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Abstract 

Uncertainty assessment and management, as well as the associated decision making are increasingly important in a variety of scientific fields. 
While uncertainty analysis has a long tradition, meeting sustainable development goals through long-term Life Cycle Engineering (LCE) 
decision making demands addressing Deep Uncertainty (DU). DU characterizes situations where there is no agreement on exact causal 
structures, let alone probabilities. In this case traditional, probability based approaches cannot produce reliable results, as there is a lack of 
information and experts are unlikely to agree upon probabilities. Due to the nature of LCE, this paper argues that methods to better cope with 
DU can make a significant contribution to the management of LCE. We introduce a set of methods that use computational experiments to 
analyze DU and have been successfully applied in other fields. We describe Robust Decision Making (RDM) as the most promising approach 
for addressing DU challenges in LCE. We then illustrate the difference between applying traditional risk management approaches and RDM 
through an example, complemented with the interview findings from a company using RDM. We conclude with a discussion on future research 
directions. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 25th CIRP Life Cycle Engineering (LCE) Conference.  
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1. Introduction 

Over the last few decades, the life cycle engineering (LCE) 
research field has grown significantly. Achieving sustainable 
design and product development remains one of the central 
issues for the manufacturing industry [1], but also other 
domains where LCE concept has disseminated to, i.e. the 
food, building and textile industry [2]. Additionally, these 
industries dealt with a paradigm shift from a product-centric 
to a service paradigm, which enables customers with 
accompanying services and systems for the products produced 
[3].  

It has been suggested by both researchers and practitioners 
that the development of LCE and in particular life cycle 
assessment (LCA) should keep pace with the complex and 
changing product development systems [4]. LCA is an 

important tool to assess the environmental impacts of product 
and service designs to support achieving sustainability. These 
changes lead to an increased importance of addressing 
uncertainty throughout the whole life cycle of a product or 
service. Uncertainty considerations are particularly relevant 
for the accuracy of LCA [5] and therefore, research in that 
direction is of great significance for the field.  

Uncertainty assessment and management are also 
increasingly important (and controversial) in a variety of other 
scientific fields, for example climate adaptation planning, 
project management, as well as safety and security 
engineering. Uncertainty analysis and its research have a long 
tradition [6]. A range of quantitative analytical approaches to 
deal with uncertainties of stochastic nature is readily 
available. Traditionally, probability based approaches have 
been employed in engineering practice [7]. However, design 

© 201  The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
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and engineering activities often bring novelty, uniqueness, 
and first-of-a-kind solutions to an engineering problem [8]. 
The most important decision making situations in such cases 
are dominated by so-called 'Deep Uncertainty' (DU): 
uncertainties for which experts do not agree upon models to 
describe interactions among a system’s components, and 
subsequently do not agree upon corresponding probabilities 
and possible outcomes [9]. This leads to limited applicability 
of traditional risk and uncertainty management approaches 
and the need for developing novel approaches. While there is 
no consensus among researchers on a single approach to cope 
with DU, there is the agreement that it should be modelled 
differently. However, the tendency in practice is still to 
employ traditional, probability based approaches. These 
traditional methods heavily rely on experts' judgement, prior 
experience and previously collected data, which is not 
available in situations governed by DU [10]. 

Decisions made by designers and engineers have a 
significant impact on the overall strategic value of the product 
and services produced [11]. The increasing societal and 
business criticality of product development projects raises a 
need to more thoroughly explore the various fundamental 
approaches to describe and quantify DU as part of LCE. 

This is a conceptual paper that discusses the need to go 
beyond probability based tools in order to better address 
challenges in LCE and introduces the notion of DU and its 
representations. It is structured in six parts. First, the notion of 
DU is explained. An overview of the methods used to analyse 
DU is provided in Section 3. We then describe one of the 
methods, Robust Decision Making (RDM), in more detail in 
Section 4. Section 5 is a conceptual discussion, where we 
elaborate on RDM in contrast to traditional approaches in the 
context of LCE challenges through a water resource 
management example. Moreover, we interview the head of 
the risk management department in large-scale engineering 
company on their experiences with RDM and DU 
management. Conclusions and future research directions are 
elaborated in the final Section 6. 

