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Short summary 

Hurricane Sandy (2012), which made landfall in New Jersey on October 29th, made devastating impact on the 

East Coast of the USA and struck major parts of New York City, including the economic centre of Manhattan. 

The total damage (in the USA and Caribbean) is in excess of 100 billion US$ with estimates ranging between 78 

and 97 billion US$ for direct damage and over 10 to 16 billion US$ for indirect damage due to business 

interruption (M. Kunz et al., 2013). 

Modelling impact (e.g. damage, fatalities) in the coastal zone due to hazardous storm events is a hardly 

explored practice. It is difficult to predict damage correctly where damage observations are scarce and the 

physical processes causing the damage are complex, diverse and can differ from site to site and event to event. 

Moreover, an increasing interest exists in getting insights in the uncertainty of prediction. 

This report explores on the possibilities in coupling physics-based hydraulic and morphodynamic modelling to 

the practice of impact mapping by using Bayesian Belief Networks (BBN’s). Using BBN’s enables to look at the 

impact in a probabilistic context, which fits well to the highly unpredictable and rare nature of hurricanes. The 

morphodynamic storm impact model XBeach (Roelvink et al., 2009) is proposed as one of the process-based 

models, since Hurricane Sandy pointed out that morphodynamic aspects can be of great importance for the 

amount of damage. Part of the Rockaway Peninsula, NY, which has been severely damaged by Hurricane 

Sandy’s surges, is used as case study. Only damage to residential buildings is considered in present study, in 

which delivering a proof of concept for the presented approach is the main goal. In general it can be concluded 

that the approach succeeded. 
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Abstract 
Hurricane Sandy (2012), which made landfall in New Jersey on October 29th, made devastating impact on the 

East Coast of USA and struck major parts of New York City, including the economic centre of Manhattan. The 

total damage (in the USA and Caribbean) is in excess of 100 billion US$ with estimates ranging between 78 and 

97 billion US$ for direct damage and over 10 to 16 billion US$ for indirect damage due to business interruption 

(M. Kunz et al., 2013). 

Modelling impact (e.g. damage, fatalities) due to hazardous storm events is a hardly explored practice; 

especially in the coastal zones where predominantly wind induced hazards from sea (e.g. inundation, wave 

attack) cause the damage. It is difficult to predict damage correctly where damage observations are scarce and 

the physical processes causing the damage are complex, diverse and can differ for different sites and events. 

Moreover, an increasing interest exists in getting insights in the uncertainty of prediction. This report explores 

on the possibilities in coupling physics-based hydraulic and morphodynamic modelling to the practice of 

impact mapping by using Bayesian Belief Networks (BBN’s). Using BBN’s enables to look at the impact in a 

probabilistic context, which fits well to the highly unpredictable and rare nature of hurricanes. Part of the 

Rockaway Peninsula, NY, which has been severely damaged by Hurricane Sandy’s surges, is used as case study. 

Only damage to residential buildings is considered in present study, in which delivering a proof of concept is 

the main goal. 

The morphodynamic storm impact model XBeach (Roelvink et al., 2009) is proposed as one of the process-

based models, since Hurricane Sandy pointed out that morphodynamic aspects can be of great importance to 

the amount of damage, especially for the barrier islands in front of the US coastlines. The hazards, 

predominantly coming from sea in the case of Hurricane Sandy, are propagated from large scale (100-1000 km) 

to the building level (1-10 m) with a nested routine which includes XBeach on the lowest scale level. With the 

use of extraction methods local hazard indicators are generated for every single residential building, which 

have been successfully used in combination with building type indicators to predict damage. 5300 

observations of a qualitative damage assessment were enough to train a Bayesian Belief Network that is 

capable of reproducing the spatial pattern of the damage. Multiple analysis tools are available to analyse the 

quality of prediction and uncertainty quantification and it is possible with ease to visualize that in space with 

the use of an SQL database coupled to GIS software. In general it can be concluded that the presented 

approach succeeded. 

XBeach is capable of providing multiple local hazard indicators on the building level, which proved to having 

predictive capacity. The indicators “inundation depth”, “wave attack”, “flow velocity” and (to a lesser extend) 

“scour depth” give together much better predictions than they do alone. The implementation of XBeach 

therefore fits perfectly in the multi-hazard approach that Bayesian Belief Networks make possible. On the 

contrary, it must be said that setting up an XBeach model for high resolution simulations and relatively large 

areas (order of 10 km wide) is a time consuming job. The results of the XBeach model used for present study 

show a structural overestimation of storm conditions, which can be addressed to a poor calibration. This 

assumedly limits the predictive skill of the statistical BBN model. There is still a large scope for improvement. 

Some aspects of the approach have been studied in more detail; roughly, these aspects do either influence the 

predictive qualities of the individual indicators or have to do with the configuration of the statistical model, the 

Bayesian Belief Network. Considering the first category, it appeared that model resolution is not as important 

as expected. Indicator values based on model runs with grid cell sizes of 3x3 m2 in the urban areas give hardly 

better predictions than runs with grid cell sizes of 9x9 m2 where computational expenses are 25 times higher. 

