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Abstract

Partial Discharges(PD) are commonly produced in defects within
the insulation systems of high voltage equipment. These discharges
are typically nanosecond current pulses in the amplitude range of
milli-amperes. A long term exposure of the insulation system to these
partial discharges accelerate the aging mechanisms that eventually
lead to the final breakdown of the insulation system. Such insulation
breakdowns in High Voltage (HV) / Medium Voltage (MV) equipment
typically involve arc-flash/fire hazards, posing safety threats. More-
over probable undelivered power and huge financial losses are also
associated.
Early detection of PD activity can provide warnings about pending
insulation/device failures and hence, maintenance or repair activities
can be scheduled before breakdown occurs. Moreover, clustering of
PD due to different types of sources is of practical importance as it
indicates the severity of defect and provides an insight into the time
available for repair activities before complete breakdown. State of the
art tools for electrical PD monitoring are expensive and cannot be eco-
nomically deployed over a large network of HV/MV assets. Moreover,
they employ classification schemes based on less robust PD features.
This thesis marks the completion of the first stage in the process of
building an open source, cost-effective, automated embedded online
partial discharge detection tool for feature extraction and PD classifi-
cation based on new, advanced robust features of partial discharges.
As an outcome of this thesis, an embedded solution for real time PD

detection and feature extraction was developed to facilitate future PD

classification.
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Abstract

Partial Discharges(PD) are commonly produced in defects within the insulation sys-
tems of high voltage equipment. These discharges are typically nanosecond current
pulses in the amplitude range of milli-amperes. A long term exposure of the insulation
system to these partial discharges accelerate the aging mechanisms that eventually lead
to the final breakdown of the insulation system. Such insulation breakdowns in High
Voltage (HV) / Medium Voltage (MV) equipment typically involve arc-flash/fire hazards,
posing safety threats. Moreover probable undelivered power and huge financial losses
are also associated.
Early detection of PD activity can provide warnings about pending insulation/device
failures and hence, maintenance or repair activities can be scheduled before breakdown
occurs. Moreover, clustering of PD due to different types of sources is of practical impor-
tance as it indicates the severity of defect and provides an insight into the time available
for repair activities before complete breakdown. State of the art tools for electrical PD
monitoring are expensive and cannot be economically deployed over a large network
of HV/MV assets. Moreover, they employ classification schemes based on less robust PD

features. This thesis marks the completion of the first stage in the process of building
an open source, cost-effective, automated embedded online partial discharge detection
tool for feature extraction and PD classification based on new, advanced robust features
of partial discharges. As an outcome of this thesis, an embedded solution for real time
PD detection and feature extraction was developed to facilitate future PD classification.

v



vi



Acknowledgments

Firstly, I would like to thank Prof. Dr. Ir. Rene Van Leuken and acknowledge his
method of providing subtle directions throughout my thesis and not disclosing the
correct way (as there is none). As the project had to be designed from scratch, Rene’s
fine sense of an abstracted, high level understanding and deep technological know-how
helped me a lot in achieving my thesis goals. Secondly, I extend my gratitude to Prof.
Dr. Armando Rodrigo Mor for always being friendly and supportive and showing great
willingness for imparting knowledge from his domain. Moreover, I am grateful to Dr.
L.C. Castro Heredia, for clearing my doubts from time to time. This thesis work would
not have been possible without his considerate efforts.
I would also like to thank my friends Milan, Divyam, Shashwat, Hemanth, Parag ,
Parul, Uttam and Vishnu for being a constant source of entertainment in this high-
pressure Masters life.
Lastly, but most importantly I would express my love and gratitude towards my mother,
Dr. Alpana Joshi, father Dr. Pradeep Kumar Joshi and loving sister Lt. Cdr Vartika
Joshi for being the three pillars of love and inspiration all throughout this journey.
Without their support, none of this would have been possible.

Ayush Joshi
Delft, The Netherlands
28-11-2017

vii



viii



Contents

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The classification process . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 PD detection and monitoring techniques . . . . . . . . . . . . . 4

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Thesis Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Report Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Related Literature and Pre-Implementation Analysis 9
2.1 PD Test Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 About Red Pitaya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Zynq 7010 SoC . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Scope of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 High level platform Requirements . . . . . . . . . . . . . . . . . . . . . 15
2.5 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Architectural Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7 Architectural alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7.1 Fixed Point based Architecture . . . . . . . . . . . . . . . . . . 34
2.7.2 An alternative architecture . . . . . . . . . . . . . . . . . . . . . 34

2.8 Throughput and Bandwidth Requirements . . . . . . . . . . . . . . . . 35
2.9 Fixed point analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.10 System Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.11 High Level Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 System Overview 41
3.1 Data Acquisition from ADCs . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 The Main System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Packet Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Implementation and IP verification 51
4.1 FPGA Design and Verification Methodology . . . . . . . . . . . . . . . . 51
4.2 IP Verification Environment Setup . . . . . . . . . . . . . . . . . . . . 53
4.3 Signal Acquisition and Pre-Processing Workload . . . . . . . . . . . . . 55

4.3.1 System Initiator (Sys init) IP . . . . . . . . . . . . . . . . . . 56
4.3.2 Trigger|Peak|Filtering (trig peak un filter) . . . . . . . . . 57
4.3.3 Phase Detector (phase detector) . . . . . . . . . . . . . . . . . 60

ix



4.3.4 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 Signal Processing Algorithm Workload . . . . . . . . . . . . . . . . . . 63

4.4.1 Router(router) . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.2 Frequency domain Algorithm(algo freq) . . . . . . . . . . . . . 63
4.4.3 Time domain Algorithm(algo time) . . . . . . . . . . . . . . . 64
4.4.4 Packet Selector(packet selector) . . . . . . . . . . . . . . . . 64
4.4.5 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Hardware software co-design and integration . . . . . . . . . . . . . . . 66
4.5.1 Software application . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Evaluation 71
5.1 Functional Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.1 Tests A and B . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.2 Test C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Latency and throughput . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3 Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Conclusions and Future work 79
6.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A Appendix 85
A.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.2 Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

x



List of Figures

1.1 HV equipment insulation degradation . . . . . . . . . . . . . . . . . . . 2
1.2 Deteriorating/Failing HV assets due to prolonged PD activity . . . . . . 3
1.3 The classification process . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Scheme of partial discharge test platform . . . . . . . . . . . . . . . . . 10
2.2 Scheme of partial discharge test platform (Elaborated) . . . . . . . . . 10
2.3 Frequency response of HFCT sensor . . . . . . . . . . . . . . . . . . . . 11
2.4 Phase dependent voltage output derived from test setup . . . . . . . . 12
2.5 Red Pitaya Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 ZYNQ 7010 SoC Overview . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Scheme of user requirements from the finished feature detection system. 15
2.8 Jumper settings for fast ADC inputs of Red Pitaya . . . . . . . . . . . 17
2.9 A PD pulse test-set recorded at at 200Msps . . . . . . . . . . . . . . . 17
2.10 ADC interpretation for LV mode . . . . . . . . . . . . . . . . . . . . . 18
2.11 ADC interpretation for HV mode . . . . . . . . . . . . . . . . . . . . . 19
2.12 Scheme of PD acquisition . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.13 Simplified PD Detection circuit terminated at Red Pitaya’s input ADC0

(50Ω effective input impedance) . . . . . . . . . . . . . . . . . . . . . . 22
2.14 Time domain calculations flowchart . . . . . . . . . . . . . . . . . . . . 24
2.15 Streaming Scheme for Charge Calculation . . . . . . . . . . . . . . . . 25
2.16 sines and cosines corresponding to recording periods from 1 to 10us

stored as look-ups in FPGA’s BRAM . . . . . . . . . . . . . . . . . . . 28
2.17 Second order Butterworth filter (Direct form 1) . . . . . . . . . . . . . 29
2.18 Phase calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.19 Cached Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.20 Cached Sub-Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.21 Scheme of Fixed Point Compute block facilitating real time acquisition

and compute capabilities with controlled utilization . . . . . . . . . . . 34
2.22 Throughput and bandwidth requirement to facilitate real time constraint 36
2.23 Arbitrary precision fixed point data type [1] . . . . . . . . . . . . . . . 36
2.24 Fixed point analysis test set (voltage pulses) . . . . . . . . . . . . . . . 37
2.25 Flowchart representation of Fixed Point Analysis . . . . . . . . . . . . 38
2.26 Fixed point proposals based on histogram coverage . . . . . . . . . . . 38
2.27 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Data Acquisition IP [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Data Acquisition IP connected to our system . . . . . . . . . . . . . . . 41
3.3 System level implementation overview and scope of implementation in

this thesis work (colored region) . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Block Diagram demonstrating data movement and control signals (in

italics) between the IP’s handling Signal Acquisition and pre-processing
workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xi



3.5 Phase Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6 Block Diagram demonstrating inter-connections between IPs handling

signal processing algorithms workload . . . . . . . . . . . . . . . . . . . 47

4.1 Three phase Design and Verification Approach . . . . . . . . . . . . . . 51
4.2 A testing approach (after Software-Hardware integration) . . . . . . . . 52
4.3 Final test setup after software hardware integration . . . . . . . . . . . 53
4.4 Functional Verification Process . . . . . . . . . . . . . . . . . . . . . . 54
4.5 Test set 0 - Simulated ADC values for two pd pulses (50mA and -50mA),

pulse width = 80ns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 Test phase - Simulated ADC values for sine wave with π/3 offset . . . . 55
4.7 Trig Peak un filter in STATE 0 . . . . . . . . . . . . . . . . . . . . 58
4.8 Trig Peak un filter in STATE 1 . . . . . . . . . . . . . . . . . . . . 59
4.9 Encapsulated Packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.10 Verification scheme for Acquisition and pre-processing . . . . . . . . . . 61
4.11 Response of sys init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.12 Response of trig peak un filter and phase detector . . . . . . . . 62
4.13 Verification scheme for signal processing algorithms stage . . . . . . . . 65
4.14 Response of signal processing algorithm stage (algorithm selected =0

[Frequency Domain]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.15 Features extracted (frequency domain) . . . . . . . . . . . . . . . . . . 66
4.16 Configuration IP connected to IP subsystem . . . . . . . . . . . . . . . 67
4.17 Software Application Scheme(ARM 0) . . . . . . . . . . . . . . . . . . . 67
4.18 Extracted features for 50 (up) and -50 mA(down) PD - signed decimal

notation - Frequency Domain - Vivado IDE . . . . . . . . . . . . . . . 68
4.19 Extracted features for 50 (up) and -50 mA(down) PD - signed decimal

notation - Frequency Domain - Vivado SDK - Numbers on extreme right
being DRAM addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.20 Constantly increasing phase corresponding to 1 DMA packet (512 PD in
this case) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.21 Inter (valid)frame delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Verification scheme - testA and test B . . . . . . . . . . . . . . . . . . 71
5.2 Simulated current pulse at primary of HFCT testA . . . . . . . . . . . 72
5.3 Simulated current pulse at primary of HFCT testB . . . . . . . . . . . 72
5.4 Simulated current pulse at primary of HFCT TestC . . . . . . . . . . . 75
5.5 Percentage errors in charge estimation - golden reference - MATLAB

charge simulations in frequency and time domain for recording periods
between 2-10 us . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.6 Percentage errors in energy estimation - golden reference - MATLAB
energy simulations in frequency and time domain for recording periods
between 2-10 us . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.7 Achieved latency and throughput for IP sub-system . . . . . . . . . . . 77
5.8 Response time - Frequency domain . . . . . . . . . . . . . . . . . . . . 77
5.9 Response time - Time domain . . . . . . . . . . . . . . . . . . . . . . . 77

xii



A.1 Performance - trig peak un filter . . . . . . . . . . . . . . . . . . . 85
A.2 Performance - router . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.3 Performance - algo freq . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.4 Performance - algo time . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.5 Performance - packet selector . . . . . . . . . . . . . . . . . . . . . . 85
A.6 IP-subsystem’s post-implementation utilization . . . . . . . . . . . . . 86

xiii



xiv



List of Tables

2.1 Required Recording Periods/Frame Lengths and required pre-trigger his-
tory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Operations - Ipeak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Operations - Q (Time domain) . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Operations - E (Time domain) . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Operations - Q (Frequency domain) . . . . . . . . . . . . . . . . . . . . 28
2.6 Operations - E (Frequency domain) . . . . . . . . . . . . . . . . . . . . 29
2.7 Operations - Low pass butterworth filtering . . . . . . . . . . . . . . . 30
2.8 Error constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Golden Reference (test set 0 ) . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Extracted Feature verification . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Charge(nC) estimation errors (test A) - Golden = Qreal(=±20nC) on
primary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Charge(nC) estimation errors (test B) - Golden = Qreal(=±0.143nC)
on primary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Energy(nJ) estimation errors (test A) - Golden = E(MATLAB) (derived
from voltage at secondary) . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Energy(nJ) estimation errors (test B) - Golden = E(MATLAB) (derived
from voltage at secondary) . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1 Data compression(ratio-78.4%) facilitating classification process . . . . 80

xv



xvi



Introduction 1
“Electricity is really just organized lightning”

- George Carlin

Although the late American comic did have a point, one can only imagine the im-
mense amount of scientific research that mankind has put in over the past few centuries,
just to solve this not so trivial task of organizing lightning.
The electrical insulation sits at the very heart of this organization. Along with being a
shock prevention measure, it also prevents the formation of electrical contact between
parts of electrical equipment that are at different electric potential levels, thus pre-
venting short circuits, fire hazards and subsequent equipment and property damages.
Hence, needless to say that their integrity is of utmost importance.
This chapter provides an introduction to the Partial Discharge (PD) phenomena and
substantiates why PD detection and monitoring is important. Further, the chapter
helps the reader in realizing the motivation behind this thesis. This is followed by
defining thesis goals.

1.1 Context

In High Voltage (HV) and Medium Voltage (MV) systems, electrical insulation of equip-
ment are carefully designed in such a way that they can withstand the colossal electrical
stress levels that they are exposed to. However, factors such as aging, improper instal-
lation, manufacturing defects, environmental damage and third party damage are, if
not inevitable, very likely to occur and lead to faults in the insulation. As a result,
faults such as gas voids in solid epoxy insulation or bubbles in liquid transformer oil
develop. These faults within the insulation have a couple of critical properties.

• Firstly, they have a low electrical permittivity as compared to the surrounding
insulation. This implies that they offer much less resistance to the applied electric
field and thus, the electric field inside the void would be much higher than the
surrounding insulation.

• Secondly, they possess much lower dielectric strength than the surrounding insu-
lation itself.

These two factors together trigger the phenomena known as partial discharge (PD).
Partial Discharge, by definition[3], is a localized electrical discharge that only partially
bridges the insulation between conductors. In layman’s terms, PD activity is a localized
electrical sparking, which can occur at any point in the insulation system where the
electric field strength exceeds the breakdown strength of that portion of the insulating
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material. Due to the two properties mentioned earlier, one can imagine that the faults
in electrical insulation of HV equipment serve as ideal sites for PD activity.
PD is associated with the dissipation of energy in the form of heat, sound, and light.
Localized heating from PD may cause thermal degradation of the insulation. This in
turn aggravates the fault(s) which leads to even higher voltage stress concentrations
developing within the void. It implies that the vicious insulation degradation cycle
continues until complete dielectric failure of the insulation, typically accompanied by
an electrical explosion and failure of HV equipment. This insulation degradation cycle
is shown in Figure 1.1. The colors in the diagram demonstrate the levels of severity of
the insulation fault, with green denoting the no fault zone, orange denoting the suc-
cessive degradation loop and red denoting complete dielectric breakdown and eventual
equipment failure.

Figure 1.1: HV equipment insulation degradation

It is important to note here that once the PD phenomena starts within the insulation,
the insulation only degrades over time (due to more and more PD) and it is just a matter
of time when the insulation completely breaks down and the HV equipment fails. In
fact, PD is one of the biggest causes of HV equipment failure. Figure 1.2 shows effects
of PD on HV/MV equipment.

2



Figure 1.2: Deteriorating/Failing HV assets due to prolonged PD activity

On the positive note, PD activity can be seen as a clear indicator of asset deterioration
and early detection by monitoring PD activity can be vital in preventing pending device
failures. Following points further substantiate the need for PD monitoring:

• Due to the fact that complete dielectric breakdown of insulation in HV equipment
is typically associated with arc-flash/fire hazards, early detection of PD ensures
safety of workers in HV/MV power stations.

• Unexpected failures are associated with huge financial losses along with undeliv-
ered power for a long time (if the failing equipment is not redundant in the HV

system).

• Because these HV/MV assets are typically extremely expensive, it provides huge
savings for the plant owners as unnecessary asset replacement can be avoided.

• Useful for quality assurance at the time of commissioning of a new plant.

• To provide a direction to the maintenance team of a HV/MV plant in efficiently
targeting pending failures.

