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Abstract

In today’s society, claims are everywhere, in the on-
line and offline world. Fact-checking models can
check these claims and predict if a claim is true
or false, but how can these models be checked?
Post-hoc XAI feature attribution methods can be
used for this. These methods give scores indicat-
ing the influence of the individual tokens on the
model’s decision-making. In our research, we eval-
uate three popular feature attribution methods in
the context of fact-checking: LIME, Kernel SHAP,
and Integrated Gradients. We used the NLP archi-
tecture ExPred as a fact-checking model in our re-
search. The feature attribution methods were eval-
uated using a human-grounded and pseudo ground
truth evaluation. The results from these evalua-
tions indicate that Integrated Gradients enables hu-
mans to form an opinion better and performs better
in our pseudo ground truth evaluation. A poten-
tial explanation is that the iterations should be in-
creased for LIME and Kernel SHAP. Our findings
suggest that Integrated Gradients performs better in
our study. Still, more research for other tasks and
models would be beneficial to ensure that these re-
sults apply to other cases.

1 Introduction
Deep learning models have been successfully used for vari-
ous Natural Language Processing (NLP) tasks in recent years,
but these models are often “black boxes,” making it hard to
demystify them [1]. One of these models is the language rep-
resentation model: BERT [2]. BERT can be finetuned and
used for diverse purposes, such as for the NLP task of senti-
ment analysis or question answering [2]. A disadvantage of
BERT is that it can be seen as opaque due to a large number
of parameters, making it a so-called “black box” [1]. The rise
of “black box” models, like BERT, leads to interpretability
problems [1]. This clashes with the GDPR Recital 71, which
says there is a right: “to obtain an explanation of the deci-
sion reached” [3, Recital 71]. Therefore, transparency in the
decision-making of these models is of great importance.

So the advent of these NLP models comes with a new
problem, why does the model make the decisions it does?
Explainable Artificial Intelligence (XAI) methods endeavor
to tackle this problem by explaining what happens in these
“black boxes” [1]. One of these XAI methods is the post-
hoc feature attribution method, seen in tools like LIME [4],
Kernel SHAP [5], and Integrated Gradients [6]. Feature at-
tribution methods can be applied to models that work with,
for example, images, tabular data, and text. For text, they
give scores to the separate words, tokens, in the input [7].
Feature attribution methods can provide insight into the im-
portance of each token for the classification, which can show
if a vital word is missing in the decision-making [7]. Fea-
ture attribution methods used for NLP tasks provide scores
for individual tokens, indicating their influence on the clas-
sification of an instance [7]. Next to post-hoc XAI methods,

there is also the interpretable-by-design method, like the NLP
architecture: ExPred [8]. ExPred can be used for several tasks
after being trained on a dataset [9]. Interpretable-by-design
methods do not only give the classification, but additionally,
an explanation [9].

A field in NLP where an explanation is needed is fact-
checking. In the last few years, fact and fiction became harder
to distinguish, for instance, during the Brexit campaign [10,
pp. 1-11]. One may argue that we have entered an era of
post-truth [10, pp. 1-11]. ExPred can help solve this prob-
lem; it can be used for fact-checking after training it with a
dataset such as the Fact Extraction and VERification dataset
(FEVER) [9], [11]. Fact-checking tools can help decide if a
claim is accurate, but their decisions must be explainable.

As stated earlier, there are several feature attribution meth-
ods, and currently, there is a lack of understanding of how
these tools compare to each other in the context of fact-
checking models. Therefore this paper will investigate the
research question:

RQ How do feature attribution methods for Explainable
Artificial Intelligence (XAI) compare with each other
in the context of fact-checking models using ExPred
[9]?

This research question (RQ) can be split up into two subques-
tions, these are:

SQ1 Which of the three feature attribution methods (LIME,
Kernel SHAP, and Integrated Gradients) outperforms
the rest looking at a pseudo ground truth evaluation?

SQ2 Which of the three feature attribution methods (LIME,
Kernel SHAP, and Integrated Gradients) outperforms
the rest looking at a human-grounded evaluation?

The contributions of our work are, in short:
• The results from our pseudo ground truth evaluation

(SQ1) show that the feature attribution method Inte-
grated Gradients gives proportionally higher scores to
the tokens compared to the pseudo ground truth than
LIME and Kernel SHAP, and there seems to be no con-
sensus in explanations among the three feature attribu-
tion methods: LIME, Kernel SHAP, and Integrated Gra-
dients.

• The results from our user study (SQ2) indicate that the
method Integrated Gradients enables users to form an
opinion better than LIME and Kernel SHAP.

For reproducibility, the code with the implementation
for the feature attribution methods and how to eval-
uate them are available at https://github.com/Herbje/
Evaluating-Feature-Attribution-Methods.