Next to this aspect, the extraction method, in which hazard indicators are generated out of the XBeach output 

data, appeared to be very important for the predictive capacity of these indicators. The usage of (polygons of 

the) building perimeter outlines to determine buffer zones around these buildings works fine. Moreover, it can 
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be concluded that the extraction formulations and the size of extraction buffer zones around the buildings can 

make a substantial difference for the predictive skill of the local hazard indicators. A courser grid asks for a 

larger buffer zone in order to prevent that the buildings are predicted to be non-flooded where they in reality 

have been flooded. 

Considering the statistical model part, using Bayesian Belief Networks gives the opportunity to relate the 

damage to multiple aspects instead of only one, which has great advantages over the market standard 

approaches (in which the majority only considers the depth-damage relation). Comparing the spatial 

distribution of the means of the conditional Probability Mass Functions (PMF’s) to the observed damage, it can 

be concluded that the established BBN’s are good in capturing the spatial variability in risk (given the event) 

per building. Higher risks are predicted for the more severely damaged buildings. The BBN’s perform not so 

well in predicting extremes where the most probable outcome of prediction for the most severely damaged 

buildings almost always concerns an underestimation of the damage.  

Next to indicators that indicate the local severity of the hazards, the added value of implementing other 

indicators has been studied as well. Adding nodes to the BBN indicating differences between buildings 

increases the Log-likelihood ratio test scores of the hindcast, which implies an increase of the predictive skill of 

the model. The “tax base” indicator appears to be most skilful, followed by “Building Class”, “Roof Height”, 

“Shape Area” and “Residential Units per building” in that specific order. It is said that one has to be really 

careful with adding too much nodes. The consequences of the latter are demonstrated in present report: the 

predictions become worse if too much complexity is added to the BBN (when the amount of data is said to be 

over-fitted). This also becomes the case when more bins per node and mutual relations between the nodes are 

added. 

Also the quantification of uncertainty depends strongly on the number of nodes, bins and relations within the 

BBN. More complexity in the network needs to be compensated by more training data in order to avoid poorly 

substantiated PMF’s and retain the same quality of prediction. Quantities indicating uncertainty, such as 

standard deviation of these conditional PMF’s, can be easily visualized in space and support statements about 

the confidence of the predictions. However, quantitatively the PMF’s do not cover all sources of uncertainty in 

the approach as it is proposed right now. Mainly uncertainties concerning structural over- or underestimations 

(for instance due to too high XBeach boundary conditions) are not represented in the distributions of 

predictions.  This is a direct cause of the training of the BBN’s, which is based on the results of only one XBeach 

run. 

Aggregation of the damage predictions to higher spatial scale levels, such as a neighbourhood or a complete 

city, is not straightforward within the present approach. Aggregation of risk given the event (mean of the 

PMF’s) is a matter of summation. On the contrary, since (spatial) correlation between the predictions is at 

stake, predictions made in a certain area cannot be seen as independent. This, in combination with the fact 

that not all uncertainty is incorporated in the PMF’s, makes aggregation of uncertainty difficult. Future 

research is necessary in order to find ways to overcome those aggregation issues. 
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1. Introduction 

1.1. Motivation 

In the night of October 29th to October 30th of 2012 Hurricane Sandy made landfall near Brigantine, New Jersey. 

Not even a category 3 storm on the Saffir -Simpson Hurricane Wind Scale (Schott et al. 2012) during landfall, 

Sandy affected 24 states and devastated larger parts of New Jersey and New York. With more than 286 

(indirect) fatalities and over $68 billion US$ of damages, Hurricane Sandy became the second-costliest 

hurricane in the United States history, ranked after Katrina (2005) (Kunz et al. 2013). 

Even though records over the past 50 years may suggest that a hurricane like Sandy is highly exceptional and 

not to be expected in New Jersey and New York, long term statistics tend to show different, see paragraph 

1.1.1.2. Not the storm on itself was exceptional but in hybridity with other factors, such as a high tide and 

geographical features, it led to a tremendous disaster. The willingness to prevent similar disasters from 

happening in the future together with the strong politic and economic powers centred in the heart of New 

York City give a unique momentum to several new initiatives. New York is determined to make a change 

(PlaNYC 2013) to become more resilient.   

Hurricanes (in more general: Tropical Cyclones) can be found in several parts of the world, where warm ocean 

waters near the equator cause low pressure areas which are traded towards the coastal zones and increase in 

strength during their traveling above the warm water. Tropical Cyclones can cause massive natural hazards, 

which may have huge impact on nature and human being. In low lying coastal areas surging water can induce 

enormous floods, which has proven to be more destructive than the accompanying winds in some cases. In the 

case of Sandy storm surges were far more troublesome than winds. This all should be put in a broader 

perspective by looking at future developments worldwide: on the one hand we have to deal with a non-

beneficial climate change; on the other hand usage and economic value of coastal zones will increase further. 

Both are expected to increase risks in these areas significantly. 

