases correspondingly.
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To improve the existing resonator-based noise mitigation systems, a three-dimensional noise
reduction prediction model is developed. The derivation of the governing equation and the
construction of Green’s function are discussed in Chapter 5 and Chapter 6. The pressure
field can be decomposed into the contribution from a point source and the contribution from
the resonator arrays. The pressure waves at the site of the resonator are determined by both
the noise source and the other resonators. Therefore, this is an acoustically coupled problem.
The first step is to obtain the pressure at the site of each resonantor by solving the matrix
equations. By using the Boundary Element Method, the formulation of the pressure field can
be solved by the boundary integral equation consisting of the surface integral of the opening
surface of the resonator and the volume integral of the point source. The advantage of this
method is that the Green’s function we derive could inherently satisfy the wave equation,
boundary conditions and the radiation conditions, except the conditions on the opening-end
of the resonators. It is worth to mention that the scattering effect is not included in this
model. Therefore, the other surface of resonator is not considered in the integral. In the
present model, we focus on the description of the acoustic behaviour of the resonator.

Chapter 7 deals with the investigation of the dominating factors, which could influence the
acoustic performance of the resonator-based noise mitigation system. A single resonator in
the waveguide is validated by using a finite element model in COMSOL Multiphysics. The
influence of the internal resistance, the number of the resonator and the combination of the
resonators with different resonance frequencies is investigated. The result from this study
shows that choosing a resonator with proper internal resistance could improve the efficiency
of the noise reduction. The increase in the number of resonators in the system indeed could
intensify the noise reduction level. The destructive interference is also found in this study.
It shows that although the mitigation of the sound takes place at our target frequency, the
resonator could shift part of the energy to higher frequency. This can be mitigated by using
resonators at the various resonance frequency. By doing this, a wider band of noise reduction
can be achieved and the destructive interference can be thoroughly mitigated.

Chapter 8 presents several modal applications. The damping coefficient is investigated further
in order to find the optimal value of the individual resonator. However, to achieve better
acoustic performance, other parameters still need to be further investigated and determined.
A field simulation is conducted for a upcoming lake test, which could estimate the proper
number of resonators needed to achieve a certain level of noise reduction. The sound radiation
from pile driving is represented by an array of phased point sources along the pile axis. The
Mach cone formed in this model shows a qualitative agreement with the results from FE
simulation or WI simulation in the past research. Based on the better description of the noise
source, the noise reduction levels with the use of the complete resonator system with different
positions and configurations can be predicted.

Besides, the present model potentially could achieve the following targets:

• Estimation of the required amount of resonators in order to achieve certain level of noise
reduction;

• Evaluate the "optimal" properties for an underwater resonator;

• Determine the "optimal" combination of different target frequencies in order to improve
the efficiency of the system;
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• The model can be compatible with the different resonator-based systems;

9.2 Recommandetions

9.2.1 Recommandetions for the development of noise mitigation system

Some recommendations for the future development of noise mitigation systems are listed
below:

1. The proper use of porous material could improve the acoustic performance of the res-
onators;

2. Combine resonators with various resonant frequencies, which could potentially achieve
a broad band noise reduction;

3. Combine of two noise mitigation systems with different working mechanism to provide
multi-barriers, i.e. using air bubble curtain in the vicinity of the pile and resonator-
based noise mitigation system at relatively large distance;

4. By using resonators along the seabed interface to mitigate the Scholte waves, this also
needs further study on the acoustic behaviour of resonators on the seabed surface envi-
ronment;

9.2.2 Recommandetions for the improvement of the current model

Some recommendations for the further improvement of the current models are listed below:

1. A more realistic model can be developed by including:

• The seabed can be modelled as a dissipative impedance boundary;
• The noise source could use a downward moving point source to model the process
of pile driving and the propagation of the sound waves;
• Incorporate the scattering, multiple reflections and refraction effect into the model;

2. Different piling methods to control the noise at the source can be incorporated into the
model in the future.
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Appendix A

Sound attenuation in seawater

The sound attenuation can be attributed to many effects, such as absorption and scattering
[18]. A part of energy can be absorbed due to viscous loss and being transformed into heat
when the sound propagate in seawater. Moreover, the inhomogeneities in seawater can result
in a decay of sound intensity by scattering effect. The different dominant process of sound
attenuation in seawater is shown in Figure A.1 [22]. The frequency dependence of attenuation
is discussed in many previous study [22, 23, 24].

The expression to describe this frequency dependence of attenuation can be formed as[22]:

α′ ≈ 3.3× 10−3 + 0.11f2

1 + f2 + 44f2

4100 + f2 + 3.0× 10−4f2(dB/km) (A.1)

We can read out from the above expression that the attenuation can increase with frequency.
Thus, low-frequency sound is relatively small in seawater[11].

Attenuation can be included by adding an imaginary part to the sound speed so that:

c = cr − ici (A.2)

The imaginary part of the sound speed is related to the attenuation α in nepers/m as:

ci '
α

ω
c2
r (A.3)

From the defination of the attenuation α′ in units dB/km, we have the ratio of the intensity
between two points 1 km apart given as:

α′ = −10log I(x+ 1km)
x

= −20log exp(−α(x+ 1km))
exp(−αx)

= 1000× 20loge× α = 8686α
(A.4)

Then substituting the above equation into the Eq. (A.2) and Eq. (A.3), this gives us:

c = cr − i
α

ω
c2
r = cr − i

α′

8686ωc
2
r (A.5)
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(a) (b)

Figure A.1: Sound attenuation in seawater: (a) different dominat process; (b) simplified
expression for frequency dependent attenuation

Hence, the wavenumber become a complex number as [25]:

k = ω

cr − iαω c2
r

= k0 + ik1 (A.6)

where k0 represents the real part of the wavenumber and k1 represents the imaginary part
of the wavenumber. The introduction of the complex wavenumber will affect the radial
wavenumber as well, which could result in a decrease along the radial direction for the solution
of the Bessel’s function. This physically means that the sound wave could attenuate over long-
range.
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Glossary

List of Acronyms

ABC Air Bubble Curtain

BBC Big Bubble Curtain

NMS Noise Mitigation Screen

HSD Hydro-Sound Damper

1DOFS One Degree of Freedom System

OWF Offshore Wind Farm
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