2 Problem Description
Feature attribution methods can be used to explain a decision
made by a model [1]. They use a post-hoc approach [1]. For
post-hoc approaches, the model is already trained, and post-
hoc methods try to make this model interpretable [9], [12].
According to Zhang, Rudra, and Anand [9], the developer
can avoid making the trade-off between performance and in-
terpretability when using a post-hoc method.

https://github.com/Herbje/Evaluating-Feature-Attribution-Methods
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However, the question arises if these feature attribution
methods give the correct explanation when demystifying a
model and how these feature attribution methods compare
with each other (see RQ). The problem of not having a clear
ground truth makes evaluating feature attribution methods
hard, and complicated [7], [9]. Humans are often used to as-
sess these methods, which leads to a human-grounded evalu-
ation [1]. Here interpretable-by-design models, like ExPred,
can offer a solution [9]. When an interpretable-by-design
model gives its prediction, it also provides an explanation
for this decision together with it [9]. Rudin [12] says that
these explanations are “faithful to what the model actually
computes,” which is better, in her opinion, than post-hoc ap-
proaches.

Therefore in our research, we use the explanations from
ExPred, in our case, a trained interpretable-by-design fact-
checking model, as a pseudo ground truth. This makes a
pseudo ground truth evaluation possible (see SQ1). The in-
put for this pseudo ground truth evaluation is the explana-
tions from the three feature attribution methods (LIME, Ker-
nel SHAP, and Integrated Gradients) and the explanations
from ExPred. The output for this pseudo ground truth eval-
uation is the similarity between the methods’ explanations
themselves and with explanations from ExPred. Next to the
pseudo ground truth evaluation, we conducted a user study
for a human-grounded evaluation (see SQ2). The explana-
tions from the three feature attribution methods (LIME, Ker-
nel SHAP, and Integrated Gradients) were presented to the
participants of the study (the input). The outcome of this user
study was a set of explanations scored on the understandabil-
ity of the explanation, insightfulness of the explanation, and
if the user would rely on the model.

3 Related Work
The current literature on the topic investigated in this pa-
per can be divided into feature attribution methods, machine
learning for fact-checking, XAI for fact-checking, and the
evaluation of feature attribution methods. Firstly, subsection
3.1 will describe feature attribution methods in more detail.
Then, subsection 3.2 will discuss research on XAI, specifi-
cally in the context of fact-checking. Subsection 3.3 describes
how machine learning and fact-checking relate to each other.
In the last subsection 3.4, we describe in further detail re-
search on how feature attribution methods can be evaluated
and the results of previous research.

3.1 Feature Attribution Methods
Feature attribution methods are used in the field of XAI to de-
mystify deep learning models. They do this by giving scores
to the attributes based on the individual attributes’ contribu-
tion to the prediction [7]. There are different types of feature
attribution methods. Firstly, a feature attribution method can
be model-agnostic or model-specific. Model-agnostic feature
attribution methods treat the model as a “black box” and only
look at the in- and output [1]. Model-specific feature attri-
bution methods do the opposite; they look at the internal pa-
rameters of a model for their explanation [1]. Lastly, feature
attribution methods can be globally or locally faithful. Glob-
ally faithful means the feature attribution method can explain

the behavior of a model on all instances in the dataset [1]. On
the contrary, locally faithful say something about a specific
instance [4]. The feature attribution methods we chose for
our research are described in more detail in subsection 4.1.

3.2 Fact-checking and Machine Learning
With the rise of misinformation, there is also a rise in fact-
checking tools [13]. According to Zeng, Abumansour, and
Zubiaga [13], these tools help to keep up with the fast-moving
internet, because doing this by hand would take too long.
There are several datasets to train these fact-checking mod-
els [13], for instance, FEVER [14], SCIFACT [15], and UKP
Snopes [16]. FEVER [14], and SCIFACT [15] retrieve evi-
dence, and with this evidence, they validate the claim [13].
UKP Snopes [16] does this differently. It first retrieves docu-
ments related to the claim, extracts sentences of importance,
stances these sentences, and then validates the claim with this
evidence [16].

SCIFACT [15], and UKP Snopes [16] are both relatively
small. SCIFACT is an expert-annotated dataset and has 1,409
claims [15]. It was made during the COVID-19 pandemic
to check claims on COVID-19 [15]. UKP Snopes has 6,422
claims, and to build the corpus, they used information from
places on the web where many false claims are present like
social media [16]. A more detailed description of FEVER
can be found in subsection 5.2.