This has led to a common awareness of and willingness to control these risks, in order to minimize them in the 

future. On the one hand data are gathered indicating the damages and giving input to the understanding of 

the corresponding failure mechanisms. On the other hand we are more and more capable of simulating storm 

events and corresponding hydrodynamic and morphodynamic characteristics. Bringing these two aspects 

together is one of the challenges we are facing today in obtaining insight in the risks we are exposed to. This 

master thesis is a first attempt to couple the hydrodynamics and morphodynamics of a storm to its impacts by 

using Bayesian Belief Networks (BBN’s), in order to demonstrate the statistical relationships. The result is a 

concept proving impact model, applied to hurricane Sandy and a study site at the Rockaway Peninsula, NY. 

The significance of a fully statistical impact model can be found in several applications. It can provide for 

instance a very powerful tool for decision makers in order to determine whether or not to implement defence 

measures. It would be very useful to have information like “A 1/100year storm will probably cause that 

amount of damage/fatalities at that location if that measure is applied”. Play the what-if game and you will 

quantitatively know how well a measure performs. Moreover this would give the opportunity to investigate 

the impact of future developments like climate change. 

1.1.1. Hurricane Sandy 
It is clear that wind induced storm surges, either caused by a tropical storm or other type of wind storm can 

cause large disasters in coastal areas. The next two paragraphs will give some background information about 

some characteristics of Hurricane Sandy (track, intensity) and its impact. 
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1.1.1.1. Characteristics 

 

Figure 1-1 - Intensity and track of Hurricane Sandy (2012) from NOAA website 

The track and intensity of Hurricane Sandy are shown in Figure 1-1. Generated in the Caribbean Sea on 

October 22nd, Sandy moved towards the Atlantic Ocean. Just before hitting Jamaica it became a Tropical 

Cyclone (Category 3 or higher). After some weakening due to shear over the south-eastern and central 

Bahamas, it interacted with an upper‐level trough and surface front near the north-western Bahamas and 

underwent a partial extra tropical transition (E. Blake 2013). At this point the weather forecast models of 

NOAA’s National Hurricane Center (NHC)1 were not in agreement with each other; most hurricanes at this 

point turn east towards the Atlantic Ocean. However, Sandy turned on a rare track northwest due to a high 

pressure area in the north and another low pressure area in the east, see Figure 1-2. 

During its propagation towards the US East Coast 

(towards New Jersey and New York) Sandy retrained its 

strength and made landfall as a category 2 hurricane. 

After landfall Sandy turned northward and finally 

dissipated near Lake Erie (point 31 in Figure 1-1) after 

causing heavy rainfall in Pennsylvania, Maryland, New 

Jersey, Delaware and Virginia (100 to 200 mm). 

Additionally, Sandy caused severe snow storms especially 

in the southern and central Appalachian with snow 

amounts up to 1m (Kunz et al. 2013). 

Hurricane Sandy caused measured wind speeds of 185 

km/h during landfall, which is pretty severe but not 

uncommon for Atlantic tropical storms. What Hurricane 

Sandy made unique were not the meteorological 

characteristics on its own, but a combination of multiple 

                                                                 
1 http://www.nhc.noaa.gov/  

Sandy 

Figure 1-2 - High pressure areas (red) and Low pressure 

areas (blue) made Sandy turn northwest. Picture by NHC 

(2012) 

http://www.nhc.noaa.gov/
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factors. It was the hybridity that made it unique:  

 A very rare track. The severest hurricanes from the past 150 years in north-eastern US all approached 

the mainland more parallel to the coast. Sandy made landfall almost perpendicular to the coast (E. S. 

Blake et al. 2013); 

 A forward speed of 20 knots, which is relatively fast2; 

 An abnormally large wind spanning diameter of about 1700 km, covering almost the complete East 

Coast and caused by the extra tropical transition; 

 An extremely low air pressure of 945 mb in the eye, which is the lowest ever recorded for north-

eastern US; 

 Sandy made landfall during high annual tide in combination with a full moon. 

One could argue that Sandy’s timing couldn’t have been worse. The interaction between winds (direction and 

velocities), air pressure and the topographic configuration of the coast caused very large surge levels, 

especially northeast of the hurricane’s eye in the York Bight. This was even increased by an astronomical high 

tide, leading to inundation of large areas along the coast and major parts of New York City (see Figure 1-4). At 

the Battery in Lower Manhattan water levels were measured of 14.6 ft (4.3 m) referenced to Mean Lower Low 

Water (MLLW), which exceeded the previous record set by Hurricane Dona (1960).  Moreover, the sea state 

with waves over 10 m was the severest since the mid-1970’s, with wave heights over 30 ft (+/- 10m), 

exceeding the conditions of Irene (2011) and the Nor’easter of 1992 (Guy Carpenter 2013). According to Hall 

and Sobel3 who performed probability analyses on model simulations of a synthetically generated track set, 

Sandy’s surge can be considered to be a 700-year event. Other sources state that because of future 

developments like climate change a 500-year surge could happen every 25 to 240 years by the end of the 

century (Lin et al. 2012). 

  

 

1.1.1.2. Impacts 

Hurricane Sandy caused damage in many states, of which New York and New Jersey were affected the most. 

