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Abstract—Recent advances in DNA data storage and racetrack
memory have attracted renewed attention towards deletion,
insertion and substitution correcting codes. Compared to codes
aimed at correcting either substitution errors or deletion and
insertion (indel) errors, the understanding of codes that correct
combinations of substitution and indel errors lags behind. In this
paper, we focus on the maximal size of q-ary t-indel s-substitution
correcting codes. In particular, our main contribution is a
Gilbert-Varshamov inspired lower bound on this size. Moreover,
we study the asymptotic behaviour of this bound.

Index Terms—Error correcting codes, Gilbert-Varshamov
bound, indels, substitutions.

I. INTRODUCTION

CODING techniques for correcting deletion, insertion and
substitution errors have attracted increasing attention

recently due to their applications in DNA data storage [1],
[2] and racetrack memory [3], [4]. Codes that correct either
substitution errors or deletion and insertion errors have been
extensively studied in literature. In contrast, the simultaneous
correction of combinations of these three error types is less
understood. A central problem is to determine the maximal
size of codes that correct combinations of deletion, insertion,
and substitution errors.

Classical error correcting codes aimed at correcting sub-
stitution errors have been well-studied for over 75 years [5].
A fundamental result in this area is the well-known Gilbert-
Varshamov bound [6], [7] which asserts the existence of a
q-ary s-substitution correcting code with codewords of length
n and with a code size of at least

qn∑2s
i=0

(
n
i

)
(q − 1)i

.

This statement was initially proven by Gilbert [6] for binary
codes, and later independently by Varshamov [7]. Subse-
quently, the bound has been improved and generalized in
various settings. An overview of these improvements in the
context of substitution correcting codes is given in [8].

In a seminal paper [9], Levenshtein initiated the study of
deletion and insertion (indel) correcting codes. He showed that
a code that is able to correct t deletions (or insertions) is able to
correct any t′ deletions and t′′ insertions, whenever t′+t′′ ≤ t.

In other words, a t-deletion (insertion) correcting code is also a
t-indel correcting code. This property shows the indifference
between correcting deletions and insertions, which warrants
the terminology of t-indel correcting codes. Inspired by the
Gilbert-Varshamov bound and the work of Tolhuizen [10], a
lower bound on the maximal size of t-indel correcting codes
was given in [11]. Multiple bounds that improve upon this
result were presented in [12] and [13].

In comparison with either substitution correcting codes or
indel correcting codes, non-asymptotic lower bounds on the
maximal cardinality of t-indel s-substitution correcting codes
have been studied to a lesser degree in literature. Several t-
indel s-substitution correcting codes have been constructed,
e.g. in [14], [15], which naturally imply non-asymptotic lower
bounds on the maximal size of these codes. In [9], Levenshtein
also showed two asymptotic bounds which imply that a
binary t-indel s-substitution correcting code of maximal size
has an asymptotic redundancy between (t + s) log2(n) and
2(t+s) log2(n)+o(log2(n)). Moreover, note that each (t+2s)-
indel correcting codes is also a t-indel s-substitution correcting
code, because a substitution can be seen as a deletion followed
by an insertion. Hence, lower bounds on the maximum size of
(t+2s)-indel correcting codes imply lower bounds for t-indel
s-substitution correcting codes as well.

The last observation that a (t + 2s)-indel correcting code
is also a t-indel s-substitution correcting code might raise
the preliminary question whether it is superfluous to consider
the correction of substitutions separately. However, there are
two arguments in favor of separating indel correction from
substitution correcting. First, it was recognized by Song et al.
[14] that (t + 2s)-indel correcting codes are not necessarily
optimal within the set of t-indel s-substitution correcting
codes in terms of redundancy1. Secondly, in applications
such as DNA data storage, the error rates of indels and
substitutions differ [2]. Therefore, it is sensible to bound the
number indels and substitutions by different parameters.

1For instance, the single-substitution correcting binary Hamming code with
words of length 7 has size 16 [16]. In contrast, in [17, Thrm. 1] it was shown
that a binary two-indel correcting code has a maximal size of at most 11.
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In this paper, we study the maximal size of t-indel s-
substitution correcting codes on a q-ary alphabet. In partic-
ular, our contribution is a Gilbert-Varshamov inspired lower
bound on this size. Moreover, we will prove that this bound
implies that a q-ary t-indel s-substitution correcting code
of maximal size has an asymptotic redundancy of at most
2(t+s) logq(n)+o(log(n)). This extends Levenshtein’s upper
bound on the asymptotic redundancy to q-ary codes.