From the discussion above, it becomes needless to stress that monitoring of PD is ex-
tremely important for timely remedial, repair or replacement actions to be taken. Along
with PD detection, it is also of huge practical importance that the source of the PD can
be classified. Classification of sources into possible PD sources like Internal Discharges,
Surface Discharges,Positive Corona Discharges, Negative Corona Discharges, Floating
Particle Discharges etc. facilitates the PD source identification process. As PD ac-
tivity has direct correlation with the dielectric insulation’s aging process, PD source
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identification becomes extremely important for insulation condition monitoring. The
presence of PD activity in a particular equipment due to a particular source indicates
the substantial risk (severity level) of a pending insulation failure [4]. For instance,
a corona discharge may imply that there is actually no defect in the insulation itself.
However presence of discharges like internal discharge is more severe and may imply
the need of urgent remedial actions to be taken [5]. Further, such a classification is
integral in eliminating noise from actual PD pulses which can subsequently be analyzed
for defect recognition [6]. Moreover, while commissioning of a new power plant, it is
important to check for possible PD activity due to all these sources to make sure that
the equipment are in a healthy state.
Thus, PD detection and its classification into different types of PD sources to facili-
tate defect recognition is crucial for ensuring safety, stability and reliability in HV/MV

electrical power systems.

1.1.1 The classification process

The PD classification process is as shown in Figure 1.3. As can be observed, the entire

Figure 1.3: The classification process

PD classification process depends on feature extraction. Further, classification accuracy
is only as good as the features employed for classification.
Once the features are computed, PD separation (clustering) can be performed, for
instance using density based clustering algorithms. The output of separation stage
are clusters where legit PD sources and noise are separated. Further, for each of these
clusters, identification source identification is performed based on techniques like Phase
Resolved PD pattern recognition [7, 8]. Finally, knowledge based diagnosis is done
which results in clear source identification, along with the severity levels of insulation
fault. Also actions (remedial,repair) are proposed at the output of this stage.

1.1.2 PD detection and monitoring techniques

PD events are complex mechanisms involving rapid electron avalanches and as such, it
is unfeasible to measure them directly. What can be measured though, are the changes
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in certain variables excited by PD. These variables can then serve as features for PD

classification. After the PDs are separated into distinct classes/clusters, source iden-
tification can be done, for instance by using the phase resolved PD patterns (PRPD)
[7, 8]. The classification can be based on electrical, chemical, mechanical, acoustic or
optical features of PD[9].
Conventional electrical detection methods described in the standards. IEC 60270 [3]
are widely used for conducting industrial and research oriented PD testing. However,
these methods suffer from a major drawback that they offer limited bandwidth which
is not wide enough to resolve the shape of PD pulse in time. But the shape of the PD

pattern is one of the integral features for PD classification [10]. To overcome these lim-
itations, unconventional methods with bandwidths lying in several MHz are frequently
used for PD testing in cables, transformers, etc [11, 12]. Unlike conventional measure-
ments, since there are no recommendations given by any standard for acquisition of
PD signals using unconventional measurements, acquisition parameters like sampling
frequency, vertical resolution, acquisition time, etc. are arbitrarily set by the user [13].
The classification map [14] is a widely used, state of the art tool in the domain of uncon-
ventional PD measurements for PD classification. It involves calculations of equivalent
time (Teq) and equivalent Bandwidth (Weq) which serve as the PD discriminatory
features of interest.

1.2 Motivation

The commercially available PD monitoring solutions suffer from a number of issues as
described under:

• Expensive : Commercially available PD monitoring solutions are extremely ex-
pensive. To understand the dynamics of this problem, lets highlight some facts in
discussed in [15, 16].

– Almost 100 % of the distribution of power in the Netherlands is realized by
means of underground MV cables, cable joints and transformers. Here, the
total MV cables’ length is approximately 100,000 km and a significant part
of the investment cost of the distribution network is spent on this MV cable
network.
When the total power grid is considered, a major part of power-delivery out-
ages can be attributed to the faults in distribution power grid. Also, a huge
majority of the distribution grid outage times is due to failures in MV cables.
Further, a plethora of references show that more than 70% of the breakdowns
in MV cable network are caused by internal defects in the insulation system
of the cable[17, 18].
Most parts of The Netherlands’ distribution grid infrastructure were con-
structed more than 30 years ago. Due to regulations of the energy market,
asset managers are forced to reduce costs and postpone investments, while
maintaining the reliability of power delivery. Because of the ever increasing
demand for electricity along with aging infrastructure, the asset managers
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have to employ various maintenance and replacement strategies by using
tools to predict pending asset failure.

Given the fact that the state of the art tools are extremely expensive, they cannot
be economically deployed over different assets of a power plant or a distribution
grid. Thus, this becomes a serious concern for grid reliability.

• Lack Robustness : Widely used unconventional PD source clustering tools like
that of the classification map are shown to be significantly influenced by signal to
noise ratio and the user specified acquisition parameters like sampling frequency,
number of samples, acquisition time and vertical resolution of the PD acquisition
system [19]. Thus, although features like Teq and Weq are supposed to show
significant differences for different PD sources and should form a single cluster for
a single source, they might end up forming a single cluster for distinct sources
due to their non-robust nature under the influence of changing user acquisition
parameters in noisy conditions. Since the acquisition parameters are set by the
user the chances of clustering errors are considerable.

• Lack Automation : Most available solutions present today lack automation. Ex-
perts (human intervention) in the field of PD are required for diagnosis. Consid-
ering the case of monitoring of the 100,000 km length of MV cable network in
The Netherlands, the desirability of a fully automated inexpensive solution can
be perceived.

• Closed Source : Commercially available PD measuring and source recognition
tools are closed-source. This limits widespread industrial application and research
of partial discharge as a diagnostic tool.

New, more reliable features : Current peak (Ipeak), Estimated charge(Q) and energy(E)
for classification have been identified and a bench-marking test platform has been
designed (section 2.1) by researchers at TU Delft. However, the platform, as shall be
discussed in Chapter 2, involves oscilloscope based PD detection and acquisition and
bulky circuitry. After acquisition, feature extraction and classification are performed
offline using MATLAB.

1.3 Thesis Objective

• This thesis is an important step towards the goal of an open source, cost-effective,
automated embedded online partial discharge detection tool for feature extraction
based on new, advanced reliable features of partial discharges.

1.4 Contributions

• Developed an elegant FPGA based streaming architecture and realization which
can detect partial discharges and extract reliable features in real time. This real
time property opens multiple avenues for reliable future PD classification.
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• Integrated provision in hardware for estimating PD feature extraction using com-
putations in two domains i.e, frequency domain and time domain.

• Developed and integrated a basic standalone software application (proof of con-
cept) to configure the hardware sub-system (user inputs) and view results.

• The features extracted in hardware have been validated against MATLAB based
reference outputs.

1.5 Methodology

The first step was the identification of the requirements for efficient PD detection
and feature extraction, based on related literature. Further, the underlying hardware
(Red-Pitaya) was analyzed and architectural constraints and comprehensive specifica-
tions were identified. Based on the specifications, an elegant packet processing based
streaming, real-time hardware architecture was devised using High Level Synthesis
(HLS). The design and verification process was intertwined for all functional blocks
employed in the architecture. To complement designed hardware, a standalone C based
application was developed which can be used to configure the hardware with user in-
puts. The hardware software co-design was also tested on an FPGA based platform
(ZYBO) as a proof of concept.

1.6 Report Organization

The remainder of the thesis is structured as follows:
Chapter 2: The chapter begins with an immediate background of this thesis work.
Further, the chapter provides an in depth analysis of requirements for the designed
embedded solution, followed by comprehensive discussions about architectural alterna-
tives.
Chapter 3: A bird’s eye view of the designed system is provided in this chapter and
packet processing approach is introduced.
Chapter 4: This chapter provides detailed implementation details. Further, by taking
an example test case, all functional blocks are verified and functionality of each block
is demonstrated.
Chapter 5: This chapter provides detailed testing schemes employed. The chapter
goes on to evaluating the designed system based on latency, throughput and utilization.
Chapter 6: This chapter covers limitations of the devised system and provides a view
of future works required. The chapter goes on to summarize conclusions from the thesis
work.
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Related Literature and
Pre-Implementation Analysis 2
Before any design implementation, detailed specifications have to be drafted. These
specifications are effected by the design requirements and target hardware specifica-
tions. The requirements are realized by thorough understanding of related literature
and realizing the gaps that have to be filled with the new design.
In previous section, it was emphasized that PD detection and further classification to
facilitate source recognition is crucial for ensuring safety, stability and reliability in
HV/MV electrical power systems. Also, the lack of robustness to changing acquisition
parameters and noise influences in classification features Teq and Weq used in state of
the art unconventional PD measuring tools was recognized. Thus, there is an evident
need for new, more robust features for PD separation. Finally, the need for an auto-
mated, affordable, open-source online PD monitoring solution based on more robust
classification features was identified.
This chapter presents a careful amalgamation of related literature and the process of
realizing requirements based on this literature. The outcome of this chapter is a set of
Design Specifications required to for an automated system for PD detection and feature
computation for facilitating PD classification.

2.1 PD Test Platform

A PD test platform [6] (Figure 2.1 and Figure 2.2) facilitating unconventional PD testing
and measurements was introduced in the High Voltage Laboratory of Delft University
of Technology.
This platform, is an excellent setup for bench-marking the performances of experimental
PD signal processing algorithms for their classification or PD source recognition profi-
ciency. The platform as shown in Figure 2.1 supports six electrode samples carefully
designed to emulate six most common sources of partial discharge pulses i.e positive
corona, negative corona, surface discharges, internal discharges, floating electrode and
a free moving particle discharges. As any unconventional PD measuring system typ-
ically require a combination of wide-band sensors, fast acquisition systems and
digital signal processing amalgamated with Classification tools for carrying out PD

measurements, the test platform as shown in Figure 2.1 also provides all these features
as described.
The discussion following feature description is critical in making the design decisions
that were subsequently taken, as will be discussed further in this chapter.

• Wide-Band Sensor: The platform involves a high frequency current transformer
(HFCT) as the sensor of choice for sensing the current of PD pulses. The sensor
offers a bandwidth from 34.4kHz− 60MHz when terminated into a 50 Ω resistor
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Figure 2.1: Scheme of partial discharge test platform

Figure 2.2: Scheme of partial discharge test platform (Elaborated)

at the oscilloscope. The frequency response of the sensor thus obtained is as shown
in Figure 2.3.

– PD occurs when electric field is applied to the faulty insulation. Therefore,
the energizing electric field and PD pulse get superimposed. Thus, it is
required by the measuring platform to have a frequency response as a high
pass filter with cutoff frequency high enough to filter out the energizing signal
and low enough not to distort the PD signal is needed[20]. As can be seen, the
sensor’s frequency response limits the upper cutoff frequency of the complete
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Figure 2.3: Frequency response of HFCT sensor

measuring system to 60MHz, rendering a band-pass filter behavior.

• Fast Acquisition System: The setup features a high performance oscilloscope
(Tektronix DPO7354C) with 8 bits of vertical resolution and a maximum sampling
frequency of 40GS/s. Moreover, the oscilloscope features a ’Fast Frame Acquisi-
tion Mode’ to allow PD acquisitions with trigger rearming below 1us. This oscil-
loscope is capable of storing a maximum of up to 50,000 PD pulses at 250MS/s.
Along with PD pulse acquisition, the oscilloscope also records a synchronization
signal to calculate the phase of a PD trigger event with respect to the electricity
mains to facilitate PD recognition using phase resolved PD patterns (PRPD)[7, 8].

– In [21], it is suggested that a uniform step quantization would not represent
adequately an analog signal with non-uniform amplitude distribution (as in
the case of PD pulse) and white noise gets added in the digitization process
of ADC. Thus, a vertical resolution of more than 8 bits will be desirable.

– The Fast Frame Acquisition mode implies that if two PD pulses are narrowly
spaced in time, the oscilloscope can avoid missing of the second pulse, thus,
improving the pulse resolution[3] in time. For instance, pulses coming from a
corona source can be narrowly spaced and then, this utility comes in handy
[22]. Moreover, this ability of the oscilloscope gives and additional advan-
tage that the pulse repetition rate can also be derived with a high degree of
precision. The repetition rate can be a parameter of interest because of two
reasons. Firstly, the repetition rate can be correlated to the severity of the
insulation defect. Secondly, the repetition rate can be an excellent parameter
to segregate actual PD pulses and noise signals[23]. Since, the main technical
limitation of online PD monitoring systems is the high probability of false
indications of harmful PD detection due to noise [23], repetition rate can be a
a vital in PD clustering and hence, having a high pulse resolution is desirable.

– Apart from the PD pulses, the oscilloscope receives a Synchronization signal
(Figure 2.4) to facilitate further PD identification using PRPD. This signal
is a phase dependant voltage output in the form of a ramp signal which
increases from one zero-crossing of the sinusoidal wave (mains) to the other.

11



Figure 2.4: Phase dependent voltage output derived from test setup

However, to produce this output, a group of analog circuit blocks are re-
quired, namely, the Phase shift block (to correct shift in phase due to voltage
divider block), a zero crossing detector and a phase dependent voltage output
generator, as shown in Figure 2.2.

– The limitations of acquisition unit can potentially limit the upper-cutoff fre-
quency of the measuring system. However, in the case of this test setup, the
limiting factor (for upper cutoff frequency) is the PD sensor (as the oscillo-
scope offers sufficient sampling frequency support up to 40Gs/s).

– This high performance oscilloscope costs $40,500 [24].

• Classification Tool : The digitally stored PD pulses are available for feature
extraction and PD classification. Separation parameters Ipeak, Q and E are ex-
tracted using algorithms in MATLAB. Further, clustering is done using IpeakQE
clusters [22]. Finally, the source of the PD is recognized using PRPD recognition
technique.

– In [22], fundamental PD features as that of peak current (Ipeak),
the apparent charge (Q) and energy (E) were explored for their
ability to differentiate between different sources of PD. The results
of this exploration proved that these basic features are suitable for
separation of sources if the PD pulse shapes are different. More-
over, clustering based on IpeakQE clusters was proved to be inde-
pendent of changing acquisition parameters, in contrast to state of
the art unconventional measuring systems, for which these changes
are relevant. Thus, in this context, IpeakQE have proved to be more
robust.

– The parameter extraction and classification related digital signal processing
operations are performed offline in MATLAB on the PD pulse data logged by
the oscilloscope. Our final aim, however, is a PD monitoring tool which
completes the parameter extraction and classification task online, i.e while
the high voltage device is working and is powered on.

Thus, we now have a complete platform for PD detection and acquisition facilitating
feature extraction and further classification. Our MATLAB algorithms can extract fea-
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tures Q,E and Ipeak which are more robust features for PD separation than the ones
used in the state of the art(Teq, Weq). Further, another set of MATLAB algorithms can
classify PD based on its source (one of the six samples in the test setup). However,
still, from the discussions above, few shortcomings are evident in the test setup shown
in Figure 2.1.

• The setup lacks automation. The oscilloscope saves PD samples which are subse-
quently utilized for feature extraction and further classification performed offline
using MATLAB on the stored samples.

• The acquisition unit consists of an extremely expensive oscilloscope, which is
certainly not in harmony with our vision of an affordable PD detection and clas-
sification solution.

• The setup has analog circuitry for phase shift phase-shifting, zero-crossing detec-
tion and phase dependent voltage output generation and removing it is desirable
for cost effectiveness of the final system.

Thus, it is required to have an affordable embedded solution which can act as a
replacement of the oscilloscope from the Figure 2.1. Further, it is also desirable
for this magic embedded solution to have feature extraction and classification possi-
bilities built in, which will bring about the much needed automation.The classification
possibilities, however, are NOT in the scope of this thesis.
In the forage for the best embedded solution to get the job done, one readily available
FPGA based platform stands out - The Red Pitaya.

2.2 About Red Pitaya

Red Pitaya is a popular hardware platform which is developed to be alternative for
expensive laboratory measurement instruments. The main attraction for choosing Red
Pitaya are its 2x fast analog inputs on-board which provide a sampling rate of 125Msps
each, which is desirable for our project. Further, the Red Pitaya is way less expensive
(259 euros starter kit) as compared to the 40,500 euro oscilloscope discussed earlier.
Thus, if the required functionality is successfully realized using Red Pitaya, the cost to
benefits ratio would be extremely high.

2.2.1 Zynq 7010 SoC

The platform offers immense compute capabilities as it possesses a ZYNQ 7010 SoC
on board. As shown in Figure 2.6, the SoC consists of two main parts. The Processing
System (PS) and the Programmable logic (PL). The PS is centered around Dual Core
ARM Cortex A9 processors. The PL on the other hand is an FPGA fabric and there
exists numerous high performance interface for PS-PL communication.
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Figure 2.5: Red Pitaya Overview

Figure 2.6: ZYNQ 7010 SoC Overview

2.3 Scope of thesis

The final required system for PD feature detection (excluding classification) should
look like the one shown in Figure 2.7
However, this thesis marks the completion of the first stage of the project which involves:

• Creating a hardware framework of a group of functional blocks (IPs) within the
PL of ZYNQ 7010 SoC which can handle ADC samples at required sampling rates,
compute required output parameters (using frequency and time domain calcula-
tions) in real time and store the parameters in memory (DRAM).
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Figure 2.7: Scheme of user requirements from the finished feature detection system.

• Creating a bare-metal software application (PS) to facilitate user in providing
input configurations along with the control signals to the IP-subsystem for trans-
ferring data from the PL to the PS side of the SoC.