She impacted an area that is good for approximately 10% of the US economic output (GuyCarpenter 2013). 

Moreover, it made it in the top three of deadliest hurricanes in the US with a total of 113 fatalities nationwide 

(Mühr et al. 2012); see Table 1-1 for a historic overview of fatalities in New York City only. 

                                                                 
2 This is not necessarily a bad thing; hurricanes with high forward speeds show higher storm surge peaks while lower inland 
volumes of flood (Rego and Li 2009) 
3 ‘On the impact angle of Hurricane Sandy's New Jersey landfall’ (Hall and Sobel 2013) 

NYC 

Figure 1-3 - Sandy before landfall - Wind speed and 

schematization of track by NASA 

 

Figure 1-4 - Sandy inundation map by FEMA (Source: 

NOAA) 
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Table 1-1 - Most lethal hurricanes for New York 4 

Hurricane Year Fatalities 

New England 1938 60 

Sandy 2012 48 

Edna 1945 29 

Norfolk 1821 17 

Five 1894 10 

 

The actual causes of these fatalities differ from falling down during repair (or preparation) work at building 

roofs to drowning in the flood. In ‘CEDIM FDA-Report on Hurricane Sandy 22-30 October 2012’ (Mühr et al. 

2012), which hereafter is referred to as the CEDIM report, it is stated that a lot of people stayed home during 

Sandy while evacuation was recommended, because they expected Sandy to be less severe than predictions 

broadcasted in the media. This experience was probably based on the experience with Hurricane Irene, which 

struck the area one year before and was indeed less severe than predicted. 

Besides fatalities, Hurricane Sandy affected over 305,000 houses only in New York state (Kunz et al. 2013). In 

some areas more than 1/5th of the houses have been completely destroyed, of which Breezy Point and 

Rockaway Beach, both located on the Rockaway Peninsula (Queens County), are good examples (PlaNYC 2013). 

According to the NHESS report (Kunz et al. 2013), energy systems are amongst the most important critical 

infrastructure due to their essential role in sustaining socioeconomic systems. More than 8.7 million 

households (21.3 million people) were victim of power outages during the storm on 29 and 30 October, of 

which 3.37 million were still waiting for electric supply after one week. This is a record for the US for power 

outages caused by hurricanes, leaving Irene (6 million households) and Isabel (4.3 million) behind. Power 

outages during the storm also have their effect on loss of life. First of all they limit the self-help capacity of 

humans (Mühr et al. 2012); secondly, they can cause electrical fires, which for instance happened in Breezy 

Point (Rockaway Peninsula) where at least 100 houses burned down to the ground. The strong winds 

accompanying the storm make fast spreading of the fires possible. 

Other types of infrastructure have been affected as well. Metro services in New York City were disrupted for 

months because of flooded tunnels and some stations have not yet been fully repaired at the time of writing 

this report. Moreover, some areas were extremely hard to reach the days after the storm; At Rockaway 

Peninsula inundation caused large piles of debris in the streets, consisting of sand from the eroded dunes, 

inundation wood, insulation and household items. The 5 km long boardwalk in Rockaway Beach, which was 

situated at the beach front, was at some places completely destroyed or tilted from its foundation and flushed 

away inland. Similar to the damaged electrical system the sewing system and gas and fresh water supply 

systems were severely damaged. This implied disruption of normal life for months, even to those whom 

houses and businesses were spared during the storm. 

The economic losses for New York State can be divided in direct and indirect losses: 

 Direct losses: damage to housing, transit, road and bridges, business impact etc. See Figure 1-5 for a 

breakdown of direct losses (total of 32.8 billion US$ for New York State). 

 Indirect losses: failure of physical or economic linkages causing cascading effects (e.g. manufacture 

sector out of power for days).  Business interruption losses have been estimated between 10.8 and 

15.5 billion US$. 

For the direct losses an estimated breakdown is made by Cuomo in 2012 (Kunz et al. 2013), which is shown in 

the diagram of Figure 1-5. It can be seen that damage to infrastructure attributes pretty much the same to 

                                                                 
4 source: CEDIM FDA-Report on Hurricane Sandy (Mühr et al. 2012) 



Impact Modelling of Hurricane Sandy on the Rockaways 
 

 | 17  

total direct losses as damage to housing. However, it should be noted that damage to housing affects the 

individual citizen more. 

 

Figure 1-5 - A breakdown of direct losses in New York State (in million US$ and %) reported Cuomo (2012) and graphed by Kunz et al. 

(2013) 

The total economic losses in the US due to hurricane Sandy’s direct damages is estimated to be 97 billion US 

dollars, (Kunz et al. 2013), of which an approximated 32.8 billion US dollars can be assigned to New York 

(according to Governor Andrew Cuomo). This makes Sandy the second costliest hurricane in US history after 

Hurricane Katrina (2005). However, this should be put in perspective by normalizing total costs of historical 

events to the cost base of 2005. This has been done for the hurricanes within the period of 1900 till 2005 

(Pielke Jr et al. 2008) and is later updated till 2012. The outcome is graphed in Figure 1-6. 