The organisation of this paper is as follows. In Section II,
notation, terminology and several prior results are discussed.
Next, a non-asymptotic lower bound inspired by the Gilbert-
Varshamov bound is derived in Section III. Lastly, the asymp-
totic behaviour of this bound is studied in Section IV.

II. DEFINITIONS AND PRELIMINARIES

For a finite set S, denote the cardinality of S by |S|. Consider
the alphabet with q ≥ 2 symbols given by Bq := {0, 1, ..., q−
1}. The set of q-ary words (i.e., vectors) of length n with
symbols from Bq is denoted by Bq(n) := {0, 1, ..., q − 1}n.
A non-empty subset C ⊆ Bq(n) is called a code and the
elements of a code are called codewords. A code can be
capable of correcting errors by ensuring that the codewords
of C are ‘sufficiently different’, so that after several errors
have occurred the resulting word still ‘resembles’ the original
codeword, but not any of the other codewords. This idea
forms the basis for the following definition of an indel and
substitution correcting code.

For integers 0 ≤ t ≤ n and 0 ≤ s ≤ n, a code C ⊆
Bq(n) is said to be a t-indel s-substitution correcting code if
any q-ary word (not necessarily of length n) can be obtained
from no more than one codeword by exactly t′ deletions, t′′

insertions and s or fewer substitutions, whenever t′ + t′′ ≤ t.
A 0-indel s-substitution correcting code is simply called an
s-substitution correcting code and analogously a t-indel 0-
substitution correcting code is called a t-indel correcting code.

By only using codewords for communicating information,
the code gains error-correcting capabilities at the cost of
introducing redundancy. In order to maximize the amount
of information that can be transmitted using a code, we are
interested in the maximal size of a q-ary t-indel s-substitution
correcting code with codewords of length n, which we denote
by Mq(n, t, s). The (information) rate of a code C is defined
by 1

n logq(|C|) and the redundancy by n− log(|C|).
Denote by Vt′,t′′,s(x) the set of words that can be reached

from x ∈ Bq(n) by means of exactly t′ deletions, t′′ insertions
and at most s substitutions. Clearly, the q-ary words in the
set Vt′,t′′,s(x) have length n − t′ + t′′. Moreover, we define
Dt(x) = Vt,0,0(x), It(x) = V0,t,0(x) and Ss(x) = V0,0,s(x).
These sets are highly related to t-indel s-substitution correct-
ing codes, and allow for equivalent characterizations of these
codes in terms of the set Vt′,t′′,s(x). The following lemma
collects various equivalent characterizations from e.g., [14,
Sec. II], [18, Lem. 2] and [19, Lem. 2].

Lemma 1. Let n ≥ 1, q ≥ 2, 0 ≤ t ≤ n and 0 ≤ s ≤ n be
integers, and let C ⊆ Bq(n) be a code. Then, the following
five statements are equivalent:

1) C is a t-indel s-substitution correcting code.
2) Vt′,t′′,s(c1)∩Vt′,t′′,s(c2) = ∅ for all distinct codewords

c1, c2 ∈ C, and for all integers t′, t′′ ≥ 0 such that
t′ + t′′ ≤ t.

3) Vt,0,s(c1) ∩ Vt,0,s(c2) = ∅ for all distinct codewords
c1, c2 ∈ C.

4) V0,t,s(c1) ∩ V0,t,s(c2) = ∅ for all distinct codewords
c1, c2 ∈ C.

5) c2 /∈ Vt,t,2s(c1) for all distinct c1, c2 ∈ C.

For general parameters t′, t′′ and s, and words x ∈ Bq(n)
determining the cardinality of Vt′,t′′,s(x) is a non-trivial task
[20]. In the highly specific case that t′ = t′′ = 0 it holds for
each x ∈ Bq(n) [5] that

|Ss(x)| =
s∑

i=0

(
n

i

)
(q − 1)i. (1)

The quantity Ss
n,q :=

∑s
i=0

(
n
i

)
(q − 1)i will be referred to as

the size of the q-ary Hamming sphere of radius s. Moreover,
it has been established [21] that

|It(x)| = St
n+t,q =

t∑
i=0

(
n+ t

i

)
(q − 1)i. (2)