NOTE: In the entire course of this thesis, there is no notion of data transfer over
ethernet between measuring platform and the remote user using a dedicated GUI and
retrieving the required output parameters back over ethernet to the user’s GUI as shown
in Figure 2.7. Moreover, no actual ADC inputs are employed. Instead ADC emulators
are used for final on-board testing, as a proof of concept. Thus, all the data is inside
the embedded solution at all times and there is no connection with inputs from outside
the embedded solution. The thesis is concentrated on how computations are done, data
is transferred (within the IP-subsystem and between PS and PL) and stored within
the platform.
From here onwards, design requirements will be identified one by one and the thorough
analysis done in order to make design decisions and retrieve design specifics based on
these requirements will be presented.

2.4 High level platform Requirements

1. Input Impedance: The Red pitaya features 2 Fast ADC input channels. Two
ADC inputs are required, one for acquiring the PD pulses (ADC0) and the other
to acquire the synchronization signal(ADC1) to extract present phase information
of any PD event with respect with the 50Hz electricity mains. Both ADCs of Red
Pitaya offer an input impedance of 1MΩ.

(a) As ADC0 is responsible for acquiring nano-second PD pulses, it is required
to connect a 50Ω impedance in parallel to this port (implying an effective
impedance =50Ω). If the default 1M impedance is used , the analog input
would not be able to resolve the PD in time (due to high value of RC time
constant).

SPECIFICATION: An input impedance of 50Ω should be connected
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in parallel to ADC0.

(b) ADC1 is responsible for gathering phase information from synchronization
signal. As the voltage divider in Figure 2.2 is capacitive, it is required that
ADC1 offers a high input impedance so that there is no phase shift. Thus,
Red Pitaya’s 1MΩ impedance is perfect for phase signal acquisition.

2. Synchronization signal: Red pitaya, unlike the oscilloscope, has immense
compute capabilities. Thus, the following specification was drafted.

SPECIFICATION : The output sinusoidal signal from voltage divider
stage Figure 2.2 should be directly fed to ADC1. Phase detection using positive
zero crossing detection and maintaining internal counts should be done locally
on the FPGA.

This will get rid of the bulky ramp generation analog circuit as shown in
Figure 2.2 and will be an important step towards affordability of the final system.

3. Analog to digital Converter(ADC) Sampling Frequency :

(a) The PD sensor (HFCT) offers a bandwidth between 34.4KHz and 60MHz
when terminated at 50Ω input impedance of the measuring device. The PD
pulses can have frequency components anywhere in this bandwidth (and
even outside). Hence, for acceptable reconstruction of analog PD pulses (for
our algorithms), an ADC sampling rate should be a minimum of 120Msps
according to Nyquist Criterion.The Red Pitaya offers a sampling rate of
125Msps which is sufficient to resolve PD pulses in time.

SPECIFICATION: ADC0 Sampling Rate of 125Msps should be cho-
sen for PD acquisition.

(b) As will be pointed out later (section 2.5), the phase resolution required
is 0.5 degrees. This implies that 720 points have to be detected in every
50Hz (20ms) sinusoidal reference cycle. This corresponds to a sampling rate
requirement of ≥ 36Ksps. Red Pitaya’s ADC default is 125Msps. For the
sake uniformity, this sampling rate was chosen (and down-sampling was
done within FPGA functional blocks (IPs) internally).

SPECIFICATION: ADC1 Sampling Rate of 125Msps should be cho-
sen for reference sinusoidal signal acquisition.

4. ADC Range: Naturally, one of the requirements is that the white noise intro-
duced in the process of PD acquisition due to digitization from ADC should not
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lead to a high degree of errors in feature computation that are outside the allow-
able error limits (described in section 2.5).
Red Pitaya can be configured with one of the two voltage available ranges i.e. High
Voltage Range (±20V) and Low Voltage Range (±1V) using jumpers as shown in
Figure 2.8.

Figure 2.8: Jumper settings for fast ADC inputs of Red Pitaya

PD pulse Acquisition (ADC0) :
A test set of pulses recorded by oscilloscope at the High Voltage Laboraory (TU
Delft) at 200Msps is shown below.

Figure 2.9: A PD pulse test-set recorded at at 200Msps

As can be noticed in Figure 2.9, the voltage ranges may vary to a significant
extent. Further, the voltage ranges desirable to be recorded may be well beyond
the ±1V (eg, Surface Discharge, Floating Electrode in the test set shown in Figure
2.9). Thus, as far as ranges are concerned, HV setting of Red Pitaya is a better
option. However, a couple of points should be considered before selecting a jumper
alternative.
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(a) The data-set of PD pulses demonstrated in Figure 2.9 is not a typical rep-
resentation of PD pulses. In fact, the notion of ’typical’ PD pulses itself is
invalid. Due to the stochastic nature of PD, significant variability in pulse
properties like shape and amplitude can be expected in every measurement.
For instance, the shape of PD depends on the distance between PD source
and sensor. Thus, in case of PD measurements in cables, the PD at the source
(defect) will experience attenuation, distortion and elongation as it travels
across the length of the cable. Therefore, depending on where the sensor is
installed, it will detect variable voltage ranges (for the same defect) and so
will the ADC of the measuring instrument (Red Pitaya in this case). As a
note, all the pulses shown in Figure 2.9 can also fall in ±1V for a different
test set.

(b) Apart from voltage range, the other important factor to consider is precision
of the ADC. Red Pitaya offers a 14-bit ADC which implies that its cho-
sen (HV/LV jumper setting) input voltage range can be represented in 214

(i.e. 16384) distinct levels. Thus, in LV(±1V ) jumper setting, the resolu-
tion of ADC is 0.12207 mV. Further, HV(±20V ) setting offers a resolution of
2.44mV. A MATLAB based simulation to calculate the effect of ADC resolution
on charge (one of the output features) of positive corona PD shown in Figure
2.9 was done. The results are as follows:

Figure 2.10: ADC interpretation for LV mode

Due to limited resolution of the ADC in HV mode, quantization errors in
Figure 2.11 are clearly visible. In contrast, the LV mode (Figure 2.10) is able
to fairly reconstruct the minute changes of the positive corona. Finally, a
feature of interest, apparent charge (Q) was calculated for the oscilloscope’s
logged data, and the ADC interpretations in HV and LV settings (time do-
main calculations : section 2.5 Integral between zero crossings (on either side
of peak) of filtered current pulse). With the charge estimation from oscillo-
scope’s logged pulse taken as reference, the percentage error for LV setting
was 2.2%. On the other hand, the estimated charge of pulse in HV setting
was 35.1%, which is unacceptable, rendering the feature(Q) useless.
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Figure 2.11: ADC interpretation for HV mode

Thus, based on the discussion and experiment above, an important design
decision was taken. The Low voltage ADC setting (±1V ) was chosen for ADC0

(PD acquisition). Thus, although, some PD pulses (exceeding ±1V ) will be
clipped off due to limits put on ADC0 range, those pulses can be discarded
before the classification stage. This discarding can be based on peak current
value which is another feature to be computed. If the computed peak current
for a pulse is exactly Vpeak/PD sensor gain (±1V/9.1 = ±109.8mA), there
is an extremely high probability that the pulse was clipped. Hence, it can be
chosen to discard the output features corresponding to the pulse. Hence, some
pulses from the input data-set may be lost but it will be made sure that the
computed features have errors within allowable limits. In contrast, if HV setting
is chosen, although a bigger range of input PD voltages can be covered, there
is a significant probability for computed parameters being wrong (for PD pulses
with small current values) due to lack in precision. Moreover, there will be
no way to detect if computed parameters are erroneous or not before classification.

SPECIFICATION : Low Voltage jumper setting (±1V ) should be cho-
sen for ADC0 (PD acquisition)

Reference synchronization signal Acquisition (ADC1) :
From the test setup shown in Figure 2.1 and Figure 2.2, it is easy to retrieve the
sinusoidal signal for PD synchronization in a ±1V range. Moreover, as we are
only interested in the (positive) zero crossing points of the sinusoidal reference
and not the actual amplitude of the reference signal, the Low voltage setting of
ADC can be safely selected for reference signal acquisition.

SPECIFICATION : Low Voltage jumper setting (±1V ) should be chosen for
ADC1 (reference acquisition)
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2.5 Functional Requirements

1. Oscilloscope utilities: As the entire thesis is centered around the need for
completely replacing the oscilloscope from the PD acquisition and measurement
Equation with our autonomous FPGA based solution, it is required that the
FPGA should possesses utilities like threshold based acquisition triggering,
recording period, a pre-trigger mechanism and acquisition time, which are integral
to oscilloscopes. In the following discussion, requirements are realized and
acquisition related terminologies are clarified.

(a) Threshold based triggering: It is required that as soon as an incoming
PD sample from ADC0 (acquiring PD pulses) exceed the user specified upper
or lower thresholds (between -1V to 1V), the programmable logic(PL) of
ZYNQ 7010 SoC should start accepting samples (for feature computation)
(see Figure 2.12).

(b) Acquisition Time: As discussed in section 2.1, the oscilloscope can record
50,000 PD pulses (at 250Msps). The features corresponding to this amount
of PD pulses are considered to be sufficient for effective PD classification. In
our context, acquisition time is defined as the total time duration for which
PD pulse samples acquired by ADC0 are accepted by the ZYNQ PL. The user
should be able to tweak this parameter to get the required amount features
for PD classification.

SPECIFICATION: The user should be able to start and stop the PD
acquisition based on software controlled acquisition time.

(c) Recording Period and Pre-trigger: A trigger event (ideally) implies an
arrival of a PD pulse at the ADC input. Hence, the entire length of this pulse
should be completely ’recorded’ in order to compute required classification
features for this pulse. Thus, pulse acquisition takes place in terms of frames
of discrete (ADC) samples. The length of each frame constitutes the recording
period. The term frame will be used to represent the analog recording period
in digital domain throughout this report. In long cables, partial discharge
pulses suffer from shape distortions and elongations. Further, pulse width
for each source of PD differs. Hence, it is desirable to have a range of frame
lengths/recording periods that the FPGA can cover. A Recording period
from 1us to 10us is sufficient for covering these variable pulses. With the PD
acquisition rate specified at 125 Msps, these recording periods boil down to
the frame lengths as shown in Table 2.1.

Figure 2.12 demonstrates a frame in the acquisition time. For this frame,
the acquisition of PD samples start at discrete time N = n where the rising
pulse exceeds the user specified Trigger High. Now, it can be seen that the
Post-Trigger part of frame will not be able to provide a complete picture of
the pulse shape. This is because of the fact that the shape of pulse before
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Recording Period (us) Number of samples(125Msps) Pre-trigger samples

1 125 12

2 250 25

3 375 37

4 500 50

5 625 62

6 750 75

7 875 87

8 1000 100

9 1125 112

10 1250 125

Table 2.1: Required Recording Periods/Frame Lengths and required pre-trigger history

triggering is unknown and could have been A,B,C or an anything else. Thus,
the to be calculated parameters like charge and energy will loose this infor-
mation which can further lead to classification errors. Hence, it is required to
have a pre-trigger mechanism which can cater for remembering the history
of these pulses before the actual trigger event.
This history should be typically around 10% of the frame length as can be
observed in Table 2.1

Figure 2.12: Scheme of PD acquisition

2. Algorithms (Q, E and Ipeak computation): As discussed earlier, PD
pulse’s fundamental features - Apparent charge(Q), Energy(E), and Current
peak(Ipeak) have proven to be an excellent choice to separate different sources of
PD. In this thesis, two methods, one based on time domain calculations and the
other based on frequency domain calculations are explored.
The (simplified) PD measurement circuit is shown in Figure 2.13.
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Figure 2.13: Simplified PD Detection circuit terminated at Red Pitaya’s input ADC0 (50Ω
effective input impedance)

Here, ADC0 of Red Pitaya is connected to the secondary of HFCT sensor. The
14 bit ADC will measure PD voltage in 214 discrete quantized levels i.e, 0-16383.
This range has to be scaled down back to ±1V to represent PD voltage. The
output of this scaling is Vmeas, as shown in Figure 2.13.
In the following discussion, each feature calculation is described, followed
by design perspectives, in order to give the reader a decent idea of how the
algorithms would be mapped onto the FPGA (on a data-flow level), without
going into design details. Also, NOTE that in the design perspectives only
present an analysis of the required resources. However, the exact number and
type of the resources utilized cannot be provided before designing. For instance,
a 32 bit multiplication and accumulation operation can be performed using
different resources present on the PL of ZYNQ 7010 (LUTs, dedicated adders and
multipliers, DSP48 (25*18 multiplier,48-bit accumulator)). However, depending
on the data types of variables, timing constraints and user specified synthesis
directives, the synthesis tool (Vivado HLS in our case) can bind to any type
and number of resources as required. Thus, having exact numbers beforehand is
not possible (and not required). However, having a decent idea of the type of
resources, their amounts and identifying the computationally expensive resources
is extremely important.

As the stream of PD voltage data from the ADC is arriving at every sam-
pling period to the PL side, an important question needs to be answered, which
will have direct implications on the architectural choice.

Do the feature computation formulae inherently require all ADC
samples in a frame to be cached beforehand, or do they allow compu-
tation of features sequentially? (i.e the results can evolve as the ADC
samples arrive in a sequence and the required features of interest can
(mathematically) be made available as soon as the last sample arrives)
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The key for implementing high performance (throughput) architectures is to main-
tain constant flow of data samples through the FPGA. If the formulae allow se-
quential computations as described above, the formulae will inherently provide
a base for employing a free flowing high performance streaming architecture for
handling sequentially arriving ADC samples. A streaming architecture is desirable
in order to achieve a high throughput (= sampling rate (125Msps) in our case)
with controlled resource utilization. Moreover, if computations are sequential (in
terms of data accesses), realizing a high throughput design will be less complex
than if they involve non-sequential accesses.

(a) Time Domain Calculations:

-Current Peak (Ipeak):

This is the peak current (ipd) of PD pulse at the primary of HFCT
sensor. Thus it can be given by Equation 2.1

Ipeak = peak[|Vmeas(n)|]/Gs (2.1)

where n = 1 to N (Frame length) and Gs is the sensor gain of 9.1mV/mA.

-Design Perspective:

The flow for current peak calculation is sequential and thus, inher-
ently supports streaming architectures. Every time a new ADC sample
arrives at PL side, a comparison can be done between the present sample
and the previous maximum Vmeas value. This way, in the end of every
frame, the maximum in that frame is available. As Gs is constant, no actual
division (high compute and time complexity) has to be performed and the
division can be seen as a multiply with (1/Gs). Further, single cycle shift

Multiply (*) 1
Greater than (>) 1

Table 2.2: Operations - Ipeak

operations and add operations can be performed on this maximum of the
frame to replace a multiplication with (1/9.1 = 0.1099).
Thus, only one comparator, and a few shift registers and addition operators
will be utilized in this scheme and they will be reused for all the samples.

-Estimated Charge(Q):

In time domain, charge is defined as the integral of current over the
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duration of sampled PD current pulse.

Q =

∫ T

0

ipd dt (2.2)

where T is the recording period.
Ideally, the measured PD pulse should be unipolar and there should be no
oscillations. However, due to the limited bandwidth of the PD sensor, the
characteristics of PD pulse at the source (defect), the distance of the PD
source from sensor and the location of PD source within the equipment, fac-
tors like attenuation, distortion and oscillation are introduced in the shape of
the pulse [13]. In order to mitigate the effect of oscillations in the estimation
of charge, the pulse is first passed through a second order butterworth low
pass filter. Further, the charge can now be approximated as the peak value
of the integral evolution of current pulse over its time duration (if the lower
cutoff frequency of measuring system tends to zero) [20].
Finally, a better approximation of charge can be calculated by integrating the
current pulse between the zero crossing points on either side of the maximum
peak value [13]. Thus, the final scheme of charge calculation in time domain
is shown in 2.18 followed by the charge estimation Equation 2.3.

Figure 2.14: Time domain calculations flowchart

Q =
dt

Gs

∗
ib∑

n=ia

Vf (n) (2.3)

where, dt the sampling period (8ns) and Gs is the sensor gain (9.1 mV/mA).

-Design Perspective:

On careful inspection, it was recognized that the flow for charge cal-
culation can be serialized to support streaming architectures.
Following scheme can be followed for computing charge in time domain in
streaming mode on the FPGA.
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Figure 2.15: Streaming Scheme for Charge Calculation

As can be seen from the self explanatory Figure 2.18, a streaming scheme
can be followed where the input voltages can be accumulated (addition
operator) between all zero crossings (camparator(present sample’s sign !=
previous sample’s sign)) within a frame and global peak (another compara-
tor to compare local peak and global peak magnitude-wise) and its area
under the curve (one adder) can be computed as the ADC sample stream
arrives (serially). After the last sample in a frame is accumulated, required
scaling(*dt/Gs) can be performed.

Multiply (*) 1
comparators(!=,>) 2

Add(+) 1

Table 2.3: Operations - Q (Time domain)

Again, multiplication can be avoided using shifts and adds.

-Energy(E):

For our test setup, energy can be defined as the amount of power dis-
sipated over time by the 50Ω effective impedance of Red Pitaya’s ADC0(PD
Detection) input.

E =
V 2
meas

R
∗ T =

dt

R

N∑
n=1

V 2
meas(n) (2.4)

where T is the recording period and dT is the sampling period.

-Design Perspective:
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Energy computation also supports streaming architectures. Each in-
coming sample can be multiplied with itself and added to the previous
result. The process continues till the end of the frame. As soon as the last
sample in the frame arrives, required scaling (dt/R) can be performed using
shifts and adds.