2. Deep Uncertainty and its representations 

It is important to distinguish between uncertainties that can 
be treated through probabilities and uncertainties that cannot. 
Different taxonomies and representations of uncertainty have 
been developed. An uncertainty matrix was proposed by [12], 
which synthesised various taxonomies, frameworks, and 
typologies of uncertainties from different fields. The 
taxonomy has further been extended by [13], see Table 1. The 
goal of this synthesised overview is to support modelers in 
identifying uncertainties and communicating these 
uncertainties to decision makers. The typology of [12] 
conceptualises uncertainty as a three dimensional concept. 
These three dimensions are (i) the level dimension, (ii) the 
location dimension, and (iii) the nature dimension. Of these, 
the level dimension tries to capture differences in the types of 
scales that are used in practice when assigning likelihood to 
events [13]. Within this taxonomy, DU is understood as Level 
4 and Level 5. This understanding is broadly consistent with 
[9], who defined DU as "the condition in which analysts do 

not know or the parties to a decision cannot agree upon (1) the 
appropriate models to describe interactions among a system’s 
variables, (2) the probability distributions to represent 
uncertainty about key parameters in the models, and/or (3) 
how to value the desirability of alternative outcomes." 

Table 1. Synthesised uncertainty matrix by [13] and the progressive transition 
of levels of uncertainty from complete certainty to complete ignorance by 
[14]. 

Location 
Level 

Level 1 Level 2 Level 3 Level 4 Level 5 

Context A clear 
enough 
future 

Alter-
nate 
futures 
(with 
probab-
ilities) 

Alter-
nate 
futures 
with 
ranking 

  

A multi-
plicity of 
plausible 
futures 

An un-
known 
future 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 
System 
model 

A single 
(deter-
ministic) 
system 
model 

A single 
(stochas
tic) sys-
tem 
model 

Several 
system 
models, 
one of 
which is 
most likely 

Several 
system 
models, 
with 
different 
structures 

Un-
known 
system 
model; 
we 
know 
we 
don’t 
know 

System 
out-
comes 

A point 
estimate 
for each 
outcome 

A confi-
dence 
interval 
for each 
outcome 

Several sets 
of point 
estimates, 
ranked 
according 
to their per-
ceived 
likelihood 

A known 
range of 
outcomes 

Un-
known 
out-
comes; 
we 
know 
we don’t 
know 

Weights 
on out-
comes 

A single 
set of 
weights 

Several 
sets of 
weights, 
with a 
probabil
ity at-
tached 
to each 
set 

Several sets 
of weights, 
ranked 
according 
to their per-
ceived 
likelihood 

A known 
range of 
weights 

Un-
known 
weights; 
we don't 
know 
we don’t 
know 

 
In their work, [14] further explain and categorise each level 

of uncertainty. Most of the LCE problems faced by decision 
makers are characterised by higher levels of uncertainty. For 
instance, designing a bridge or a tunnel with a 100-year 
lifetime involves some of the following considerations: 
estimating traffic intensity for the next hundred years, 
allowing the chosen design to adapt to any potential new 
installations and technologies that can/should be added to the 
system, estimating changes in the sea level, etc. As there is a 
wide range of outcomes for these alternatives that can take 
place, the question is how to best prepare for any combination 
of alternatives that my happen. The evolving, iterative, social 
and complex nature of LCE corresponds to a multiplicity of 
plausible futures, several variants for system models, a range 
of outcomes and associated weights or preferences regarding 
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the various outcomes (corresponding to Level 4 or 5 
uncertainty described in Table 1).   

While many of the traditional analytical quantitative 
approaches are designed to deal with Level 1, Level 2 and 
Level 3 uncertainties [15, 14], it has been proven that those 
methods face challenges when dealing with the higher level 
uncertainty, i.e. Deep Uncertainty [14]. It can be argued that 
DU might sometimes be reduced by additional research and 
information gathering. However, that might lead to additional 
and hidden costs and delays, thus making it not feasible. This 
leads to the “real life” situations in LCE where actions have to 
be taken now, that we know are based on incomplete 
information and have significant impact on following 
processes and outcomes. We argue that DU-based approaches 
can offer relevant decision support to these types of decision 
situations. 

A range of traditional uncertainty and risk management 
methods have been applied to Level 4 and Level 5 problems. 
Group processes, such as the Delphi technique [16], have 
helped large groups of experts combine their expertise into 
narratives of the future. This can be understood as a “Level 4” 
method, where plausible future scenarios are developed 
without necessarily quantifying the associated uncertainties. 
In his work [17] illustrates examples in risk analysis for which 
classical Monte Carlo methods yield incorrect answers when 
used to quantify higher levels of uncertainty. What IT 
development brought is statistical and computer simulation 
modelling that allow capturing quantitative information about 
the extrapolation of current trends and the implications of new 
driving forces. On the other hand, formal decision analysis 
can systematically assess the consequences of such 
information. Some more recently developed approaches, such 
as scenario planning help individuals and groups accept the 
fundamental uncertainty surrounding the long-term future and 
consider a range of potential paths, including those that may 
be inconvenient or disturbing for organizational, ideological, 
or political reasons [18]. 