3.3 Fact-checking and XAI
Literature on XAI in fact-checking is currently scarce and fo-
cuses mainly on presentation methods rather than on what
a model does. Lim and Perrault [17] and Linder, Mohseni,
Yang, et al. [18] did an XAI study in the context of fact-
checking. Lim and Perrault [17] conducted a user study with
22 participants. They showed these participants the explana-
tions from an XAI method in five different ways. Their results
showed that explanations with more text were preferred [17].
Linder, Mohseni, Yang, et al. [18] found similar results in
their research. On the other hand, they noticed a clear trade-
off when participants were given more information; it took a
lot more time to assess explanations [18].

To conclude, research on XAI in the context of fact-
checking is mainly focused on presentation methods. Lim
and Perrault [17] and Linder, Mohseni, Yang, et al. [18]
looked at what the best way was to present an explanation
to users; what the model does is not essential. This current
research shows that more text helps participants with assess-
ing but also increases the time needed for the assessment [17],
[18]. The gap in the literature about looking at a way to eval-
uate XAI methods using a ground truth shows where our re-
search can contribute to this research field.

3.4 Evaluating Feature Attribution Methods
The evaluation of feature attribution methods can be split in
two: with or without humans [4], [7], [19]. When not using
humans, the main struggle when evaluating feature attribution
methods is the lack of a ground truth; therefore, this is often
‘created’ in research [7].

Zhou, Booth, Ribeiro, et al. [7] solved the problem of
a lacking ground truth by modifying the dataset they used.



They advocate that their results show that using a rationale
model, which is a model with a selector and a predictor part,
does not guarantee that the results from the selector help un-
derstand the model [7]. Something similar was done by Yang
and Kim [20]. They developed a framework called BAM, in-
cluding a unique BAM dataset. Next to that, they included
models and metrics in their framework [20]. Both Zhou,
Booth, Ribeiro, et al. [7] and Yang and Kim [20] focused
on image datasets.

Another way of evaluating feature attribution methods is
with a human-grounded truth. An example of research with
humans is the research from Dieber and Kirrane [21]. They
did interviews with six people, and they asked questions
about the usability of LIME. The results showed that the re-
sults of LIME were hard to understand, but a machine learn-
ing background helped [21]. The authors of LIME held a
human study, too, and participants had a lot less trust in the
‘poor’ models after seeing the explanations from LIME [4].
According to Zhou, Booth, Ribeiro, et al. [7], using rationale
annotation is a bad idea because a human and a model can
select the same information but still handle this information
differently. An example of research that did this is Bastings,
Aziz, and Titov [22], in which they used human rationale an-
notation to evaluate their rationale model.

Our research includes a pseudo ground truth and a human-
grounded evaluation to ensure that both types are investi-
gated. Both offer different capabilities, so doing both will
improve the comparison of the feature attribution methods.

4 Methodology
In this section, we will describe the methodology in three sub-
sections. First, in subsection 4.1, the selected feature attribu-
tion methods will be mentioned and described briefly. Then
in subsection 4.2, the chosen model will be discussed. The
last subsection 4.3 entails a description of the evaluation.

4.1 Selected Feature Attribution Methods
The following three feature attribution methods were chosen
for the comparison:

• LIME [4] is a feature attribution method used for the
comparison. It is locally faithful and model-agnostic, re-
flected in its name: “Local Interpretable Model-agnostic
Explanations” [4]. It is perturbation-based, meaning in
the case of textual input, it will change the input by re-
moving or covering tokens and looking at the potential
change in output [4]. It will try to minimize the weighted
square loss, L(f, g, πx), to make sure it meets its goal of
interpretability and local fidelity [4]; see the equations 1
and 2 below:

ξ(x) = argmax
g∈G

L(f, g, πx) + Ω(g) (1)

L(f, g, πx) =
∑

z,z′∈ –Z

(f(z)− g(z
′
))2 (2)

as seen in [4].

• Kernel SHAP [5] is a locally faithful and model-
agnostic method based on Shapley value, a game the-
ory. Shapley values are used to determine the contribu-
tion of individual members to a game’s win, and Kernel
SHAP is a combination of LIME and Shapley values [5].
Computing Shapley values takes a lot of time; therefore,
combining it with LIME makes it possible to approxi-
mate Shapley values and reduce the time [5]. Equation
2 is adapted to equation 3:

L(f, g, πx) =
∑
z′∈ –Z

[f(h−1
x (z

′
))− g(z

′
)]2 πx′ (z

′
) (3)

as seen in [5].
• Integrated Gradients [6] is a gradient-based method

based on two axioms: Sensitivity and Implementation
Invariance. The method approximates “the integral of
integrated gradients” [6]. Sundararajan, Taly, and Yan
[6] do this by summing the gradients from several points
close to the baseline (benchmark). This benchmark
needs to be selected before calculating the gradients; of-
ten, this baseline consists of all-zeros [6]. Integrated
Gradients is model-specific because it needs the model’s
internal parameters to compute the gradients [6]. It calls
the gradient operation several times [6]. For approximat-
ing “the integral of integrated gradients,” it uses equation
4:

IGapprox
i (x) ::=

(xi − x
′

i) ∗
∑m

k=1
∂F (x

′
+ k

m∗(x−x
′
))

∂xi
∗ 1

m

(4)

as seen in [6].