Multiply (*) 2
Add(+) 1

Table 2.4: Operations - E (Time domain)

From the design perspectives, it can be concluded that time domain calcu-
lations are sequential and inherently support streaming architectures.
Moreover, these algorithms are not compute intensive as they require
relatively simple operators like adders, multipliers, comparators and
shift registers. Thus, because of simple calculations, the resulting circuit
would be both area and power efficient. Further, all these operations can
be divided into different stages of a pipeline, offering potentially high
throughput. Further, the incoming data from the ADC can potentially be
handled in the most natural manner.
As the computational complexity is less and no concurrent memory (Block
RAM) accesses are evident, this pipeline (having operations for Time Domain
feature computations) can potentially consume input ADC samples (filtered
and unfiltered) continuously at the sampling rate of ADC (125Msps) and
thus, offer no bandwidth bottleneck to the incoming samples (implying a
high throughput of 125Msps).

(b) Frequency Domain Calculations:

-Current Peak (Ipeak):

The Equation 2.1 for current peak calculation in the Time Domain
calculations holds.

-Charge(Q):

These calculations are based on the fact that the Fourier Transform of
a function inherently carries information about its integral over time. Also,
the low frequency components of the current pulse render a good estimate
of the current pulse’s charge(provided pulse duration are short and lower
cutoff frequency of the measuring system tends to zero)[20].
The discussion for charge calculation in time domain applies here in fre-
quency domain also. The only change is that now, instead of integrating
the filtered PD pulse voltage, the integration itself is estimated using the
second component of Fourier transform (of filtered voltage pulse). Thus,
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in frequency domain, charge can be estimated as:

Q =
dt

Gs

∗ |FFT (Vf )[2]| (2.5)

where Vf is the filtered PD measured voltage, dt is the sampling period(8ns)
and Gs is the sensor gain (9.1mV/mA).

-Design Perspective:

The charge calculation in frequency domain differs from that of the
time domain as here, instead of accumulating voltages, a FFT function is
used and the magnitude of second point of FFT is required.
An obvious choice is to employ Xilinx FFT IP LogiCore to compute FFT.
The initial tests with this core utilizes more than 50% of LUTs available on
the PL side of ZYNQ 7010 for only a 256-point FFT.
However, it was realized that in Equation 2.5, all points in the FFT are
not required. Instead, only the 1st frequency component (to estimate DC
component) is required. Thus Equation 2.5 can be re-written as :

Q =
dt

Gs
∗

√√√√[
N−1∑
n=0

Vf (n)cos(
2πn

N
)]2 + [

N−1∑
n=0

Vf (n)sin(
2πn

N
)]2 (2.6)

where N is the recording period.
The required recording periods are known and can vary from 1 to 10 us.
ZYNQ 7010 SoC’s Artix-7 FPGA provides a block RAM support of 2.1Mb.
This storage can be utilized to store all sines and cosines corresponding to all
possible recording periods to be used as look-ups ([6875 sines + 6875 cosines*
16bits each]=0.21Mb). They can further be utilized to successively multiply
the incoming filtered PD samples. Further, multiplications with sines and
cosines can be accumulated independently till the end of frame. In the end
however, as the magnitude is required, two multiplications and an addition
have to be performed, followed by the computationally expensive square root
operation.
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Figure 2.16: sines and cosines corresponding to recording periods from 1 to 10us stored as
look-ups in FPGA’s BRAM

As can be observed from Figure 2.16, the scaling information (dt/Gs) is also
stored in these look-ups, to avoid scaling in the end. In such a scheme, the
utilized operators would be as shown in Table 2.5

Multiply (*) 4
Add(+) 3

sqrt 1

Table 2.5: Operations - Q (Frequency domain)

-Energy(E):

Similar to the charge calculations, for energy calculation, square of
PD’s measured voltage is estimated using the Fourier transform as shown.

E =
V 2
meas

R
∗ T =

dt

R
∗ |FFT (V 2

meas)[2])| (2.7)

where T is the recording period and dT is the sampling period.

-Design Perspective:

As described in charge calculations, the FFT here can also be replaced
by the magnitude of multiplications with respective sin and cosines and
independent accumulations for both, rendering the new energy calculation
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Equation as shown.

E =
dt

R
∗

√√√√[
N−1∑
n=0

[Vmeas(n)]2cos(
2πn

N
)]2 + [

N−1∑
n=0

[Vmeas(n)]2sin(
2πn

N
)]2 (2.8)

However, the only difference here is that unfiltered Vmeas samples have to be
squared each time, rendering an additional multiplication operation. More-
over, the lookups were scaled by a factor of (dt/Gs) to facilitate charge cal-
culations but the factor required here is (dt/R). Thus, the new scaling factor
to be multiplied to the results at the end of each frame should be (Gs/R)
(which can further be replaced by shifts and adds).

Multiply (*) 6
Add(+) 3

sqrt 1

Table 2.6: Operations - E (Frequency domain)

Thus feature computation algorithms in frequency domain can also be real-
ized in a sequential manner, which will inherently help creating high per-
formance streaming architectures to handle the sequential ADC input.
However, frequency domain algorithms are bound to utilize more hardware
resources as compared to the time domain ones. Moreover, the square
root operation is an operation with inherently high time complexity and is
resource intensive. Rest operations utilized for these computations are fairly
simple, the formulae do not pose a possible bottleneck for creating a high
throughput design for our system.

3. Filtering: As discussed in previous section, there is a need to implement a butter-
worth Low Pass filter with 2MHz cutoff frequency for charge(Q) calculations (in
both domains). A low pass filter (Direct form 1) as shown has to be implemented

Figure 2.17: Second order Butterworth filter (Direct form 1)

y[n] = b0x[n] + b1x[n− 1] + b2x[n− 2]− a1y[n− 1]− a2y[n− 2] (2.9)

This is a compute intensive block as in every iteration, 5 multiplies and 4 addi-
tions/subtractions need to be performed. However, these operations ideal to be
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Multiply (*) 5
Add/sub (+/-) 4

Table 2.7: Operations - Low pass butterworth filtering

bound to the low latency DSP48 blocks present on the FPGA (Total 80 available)
which are optimized for multiplication and accumulation operations.

4. Phase calculations: It is an important requirement to calculate the phase of
the pulse with reference signal. The phase of the pulse is an important feature as
it will facilitate pulse identification using PRPD pattern recognition.

PD phase(%) = (current time/current period) ∗ 100 (2.10)

Figure 2.18: Phase calculation

5. Allowable Error limits: The allowable error limits for feature computation are
shown in Table 2.8

Charge (Q) 10%
Energy (E) 5%

Table 2.8: Error constraints

For phase calculation, the resolution should be at least 0.5 degrees.
Please note here that these constraints are not hard and fast. These numbers are
just an estimate based on heuristics and literature.

6. User control Options: The user should have options to choose the recording
period, trigger levels, acquisition time and algorithm of choice.

SPECIFICATION ARM core 0 of the PS should be programmed to send user
configuration to the PL compute block via M AXI GP (PS slave) port present
on the boundary of PS and PL.

2.6 Architectural Constraints

1. Memory Constraint: In order to do facilitate the classification process, it is
required that the features (Q,E,Ipeak and phase) corresponding to 50000 pulses
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(test-set) should be saved. Thus if each feature is allotted, say 4bytes, the total
memory requirement boils down 0.76 MB. Red pitaya’s DRAM offers storage
upto 512MB, which is sufficient for theoretically holding 673 such test sets
(features corresponding to 33.65M (50000*673) frames). The On chip Memory
(OCM) available on the SoC can only store 0.25MB of data and is not capable
of storing all results from even 1 test set.

SPECIFICATION: Off-Chip DRAM should be used to store output fea-
tures.

2. Near real time response (latency) constraint: There is a high level near real
time requirement that as soon as the user enters the input configuration of choice
(Figure 2.7), the outputs corresponding to the test set (50,000 frames) should be
available with visually less latency.
This real time constraint is soft and is only concerned with the user experience. As
an educated approximation, it was decided that a latency of 3 seconds (visually
perfect) between user configuration input token and the output token (features
corresponding to 50,000 input frames to be visible on user’s GUI).
For finding a worst case latency estimate, it is assumed that there is a trigger
event in every recording period of 10us. Thus, 50 thousand pulses correspond to
a total recording time (Tin) of 0.5 seconds.
Further, the SoC features a Gigabit ethernet (maximum transfer rate from red
pitaya to the remote user GUI = 1Gbps). Thus, theoretically, outputs(features)
can stream out from the box (via ethernet) at a rate of 128MBps. As the features
corresponding to one test set are 0.76 MB, the time to transfer data from the box
to the remote GUI (Tout) is theoretically 5.93ms( Other factors like printing delay
on the user GUI are not accounted)
Thus, the available window or maximum latency of datapath (compute + transfer
from PL to DRAM) should be around (3 - Tin - Tout) = 2.49 seconds, which should
be comfortable to achieve.

3. Real time frame (PD) Acquisition constraint: In the discussions in section
2.1, it was realized that having a system facilitating high frame rate (for high
pulse resolution) is desirable as this implies that narrowly spaced pulses are not
missed. Also, the repetition rate information can be derived with a higher degree
of accuracy if the number of pulse misses are less.
Thus an additional hard real time constraint for acquisition of PD from ADC0 was
drafted for facilitating a better system (best possible pulse resolution).
For each test-set, all input ADC0 (PD) samples should be acquired at 125Msps
(worst case maximum frame acquisition rate =1MFPS). Thus, there should be
no wait state between the acquisition of two successive frames (PD pulses). This
way, no intermediate PD pulse is lost in between.
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2.7 Architectural alternatives

In [10], it is recognized that the most suitable features for PD classification are phase of
occurrence, the shape of the PD pulse and the repetition rate. The features of interest,
Q, E and Ipeak give an estimate about the shape of the pulse to facilitate separation
process. On the other hand the phase of occurrence is critical for PRPD pattern
recognition.
The repetition rate, as pointed earlier, can be derived with highest precision if the
FPGA does not miss any input samples in between two frames (thus, the real time
frame acquisition requirement).
To calculate features Q,E and Ipeak with the highest precision, floating point arithmetic
hardware should be employed on the FPGA.
A simplified example is shown to demonstrate how an acquire and accumulate operation
using floating point arithmetic would be performed. Such an accumulation is a part of
time domain calculations (Equation 2.3).

void funct (dT ADC_in , dT∗ out ) /*dt->float*/

{
#pragma HLS PIPELINE I I=1

static dT sum=0;
sum = sum + ADC_in ;
∗out = sum ;

}

The hardware block corresponding to the code above is intended to perform accumu-
lations of the input variable ADC in (ADC sample). As it is required to handle a new
sample at the sampling rate of 125Msps, a directive for pipelining the block was put,
i.e an II=1 to specify that the block should accept a new input in every cycle (clock
= sampling rate = 125MHz). However, when the block was synthesized using Vivado
HLS, it was realized that the floating point adder that vivado binds to has an inherent
latency of 6 cycles and thus, cannot be pipelined with II=1. Thus, it cannot accept a
new input every cycle.
Now, there can be two valid workarounds to handle this issue:

• Cached frames: The incoming ADC samples(125Msps) can be cached into a
buffer of frame length. In worse case , the frame length is 1250. BRAM can be
allocated for implementing this buffering. After, 1250 cycles (125MHz), the cache
will be filled. Thus, if the compute block can compute outputs(floating point
accumulation) corresponding to the frame within next 1250 cycles (II ≤ 1250), a
dataflow is maintained between acquiring, caching and computations and thus,
no inter-frame samples are lost (desirable). As discussed earlier, the latency of
compute block was 6 cycles. Thus, if only one unit is used, total addition will
take 7494 cycles (6*1249) which implies a violation of inter-frame requirement.
However, to fulfill the Initiation interval requirement (≤=1250), parallel adder
units and parallel accesses have to be employed. This implies that the BRAM can
now not be utilized, instead the array has to be partitioned into LUTs rendering
long combinational, sub-optimal multiplexing tree. Finally, instead of one adder,
which should mathematically complete accumulations as soon as the last (1250th)

32



Figure 2.19: Cached Frame

value is available, multiple Floating Point adders have to be employed. In this
discussion, there was only an adder employed. But can be observed from our
discussion of algorithms, operations like adders, multipliers and square root are
required for every algorithmic iteration. In such cases, the utilization of the FPGA
will explode. The area of fabric is of importance because this is just the first stage
of the project. Another set of functional blocks to perform actual classification
process has to be put on the FPGA in future to bring about complete automation.

• Cached Sub-frames: This method is a subset of the previous method and re-
duces the resource requirement. The method is demonstrated in Figure 2.20. In

Figure 2.20: Cached Sub-Frame

this case, instead of caching the entire frame, only N samples are cached, where
N is the latency of the functional block (6 in our case). Thus, it is essentially an
attempt to hide the latency of 6 cycles by employing 6 Floating point additions
instead of one and the whole unit is pipelined at II=6. In the end of a frame, 5
more units are required to add the results of successive additions (red-registers).
This method is elegant and requires way less resources than the previous method,
still maintaining the required dataflow. However, it should be noted that the con-
trol in this trivial scenario was negligible. However, we require control capabilities
like decisions based on zero-crossing detection in PD pulse. In such a case, feeding
data to all these parallel resources may be unfeasible and II of 6 may not be
fulfilled. Moreover, the coding complexity for realizing such parallel architectures
using high level language (C++ in our case) is inherently more than serial ones.
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2.7.1 Fixed Point based Architecture

For the same code of accumulation, the data-type for all variables is now changed to
fixed points. A highly desirable property is observed after synthesis. The fixed point
adder unit that Vivado HLS binds to can be pipelined at II=1. This implies that it can
readily accept a stream of new ADC samples (ADC in) every cycle (125MHz). Thus, no
parallel units are required for operation. Only one fixed point adder unit is sufficient and
the required dataflow is also maintained. Thus, the stream of input samples is handled
in the most natural manner as shown in Figure 2.21. Moreover, since less number of
operations are employed to do the same work, fixed point arithmetic schemes facilitate
power efficient designs.

Figure 2.21: Scheme of Fixed Point Compute block facilitating real time acquisition and
compute capabilities with controlled utilization

However, this magic does not come for free. Potential errors related to overflow/lack of
precision are associated with employing this arithmetic. However, if thorough analysis
of datapath and input ranges is done, fixed point arithmetic can practically result in
similar results as that of floating point arithmetic.
In section 2.5, the error limits for charge and energy were shown. The fact that there
are allowable error limits provides a window of opportunity for employing fixed point
instead of floating point arithmetic.

2.7.2 An alternative architecture

A valid argument can be that although there is a real time PD frame acquisition
constraint, there is no constraint to do feature computation itself in real time. Thus,
the entire test set can first be acquired from ADC (after triggering and history recording
on FPGA), streamed from PL to PS and saved on the off chip DRAM(512MB) at
125Msps. Such a streaming is possible as there is no theoretical bandwidth bottleneck
in the datapath for samples (14 bits) arriving at 125Msps (=250MBps). The PL Direct
Memory Access (DMA) and high performance (HP) PS slave port can both support
this bandwidth requirement[25]. Here, the total data corresponding to only one test
set would be (119.2 MB, each ADC sample occupying 2bytes in DRAM [512MB
capacity]). Thus the transfer is feasible. Once the transfer is done, the data will have
to be be streamed back from PS to PL side for further computations and the results
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will again have to be streamed back to the DRAM.
This thesis however, is an attempt to find the best(speed, area, throughput, data
reliability and power consumption) solution to tackle the problem at hand. With that
in mind, it is left to the reader to decide whether this solution or the chosen solution
(employing fixed point arithmetic) which facilitates the most natural flow of data
within the system is best.

Here, it can be appreciated that real time acquisition is a require-
ment but real time processing is just an intentional constraint put for
realizing the best hardware architecture (Figure 2.21).

2.8 Throughput and Bandwidth Requirements

In the ideal fixed point scheme of operations as desired (2.21), for ADC inputs arriving
at 125Msps(PD), the compute blocks should provide no resistance to the flow of
samples through them.
In the worst case (for throughput), the frame length is 1us. Thus, the maximum
throughput required from the data-path from ADC to DRAM would be 1 PD pulse
per micro-second or 1M PD pulses/s.
As can be seen from Figure 2.22, the precise throughput requirement for the
compute block to handle the incoming samples in real time is rate is 208.61 MBps.
Also, in worst case, a recording period of 1us (125 samples) will correspond to 4 output
features (4 byte each). Thus, the bandwidth availability to to support real time
transfer of output samples from input PL to PS should be 15.25MBps (16bytes/us).
For large datasets (as we have), the high performance PL DMA is a suitable choice
[25]. The PL DMA supports a maximum bandwidth of up to 500MBps (at 125MHz)
[25], which is sufficient for fulfilling our bandwidth requirement.

SPECIFICATION: The PL DMA should be used for transferring data from
PL to DRAM via the PL-PS boundary.

ZYNQ 7010 SoC offers multiple interface alternatives to facilitate PL-PS transfers.
For output feature transfer to the DRAM from PL through PS, the high perfor-
mance HP port (PS slave) present on the PL-PS boundary offers more than
sufficient (theoretical) bandwidth (125MHz* 4 [half bus-width (feature width)] =
500MBps) to support our bandwidth requirements [25]. There are other alterna-
tives which can also provide sufficient bandwidths (GP,ACP ports). However, since
there is only one stream (stream of features) to transfer to DRAM, HP port was chosen.

