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Summary

Near-Earth Objects (NEOs) such as asteroids and comets, offer us the possibility of looking back into the early
days of the solar system. Given the wealth of their scientific information, their study could allow us to learn
about the origins of water on Earth, and possibly even the origin of life. Moreover, the fact that NEOs, by
definition, orbit the Sun at close distances, means current space technology can be used to make round-trip
missions to these objects not only feasible but in fact potentially more cost-effective than the standard plan-
etary mission. Nonetheless, with new goals come new challenges, and the chaotic dynamical environment
inherent to these small bodies is certainly one of them. Given their generally small gravity, the solar radia-
tion pressure is a major perturbation to the system, which alters the dynamics significantly. This is specially
true when considering objects with large area-to-mass ratios, as is the case for asteroid ejecta, the topic of this
thesis.

This report presents the work developed on the topic of temporary capture of asteroid ejecta into periodic
orbits about the asteroid, applied to the case of the Hayabusa2 mission from the Japan Aerospace Exploration
Agency (JAXA). Hayabusa2 is a sample-return mission to the C-type asteroid Ryugu, which arrived at the aster-
oid at the end of June 2018. After an observation period and two touchdown sample collection maneuvers, the
spacecraft will fire its Small Carry-on Impactor (SCI) at the asteroid, creating a crater that will allow the obser-
vation and collection of subsurface material. However, the ejecta from this cratering event may pose dangers
to the mission if it remains about the asteroid for long periods of time.

In this thesis we approach the problem of temporary orbital capture of ejecta particles in periodic orbits
using invariant manifold theory. As opposed to using extensive brute-force simulations of wide ranges of initial
conditions, this approach allows us to efficiently find physical constraints (e.g., ejection velocities, impact
location, and particle radius) for ejecta particles to remain temporarily trapped in periodic orbits and assess
the dangers posed by the SCI operation to the Hayabusa2 spacecraft. The results found with this methodology
could also be used to constrain numerical brute-force simulations in high-fidelity models to find other initial
conditions that lead to similar orbital captures.

We model the dynamical framework of the problem using a perturbed Augmented Hill Problem (AHP),
which includes solar radiation pressure, the effect of eclipses, and the J2 and J4 terms of the asteroid’s gravity
potential spherical harmonics expansion.

This study has allowed us to identify the impact locations that lead to the largest number of ejecta particles
being captured into three families of periodic orbits, namely, the AHP equivalents of the planar a and g’ families
and the southern halo orbits, where the latter are commonly known as terminator orbits. Most importantly,
we were able to find impact locations for which no ejecta particles get captured into these periodic orbits,
identifying the Sun-side of the asteroid at medium latitudes as the best impact location.

Furthermore, important conclusions to the effects of including solar radiation pressure and the effect of
eclipses in the dynamics of the system are also established, particularly regarding the structure of the stable
manifolds of the equilibrium points and the stability of periodic orbits. We point to the importance of includ-
ing the solar radiation pressure in the study of the dynamical environment about small bodies. Last but not
least, the conclusions and methodology applied in this study are found to have applications beyond the study
of ejecta dynamics: a similar approach can be followed to design landing trajectories from periodic orbits to
the surface of small bodies.
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A.11 Position error after one period in the full model (with eclipses and gravity perturbations), for fam-
ilies of periodic orbits a and g’. Initial conditions are presented in non-dimensional coordinates,
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I
Introduction

Ever since the dawn of humankind, we have been looking at the skies. The famous comet Halley, the first ever
identified comet, was first described in a historical document by Chinese astronomers in 240 BC [1], far before
the scientific revolution and enlightenment period. The exploration and pursuit of the secrets kept by the vast
space above our heads have not only contributed to the technological development of the human species,
but also brought us closer to the mysteries surrounding the origin of life. When the first near-Earth asteroid
was discovered in 1898 by G. Witt [2], no-one imagined we would one day be stepping on the Moon, landing
on Mars, on asteroids, or exploring the interstellar space beyond the solar system; and yet, here we are. The
question then stands: what else can we still not imagine?

In the pursuit of knowledge and in the path leading to an interplanetary species, many stones are still left
unturned. The asteroids and comets pertaining to the group of Near-Earth Objects (NEOs) certainly represent
some of these "stones". Other than their wide scientific value, they hold an ever more significant position in the
support of other areas, as planetary protection and asteroid mining. Their value and significance is a product
of many factors, among them: their accessibility from Earth, their scientific content as remnants of the early
days of the solar system, and their position in the solar system as possible "space stations" for interplanetary
travel [3].

Due to their small size, asteroids typically exert small gravitational forces. As a consequence, even small
perturbations can have a large effect on the objects orbiting an asteroid. This makes the dynamical space
around asteroids particularly challenging to study and to design and operate space missions. Nonetheless,
due to the reasons stated above, the design and study of these missions is a flourishing area, and expected to
become increasingly prominent in the coming years.

A topic of particular interest to current and future space missions relates to the behavior and fate of asteroid
ejecta in the dynamical environment surrounding these asteroids. While it was initially thought that asteroids
smaller than a few tens of kilometers would be stripped of the fine and loose layer of rock that covers the
surface of many bodies (known as regolith) [4], the wealth of information provided by previous missions and
other numerical studies have helped prove otherwise. Nonetheless, and although studies on ejecta dynamics
have taken place before, much is still unknown about the topic [5]. With this in mind, this thesis presents
an in-depth investigation on the orbital motion of asteroid ejecta, as a product of an impact event by JAXA’s
Hayabusa2 mission.

In this chapter, we discuss some of the previous, current, and future missions to NEOs and establish the
wide scope of interest and applicability of this thesis to future missions. Furthermore, we present a concise
review on existing literature about the study of asteroid ejecta and the asteroid’s dynamical environment, and
present the research objectives and questions of this thesis.

I.1. Missions to NEOs

The number of NEO missions has been increasing throughout the last decades. The consecutive accomplish-
ments and the scientific data collected by some of these missions have greatly contributed to our understand-
ing of asteroids and comets and enabled an abundance of technology demonstrations. These accomplish-
ments have been, and continue to be, incorporated into other missions, thus advancing science, technology,
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and the frontiers of space exploration. This section presents past, present, and future missions to NEOs, to-
gether with some of their achievements.

I.1.1. NEAR Shoemaker

The first mission in NASA’s Discovery Program was launched on February 1996 from Cape Canaveral and was
the Near-Earth Asteroid Rendezvous (NEAR) Shoemaker mission [6]. The mission’s goal was to study the sec-
ond largest known near-Earth asteroid: 433 Eros. Eros is an S-type asteroid with approximately 17 km in di-
ameter and a spin period of approximately 5.3 h1. The NEAR Shoemaker mission reached Eros in February
2000 and managed to successfully orbit the asteroid for a year, becoming the first ever mission to orbit an
asteroid. The spacecraft gradually lowered its orbit until eventually soft-landing on the asteroid on February
2001, which marked the end of the mission. Besides obtained detailed information on the asteroid’s gravity,
shape, and spectroscopy, the mission showed significant quantities of regolith on the surface [7]. With all its
accomplishments, the NEAR Shoemaker set an important milestone in the field of NEO missions, opening a
pathway for future missions.

Figure I.1: Asteroid Eros as seen from NEAR. Courtesy of NASA2.

I.1.2. Hayabusa

Hayabusa (initially known as MUSES-C) was JAXA’s first asteroid mission and the first mission ever to success-
fully return an asteroid sample to Earth. After its launch in 2003, the spacecraft arrived at the subject of its
mission, asteroid 25143 Itokawa, in 2005 [8]. Once at the asteroid, Hayabusa obtained an abundance of data
relating to the asteroid’s shape, density, topography, spin axis, and spectroscopy. It employed a hovering strat-
egy over the asteroid, as opposed to orbiting, thus maintaining continuous control over the spacecraft. The
sample collected from the S-type asteroid arrived back on Earth in 2010 [9]. Moreover, the mission also at-
tempted to land a rover, MINERVA, on the surface, which was unsuccessful. The sample return marked a huge
milestone in space science and mission design, allowing scientist to directly measure and study the compo-
nents of an asteroid, and possibly compare them with observational data from other missions (such as NEAR)
or other meteorite samples.

I.1.3. Deep Impact

The Deep Impact mission from NASA is of particular significance to the study undertaken in this thesis. It
studied comet 9P/Tempel and consisted of two companion spacecraft/modules. The spacecraft reached the
comet on July 2005, and separated shortly after. One of the modules consisted of a 364 kg impactor spacecraft,

1https://ssd.jpl.nasa.gov/sbdb.cgi#top; accessed 04-03-2019.
2https://photojournal.jpl.nasa.gov/catalog/PIA02923; accessed on 28-02-2019.
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Figure I.2: Asteroid Itokawa as seen from Hayabusa. Courtesy of [10].

designed to excavate material from the comet that would be studied by the scientific instruments aboard the
main spacecraft, at a safe distance of 500 km [11,12]. The impactor spacecraft collied against the comet with a
velocity of 10 km/s, as the mother-spacecraft probe flew-by the comet.

I.1.4. Hayabusa2

Hayabusa2 is JAXA’s second sample-return mission and the subject of the work presented in this thesis. The
mission’s goal is to investigate the C-type asteroid 1999 JU3, commonly known as asteroid Ryugu, with the
purpose of returning a sample to potentially answer questions relating to the origins of water on Earth [13].
The spacecraft arrived at the asteroid at the end of June 2018, and at the time of writing, it has thus far success-
fully deployed two landers on the surface - becoming the first ever mission to successfully place a lander on
an asteroid - and most recently completed the first of its three scheduled touchdowns to collect samples. Most
notably, the mission plans to perform a ballistic impact on the surface of the asteroid, the topic investigated
in this report, so as to create an artificial crater for observation and sample collection [14]. This will allow for a
sample collection of the asteroid’s subsurface layers that has not been subjected to space weathering [15]. The

Figure I.3: Hayabusa2’s mission timeline and trajectory design. The reference frame is centered on the Sun with the Earth situated in the
positive x-axis. Courtesy of [13].

asteroid’s small gravity and size make spacecraft operations challenging, which is why JAXA decided to con-
tinuously hover the spacecraft over the asteroid, at an approximate distance of 20 km along the asteroid-Earth
line [13]. This same strategy was also used for Hayabusa, although Hayabusa2 will have a longer exploration
phase (three months for Hayabusa and 18 months for Hayabusa2). This operational method also allows for
continuous communication with the spacecraft. Asteroid Ryugu has an effective radius of 440 m and is in
a heliocentric orbit with a period of 1.3 years. Data from the spacecraft’s instruments has shown its surface
to be extremely rocky and covered with boulders and regolith. After performing the planned operations, the
collected samples will return to Earth via a re-entry capsule in 2020 [13]. Figure I.3 presents the timeline and
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general trajectory design of the Hayabusa2 mission and Figure I.4 shows the surface of Ryugu as seen from the
Hayabusa2 spacecraft.

Figure I.4: Asteroid Ryugu as seen from Hayabusa2. Courtesy of JAXA, University of Tokyo, Kochi University, Rikkyo University, Nagoya
University, Chiba Institute of Technology, Meiji University, University of Aizu, AIST3.

I.1.5. OSIRIS-REx

The OSIRIS-REx mission from NASA is, at the time of writing, orbiting the subject of its mission: the C-type
asteroid 101955 Bennu. The mission launched in 2016 and plans to touchdown on the asteroid surface to
collect a sample through a touch-and-go sample-collection mechanism and return it to Earth for further anal-
ysis [16]. The sample is expected to arrive back on Earth in 2023. The mission was launched in September 2016
and arrived in close proximity of the asteroid at the end of 2018. Asteroid Bennu recently became the smallest
object ever to be orbited by a spacecraft4. Figure I.5 shows the South pole of asteroid Bennu as seen from the
OSIRIS-REx spacecraft.

Figure I.5: Asteroid Bennu as seen from OSIRIS-REx. Courtesy of NASA, Goddard, and University of Arizona5.

3http://www.hayabusa2.jaxa.jp/en/topics/20190225e_TD1_W1image/; accessed on 01-03-2019.
4https://www.asteroidmission.org/?latest-news=nasas-osiris-rex-spacecraft-enters-close-orbit-around-

bennu-breaking-record; accessed on 04-03-2019.
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I.1.6. AIDA

The Asteroid Impact and Deflection Assessment (AIDA) mission is a planned joint mission between NASA and
ESA to the binary asteroid 65803 Didymos. The mission consists of two separate missions: the Double Aster-
oid Redirection Test (DART) from NASA, led by the John Hopkins’ Applied Physics Laboratory, and the Hera
mission from ESA6. The DART mission will consist of a high velocity impact on the smaller body of the binary
in 2022, in an effort to demonstrate asteroid deflection technology via kinetic impact [17]. The Hera coun-
terpart spacecraft will arrive at the binary asteroid three years later to observe the impact site and aftermath
of the event. Besides the asteroid deflection technology demonstration, the data collected by both spacecraft
could provide important scientific return regarding both the internal composition of binary asteroids and the
existence of long term bounded motion.

I.2. Literature Review/State-of-the-art

Previous authors have considered the dynamics of asteroid/comet ejecta orbiting about small bodies. As men-
tioned, due to their generally small mass, the dynamical environment about small bodies is susceptible to per-
turbations that are commonly neglected when analyzing the orbital dynamics about larger bodies. One of the
largest perturbations is usually posed by the solar radiation pressure (SRP) [18]. This creates a complex and
highly-perturbed environment, especially for particles or spacecraft with large area-to-mass ratios, for which
the intensity of the SRP accelerations is significantly larger [19]. For example, for ejecta particles, the smaller
the radius, the larger the SRP acceleration.

The work by Scheeres et al. in [5] presents a comprehensive review regarding not only the perturbations
experienced by asteroid ejecta, but also different approaches for modeling and studying the fate of these parti-
cles. In said paper, the different types of conditions that lead ejecta to either re-impact, be captured, or escape,
are qualitatively divided into different groups. Scheeres et al. also study the different gravity modeling options
one can take to describe the gravity of the asteroid. A remark is made with respect to the existence of bounded
motion about an asteroid, referencing the fact that an orbit needs not to be mathematically stable to remain
about an asteroid for long periods of time, which is referred to as temporary capture. Although the existence
of these trajectories is acknowledged, the unanswered questions refer to the conditions that actually lead to
temporary capture. This exact point is one of the main drives behind this thesis project.

The work in [20] studies the motion of ejecta particles about spherical comets that are in eccentric orbits
about the Sun using an analytical method to compute the motion of the ejecta particles under SRP-perturbed
environments over long periods of time. The method, called Radiation Pressure Approximation (RPA), uses
averaged solutions for the computation of the particle’s angular momentum and eccentricity, as an explicit
function of the true anomaly. This method is recovered in [21] by Scheeres and Marzari to study the possibility
of temporary orbital capture following the impact of the Deep Impact mission on comet 9P/Tempel. Scheeres
and Marzari find initial conditions, which, under the RPA method, lead to long periods of orbital capture.
Although these works are applied to comets, they could be transformed to analyze temporary capture about
asteroids. Nonetheless, in these works the effects the body’s irregular gravity field or eclipses are not taken into
account.

In [22], Scheeres et al. study the orbital environment about asteroid 4769 Castalia in the dynamical frame-
work of the two-body problem with a detailed gravity model in its spherical harmonics expansion, which is
computed from a radar-derived physical shape model. Several types of orbital motion are studied, and ap-
plied to both ejecta particles and spacecraft. Although this paper does not include perturbations other than
the irregular gravity field of the uniformly rotating asteroid, it presents trajectories leading to the equilibrium
points of the system by following their stable manifolds, a similar approach to that employed in this thesis.

Although this thesis approaches the topic of ejecta dynamics from an astrodynamics point of view, previous
authors have studied the ejection dynamics from an impact cratering stand-point by analyzing the geological
properties of the body’s surface [23]. A common approach in this field is to employ empirically obtained scaling
laws that make use of small-scale laboratory experiments to describe the ejection conditions of the material
and the crater-forming processes. These laws have also been employed to study the cratering event of the
Deep Impact mission in [24] and [25].

5https://www.asteroidmission.org/galleries/spacecraft-imagery/; accessed on 01-03-2019.
6https://www.esa.int/Our_Activities/Space_Engineering_Technology/Hera/Asteroid_Impact_Deflection_

Assessment_AIDA_mission; accessed on 28-02-2019.
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A further exposition of previous research regarding the dynamics in the vicinity of small bodies and the
framework of the traditional Hill Problem [26, 27], the Augmented Hill Problem (AHP) [18, 28], and the AHP
with eclipses [29], is exposed in Chapter II of this thesis. So as not to repeat information, this section only
exposes previous research in the field of asteroid or comet ejecta about small bodies.

Nonetheless, from the presented research, we find that the study of asteroid ejecta and their temporary
capture has yet to be studied in a dynamical environment that considers the SRP, eclipses, and the oblateness
of the small body. Previous research considers either high-fidelity gravity models in a two-body problem,
ignoring the SRP, or takes into account the SRP but ignores the effects of eclipses and models the asteroid’s
gravity as a point mass. The study presented in this thesis thus aims at contributing to this topic by studying
the conditions necessary for ejecta particles to be temporarily captured in periodic orbits, using a model that
considers the SRP, the effect of eclipses, and the oblateness of the asteroid.

I.3. Research Questions

The goal of this thesis is to study the conditions for which asteroid ejecta could be temporarily captured into
periodic orbits following an impact event on the surface of the asteroid. It is directly applied to the Hayabusa2
mission from JAXA, which is the motivation behind this research. It aims at assessing whether the trajectories
followed by the ejecta particles from the asteroid surface could pose a hazard to the mission or the spacecraft,
taking into account that a collision with the ejecta particles could limit the performance of the spacecraft.
Taking this information into account, we formulate the following main research question:

Can ejecta that is temporarily captured into periodic orbits following
Hayabusa2’s SCI operation pose a danger to the spacecraft?

With the purpose of elaborating a solid structure for the research process, the main research question can
be further divided into the following sub-questions:

1. What type of dynamical environment exists about asteroid Ryugu and what is the effect of the perturba-
tions posed by the SRP, eclipses, and the J2, J4 terms of the asteroid’s gravity potential expansion?