However, despite this rich legacy, one key aspect remains 
a problem. The traditional methods briefly outlined above 
face challenges when dealing with long term multiplicity of 
plausible futures, unknown causal structures, probabilities and 
difficulty in identifying preferred solutions. In the following, 
we introduce a family of conceptually related approaches that 
are being used for coping with such situations, i.e. Deep 
Uncertainty. 

3. A family of related conceptual approaches for coping 
with Deep Uncertainty  

 The DU literature rests on three key concepts: 
 
A. Exploratory modelling: in the face of DU, one should 
explore the consequences of the various presently practically 
irreducible uncertainties for decision-making [19, 20].  This 
exploration uses computational scenario-based techniques for 
the systematic exploration of a very large ensemble of 
plausible futures [21, 22, 23]. 
B. Adaptive planning: decision robustness is to be achieved 
through plans that can be adapted over time in response to 
how the future actually unfolds [24, 13, 25]. 

C. Decision support: the aim of decision advise is to 
facilitate learning about a problem and potential courses of 
action, not to dictate the right solution. This entails a shift 
from a priori to a posteriori decision analysis. [26]. 
 Instead of determining the best predictive model and 
solving for the uncertainty mitigation procedure that is 
optimal (but fragilely dependent on assumptions), the 
underlying idea is that in conditions of DU it is better to seek 
among the alternative decision options those actions that are 
most robust — that achieve a given level of goodness across 
the multitude of models and assumptions consistent with 
known facts [27]. From an analyst's and managerial point of 
view that means that the aim is no more to answer “What will 
happen?” question, but rather “Given the agreement that one 
cannot predict everything, which actions available today are 
likely to serve best in the future and keep my options open?” 
 
 A family of approaches exists for dealing with DU: 
 

Assumption-Based Planning was developed at the 
RAND Corporation almost 30 years ago as a tool for 
improving the adaptability and robustness of an existing 
policy/plan/design [28] 

Robust Decision Making (RDM) uses multiple views of 
the future to iteratively stress test one or more candidate 
strategies over many scenarios and refine the strategies in 
light of this [27]  

Adaptive Policymaking was specifically developed to 
support the implementation of long-term plans despite the 
presence of uncertainties  

Adaptation Tipping Points and Adaptation Pathways 
both approaches the timing of actions and were developed for 
water management [29] 

Dynamic Adaptive Policy Pathways combines the work 
on Adaptive Policymaking with the work on Adaptation 
Tipping Points and Adaptation Pathways [24]. 

We further describe RDM as a promising approach to 
address the challenges in LCE under DU. RDM offers a 
structured way for planning under DU and it is the best known 
DU approach. Simulation models are used to evaluate 
different designs over a wide variety of different conditions. 
Next, using scenario discovery [30, 31], the analyst can 
discover conditions under which designs fail. In light of this, 
designs can be improved. RDM can support decision making 
under DU in LCE by providing recommendations that enable 
managers to choose and improve a design that produces 
satisficing outcomes across a broad range of possible future 
conditions. 

4. Robust Decision Making to manage Deep Uncertainty  

Robust Decision Making represents an approach that 
together with a set of model-based tools supports decision 
making under DU. It has been developed over the last 20 
years, primarily by researchers related to the RAND 
Corporation [28]. The RDM framework helps decision 
makers to use multiple views of the future in support of a 
thorough investigation of modelling results that helps to 
identify a design that [9, 32]: 
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i. is robust (i.e., it performs “well enough” across a broad 
range of plausible futures, but may not perform optimally 
in any single future; as well as has little regret),  

ii. avoids most situations in which the design would fail to 
meet its goals, and  

iii. makes clear the remaining vulnerabilities (i.e., conditions 
under which the design would fail to meet its goals). 
 
According to [27], RDM includes the following five steps: 
 

1. Scoping — determine the scope of the analysis by 
identifying exogenous uncertainties, modelling options, 
key relationships, and performance metrics; construct a 
simulation model that relates actions to consequences. 