Interestingly, the cardinalities of Ss(x) and It(x) depend on x
only via the parameters n and q. In contrast, |Dt(x)| depends
on the structure of the word x as well as the parameters n and
q. To the best of authors’ knowledge, an analytic formula of
|Dt(x)| is not known for general t and therefore we must
rely on bounds (see e.g., [9], [22], [23]). For t ≤ 5, an
analytic formula of |Dt(x)| has been provided in [24], but
these expressions are rather involved for t ≥ 2. Lastly, we
mention that using the observation that x ∈ It(y) if and only
if y ∈ Dt(x), it was shown in [11] that the average cardinality
of Dt(x) is given by

1

qn

∑
x∈Bq(n)

|Dt(x)| =
1

qn

∑
y∈Bq(n−t)

|It(y)|

(2)
=

1

qt

t∑
i=0

(
n

i

)
(q − 1)i. (3)

III. GILBERT-VARSHAMOV INSPIRED LOWER BOUND

The well-known Gilbert-Varshamov lower bound for s-
substitution correcting codes [6], [7] is given by

Mq(n, 0, s) ≥
qn∑2s

i=0

(
n
i

)
(q − 1)i

. (4)

This bound is commonly proven using a sphere-covering
argument where the spheres are given by S2s(c) centered
around the codewords c ∈ C (see e.g., [5, Thrm. 4.3]). In
the case of substitutions, this proof is facilitated by the fact
that these spheres are of equal size.

Tolhuizen [10] recognized that the Gilbert-Varshamov
bound is also implied by Turán’s theorem [25] from extremal
graph theory. A particular consequence of the latter approach
is that it easily generalizes to the case in which the spheres
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are not of equal size. For instance, this is the case for t-indel
correcting codes when dealing with the spheres Vt,t,0(c). The
approach from Tolhuizen was used by Levenshtein [11] to
bound the maximal size of a t-indel correcting code from
below. In particular, it was shown that

Mq(n, t, 0) ≥
qn+t(∑t

i=0

(
n
i

)
(q − 1)i

)2 . (5)

For completeness, we mention that other Gilbert-Varshamov
related lower bounds on Mq(n, t, 0) are given in [12], [13].

Next, it is a natural step to generalize the argument from
Tolhuizen to t-indel s-substitution correcting codes.

Lemma 2. Let n ≥ 1, q ≥ 2, 0 ≤ t ≤ n and 0 ≤ s ≤ n be
integers. The following gives a lower bound on Mq(n, t, s),

Mq(n, t, s) ≥
qn

Vavr
t,t,2s

, (6)

where Vavr
t,t,2s := q−n

∑
x∈Bq(n)

|Vt,t,2s(x)|.

Proof. The idea of this proof is to translate the problem of
finding a large code to the problem of finding a large clique2.
This allows us to apply the argument from [10, Sec. II] to
derive the desired lower bound on Mq(n, t, s).

Define the undirected graph G = (V,E) without loops or
double edges as follows. Let V = Bq(n) be the set of nodes of
G. Two distinct nodes x and y from V are joined by an edge
in E if x /∈ Vt,t,2s(y). This is well-defined because it holds
that x /∈ Vt,t,2s(y) if and only if y /∈ Vt,t,2s(x). Intuitively,
the pairs of nodes that are connected by an edge can both
be codewords in a t-indel s-substitution correcting code. The
number of nodes equals |V | = qn and the number of edges is
given by

|E| = 1

2

∑
x∈V

(|V \ Vt,t,2s(x)|)

=
1

2

∑
x∈V

(|V | − |Vt,t,2s(x)|)

=
1

2
q2n − 1

2

∑
x∈Bq(n)

|Vt,t,2s(x)|

=
1

2
qn(qn − Vavr

t,t,2s),

where the first equality follows from the fact that each x ∈
V has |V \ Vt,t,2s(x)| incident edges. Therefore, summing
|V \ Vt,t,2s(x)| over all nodes in x ∈ V equals 2|E| since
each edge is counted twice. Observe that from the definition
of the edges in G and Lemma 1 it follows that a clique of
size k in G corresponds to a t-indel s-substitution correcting
code C of size k.

Using the cardinalities of V and E it follows from the
argument in [10, Sec. II] that there exists a clique in G of size
⌈ qn

Vavr
t,t,2s

⌉. For brevity, we do not repeat this argument here.