2. What are the initial conditions that lead ejecta particles to periodic orbits and thus temporary capture?

3. For what duration do the ejecta particles remain captured about the asteroid?

4. What is the effect of particle radius in the dynamics experienced by the ejecta particles, in terms of
temporary capture?

5. What trajectories do the captured ejecta particles follow and do they pose a danger to the Hayabusa2
spacecraft?

6. What are the best and worst impact locations for the SCI in terms of possibility of temporary capture and
safety of the spacecraft?

I.4. Thesis Structure

Following this introductory chapter where the motivation and research objectives of this thesis were presented,
Chapter II presents the main body of research in the form of a self-contained draft journal article. It includes
an introduction where a more detailed overview of previous work on the dynamical framework on which this
thesis is based is presented, together with a comprehensive review of research relevant to this work. We present
the dynamical model used and its equations of motion, relevant background knowledge and methodology,
considerations on impact dynamics and their relation with the studied SCI operation from an astrodynamics
perspective, the results of the research, and the conclusions of said research.

Chapter III recovers the research objectives and questions, in order to review to what degree they were
fulfilled. In the same chapter we also make recommendations for future work on the topic of this thesis and
present another promising application for the implemented methodology, presenting some preliminary re-
sults. In Appendix A we present the verification and validation of the model and of the tools developed for this
thesis.
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II
Journal Article

This chapter presents the main results of this thesis research project in the form and style of a draft journal
article. It is thus a self-contained document, albeit included in the body of this report.

7



Temporary Capture of Asteroid Ejecta into Periodic Orbits:
Application to JAXA’s Hayabusa2 Impact Event

Daniel Villegas Pinto ∗

Delft University of Technology, 2629 HS Delft, The Netherlands

In the framework of JAXA’s Hayabusa2 mission, we study the dynamical environment

around asteroid Ryugu to investigate whether ejecta particles can be temporarily trapped in

periodic orbits following the Small Carry-on Impactor (SCI) operation. If these particles

remain about the asteroid, they could potentially jeopardize the mission as, in the event of a

collision with the Hayabusa2 spacecraft, the spacecraft’s functionality could be reduced. In

this paper, we make use of invariant manifold theory to assess the conditions - impact location,

particle radius, ejection velocity - that cause ejecta particles to get captured in periodic orbits.

The analysis is carried out within the dynamical framework of the perturbed Augmented Hill

Problem, which takes into account the solar radiation pressure, the effect of eclipses, and the J2

and J4 terms of the asteroid’s gravity potential in its spherical harmonics expansion. Weanalyze

millimeter to centimeter sized particles and captures into three families of periodic orbits that

are robust to large values of the solar radiation pressure acceleration – the traditional a and

g’ families of the Hill Problem and the southern halo orbits. We go on to find the impact

locations for the SCI from where ejecta particles are most likely to be captured into periodic

orbits via their stable manifolds. As such, we recover the sets of initial states that lead ejecta to

temporary orbital capture and show that solar radiation pressure cannot be neglected in these

analyses, identifying locations on the Sun side of the asteroid at medium latitudes as the best

impact locations.

Nomenclature

a, b, c = Asteroid axes, m

ap = Perturbing acceleration, m/s2

aSRP = Dimensional solar radiation pressure acceleration, m/s2

A = Exposed surface area, m2

Clk = Stokes coefficients of order l and degree k

CR = Reflectivity coefficient or albedo
∗d.e.villegaspinto@student.tudelft.nl



da = Mean distance between Sun and asteroid

g = Sigmoid function

J = Jacobian

J2, J4 = Gravitational oblateness terms due to the C20 and C40 Stokes coefficients, respectively

m = Mass, kg

P0 = Solar constant, kg m/s2

r = Position vector of particle, m (or km or dimensionless)

rx = Distance to x-axis, m (or dimensionless)

R = Reference frame

R = Ejecta particle radius, cm

Ra = Average asteroid radius, m

s = Contrast factor for sigmoid function

t = time, s (or dimensionless)

T = Period, s (or dimensionless)

Ta = Asteroid period about Sun

U = Gravity potential in spherical harmonics, m2/s2 (or dimensionless)

Ux,Uy,Uz = Gravity accelerations in cartesian coordinates for spherical harmonics, m/s2 (or dimensionless)

Ũ = Effective potential, dimensionless

v = Eigenvector

vej = Ejection velocity, m/s (or dimensionless)

V = Kinetic energy, dimensionless

X = State vector, m and m/s (or dimensionless)

β = Solar radiation pressure acceleration, dimensionless

ε = Small perturbation

ζ = Right ascension in the Hill frame, deg (or rad)

δ = Declination, deg (or rad)

∆ = Variation or error

λi = Eigenvalues of Monodromy matrix

µ = Asteroid gravitational parameter, m3/s2

µS = Sun gravitational parameter, m3/s2

ρ = Density, kg/m3

σ = Ejection angle with respect to surface normal, deg (or rad)
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τ = Half-period, s (or dimensionless)

Φ = State transition matrix

ΦM = Monodromy matrix

ω = Mean motion of asteroid about Sun, rad/s

�̂ = Unit vector

Û� = First-order derivative with respect to time

Ü� = Second-order derivative with respect to time

Subscripts/Superscripts

�0 = Initial condition

�ej = Ejection condition

�Hill = In the Hill frame

�U = Unstable

�S = Stable

I. Introduction
With the increased attention that the topic of small bodies has received in the past few decades, we have seen the

space community motivated more than ever by the scientific value that missions to Near-Earth Objects (NEOs) offer.

The answers to the origins of the solar system and water on Earth may very well lie within the knowledge kept by these

small bodies of our solar system [1] and this quest has pushed forward a number of missions. From NASA’s NEAR

Shoemaker mission orbiting an asteroid for the first time [2], JAXA’s Hayabusa mission returning an asteroid sample for

the first time in history [3, 4], ESA’s ROSETTA mission [5, 6], NASA’s Deep Impact mission [7, 8], up to the mission

on which the work here presented is applied to, JAXA’s Hayabusa2, a sample-return mission to the C-type near-Earth

asteroid 1993 JU3, also known as asteroid Ryugu.

After having arrived at asteroid Ryugu at the end of June 2018, Hayabusa2 is now in the process of planning to fire

its Small-Carry-on-Impactor (SCI) at the asteroid with the purpose of collecting subsurface material from the created

crater via a third and final touchdown [9]. While preliminary studies assumed that the asteroid ejecta generated from

this event would be cleared within less than 30 days [10], other studies (such as [11]) and observations (such as [12],

where an asteroid was observed to have a debris trail, likely resultant of a collision) show the possibility of dust particles

remaining about the asteroid for long periods of time. Due to the small mass of the asteroid, the dynamical environment

of the ejecta is highly perturbed by solar radiation pressure (SRP). Although these conditions are often disruptive to
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the possibility of bounded motion, they may give rise to scenarios that result in temporary capture (as proven by the

observations detailed in [12]), posing a danger to the mission in case of a collision with the spacecraft. Moreover,

temporary capture of ejecta particles about the asteroid could prevent the spacecraft from approaching the asteroid

to complete its final sample collection of the subsurface material excavated by the ballistic impact. This is thus the

motivation for the undertaking of this work; its purpose is to assess the conditions that can cause asteroid ejecta to

remain trapped in periodic orbits about asteroid Ryugu following the impact event on its surface.

The dynamical environment presented here is, at its core, based on a particular case of the Circular Restricted

Three-Body Problem (CR3BP) [13, 14] commonly known as the Hill Problem. The Hill Problem describes the scenario

where the dynamics are situated in the vicinity of the secondary body and the mass of the secondary body is much

smaller than that of the primary; it was first introduced in 1878 by George Hill [15] and used to describe dynamics

about the Moon. It is a common approach when analyzing the orbital dynamics about NEOs and has been employed in

previous works [11, 14, 16–18]. However, the classical Hill Problem does not include the effect of the SRP, which is a

major perturbation of the system under consideration [14, 19]. Also known as the Photogravitational Hill Problem [20],

the extension of the Hill Problem to the case of a radiating primary is here referred to as the Augmented Hill Problem

(AHP). The model used in this paper is a further extension of the AHP, here referred to as the perturbed AHP, which also

includes the effect of eclipses and the asteroid’s J2 and J4 terms of its spherical harmonics gravity potential expansion.

Several orbital dynamics studies have been carried out under the AHP model. In [20], an extensive search and

analysis of families of planar periodic orbits is undertaken for very small values of SRP acceleration. The AHP has

also been used to study the dynamics of solar-sails about asteroids, as seen in [21–24]. Specifically, the work in [21]

shows how a spacecraft can take advantage of the SRP to remain bounded to the asteroid’s vicinity for long periods of

time. In [25], Broschart and Villac explore an orbit family previously presented in [26–28], known as the terminator

family (the equivalent of the southern halo orbits in the CR3BP [29]), which is shown to exhibit long-term stability

in heavily SRP-perturbed environments and robustness against gravitational uncertainties. This type of orbit and its

quasi-periodic family branches are further analyzed in [30]. Also of interest are the works presented in [31] and [32],

where families of periodic orbits for large values of SRP acceleration are analyzed. Specifically, in [31], various families

of three-dimensional symmetric periodic orbits are analyzed as orbiting possibilities for Hayabusa2 about asteroid

Ryugu. In [32], planar orbit families of the Hill Problem are continued into and analyzed in the AHP up to very high

values of SRP. The work in [32] also presents the effect of eclipses on the family-parameter curve and the shape of

these orbit families, which proves especially relevant when considering large values of SRP acceleration and is further

explored in this paper.

In [19], Scheeres et al. present an extensive review on the types of trajectories ejecta particles can take after being

lofted from an asteroid’s surface, which perturbations should be taken into account, and possibilities regarding the

modeling of these trajectories and particles. They present basic dynamical equations and models, and a classification
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scheme for the possible fate of the ejecta particles. In [33], the dynamics of ejecta particles in close-proximity of

asteroid 4769 Castalia are studied extensively using a radar-derived shape model. Although the model considers only

the asteroid’s gravity, ranges of velocities that guarantee either re-impact or escape are obtained and remarks relating

to capture conditions are addressed. Scheeres and Marzari [11] simulate extensive sets of initial conditions via an

analytical method to find those that cause dust particles to being temporarily trapped about comet 9P/Tempel after

ejection from its surface. Soldini and Tsuda [34] study the fate of asteroid ejecta about asteroid Ryugu by simulating

different initial conditions and integrating them forwards in time, both in the two-body problem and the AHP, leading to

conclusions on the fact that smaller particles (large values of SRP acceleration) are likely to escape or re-impact faster.

All these works form a basis for the general understanding that (quasi)-periodic orbits can exist in the heavily-

perturbed orbital environment about NEOs. The problem investigated in this paper builds on these works by investigating

the sets of initial conditions that enable millimeter- to centimeter-sized asteroid ejecta to get captured into periodic

orbits and consequently pose a danger to the Hayabusa2 spacecraft. In this paper, these initial conditions are found by

making use of the stable invariant manifolds of periodic orbits, to find trajectories that lead from the asteroid surface

to said orbits. The proposed method departs from the more common approach of simulating wide ranges of initial

conditions to find the ones that lead to temporary captured motion − as done in [11, 34] −, thus closing the knowledge

gap on specific conditions that lead to temporary capture into periodic orbits.

This paper is structured as follows. We first introduce the dynamical models and equations of motion used, presenting

the AHP model, eclipse model, and gravity model that includes the asteroid’s J20 and J40 terms of the body’s gravity

potential spherical harmonics expansion − here referred to as J2, J4 for conciseness. We also specify how the dust

particles that compose the asteroid ejecta are modeled. Following this, the methodology is presented, regarding periodic

orbits, their computation and their study in the different models. We then detail the used approach, with its assumptions

and considerations, thus linking the theoretical background with its practical applications. This is followed by the

presentation of the results for the planar and three-dimensional cases, the implications of said results for the Hayabusa2

mission and, finally, the conclusions of the work.

II. Dynamical Model
This section presents the models and theoretical background used throughout this work. The asteroid is assumed to

be on a circular orbit about the Sun with constant mean motion ω, and is initially modeled as a point mass for the AHP

and the eclipse models. Later, the J2 and J4 (i.e., C20 and C40 Stokes coefficients) gravitational terms are implemented.

Other forces such as electromagnetic forces, the Poyinting-Robertson effect, or the Yarkovsky effect are neglected due

to their very small intensity and the fact they only act on very long time scales [35]. Moreover, we neglect collisions

between particles.

A rotating reference frame is adopted, R1(x̂Hill, ŷHill, ẑHill), hereon referenced as the Hill frame. The Hill frame is
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centered in the center of mass of the asteroid, its x-axis points in the anti-solar direction at all times, its z-axis points in

the direction of the asteroid’s orbit angular momentum vector, and the y-axis completes the orthogonal frame.

A. The Augmented Hill Problem

As previously mentioned, the AHP and Hill Problem are derived from the CR3BP, by approximating the dynamics

to the vicinity of the secondary body, in this case the asteroid [17, 36]. Following [11, 14], the equations of motion are

normalized using as unit of length [l] = (µ/ω2)1/3 and as unit of time [t] = 1/ω, where µ is the asteroid’s gravitational

parameter. They take the form

Üx − 2 Ûy = − x
r3 + 3x + β (1)

Üy + 2 Ûx = − y

r3 (2)

Üz = − z
r3 − z (3)

where r =
√

x2 + y2 + z2 and β is the non-dimensional SRP acceleration. The approximation to the vicinity of the

asteroid, or secondary body, means we include the Sun’s third-body effect in the dynamics instead of the absolute

gravitational attraction felt by the particle from the Sun [14].

The SRP is assumed to be constant and acting along the Sun-asteroid direction. The non-dimensional SRP

acceleration, β, is then obtained by normalizing the traditional SRP acceleration, aSRP , for a cannonball model

[14, 30, 37], i.e., with a constant exposed area and attitude, which yields

β =
aSRP

[l]/[t]2 =
(1 + CR)P0

m/A µ1/3µ2/3
S

(4)

where CR is the reflectivity coefficient or albedo, P0 ≈ 1.02×1017 kg m s−2 is the solar constant, m/A is the mass-to-area

ratio, and µS is the gravitational parameter of the Sun.

The system presented in Eqs.(1)-(3) admits an energy integral, C, known as the Jacobi Constant [14]

C = 2Ũ − V2 = 3x2 + 2βx +
2
r
− z2 − ( Ûx2 + Ûy2 + Ûz2) (5)

where Ũ = 3
2 x2 + βx + 1

r − z2

2 and V =
√( Ûx2 + Ûy2 + Ûz2) represent, respectively, the effective potential and kinetic

energies of the system [14]. Since V cannot be negative, we can write V2 = 2Ũ − C ≥ 0, which translates into the
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regions of accessible and forbidden motion of a particle, i.e., 2Ũ ≥ C. The boundaries of these regions are called

Zero-Velocity Curves (ZVC) and can give us important insights into the motion of particles in three-body systems [36].

By setting the left-hand side of Eqs.(1)-(3) to zero, we find the Lagrangian equilibrium points of the system. Contrary

to the traditional CR3BP, the system admits only two equilibrium points, L1 and L2, both of them on the x-axis. For

β = 0 these are easily found for x = ±( 13 )
1
3 , while for β , 0 they are found by choosing the real roots of the polynomials

3x3 + βx ± 1 = 0. The equilibrium point L1 lies along the negative x-axis, i.e., on the asteroid’s Sun side, and L2 along

the positive side of the x-axis. It is important to note that an increase in SRP acceleration causes the L1 point to move

towards the Sun and the L2 point to asymptotically move towards the asteroid. This can be seen in Figure 1a, which

shows the positions of the L1 and L2 points of the system for different values of β. In this paper, we consider ejecta

particles from millimeter to centimeter sizes, which in turn translate into a large range of β values (see Table 2). For this

reason, the L1 point loses its significance to our analysis, as it is too far from the asteroid. Figures 1b and 1c present

the ZVCs of the system for β-values of 0 and 30; here too we can see how the geometry of the regions of allowed and

forbidden motion is affected by the SRP. The effect of the SRP on the dynamics of the system is a critical component of

the analysis undertaken in this work, and a recurring theme.

Table 1 Asteroid Ryugu Properties [34, 38]

Asteroid axes [m]
µ [m3 s−2] a b c Avg. radius, Ra [m] Orb. period, Ta [days] Density, ρ [kg/m3] CR

32 446.5 439.7 433.9 440 473.889287 1270 0.07

From Eq. (4), we see that the intensity of the SRP acceleration will vary only with the particle’s mass-to-area ratio.

In this work, the ejecta particles are modeled as spheres of constant density and have material characteristics equal

to those of asteroid Ryugu, i.e., with the same density, ρ, and reflectivity, CR. The properties of asteroid Ryugu are

shown in Table 1, where the orbital period of the asteroid about the Sun, Ta, is used to compute the mean motion of the

asteroid, ω = 2π/Ta. For the mass-to-area ratio of the ejecta particles, we use

m/A = 4/3ρπR3

2πR2 =
2
3
ρπR (6)

where R is the particle’s radius, and only the area exposed to the SRP is considered. Eq. (6) hence translates into a linear

variation of β with the particle radius R, where the smaller the radius, the larger the SRP acceleration. Table 2 shows the

relation between different values of β, the radius and area-to-mass ratio, the dimensional value of the SRP acceleration,

aSRP , and the x coordinate of the second Lagrangian equilibrium point, xL2 , together with its corresponding Jacobi

constant, CL2 . Note that even for a spacecraft, the SRP acceleration values about Ryugu are significant. For instance,

for the Hayabusa2 spacecraft its non-dimensional SRP acceleration is situated between β = 40 and β = 50, for an
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Fig. 1 The effect of solar radiation pressure ON the dynamics of the AHP: (a) variation of the equilibrium
points with β; (b) ZVCs for β = 0; (c) ZVCs for β = 30. The equilibrium points are marked with a cross.

mass-to-area ratio of 35 kg/m2 [31] and an albedo of 0.3. Finally, in order to analyze millimeter to centimeter sized

particles, we focus on β values ranging between β = 30 and β = 200 for the remainder of this paper, highlighted in

Table 2.