SPECIFICATION: HP (PS master) port should be used for data transfer
from PL to DRAM through PS.

The PS memory interconnect (2,840 MB/s[25]) is also a part of PL to PS datapath.
It can easily support the our 15.25MBps bandwidth requirement. Thus, the datap-
ath from PL to PS will not provide any hindrance to the flow of our only output stream.
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SPECIFICATION: The compute block should have a throughput of 208.75MBps.

Figure 2.22: Throughput and bandwidth requirement to facilitate real time constraint

Moreover, as the computations involved are not extremely compute intensive, utilizing
a faster clock (more power consumption) is not the ideal choice. Thus, a clock fre-
quency of 125MHz (corresponding to sampling frequency) should suffice computations.

SPECIFICATION: The clock frequency of 125 MHz should be used for the
compute block and DMA.

2.9 Fixed point analysis

By this point, it has been established that utilizing fixed point arithmetic would be
integral in facilitating the implementation of the identified best hardware design choice.
Fixed point data type representation is shown in Figure 2.23.

Figure 2.23: Arbitrary precision fixed point data type [1]

Here, W represents the word size, I represents the decimal part and B represents the
number of decimal places in the word.
Employing fixed point data-types imply a significant increase in designer effort (com-
pared to floating point arithmetic) as the designer has to fix the decimal point for all
variables (registers for storing inputs, outputs and intermediate values) that will be a
part of the input to output data-path. Thus, the optimum mix of W, I and B for every
variable has to be calculated, such that the range and precision required from these

36



variables is achieved. However, as discussed earlier, there is no notion of a typical PD
pulse input due to its stochastic nature. Thus, in order to calculate optimal positions
for fixed point variables in the design, a worst case range and precision analysis has to
performed.
A test set consisting of 4 voltage pulses were designed to simulate variable PD pulses
detected at ADC0. This set is shown in Figure 2.24

Figure 2.24: Fixed point analysis test set (voltage pulses)

Tests A and B were demonstrate two extremely wide (496ns each : rise time - 8ns),
positive and negative hypothetical PD pulses. The aim with these tests is to exercise
the range, i.e the I part in fixed point representations of the variables in the data-path
to their maximums. These tests cover the more than maximum of current peak, charge
and energy that the design is likely to encounter (in LV ADC settings). Thus, over-
designing is done for overflow safety.
Further, tests C and D, in contrast, exercise the precision, i.e B part in fixed point rep-
resentations of all the variables in the data-path. The scheme of Fixed point analysis
done using MATLAB’s Fixed Point Converter application is shown in Figure 2.25. As
can be seen, the process is recursive and continues till the errors are within allowable
limits.
From previous discussions, we know that there are three essential ingredients for func-
tionality of the compute block : A filter, calculations in time domain and calculations in
frequency domain. All the three were first realized in MATLAB using the default double
precision floating point arithmetic. Applying tests A, B, C and D to this chain of func-
tions rendered the golden reference outputs. These functions were then analyzed using
MATLAB Fixed point converter application one by one and W,I,B were tweaked for
each variable in the compute code according to the proposed values and corresponding
fixed point codes for each function were generated. Finally the output from this chain
of fixed point blocks was compared to the golden reference and successive tweaking was
done until the errors were under limit.
The proposals (Figure 2.26) are based on the histogram (bit weights displayed along
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Figure 2.25: Flowchart representation of Fixed Point Analysis

the X-axis, and the percentage of occurrences in that bit position along the Y-axis)
coverage of test inputs. Thus, the test sets should be exhaustive.

Figure 2.26: Fixed point proposals based on histogram coverage

The widths of these proposed variables can significantly effect the resource utilization
and timing of hardware blocks. Thus, for some variables, the precision (B) in final
hardware are not the same as proposed. Instead, the words were shortened (by reducing
B) to adapt to less complex hardware and rounding schemes were applied to get the
similar (in some cases, better) precision.

2.10 System Specifications

The derived system specifications are shown in Figure 2.27. Moreover, fixed point
specifications were also derived for all variables in the design (all not shown in Figure).
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Figure 2.27: Specifications

2.11 High Level Synthesis

Programming hardware (using HDLs) has traditionally been a time-consuming and
resource-intensive process. Moreover integrating the design into hardware/software en-
vironment (SoC) is difficult for a majority of general-purpose programmers. To address
this challenge, there are techniques available to allow programmers develop hardware
using higher-level languages (HLLs like C, C++, etc.). The process of generating RTL
from HLLs is termed as High-level synthesis (HLS) in common literature. The ac-
tive development and adoption of HLS by major vendors like Xilinx and Altera has
significantly raised the abstraction levels of programming hardware resulting in rapid
development and faster design space exploration. The generation of RTL from a higher
level language basically starts like a software compilation process which involves the
generation of control and data flow graphs. This is followed by three important tasks
(scheduling, allocation and binding, and controller synthesis) that the tool must solve
to generate the hardware description model. Scheduling as the name suggests, involves
the generation of a schedule such that data and control dependencies are not violated
in the final design. During Allocation and binding, the type and number of hardware
resources for the design are determined after which the operations are mapped to indi-
vidual cores from technology libraries. Finally, the controller that sequences the design
and controls the functional and storage units in the datapath is derived. After this, the
RTL is converted to a bit-stream that can be uploaded to the FPGA.
Note that at each stage the programmer can guide the compiler to obtain a design
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that best fits the users needs. Even though HLS provides higher abstraction levels,
the programmer still needs to understand low-level hardware details and change the
algorithm to obtain the most optimal design. In this thesis, the functional blocks for
FPGA (PL) were designed using Xilinx Vivado HLS.
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System Overview 3
This chapter provides a brief overview of the functional blocks in the system and how
these blocks are interconnected to efficiently tackle the task of PD detection and feature
extraction.

3.1 Data Acquisition from ADCs

The very first task is to get the data from ADC to the FPGA side of our ZYNQ SoC.
When Red Pitaya’s board definition files are loaded in Vivado environment, both
ADC0 and ADC1 (14 wires each) input channels are available at the PL side of the SoC as
adc dat a[13:0] and adc dat b[13:0] in Vivado’s IP integrator. Along with these 14-bit
data inputs, the red pitaya’s differential clock inputs adc clk p and adc clk n are also
available. Here, an open source IP[2], DataAcquisition(Figure 3.1) can be utilized as
shown in Figure 3.2 as shown.

Figure 3.1: Data Acquisition IP [2]

Figure 3.2: Data Acquisition IP connected to our system

This IP has two main functions:

1. It converts the external ADC clock (125 MHz) from adc clk a and adc clk b differ-
ential external ports into our programmable logic as a adc clk clock. Thus, this
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ADC clock itself can be used as the main clock for synchronizing our IP subsystem.
Using the same ADC clock(125MHz) for FPGA’s IPs has a clear advantage that no
input buffers will have to be used between ADC inputs and our IP subsystem
for synchronization.

2. It reads the ADC data from two input channels which becomes available on each
adc clk clock cycle (8ns) and makes it available over the AXI Stream (AXIS) in-
terfaces M AXIS OUT0 (ADC0) and M AXIS OUT1 (ADC1). It is interesting to
note here that because the output ports have an associated axis interface (t data
with t valid, and t ready signalling) and they are directly fed to our IP sub-system
(AXIS compatible), if the IP sub-system is not ready to accept new samples, it will
apply back-pressure on the DataAcquisition IP (through t ready=0 signalling
). Thus the IP-subsystem will not consume samples for which it is not ready for,
which implies data sanity guarantied within the IP-subsystem at all times.

It should be noted that Red Pitayas ADC core (see Figure 3.1) has an additional
output port (adc csn) connected to the external port adc csn o for a clock duty
cycle stabilization.

NOTE1: This IP is not in the implementation scope of the thesis work. The
discussion above is only presented for the reader to get a complete picture of actual
Data acquisition from Red Pitaya’s ADCs. From this point onwards, the term ’IP-
subsystem’ will imply only the IPs designed in this thesis work. Further, the term
Data Acquisition in general will imply data that can be acquired from AXIS output
ports of DataAcquisition IP (Figure 3.1) and not from the actual ADCs of red pitaya

NOTE2: The ADC emulator IPs discussed in section 4.2 which are integral in
IP verification will emulate the data coming out of ports M AXIS OUT0 and
M AXIS OUT1 of DataAcquisition IP (Figure 3.1) and not the actual ADC ports
which have no associated interface. Thus, these emulators will also have AXIS
compatible master output ports.

NOTE3: Discussions henceforth are applicable to any ZYNQ 7010 based platform and
not only Red Pitaya specifically (unless explicitly mentioned). In fact, the platform
used for system design and testing was ZYBO[26] ( for reasons mentioned in section 4.2)
which possesses the same SoC specifications as that of Red Pitaya. So the IP subsystem
developed in this thesis work can directly be put on Red Pitaya’s FPGA without any
compatibility issues for final implementation. Compatibility is also guaranteed as the
ADC specifications are laid down keeping Red Pitaya in mind.

3.2 The Main System

The main system developed under this thesis work can be broadly segregated into two
important segments:

1. Hardware design - This part involves the design and verification of an IP-
subsystem specifically targeted towards tackling the task of high speed PD acqui-
sition and real-time PD feature (Charge, energy, Phase, Peak, Polarity) extraction
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based on time domain and frequency domain algorithms [] in accordance with
user specified input configurations (recording period, algorithm selection, trigger
values). This part was targeted for the Programmable Logic (PL) side (FPGA) of
ZYNQ 7010 SoC. Fluidity is the essence of the designed IP-subsystem. A stream
and compute approach is amalgamated with packet processing to render a high
throughput, robust and elegant IP subsystem. This segment was the major part
of the thesis work.

2. Software design -This part involves designing a standalone application for one
of the ARM cortex A9 processor of ZYNQ 7010. The application is responsible
for triggering the ADC emulators present on ZYNQ FPGA(PL) side which further
exercises the IPs with pre-stored PD pulse and reference signal patterns. The
application also controls the IP subsystem by providing user configurations and
is responsible for initiating transfers of output samples from FPGA(PL) to off-chip
main memory. This segment is the minor part of thesis work which provides a
sense of completion and a conceptual proof of working of IP subsystem.

Figure 3.3: System level implementation overview and scope of implementation in this thesis
work (colored region)

For the Hardware design, leveraging the knowledge gained from detailed discussions in
section 2, three distinct sets of workloads were identified and groups of IPs were de-
signed and chained together to efficiently target these workloads using a deeply pipelined
architecture. These workloads are demonstrated at a block level in Figure 3.3 followed
by a discussion of workloads and IPs targeting them.

1. Signal Acquisition and Pre-Processing (Filtering): The very first task for
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the IP sub-system is that of accepting the pd pulses and sinusoidal reference data
into the system every 8 ns. A set of three IPs form the pillars for tackling this
workload. These IPs work together in coordination as shown in Figure 3.4 and
are discussed thereafter.

Figure 3.4: Block Diagram demonstrating data movement and control signals (in italics)
between the IP’s handling Signal Acquisition and pre-processing workload

(a) trig peak un filter IP (see section 4.3.2 for details): The require-
ments for threshold based trigger mechanism, storing history of PD samples
and an acceptance of PD samples for a duration of user specified recording
period are handled by this IP. Further, the peak current value of PD has to be
detected by the IP subsystem. This IP contributes to the task by detecting
peak voltage for each recording period and sends this detected peak to IPs
sitting downstream in the pipeline for the final current calculation which is
extremely simple (V/R); hence, dividing labor between IPs at different stages
of the deep pipeline.

Although, filtering is a part of the MATLAB algorithms which are to be im-
plemented within the IP subsystem, it was recognized that it is better that
filtering is incorporated within the PD acquisition (trig peak un filter) IP
and not with the algorithm IPs. A merit of the IP subsystem is its workload
distribution within different stages of the pipeline. Thus, the relatively more
compute intensive algorithms were assigned separate IPs which are provided
with already pre-filtered data samples along with unfiltered data samples
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simultaneously (because energy calculations in both algorithms require un-
filtered data).

Moreover, it was decided that this IP also streams out the recording period
information along with filtered and unfiltered data at the beginning of each
recording period. This information can be used by other IPs to get informa-
tion about the beginning of a new set of PD samples (recording period).

(b) sys init (section 4.3.1) and phase detector (section 4.3.3): From
specifications (2.10), it is evident that along with PD pulse acquisition, a
reference signal also has to be acquired and further, phase information for
each PD pulse occurrence with respect to this reference has to be calculated.
This implies calculating which point (or degree) of the 360 degree sinusoidal
reference (ADC1) has the PD(ADC0) pulse triggered the trig peak un filter

IP.

One can imagine that it is essentially a divide operation, where the phase of
PD pulse is given by:

PD phase = current time/current period (3.1)

Figure 3.5: Phase Calculations

For a 50Hz electricity mains signal, current period (Equation 3.1) should
ideally be 20ms. However, due to the continuously changing load of the
power grid and the generator’s reaction to these load variations, frequency
is not constant and may vary by a little margin. For instance, All India
electricity grid [27] is operating in a band 49.90-50.05 Hz for nearly 75% the
time. However, the the minimum and maximum frequencies can touch 49.70
Hz and 50.30 Hz respectively. This implies a variation of ±0.6% in electricity
mains frequencies and hence a variation by the same factor in the time period.

Now, although this variation looks small at the first glance, a ±0.6% varia-
tion implies that if current period (3.1) is fixed at 20ms (50Hz), the phase
calculation can be off by (±2.16 degrees). Further not all countries use a 50
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Hz supply. For instance U.S uses a 120V/60Hz supply. Due to these reasons,
it was decided not to fix the current period in Equation 3.1 as a con-
stant but the IP subsystem should dynamically track the period information
instead. However, this implies other issues that now have to be tackled.
Firstly, the division (Equation 3.1) now becomes a variable/variable di-
vision (actual division step required) instead of a variable/constant divi-
sion(multiply/shifts and adds by constants) which is less in computational
complexity and thus requires less time than actual division. Further, in sec-
tion 2.7 it can be realized that a stream and compute approach was adopted
instead of a store and compute one. Thus, the samples are not recorded
for a particular recording period, but rather, streamed through a chain of
pipelined IPs which perform computations on the samples as they arrive and
no samples are stored in the process. Moreover, in section 2.5 it has been
established that the nature of algorithms is essentially sequential.

Now, due to this sequential, streaming nature of designed architecture the
current time information is easy to extract. However, current period in-
formation cannot be retrieved as the IP subsystem cannot look ahead
in time and know the current period at the time of PD trigger event (see
Figure 3.5). Although looking ahead in time is impossible, the IP subsystem
can definitely keep a track of just previous period as shown in Figure 3.5.
Moreover, the previous period would be equal to the present period (for all
practical purposes) because the electricity mains frequency will not vary sud-
denly for instance, from 49.7 Hz to 50.3 Hz (the Indian power grid context).
Thus, the way phase is actually calculated by the IP subsystem is by using
previous period instead of present as shown:

PD phase = current time/previous period (3.2)

In Figure 3.5, acquisition of sinusoidal reference signal starts at time t = 0.
Now, it can be realized that if trig peak un filter IP starts acquiring
PD pulse samples before one complete time period ( period between two
positive zero crossings of sinusoidal reference) has been elapsed, there
can be no corresponding phase information for that pd pulse because there
is no previous period data available within the IP subsystem by that time
(see Equation 3.2). Moreover, there is also a need that user(software) should
be able to control when to start accepting PD samples.
The sys init and phase detector IPs are specifically designed to target
these issues. sys init is dedicated for reference signal acquisition (ADC1
samples) and initiating the trig peak un filter IP (to be able to start
accepting new PD samples ADC0) when at least one complete time period has
elapsed (WAIT STATE in Figure 3.4) and the user(software side) is ready for
PD acquisition. To visualize, this initiate signal (see Figure 3.4) acts like a
floodgate to control the stream of water (PD samples) entering the IP sub-
system via trig peak un filter IP, with the user having complete control
over the ’floodgate’ (after first complete period has elapsed). From Figure
3.4 it can be seen that sys init also provides current time and previous
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period data to the phase detector IP which is essentially a divider which
waits for (start phase calculation in Figure 3.4) from trig peak un filter

IP after which it starts phase calculation (division) with current time and
previous period data.

2. Signal Processing Algorithms : This part consists of discussions about of IPs
handling the user selection of algorithms (signal from PS) and the time, frequency
domain algorithms. A block diagram of these IPs is shown in Figure 3.6.

Figure 3.6: Block Diagram demonstrating inter-connections between IPs handling signal pro-
cessing algorithms workload

(a) router(see 4.4.1 for details): This IP accepts data from Signal Acquisition
an Pre-Processing workload handling unit and routes the data-sets (sets of
PD samples) of recording period length to the IP handling algorithm selected
by user (from PS). If the user changes algorithm select signal (see Figure 3.6)
in the middle of a recording period (which represent one PD pulse), the IP

waits for the recording period to finish before handling the user’s request (for
data sanity purposes).

(b) algo freq(see 4.4.2 for details): This IP implements frequency domain algo-
rithm for PD parameter extraction. The outputs of this IP are the required
charge, energy, peak (polarity is simply the polarity of peak) and phase for
acquired PD samples of length recording period.