 

Figure 1-6 - Normalized US Hurricane Damage (source: Pielke et al.) 

It can be concluded that hazardous events like Sandy and Katrina are not just events from the past decade, but 

did happen on a regular basis over the past 100 years and probably will happen the coming decades as well. 



Impact Modelling of Hurricane Sandy on the Rockaways 
 

 | 18  

1.2. Problem Definition 

From section 1.1 it can be learned that hazardous storms like Hurricane Sandy are very complex events. The 

processes steering the storm propagation are mostly at play on a global and regional spatial scale, but the 

related impacts do highly depend on local properties like geographic configuration of the coast, socio-

economic aspects and the vulnerability of buildings and infrastructure. This section copes with these 

difficulties and the problems in modelling impacts are addressed. 

1.2.1. Background 

1.2.1.1. Hazard Modelling 

The dictionary states about hazard “A possible source of danger: a thing likely to cause injury”. 5 A more 

technical definition is given by the UNISDR: “The combination of the probability of an event and its negative 

consequences”.6 In the case of hurricanes, it can be learned from Sandy (but also from other examples like 

hurricane Katrina) that the danger in low lying coastal areas mainly comes from sea. In the field of hydraulic 

engineering, modelling of wind induces surge and sea states is certainly not new. A broad range of 1D, 2D and 

3D physics-based numerical model software packages can be made use of, which can and have been used to 

simulate storm events like Hurricane Sandy. Amongst these physics-based models (sometimes referred to as 

deterministic, comprehensive or process-based models) are noticeable: Delft3D, D-Flow FM, SWAN and 

XBeach from TU Delft, Deltares and partners7; the MIKE software packages from DHI8; and ADCIRC from the 

University of North Carolina9.  

Fluid dynamics, the study of fluids in motion, lies at the heart of most of the equations these numerical models 

solve. Water bodies are constantly affected by external and internal forces concerning gravity, inertia, air-

water interactions, water-bed interactions, internal friction, earth rotation and density variations in for 

instance temperature and salinity. All these processes influence the hydraulic properties (e.g. water levels and 

wave heights) in time and space. For centuries scientist try to understand these physical processes and, since 

the invention of computers, describing them in numerical computer models.  

The physical processes are translated into (fundamental) equations, of which the most are based on the 

conservation of mass, momentum and energy. Important contributions in the field of hydraulic engineering 

can be found in the Boussinesq approximation, Navier-Stokes equations and Stokes theorem. In numerical 

models external forces are parameterized and initial states (temporal boundary conditions) have to be 

determined, together with domain boundary states (spatial boundary conditions). Space and time are 

discretised to make computations finite and with use of time and space stepping the propagation of 

disturbances (relative to an equilibrium state) are computed. In this way water levels, wave heights, flow 

velocity and many other properties can be simulated for meteorological storm events. 

With the continuously increasing processing speed of computers, more and more complexity can be added to 

these physics-based numerical models while keeping computation expenses within limits. On the other hand 

research provides more and more understanding of the physical processes. These two aspects together 

attributed to the fact that physics-based modelling has become extremely important in the field of hydraulic 

engineering. 

For the simulation of wind induces surges and waves at deep water (>20 m water depth) different forces and 

processes are dominant than for instance the water propagation during floods in urban areas. In sandy coastal 

                                                                 
5 The American Heritage® Dictionary of the English Language, Fourth Edition 
6 http://www.unisdr.org/we/inform/terminology 
7 http://www.deltares.nl/nl/software 
8 http://www.mikebydhi.com 
9 http://www.adcirc.org 
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zones, found in most parts of the US East Coast, the morphological changes due to storms can have significant 

impacts on the coastal appearances. Some software packages, like XBeach, are specifically made for modelling 

these morphological impacts and show fairly good results, which for instance can be seen in the study 

‘Modelling storm impacts on beaches, dunes and barrier islands’ (Roelvink et al. 2009). It should be noted that 

all software packages have their own range of applicability and limitations at the same time. 

1.2.1.2. Impact Modelling 

Living on planet earth is just dangerous; no matter where you are, there are always risks. As long as human 

kind exists, people in general and politicians in specific try to minimize these risks for the benefits of 

themselves and the community. Understanding of possible social and economic impacts of hazardous events is 

therefore a key element, together with the accompanying probability of occurrence. Not only hurricanes cause 

hazards, but one can think of natural hazards in general (caused by earthquakes, landslides, tornados, volcanos 

and epidemics) and human caused hazards like terroristic attacks and burgling.  

Risk, damage and impact have different meanings in different contexts to different kind of people. For coastal 

engineers the notion of hurricane impact usually refers to morphological impacts to the coast. This is 

completely different though for people with other expertise, of which insurers and politicians should be 

specifically named here. In general impact refers to the effect/consequence of a force, which is not necessarily 

damage. Where this thesis is about the destructiveness of hurricanes, impact refers here to damage in the 

forms of social and economic disruption in general and loss of life, physical damage and monetary losses 

specifically. Damage on itself can be split up as well and in this thesis the distinction between direct and 

indirect, tangible and intangible damage have been made, of which examples can be found in Table 1-2. For 

risk many definitions exist. Most of them seem to include the two dimensions consequence and probability. 