B. Eclipse Model

Given the magnitudes of SRP accelerations considered, eclipses are likely to pose a significant perturbation to the

particles whose trajectories or orbits cross the eclipse region. To model this perturbation, a simple cylindrical eclipse

model is adopted. This model is used instead of a conical model due to the negligible impact that the conical model

would have on the system, given the small size of the asteroid and the large distance from the Sun [39]. We simulate the

transition between the eclipse and sunlit regions by means of a modified sigmoid function [40, 41] of the form
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Table 2 Relationship between non-dimensional SRPacceleration (β), mass-to-area ratio (m/A), particle radius
(R), dimensional SRP acceleration (aSRP), Jacobi constant of the L2 point (C), and position of the L2 point
(xL2 ).

β m
A R [cm] aSRP [mm/s2] CL2 [-] xL2 [km]

0 - - 0 4.327 76.8
1.0 1322.0 156.1 2.608 × 10−6 5.613 66.26
5.0 264.4 31.23 1.304 × 10−5 9.48 44.47
10.0 132.2 15.61 2.608 × 10−5 12.94 33.54
30.0 44.06 5.204 7.825 × 10−5 22.01 20.04
50.0 26.44 3.123 1.304 × 10−4 28.34 15.6
100.0 13.22 1.561 2.608 × 10−4 40.03 11.06
200.0 6.61 0.7807 5.217 × 10−4 56.58 7.828
300.0 4.406 0.5204 7.825 × 10−4 69.29 6.393
500.0 2.644 0.3123 1.304 × 10−3 89.45 4.953

g(χ) = 1
1 + e−sχ

(7)

where χ is the input and s > 0 is often referred to as the contrast factor term, which defines the steepness and "length"

of the transition. The function will take an "S" shaped curve, behaving as a smooth Heaviside function, passing from 0

to 1 after χ becomes positive. Using this function, we can redefine the value for the SRP acceleration, β∗, as
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Fig. 2 Variation of non-dimensional SRP acceleration as a particle transitions through the eclipse region in
the xy-plane.
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β∗ =



β if x ≤ 0

β g(rsig) otherwise
(8)

where rsig = (rx − Ra), and rx is the distance to the x-axis, rx =
√
y2 + z2. Figure 2 shows the value of β∗ for x > 0,

z = 0, and β = 100, when passing through an eclipse region.

C. Gravity Perturbations

To better represent the physical environment experienced by ejecta particles around asteroid Ryugu, a higher-fidelity

representation of the asteroid’s gravity is presented by considering the J2 and J4 terms of its spherical harmonics gravity

potential expansion. The common notation J2 = −C20 and J4 = −C40 is used, where Clk refers to the term of the Stokes

coefficients with degree l and order k [42]. Previous work has analyzed the effect of the oblateness of the secondary in

both the AHP [43] and the CR3BP [44]. Asteroid Ryugu’s J2 and J4 terms are therefore included in the dynamics to

obtain a more realistic model.

Data from the Hayabusa2 team have shown that asteroid Ryugu’s spin-axis is oriented approximately normal to its

orbital plane. Since it spins about its shortest axis, c, i.e., the axis with largest moment of inertia [14], we can include

the gravity perturbations of the C20 and C40 terms without affecting the existing dynamical symmetry of the system

with respect to the xz-plane: because we only consider the terms with order k = 0, the gravity acceleration will only

vary with latitude, and not with longitude, removing the need to track the spin-state of the asteroid and retaining a

time-invariant system.

We can then write for the Stokes coefficients [26]

C20 =
1

10r2
0

(
2c2 − a2 − b2

)
(9)

C40 =
3

280r4
0

[
3
(
a4 + b4

)
+ 8c4 + 2a2b2 − 8

(
a2 + b2

)
c2

]
(10)

where r0 is the effective radius, taken to be the average radius of the asteroid. Note that since we consider only the

Stokes coefficients with order zero (and degrees two and four), we can use the Hill frame to define the gravity potential

of the asteroid, and do not need to perform the usual reference frame transformation from the body-fixed frame to the

rotating Hill frame. The non-dimensional gravity potential in its spherical harmonics expansion then becomes [45]
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U(r, δ) = 1
r

[
1 +

( r0
r

)2
(
1
2
C20 (3 sin2 δ − 1)

)
+

( r0
r

)4
(
1
8
C40 (35 sin4 δ − 30 sin2 δ + 3)

)]
(11)

where δ is the particle’s declination in the Hill frame. Expressing r and δ in Cartesian coordinates and differentiating

with respect to x, y, and z, we can derive the accelerations in the respective directions, i.e., Ux,Uy,Uz . The equations of

motion presented in Eqs. (1)-(3) then become

Üx − 2 Ûy = Ux + 3x + β (12)

Üy + 2 Ûx = Uy (13)

Üz = Uz − z (14)

-100 -80 -60 -40 -20 0 20 40 60 80 100

10-12
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Asteroid Grav. (incl. J2,J4)
Sun 3rd body effect

 = 30
 = 200

SOI

Fig. 3 Magnitude of the perturbing accelerations about Asteroid Ryugu as a function of the x-coordinate.

Finally, as a concluding remark regarding the incorporation of the different perturbations considered for the model

in this paper, we analyze the magnitudes of the various perturbing accelerations, ap , to a particle about asteroid Ryugu.

Figure 3 shows the dimensional accelerations of the different perturbing sources along the x-axis, where we also include

the Sphere of Influence (SOI) of the asteroid, RSOI = da(µ/µS)2/5 [13], where da is the mean distance from the Sun to

the asteroid. As expected, the gravitational acceleration is the main perturbation when in close-proximity to the asteroid.
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However, just outside the SOI, the magnitudes of the SRP accelerations are close to the same orders of magnitude of

the asteroid’s gravity acceleration, and actually become larger for distances larger than 12 km for β = 200 (R = 7.8

mm) and larger than 20 km for β = 30 (R = 5.2 cm). The Sun’s third-body effect remains the smallest perturbation for

distances smaller than approximately 88 km from the asteroid. For larger distances it becomes more significant than the

asteroid’s gravity. We note the relevance of the SRP to the dynamics of the problem and, therefore, the importance of

including said eclipses in the system (for trajectories or orbit that cross the eclipse regions).

III. Periodic Orbits
This section presents the methodology used in this work, related to the computation and analysis of periodic orbits.

The orbit families studied in this paper are also presented and analyzed in terms of stability, geometry, and the effects of

the different perturbations to the system.

A. Symmetries

The system presented in the previous section displays the following symmetries [46, 47]

(y, t) → (−y,−t) (15)

(y, z, t) → (−y,−z,−t) (16)

(z) → (−z) (17)

Note that while the symmetry expressed in Eq. (17) mirrors only the z component, Eqs. (15, 16) also include a

time reversal. From Eqs. (15)-(17), we can conclude that if a trajectory satisfies one of the following conditions at two

different times t1 , t2

(y, Ûx, Ûz) = 0 (18)

(y, z, Ûx) = 0 (19)

the resulting orbit will be periodic [31], with period T = 2(t2 − t1), assuming t2 > t1. The condition in Eq.(18) is used

to find periodic orbits via differential correction.

12



B. State transition matrix and stability

Let us take a general state vector X = [x, y, z, Ûx, Ûy, Ûz]T and define the system of ordinary differential equations in

Eqs. (1)-(3) by F(X), such that ÛX = F(X). If we consider the previously mentioned equilibrium points, which are

defined by F(Xeq) = 0 [36], we can take w such that X∗ = Xeq + w is in the neighborhood of Xeq . We can then

linearize

ÛX∗ = ÛXeq + Ûw = F(Xeq + w) ≈ F(Xeq) + ∂F(X)
∂X

����
eq

w + O(X2
eq) (20)

where, if we neglect the higher order terms O(X2
eq), we obtain

Ûw = ∂F(X)
∂X

����
eq

w = Jw (21)

The solution to the variational equation in Eq. (21) can be obtained by the State Transition Matrix (STM) [48],

Φ(t, t0), where J is the Jacobian of the system at time t and the initial condition Φ(t0, t0) = I is the identity matrix

ÛΦ(t, t0) = J Φ(t0, t0) (22)

The STM is thus defined as [49]

Φ(t, t0) = ∂X(t)
∂X(t0) (23)

and can be integrated alongside the equations of motion.

The study of the STM has many applications. For a periodic orbit, we can compute its eigenvalues after one period,

T , to analyze its stability. The STM after one period is commonly known as the Monodromy matrix, ΦM = Φ(T, t0)
[50]. The eigenvalues of the Monodromy matrix occur in three recyprocal pairs [51], as {λ1,

1
λ1
, λ2,

1
λ2
, 1, 1}. The two

unit pairs are a characteristic of the energy integral of the system and are always situated on the unit circle [29, 52]. A

periodic orbit will be stable if all its eigenvalues are situated on the unit circle. Focusing on λ1, λ2, we introduce the

following stability indices k1, k2 [29, 52]
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ki = λi +
1
λi

(24)

where an orbit will be stable if |ki | < 2 and ki is real for i = 1,2.

C. Differential correction

In order to find periodic orbits, a single-shooting differential corrector method is implemented [50]. Differential

correction is a targetting method that uses the STM to iteratively improve a set of initial conditions. From an initial

condition X0 = [x0, 0, z0, 0, Ûy0, 0]T , which satisfies the first part of the periodic orbit condition in Eq. (18) (the

condition must be met at two different times), we integrate the state vector and STM forward in time until the first

xz-plane crossing, i.e., y = 0. When searching for a simply-periodic orbit, we can assume as a first approximation that

this corresponds to the half-period mark τ = T/2, and Xτ = [xτ, 0, zτ, Ûxτ, Ûyτ, Ûzτ]T . From the periodic orbit condition

of Eq. (18), we can write the error with respect to the state vector of the actual periodic orbit at the half-period mark (t2)

as ∆Xτ = [∆xτ, 0, ∆zτ, − Ûxτ, ∆ Ûyτ, − Ûzτ]T . Then, linearizing and neglecting the higher order terms, we can write

∆Xτ ≈ Φ(τ, t0)∆X0 + F(X)|t=τ ∆τ (25)

where ∆X0 = [δx0, 0, δz0, 0, δ Ûy0, 0]T is the correction to be implemented to the initial condition, and ∆τ is the

deviation from T/2. Note that ∆τ can be obtained from the second row of the vector notation in Eq. (25) and is equal to

∆τ =
−φ21δx0 − φ23δz0 − φ25δ Ûy0

Ûyτ (26)

where φi j correspond to the i, j elements of the STM and δx0, δy0, δz0 represent the correction to the initial conditions.

Combining Eqs. (25) and (26) we can then write

− Ûxτ =
(
φ41 − ÜxτÛyτ φ21

)
δx0 +

(
φ43 − ÜxτÛyτ φ23

)
δz0 +

(
φ45 − ÜxτÛyτ φ25

)
δ Ûy0 (27)

−Ûzτ =
(
φ61 − ÜzτÛyτ φ21

)
δx0 +

(
φ63 − ÜzτÛyτ φ23

)
δz0 +

(
φ65 − ÜzτÛyτ φ25

)
δ Ûy0 (28)

where we have three unknown variables (δx0, δz0, δ Ûy0) and two equations. By setting the value of one of these variables

to zero (in this paper we choose to set δx0 = 0) we can easily obtain the necessary correction to the other two initial
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coordinates. This operation is repeated until the norm of the correction vector ∆X0 is below a specified tolerance,

chosen to be 10−9. Once a periodic orbit is found, a family continuation algorithm is adopted, which makes use of a

modified version of the pseudo-arclength continuation method [53–55].

D. Periodic orbits of the AHP and perturbed AHP models

1. AHP model

In the traditional Hill Problem studied by Hénon in [17], five families of periodic orbits are identified: a, g, g’, f,

and c. The a and c families correspond to planar Lyapunov orbits about the L2 and L1 points, respectively; the g and

f families correspond to Distant Prograde Orbits (DPOs) and Distant Retrograde Orbits (DROs), respectively [56];

and family g’ corresponds to a bifurcation from the g family. In [32], the effect of SRP on these families is presented,

showing that the g family crosses the origin of the reference frame for increasing values of SRP acceleration, tending

towards degenerate near-linear orbits along the x-axis; family c loses its significance to our problem as the L1 point

quickly shifts towards the Sun (see Figure 1a); family f experiences a similar behavior to family g, albeit extending

towards the L1 point; and families a and g’ approach the asteroid with with the L2 point (see Figures 4, 5). Family a,

as well as other libration point orbits, are also studied in the AHP model for large values of SRP acceleration in the

proximity of asteroids in [23, 24]. For the reasons stated above, we focus on the a and g’ families.

(a) (b) (c)

Fig. 4 Family a of planar Lyapunov orbits in the AHP model for different values of SRP acceleration.

While doubly-periodic family g’ is unstable in the Hill Problem [17], the addition of the SRP acceleration stabilizes

the family [32]. In fact, for the values of β considered in this work, all orbits in family g’ are stable in the AHP model.

Family a, however, is unstable in both the traditional Hill Problem and the AHP, for all values of SRP accelerations

considered.

The third and final family of periodic orbits analyzed in this work is the family of southern halo orbits, which are

commonly known as terminator orbits in the AHP [14, 25, 30] due to their existence close to the Sun-terminator plane,

i.e., the plane perpendicular to the Sun-asteroid line.
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(a) (b) (c)

Fig. 5 Family g’ in the AHP model for different values of SRP acceleration.

(a) (b) (c)

(d) (e) (f)

Fig. 6 Family of terminator orbits for different values of SRP acceleration.

The choice for studying the planar a and g’ families of orbits arises from the natural evolution of the planar

families with the inclusion of the SRP acceleration, while some of the other families disappear with this inclusion.

In addition, both the Hayabusa2 spacecraft and the planned impact location are placed close to the ecliptic plane.

Furthermore, the choice for studying terminator/halo orbits for the three-dimensional analysis arises from their previously

studied characteristics, which hint at the possibility of presenting a potential hazard to the mission: terminator orbits

have been noted to be robust to very large values of SRP acceleration and uncertainties in the gravitational model
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[24, 25, 27, 30, 31, 42, 57, 58]. Figure 6 shows the family of terminator orbits, from which is clear that the family

approaches the Sun-terminator plane as the SRP acceleration increases and the L2 approaches the asteroid. Nonetheless,

the family doesn’t show significant changes to its geometry, merely decreasing in size with the increase in β. A section

of the terminator orbit families is always stable; in fact, this region is actually larger when considering SRP, as shown in

Figure 6.

A final reason for studying both the terminator orbits and planar Lyapunov orbits (family a) is that they originate

from the L2 equilibrium point, which acts as a gateway for re-impacting, orbiting, and escaping trajectories in the

AHP. The analysis of the collinear equilibrium point orbits can therefore provide insight into the possibility of escape

versus re-impact of the ejecta particles. With this in mind, we choose to focus on these three families of periodic orbits,

represented by their family curve parameters (initial x coordinate and Jacobi constant) in Figure 7.
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Fig. 7 Family curves of families a, g’, and terminator orbits in the AHP model for β = 100.

2. Eclipse model

Terminator orbits are largely unaffected by the eclipses, except close to the bifurcation with family a near the L2

point, where they reside in the eclipse region. For simplicity we neglect these few orbits of the terminator family. On

the contrary, families a and g’ always cross the eclipse region, which implies that their periodic solutions in the eclipse

model are required for their analysis.

The inclusion of eclipse disrupts the time-invariant nature of the system, forcing the energy integral portrayed in

Eq.(5) to vary as a particle enters or exist the eclipse region. Although the system does not include a time-dependent

term, the inclusion of eclipses creates an implicit time dependence, causing the SRP acceleration and in turn the energy

integral to vary. However, for an orbit to be periodic, this variation must also be periodic, or else the standard condition
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of periodicity X(t) = X(t + T) [36] would be lost. Moreover, periodic solutions will still exist in the system when

including eclipses, as the symmetry conditions in Eqs.(15)-(17) are still maintained.
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(a) (b)

Fig. 8 Family a in the AHP + eclipse model for different values of SRP acceleration.

(a) (b)

Fig. 9 Family a in the AHP + eclipse model for different values of SRP acceleration.

From Figures 8 and 9 we can see how the geometry of families a and g’ changes in the AHP + eclipse model.

Specifically, we can see that the families continue past the L2 equilibrium point for the different β-values considered.

Given there is no SRP acceleration in the eclipse region, the equilibrium point will actually take its position for β = 0.

This allows the orbits in the AHP + eclipse model to extend past the L2 point of the AHP model. The inclusion of

eclipses also has implications on the regions of accessible motion defined by the ZVCs (see Figure 1). Due to the

periodic variation of the Jacobi constant, these regions will not be constant along an orbit that passes through the eclipse

region, but rather vary periodically, depending on the position of the particle along the orbit.

As stated before, the existence of the unit eigenvalue pair of the STM is attributed to the existence of an energy

integral in the system. Because the Jacobi constant is no loner constant in the AHP + eclipse model, one might assume
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Fig. 10 Stability of family a in the AHP and AHP + eclipse models for different values of SRP acceleration.
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Fig. 11 Stability of family g’ in the AHP and AHP + eclipse models for different values of SRP acceleration.

that the stability of a periodic orbit can no longer be correctly defined by analyzing its Monodromy matrix. While it is

true that the unit eigenvalue pair will vary slightly in the AHP + eclipse model, the symplectic nature of the STM is

maintained, a fact that can be verified by analyzing the determinant of Φ, which is found to remain within 10−9 of unity.

The variation to the unit pair simply reflects the disruption to the energy integral of the system. However, because the

STM is integrated using the Jacobian of the equations of motion, which does not depend on β, we can still analyze the

orbit’s stability by studying the eigenvalues of the Monodromy matrix.