4.2 Model
The model selected for our research is ExPred. ExPred is an
NLP architecture that can be used for fact-checking. In our
case, it was trained with the FEVER dataset from ERASER
benchmark [8], [14], [23]. ExPred is an interpretable-by-
design model; it gives an explanation with it is classification
[9]. In this way, it differs from post-hoc methods, which get
their explanation after the model was trained [1]. To make it
an interpretable-by-design model, the authors made ExPred
entail two parts: a selector/explanation and a predictor part;
see Figure 1. The input in the model first gets mapped to an
“explanation mask” by the explanation generation part [9].
Then, this mask gets mapped to a prediction by the predic-
tion network [9].

The explanation generation network uses a shared encoder
architecture, where it uses BERT as an encoder [9], see Figure
1. The choice for BERT leads to a maximum length of 512
tokens [9]. There are two decoders in the explanation genera-
tion network, the Auxiliary Task Prediction and the Extractive
Explanation Generation [9]. The accuracy of the Auxiliary
Task Prediction and the Extractive Explanation Generation
are both parts of the loss function, which is used for train-
ing the explanation generation network [9]. Only the Extrac-
tive Explanation Generation is part of the output of the entire
model [9], which Figure 1 visualizes. The Extractive Expla-
nation Generation output consists of boolean values, indicat-
ing if the word was essential or not according to ExPred [9].



Figure 1: A visualization of ExPred, with the Explanation Genera-
tion on the left and the Task Prediction on the right [9]. The green
box on the left is the shared encoder [9].

This output is used in our research to compare with the results
of the post-hoc feature attribution methods.

The prediction network gets a masked version of the input,
where the wildcard ‘.’ is used to mask tokens [9]. For the
network, BERT was also used in the second part of the model
[9]. The result of the Task Prediction is part of the final re-
sult of the model combined with the Extractive Explanation
Generation [9], see Figure 1.

4.3 Evaluation
To answer the research question (RQ), we chose to compare
three feature attribution methods that are popular: LIME [4],
Kernel SHAP [5], and Integrated Gradients [6]. These were
evaluated in two ways: automatic (subsection 4.3.1) and man-
ual (subsection 4.3.2).

4.3.1 Automatic Comparison
The use of ExPred enabled us to compare its explanation with
the results from the feature attribution methods [7]. The ex-
planations from ExPred were used as a pseudo ground truth.
The feature attribution methods’ top-n highest-scoring tokens
were compared with the ExPreds explanation. Next to this
comparison, the feature attribution methods were compared
with each other by translating scores to ranks. The rank cor-
relations [24] between the explanations of the methods were
computed. The results of this automated pseudo ground truth
evaluation, with ExPred and each other, gave us similarity
scores (for SQ1).

4.3.2 Manual Comparison
On the other hand, more than the automatic evaluation would
be needed to compare the feature attribution methods thor-
oughly. Hence we conducted a small user study in the form
of a survey (for SQ2). This user study entailed two parts: (1)
questions about individual explanations from the feature at-
tribution methods and (2) ranking the three feature attribution
methods. In the survey, these explanations were combina-
tions of the claim, the colorized context, and the prediction
(see Figure 2). The survey questions’ focus was not on how
the explanation was presented but on the information in this
explanation. The first part’s questions were about the under-
standability of the explanation, the insightfulness of why the
prediction was made, and if the participant would rely on the

Figure 2: The figure shows how the explanations were presented in
the survey (the user study). The claim and prediction are offered at
the top. At the bottom, a heatmap on the context is presented.

model in the future. These were 5-point Likert scale ques-
tions; see Figure 7 in Appendix A. In the second part, three
explanations, from every method one, needed to be ranked on
insightfulness; see Figure 8 in Appendix A.

5 Experimental Setup
The experimental setup consists of three main parts. First,
we will discuss how the feature attribution methods from
the Captum library1 were implemented (subsection 5.1), fol-
lowed by the dataset used (subsection 5.2). Lastly, the setup
and the decisions made for the evaluation are described (sub-
section 5.3).

5.1 Implementation
Before the feature attribution methods could be evaluated,
they had to be implemented. For this implementation, the
Captum library1 was used with Python version 3.8.

For the implementation of the perturbation-based feature
attribution methods, LIME [4] and Kernel SHAP [5], we im-
plemented a wrapper to ensure the in- and output from Cap-
tum1 and ExPred were compatible [9]. Additionally, we used
the wildcard ‘.’ from ExPred for the padding or masking of
the words by the feature attribution methods instead of the
pad token that Captum1 uses [9]. The claim remained un-
touched in the masking by feature attribution method. Only
the context went into the feature attribution method. There-
fore one input of ExPred changed during the perturbations.