For this research the definition of Helm is used: “Risk = Probability of a Hazard x Consequences” (Helm 1996), 

where consequence is actually a synonym for impact and consists of both aspects exposure and vulnerability 

(Klijn et al. 2004). The consequences of present study are the concerned damages. The risk in monetary 

perspective for instance can be expressed in dollars/year. 

Traditionally, (semi-)public research institutes and 

universities are charged with the task of quantifying 

these risks as indispensable first step for the purpose 

of minimizing them. An example can be found in the 

“Prediction of seasonal climate-induced variations in 

global food production” (Iizumi, Toshichika Hirofumi 

Sakuma, Yokozawa et al. 2012), where statistical crop 

failure prediction models were linked to ensemble 

seasonal climatic forecasts. It can be used in order to 

predict food shortages, which is especially interesting 

in developing countries. 

One way to lessen the (indirect) impacts of hazardous 

events is to insure property and goods. The 

(re)insurance market can be both public and private. 

(Re)-insurers are interested in the economic losses of 

hazards in order to determine insurance premiums, 

which are profitable in the long run. Several financial 

service providers are active on the market, providing 

risk modelling services to reinsurers, insurance 

companies, large investment companies and 

governmental bodies. Since the 1980’s these services 

Table 1-2 - Categorization of damage (source: Jonkman et 

al., 2008) 



Impact Modelling of Hurricane Sandy on the Rockaways 
 

 | 20  

have become more and more advanced and the models are known as ‘Catastrophe Models’, or shorter ‘Cat 

Models’ (Grossi and TeHennepe 2008). Most of these models were empirical and have a statistical background. 

Since consequences of large natural hazardous events are immense and probability is often low, it is difficult to 

use statistical analysis tools in order to improve probabilistic approaches. Major events – including 

catastrophes in 2011 and 2012 such as earthquakes in New Zealand, Japan Earthquake and Tsunami and 

Hurricane Sandy– continue to demonstrate the levels of uncertainty that can exist in model results (Lloyd’s 

2013). 

Hydraulic engineers tend to start from a physical point of view, understanding the physics of the hazard, where 

the risk managers start from the impact side of the story, trying to distinguish different kinds of impact and 

break down costs. As is explained above, determining risk requires quantification of an event’s impact and the 

related probability. The latter can be determined fairly easy for some types of hazards. Car theft for instance 

happens on regular basis and with statistical tools one can determine the probability of occurrence. However, 

for rare events like hurricanes this cannot easily be done. The insurance branch is therefore integrating more 

and more physics into their models in order to bring the driving forces in their models back to a level for which 

using statistics is possible again, for instance on water levels and wave heights or meteorological 

characteristics of a hurricane. This is where both worlds come together. 

General Approaches 

A wide variety of impact models can be found in the industry and the model approaches show large mutual 

differences. In “Comparative flood damage model assessment: towards a European approach” (Jongman et al. 

2012) seven different damage models for river floods from different countries are compared. Because the 

analogy with wind induced sea flooding is large, the methodologies are comparable. Jongman states that 

amongst others differences can be found in: 

 Scale of application: local, regional or national; 

 Units of analysis: Surface area (e.g. urban area) or individual objects (e.g. house); 

 Hydrological characteristics: depth, inundation duration, velocity, debris; 

 Data method: empirical, synthetic; 

 Cost base: replacement value, depreciated value; 

 Predicted damage: direct versus indirect and tangible versus intangible. 

It is concluded that different applications ask for different approaches. However, one thing all methods have in 

common is that they consist of several modules representing the necessary modelling steps. A graphical 

representation of the Florida 

Hurricane Model 2013a 

methodology from EQECAT is shown 

in Figure 1-7. It should be noted that 

the figure distinguishes between 

damage and loss. First, the direct 

tangible damages are determined in 

a physical context. Subsequently, in 

the ‘Estimation of Loss’-module the 

monetary consequences of these 

damages are calculated; not only for 

the direct but also for the indirect 

and secondary damages, which for 

instance includes business 

interruption and inflation. 
Figure 1-7 - Methodology of the Florida Hurricane Model 2013a 

(source: EQECAT) 
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To make this more concrete and tangible another representation can be found in Figure 1-8, including spatial 

scales and some characteristics of the different information levels. Based on historical data a synthetic dataset 

of possible hurricanes is constructed, of which the track and intensity are calculated with meteorological 

forecast models. The hydraulic effects of these meteorological characteristics are propagated towards the 

areas of interest (in front of the coast) and corresponding large scale storm conditions (order of 1-10km) are 

calculated, of which wind speed and inundation depth are the most important ones. In order to determine 

local inundation depth (information level 3), the differences between large scale storm tide levels (information 

level 2) and local ground elevation levels are approximated. The last step is referred to as the ‘bathtub’ 

concept, where the water surface onshore is assumed to be as flat as a mirror. With use of vulnerability curves 

(also known as damage curves) the impacts are calculated; see information level 4. The last step comprises a 

financial module, which estimated the losses per storm event or aggregates the losses over a synthetic set of 

events in order to gain overall risk (information level 5). 