Figures 10 and 11 show the effect of eclipses on the stability of the a and g’ families. We see that the eclipses not

only affect the geometry of the orbits and the regions of accessible motion of the particles but also the stability of

the periodic orbits. Family g’ becomes unstable for all values of β, while family a becomes slightly more stable with

increasing values of β. For the general case this change in stability will only occur when the SRP plays a significant role

in the dynamics, which is the case when studying the dynamics about small bodies (see Figure 3), even for spacecrafts

[42]. Note that in Figures 10 and 11, and whenever referring to the Jacobi constant in the AHP + eclipse model, we take
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Fig. 12 Family curves in the AHP + eclipse model for families a, g’, and terminator orbits, for β = 100

the value of the nominal Jacobi constant, i.e., ignoring the eclipse. Although the variation of the Jacobi between the

eclipse and non-eclipse regions can be significant (in the orders of magnitude of the nominal Jacobi constant), a particle

only spends a very small part of the orbit in eclipse (less than 2% of the period).

Figure 12 shows the family curves of the a, g’, and terminator families in the AHP + eclipse model. Comparing this

figure with Figure 7, we see how the a and g’ families extend past the L2 point due to the inclusion of eclipses.

3. Gravity perturbations model

Because the perturbation posed by the J2 and J4 terms is very small when compared to the other perturbations, the

shape of the orbits does not change significantly when we include said gravity perturbations in the model. From Eq.(11),

we see that the gravity potential will decrease by powers of r2 and r4, which means that the effect of these perturbations

will only be significant in close-proximity to the asteroid. This is clear in Figures 13 and 14, that show the family

curves of the a, g’, and terminator families in the different dynamical models. The family curve in the AHP + J2, J4 +

eclipse model is slightly offset from the curves in the AHP + eclipse and AHP models when in close-proximity to the

asteroid. However, as the distance to the asteroid increases, the family curves of the AHP + eclipse and AHP + J2, J4 +

eclipse models overlap. Despite the small changes to the orbits, note that the inclusion of the J2, J4 will still affect the

trajectories in close-proximity to the asteroid. Note that only one value of SRP acceleration is presented for each of the

g’ and terminator family, since they do not exhibit significant changes for different values of SRP acceleration. Finally,

the change in stability to the a, g’, and terminator families is almost negligible when adding the gravity perturbations.
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Fig. 13 Family curve for family a in the different dynamical models.
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Fig. 14 Family curves in the different dynamical models for families: (a) g’; (b) terminator.

IV. Particle Ejection Dynamics
In this section we discuss the considerations surrounding the ejection of particles from the asteroid, how we can

study the particles that are captured in periodic orbits, and the planned escape trajectory of the Hayabusa2 spacecraft.

A. Ejection angle

Previous work has considered the problem of asteroid ejecta as a product of a ballistic impact [59, 60]. While

more research regarding the ejection angle and velocity distribution for different impact angles, velocities, and surface

materials is surely necessary, it is common to assume an ejection angle close to 45◦ with the surface normal [59, 61–63].

This assumption is based on existing literature and experiments, which show that for impact angles smaller than 60◦

with respect to the surface normal, the ejection angles tend to exist between 35◦ and 50◦ from the surface normal for

non-high-velocity particles [64, 65]. Only for very oblique angles have the non-high-velocity particles shown to deviate

from this ejection direction and have craters shown more evident asymmetry [66, 67]. However, despite a possible

error in impact angle for the SCI, this angle is not expected to depart significantly from its nominal vertical impact [10].
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The impact error relative to three-standard deviations (99.7%) corresponds to an error of approximately 26◦ from the

surface normal, far smaller than the aforementioned 60◦. Note that when considering the high- or hyper-velocity ejecta

particles, this ejection direction may not be observed [68], but given that said particles have far larger velocities than the

escape velocity of the asteroid, the aforementioned assumption is still valid for our study. For these reasons, we assume

the regolith particles to be ejected only within the range σ ∈ [35◦, 50◦], where σ is the ejection angle with respect to

the surface normal. Finally, it should be mentioned that the highest velocity ejecta particles have been shown to be the

smallest and also the ones to escape first [68], which backs the choice of β values to not include sub-millimeter sized

particles.

B. Invariant Manifolds and Particle Ejection

We aim to analyze how ejecta might be temporarily captured in periodic orbits about the asteroid. In reality, a

particle will not exactly follow the trajectory towards the periodic orbit nor the periodic orbit itself, due to perturbations

that we are neglecting in our analysis. Nonetheless, we assume that it in reality, it will follow a trajectory close enough

to that predicted in our model so we can correctly portray and identify possible hazards to the Hayabusa2 spacecraft.

Furthermore, even if an orbit is unstable in the mathematical sense (as detailed in Section III.B), a particle can still

remain in the orbit and/or the trajectory leading to it for a long enough time-span to affect the safety of the mission [19].

In order to identify a link between a particle being ejected from the asteroid surface and the periodic orbits, we make

use of invariant manifold theory. The invariant manifolds of an unstable orbit define all the trajectories a particle can

take, at any point in its orbit, when perturbed in the direction of the orbit’s local eigenvectors. All unstable periodic orbits

have at least one stable and at least one unstable eigenvalue and respective eigenvectors, which indicate, respectively, all

the trajectories that asymptotically lead to or from the orbit [50]. That is, by integrating forward in time a point in an

unstable orbit in the direction of its unstable eigenvector, we obtain the local unstable manifold of the orbit at that point.

The same occurs when integrating backwards in time in the direction of the local stable eigenvector. Theoretically, these

trajectories can occur naturally when the perturbation applied tends to zero. Invariant-manifold-enabled trajectories

have therefore been suggested before for virtually fuel-free transfers in trajectory design [69–73].

The initial conditions, XS
i , X

U
i , of the stable and unstable manifolds at a point i along an unstable orbit are defined

as [74]:

XS
i = Xi ± ε

vSi

|vSi |
(29)

XU
i = Xi ± ε

vUi
|vUi |

(30)

where vSi ,vUi are the local stable and unstable eigenvectors at that point, respectively, and ε is a small perturbation. The
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value of ε must be small enough so that the assumption on linear dynamics still holds and the motion is considered as

asymptotically moving to or from the orbit, but not so small that the integration time is too long because the particle

does not depart from the orbit. We chose the dimensionless perturbation value of ε = 10−6, as suggested in [74, 75],

which translates to a position error of 0.1 m. The choice in sign of Eqs. (29), (30) defines the interior and exterior

components of the manifolds. Figure 15 shows the stable and unstable manifolds of a planar Lyapunov orbit (family a)

for β = 0, while Figure 16 shows the stable manifolds for the same family but for different values of the SRP acceleration

in the AHP model. Both figures present also the regions of forbidden motion defined by the ZVCs. Note how the shape

of manifolds approach the shape of ZVCs for increasing values of β.

Fig. 15 Stable and unstable invariant manifolds of an orbit from family a for β = 0. The region of forbidden
motion defined by the ZVC is shown in gray.

The eigenvectors in Eqs.(29)-(30) can be computed from the STM [74]

vS,Ui = Φ(ti, t0)vS,U (31)

where vS,U are the stable and unstable eigenvectors of the Monodromy matrix. Considering we want to study the motion

of particles arriving at the orbits as opposed to those departing from them, from here on we only focus on calculating

the stable manifolds of periodic orbits.

Instead of computing the invariant manifolds of periodic orbits, we can also compute the invariant manifolds of the

equilibrium points, as mapping the structure of their manifolds may provide significant insight into the fundamental

23



(a) (b)

(c) (d)

Fig. 16 Stable manifolds for orbits of family a in the AHP model for different values of the SRP acceleration.
Interior manifolds are shown in pink and exterior manifolds in blue. The regions of forbidden motion defined
by the ZVCs are shown in gray.

motion of the particles. For a state Xeq defined by the L2 equilibrium point, we calculate the Jacobian J at that point and

compute its eigenvectors for the stable and unstable eigenvalues, i.e., the smallest and largest eigenvalues, respectively.

The interior stable manifolds of the L2 point in the AHP model for different values of the SRP acceleration are shown in

Figure 17. Note that for larger values of β, the stable manifolds of L2 intersect with the asteroid surface.

Comparing Figures 16 and 17, we can see how the general direction and shape of the manifolds of family a follows

the structure of the manifolds of L2. As β increases, the manifolds tend to travel along the x-axis, intersect with the

asteroid, and become more symmetric with respect to the x-axis. Moreover, as the nominal orbits approach the L2 point,

their stable manifolds mimic those from the equilibrium point. This is explained by the fact that family a (as well as the
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Fig. 17 Interior stable manifolds of the L2 equilibrium point for different values of SRP acceleration.

(a) (b)

(c) (d)

Fig. 18 (a) and (b): Stable manifolds of orbit from family a. (c) Stable manifolds for orbit from family g’. (d)
Stable manifolds for orbit from terminator families. All figures are obtained in the AHP + J2,J4 + eclipse model
with β = 100. Interior manifolds are shown in pink and exterior manifolds in blue.
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family of terminator orbits), originate from L2. It is also for this reason that we can clearly distinguish the interior and

exterior manifolds, the interior extending towards the asteroid and the exterior away from it. For orbits that orbit the

asteroid, as those from family g’, the interior and exterior manifolds do not follow such a distinct dynamic, resulting in

trajectories from the exterior manifold that can intersect the asteroid. Figure 18 shows the stable manifolds of the a, g’,

and terminator families for different orbits in the full model, i.e., the AHP + J2,J4 + eclipse model. Note that the stable

manifolds of the terminator family also follow the shape of the stable manifolds of the L2 point, although for the specific

case shown in Figure 18d they do not intersect the asteroid and instead remain in orbit about it.

C. Trajectory simulation

To find the initial conditions and trajectories that cause the ejecta particles to be temporarily trapped in the considered

periodic orbits, we divide each orbit in 250 equidistant nodes, perturb the state of each in the direction of its local stable

eigenvector (as detailed in Eq. (29)), and integrate backwards in time. The integration is carried out until one of three

stopping conditions is occurs: (1) escape from the system, estimated by the computation of the specific energy of the

particle [13]; (2) impact with the asteroid; (3) total integration time reaches 150 days. Note we consider the "impact"

radius to be slightly larger than the largest axis of the asteroid, a, thus avoiding entering the Brillouin sphere of the

gravity’s spherical harmonics (see [14]). The simulations are carried out in the full model, including the eclipses and

gravity gravity perturbations. We consider SRP acceleration values of β = {30, 40, 50, 75, 100, 125, 150, 175, 200},

Fig. 19 Spherical coordinates in the Hill frame.

which correspond, respectively, to ejecta particle radii of R ≈ { 5.2, 3.9, 3.1, 2.1, 1.6, 1.2, 1.0, 0.9, 0.8} cm. For

each value of β/radius and family of periodic orbits described, we select equidistant orbits along the family, selecting at

least 200 orbits per family. By selecting a large number of equidistant orbits along each family we aim to sample the

characteristics and structure of said family for each value of β, and thus obtain representative results for the dynamical

environment about the asteroid.

When a manifold intersects the asteroid we store the values of its position and velocity, its nominal orbit, and the

time it takes for the particle to arrive at the orbit from the asteroid surface. In order to facilitate the presentation of the
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results shown in future sections, we establish the following spherical coordinates, defined in the Hill frame: the right

ascension, ζ , which is the angle measured in the xy-plane from the x-axis in a positive direction; and the declination, δ,

measured from xy-plane in the direction of the z-axis, as shown in Figure 19.

D. Hayabusa2 escape trajectory

The SCI is a kinetic impactor that will achieve an approximate velocity of 2 km/s upon impact, propelled by an

explosive charge [10]. For this reason, after releasing the SCI, the Hayabusa2 spacecraft must move away from the SCI,

0 5 10 15

-2

0

2

4

6

8

10

12

14

(a)

0 5 10 15

-8

-6

-4

-2

0

2

4

6

8

(b)

-60 -40 -20 0 20 40

0

20

40

60

80

100

(c)

-40 -30 -20 -10 0 10

-20

-15

-10

-5

0

5

10

(d)

-20

-10

0

10

100

80

60

40
020

-20
0

-40

(e)

Fig. 20 The three legs of Hayabusa2’s escape trajectory during and following the SCI operation [10].

so that the debris from the charge detonation does not collide with the spacecraft. When released, the SCI’s timer, which

is set to 40 minutes, will allow for sufficient time for the spacecraft to complete the first leg of its escape trajectory,

protecting itself from the explosion by hiding behind the asteroid. Figure 20 shows the three legs of the planned escape

trajectory, which is expected to return the spacecraft to the asteroid approximately two weeks after impact [10]. The

nominal impact location and respective error radius given by three standard deviations are shown in Figure 21, in

the Hill frame. The impact location is slightly offset from the equator towards the northern hemisphere and from the

Sun-asteroid line towards the negative y-axis. The three standard deviation error corresponds to an approximate position

error of 200 m.
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Fig. 21 Nominal impact location and error radius given by three standard deviations.

V. Results
This section presents the results obtained from the invariant manifolds analysis described in the previous sections.

All results are obtained using the full model, which considers SRP, eclipses, and the gravity perturbations of the J2 and

J4 terms. Since the stable manifolds are integrated backwards in time, the trajectories that intersect the asteroid surface

are in practice ejection trajectories - with a specific ejection location, velocity, and angle - that lead to the periodic

orbits. For that reason, we often use the term ejection conditions to refer to the conditions of the stable manifolds at the

intersection with the asteroid surface.

A. Family a

A distribution of the ejection velocities for the trajectories that lead to family a can be seen in Figure 22, where

the Figure 22a shows the ejection velocities for any ejection angle and Figure 22b shows the ejection velocities for

σ ∈ [35◦,50◦]. Note that, as expected, all velocities are smaller than the local escape velocity of vesc =
√

2µ/r [13],

which is marked in the figures with a dashed red line. The ejection velocities for the different particle radii/SRP

acceleration approach a common maximum, close to 37.9 m/s, for which the periodic orbits approach the asteroid.

Note also that all trajectories that lead to periodic orbits of family a must possess an ejection velocity for which the

ZVCs are open at the L2 point, as the orbits of family a exist about the equilibrium point. An example of this can be

seen in Figure 23, where the ZVC is shown for the case of no eclipse.

Figures 24 and 25 show the distribution of the locations, along the asteroid’s equator, where the stable manifolds of

family a intersect the surface of the asteroid, i.e., the ejection locations. Figure 24a shows the distribution when all

possible ejection angles are considered while Figures 24b and 25 show the distribution for σ ∈ [35◦,50◦]. The length
of the bars in Figure 25 are cumulative for all β values, as in Figure 24, where the bars are stacked vertically for the

different values of β and the percentage shown on the vertical axis is calculated in the following way for each bin i
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(a) (b)

Fig. 22 Ejection velocities for particles ejected along the stable manifolds of family a for different values of the
SRP acceleration. (a) For any ejection angle; (b) for the expected ejection angles of σ ∈ [35◦, 50◦].
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Fig. 23 Example of stable manifold trajectory from asteroid surface to periodic orbit of family a with ZVC.
Initial conditions: vej = 0.369 m/s, σ = 47.76◦, ζ = 194.4◦.

Di = N i
e j/Ntotal × 100 (32)

where Ntotal is the total number of stable manifold trajectories that intersect the surface of the asteroid for either all

ejection angles or σ ∈ [35◦,50◦] and N i
e j is the number of manifold trajectories that intersect the asteroid at the right

ascension defined by the ith bin at either any ejection angle (Figure 24a) or at σ ∈ [35◦,50◦] (Figures 24b and 25). The

sum of all bars equates to 100%, for all β-values and each of the sub-figures. The right ascension of the planned impact

location is also indicated by a vertical gray line, although the nominal impact is not situated along the equator of the

asteroid but slightly north from it (see Section IV.D). The error radius corresponding to three standard deviations shown
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Fig. 24 Distribution of the ejection locations for particles ejected along the stable manifolds of family a for
different values of SRP acceleration. (a) For any ejection angle; (b) for ejection angles of σ ∈ [35◦, 50◦].

Fig. 25 Cumulative distribution of the ejection locations in polar coordinates for particles ejected along the
stable manifolds of family a for all values of SRP acceleration and ejection angles of σ ∈ [35◦, 50◦].

in Figure 21 translates into an angle error of approximately ∆ζ = 26◦ on either side of the nominal impact location and

is represented by a black dotted line.

When considering all ejection angles, the distribution of stable manifold intersections around the asteroid’s equator

is distributed approximately equally along ζ , with a small peak around ζ = 35◦ and a small "valley" or minimum around

ζ = 0◦. However, when only considering ejection angles of σ ∈ [35◦,50◦], Figure 24 shows how local maxima develop

around right ascensions of ζ ≈ 80◦ and ζ ≈ 270◦. The reason for this is the decrease in manifold trajectories from the

other right ascensions, due to the geometry of the manifolds and the considered constraint on the ejection angles. A few

examples of the stable manifold trajectories that lead to orbits from the asteroid to family a, can be seen in Figure 26,

where the trajectories with ejection angles between σ ∈ [35◦,50◦] are shown in orange, and the others in gray. The
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manifold trajectories do indeed reach all right ascensions, but not always with an ejection angle between σ ∈ [35◦,50◦].
Given that the locations ζ ≈ 80◦ and ζ ≈ 270◦, i.e., close to the y-axis, present more trajectories with an ejection angle

between these limits, we see a higher relative concentration of ejection locations at these right ascensions.

(a) (b)

(c) (d)

Fig. 26 Examples of stable manifolds that lead to periodic orbits of family a and Hayabusa2’s escape trajectory.
The manifold trajectories with ejection angles between σ ∈ [35◦, 50◦] are shown in orange.

Table 3 displays the minimum, maximum, and mean times of flight, t f light from the asteroid surface to the periodic

orbits of family a of the particles with ejection angles σ ∈ [35◦,50◦], for different values of β. The minimum and

maximum periods of the orbits in the family are also displayed. We note again that even though these orbits are unstable

in the mathematical sense, a particle along said orbits would in principle not escape immediately after arriving at the

orbits, but rather after a certain number of orbit revolutions. For instance, from Table 3, for β = 50, the minimum time

of flight is 42 days; however, in addition to this, the particle will conduct a certain number of revolutions of the periodic

orbit. If we consider a minimum of one revolution or period, this would still correspond to an extra 14 days, adding up

to a minimum duration of 56 days during which the particle would remain close to the asteroid. Furthermore, note that

the periods and times of flight decrease as the value of β increases, i.e., as the radius of the particles decreases. This can

be explained by the equation for the Jacobi constant in Eq. (5); for the same position and value of C, an increase of β

will cause the velocity to increase.