(c) algo time(see 4.4.3 for details): This IP implements time domain algorithm
for PD parameter extraction. The outputs of this IP are also the required
charge, energy, peak (polarity is simply the polarity of peak) and phase for
acquired PD samples of length recording period.

(d) packet selector(see 4.4.4 for details): This IP is responsible for selec-
tion of a valid set of output samples from one of the Algorithm handling
IPs (freq domain/time domain). Further, DMA requires a signal(T LAST)
which indicates the end of each packet to be transferred to PS side. The
packet selector accepts this information from the user and plugs it (in the
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form of a last signal) with the output samples, thus indicating the bound-
aries of a DMA packet. The user, however, enters this information in the
form of number of packets.

NOTE that this number of packets is the number of output packets from
the IP subsystem. Thus, each such packet will have 4 samples (4 output
features). The packet length of a DMA transfer, is different, being (number
of packets(user input) * 4). The ability to change the size of packet for DMA
transfer has been provided, as there is an input port in this IP where designer
can tie relevant constants. This is important because the size of DMA packet
effects the DMA transfer bandwidth. As this is just the first stage of the
bigger project, the length of the DMA transfer can be experimented with to
find an optimum length to achieve desired transfer bandwidths.

3. Data transfer from FPGA to Processing System of Zynq : For the data
transfer from PL to DRAM, as indicated in section 2.10, PL AXI DMA is utilized.

Finally, an interrupt based C based software application to configure DMA and IP
subsystem is also designed.

3.2.1 Packet Processing

One of the requirements is that the user can choose between a recording periods of 1 to
10 us. With the ADC sampling period of 8ns, this implies the recording period can alter
between 125 samples to 1250 samples. Each set of samples (whether it contains 125
or 1250 samples) is intended to represent a particular PD pulse. Thus, each set, after
being processed in the FPGA by a chain of IPs, should quantify the behavior of that PD
pulse in terms of the four output features, i.e Pulse Charge, Energy, Peak and phase.
Moreover, the user also has the liberty to choose from one of the two algorithms. Thus,
each set of incoming samples can only be associated with one algorithm.
In order to efficiently process these ’sets’ of samples of varying lengths, the notion of
a packet processing system is introduced in this thesis work. The advantages of
having such a system are summarized below:

• In addition to having samples of the user specified lengths, these packets also carry
control information. Thus, instead of individual samples, each IP in the system
now reads successive packet words (samples in a frame) arriving at their input
ports at every clock cycle and take decisions about what to do with that sample
(and the upcoming packet word) based on some field of the current packet word.
Thus explicit control signalling can be avoided and a natural flow of samples
downstream the IP chain can be ensured.

• Because of this packet processing approach, in the chain of pipelined IPs involved
within the system, each IP can contribute something to the final output, tag the
packet with its contribution and the following IP can start working from that point
onwards. Thus, the outputs evolve over time and packetizing helps in systematic
workload distribution among IPs sitting at different stages in the pipeline.
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• The packets are created by the initial sender IP and reassembled by subsequent
receiver IPs which are bound to adhere to the protocol specifications. Hence, any
outside interference (user interference in this case) is avoided by all IPs at all time
instants, thus ensuring data sanity, leading to a robust architecture.

• The high level constructs like structures offered in C++ can be leveraged to produce
such packets. Vivado HLS offers the capability to convert these C++ structures
into buses of equal widths as that of the members of the structure summed up
together. One can now imagine that the C++ programmer can have the capabil-
ity to handle each set of wires in the bus (fields in the packet word) via these
systematic structures, which offers a great ease of design to the programmer.

Thus, in Figure 3.3 the set of IP(s) handling workload 1 prepare and pre-process packets
of data. Further, all transactions ,to and from the set of IPs handling workload two
are handled in sets of PD samples i.e packets, rather that individual samples. Further,
the DMA also transfers data from PS to PL in the form of packets of data. The notion
of a packet however, in this case is different and depends upon when the DMA receives
T LAST signal. In the upcoming chapter, these packets can be understood in greater
detail and the design choice of opting for such a system can be appreciated.
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Implementation and IP
verification 4
This section takes the reader through the process of converting the block-level design
discussed in the previous chapter to an elegant FPGA architecture. The chapter provides
comprehensive implementation details about the hardware-software co-design. The
employed design and testing methodology is discussed followed by description of a test
case. Using this test-case, the functionality of each sub-block in the system is verified.

4.1 FPGA Design and Verification Methodology

In the process of realizing FPGA hardware, design and verification are intertwined.
The Design and verification approach is summarized in the following points.

Figure 4.1: Three phase Design and Verification Approach

1. A Bottom Up design approach was adopted during the course of this thesis.
The complex task of high speed PD pulse acquisition and parameter detection was
divided into a number of much simpler tasks/functional blocks.
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2. Each functional block is realized as an individual Intellectual Property (IP) in
the design and performs a dedicated function. IPs are made using High Level
Synthesis and tested rigorously.

3. Vivado’s three phase verification approach was utilized (Figure 4.1) where basic
verification is done using C++ based simulations and co-simulations (HLS en-
vironment) for each individual IP (phase 1). This is followed by verification in
Vivado IDE (Phase 2) using VHDL test-benches which gives more control over
test inputs, hence facilitates thorough testing.

4. Phase 3 is dedicated to final testing of hardware software function correctness and
will be elaborated towards the end of this chapter.

Further, two ADC inputs are required for getting the external analog PD pulses and
sinusoidal reference signal into the FPGA side of Zynq 7010 SoC. However, for testing
the IP subsystem that will eventually cater for accomplishing the task at hand, real
ADC hardware cannot be used (for final board testing). One way to tackle this problem
is to drive the IP subsystem’s ADC inputs (axis compatible) directly from the VHDL
testbench’s outputs. However, there are a couple of shortcomings with this approach
in our scenario.

• Although one can verify the entire IP subsystem using such a testbench, it would
be impossible to integrate the ADC behaviour also into the actual design in hard-
ware without using an actual ADC. Thus, in the final testing, one has to put the
entire setup of analog signal generators connected to the FPGA platform which is
further connected to a computer (via UART) in order to observe results as shown
in Figure 4.2. This directly implies having a lot less control on the actual inputs
that the IP subsystem is receiving. Thus, there is a high probability that the
golden reference will not match after system integration even when the IPs are
functioning as intended.

Figure 4.2: A testing approach (after Software-Hardware integration)

• Out of personal experience with the Red Pitaya platform, it was observed that
although prototyping is possible, it does not comfort programmers with a hassle
free, rapid prototyping experience. This makes sense because the platform itself
is not really meant for FPGA prototyping. Rather, it is meant to be used as an off
the shelf testing and measurement tool. For this reason, a switch of platforms was
made to a much user-friendly ZYBO board [26] which has exactly the same SoC on
board and hence, same resources as that of the Red Pitaya. However, ZYBO lacks
the fast ADC support. Thus, if this approach was used, there would be no way
to test the IP subsystem on ZYBO after integration in the real hardware.
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Due to these shortcomings, it was decided not to simulate ADC behaviour within
the main testbench. Instead, both the ADCs were modelled as dedicated IP’s (ADC
emulators). These IPs can now act like testbenches and be used for verification (both
functional and timing), during the entire project implementation phase. Further, after
software hardware integration in VIVADO environment, these emulators can also be
put into the FPGA (along with the rest of the IP sub-system) in the form of bitstream.
Thus, in the final testing phase, outputs (observed on PC) can directly be matched
to the golden reference. Also, there is no need to use Red Pitaya, instead, the much
programmer friendly ZYBO board can be utilized. Hence, instead of Figure 4.2, the final
testing approach looks like the one as shown in Figure 4.3.

Figure 4.3: Final test setup after software hardware integration

These ADC emulators (4.3) will emulate samples coming out of ports
M AXIS PORT1 (ADC0-PD) and M AXIS PORT2 (ADC1-Reference) shown in Figure
3.1.

4.2 IP Verification Environment Setup

Before discussing the actual FPGA implementation, a glimpse of the setup used for
verifying the functional and timing correctness of the IP subsystem is provided. For
testing the functional correctness of the designed IP subsystem, it is required to have an
input data-set for which the correct outputs (golden reference) are known beforehand.
Hence, input data-sets representing PD pulses was produced using MATLAB. As discussed
previously, the measuring setup shows a band-pass filter behaviour. To retrieve the
golden reference, current pulses are passed through this filter in MATLAB as can be
observed from Figure 4.4. This gives the Vmeas pulse which will be observed at red
pitaya’s input ADC0. For a reference, this Vmeas signal is passed to MATLAB algorithms
(double precision floating point computations) and Golden Reference Outputs (Q, E,
Ipeak) are retrieved. However, the voltage range of -1 to 1V will be perceived as 0
to 16383 quantized levels by Red Pitaya’s ADC0. This quantization was simulated in
MATLAB by allocating a specific level to each voltage (Vmeas) sample among 16384 total
levels (based on resolution based scaling, offset addition and rounding down to nearest
level). The retrived values are stored in arrays (BRAM in FPGA) and can act as ADC0
emulator. The output (stream of PD pulses in 16384 quantized ADC levels) is then
passed at every clock (8ns-corresponding to sampling frequency) to the Vivado HLS
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Figure 4.4: Functional Verification Process

algorithms (IP subsystem) in both Phase 1 and Phase 2 environments and outputs are
verified against golden reference.
Note here that this thesis report, only covers the outputs of comprehensive testing
from phase 2 (Figure 4.1) and Figure 3(proof of concept).

A single test-set is presented in this section give the reader a clear understanding of
how the IPs are reacting to the input stimulus (Emulated ADC outputs). This stimulus
set is shown in Figure 4.5.

Figure 4.5: Test set 0 - Simulated ADC values for two pd pulses (50mA and -50mA), pulse
width = 80ns

A pair of consecutive incoming pulses (50mA and -50mA) (ADC simulated - Figure
4.5) stored in an ADC emulating IP is utilized for discussions about IP verification in
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this chapter.
MATLAB based outputs (Q, E,Ipeak) for these inputs are tabulated:

Time Domain Frequency Domain Ipeak(mA) [after BPF]

50mA Charge Q(nC) 3.9009 4.0123 53.6824
Energy E (nJ) 0.3247 0.3192

-50mA Charge Q(nC) -3.9009 4.0123 -53.6824
Energy E (nJ) 0.3247 0.3192

Table 4.1: Golden Reference (test set 0 )

Further, for sinusoidal reference generation, another emulator(IP) is utilized which
generates a 20ms sinusoidal wave having a phase offset of π/3 as shown in Figure 4.6.

Figure 4.6: Test phase - Simulated ADC values for sine wave with π/3 offset

A total of 2000 samples constitute the waveform shown in Figure 4.6. Although the
ADC specification is 125Msps, this IP spits out new samples at a rate of 100 Ksps (the
acceptance rate of sys init IP). This is done due to the fact that if actual sampling rate
is chosen, the samples corresponding to 20 ms that have to be stored in the emulator
would be 2500000 corresponding to a storage requirement of 4.7MB which is unavailable
in FPGA BLOCK RAM. As these emulators were intended to be employed both for
verification as well as FPGA testing (proof of working), the sample outgoung rate for
this IP was decided to be 100Ksps. This is as good as the real scenario because even
then, the consumer IP would anyways consume at 100 Ksps, regardless of the input
sampling rate for ADC1.

4.3 Signal Acquisition and Pre-Processing Workload

The trig peak un filter, Sys init and phase detector IPs constitute the Acquisi-
tion and Pre-processing stage discussed in chapter 3.2.
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4.3.1 System Initiator (Sys init) IP

4.3.1.1 Functional Description

• Acquires sinusoidal reference samples from its axis compatible input
port(sin ref V V ) at a rate of 125Msps. However, it accepts the samples at
a much slower rate (down-sampling) of 100Ksps (2.7 times greater than 36Ksps
requirement - section 2.4).

• Grants permission (start sys out V =1) to trig peak un filter for acquisition
of PD pulses if user(PS) is ready (i.e user start V=1 ) and at least one complete
period (two consecutive positive zero-crossings) of sinusoidal reference signal has
elapsed. Dismisses the permission (start sys out V =0) when any of the two is
not true. This feature can be used for controlling acquisition time from the
software side.

• Provides current time (current cnt out V updating at a rate of 100 KHz) and
previous period (prev period out V ) information to phase detector IP, hence fa-
cilitating phase calculations based on Equation 3.2.

4.3.1.2 Implementation

The IP tracks the required previous period and current time (Equation 3.2) information
by means of a counter which starts at each positive zero-crossing of input reference sig-
nal and counts until the next positive zero-crossing. Further, there is another counter to
maintain the count of positive zero-crossing events and renders rest of the IP-subsystem
in wait state until two such events have elapsed, thus, maintaining phase computation
reliability (3.2). Here, it is important to understand the design choice of having a sam-
ple acceptance rate of 100Ksps (down-sampling) and not 125Msps. Con-
sider a case when up-counting rate is chosen the same as the sampling frequency i.e
125Msps(8ns). In this scenario, for each varying time period, say exactly 20ms(50Hz)
of sinusoidal reference signal, the IP will count from 1 to 2500000. Now these counts
have to be fed to the phase detector IP which will will employ a divide operation
to calculate phase. The number 2500000 requires at least 22 bits to be represented in
binary. However, if we lower the acceptance rate to 100Ksps (which is >36Ksps require-
ment), for the same 20ms period, the maximum count can now only be up to 2000,
which requires only 11 bits to be represented. This directly implies that the divide
operator (which is inherently computationally complex and has relatively higher area
and latency requirements than other basic arithmetic operators) used in the consuming
IP (phase detector) will be much simpler in case of a 100Ksps acceptance rate. At
the same time the required resolution for phase calculation (0.5 degrees) is intact as for
every 360 degree (20ms), there are 2000 distinct counts (current cnt), which implies a
resolution achieved of 0.18 degrees (360/2000) for phase calculations.
The IP offers a latency and Initiation Interval(II) of 1 cycle each.
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4.3.2 Trigger|Peak|Filtering (trig peak un filter)

4.3.2.1 Functional Description

• Handles the acquisition of the incoming stream of samples arriving from the ADC

every 8ns and scales the input samples to the actual analog voltage interval of
-1V to 1V (Red Ptaya’s Low Voltage ADC jumper setting).

• Provides a systematic solution to the requirement for having a threshold based
trigger mechanism and a pre-trigger provision for recording the history of sam-
ples.

• Packetizes the input sample stream into sets of samples, with each set having its
own control information (according to user specified settings) for controlling the
other IPs downstream in the IP chain.

• Contributes towards the final peak current output. Finds peak voltage value
(magnitude-wise) within a packet and tags the last word of the packet with that
value.

• Indicates the phase detector IP when to start phase calculations corresponding
to each packet.

4.3.2.2 Implementation

The IP operates at a clock frequency of 125MHz in order to be able to match the rate at
which ADC0 is sampling. Thus, it accepts a stream of ADC data samples representing the
PD pulse every clock cycle via its input AXI stream (axis) slave port input stream V V.
The pragma HLS PIPELINE II=1 was employed in the code to enforce a pipelined RTL

design which can accept new ADC samples every 8 ns.
The IP only starts accepting new PD samples when it receives permission from
sys init IP at its ap start port (block level interface), which controls when the block
can start processing data. Thus, this permission acts like a flood gate to allow input
PD stream into the IP subsystem and can be tweaked for providing the acquisition time
utility (from software).
The IP is essentially a state machine with two states.

1. State 0: The IP accepts an ADC data sample (from input stream) and scales
it back to its original voltage level (±1V ). Further, the sample is checked for
trigger conditions, if it is greater than either positive or negative trigger values
specified by user. If the trigger condition meets, the state of IP changes to 2
for the next incoming sample. Also, at such an event, the IP issues a request to
phase detector IP (start ph calc =1 for two consecutive cycles as minimum II
for phase detector is 2) to begin phase calculations.
The IP saves a history of samples to provide the required pre-trigger functionality.
From table 2.1, it can be observed that the maximum required pre-trigger is of
125 samples (corresponding to 10us recording period). As can be seen from Figure
4.7, the maximum storage for pre trigger is allotted to be 126 samples (1 more
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Figure 4.7: Trig Peak un filter in STATE 0

than required for each recording period).
The size of this cache for storing history is altered on the fly based on recording
period value entered by the user (software) as there is an index value (to determine
cache length) corresponding to each recording period (1-10). If any othe value is
entered, the system will not make a transition to state 1. The cache (length
126 as shown in Figure 4.7) employs a least recently used (LRU) policy where
samples older than required history are shifted out. Each cycle, shift operations
are preformed to achieve this utility. For for loop for shifting is unrolled using
pragma HLS UNROLL in order to support parallel accesses for shifting. Further,
due to the fact that all elements (126) have to be accessed every cycle, a BLOCK
RAM cannot be employed it would not be able to allow these many accesses per
cycle (due to insufficient ports). Thus, another pragma HLS ARRAY PARTITION is
employed to partition the array into LUTs. Moreover, if the recording period is
changed, wait states are introduced in between for garbage value prevention.