 

Figure 1-8 - Overall Model Methodology with spatial scales and properties of different information levels 

1.2.1.3.  Surge and Wave Induced Damage Estimations 

In step 4 in Figure 1-8 the link is made between forcing (storm characteristics) and response (damage to 

objects at risk). To do so, more information is necessary on land use, vulnerability and sometimes socio-

economic features. A presentation of the HIS-SSM10 methodology on damage estimation is given in Figure 1-9. 

This can be seen as the general procedure for the estimation of direct physical damages, consisting of three 

main elements: (1) determination of flood characteristics; (2) assembling information on land use data and 

maximum damage amounts; (3) application of stage-damage functions that relate the extent of economic 

damage to the flood characteristics (Pistrika and Jonkman 2009).  

                                                                 
10 Impact Model of The Dutch Department of Waterways and Public Works (Dutch: Rijkswaterstaat) 
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Figure 1-9 - Schematization of the HIS-SSM model methodology (source: Rijkswaterstaat) 

In section 1.1.1 it is already mentioned that in low lying coastal zones the largest threats come from the sea 

and not from hurricane winds. Therefore, the storm characteristics for most of the impact models reduces to 

hydraulic properties (and no meteorological properties anymore), knowing inundation depth (surge level 

relative to the ground level) and sometimes wave height and/or flow velocity. In general the coupling is done 

with use of damage functions, of which an example is shown in Figure 1-9. Relative damage curves relate the 

forcing (in this case inundation depth) to a damage ratio between 0 and 1. The damage ratio indicates which 

percentage of the (value of the) exposed asset will be damaged/lost by the force. The total loss can be derived 

by: 

Loss = damage ratio  x  value 

When the value is monetary, loss becomes cost, of which the meaning varies. In ‘Damage to residential 

buildings due to flooding of New Orleans after hurricane Katrina’ by Pistrika and Jonkman (2009)  the damage 

ratio (or percentage damage value) relates the financial total loss of a building (value) to the cost of repairs 

(loss), which implies that the damage ratio can be more than 1 if the cost of repair is more than the financial 

total loss of a building. However, it is most common to use damage fractions, which are always between 0 and 

1 and have also been used in HIS-SSM. On the contrary, absolute damage curves relate the forcing directly to 

costs. The categorization of the assets at risk differ per model, but for every asset category (e.g. single family 

building, flat building, high way, bridge) a damage curve has to be made. The number of assets categories used 

and thus damage curves varies from several curves to hundreds and depends on the scale of analysis and how 

easily damage curves can be established. Roughly they are established in three different ways: 

1. By observation data regression; 

2. By expert judgement; 

3. By implementing knowledge from researches on the physical resistance.  
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Data regression is generally preferred since real observations do not tell lies, but this is only feasible when a 

sufficient amount of data is available. Pistrika and Jonkman (2009) analysed the direct damages of Hurricane 

Katrina to residential buildings in New Orleans. They found that there is no clear one-on-one relationship 

between flood characteristics and the exact value of observed damage percentages. The derived damage 

curves vary for different areas within the domain (spatial variations). Moreover, the spatial level of detail of 

the analysis appeared to be very important for the relative strength of the depth-damage relationships. 

Expert judgement and research on the resistance of assets are mainly used when a sufficient amount of 

damage observations is absent. ‘What if’-analyses can be used to establish the damage curves.  For the 

example of residential buildings, one can imagine what happens when the water rises and which parts of a 

representative house will be flooded and which parts of the contents will or won’t be spared. With logic a 

damage curve can be constructed. The effect of structural damage can be added with the use of knowledge 

from structural resistance studies; for instance ‘Wood Frame Building Response to Rapid-Onset Flooding’ 

(Becker et al. 2011). The HAZUS-MH methodology11, as an example, is using a combination of data and what-if 

reasoning to determine their depth-damage relations (Hazus –MH 2.1 Hurricane Model - User Manual n.d.). It 

must be said that this method is far from ideal since important aspects may be forgotten or the corresponding 

effects underestimated; a few centimetres of salt water in a house for instance, can already severely damage 

wall isolation and drywalls, which involves high accompanying costs. 

It should be noted that differences in establishing methods and the (spatial) variety of the data can give large 

differences in damage curves for different models but similar assets. Figure 1-10 shows damage curves for 

seven different river flood damage models for the same asset category. The large mutual differences illustrate 

the amount of uncertainty that is at play. 

 

Figure 1-10 – Depth – damage functions and corresponding maximum damage figures for the CORINE land use class “continuous urban 

fabric”. The functions of each damage model are based on a manual selection of available damage classes, except for the JRC Model. 

(source: Jongman et al. 2012) 

  

                                                                 
11 http://www.fema.gov/hazus 
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1.2.2. Quantifying Uncertainty of Predictions 
The meaning of risk can be very abstract, but it is not difficult to make it quantitative (see paragraph 1.2.1.2). It 

is tangible and can be expressed in units, for instance dollars/year or number of fatalities per event. 