31



Table 3 Times of flight along the stable manifolds of family a, between asteroid surface and periodic orbits,
with ejection angles between σ ∈ [35◦, 50◦] and minimum and maximum periods in family for different values
of β.

β min{t f light } [days] max{t f light } [days] mean{t f light } [days] min{T} [days] max{T} [days]
30 60.3 149.9 79.3 21.3 38.4
40 49.1 149.2 65.3 17.1 31.2
50 41.9 148.5 55.6 14.4 26.4
75 31.4 148.5 41.4 10.7 19.6
100 25.5 143.1 32.8 8.6 15.9
125 21.8 145.8 27.8 7.3 13.5
150 19.1 135.4 24.2 6.4 11.7
175 17.1 136.9 21.4 5.7 10.5
200 15.5 122.7 19.4 5.2 9.5

B. Family g’

The velocity distribution of the particles ejected along the stable manifolds of family g’ can be seen in Figure 27.

The similarity to the velocity distribution of family a can be explained by the fact that both families exist close to each

other in the family curve parameter space, i.e., they have similar values of C for similar initial positions along the x-axis,

for the entirety of the family curve (see Figure 12). From the energy integral in Eq. (5), their velocities will therefore

also be similar for ejection locations.

(a) (b)

Fig. 27 Ejection velocities for particles ejected along the stable manifolds of family g’ for different values of
SRP acceleration. (a) For any ejection angle; (b) for the expected ejection angles of σ ∈ [35◦, 50◦].

The distribution of locations about the asteroid’s equator where the stable manifolds of family g’ intersect the

asteroid can be seen in Figures 28 and 29. Both when considering all ejection angles (Figure 28a) and σ ∈ [35◦,50◦]
(Figures 28b and 29), the distributions display minima and maxima. When considering all values for σ, we see a clear

distribution with a minimum around ζ ≈ 90◦ and a maximum between ζ ∈ [295◦,300◦]; for the constrained ejection
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Fig. 28 Distribution of the ejection locations for particles ejected along the stable manifolds of family g’ for
different values of SRP acceleration. (a) For any ejection angle; (b) for ejection angles of σ ∈ [35◦, 50◦].

Fig. 29 Cumulative distribution of the ejection locations in polar coordinates for particles ejected along the
stable manifolds of family g’ for all values of SRP acceleration and ejection angles of σ ∈ [35◦, 50◦].

angles, we still see similar extrema, although the minimum becomes more profound and a second minimum appears

between ζ ∈ [260◦,275◦]. This last minimum is very wide when considering smaller values of β: up to values of

β = 50, the minimum extends over a range of ∆ζ = 30◦. The same occurs for the minimum around ζ ≈ 90◦. Note also

the smaller peaks between ζ ≈ 165◦,230◦ and slight valley around ζ ≈ 195◦ and when approaching ζ = 360◦.

The minima for this distribution match very closely with the maxima found in the distribution of family a (see Figure

24b). While for family g’ it would make sense to choose an impact location with ζ close to the y-axis, i.e., ζ = 270◦,

family a shows a high concentration of manifold intersections for those right ascensions. Taking into account the fact

that the distribution for family a does not vary significantly outside the regions where the maxima are located, choosing

an impact location that minimizes the chances of ejecta getting captured into orbits of family g’ is recommended, as long
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(a) (b)

(c)

Fig. 30 Examples of stablemanifolds that lead to periodic orbits of family g’ andHayabusa2’s escape trajectory.
The manifold trajectories with ejection angles between σ ∈ [35◦, 50◦] are shown in orange.

as that location is situated outside the maxima of family a, i.e., outside locations about ζ ≈ 80◦ and ζ ≈ 270◦. For this

reason, and taking into account the expected impact angle error of ∆ζ = 26◦, if impacting on the equator, we recommend

an impact location around ζ = 130◦, so as to minimize the chances of ejecta getting captured into either orbit family.

The distributions of the ejection locations for family g’ seen in Figure 28 can be explained by the geometry of its

stable manifolds and the effect of the angle restriction. Figure 30 shows examples of stable manifold trajectories that

depart from the asteroid and get captured into orbits of family g’, together with the escape trajectory of the Hayabusa2

spacecraft. The stable manifolds seldom intersect the asteroid at right ascensions of ζ = 90◦ and due to the geometry of

the trajectories, the ejection angles of said trajectories are rarely within the specified limits. The lack of trajectories

within the specified ejection angles is also why we see the minimum between ζ ∈ [260◦,275◦]. The maximum for

ζ ∈ [295◦,300◦] follows the reciprocal reasoning: the geometry of the orbits and their stable manifolds allow for a large

number of trajectories to reach those right ascensions, which have, in general, σ within the specified limits.

Finally, Table 4 displays the minimum, maximum, and mean times of flight of the trajectories with ejection angles

σ ∈ [35◦,50◦] moving from asteroid surface to the periodic orbits of family g’, for the different values of β. The
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Table 4 Times of flight along the stable manifolds of family g’, between asteroid surface and periodic orbits,
with ejection angles between σ ∈ [35◦, 50◦] and minimum and maximum periods in family for different values
of β.

β min{t f light } [days] max{t f light } [days] mean{t f light } [days] min{T} [days] max{T} [days]
30 61.0 150.0 110.7 32.0 38.5
40 49.9 150.0 99.4 25.2 31.3
50 44.2 150.0 89.4 21.0 26.6
75 33.0 149.9 73.3 15.2 19.8
100 26.8 150.0 69.0 11.6 16.0
125 22.7 149.5 61.1 9.9 13.6
150 19.9 141.9 49.2 8.7 11.8
175 17.8 148.1 40.6 7.8 10.6
200 16.1 148.1 35.0 7.0 9.6

minimum and maximum times of flight range between 16 days for the smallest sized particles considered (millimeter

size), and 61 days for the largest (centimeter size), which excludes the minimum and maximum orbit periods of 5 and 21

days, respectively. Note that even for the smallest particles the maximum time of flight equates to 148 days, a significant

value considering the time-span of the mission.

C. Terminator family

Figure 31 displays the ejection velocities into the stable manifolds of the terminator orbit family as a function of

the initial x-coordinate, x0, of the nominal orbit for all ejection angles (Figure 31a) and for σ ∈ [35◦,50◦] (Figure
31b), the ejection velocities as a function of the ejection angle (Figure 31c), and the sections of the family curve whose

stable manifolds intersect the asteroid (Figure 31d). Figure 31c shows how the minimal velocities are achieved for

σ ∈ [40◦,55◦] and the largest velocities comprise of near vertical ejections. Contrary to families a and g’, only part of

the orbits of the family generate manifolds that intersect the asteroid surface: Figure 31d shows how only the stable

manifolds from the orbits situated in the regions close to the equilibrium points intersect the asteroid. For the other

orbits in the family, the stable manifolds approach the asteroid but never intersect its surface. They simply remain in a

quasi-terminator orbit that is situated closer to the asteroid than the original nominal orbit. This situation is shown in

Figure 18d in Section IV.A.

Another observation regarding the geometry of the trajectories can be inferred from Figures 31a, 31b, and 31d. Note

how the largest ejection velocities in Figure 31a correspond to periodic orbits furthest from the asteroid, i.e., the closest

to the equilibrium points. This peak in ejection velocity can also be seen in Figure 31c for σ ≈ 0◦. This means that the

stable manifolds from the terminator orbits closest to the L2 equilibrium points will depart from the asteroid at the

largest velocities and at near vertical trajectories with respect to the local vertical. This also implies that trajectories

leading to orbits situated very close to the equilibrium point will likely not be followed by particles ejected from the
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Fig. 31 (a) Ejection velocities for particles ejected along the stable manifolds of terminator family for different
values of the SRP acceleration for any ejection angle; (b) for the expected ejection angles of σ ∈ [35◦, 50◦]. (c)
Ejection velocity as a function of ejection angle σ. (d) Sections of terminator orbit family for which at least one
stable manifold trajectory intersects the asteroid for different values of SRP acceleration.

asteroid surface, due to the ejection angle constraint. This observation can be verified in Figure 32, where several stable

manifold trajectories that intersect the asteroid surface are presented. Figures 32a and 32b show examples of orbits that

cannot be reached (due to the angle constraint), where specifically Figure 32b displays the aforementioned case. Figures

32c to 32f show examples of trajectories from the asteroid to periodic orbits that can be followed by the ejecta particles.

In Figures 33 and 34, distribution maps of the ejection locations are shown. The color-map and percentage are

calculated similarly to Eq. (32), although the distribution is cumulative, i.e., it is summed over all values of β

Di =

∑
β N i

e j∑
β Ntotal

× 100 (33)

The nominal impact point and the error radius for three standard deviations are also displayed and plotted in red in the
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figures.

(a) (b)

(c) (d)

(e) (f)

Fig. 32 Examples of stable manifolds that lead to periodic orbits of terminator family and Hayabusa2’s escape
trajectory. The manifold trajectories with ejection angles between σ ∈ [35◦, 50◦] are shown in orange.

We define the subsolar and anti-subsolar points, which are placed on the intersection between the Sun-asteroid and

the asteroid surface on the Sun side and the night side of the asteroid, respectively. Analyzing Figure 33, we see that

even when considering all ejection angles, certain locations on the asteroid are never intersected by stable manifold

trajectories of the terminator family. These occur around the subsolar (σ = 180◦) and anti-subsolar (σ = 0◦) points,

although the region on the Sun side is significantly larger. Moreover, on the night side of the asteroid, we see that this

region is surrounded by locations with high concentrations of stable manifold intersections. These high-concentration
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regions originate in their majority from the manifolds of the orbits closest to the L2 point, which, as seen in Figure 32

mainly intersect the asteroid on the night side and around the anti-subsolar point. As the value of β increases and as we

approach the L2 point, the manifolds tend to follow the path of the stable manifolds of the equilibrium point (see Figure

17), which always intersects the asteroid on the night side for sufficiently large values of β. An example of this can be

seen in Figure 32b, which displays an orbit that is very close to the equilibrium point; we can see how its stable manifold

trajectories intersect the asteroid around the anti-subsolar point. When we only consider σ ∈ [35◦,50◦] (see Figure 34),
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Fig. 33 Cumulative distribution maps of the ejection locations for particles ejected along the stable manifolds
of terminator family when considering any ejection angle.

we see how a well-defined band forms close to the yz-plane; no manifolds intersect with the asteroid surface outside this

band when constraining σ. It is interesting to note that the maximum concentration of intersections occurs near the

equator and for ζ ∈ [70◦,90◦] and ζ ∈ [270◦,290◦], which are also regions where the manifold intersection distributions

of families a and g’ display maxima. Because the trajectories intersecting those regions have ejection angles outside the

defined range, the imposed angle constraint forbids the existence of manifold trajectories in the regions outside the

aforementioned band. Figure 35 shows the ejection angles of all the stable manifold trajectories intersecting the asteroid

as a function of the right ascension and declination, for an SRP acceleration of β = 100. The figure shows that the

ejection angles of the stable manifolds do indeed follow a specific pattern with respect to the ejection location.

Finally, Table 5 provides information regarding the times of flight for the stable manifolds of the terminator family

with σ ∈ [35◦,50◦], as well as the minimum and maximum periods of the orbits in the family for the different values of

β. Note that the times of flight and periods are smaller for the terminator family than for families a and g’. Moreover,

note that for β ≤ 50 (R ≤ 3.1 cm), the times of flight display very small variations with respect to the mean value.

Nonetheless, for β = 30 (R = 5.2 cm), a particle ejected along the stable manifolds of a terminator orbit could

remain about the asteroid for 160 days (124 + 36). For particles with β > 150 (R < 1.0 cm) this time drops to 30 days

(19 + 11).
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Fig. 34 Cumulative distribution maps of the ejection locations for particles ejected along the stable manifolds
of terminator family for σ ∈ [35◦, 50◦].
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Fig. 35 Ejection angles σ of stable manifolds of terminator family that intersect asteroid surface as a function
of ejection location for β = 100.
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Table 5 Times of flight along the stable manifolds of terminator family, between asteroid surface and periodic
orbits, with ejection angles between σ ∈ [35◦, 50◦] and minimum and maximum periods in family for different
values of β.

β min{t f light } [days] max{t f light } [days] mean{t f light } [days] min{T} [days] max{T} [days]
30 59.1 123.9 61.3 35.3 36.2
40 48.1 125.0 48.5 28.6 29.3
50 41.0 41.1 41.0 24.2 24.8
75 30.5 30.6 30.6 17.9 18.3
100 24.8 24.8 24.8 14.4 14.7
125 21.0 21.1 21.1 12.1 12.4
150 18.4 18.5 18.4 10.5 10.8
175 16.5 16.5 16.5 9.4 9.6
200 14.9 15.0 15.0 8.5 8.7

D. Implications for Hayabusa2

Although some of the manifold trajectories shown seem to intersect the escape trajectory of the spacecraft, it should

be noted that in nominal conditions the SCI should only detonate once the first leg of the escape trajectory is completed,

i.e., 40 minutes after the deployment of the SCI [10]. Given the fact that the times of flight of the stable manifold

trajectories for the different families are in the order of tens of days and the velocities of the ejecta particles traveling

along these trajectories are much smaller than that of the Hayabusa2 spacecraft (and thus cannot reach the spacecraft’s

position in time), the ejecta moving along the manifold trajectories during the initial segments of Hayabusa2’s escape

trajectory are considered to be innocuous to the mission.

However, the Hayabusa2 spacecraft is scheduled to return to its nominal position, around 20 km from the asteroid in

the direction of the Earth[9], two to four weeks after the SCI operation. An important outcome from the presented

results is that, if ejected into the stable manifold trajectories of periodic orbits at the correct velocity, ejecta particles

could remain about the asteroid for very long periods of time, captured in periodic orbits. The duration of this temporary

capture varies depending on the orbit family and the size of the particle (which translates into different values of β). The

smallest particles will on average remain about the asteroid for shorter periods of time, but can reach values ranging

from 21 days to 158 days for particles with a radius of 7.8 mm, and from 81 days to 189 days for particles with a

radius of 5.2 cm. These are conservative estimates because the particles are assumed to remain in the periodic orbit for

only one orbital revolution. Since these situations would increase the likelihood of ejecta particles colliding with the

spacecraft, which, of course, should be avoided, it is useful to take the information here presented into consideration

when analyzing the SCI event.

The planned escape trajectory of the spacecraft after the SCI operation consists of a good safety measure for the first

period after the impact event. The spacecraft will also be below the xy-plane (in the negative z-direction of the Hill

frame), which ensures no collision with a planar trajectory can occur.
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As mentioned, following the ballistic impact, high-velocity material will also be ejected from the surface. For this

reason, it makes sense to place the impact location and the spacecraft on opposites sides of the asteroid during the

SCI operation (therefore making sure the spacecraft is not hit by the high-velocity particles). If we assume, from the

escape trajectory of Hayabusa2, that the spacecraft will be on the night side of the asteroid when the SCI is detonated,

it is appropriate to choose an impact location on the Sun side of the asteroid. Note, however, that both high-velocity

and low-velocity material are ejected following a ballistic impact [61, 64]. While the high-velocity ejecta will quickly

escape, it is the low-velocity ejecta that could be captured into periodic orbits.

Because the nominal impact location is not situated on the xy-plane and from Figure 34, we see that the nominal

impact location should not lead particles to any of the considered periodic orbits. However, when considering the

impact error radius, some particles could be ejected into the stable manifolds of the planar families a and g’. We

therefore recommend choosing an impact location on the Sun-side whose error radius does not intersect the equator of

the asteroid, thereby ensuring no particles will be trapped in the periodic orbits from the a, g’, or terminator families.

An impact location on the Sun side of the asteroid at mid-latitudes is thus considered the ideal impact location.

A final remark concerning the safety of Hayabusa2 is made, with respect to the trajectories that ejecta particles

might take after their temporary capture. From Figures 1 and 23, we see that for a particle to escape, the ZVCs must

be open on the L2 point. However, because the L2 point is always on the night side of the asteroid and because the

ZVCs do not open on the Sun side the asteroid when considering SRP (only for high-velocity particles, which is not the

case of captured ejecta), these particles will not escape into the Sun-direction. For this reason, after being temporarily

captured, the ejecta particles will either escape the asteroid’s vicinity in the anti-solar direction or re-impact on its

surface. Keeping the spacecraft on the Sun side of the asteroid when returning to its vicinity, which as seen in the

escape trajectory plots of Figure 20 is the planned scenario, decreases the possibility of ejecta particles colliding with

the spacecraft.

VI. Conclusion
This paper has analyzed the possibility of ejecta particles getting temporarily captured into periodic orbits about

asteroid Ryugu following the Small Carry-on Impactor (SCI) operation of the Hayabusa2 mission. Three families of

periodic orbits − families a and g’ from the traditional Hill Problem and the family of southern halo orbits or terminator

orbits − have been studied in the dynamical framework of the perturbed Augmented Hill Problem (AHP), which includes

the effects of solar radiation pressure (SRP), eclipses, and the oblateness of the asteroid, represented by the J2 and

J4 terms of its spherical harmonics gravity potential expansion. Under this model, it was shown that centimeter to

millimeter sized particles could remain trapped about the asteroid for long periods of time as a consequence of the

ballistic impact event, if ejected along the stable manifolds of these periodic orbits. These periods were shown to range

from 21 to 189 days in conservative considerations, a value that would limit and possibly jeopardize the mission’s
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operations. On average, the ejecta particles with smaller radii were shown to remain captured for shorter periods of time

than those with larger radii. The conditions for temporary orbital capture into periodic orbits were also investigated,

specifically the ejection locations of these particles. We defined the subsolar and anti-subsolar points as the intersection

of the Sun-asteroid line with the asteroid surface on the Sun and night sides of the asteroid, respectively. Using this, it

was found that a ballistic impact on the equator of the asteroid, approximately ±80◦ from the anti-subsolar point, would

lead to the largest numbers of ejecta particles being captured into the three considered periodic orbits. Specifically, the

location at −80◦ from the anti-subsolar direction (where the positive direction is given by the angular momentum vector

of the asteroid’s orbit about the Sun), was shown to be near the maxima for all three families. On the contrary, it was

shown that an impact location on the Sun-side of the asteroid, not intersecting the equator, would not cause any particles

to be captured into the aforementioned families of periodic orbit. For this reason, and considering an impact error

radius, the best impact location for the SCI was considered to be on the Sun-side of the asteroid, at medium latitudes.