To implement the gradient-based feature attribution
method, Integrated Gradients [6], only the predictor part of
ExPred was used by the method [9]. We used the output of the
selector part of ExPred as an input for the Integrated Gradi-
ents. In addition, the maximum length of 512 that ExPred had
for the input of the predictor part was taken into account [9].
Two versions were implemented for Integrated Gradients: (1)
the claim and context as input, and (2) only the context as
input. The latter was implemented for comparison with the
perturbation-based methods.

After implementing the feature attribution methods using
Captum1, we implemented a script to run the feature attribu-
tion methods on multiple instances automatically and in par-
allel. LIME and Kernel SHAP had 300 iterations for each
instance, and Integrated Gradients had 50.

1https://github.com/pytorch/captum

https://github.com/pytorch/captum


5.2 The Dataset
The authors of ExPred trained their model with the FEVER
dataset from ERASER benchmark [8], [14], [23]; therefore,
we used this dataset as well. FEVER consists of claims and
contexts to train a model and is a ‘big’ dataset compared
to others; see [13]. It uses Wikipedia pages for its context
[14]. For every claim in FEVER, there are three options:
(1) supported, (2) refuted, and (3) not enough info. In to-
tal, there are 185,445 claims, according to Thorne, Vlachos,
Christodoulopoulos, et al. [14]. A problem with FEVER
is that it is pretty unbalanced according to Zeng, Abuman-
sour, and Zubiaga [13]. In the training set, there are around
80,000 claims labeled true, 30,000 claims labeled false, and
35,000 claims labeled not enough information [14]. For the
ERASER benchmark, only the supported and refuted claims
are kept in the dataset [23].

In our research, 100 claims of the test set of the ERASER
benchmark FEVER dataset [23] were run, and 100 claims of
the train set. For the test set, the division was 35 supported
claims and 65 refuted claims. For the train set, the division
was 67 supported claims and 33 refuted claims.

5.3 Pseudo Ground Truth and Human-grounded
Evaluation

The evaluation consisted of two parts pseudo ground truth
(SQ1) and human-grounded (SQ2). For the pseudo ground
truth evaluation (SQ1), we compared the results from LIME
[4], Kernel SHAP [5], and Integrated Gradients [6] with each
other and with the explanation from ExPred [9]. We used
Kendall’s Tau [24] for the comparison between the feature
attribution methods and Jaccard distance (dissimilarity) [25]
for the comparison with ExPreds explanation. Both were im-
plemented using the SciPy library2. For the comparison be-
tween the feature attribution methods, the lengths of the lists
with the tokens were limited to the size of the Integrated Gra-
dients result when being compared to Integrated Gradients.
For the comparison with ExPred, all methods were limited to
the length of Integrated Gradients.

For the human-grounded evaluation (SQ2), we conducted
a small user study with 19 participants in the Netherlands.
The participants were found through convenience sampling;
our personal networks were used. 19 participants reached the
end of the survey, where 17 out of 19 answered all questions.
The participants were students from the Technical University
of Delft or employees from ICT companies. The participants
were selected on having a technical background and under-
standing of the English language. They had to fill in an on-
line survey, which consisted of twenty questions: fifteen were
about rating the explanations from feature attribution meth-
ods, and five were about ranking the explanations. Twenty
different instances from the test dataset were used for these
twenty questions.

6 Results
In this section, we will present the results found from the
pseudo ground truth and human-grounded evaluation. In sub-
section 6.1, the pseudo ground truth evaluation results will

2https://scipy.org
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Figure 3: Jaccard Distance between the feature attribution methods
percentage of selected highest scoring tokens and the explanation
from ExPred with 100 instances from the test set. Close to 0 means
similar, and close to 1 means dissimilar.

Compared methods Kendall’s Tau p-value

LIME/Kernel SHAP 0.0545 0.3851
LIME/IG 0.0444 0.3983

Kernel SHAP/IG 0.0207 0.3661

Table 1: Kendall’s Tau for two feature attribution methods looks
at 100 instances from the test set. For Kendall’s Tau: close to 1
means the two methods are similar, and -1 means the two methods
are dissimilar.

be discussed, and the discussion of these results is separated
into the test and train set. In the following subsection 6.2, the
results from the human-grounded evaluation are described in
the two parts of the user study: the rating and the ranking of
the explanations of the feature attribution methods.

6.1 Pseudo Ground Truth Results
6.1.1 Test Set
The pseudo ground truth evaluation (part of SQ1) for the test
set, data is divided into two parts the comparison between the
methods and the comparison with ExPred, see Table 1 and
Figure 3.