2. Simulation — identify a candidate model to evaluate and 
run it against an ensemble of scenarios; 

3. Scenario discovery — identify vulnerabilities of the 
candidate model (i.e., which combinations of exogenous 
uncertainties, and in which ranges, cause the design to fail 
to meet the goals); 

4. Adaptation — identify hedging actions (modifying 
existing models or defining new ones) to address these 
vulnerabilities. Repeat steps 2 and 3 for additional 
candidate models; 

5. Display — Plot expected outcomes of all models over 
probabilities of vulnerable scenarios, and choose the most 
robust option for implementation. 

 
Over the years, RDM has been employed to support in 

strategic planning problems in a variety of fields, including 
climate change [33], complex systems [34], economic policy 
[35], flood and water risk management [36, 37]. 

5. Discussion of uncertainty quantification in LCE  

Given the importance of decision support in LCE, 
exploring approaches for dealing with DU is essential. Some 
of the non-probabilistic methods introduced by [38] try to 
resolve the problem within “predict and act” paradigm in risk 
and uncertainty management, by introducing methods that are 
less reliant on probabilistic data. This set of methods 
corresponds more to the improvement of LCA by allowing 
better, more accurate estimates. Also, these methods allow the 
experts to provide information in data formats they feel more 
comfortable with (points, intervals, ratios as well as their 
combination), depending on the confidence level. Some 
studies further enhance the usage of non-probabilistic 
methods through comparative analyses with probabilistic 
approaches [39].  

The approaches discussed in this paper on the other hand, 
drop the "predict and act" thinking altogether and introduce a 
“monitor and adapt” paradigm to replace it. These approaches 
change modelling more fundamentally and have produced 
reliable results in the fields such as water management [37], 
climate change [20], and policy related research [40]. Once 
crucial decisions under DU are made and additional 
information and knowledge are collected, traditional 
approaches can be employed to continue the uncertainty 
management in LCE.   

Arguably, challenges that practitioners face in the other 
fields are in many ways close to the ones that are often seen in 

LCE. For instance, such situations are characterised by a large 
number of stakeholders, weak available information, 
significant impact on the further process and a noteworthy 
societal impact. We focus on the decision analytics part and 
the way in which these methods work and what kind of 
insights they produce in the context of LCE through the lens 
of one representative approach, RDM. 

Traditionally in engineering, when dealing with lack of 
hard data, uncertainty analysis is based on expert judgement. 
Experts are asked to provide precise estimates on different 
activities and these estimates are the input for probabilistic 
analyses. The models used in these analyses need to have all 
the activities and correlations predetermined upfront. For a 
number of reasons these correlations are not always obvious 
and visible to the modellers. 

With the latest developments in the manufacturing industry 
it is often not feasible to find solid ground for estimating 
probabilities. Even more so, subjectivity in expert judgement 
remains challenging [41, 42]. Furthermore, availability and 
quality of background information as well as a number of 
assumptions behind the calculations are not reflected in the 
results. 

The current trend of achieving desirable life cycle 
properties (i.e., “-ilities”) further challenges the applicability 
of deterministic models [43]. As stated in [44], a survivable, 
flexible, or evolvable system should be able to sustain value 
delivery over time by responding to exogenous changes in the 
operational environment. To achieve that, we need to allow 
adaptivity and imprecision throughout the life cycle, and 
explicitly design for this.   

One way to do that is to employ RDM in LCE: a large 
number of futures are generated based on performance 
criteria. First, RDM is used to sample a wider range of 
futures, which are subsequently assessed to see whether they 
are dire, benign, or opportunistic. Second, it offers a holistic 
assessment of the performance of generated options over the 
wider range of futures. The idea is that a design solution 
should work satisfactorily over a broad range of these possible 
futures. Also, RDM identifies which combinations of 
uncertain future stresses leads to system vulnerabilities 
through ‘scenario discovery’ [45, 46]. The 5-step RDM 
process (see above) is then repeated iteratively until a suitably 
robust solution is found. RDM aims to assist in the 
development of a solution whose performance is good enough 
over a wide range of futures (i.e., it is robust) rather than an 
optimal solution for a single specific future. 