Additionally, it was found that the ranges of ejection velocities that cause particles to be captured into the three families

of periodic orbits were very similar for both different sized particles and different families, ranging between 0.355 and

0.380 m/s. Furthermore, besides verifying the fact that, in general, solar radiation pressure cannot be neglected when

studying the dynamical environment around small bodies (both for ejecta particles and spacecraft), other theoretical

outcomes were reached in this study. Firstly, it was shown that the stable manifold of the only equilibrium point of

the system, which is situated on the night side of the asteroid, intersects the asteroid surface and tends to travel along

the Sun-asteroid line for sufficiently large values of solar radiation pressure acceleration (the same will occur for the

unstable manifold, although it was not analyzed in this work). Secondly, the effect of the solar radiation pressure on the

manifolds of the families of periodic orbits was also analyzed. It was found that their geometry changes significantly and

that in the case of libration point orbits (as the terminator and a families) the shape and direction of their manifolds tend

to follow the manifolds of the libration point for increasing values of solar radiation pressure acceleration. Finally, due

to the large relative values of solar radiation pressure acceleration, it was concluded that the effect of eclipses should

not be neglected. In fact, it was demonstrated that the stability of periodic orbits that pass through eclipse regions

changes significantly when including the effect of eclipses. This last observation has not only implications to the study

of particle dynamics, but also to the design of space missions.
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III
Conclusions and Recommendations

This chapter recovers the research questions and objectives presented in Chapter I in order to understand to
which extent these were fulfilled, as well as present recommendations for future work to continue the study
developed in this thesis or pursue other applications in which the methodology and conclusions reached could
be employed.

III.1. Review of Research Questions

A final examination of the main research question and subsequent sub-questions follows, with the purpose
of retrospectively analyzing the outcomes of the research. We answer each of the sub-questions presented in
Chapter I in order to answer the main research question, here restated:

Can ejecta that is temporarily captured into periodic orbits following
Hayabusa2’s SCI operation pose a danger to the spacecraft?

For answering the sub-questions:

1. What type of dynamical environment exists about asteroid Ryugu and what is the effect of the perturba-
tions posed by the SRP, the eclipses, and the J2, J4 terms of the asteroid’s gravity potential expansion?

Although it is difficult to quantify and describe the dynamical environment experienced by the ejecta
particles in words, we can assertively confirm that the SRP is an essential perturbation to the system.
The SRP accelerations were shown to be in the order of magnitude of asteroid Ryugu’s gravity and even
dominate its gravity for distances larger than 20 and 10 km from the asteroid for particles with radii
equal to 5.2 cm and 7.8 mm, respectively. Moreover, the increase in SRP acceleration causes the only
equilibrium point of the system, the L2 point, which is situated on the Sun-asteroid line in the direction
opposite to the Sun, to approach the asteroid for increasing values of SRP acceleration (i.e., smaller parti-
cles). Although this has previously been studied and is a general remark in the Augmented Hill Problem
(AHP), we find it also has important implications in the structure of the manifolds of the equilibrium
point. We find that for increasing values of SRP acceleration, the trajectory defined by the interior sta-
ble manifold of the L2 point approaches the asteroid, intersecting it for sufficiently large values of SRP
acceleration as the manifold trajectory progressively travels closer to the Sun-asteroid line1. Likewise,
the manifolds of the families of periodic orbits are also affected by the SRP. For libration point orbits, as
the a and terminator families, their manifolds’ shape approach the structure defined by the manifold of
the L2 point, therefore becoming more symmetric with respect to the Sun-asteroid line with the increase
in SRP acceleration. For the periodic orbits that are particularly close to the equilibrium point, this also
means that their manifolds will intersect with the asteroid similarly to the manifold of the equilibrium

1Note that although only the stable manifolds are analyzed, the unstable manifolds will behave similarly, also intersecting the asteroid for
sufficiently large values of SRP acceleration
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point. The SRP also affects the geometry of the manifolds of non libration point orbits, causing their
general size to decrease with the increase in SRP acceleration.

Due to the large values of SRP acceleration considered, we find that eclipses introduce a significant per-
turbation to the trajectories that cross regions in eclipse. In fact, one of the interesting outcomes of this
thesis relates specifically to the effect that eclipses have on periodic orbits. We find that, when consid-
ering SRP, the stability of the periodic orbits may be significantly affected by the inclusion of eclipses.
Family g’, which is stable when ignoring eclipses, becomes unstable once said perturbation is included.
On the other hand, family a becomes more stable when including the effect of eclipses, despite remain-
ing unstable. This observation can have important implications in the orbit design of missions to small
bodies, proving that accounting for the effect of the SRP and eclipses might lead to different choices in
mission design and create a more realistic model of the dynamics. Moreover, not that within the eclipse
region, the equilibrium point will occupy the nominal position for the traditional Hill Problem, i.e., when
the SRP is not considered. This allows periodic orbits to populate regions in space which would other-
wise not maintain said orbits. The inclusion of the J2, J4 terms of the asteroid’s gravity spherical har-
monics expansion do not have such a significant effect on the dynamical environment and the periodic
orbits of the system. Nonetheless, it accounts for a more truthful representation of the system.

Finally, we can compare the considerations of the model used in this thesis and the actual environment
about asteroid Ryugu. In our model, we assume that the asteroid is in a circular orbit about the Sun,
at a constant distance. In reality this is not the case, which will mainly affect the intensity of the SRP.
However, due to Hayabusa2’s mission timeline - the spacecraft plans to return to the asteroid two weeks
after the SCI operation - and the asteroid’s 1.3 year period about the Sun [13], we consider the variation
in the distance to the Sun to be negligible in our model. We also consider the ejecta particles to be
perfect spheres with a constant exposed surface area (to the SRP). In reality the ejecta particles will likely
have irregular shapes with non-constant exposed areas and varying angles between the surface normal
and the incident SRP, which will make the local SRP acceleration to each particle change as a function
of time. We are also neglecting the collisions between the ejecta particles, although sufficient ejecta
material is expected to be excavated so that a large enough number of ejecta trajectories do not collide
with one another. Another perturbation we neglect in our analysis relates to the non-oblate terms of the
asteroid’s gravity. Given that these terms vary with the local longitude of the asteroid, the spin of the
asteroid would create a time-varying gravity field and restrict the type of ideal periodic motion studied
in this thesis. Despite all this, we note that the conclusions reached in this study still hold a very relevant
significance. While the aforementioned perturbations will most definitely affect the ideal trajectories
and orbits described in this thesis, the fact that these perturbations are significantly smaller than the
ones included in our model, means that the dynamics of the latter will dominate over the dynamics
of the former. In reality we will not observe the ideal trajectories plotted in some of the figures in this
thesis, but that is not to say we will not observe trajectories that are very similar to those described. For
this reason, the conclusions reached in this thesis should not be regarded as the result of an analytical
calculation and demonstration that completely describes the physical world - they are not -, but rather,
as results that correlate significantly to real dynamics of the physical environment and from which we
can take approximate quantitative and qualitative conclusions, and possibly test the reached results in
other high-fidelity models.

2. What are the initial conditions that lead ejecta particles to periodic orbits and thus temporary capture?

We find that, due to the small mass of the asteroid, the velocities for which asteroid ejecta are trapped
in periodic orbits are, likewise, very small. However, and most interestingly, the ranges of ejection ve-
locities that cause periodic orbit capture were found to be very similar for both different sized particles
and different families of periodic orbits. In the case of Ryugu, this range consists of velocities between
0.355 m/s and 0.380 m/s, or 20.886 and 22.357 in dimensionless units2.

Regarding the locations on the asteroid that lead to periodic orbit capture, we show they vary from family
to family but that their distribution does not change significantly for different sized particles. By map-
ping the intersections of the stable manifolds of the periodic orbits with the asteroid surface, we were
able to derive the relation between impact location and capture of ejecta into periodic orbits. We found
that for family a, the impact locations that lead to the largest number of trapped ejecta exist close to

2The unit of length used corresponds to (µ/ω2)1/3, where µ is the asteroid’s gravitational parameter and ω is its mean motion about the
Sun, and the unit of time corresponds to 1/ω.

58



±80◦ from the anti-subsolar point3 on the asteroid’s equator. For family g’, this location exists also on
the equator, approximately 60◦ degrees from the asteroid’s anti-subsolar point in negative direction4.
Two minima for the locations that lead to the least number of captured ejecta for family g’ are identi-
fied for ±90◦ from the anti-subsolar point on the asteroid’s equator. Finally, for the terminator family,
we find that ejecta arising from the SCI event can only be captured if the impact location is placed on
a "ring-like" section situated between the y z-plane5 and a plane offset 200 m from the y z-plane in the
anti-solar direction. Within this section, the locations that cause the largest number of captured ejecta
are situated close to the equator, with the maximum between 70◦ to 80◦ from the anti-subsolar point on
the asteroid’s equator in negative direction.

3. For what duration do the ejecta particles remain captured about the asteroid?

The duration of the capture periods varies with the size of the particles and the family of orbits con-
sidered. The capture time comprises the time of flight between the asteroid and the periodic orbit and
one period (one revolution) of the orbit. This is a conservative consideration, given that a particle ar-
riving at an orbit through its stable manifolds is likely to remain in orbit for longer than one revolution.
However, to consider the effect of neglected perturbations, we assume that the particles only remains in
orbit for one revolution. Taking this into account, we find average capture periods ranging between 21
and 189 days, which, considering the timeline of the mission, could limit Hayabusa2’s future operations.
These values are based on the overall minimum and maximum expected capture times, which refer to
the minimum capture time of an ejecta particle with a radius of 7.8 mm and the maximum capture time
of a particle with a radius of 5.2 cm, respectively. Finally, the capture times for families a and g’, which
are very similar, are on average larger than those for the terminator family.

4. What is the effect of particle radius in the dynamics experienced by the ejecta particles, in terms of tempo-
rary capture?

The decrease in particle radius causes the SRP acceleration to increase, as it depends on the area-to-
mass ratio of the particles, which decreases for smaller ejecta radii. This increase in the SRP acceleration
represents a decrease in the period and size of the periodic orbits, although we find it does not particu-
larly affect the stability of the families for the values of particle radii studied. Nonetheless, we find that,
on average, the times of flight between ejection and arrival at the periodic orbits also decrease with a
decrease in particle size, meaning that the captured periods decrease for decreasing particle radii. Fi-
nally, and although, as mentioned, the ejection velocities that cause periodic orbit capture do not vary
significantly with particle radius, the minimum ejection velocities increase slightly with particle radius
(i.e., decrease in SRP acceleration). Moreover, the maximum ejection velocities of the terminator family
also increase with particle size, while for the a and g’ families the maximum ejection velocities remain
approximately constant for the different particle sizes.

5. What trajectories do the captured ejecta particles follow and do they pose a danger to the Hayabusa2 space-
craft?

The immediate danger to the mission is that the ejecta trajectories may collide with the Hayabusa2
spacecraft during its escape trajectory after the SCI deployment. The escape trajectory consists of three
legs [14]:

(a) The first starts immediately after the deployment of the SCI, lasts for 40 min, and consists of the
Hayabusa2 spacecraft hiding behind the asteroid, in order to protect itself from the debris created
by the detonation of the SCI.

(b) The second begins once the spacecraft is already behind the asteroid and once the SCI is detonated.
During this section the spacecraft proceeds to increasing the distance to the asteroid.

(c) The third and final segment starts once the spacecraft is further away from the asteroid. It consists
of a long trajectory arc that increases the distance to the asteroid by over 100 km and then returns
to the nominal "Home Position" of the spacecraft, 20 km away from the asteroid along the asteroid-
Earth line, which will situate the spacecraft on the Sun-side of the asteroid.

3The anti-subsolar point is defined as the point, on the night-side of the asteroid (side facing the direction opposite to the Sun), where the
Sun-asteroid line intersects the asteroid surface.

4The positive direction is given by the angular momentum vector of the asteroid’s orbit about the Sun.
5The y z-plane is perpendicular to the Sun-asteroid line where the z-axis points in the direction of the angular momentum vector of the

asteroid’s orbit about the Sun.
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If the nominal conditions are followed, and the SCI is detonated, as planned, 40 min after deployment −
when the spacecraft starts the second leg of the escape trajectory −, the average velocity of the spacecraft
would be approximately one order of magnitude larger than the ejection velocities that lead the particles
to the periodic orbits through their stable manifolds. This means that even though some of the stable
manifold trajectories cross points in the escape trajectory, they will do so after the spacecraft has passed
that part of the escape trajectory. One could argue that particles with ejection velocities larger than
the ejection velocities that lead to periodic orbits could reach the spacecraft sooner, possibly colliding
with the spacecraft. The problem with this argument is that the ejection velocities that cause periodic
orbit capture are very close to the escape velocity6, which is approximately 0.381 m/s from the surface
of asteroid Ryugu. Given that the average velocity of the spacecraft will still be approximately an order
of magnitude larger than this value, for a particle to reach the spacecraft during the escape trajectory,
its velocity would have to be, on average, almost 10 times larger than the escape velocity. Given the fact
that the location of the planned impact is on the Sun side of the asteroid and the escape trajectory is
on the night side, the trajectories of these particles would likely not intersect the escape trajectory of the
spacecraft. In this regard, what is identified as a potential hazard to the mission is the possibility of ejecta
particles still remaining about the asteroid when the spacecraft returns to its proximity. This could affect
the mission’s nominal operations and the planned touchdown on the impact site.

6. What are the best and worst impact locations for the SCI in terms of possibility of orbital capture and safety
of the spacecraft?

The best impact locations for the SCI are found to be on the Sun-side of the asteroid at medium latitudes,
in such a way that the impact error radius does not intersect the equator nor the plane normal to the Sun-
asteroid line that passes through the center of the asteroid. The worst impact location was found to be
on the equator of the asteroid, approximately 80◦ from the anti-subsolar point in negative direction.

III.2. Recommendations

III.2.1. Future Work

Following the work developed in this thesis and the conclusions reached, a list of recommendations regarding
points that are deemed as possible continuations of said work are presented. We consider the pursuit of these
points to be interesting additions to the topic, and that future work on it would benefit from their considera-
tion.

1. Studying other families of three-dimensional periodic orbits.

While the two families of planar periodic orbits studied in this thesis provide representative results of
the planar motion about the asteroid, additional three-dimensional orbits would present an interesting
addition to the results obtained. The terminator orbits are libration point that leads to a large variety
of other orbits by means of different numerical or mathematical methods, such as bifurcation theory or
invariant tori [31,32]. For that reason, the terminator orbits studied in this report provide significant and
representative conclusions for possible three-dimensional motion about the asteroid. Moreover, being
a libration point orbit implies a relation with the gateway that is represented by the L2 point between
impacting, orbiting, and escaping motion, due to the regions of forbidden and allowed motion repre-
sented by the Zero Velocity Curves (ZVCs) of the system [5]. However, it would be interesting to study the
results of other well-known libration point orbits, like the vertical Lyapunov orbits [33], as well as other
non-libration point orbits that directly orbit the asteroid, such as the ones studied in [31] or [32].

2. Performing a grid-search simulation close to the initial conditions found.

Although the subject of this thesis was related to studying ejecta particles captured into periodic orbits, it
could be beneficial to perform an extensive, brute-force search with ranges close to the initial conditions
that were found to cause temporary periodic orbit capture. While the trajectories resulting from these
simulations will likely not lead to periodic orbits, they may provide insight into temporary capture into
chaotic motion about the asteroid, leading from the conclusions reached in this thesis. A good starting
point, to limit the computational effort, could be to simulate the ranges of ejection velocities found in

6The escape velocity is computed as vesc =√
2µ/Ra , where µ is the asteroid’s gravitational parameter and Ra is the asteroid’s radius [30].
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this thesis, from the planned impact location, at ejection angles between 35◦ and 50◦ with respect to the
surface normal. The same analysis could then be followed by changing the ejection site to the locations
identified as leading to the greatest and smallest number of capture particles in this thesis. If one were
capable of using a computer with very powerful computational capabilities, the ideal choice would be
to run these simulations for the entire surface of the asteroid.

3. Simulate the ejection conditions that cause temporary orbit capture in a high-fidelity model.

In order to understand the extent to which the trajectories and results obtained in this thesis hold in the
real dynamics of the system, we propose as a future addition to this work to simulate the initial condi-
tions that cause temporary periodic orbit capture in a high-fidelity model. These simulations could be
tied with the previous recommendation, in the sense that one could simulate ranges of initial conditions
for the ejection velocities, angles, and locations close to the initial conditions found in this thesis, but
in a high-fidelity and realistic model, that should include a high-fidelity model of the asteroid’s gravity.
Recommendations for the gravity model include using a spherical harmonics expansion that consid-
ers the non-oblate terms of the asteroid, using a Constant Density Ellipsoid model (CDE) with elliptic
integrals [34], a Constant Density Polyhedron [35], and mascon approach [36, 37]. Note, however, that
the inclusion of a complex gravity model and the spin of the asteroid in the Hill frame7 would generally
make the problem twice time dependent and significantly increase computation time. Moreover, a grav-
ity model that varies with longitude would lead to ejections locations in the local longitude and latitude
of the asteroid (as opposed to the defined right ascension and declination), where the asteroid spins at
a period of 7.6 h [38, 39].

III.2.2. Other Applications

During the development of this thesis, arising from fruitful discussions and results obtained, an idea for an-
other application using the methodology and process implemented in this work was identified. Here we
present preliminary results that stem from that application, which could be pursued in the future, despite
not being directly tied to the topic of this thesis.

Landing Trajectories from Periodic Orbits
If we follow a reverse approach to the one presented in this thesis, and integrate the unstable manifolds of
the periodic orbits forward in time (as opposed to integrating the stable manifolds backwards in time) we can
obtain landing trajectories from periodic orbits, which could be followed by spacecraft or landers. Other works
have previously considered landing trajectories to small bodies [40–42]. In this short preliminary analysis we
compute landing trajectories from periodic orbits of family a and the terminator family for asteroid Ryugu.
However, this approach could be applied to any asteroid and any unstable periodic orbit. We re-state the
equation for non-dimensional SRP acceleration

β= (1+CR )P0

m/A µ1/3µ2/3
S

(III.1)

where CR is the reflectivity coefficient or albedo, P0 ≈ 1.02×1017 kg m s−2 is the solar pressure constant, m/A
is the mass-to-area ratio, and µS is the gravitational parameter of the Sun.