From the results of Kendall’s Tau, it seems that all methods
are a little bit similar to each other. Close to -1 would mean
the methods are dissimilar, and close to 1 that the methods are
similar. Kendall’s Tau for LIME and Kernel SHAP is 0.0545,
for LIME and Integrated Gradients 0.0444, and Kernel SHAP
and Integrated Gradients 0.0207 (see Table 1). Meanwhile,
these Kendall’s Tau’s results are not statistically significant
(p = 0.385, p = 0.398, p = 0.366, respectively) because all
p-values are above 0.05. Therefore, we cannot reject the null
hypothesis of an absence of association.

The results from Jaccard Distance, when comparing the in-
dividual methods with ExPreds explanations, show that none
of the methods is very similar to ExPreds explanations. In
Figure 3, the Jaccard Distance over the percentage of selected
tokens is plotted. When this percentage increases, the Jaccard

https://scipy.org
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Figure 4: Jaccard Distance between the feature attribution methods
percentage of selected highest scoring tokens and the explanation
from ExPred with 100 instances from the train set. Close to 0 means
similar, and close to 1 means dissimilar.

Compared methods Kendall’s Tau p-value

LIME/Kernel SHAP 0.0204 0.4556
LIME/IG 0.0281 0.4103

Kernel SHAP/IG 0.0101 0.5030

Table 2: Kendall’s Tau for two feature attribution methods looks
at 100 instances from the train set. For Kendall’s Tau: close to 1
means the two methods are similar, and -1 means the two methods
are dissimilar.

Distance decreases, and more tokens are selected, so more
overlap with ExPreds explanations, but it is never close to
0 (very similar). It steadily decreases for LIME and Kernel
SHAP; this is not the case for Integrated Gradients. Integrated
Gradients decreases faster at first (become more similar to
ExPreds explanation) and then stagnate.

In short for the test set, the results from Kendall’s Tau for
comparing the methods without ExPred for the test set show
that they are a little bit similar but this result is not statistically
significant. Therefore, we cannot reject the null hypothesis of
an absence of association. The comparison with ExPred for
the test set shows that the method Integrated Gradients gives
proportionally higher scores to tokens in ExPreds explanation
than LIME and Kernel SHAP.

6.1.2 Train Set
The pseudo ground truth evaluation (part of SQ1) for the train
set, data consists of two parts: the comparison between the
methods and the comparison with ExPred, like with the test
set, see Table 2 and Figure 4.

The results from Kendall’s Tau seem to indicate that all
methods are a little bit similar. The Kendall’s Tau for LIME
and Kernel SHAP is 0.0204, for LIME and Integrated Gra-
dients 0.0281, and Kernel SHAP and Integrated Gradients
0.0101 (see Table 2). However, the results from Kendall’s
Tau are not statistically significant (p = 0.456, p = 0.410, p
= 0.503, respectively) because all p-values are above 0.05.
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Figure 5: The results of the rating of the explanations of the fea-
ture attribution methods on understandability, insightfulness, and
relying on the model. The y-axis is a 5-point Likert scale, ranging
from “1 - strongly disagree” to “5 - strongly agree”. In the boxes,
the crosses are the means, and the lines are the medians.

Therefore, we cannot reject the null hypothesis of an absence
of association.

The results from Jaccard Distance, for the comparison of
the individual methods with the explanation of ExPred, show
that none of the methods’ explanations is very similar to Ex-
Preds explanations. In Figure 4, the Jaccard Distance over the
percentage of selected tokens is plotted. The Jaccard Distance
decreases when the percentage of chosen tokens increases be-
cause there is more overlap with ExPreds explanation, but it
is never near 0 (very similar). It steadily decreases for LIME
and Kernel SHAP. For Integrated Gradients, the dissimilarity
decreases fast at the start and then stagnates, even increasing
slightly.

In summary for the train set, the result of the compari-
son without ExPred that the feature attribution methods are
a little bit similar to each other is not statistically significant,
according to Kendall’s Tau. Therefore the null hypothesis
of an absence of association cannot be rejected. The com-
parison with ExPred shows that the method Integrated Gradi-
ents gives proportionally higher scores than LIME and Kernel
SHAP to tokens in ExPreds explanation.

6.2 Human-grounded Results
6.2.1 Rating Part
In the rating section of the user study (part of SQ2), partici-
pants were asked to rate five explanations from all three fea-
ture attribution methods on a 5-point Likert scale (1 - strongly
disagree to 5 - strongly agree); see Figure 2 for how the ex-
planation was presented or the more detailed Figure 7 in Ap-
pendix A. They rated the explanation on if it was understand-
able, how much insight it gave, and if they would rely on the
model.