An example is presented in [45], where the authors applied 
RDM for a water management problem when statistical 
distributions of future events are poorly known, and followed 
the five described steps. In terms of LCE, RDM differs from 
traditional approaches, for instance Scenario Planning, by 
sampling a larger number of possible scenarios that are further 
evaluated. In the mentioned example, they generated 311080 
possible simulations/scenarios, whereas Scenario Planning 
typically involves the evaluation of only a few identified 
scenarios. This provides more thorough analyses (for 
example, minimizing life cycle regret) that improve the 
quality of decision making in LCE, which impacts the quality 
of products and systems produced.  
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It is worth noting that such analyses are now feasible given 
the advances in computational methods. Moreover, RDM is 
complementary to other approaches [45] that bring additional  
information to the decision makers when managing DU. 

This kind of modelling does not require unjustified 
assumptions and provides a structured framework for iterative 
refinement of future plans.  

 
Discussion on RDM in LCE context with practitioners 
 

Our case company is a large Danish company with 
extensive experience in designing and managing large 
engineering projects, including assessing cost and operational 
life cycle properties of complex, long life cycle infrastructure 
systems. We interviewed the head of the risk management 
department on his experience with RDM. 

In their practice they recognized the need to look for 
alternative approaches that can actually manage DU. They 
analysed different options and decided to use RDM on one of 
their projects.  

Several limitations were raised regarding RDM: first, in 
their experience, it can still be open to debate which design to 
choose when simulating the systems life cycle properties. 
RDM does not provide a “simple” answer and the analysis 
results must be further interpreted in the decision making 
process. Second, also RDM-based assessments of, say, 100-
year life cycle system properties are based on current data, 
even if it is analysed and interpreted differently. Third, there 
are projects where the use of RDM is not justified, i.e. 
projects only involving the first three levels of uncertainty, 
where similar engineering solutions exist, where mostly 
uncertainties of stochastic nature are present, and the lifetime 
is rather short. Clearer guidance is needed when RDM 
effectively adds value to LCE decisions, and when not. 

The case company agrees that there are LCE tasks in 
projects where higher levels of uncertainty are present and 
that currently employed, traditional approaches are only 
offering modelling capabilities corresponding to the first three 
levels of uncertainty. These cases are where life cycle 
performances of a one-of-a-kind bridge of 100-year lifetime 
have to be assessed, and they are dealing with first-of-a-kind 
solutions for engineering problems, novel technologies, new 
locations, more stakeholders and significantly longer 
lifetimes. Often, as in the water management example, 
traditional modelling approaches require them to make 
“precise” predictions based on the limited information 
available. That is where DU approaches can significantly 
support uncertainty management by more thorough analyses 
of possible alternative futures.  

6. Conclusions 

Risk and uncertainty assessment methods are widely used 
to support decision-making processes. Their ability to create a 
necessary level of confidence in the results is very important. 
To create such confidence, the key is to have a systematic, 
transparent, and rational analysis of uncertainty and the 
associated decision making. 

There are a number of methods on hand to deal with 
uncertainty, so it is important to select the method best suited 
to the uncertainty in question. It would be desirable to have a 
single method capable of quantifying all types of uncertainty. 
Traditionally, one candidate for this task is probability theory. 

The design risk and uncertainty management practice has 
so far heavily relied on probability based methods when 
treating uncertainty. We acknowledge the large merit of 
probability based methods, but we also point out limitations 
that lead to the need for frameworks beyond probability. One 
of the axioms in probability based approaches is that precise 
measurements of uncertainties can be made [47]. However, 
challenges have emerged from both theoretical and practical 
point of view. This has triggered the development of 
alternative approaches in other fields. The methods introduced 
in this paper rely on the idea that imprecision and adaptivity 
correspond better to the weak information available in LCE. 

This is the first paper to our knowledge where the ‘monitor 
and adapt’ paradigm is suggested for application in LCE to 
improve risk and uncertainty management practices. We raise 
the importance of distinguishing DU from uncertainty due to 
variance and point out complexities that it brings to decision 
making. Given the evidential need to go beyond probabilities 
when dealing with DU, we provide insights of what novel 
approaches offer and where they have been used. These 
approaches need further adapting to the conditions of LCE.  

We further introduce RDM as a specific method for coping 
with DU in LCE. Nevertheless, in order to demonstrate the 
full benefit of RDM for LCE, real case studies are needed, as 
well as illustrative examples/synthetic cases. Future research 
in that direction would not only allow better treatment of DU, 
but also broaden our understanding of decision making 
support in such situations. In our view, it is essential for the 
field to consider these relatively recently developed methods 
and in particular their application potential when looking for 
more appropriate solutions to analyzing and quantifying 
uncertainty in LCE. 
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