We take SRP acceleration values close to those experienced by spacecraft and landers about the asteroid,
as well as an SRP acceleration value appropriate for a solar-sail [19]. To represent spacecraft as Hayabusa2 [31]
and OSIRIS-REx [43] we take the values β = {20, 40, 50}, and to represent a solar-sail like that launched by
JAXA’s IKAROS mission [44], we take β= {1000}. For completeness we consider also β= {75, 100, 200}.

The main outcome investigated in this preliminary analysis refers to the touchdown or impact conditions
of the spacecrafts when landing on the asteroid. We focus particularly on the impact angle, σi mp , the time
of flight, t f l i g ht , between the departure from the periodic orbit and arrival at the asteroid, and the impact
velocity, vi mp . The impact angle is measured with respect to the surface normal and ranges from σi mp = 90◦,
which corresponds to an impact angle tangential to the local surface, to σi mp = 180◦, which corresponds to a
vertical impact. We aim to minimize this angle so as to arrive as tangentially as possible to the asteroid surface,
i.e., as close as possible to σi mp = 90◦, as well as minimizing the impact velocity and the time of flight.

7The Hill frame rotates with the Sun-asteroid system, its x-axis pointing from the Sun to the asteroid, is centered on the asteroid, and
whose z-axis points in the direction of the asteroid’s orbit angular momentum vector
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Taking into account the fact that the time of flight might poses an important constraint to the mission - a
transfer time between the orbit and the asteroid surface of six months is not conceivable - we first present the
results as a function of the time of flight. Figure III.1 shows the times of flight as a function of the impact angle
for the different values of SRP acceleration for the a and terminator families. We see that lower values of β lead
to very long times of flight, above 70 days for β= 20. The vertical lines seen for the terminator family in Figure
III.1b refer to orbits that are very close to the equilibrium point; due to their small size and proximity to the
L2 point, their manifolds lead to the asteroid in an almost straight line and considerably faster than the other
manifold trajectories for the same β value and same family. Figure III.2 shows an example of such a trajectory
of the terminator family, which represents the landing trajectory with the smallest time of flight for β = 40 in
Figure III.1b (≈ 3 days). While this type of trajectory decreases the time of flight significantly, it forces a near
vertical landing, which may not be desirable due to bouncing dynamics on the surface of the asteroid. How-
ever, it is the approximately horizontal "lines" in Figure III.1b, which contain most of the landing trajectories
of the terminator family, that give us an idea of the average time of flight for that SRP acceleration. For each β,
the values that are significantly larger than these times refer to trajectories that orbit the asteroid a few times
before landing. An example of such a trajectory is shown in Figure III.3, which represent the trajectory with
the largest time of flight for β= 100 in Figure III.1b (over 100 days).

(a) Family a. (b) Terminator family.

Figure III.1: Times of flight for the landing trajectories following the unstable manifolds of the a and terminator families.
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Figure III.2: Example of a landing trajectory for a terminator orbit that is very close to the L2 point.

In order to take into account general mission constraints, we limit the time of flight of the results to 30
days, which is by itself already a large value, and analyze the impact velocities and impact angles. Figure
III.4 presents the impact velocities and impact angles for both families, taking into account the time of flight
constraint. We see that for family a (Figures III.4a and III.4c) no trajectories for β values representative of
spacecraft like Hayabusa2 or OSIRIS-REx (β= [20, 50]) remain after the time of flight constraint. Although the
terminator family still shows possible landing trajectories for these values of β after the time constraint (see
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Figure III.3: Example of a landing trajectory from a terminator orbit that orbits the asteroid several times before landing.

Figures III.4b and III.4d), these trajectories correspond to the aforementioned near vertical impacts, which also
have larger impact velocities that could cause the spacecraft or lander to bounce on the asteroid and escape.

As shown in Figure III.4, the variation in impact velocities is very small for both families. Nonetheless,
we note that for the terminator family the largest velocities always occur for the trajectories closest to vertical
impacts, while the smallest velocities occur for impacts with σi mp = 140◦, i.e., 50◦ with the surface (see Figure
III.4d). However, as shown in Figure III.4c, family a does not show a relation between impact angle and impact
velocity, although we see that the minimum impact velocities decreases with the increase in β.

(a) Family a. (b) Terminator family.

(c) Family a. (d) Terminator family.

Figure III.4: Impact velocities and angles for the a and terminator families.

Figures III.4a and III.4b also show how the increase inβ causes the nominal orbits to approach the asteroid,
as detailed in the body of this thesis. Depending on the mission design constraints and objectives this could
either be an advantage or disadvantage, and should be considered in the decision process when designing a
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landing trajectory.
As seen from Figures III.4c and III.4d, the larger values of β all allow for near tangential impact conditions

below the 30 days time of flight constraint. The most promising results are obtained for SRP acceleration
values equivalent to those of a solar-sail, which allow for (virtually) fuel-free landing trajectories within a five-
day period (see Figure III.1) and near minimum impact velocities for tangential landing conditions (see Figures
III.4c and III.4d).

Comparing the a and terminator families, the advantages of using a terminator orbit relate to the possi-
bility of directly reaching high local latitudes on the asteroid’s surface, its flight heritage - as the OSIRIS-REx
mission is currently orbiting asteroid Bennu in a terminator orbit [43], and its robustness against gravity model
uncertainties [45, 46]. Figure III.5 shows landing locations on the asteroid’s surface as a function of the impact
angle from the terminator family. Considering the fact that we aim to minimize the impact angle and achieve
a tangential impact trajectory, Figure III.5 shows we can still reach latitudes of up to 60◦, whereas for family a
we can only land on the equator of the asteroid.
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Figure III.5: Impact locations for terminator family with β= 1000 as a function of the impact angle.

Finally, a few examples of landing trajectories that intersect the asteroid almost tangentially are presented
for both families in Figures III.6 and III.7.

-2

2

-1

0

3

1

0 2

2

1
0-2

(a)

0 1 2 3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b)

Figure III.6: Landing trajectory from family a orbit, with the following conditions: t f l i g ht = 5.00 days, σi mp = 91.617◦,
vi mp = 0.3353 m/s.

Although the results here presented comprise a short and preliminary analysis, we show that the method
employed in this thesis can be used to successfully obtain landing trajectories for spacecraft or landers to
small bodies. We note that landing trajectories for solar-sails look particularly promising, due to the shorter
times of flight they allow. We also should not immediately discard the landing possibilities for spacecraft with
lower SRP acceleration values when using this method. Although the times of flight presented here may be
too long or, when selecting those with short times of flight, the impact angle too vertical, further analysis

64



-1.5

-1

-0.5

0

2

0.5

1

1

1.5

10
0-1

(a)

-0.5 0 0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0

0.5

1

1.5

(b)

-1.5-1-0.500.511.5

-1.5

-1

-0.5

0

0.5

1

1.5

(c)

Figure III.7: Landing trajectory from terminator orbit, with the following conditions: t f l i g ht = 4.75 days, σi mp = 90.63◦,
vi mp = 0.3358 m/s.

should take place. Firstly, we are assuming that a vertical impact would likely lead to a bouncing-enabled
escape motion. Although this assumption may seem rational at a first glance, it would be necessary to simulate
possible bouncing motions in these scenarios to make an accurate assessment. Secondly, we are assuming the
spacecraft or lander would depart the orbit asymptotically. In reality, a small delta-V would likely be used to
depart from the orbit. This would decrease the time of flight significantly, as it would be translated in a larger
perturbation value when calculating the unstable manifolds of the orbit [47]. Lastly, a solar-sail could be used
merely as mother-spacecraft, deploying a lander with a different area-to-mass value (and thus different SRP
acceleration), which could forbid its escape from the system if the ZVCs of the motion described by the lander
were to close on the equilibrium point.
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A
Verification and Validation

In order to verify and validate the models developed for the work presented in this thesis, a series of tests were
performed. This chapter explores and presents said tests together with the results.

The model developed for this work can be seen as a combination of three sub-models:

• Augmented Hill Problem (AHP) model

• Eclipse model

• Spherical harmonics model with J2 and J4

The AHP (sub)-model serves as the basis to the entire model in the sense that the other two can only be
used in combination with the AHP (sub)-model, or, of course, by using all three together. For simplification
we drop the term "sub-model" and refer to each as a "model". Within these models, three main operations are
identified:

1. State vector integration

2. State Transition Matrix (STM) integration

3. Differential correction

A remark should be made as to the fact that the computation of the invariant manifolds is not regarded as a
"main operation" of the model. The reason for this relays with the fact that said computation is performed us-
ing the operations (1) to (3). That is, we first obtain a periodic orbit using the differential corrector, integrate its
state vector and STM for one period, then add a perturbation along the stable eigenvectors for several points
along the orbit, and finally integrate its state vector backwards in time until it either intersects the asteroid,
escapes the system, or the set time limit is reached. We can see that the only "new" operation mentioned in
this set of actions is the perturbation along the stable eigenvectors of the orbit, and even that comes from the

integration of STM along the orbit and then using MATLAB®functions to compute its eigenvectors. For this
reason, it is deemed that the verification of the other main operations (1)-(3) serves to verify the computation
of the invariant manifolds. For completeness, however, a qualitative verification is included in Figure A.1 re-
garding the magnitude of the perturbation used to compute the manifolds, to check that by integrating a stable
manifold forwards in time from, for instance, the asteroid surface, we do indeed reach the periodic orbit and
remain there for at least a period.

That being said, we can then assume that by verifying each of the main operations (1) to (3) within the
three models, we will verify the model as a whole. We do this by testing each of the operations within the
different models, going through each main operation at a time. Table A.1 shows a schematic representation
of these tests, which consist, when possible, of two iterations. The first aims at expressing the numerical and
mathematical correctness of the model, comparing the results with those predicted by the analytical models,
while the second makes use of a more qualitative analysis, comparing the obtained plots or results with those
from literature. This second iteration depends on the existence of relevant data from other sources, and as
such is not always available.
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Figure A.1: A stable manifold trajectory from family a integrated forwards in time from the asteroid surface up to its period orbit.

Table A.1: The two testing iterations for the validation and verification of the model.

Operation First iteration Second iteration

1 Jacobi constant Orbits in [28, 29]

2
Determinant of STM
Unity eigenvalue pair

Stability diagrams in [27, 29]

3
Value of iterative correction

Position error after one period
Initial conditions in [27, 48]

A.1. State vector integration

AHP model: The operation (1) refers to the general integration and propagation of the state vectors through
time, i.e., solving the initial value problem for the ordinary differential equations defined by the equations of
motion, and sets the basis to the entire model.

The state vector is always integrated via MATLAB®’s ode45 function (Ordinary Differential Equation, orders
4 and 5), which uses an adaptive step-size Runge-Kutta Dormand-Price integrator [49]. The relative and ab-
solute error tolerances are both set to 10−13, close to the minimum allowed by the integrator. As mentioned
during the body of this thesis, because the AHP model is time-invariant, it admits an energy integral, which is
formally known as the Jacobi constant, C . In a perfect, analytical consideration, the value of C must remain
constant for any trajectory within the AHP model [30]. Of course, due to the numerical error associated with
the machine, this value will always vary by a very small amount; but it should remain very close to zero. By
quantifying this variation we can assess whether the state vector is being accurately integrated and propagated
and thus if the equations of motion and this section of the model are correctly implemented.

We first consider the AHP model and select three pairs of orbits, pertaining to three different orbit families,
each pair consisting of an orbit without SRP and one with SRP. We also consider two non-periodic random
trajectories, one with and one without SRP, for the purpose of completeness. For each of these trajectories
we look at the maximum variation of the value of the Jacobi constant, ∆Cmax . Since the values of the initial
position along the y-axis and initial velocity along the x-axis are always set to zero, they are excluded from
Table A.2 for simplification.

From Table A.2, we see that the maximum variation of the Jacobi constant is indeed negligibly small, in
the orders of 10−12 to 10−14. Although a source could not be found that specifies the acceptable limits for
these errors, an error 12 orders of magnitude smaller than the nominal value is deemed acceptable, and we
thus confirm the correct integration and propagation of the state vector in the AHP model. The differences
between the orders of magnitude of∆Cmax for the different trajectories are tied with the number of state vector
integrations, or time steps, that the algorithm takes. Because ode45 uses a variable time-step, this number
changes depending on how "demanding" the integration is, which leads, in the cases of more time-steps, to
a higher accumulated numerical error. Other than this test, using initial conditions stated in [28, 31], orbits
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Table A.2: Error associated with the maximum variation of the Jacobi constant for different trajectories in the AHP model.
Initial conditions and period (or in the case of the random trajectories, integration time) are presented in non-dimensional units.

β Family ∆Cmax x0 [-] z0 [-] ẏ0 [-] ż0 [-] t [-]

0 a 1.56319402×10−13 0.32125800 0 2.08969372 0 3.56886117
100 a 3.55271368×10−13 0.07112700 0 3.63083747 0 0.17727777

0 g ′ 1.03028697×10−12 0.25546700 0 2.50181945 0 4.73721046
100 g ′ 2.24531505×10−12 0.06333400 0 4.18020864 0 0.18556618

0 terminator 3.37507799×10−14 0.30433087 0.34000788 1.48923206 0 2.97697355
100 terminator 4.26325641×10−14 0.08519857 0.04001235 1.39565598 0 0.18390886

0 - 6.62225830×10−12 0.1400 0 1.00 0.100 0.700
100 - 6.37001563×10−12 0.00800 0.0500 3.800 0 0.700

referenced in said sources were integrated and plotted, and found to qualitatively match the plots from those
sources. An example of this can be seen in Figure A.2, where the initial conditions for an orbit about asteroid
Vesta from [28] are integrated for the same period of time, 116 days, using the same point mass gravity of Vesta
and SRP acceleration. Since both works use an AHP model for the dynamics of the system, we are able to
qualitatively verify the matching between both.

Table A.3: Error associated with the maximum variation of the Jacobi constant for different trajectories in the
AHP model with the J2 and J4 gravity perturbations. Initial conditions are presented in non-dimensional coordinates.

β Family ∆C∗
max x0 [-] z0 [-] ẏ0 [-] ż0 [-] t [-]

0 a 1.55431223×10−13 0.32125800 0 2.08969372 0 3.56886291
100 a 3.16191517×10−13 0.07308700 0 3.47098014 0 0.17883415

0 g ′ 5.22959453×10−12 0.40585900 0 1.56742432 0 3.84512642
100 g ′ 3.08375547×10−12 0.0698400 0 3.65116038 0 0.18990892

0 terminator 2.66453526×10−14 0.48016178 0.23903830 0.99004071 0 3.05848156
100 terminator 7.81597009×10−14 0.04885286 0.06047993 2.81732643 0 0.14002169

0 - 1.21502808×10−12 0.00800 0.0500 3.800 0 0.1400
0 - 2.54374299×10−12 0.001600 0.0500 3.500 0 0.1400

Gravity model: We focus next on the gravity model with the J2 and J4 (C20 and C40 Stokes coefficients) gravity
perturbations of the spherical harmonics potential. Because they do not depend on the spin of the asteroid,
the problem remains time-invariant, although the expression for the Jacobi constant changes slightly since it
must now include the new gravity potential with the J2 and J4 terms. Nonetheless, this means we can also test
the integration and propagation of the state vector in this model by assessing the variation of the modified
Jacobi constant, ∆C∗

max . The error associated with this can be seen in Table A.3, where once again we select
three pairs of periodic orbits and a pair of non-periodic trajectories, each pair with an orbit or trajectory with
and without SRP. From Table A.3 we see that the values of ∆C∗

max remain within acceptable limits, between
10−12 and 10−14.

Eclipse model: When considering the eclipse effect, the constant energy integral of the system disappears.
This occurs because the system is no longer time-invariant, as it depends on when and for how long it stays
within the eclipse region. Of course, this constraint is only implicitly dependent on time, as it depends on the
position of a particle at a time t . Nonetheless, when considering a periodic orbit, we can say that the variation
of the Jacobi constant will also be periodic, as its energy level must be the same at t = nT,∀n ∈N, or the orbit
would not be periodic. Furthermore, while in the total eclipse or no eclipse regions, the Jacobi constant should
not vary, since these regions are, by themselves, time-invariant. This means we can verify the integration of the
state vector within the eclipse model by analyzing how the Jacobi constant varies over the course of a periodic
orbit. Moreover, when considering the eclipse model but setting β= 0, the Jacobi constant should not vary, as
in the cases shown above for the AHP and gravity models.

We use a cylindrical eclipse model and simulate a smooth transition between the non-eclipse and total
eclipse regions by means of a sigmoid function [50,51], which acts as a smooth step function for the SRP, taking
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Figure A.2: o

r aSRP = 1.79546×10−4 [m/s2].]Comparison between between orbit obtained in [28] (Figures A.2b and A.2d)
and the model developed in this work (Figures A.2a and A.2c), for the same initial conditions, about asteroid
Vesta. The SRP acceleration is β = 354.7336 [-] or aSRP = 1.79546×10−4 [m/s2]. Courtesy of Figures A.2b and
A.2d: [28].

its value from β to zero. We select two pairs of periodic orbits that pass through the eclipse region, each pair
including one orbit with SRP and another without, to verify that the Jacobi constant varies periodically for the
first case and remains constant for the second. Figures A.3 and A.4 show the variation of the Jacobi constant
and the non-dimensional SRP acceleration β of two periodic orbits that pass through the eclipse region, for
one and two periods. The nominal SRP acceleration considered when not in eclipse is β = 100. Figure A.3
shows these values for an orbit of the planar family a, also known as planar Lyapunov orbits, and Figure A.4 for
an orbit of the planar family g’ .