The results in Figure 5 show LIME and Kernel SHAP lie
close to each other with their results. The medians for both
are very similar for all three categories and close to “3 - nei-
ther agree or disagree”; see Figure 5. For Integrated Gra-
dients, the result is different; there is more variation among
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Figure 6: The results for the questions related to ranking the explanations of the feature attribution methods on how much insight they
gave. The x-axis is the ranking 1 up to 3, and the y-axis is the normalized count of the choice in percentages. Red = LIME; Purple = Kernel
SHAP; Blue = Integrated Gradients.

the ratings, see Figure 5. Additionally, the median in all cat-
egories is a lot higher. A potential explanation is the num-
ber of iterations for LIME and Kernel SHAP. The lengths of
the contexts differed for both, and the participants seemed to
have stronger opinions about more concise contexts; the col-
ors were more intense here.

To conclude, the results from Integrated Gradients have
more variation than LIME and Kernel SHAP. The median and
mean from Integrated Gradients are higher than LIME and
Kernel SHAP, see Figure 5.

6.2.2 Ranking Part
In the second part of the user study (part of SQ2), we wanted
to see if the participants preferred one of the feature attri-
bution methods when asked to rank them on how much in-
sight their explanations gave. They were asked five times to
rank the methods without knowing which; see Figure 8 in
Appendix A.

The results show Integrated Gradients three times as the
clear winner; it was ranked first for the first, third, and fourth
questions, see Figure 6. It had the most votes for the last
place for questions two and five. The second and fifth ques-
tions had a shorter context, indicating that the number of it-
erations (300) was not enough for contexts with more text,
which could explain the difference. The results of LIME and
Kernel SHAP for the ranking lie close to each other in most
of the questions, as shown in Figure 6.

Lastly, Integrated Gradients won three out of five times.
Besides this, the rankings results for LIME and Kernel SHAP
lay close to each other, and when the context was shorter, they
were ranked better.

7 Responsible Research
This section will discuss and reflect on the ethical aspects of
this research. In subsection 7.1, the ethical aspects of hu-
man participants are discussed. In the following subsection
7.2, the accessibility of feature attribution methods’ results
are discussed.

Due to the importance of reproducibility in research, the
code from the feature attribution methods and the eval-
uation is made available on GitHub, including the ex-
planation on how to run it: https://github.com/Herbje/
Evaluating-Feature-Attribution-Methods.

7.1 Human Participants
Our study involved human participants, which makes it essen-
tial for our research to be responsible. Our research falls un-
der an approval from the Human Resource Ethics Committee
of the Technical University of Delft. In the Code of Conduct,
responsibility is described as: “acknowledging the fact that a
researcher does not operate in isolation and hence taking into
consideration – within reasonable limits – the legitimate in-
terests of human and animal test subjects” [26]. Therefore we
took several measures to mitigate potential risks.

First, all survey responses in Qualtrics3 were anonymized
entirely; we stored no identifiable information. Additionally,
we did not ask for or store personal data from the participants.
We were not interested in looking at the differences between
humans, which made it unnecessary to ask questions about
age or gender, for example.

3https://www.qualtrics.com

https://github.com/Herbje/Evaluating-Feature-Attribution-Methods
https://github.com/Herbje/Evaluating-Feature-Attribution-Methods
https://www.qualtrics.com


Secondly, the participants were informed via a consent
form at the start of the survey. This consent form stated that
they could stop at any point during the survey by closing the
tab or window. Additionally, they were informed about the
risk of a data breach and what was done to minimize this risk
(anonymizing the data). They also needed to confirm they
were above 18 years old. Besides this, all respondents lived
in the Netherlands. The invitations were sent to both people
studying and working in the technical field to make the group
of participants a bit diverse and to prevent a bias (not only
students or people working in the technical field).

7.2 Color Blindness Accessibility
The Web Content Accessibility Guidelines [27, Success Cri-
terion 1.4.1] stresses the importance of the “use of color” for
accessibility. During the user study, we also got the feed-
back from some participants that the colors were hard to dis-
tinguish; see Figure 2 for an example. Color blindness is
quite common in the human population, especially among
men [28]. The most common color blindness is red-green
color blindness, which 8% of the Northern European men
have [28]. Red-green color blindness makes it hard to distin-
guish the difference between red and green due to the absence
of retinal photoreceptors for these colors [28].

The heatmaps in our experiment used the colors green and
red; see Figure 2. These colors seemed intuitive for posi-
tive and negative influence scores from the feature attribution
methods, but for the accessibility, these colors are a problem
[28]. Therefore to mitigate the issue of color blindness with
presenting feature attribution methods’ explanations, differ-
ent colors than red and green could be chosen in future re-
search. Wong [28] says that changing red to magenta helps
and changing green to turquoise. For future research, ma-
genta and turquoise could be used, and it can be tested if these
colors help people with color blindness.