2A clique of a graph G is an induced subgraph that is complete, i.e., all
pairs of vertices are connected by an edge.

In turn, this implies that there exists an equally large t-indel
s-substitution correcting code, which concludes the proof.

In order to evaluate the lower bound in Lemma 2 the size of
Vt,t,2s(x) averaged over all x ∈ Bq(n) needs to be determined.
To the best of the authors’ knowledge, an analytic formula
for |Vt,t,2s(x)| or Vavr

t,t,2s is not known for general parameters
n, q, t and s. For this reason, we employ an upper bound on
Vavr
t,t,2s to obtain an explicit result.

Theorem 3. For integers n ≥ 1, q ≥ 2, 0 ≤ t ≤ n and
0 ≤ s ≤ n, the following gives a lower bound on Mq(n, t, s),

Mq(n, t, s) ≥
qn+t(

t∑
i=0

(
n
i

)
(q − 1)i

)2 2s∑
i=0

(
n−t
i

)
(q − 1)i

. (7)

Proof. We claim that Vavg
t,t,2s can be upper bounded by

1

qt

(
t∑

i=0

(
n

i

)
(q − 1)i

)2 2s∑
i=0

(
n− t

i

)
(q − 1)i. (8)

In this case, the result of the theorem follows immediately
from applying the upper bound to Lemma 2. Therefore, this
proof is limited to proving this claim. In what follows, a
superscript − will be used to denote a word in Bq(n − t),
whereas an omission thereof is meant for words in Bq(n).

To this end, observe that each element in Vt,t,2s(x) can
be reached from x ∈ Bq(n) by first deleting precisely t
symbols, followed by substituting at most 2s symbols and
lastly inserting exactly t symbols. Hence, it follows that

|Vt,t,2s(x)| ≤
∑

y−∈Dt(x)

∑
z−∈S2s(y−)

|It(z−)|. (9)

In order to evaluate the right-hand side of this expression,
recall from (1) and (2) that the cardinalities of the sets It(x−)
and S2s(x

−) do not depend on the choice of x− ∈ Bq(n− t).
Moreover, the cardinality of Dt(x) averaged over all x ∈
Bq(n) was given in (3). By combining these results and
carefully taking into account the lengths of the words, it
follows that

Vavg
t,t,2s = q−n

∑
x∈Bq(n)

|Vt,t,2s(x)|

(9)
≤ 1

qn

∑
x∈Bq(n)

∑
y−∈Dt(x)

∑
z−∈S2s(y−)

|It(z−)|

(2)
=

1

qn

∑
x∈Bq(n)

∑
y−∈Dt(x)

∑
z−∈S2s(y−)

St
n,q

(1)
=

1

qn

∑
x∈Bq(n)

∑
y−∈Dt(x)

S2s
n−t,q · St

n,q

=
1

qn
· St

n,q · S2s
n−t,q ·

∑
x∈Bq(n)

|Dt(x)|

(3)
=

1

qt
· (St

n,q)
2 · S2s

n−t,q.
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Note that the last expression is equivalent to (8), which proves
the claim.

Observe that the lower bounds (4) and (5) are special cases of
the latter theorem, since they are recovered by setting t = 0
and s = 0, respectively. Obviously, the bound from Theorem
3 can be improved with the availability of exact expressions,
or tighter bounds on Vavg

t,t,2s.

IV. ASYMPTOTIC BEHAVIOUR

In this section we discuss the asymptotic behaviour of The-
orem 3 in two settings based on the dependency of t and s
with respect to n.

First, consider the setting in which the parameters q, t and
s are fixed, and we let n tend to infinity. In this setting,
Levenshtein [9] showed two asymptotic bounds on M2(n, t, s)
which imply that the asymptotic redundancy of a binary t-indel
s-substitution correcting code of maximal size lies between
(t+ s) log2(n) and (2t+ 2s) log2(n) + o(log2(n)). Here, we
provide an alternative proof for the asymptotic upper bound
and extend the result from binary to q-ary codes, by showing
that it is implied by the non-asymptotic lower bound on
Mq(n, t, s) of Theorem 3.

Lemma 4. Let q ≥ 2 be an integer. For non-negative integers
s and t such that s+ t ≥ 1, the following holds

lim sup
n→∞

n− logq(Mq(n, t, s))

(2t+ 2s) logq(n)
≤ 1.