We verify the Jacobi constant does indeed vary periodically, where each of these transitions in value occur
when a particle enters or exits the eclipse region and correspond to the respective variation of β. For each,
the maximum error in the sections where the energy integral should be constant, i.e., when the particle is not
transitioning between the eclipse and non-eclipse regions, is respectively 1.78701498×10−12 and 7.94386778×
10−12 for families a and g’. Furthermore, we see that the errors between the Jacobi constant at t = 0 and t = T
are, respectively, 6.97095652× 10−6 and 1.04531352× 10−8. While these values are larger than those shown
before, they are expected due to the variations of the Jacobi constant over one orbit. Because these variations
are significantly larger than the errors (up to 10 orders of magnitude), the computer is less capable of dealing
with very high decimal point precision, and thus the errors are more likely to accumulate. Finally, Table A.4
shows the errors of the Jacobi constant in the eclipse model when setting β to zero.
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Figure A.3: Variation of the Jacobi constant and β in the AHP model eclipses for the orbit of family a, seen in (a). (b) two periods; (c) one
period. The initial conditions are x0 = 0.04195325, ẏ0 = 6.24192578 [-] and y0, z0, ẋ0, ż0 = 0.

Table A.4: Error associated with the maximum variation of the Jacobi constant for different trajectories in the AHP model with eclipses.
Initial conditions are presented in non-dimensional coordinates.

β Family ∆Cmax x0 [-] z0 [-] ẏ0 [-] ż0 [-] t [-]

0 a 1.70086167×10−13 0.30212800 0 2.21025245 0 3.64078384
0 g ′ 1.03028696×10−12 0.25546700 0 2.50181945 0 4.73721046

We can also perform a qualitative check of the eclipse model by plotting the shape of certain orbit families
for high values of SRP. By doing so, we can then observe if they match the shape of those presented in the
work of García Yarnoz et al. in [29], which studies the a and g’ orbit families of the AHP for high values of
SRP. Again, this does not substitute the actual numerical verification that was carried out; it serves only to
support the conclusions drawn from said verification in a more visual and qualitative way. Figure A.5 shows
this comparison for β= 30.

A.2. STM integration

The main operation (2) of the model refers to the integration and propagation of the state transition matrix
(STM), Φ(t ), through time. In order to test its correct implementation we look at two features. The first is the
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Figure A.4: Variation of the Jacobi constant and β in the AHP model with eclipses for an orbit of family g’, seen in (a). (b) two periods; (c)
one period. The initial conditions are x0 = 0.04458068, ẏ0 = 5.88143855 [-] and y0, z0, ẋ0, ż0 = 0.

fact that the symplectic nature of the STM means its determinant is always equal to one [18]. Secondly, when
integrated over a period T of a periodic orbit (in which case the STM is known as the Monodromy matrix,ΦM ),
at least a pair of the eigenvalues ofΦ(T ) is always situated on the unit circle, i.e., their norm is always one [52].
Again, by verifying the variations to these nominal values − which, as before, should be negligibly small and
caused by numerical error from the machine − we assess the correct implementation of this section of the
model. It should be mentioned that the errors inherent to this integration and propagation are expected to be
larger, due the larger number of operations necessary to calculate the STM at each point, and error associated

with large matrix operations in MATLAB®. Since the STM is integrated using the Jacobian, J , of the equations
of motion [53], F (X ) = [ẋ, ẏ , ż, ẍ, ÿ , z̈]T

J (t ) = ∂F (X )

∂X
(A.1)

it does not depend on the SRP parameter, β, and thus it is not affected by the inclusion of the eclipse.
This means that, contrary to the case of the Jacobi constant, we can analyze the integration of the STM in the
eclipse model too. We then test again the AHP and AHP with gravity perturbations models by analyzing the
two aforementioned criteria in three pairs of periodic orbits.

The results of these tests can be seen in Tables A.5, A.6, and A.7, which show the errors associated with the
integration and propagation of the state transition matrix for the AHP, gravity, and eclipse models, respectively.
All the orbits in these tables have y0, ẋ0, ż0 = 0, and as such these coordinates are not shown. As expected, these
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Figure A.5: Comparison between the geometry of families of periodic orbits a and g’ in the AHP model with eclipses and from source [29]
for β= 30. (a) Orbit family a; (b) orbit family a from source [29]; (c) orbit family g’ in eclipse model; (d) orbit family g’ from source [29]. All
plots are shown in non-dimensional units, where the plots from [29] use a different notation: ξ instead of x; η instead of y ; and Γ instead

of C , the Jacobi constant.

errors are in general larger than those found for ∆Cmax but are found to be within reasonable limits. The error
associated to the unit eigenvalue pair is in general larger for more unstable orbits, given the machine must
accommodate the values of large unstable eigenvalues with high decimal-point precision. Moreover, for the
case of the eclipse model, we see that the error for the unit eigenvalue is particularly large. This is due to
the fact that the unit eigenvalue pair is associated with the existence of the energy integral of motion [18].
When including the eclipse, the problem is no longer time-invariant and as such the energy integral varies
proportionally to the time spent in eclipse; this causes a proportional variation in the unit eigenvalue pair.
Nonetheless, this does not affect the symplectic nature of the STM, and we can see that the error associated
with the determinant of ΦM is always smaller than 10−7, a value which in fact is smaller than that deemed
acceptable in [32]. Finally, we see that the rows for β= 0 of families a and g’ and the terminator orbits in Tables
A.5 and A.7 are in fact identical between the AHP and eclipse models. We purposely select the same initial
conditions for both models and since the terminator orbits never fall in the eclipse region, we verify that the
eclipse model behaves correctly and does not alter the dynamics of the system when either the SRP is set to
zero, or when a particle does not enter the eclipse region.

For the AHP model we present also a qualitative comparison of the stability of families a, g’, and f. Family
f corresponds to the distant retrograde orbits presented in [27], and although it is not part of the analysis
undertaken in this work, it is here presented for the purposes of verification. A more thorough analysis of
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Table A.5: Error associated with the integration and propagation of the state transition matrix for different trajectories in the AHP model.
Initial conditions are presented in non-dimensional coordinates, and z0 is zero for all orbits except for the terminator family, where

z0 = 0.19962821 for β= 0 and z0 = 0.03303122 for β= 100.

β Family 1−det(ΦM ) 1−|λi | x0 [-] ẏ0 [-] t [-]

0 a −1.30707001×10−10 3.44643164×10−5 0.38036000 1.74472173 3.39128018
100 a 4.89876061×10−9 2.21164586×10−6 0.07788700 3.07137082 0.18258031

0 g ′ −3.08268506×10−8 3.81481002×10−9 0.46164800 1.26595777 3.64089673
100 g ′ −5.18727283×10−11 2.67394995×10−11 0.07491600 3.23359776 0.19327453

0 terminator 1.43824952×10−11 6.70574706×10−14 0.51349110 0.88923937 3.06736742
100 terminator −1.756482754×10−9 1.37667655×10−13 0.09017801 1.11840638 0.18901436

Table A.6: Error associated with the integration and propagation of the state transition matrix for different trajectories in the AHP model
with the J2 and J4 gravity perturbations. Initial conditions are presented in non-dimensional coordinates, and z0 is zero for all orbits

except for the terminator family, where z0 = 0.32021070 for β= 0 and z0 = 0.04221324 for β= 100.

β Family 1−det(ΦM ) 1−|λi | x0 [-] ẏ0 [-] t [-]

0 a 1.80744874×10−9 1.04155951×10−4 0.35551600 1.88562005 3.45874693
100 a 4.66854443×10−10 6.10267392×10−12 0.02808100 8.06377600 0.13891974

0 g ′ 6.69358458×10−10 2.86086621×10−4 0.30466100 2.16127598 4.36297269
100 g ′ −3.77606835×10−11 6.66133814×10−15 0.02559400 8.41711631 0.16059013

0 terminator 2.61920485×10−11 1.66644476×10−13 0.11439490 2.10694079 2.73260919
100 terminator −4.02566869×10−13 5.06261699×10−14 0.09017801 4.79674217 0.05886014

Table A.7: Error associated with the integration and propagation of the state transition matrix for different periodic orbits in the AHP
model with eclipses. Initial conditions are presented in non-dimensional coordinates, and z0 is zero for all orbits except for the

terminator family, where z0 = 0.19962821 for β= 0 and z0 = 0.03303122 for β= 100.

β Family 1−det(ΦM ) 1−|λi | x0 [-] ẏ0 [-] t [-]

0 a −1.30707001×10−10 3.44643164×10−5 0.38036000 1.74472173 3.39128018
100 a 2.26441676×10−9 6.081918×10−2 0.0303541 7.71115245 0.14154648

0 g ′ 1.046029929×10−11 0.04110205 0.03724100 6.68391892 0.16894245
100 g ′ −5.18727283×10−11 2.67394995×10−11 0.07491600 3.23359776 0.19327453

0 terminator 1.43824952×10−11 6.70574706×10−14 0.51349110 0.88923937 3.06736742
100 terminator −1.756482754×10−9 1.37667655×10−13 0.09017801 1.11840638 0.18901436

the stability indices of these families can be seen in Table ??, in Section A.3, where the differential correction
algorithm is verified. Figures A.6 and A.7 present a qualitative comparison with the work presented by Heńon
in [27] and by García Yárnoz et al. in [29]. Note also that in [27], family a continues for negative values of
energy, which are not analyzed in the work for this thesis. Also, in [27], the stability index is referenced as a and
is equal to 1

2 ki ; Hénon plots only one of the stability indices in his work. We show also only one of the stability
indices from [29] since the other is equal to two.

A.3. Differential correction algorithm

Finally, we analyze operation (3), which refers to the single-shooting differential correction algorithm imple-
mented to find periodic orbits. In order to verify this operation, we analyze the magnitudes of the correction
applied to each iteration of the algorithm, to verify that it asymptotically leads to zero. From this we check the
position error after a period of a periodic orbit obtained with the algorithm. Finally, we compare the results
obtained for the initial conditions of periodic orbits with the values found in [27, 48] for the AHP model.

Figure A.8 shows an example of the magnitudes of the implemented corrections per iteration, by the algo-
rithm, to an initial guess that is close enough to the solution 1.

1The correct convergence of single-shooting differential correction algorithm depends on how close to the actual solution the first guess
is [54]. The values for this error depend on the orbits, their stability, and model considered, and as such as not detailed here.
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Figure A.6: Comparison of the stability index of families of periodic orbits a and f from the AHP model and from source [27] for β= 0 The
x-axis display the Jacobi constant, represented by Γ in [27]. (a) Stability indices of orbit family a in AHP model; (b) stability index of orbit

family a from source [27]; (c) stability indices of orbit family f in AHP model; (d) stability index of orbit family f from source [27].

Tables A.8 to A.11 show the position error after one period of different orbits of the orbit families a and
g’ obtained by the differential corrector algorithm for the different models. We can see that for a tolerance
of 10−9, i.e., the algorithm deems a solution has converged when the magnitude of the correction is smaller
than 10−9, the largest position errors between the initial and final states are in the order of millimeter. Consid-
ering the position magnitudes reach the orders of 104 m, a position error 107 orders of magnitude smaller is
deemed acceptable. Moreover, we see these errors are largest when considering the full model, which includes
the gravity and eclipse models. This is again due to the fact that ode45 must take more steps for the "more
demanding dynamics" and thus the integration error accumulates, becoming larger. The tables thus present
not only the error relative to the differential corrector algorithm but also the error inherent to the integration

of the state vector by MATLAB®, complementing the verification undertaken in Section A.A.1.
As a final step, in Tables ?? and ?? we compare the results of the algorithm with results found in literature, so

as to further verify differential corrector. In Table ?? we include also the values for the stability index of some of
the periodic families of orbits, so as to complete the verification done in Section A.2. From these tables we can
see that the values for the initial conditions (and stability indices) of these orbits match with small errors. This
is particularly true for Table ??, where, since we consider only planar orbits, the single-shooting differential
correction algorithm varies only the initial velocity in the y direction to correct for the periodic orbit. The small
differences between the results of the differential corrector and those from [27] may originate from a variety of
different places: the use of different integrators, the use of different algorithms for finding periodic orbits and
different tolerances, the precision of the machine, among others. Nonetheless, the closeness in results verifies
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Figure A.7: Comparison of the stability index from family of periodic orbits g’ from the AHP model and from source [29] for β= 30. The
x-axis display the ratio between the initial x coordinate of the orbit and the x coordinate for the L2 point. (a) Stability of orbit family g’ in

AHP model; (b) stability of orbit family g’ from source [29].

0 0.2 0.4 0.6 0.8 1 1.2

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(a)

-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(b)

-0.05 0 0.05 0.1 0.15

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(c)

-0.05 0 0.05 0.1 0.15

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(d)

-0.05 0 0.05 0.1 0.15

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(e)

1 1.5 2 2.5 3 3.5 4 4.5 5

10-10

10-8

10-6

10-4

10-2

100

(f)

Figure A.8: Iterative process of the single-shooting differential corrector for an orbit of family a with β= 30. Figures (a)-(e) show the
iteratively corrected orbit; figure (f) shows the magnitude of the correction at each iteration. Note that the orbit is corrected for half a

period only.

the correct implementation of the algorithm. The results in Table A.13 differ slightly more; this may occur
because we have two free-variables in this case, z0 and ẏ0, which may cause the algorithm to converge on a
slightly different solution. Also, the above explanations, related with the difference in integrators, tolerances,
among others, still apply.
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Table A.8: Position error after one period in the AHP model for families of periodic orbits a and g’. Initial conditions are presented in
non-dimensional coordinates, and y0, z0, ẋ0, ż0 = 0.

β Family ∆r [m] x0 [-] ẏ0 [-] T [-]

0 a 1.53916654×10−6 0.24869900 2.58416552 3.89461730
30 a 2.06054739×10−6 0.05132600 5.92567848 0.69682678

200 a 3.01033402×10−8 0.0172700 10.41283556 0.08002881
0 g ′ 1.76780447×10−4 0.11622500 4.09267668 6.91424001

30 g ′ 2.61511782×10−8 0.08433387 4.14668673 0.43251929
200 g ′ 1.42991770×10−4 0.02894000 7.43861772 0.10109334

Table A.9: Position error after one period in the AHP model with the J2 and J4 gravity perturbations for the families of periodic orbits a
and g’. Initial conditions are presented in non-dimensional coordinates, and y0, z0, ẋ0, ż0 = 0.

β Family ∆r [m] x0 [-] ẏ0 [-] T [-]

0 a 1.18579721×10−5 0.33092200 2.03074970 3.53554695
30 a 2.00834311×10−9 0.05132600 5.92581163 0.34841633

200 a 8.39258638×10−8 0.0231000 8.76492734 0.0849180
0 g ′ 6.83436276×10−4 0.11622500 4.09268975 6.91430612

30 g ′ 2.24528922×10−8 0.08433387 4.14674659 0.43252583
200 g ′ 2.28743164×10−5 0.02894000 7.43954805 0.10112139

Table A.10: Position error after one period in the AHP model with eclipses for families of periodic orbits a and g’. Initial conditions are
presented in non-dimensional coordinates, and y0, z0, ẋ0, ż0 = 0.

β Family ∆r [m] x0 [-] ẏ0 [-] T [-]

30 a 1.66533962×10−3 0.03469471 7.41480793 0.32595655
200 a 3.78375713×10−4 0.016424084 10.72807973 0.07958770
30 g ′ 4.07500195×10−7 0.01247244 12.56243852 0.37428648

200 g ′ 2.09500178×10−4 0.02744236 7.76227102 0.10104096

Table A.11: Position error after one period in the full model (with eclipses and gravity perturbations), for families of periodic orbits a and
g’. Initial conditions are presented in non-dimensional coordinates, and y0, z0, ẋ0, ż0 = 0.

β Family ∆r [m] x0 [-] ẏ0 [-] T [-]

30 a 1.84303435×10−3 0.04329009 6.55417338 0.33808245
200 a 3.85548551×10−4 0.017669748 10.29884369 0.08067282
30 g ′ 1.07667649×10−4 0.04458246 6.37610978 0.39944588

200 g ′ 3.25872597×10−4 0.01329505 11.92798507 0.09368297
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Table A.12: Comparison between results found by the differential corrector and those in [27], for β= 0, for families of periodic orbits a, g’,
and f. Initial conditions are presented in non-dimensional coordinates, and y0, z0, ẋ0, ż0 = 0.

Fam. x0 x∗
0 ( [27]) C C∗ ( [27]) T

2
T ∗
2 ( [27]) 1

2 k 1
2 k∗ ( [27])

a 0.62698000 0.62698 4.19999870 4.2 1.52566014 1.52566 948.8629 948.9
a 0.5802000 0.58020 4.00001980 4 1.54114889 1.54115 862.3554 862.3
a 0.4958000 0.4958 3.50000724 3.5 1.58658735 1.58659 671.0336 671.0
a 0.6269800 0.30114 2.00001660 2 1.82236569 1.82237 281.3745 281.4
a 0.1879700 0.18797 0.99998274 1 2.16320943 2.16320 142.1867 142.2
f −0.1477900 −0.14779 6.00007789 6 0.16968333 0.16969 0.94014229 0.9401
f −0.1716900 −0.17169 4.99987602 5 0.21011250 0.21011 0.92210477 0.9084
f −0.2507100 −0.25071 2.99997164 3 0.35696220 0.35696 0.74425013 0.7443
g ′ 0.4808000 0.48080 3.49998119 3.5 1.78840908 1.78840 −152.5375 −152.5
g ′ 0.4105200 0.41052 2.99996403 3 1.91345170 1.91344 −185.5729 −185.6
g ′ 0.3455500 0.34555 2.50003146 2.5 2.06129717 2.06131 −201.3952 −201.4
g ′ 0.1677800 0.16778 0.99996663 1 2.90438219 2.90435 −232.6846 −232.7

Table A.13: Comparison between results found by the differential corrector and those in [48], for β= 33. Initial conditions are presented
in non-dimensional coordinates, and y0, ẋ0, ż0 = 0.

x0 x∗
0 ( [48]) z0 z∗

0 ( [48]) ẏ0 ẏ∗
0 [48] T T ( [48])

0.1276804 0.1276804 0.0849533 0.0849524 1.4457657 1.4457752 0.393074 0.392906
−0.1061893 −0.1061893 0.1106582 0.1106481 0.8425931 0.8425277 0.382755 0.382064
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