8 Discussion
The goal of this research was to compare three post-hoc fea-
ture attribution methods in the context of fact-checking with
each other (RQ): LIME [4], Kernel SHAP [5], and Integrated
Gradients [6]. This comparison was made in two ways a
pseudo ground truth evaluation and a human-grounded eval-
uation. We used ExPred [9] as a fact-checking model for ap-
plying the feature attribution methods.

Our results for the pseudo ground truth evaluation with
ExPred (SQ1) show that Integrated Gradients performs a bit
better at the start when comparing to the explanations from
ExPred for the test and train set; see Figures 3 and 4. Before
10%, the dissimilarity to the explanation with ExPred drops
rapidly. LIME and Kernel SHAP decline as well but a lot
slower. On the other hand, at no point did the feature attribu-
tion methods have a low dissimilarity score with the explana-
tion from ExPred, as seen in Figures 3 and 4. Thus, Integrated
Gradients gives tokens that overlap with ExPreds explanation
proportionally higher scores than LIME and Kernel SHAP.

The results for the pseudo ground truth evaluation with-
out ExPred (SQ1) show that the explanations of the meth-
ods are a tiny bit similar to one another, but this result is not

significant; see Tables 1 and 2. Therefore it is not possible
to draw definite conclusions from these numbers. A bigger
dataset could potentially improve these results, but due to
time constraints, this was not possible.

The human-grounded evaluation (SQ2) results show that
overall the feature attribution methods helped to give some
insight into why the model made its decision, see Figure 5.
For Integrated Gradients, the ratings and rankings fluctuated
much more than for LIME or Kernel SHAP, and participants
agreed or disagreed more strongly. When looking at the ex-
planations presented to the participants, we noticed that the
explanations with the shorter contexts made it easier for par-
ticipants to form an opinion about the explanation. LIME
and Kernel SHAP had intenser colors in these cases. LIME
and Kernel SHAP also became more of a competition for In-
tegrated Gradients in these cases. The reason for this could
be the number of iterations (300) chosen for LIME and Ker-
nel SHAP. Potentially, it was not high enough for all claims
and contexts. This number of iterations was selected due to
constraints such as time and computational power; with 300
iterations, it took around half an hour to run a single instance.

For this research, we relied heavily on ExPred [9]. ExPred
does not obtain a 100% classification accuracy. Potential mis-
classifications or other problems in Expred could lead to a
mistake in our results. Additionally, in the comparison with
ExPreds explanation, we looked at the Extractive Explanation
Generation result [9]. The feature attribution methods looked
at the Task Prediction [9], see Figure 1. This means that if
ExPred handles its explanation wrongly in the prediction net-
work, the explanation would be less helpful [9]. Zhou, Booth,
Ribeiro, et al. [7] give the example of focusing a lot on “gram-
matical idiosyncrasy” instead of meaning in their paper. The
results of our research can not be generalized immediately to
all other models and tasks; the steps of this research need to
be conducted on other tasks and models.

9 Conclusions and Future Work
This research aimed to evaluate post-hoc feature attribution
methods in the context of fact-checking. Feature attribution
methods are part of XAI and give scores to tokens indicat-
ing their importance to the decision of a model [7]. For this
evaluation, three popular feature attribution methods were se-
lected: LIME [4], Kernel SHAP [5], and Integrated Gradients
[6]. Evaluating feature attribution methods is often a struggle
due to the lack of a ground truth. The NLP architecture Ex-
Pred [9] was used as the model after being trained with the
FEVER dataset from ERASER benchmark [8], [14], [23].
Due to that ExPred is an interpretable-by-design, its expla-
nations were used as a pseudo ground truth in our evaluation.
Additionally, we did a small user study for a human-grounded
evaluation.

The results of the pseudo ground truth evaluation (SQ1)
show that Integrated Gradients gives proportionally higher
scores to tokens that are in the explanation of ExPred and
that the three feature attribution methods show no consensus
in their explanations, see section 6. In the human-grounded
evaluation (SQ2), the participants seemed more opinionated
regarding the explanations from Integrated Gradients; the



scores the participants gave differed more per question. The
results from both evaluations (RQ) indicate that Integrated
Gradients performs better and enable a human to form an
opinion better. On the other hand, these results could also
mean that the number of iterations of LIME and Kernel SHAP
was too low for some instances.

For future research, it would be beneficial to look at other
models and tasks to see if similar results could be found there.
Additionally, more iterations and instances could be run, but
because of the time constraint, this was not possible in this
research.
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A Figures

Figure 7: An example of a question in the user study. In this part of the user study, the participant was asked to rate an explanation from a
feature attribution method.

Figure 8: An example of a question in the user study. In this part of the user study, the participant was asked to rank the explanations from
the feature attribution methods.
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