2. State 1: In this state, as can be seen from Figure 4.8, the cached (pre-trigger)
samples along with the incoming samples are accepted.
The AXI4-Stream Interfaces with Side-Channels [1] were employed for encap-
sulation of samples into packets for IPs downstream to consume. These side
channels can be realized as structures(convenient) in C++ where each field in
the structure corresponds to a particular channel (should have valid names- data,
keep, strb, user,last, id or dest). In this design, along with the data channel (32
shared bits for filtered and unfiltered data), side channels user (32 shared bits
for phase, peak and recording period) and last (1 bit) were utilized and relevant
information (control and data) was packed into different channels of AXI stream
interface every clock cycle.
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Figure 4.8: Trig Peak un filter in STATE 1

The incoming samples are passed through a butterworth low pass filter (2MHz)
and sent to the IPs downstream via data channel. Further, unfiltered PD
(required for energy calculations) is sent through the same data port.
The recording period (utilized by algo freq) is streamed out via user channel at
the occurrence of PD trigger event and marks the beginning of a packet (Figure
4.9) . Successive peak (voltage) detection is performed on each incoming sample
and sent to IPs downstream via the peak (sub-field) of user channel. In this way,
the voltage peak for the recording period is available at the end of the packet
(4.9) which can further be utilized by other IPs (down-stream) for current peak
calculation. In state 0, phase calculation request was sent to phase detector.
Because the phase detector IP (divider) has a latency of 58 cycles, relevant
phase information is available at the pd phase (4.8) port only after 58 cycles.
Since the smallest packet size to handle is 1us (125 samples or 125 cycles), the
valid phase information will always be available by the end of all packet frames
(dataflow). This phase result is sent to the IPs downstream via user port.
Finally, the last field is plugged in with a 1, indicating the boundary of the
packet (along with recording period).

From Figure 4.9, it is noticeable that two (-1 s) are sent in the beginning of every
packet. This is because the first word of every packet will eventually be discarded
by the algorithm (frequency and time domain) handling IPs. The extra first word
is just to provide an indication to other IPs that valid data is arriving from next
cycle onwards until the last=1. This explains why an extra sample is cached in
state 0 of this IP.
Here, it can be noted that the notion of recording period deviates from its literal
sense. This is because apart from the pre-trigger samples (history), no samples
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Figure 4.9: Encapsulated Packet

are being recorded. Instead, samples are streamed through the IP subsystem in the
form of easy to handle packets (variable packet frame lengths-recording periods)
which essentially renders an essence of a recording period.

• Butterworth Low Pass Filtering (2MHz): Equation 2.9 governs the design of this
filter. The multiply and add operations are absorbed into DSP48s (HLS resource
allocation). These low latency DSPs are allocated in successive cycles of the
pipeline, ensuring that pipeline II of 1 is respected and the the operations fit
within each clock cycle (8ns) at the same time.
Moreover, with a clock cycle of 8ns, it was observed that fixed point rounding
schemes cannot be applied for each filtered value (corresponding to each sam-
ple in a frame) due to rounding latency overhead. Instead, the output (y[n] in
Equation 2.9) is allocated a big register (25 bit) with no rounding schemes. This
register value is further pushed outside the block via axi stream port, where 25 bit
register is finally rounded to a 16 bit output. Here, filtering function is in-lined
(pragma HLS INLINE) with the calling function to reducing function call overhead,
improving latency of each pipeline stage within the block, hence adhering to the
required 8 ns clock constraint.

The IP offers a latency of 4 and Initiation Interval(II) of 1 cycle.

4.3.3 Phase Detector (phase detector)

4.3.3.1 Functional Description

• Waits for start ph calc(=1 ) signal from trig peak un filter IP and returns
trig peak un filter the computed phase value (corresponding to the trigger event)
after a latency of 58 cycles.

4.3.3.2 Implementation

The IP is a state machine with two states. In the first state (state0), the IP checks
if it received the start ph calc request from trig peak unfilter IP. As the IP has an II
of 2, it can only accept new inputs in 2 cycles. Thus, start ph calc signal is pulled up

60



to 1 for two cycles (by trig peak un filter). Further, If no request is received, the IP
remains in state0.
As soon as it receives a request, it latches the current time and previous period
information available at its current cnt and prev period ports respectively (coming
from sys init IP). At the same clock, the state variable makes a transition from 0
to 1 state. In state1, a divider instance is employed which divides current time by
previous period to retrieve phase information. No optimization directive is required for
this IP as there is an available window of 125 cycles (smallest frame length) which is
sufficient for the phase output to be generated.

4.3.4 Verification

The self explanatory verification scheme is shown in Figure 4.10.

Figure 4.10: Verification scheme for Acquisition and pre-processing

The sys init IP starts accepting the sinusoidal reference stream at an acceptance rate
of 100Ksps. The response of IP to the input sinusoidal stream. The sinusoidal refer-

Figure 4.11: Response of sys init

ence signal has a phase offset as shown in Figure 4.6. The IP does not issue the start
signal (start sys out) until two positive zero crossing events have not been detected.
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As the user start is 1 and two consecutive zero crossings are detected, the IP grants
permission to start PD acquisition. The IP also updates current count information
at its output port current cnt out at 100Ksps (every 10 us). Further, it also updates
previous period information after each period elapse (between consecutive positive zero
crossing events) at its output port prev period out.
After the start signal is received by trig peak un filter IP, it is allowed to receive
input PD stream from ADC emulator as shown in Figure 4.12. If the input PD exceed

Figure 4.12: Response of trig peak un filter and phase detector

the employed trigger (voltage) values (here 0.45, -0.449V), the IP switches to its state
1 and starts producing packets as shown in Figure 4.9 (after its own latency of 4 cy-
cles). As can be seen from Figure 4.12, the required output filtered and unfiltered data
are produced. Notice the delay between ADC PD emulator out and the output valid
packet’s filtered and unfiltered data. This delay is a consequence of fulfillment of pre-
trigger requirement. Thus, the data channel outputs the required history along with
data. Also, notice that as soon as a trigger event is detected by trig peak un filter IP
(negative -1 spike, beginning of the packet), the IP issues the start ph calc request for
phase calculation to phase detector IP. However, phase detector IP returns the re-
sult V (phase information) after its latency of 58 cycles and thus, the result is available
at the 59th cycle (less than 126, so dataflow is maintained), which is further plugged
in the last sample (user channel) of the packet. Here, recording period of 1(us) was
selected. As the packet length is N+1 samples, here it is 1.008us (corresponding to
125+1 samples). This packet along with data, encapsulates the voltage peak, phase
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and Recording period information and last signal at positions according to Figure 4.9
and forwards these packets to the Signal Processing Algorithm workload. (3.2).

4.4 Signal Processing Algorithm Workload

The IPs router, algo freq, algo time and packet selector constitute this workload
as discussed in section 3.2. These IPs are briefly discussed.

4.4.1 Router(router)

4.4.1.1 Functional Description

• The IP is responsible for reliable redirection of the incoming packets to one of the
two available feature computation choices (algo freq or algo time) based on the
user algo sel input.

4.4.1.2 Implementation

This IP is a simple state machine with two states (0 and 1). In state 0, the IP waits
for the beginning of a packet (arriving at its input port via axis interface with side-
channels). The beginning of the packet is detected if recording period (in the user
channel) is anywhere between 1 to 10. As soon as a packet arrival is detected, the
sample is redirected to one of the output axis ports (with side-channels)based on the
user choice (algo sel). The user choice is saved and the IP changes state to 1. Further,
for the entire length of the packet (detected by last field/channel) the IP redirects
samples to the saved user’s choice of algorithm. Thus, a packet cannot be corrupted if
the user choice changes in between of the packet.
The IP offers a latency and Initiation Interval(II) of 1 cycle.

4.4.2 Frequency domain Algorithm(algo freq)

4.4.2.1 Functional Description

• Performs feature (Q, E, Ipeak) computations using frequency domain Equations
(2.1,2.6,2.8) and streams them out along with phase successively via its axis
output port (s out freq) to the packet selector IP downstream.

4.4.2.2 Implementation

The implementation for this IP is along the lines of design perspectives discussed in
section 2.5.
The IP is a state machine. In the first state, the IP waits for the detection of arrival
of a new packet is detected (recording period between 1 to 10). As soon as a new
packet arrives, the IP initializes all the accumulation registers to 0 (i.e accumulators
for successively accumulating multiplications of incoming samples with sin and cosine
required for charge and energy). As discussed, the sines and cosines corresponding to
all recording periods from 1 to 10 us are stored in BRAMs (Figure 2.16). The recording
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period information is extracted from the packet to retrieve initial indices for look-ups
of sin and cosine. Then the state is switched.
In the second state, the IP accepts filtered and unfiltered PD samples arriving at its axis
input data channel and multiply them to the look-ups according to equations 2.6 and
2.8. For smaller multiplications like filtered data(16-bit) * respective sine/cosine (16-
bit), LUT based instances are used. As the multiplication data-path grows bigger, one
or more dedicated DSP48 units are utilized for multiplication. For instance, for energy
calculations, unfiltered data (16bit) * unfiltered data (16bit) (=32 bit output) is per-
formed using 16*16 LUT based multiplier instance. However, when this 32 bit output
is multiplied to a 16 bit look-up (sin/cosine), the 32*16 multiplication is absorbed into
two dedicated DSP48 units as each DSP possess only one 25*18 multiplier. Further, the
IP waits for last=1 (arriving at last channel of axis input), indicating packet boundary.

When such an instance is detected, the IP finds the magnitude (
√
a(32bit)2 + b(32bit)2)

using accumulations corresponding to both charge and energy, which corresponds to 16
more DSP48 instances. At this point, the square root has to be performed to retrieve
features Q and E. This operation is computationally expensive. The square root core
which Vivado binds to requires high latency and utilization.
Moreover, the last sample in every packet has Voltage peak and phase information cor-
responding to the packet. Thus Ipeak is calculated by scaling Voltage peak and phase
data is stored. Lastly, the 4 required outputs Q, E, Ipeak and phase are saved and
streamed out in the next 4 cycles from its output axis port (no side channel). The
latency of the IP is 60 cycles out of which 44 can be attributed to the sqrt operation.
Further, as desirable, the IP has an II of 1, enabling it to accept new PD samples every
cycle.

4.4.3 Time domain Algorithm(algo time)

4.4.3.1 Functional Description

• Performs feature (Q, E, Ipeak) computations using Time Domain Equations
(2.1,2.3,2.4) and streams them out along with phase successively via its axis
output port (s out freq) to the packet selector IP downstream.

4.4.3.2 Implementation

The implementation of this IP is exactly along the lines of design perspectives discussed
in section 2.5. The only implementation detail is that now, the algorithm is modelled
as a state machine similar to the one described for Frequency Domain calculations. The
IP is resource friendly. Four features corresponding to each input packet are produced
by this pipelined IP after its latency of 2 cycles. The IP also offers an II of 1.

4.4.4 Packet Selector(packet selector)

4.4.4.1 Functional Description

• Selects valid stream (of 4 features) among the two streams arriving at its two
input axis compatible ports (no side channel).
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• Streams out the valid stream to the DMA along with tlast side channel information
based on the constant tied to its num packets input port.

4.4.4.2 Implementation

This IP is again a state machine with two states. In the first state, the IP checks
for a valid input arriving at either of its input ports. At one instance in time, only
one stream will be valid because the router routes PD packets to only one algorithm.
As soon a valid input is detected, the feature is pushed through the IPs str out axis
port. Now, the state is switched and three remaining consecutive samples are sent
successively (one after the other) to the DMA. In this state however, the IP keeps a
track of the number of these output packets (consisting of only 4 features each) and
plugs in the tlast =1 signal according to the value at num packet input port. Thus, if
num packets is 20(N), the tlast bit will correspond to the fourth feature of 20th (Nth)
packet i.e, the 20*4=80th (N*4th) feature. These 80(N*4) features will then constitute
1 DMA packet for transactions to DRAM.

4.4.5 Verification

The verification scheme applied for checking the functionality and timing of the IPs
handling signal processing workload is as shown in Figure 4.13. As can be seen, the

Figure 4.13: Verification scheme for signal processing algorithms stage

outputs from the previous stage (discussed in section 4.3.4) are applied to IPs on this
stage and results are cross-checked with MATLAB implementation (Figure 4.4, table 4.2).
In the simulation shown in Figure 4.14, algorithm selected is 0 (frequency domain).
Thus, router’s algoF out TVALID port is 1, and algoT out TVALID is 0 for the en-
tire length of packet(s). Further, after the data, user and last information is streamed
out of router to algo freq, features are computed and a valid stream of four fea-
tures is generated by the IP (algo freq) after its latency of 60 cycles (480ns). The
packet selector retrieves this stream and forwards it to DMA after its own latency
of 1 cycle (total 488 ns from the last output packet sample leaving router) along with
str out tlast signal as required by DMA (Figure 4.15).
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Figure 4.14: Response of signal processing algorithm stage (algorithm selected =0 [Frequency
Domain])

Figure 4.15: Features extracted (frequency domain)

The features extracted in time and frequency domain along with errors with respect
to golden reference (4.2) are shown.

Time Domain Frequency Domain Error%(Time) Error%(Freq)

50mA Charge Q(nC) 3.8922 4.0067 -0.22 -0.13
Energy E (nJ) 0.32469 0.319 -3.07*10−3 -0.06

-50mA Charge Q(nC) -3.8956 4.0049 -0.136 -0.18
Energy E (nJ) 0.3248 0.3192 -0.03 0.02

Table 4.2: Extracted Feature verification

As can be observed, for this ideal case of 50mA and -50mA current pulses, both
the implementations deviated from MATLAB’s golden reference by less than 0.3% even
when these errors also involve errors due to quantization (inputs to implementations
are quantized ADC levels).

4.5 Hardware software co-design and integration

The entire IP-subsystem (hardware) discussed above is wrapped into a single IP core
(P DETECT). However, the required input configuration has to be fed to this IP core
using software running on the PS side. For this purpose, another IP (user config)
was designed (using Vivado’s create and package IP - new AXI peripheral utility). As
can be seen from specifications (section 2.10), the AXI GP0 master port is utilized to
set these configurations. In order to talk (accept configurations) to this port, this new
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IP possesses an AXI lite slave port.
Five memory-map registers of the ARM processor are allotted for setting the required
user configuration. Thus, before each acquisition, five configuration memory mapped
registers have to be set using software. These configurations would then be reflected
at the five output ports of user config which are connected to PDETECT as shown in
Figure 4.16. Also, another specification is to use PL DMA facilitate data (computed

Figure 4.16: Configuration IP connected to IP subsystem

features) transactions from PL to DRAM via PS. This DMA is utilized in its default
configuration (214 byte internal buffer and a maximum burst size of 256). 256 burst
size is chosen because there is a single stream of DATA to be transferred from PS to PL
and there are no other PL AXI memory map masters. Hence, the highest throughput
configuration can be safely chosen. Further, DMA’s slave light port is connected to the
same Master AXI GP port for its initialization and transaction configuration.

4.5.1 Software application

A standalone software application (setup - 4.3) was developed for on board (ZYBO
board) testing of the implementation, the scheme of which is shown in Figure 4.16.

Figure 4.17: Software Application Scheme(ARM 0)

The DMA is configured in Direct Register mode. As can be observed, the AXI DMA
and IP subsystem is first initialized with (user configuration). Also, the interrupt
system is initialized. Further, the first transaction from DMA to DRAM is initiated
by writing the destination DRAM address (in memory mapped register S2MM DA)
and the length of the packet required from DMA in memory-mapped register

67



S2MM LENGTH register). As the interrupt system is initialized for generating interrupt
on completion (IOC) of a data transfer task (PL to DRAM) for a packet (determined
by the TLAST that packet selector plugged in), the control goes to the interrupt
handler. Within the interrupt handler, the values (extracted features) received in the
previous transaction are simply printed on standard output. After completion of this
printing task, the DMA is again configured for the next transaction (packet) with an
increased DRAM address and the loop continues forever as shown in Figure 4.17.

4.5.2 Verification

This verification is in the third phase shown in Figure 4.1. In the previous discussions,
the hardware outputs were found to be almost error free (Vivado). The same fixed
point outputs in signed decimal format are shown in Figure 4.18

Figure 4.18: Extracted features for 50 (up) and -50 mA(down) PD - signed decimal notation
- Frequency Domain - Vivado IDE

The printed outputs (signed decimal notation) of Vivado the software application ob-
served in Vivado SDK are shown in Figure 4.19.

Figure 4.19: Extracted features for 50 (up) and -50 mA(down) PD - signed decimal notation
- Frequency Domain - Vivado SDK - Numbers on extreme right being DRAM addresses

As can be observed from Figure 4.18 and 4.19, the Q, E and Ipeak values exactly match.
Because in this case there are only two pulses, the application prints the same outputs
corresponding to 50 and -50mA pulses over and over again.
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Thus, it can be concluded that correct features Q, E and Ipeak are reaching
DRAM as expected. Moreover, as can be noticed, the phase information does not
have a one to one correspondence. This however does not imply that phase values are
incorrect. As can be seen from Figure 4.17, there are software delays involved between
every time the DMA is programmed. The phase generation emulator IP on the other
hand continuously produces the sinusoidal reference signal, without experiencing any
back-pressure from the software (DMA ready signal). This implies that the notion of
taking a reference for phase would be theoretically incorrect and hence, the values of
phase cannot be verified without using actual ADC. What can be verified however is
the resolution we are achieving for phase calculations.
The DMA for this test was configured for a packet length of 8192 bytes. This implies
we can expect total 2048 features (4 bytes each) corresponding to 512 PD pulses (4
features each). Phase values received in DRAM for each of these 512 PD pulses show a
ramp-like trend (as desired) after printing, demonstrating a constantly increasing phase
as shown in Figure 4.20.