Proof. Theorem 3 states that

Mq(n, t, s) ≥
qn+t

(St
n,q)

2 · S2s
n−t,q

.

This implies that the redundancy of an optimal t-indel s-
substitution correcting code is bounded by

n− logq(Mq(n, t, s)) ≤ −t+ 2 logq(S
t
n,q) + logq(S

2s
n−t,q).

Note that for a fixed integer k ≥ 1 it holds that
(
n
k

)
=

1
k!n

k+o(nk). In turn, it follows that Ss
n,q = (q−1)s

s! ns+o(ns),
and logq(S

s
n,q) = s logq(n)+o(logq(n)). By combining these

observations we obtain

lim sup
n→∞

n− logq(Mq(n, t, s))

(2t+ 2s) logq(n)
≤

lim sup
n→∞

−t+ 2 logq(S
t
n,q) + logq(S

2s
n−t,q)

(2t+ 2s) logq(n)
= 1,

as desired.

The following statement is immediate from the previous
lemma.

Corollary 5. A maximal size t-indel s-substitution correct-
ing code has an asymptotic redundancy of at most (2t +
2s) logq(n) + o(logq(n)).

Secondly, we consider the asymptotic regime in which q ≥ 2
and τ, σ ∈ [0, 1] are fixed and n tends to infinity. We set3

t = τn, s = σn. Define the asymptotic rate by

Rq(τ, σ) := lim inf
n→∞

1

n
logq(Mq(n, τn, σn)). (10)

For σ = 0 and τ > 0, bounds on Mq(n, t, 0) have been used
to derive results on Rq(τ, 0) in e.g., [11], [17], [26]. On the
other hand, for τ = 0 and σ > 0 a summary of several results
on Rq(0, σ) can be found in [5]. Here, we use Theorem 3 to
derive a lower bound on Rq(τ, σ).

To this end, let Hq(x) = x logq(q − 1)− x logq(x)− (1−
x) logq(1 − x) on [0, 1 − 1

q ] with Hq(0) = 0 denote the q-
ary entropy function. The extended q-ary entropy function is
given by H∗

q (x) = Hq(min{x, 1 − 1
q}) on [0,∞). Recall

the following useful property of the extended q-ary entropy
function [17], for each λ ∈ (0, 1) it holds that

lim
n→∞

1

n
logq

(
λn∑
i=0

(
n

i

)
(q − 1)i

)
= H∗

q (λ). (11)

This property enables us to derive the following lower bound
on Rq(τ, σ).

Lemma 6. Let q ≥ 2 be an integer and τ, σ ∈ (0, 1). Then,
it holds that

Rq(τ, σ) ≥ 1 + τ − 2H∗
q (τ)− (1− τ)H∗

q (
2σ

1− τ
).

Proof. Theorem 3 states for n ≥ 1 that

Mq(n, τn, σn) ≥
qn+τn

(Sτn
n,q)

2 · S2σn
n−τn,q

.

By applying this bound to the rate function Rq(τ, σ), it readily
follows that

Rq(τ, σ) ≥ lim inf
n→∞

1

n
logq

(
qn+τn

(Sτn
n,q)

2 · S2σn
n−τn,q

)
=1 + τ − 2 lim inf

n→∞

1

n
logq(S

τn
n,q)

− lim inf
n→∞

1

n
logq(S

2σn
n−τn,q)

=1 + τ − 2H∗
q (τ)

− lim inf
n′→∞

1− τ

n′ logq(S
2σ

1−τ n′

n′,q ) (12)

=1 + τ − 2H∗
q (τ)

− (1− τ)H∗
q (

2σ

1− τ
),

where we applied the change of variables n′ = n−τn in (12),
and used (11) to evaluate the limit inferiori.

3In what follows, we will be slightly imprecise by setting t = τn, s = σn
which may not be integer-valued. However, in the asymptotic regime this does
not change the over-all results.
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V. CONCLUDING REMARKS

In this paper, we have presented a non-asymptotic lower
bound on the maximal cardinality of a t-indel s-substitution
correcting code. In order to improve this lower bound, an
interesting research challenge is to find an expression or tighter
upper bound for the size of the set Vt′,t′′,s(x).

More generally, it could also be investigated whether the
numerous existing lower and upper bounds on the maximum
cardinality of either t-indel correcting codes or s-substitution
correcting codes can be generalized to bounds on Mq(n, t, s).
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