Figure 4.20: Constantly increasing phase corresponding to 1 DMA packet (512 PD in this
case)

In section 4.3.1, it was claimed that 2000 distinct points (phase values) for every 360
degree of a 20Hz input signal is achievable.
The recording period in this test case was 1us with inter frame delay of 0.192us (Figure
4.21).

Figure 4.21: Inter (valid)frame delay

This implies that for the 512 pulses in a DMA packet correspond to a total time
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of 610.304 us. Thus, if the claim of achieving 2000 distinct points in every 20 ms
is correct, the number of phase values in a period of 610.304us should be 61, which
indeed is the number of distinct phase values in Figure 4.20. Thus, the achieved
phase resolution of 0.18 degrees is verified on FPGA.

70



Evaluation 5
This chapter evaluates the IP subsystem based on functional correctness, latency,
throughput and FPGA resource utilization achieved.

5.1 Functional Verification

In the verification scheme showed earlier,individual IPs were verified and their responses
to stimulus (ADC emulator samples) applied are observed. Now, for a variety test
inputs are applied to check the input-output response of the IP-subsystem:

5.1.1 Tests A and B

For test A and test B, the testing scheme can be understood from Figure 5.1.

Figure 5.1: Verification scheme - testA and test B

The real charge is the charge of the PD pulse at the primary of the sensor. Hence,
its true value (integrating current over time) is derived and is the Golden reference
(shown in red [Q(real)] - Figure 5.1) for charge calculations. Further, the band-pass
filter behaviour is simulated in MATLAB and the output voltage retrieved is fed to the IP
subsystem (after quantization to simulate ADC levels). The output from IP subsystem
after hardware simulations can then be verified against the golden reference. If the error
is under 10% (constraints), it is a proof that the IP subsystem is working as intended.
However, such an ideal reference cannot be derived for energy. This is because the
notion of real/true energy would not make sense here as energy is measured at the
secondary (energy dissipated at the input impedance). Thus, verification process is
done taking E(measured) (Figure 5.1) as Golden reference for energy. E(measured)
here is the energy calculated in MATLAB (simulation) in charge and frequency domains.
Thus, instead of comparing to true energy, the correctness of hardware implementation
with respect to MATLAB algorithm outputs (golden references in this case) is verified.
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1. Test A: This is a stream of ADC samples (at secondary) corresponding to PD
current pulses (at primary). The current pulses are shown in Figure 5.2.

Figure 5.2: Simulated current pulse at primary of HFCT testA

As can be observed, these are wide pulses (200ns) with high amplitudes ± 100mA
(around ± 910mV at secondary). These are intended to exercise and overflow the
fixed point ranges employed in the IP subsystem.

2. Test B: This is another stream of ADC samples (at secondary) corresponding to
PD current pulses (at primary). The current pulses are shown in Figure 5.3. As

Figure 5.3: Simulated current pulse at primary of HFCT testB

can be observed, these exponential pulses are narrow with small amplitudes and
are aimed at testing the precision of the IP-subsystem.

RESULTS:
Note, recording period employed for testing these pulses is 1us.

1. Charge Estimations:

72



PD
current
(peak)

Algorithm
Algorithm
Outputs

[MATLAB]

Hardware
Outputs
[Vivado]

Algorithm
Error(golden)

[%]

Hardware
Error(golden)

[%]

100mA Frequency 18.9579 18.9285 -5.21 -5.3572
Time 19.2193 19.1817 -3.9032 -4.0913

-100mA Frequency 18.9579 18.9285 -5.21 -5.3572
Time -19.2193 -19.1864 -3.9032 -4.0678

Table 5.1: Charge(nC) estimation errors (test A) - Golden = Qreal(=±20nC) on primary

PD
current
(peak)

Algorithm
Algorithm
Outputs

[MATLAB]

Hardware
Outputs
[Vivado]

Algorithm
Error(golden)

[%]

Hardware
Error(golden)

[%]

10mA Frequency 0.1434 0.1451 0.3205 1.5340
Time 0.1398 0.1380 -2.1991 -3.4251

-10mA Frequency 0.1434 0.1434 0.3205 0.3339
Time -0.1398 -0.1415 -2.1991 -1.005

Table 5.2: Charge(nC) estimation errors (test B) - Golden = Qreal(=±0.143nC) on primary

From Table 5.1 and 5.2, it is clear that hardware outputs simulated in Vivado

(and emulated on FPGA) are well within the error constraint of ±10%. Further,
because of the fact that algorithms (formulae) themselves are charge (and energy)
estimation algorithms in frequency and time domains, they naturally differ from
the real(true) value of charge. Thus, most of the deviation (from true charge)
in the final hardware output can be attributed to the nature of algorithm. The
error in hardware is because of simulated quantization errors and the fixed point
computations.

2. Energy Estimations:

PD
current
(peak)

Algorithm

Algorithm
Outputs

[MATLAB]
Golden Reference

Algorithm
Output
[Vivado]

Hardware
Error (golden)

[%]

ADC
Error
[%]

100mA Frequency 2.9003 2.8997 -0.0206 -0.0161
Time 3.1507 3.1510 0.0090 -0.0122

-100mA Frequency 2.9003 2.9005 0.0092 0.0137
Time 3.1507 3.1517 0.0307 0.0094

Table 5.3: Energy(nJ) estimation errors (test A) - Golden = E(MATLAB) (derived from
voltage at secondary)

As no true reference is taken for energy calculations, the hardware outputs
(Vivado) are compared against the software (MATLAB-Golden reference) ones to get
a good estimation of deviation from intended behaviour. In Table 5.3, the maxi-
mum error observed (from MATLAB energy estimates) is -0.0206% which should to
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PD
current
(peak)

Algorithm

Algorithm
Outputs

[MATLAB]
Golden Reference

Algorithm
Output
[Vivado]

Hardware
Error (golden)

[%]

ADC
Error
[%]

10mA Frequency 0.0017077 0.0017028 -0.2853 -0.2734
Time 0.0017117 0.0017076 -0.2406 -0.2263

-10mA Frequency 0.0017077 0.0017092 0.0915 0.1018
Time 0.0017117 0.0017125 0.0448 0.0470

Table 5.4: Energy(nJ) estimation errors (test B) - Golden = E(MATLAB) (derived from
voltage at secondary)

be acceptable for all practical purposes.
The analog to digital conversion errors (simulated in MATLAB) in estimation of
energy are also shown in Tables 5.3 and 5.4. As a digitization scheme of assigning
voltages to quantized levels followed by taking a floor was chosen while deriving
ADC values for ADC emulators, an underestimation (overestimation in case of
negative pulses) of features can be observed. As the pulses chosen for test A are
fairly wide and possess high amplitudes, the quantization errors do not contribute
much to energy computations. However, in the case of narrow PDs with small
amplitudes, ADC errors contribute more to the estimated energy, leading to a
higher error percentage in case of test B. Nevertheless, a -0.28 % error in energy
computations also seem practically acceptable. Note that this is the worst case
scenario for energy calculations as both the causes of error i.e fixed point computa-
tions (in terms of sufficient precision) and quantization are tested to the extreme
for this case.

5.1.2 Test C

The tests above cover estimations for recording period of 1. However, recording periods
of 2 to 10 are not tested. This test sweeps recording period from 2 to 10 ns. The
intention here is to check the functionality of algorithms specially frequency domain
as it involves look-ups based on indices derived from recording period. Again, for this
test, hardware outputs will be compared to software (MATLAB) ones (same as test B).
The exponential pulse used in this section is shown in Figure 5.4. As can be observed,
testC represents an elongated PD pulse. Further, white noise is added (SNR 10) to
test IP subsystem to the extreme (for precision). It should be noted here that the
idea behind this test set is to analyze the errors achieved on hardware with respect to
MATLAB estimations and not to analyze the algorithms themselves.

Results:

Figure 5.5 and 5.6 demonstrate the errors in the results from sweeping recording period
from 2 to 10 in both domains for charge and energy respectively.
As mentioned earlier, the errors for our embedded solution can be attributed to ADC
quantization errors(unavoidable) and fixed point errors (true system errors). ADC

74



Figure 5.4: Simulated current pulse at primary of HFCT TestC

Figure 5.5: Percentage errors in charge estimation - golden reference - MATLAB charge
simulations in frequency and time domain for recording periods between 2-10 us

Figure 5.6: Percentage errors in energy estimation - golden reference - MATLAB energy
simulations in frequency and time domain for recording periods between 2-10 us

behaviour was simulated in MATLAB as explained earlier. Thus, if there are no fixed
point errors, the dotted lines (outputs when quantized inputs are considered) should
be followed by bold lines (hardware outputs) in Figures 5.5 and 5.6. However, as can
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be observed, there are differences between dotted and bold lines due to fixed point
computation errors. First property that can be noticed is the tendency of the errors
to shift in the negative direction. This negative shift is due to the ADC simulation
scheme of taking the floor (assumption). However, there is still a uniformity as as all
the samples (for ADC emulators) employ the same scheme.
Charge estimations in time domain demonstrate ADC errors perfectly (Figure 5.5).
The exponential pulse in discussion is a positive pulse and charge calculations employ
summing up input samples between zero crossings (corresponding to maximum peak).
Thus, if each sample is digitized (and floored in our case), underestimations of charge
are expected. In this sense, charge estimation in frequency domain appears to be more
resilient to quantization errors. Adding up to these ADC errors in time domain for
charge calculations, the fixed point errors for charge calculation further deviate the
feature (charge), leading to a maximum negative error of 0.43% (recording period 10
in this case).
From Figure 5.6, it can be observed that maximum errors in energy estimations is
under -0.3 % (0.28%). Also, in this case, system errors(fixed point) are less for Time
domain as compared to frequency domain. This again makes sense because in frequency
domain, the incoming sample (Fixed Point sample) gets multiplied to itself and then
gets multiplied with sin and cosines (fixed points) followed by square root in the end. On
the other hand, the time domain energy calculations only involve sample multiplication
by itself, followed by successive additions.
As discussed in section 2.1, our measuring system is an unconventional one. Thus there
are no guidelines for an error constraint as such. Much is left to actual testing in the lab
to see if the extracted features are sufficient to separate PD sources or not. Making any
further deductions from the outputs of this limited data-set will not be fair. However,
what can still be appreciated is the fact that that even for this worst case test input
featuring small and rapidly varying changes, the fixed points in employed in hardware
seem to provide sufficient precision as the maximum errors achieved are on hardware
-0.28% and -0.3%.

5.2 Latency and throughput

From the performance details in appendix A, Figure ref 5.7 is derived. Here, the
similarities (in handling streams of PD samples) of the achieved IP-system compared
to the one desired (2.21) can be appreciated.
The system offers a worst case latency of 66 cycles (66*8 = 528 ns) per input PD
sample (when frequency domain algorithm is opted). Further, in the best case, the
latency achieved is 8 cycles (8*8=64 ns). Also, each IP in the subsystem offers an
Initiation Interval (II) of 1 which directly implies that each IP can accept a new input
PD sample every cycle (8ns). This further implies that the entire IP sub-system can
accept new PD samples every cycle, giving the system the desired throughput (2.10) for
real time processing.
In Figure 2.21, it was shown that total latency of the compute block to handle x input
samples would be x + N (when II=1) where N is the latency of compute block.
From Figures 5.8 and 5.9 the response of IPs to stimulus (testA) can be observed
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Figure 5.7: Achieved latency and throughput for IP sub-system

Figure 5.8: Response time - Frequency domain

Figure 5.9: Response time - Time domain

(recording period = 1us [125 samples]). As we accept one additional sample in the
system for each recording period (extra sample in history 4.3.2.2), x = 126. Further,
in worse case (frequency domain), N = 66 implying a total latency of 192 cycles (x+N)
i.e, 1536 ns (Figure 5.8). Similarly, for time domain, we get a best case latency of 134
cycles (126 + 8) i.e, 1072ns (Figure 5.9).

5.3 Utilization

The utilization estimates can be found at appendix A. Clearly, the frequency domain
algorithms are more resource hungry than the time domain ones. Moreover, the overall
utilization has not exploded (thanks to fixed points) and there is a lot of FPGA area
(86.67% BRAM, 58.75% DSPs, 77.17% LUTs(Logic) and 50.55% still available) for
more utilities to be put in future.
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Conclusions and Future work 6
Before concluding the report, it is important to discuss the limitations in the achieved
system. Following section summarize the limitations.

6.1 Limitations

1. ADC : As discussed earlier, the PD pulse voltages can extend well beyond the
available range of ±1V .

2. Sampling rate : The sampling rate PD detection at every 8 ns. However, there
are PD pulses with rise times smaller than 8ns. Thus, there is a probability that
Ipd feature is under-estimated.

3. Manual Trigger levels: However, the system features a manual triggering. This
implies human intervention. This implies triggering errors, mainly false triggers
due to noise. Thus, it is extremely desirable for the final solution to be free of
human interventions.

• The real time acquisition and compute nature of our system can prove to
be an excellent solution for the problem of false triggering due to noise.
For instance, if 100 valid frames (each frame 1us) are consecutively (100us)
recorded and 100 valid features are computed for these frames, there is a
extremely high probability that noise is being triggered. Hence, a feedback
routine to fix trigger values can be devised.

4. Manual Recording period: This is another source of human intervention. PD
widths can extend beyond 1 us. However, in the present solution, there is no way
to know if the acquired frame covered the length of PD or not. If it did not, the
computed parameters charge and energy might not represent the PD.

5. Basic application: For this thesis, only a basic standalone application is devel-
oped as a proof of concept. However, for realizing the picture shown in Figure
2.7, it is essential to have communications to remote user and a Graphical User
Interface to be developed.

6.2 Future work

The system has to be integrated to the ADC and tested with the real test setup to realize
practical merits and demerits. Also, there should be an integration with remote GUI
to facilitate testing. A complete software framework has to be developed to facilitate
these interactions with remote user. Once rigorous testing is completed, additional
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classification IPs can be designed for the FPGA to perform the entire process of PD
detection and classification locally.

6.3 Conclusions

The achieved IP subsystem is an excellent starting point to facilitate further research
using the test setup shown in Figure 4.5. All the goals defined for the thesis work were
achieved. With the comprehensive testing performed in chapter 5 (and chapter 4), it is
established that the features of interest Ipeak, Q , E and phase are computed with high
degree of accuracy, including errors due to fixed point computations.
It can be appreciated that as our Red-Pitaya based embedded system is capable of
feature computations also, data compression (only 4 outputs corresponding to each PD
pulse) is achieved as shown in table 6.1. Hence, 78.4% less amount of data has to be

size per element Per frame storage (10us) Number of Frames Required storage
Oscilloscope 1 byte(per sample) 1250 bytes 50000 59.6MB
Red Pitaya 4 bytes(per feature) 4*4=16bytes 50000 0.76MB

Table 6.1: Data compression(ratio-78.4%) facilitating classification process

analyzed for classification process as compared to the oscilloscope, which is an in-built
novelty factor of this thesis.
The IP subsystem is based on a cost-effective platform (Red Pitaya), which will even-
tually make the benefits to cost ratio of deploying Red Pitaya on a large scale much
higher than the state of the art. Further, the IP-subsystem will be open-source and
made available on TU Delft’s website, implying that instead of using expensive equip-
ment like a high performance oscilloscope, PD researchers around the world can simply
employ a cost-effective Red Pitaya, download our source code onto it and just like
that, a ready to use PD detection and feature extraction tool based on more robust
PD features is available. This will be an important step in the direction of promoting
research in the field of PD detection and monitoring based on electrical methods.
The fixed point computation facilitated the desirable real time property to the IP-
subsystem. Due to the real time acquisition and compute nature of devised solution, a
number of avenues for a better future classification process have opened. For instance,
repetition rates can now be derived with high accuracy, which implies better defect-
severity indications to the user and can also be potentially employed as an additional
feature for classification. Due to fixed point computations, the utilization and power
consumption of the FPGA was (inherently) minimized. Even after realizing two algo-
rithms, there is still plenty of area remaining in the fabric (ZYNQ 7010 SoC), which can
be utilized for realizing (part of) PD classification in future. The designed solution fa-
cilitates user with selections of feature estimation algorithms based on time/frequency
domains. Hence, it opens more possibilities of research and testing as both estimation
methods have their merits and demerits.
Because an embedded platform with high compute capabilities is employed, a potential
patient-doctor relationship can exist between the HV/MV insulation and user. Thus,
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if the classification is done locally on the platform, a network of these cost-effective
embedded devices can send their health reports to the user from time to time.
To conclude, I would like to emphasize that although the project is still in the very first
stage i.e feature extraction and requires rigorous testing in practical scenarios, with the
cost effective, real time solution that has been developed, possibilities are limitless.
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Appendix A
A.1 Performance

Figure A.1: Performance - trig peak un filter

Figure A.2: Performance - router

Figure A.3: Performance - algo freq

Figure A.4: Performance - algo time

Figure A.5: Performance - packet selector

85



A.2 Utilization

Figure A.6: IP-subsystem’s post-implementation utilization
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