Uncertainty (or certainty) is on the contrary more abstract and says something about the quality of prediction. 

The dictionary states about uncertainty “not clearly or precisely determined; indefinite; unknown”12. This is 

very vague of course, but there are ways to make it more tangible and quantitative as well. This is where 

statistics comes into play, which provides multiple tools to do so. One of these tools is probabilistic logic, which 

combines the capacity of probability theory with the capacity of deductive reasoning. To understand how 

much uncertainty is at play it is important to know how probable the predicted most-probable event is and 

equally important: to know how probable other possible predicted (or non-predicted) events are. Indicators 

for uncertainty are for instance standard deviation and percentiles. In general, Indicators that say something 

about the shape and distribution of the outcome’s Probability Function (PF) say something about the 

uncertainty.   

This can easily be demonstrated by throwing a dice, of which the amount of eyes afterwards is called the 

outcome. A set of outcomes is called the event and all possible outcomes the sample space. In the case of a 

dice the number “1” is one of the outcomes and throwing “1” is an event. In order to figure out for instance 

what the most probable outcome, average, standard deviation etc. is, one needs to know two things: 

1) The full set of possible events; 

2) The chance/probability of occurrence of every single event. 

To gain that information one can use logic (exact formulations), real observations or synthetic observations. 

For the outcome of throwing a dice it is easy to get real observations: if one throws a few hundred times and 

applies a statistical analysis, one comes pretty close to the theoretical answer. The latter can be obtained by 

logic and the use of statistical formulas (which is on itself also based on logic): six possible events; all equally 

probable; an average of 3.5 and; a standard deviation of 1.709. It is said that for (a perfect) dice an exact 

answer can easily be determined, but for more complicated cases this becomes quickly impossible. As a 

combination of the first two methods, it would also be possible to synthesize observations by ‘throwing’ dice 

with a computer. By deriving variables, determining their variability and the mutual (physical) relations from 

the observations are generated, which again can be statistically analysed. This wouldn’t be very thrilling for the 

example of one dice, since there is only one variable influencing the outcome, knowing the number of eyes 

thrown with the dice.  

But what if the outcome would depend on more variables, which is most of the time the case in reality?  Let’s 

take for instance the sum of three dice, for which the probability of occurrence is not equal for all events 

anymore. For instance, the event ‘total nr of eyes = 11’ is more likely than ‘total nr of eyes = 18’. A prediction 

that uses that knowledge would therefore be better than choosing randomly. With a computerized random 

function the throwing of one dice can easily be simulated and with the use of relations (in this case: outcome 

sum of three independent dice) a set of observations can be created. By analysing these observations the Joint 

Probability Density Functions (PDF’s or discretized form: Joint Probability Mass Functions or PMF’s) of the 

variables can be derived. These Joint PDF’s or PMF’s are used in statistical models to establish not only 

marginal PDF’s (without prior knowledge), but also conditional PDF’s of PMF’s (based on known conditions). 

Conditional PMF’s written in table form are also known as Conditional Probability Tables (CPT’s). If one would, 

for example, know what the number of eyes is for one of the dice (for instance ‘total nr of eyes on dice 1 ‘= 6), 

the situation is conditioned and the corresponding conditional PMF’s of the outcome (sum of dice) as well. The 

prediction of the outcome can now be better; see Figure 1-11. This is because the PMF of the sum of the dice 

is dependent on each of the three dice and will change if more is known about these dice. The conditional 

probability function will be narrower than the marginal PDF and the narrower the smaller uncertainty is 

                                                                 
12 http://www.thefreedictionary.com/uncertain 
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relatively. This is in analogy with the explanation of the dictionary: uncertainty = unknowing; and vice versa, 

certainty = knowing.  

 

Figure 1-11 - Probability Mass Functions of the sum of three dice 

It should be noted that the PMF’s of Figure 1-11 are created with statistical formulations, which makes the 

obtained PMF’s exact (assuming perfect dice), or in other words: the PMF’s do not contain errors. If one wants 

to approach the PMF’s of Figure 1-11 based on real or synthesized data, one needs a certain minimum amount 

of observations in order to minimize errors in the marginal and conditional PMF’s. For the example of three 

dice more observations are necessary than for the example with only one dice to obtain equally certain 

probability functions. This is because there are more variables, implying a larger set of unique combinations 

(paths) and possible events. Conditional PF’s are based on a smaller fraction of the data than that is used for 

the marginal PF. That fraction of data should always be numerous enough to obtain joint PDF’s or PMF’s with 

certain confidence in order to be able to derive good conditional PF’s or CPT’s. The other way around this 

counts as well: to which extend one can condition on (or isolate parts of) the data is limited given a finite 

number of data. Conditioning can give narrower conditional PDF’s13 and thus better (more certain) predictions, 

but will at some point also exhaust the data resulting in poorly substantiated PDF’s or PMF’s; the data is said to 

being over-fitted. 

In the example of the three dice not all (physical) processes of influence are known and fully understood. One 

could for instance try to include the angle of the hand and speed while throwing in a computer model in an 

attempt to improve the prediction by reducing the uncertainty. Even if you would know these things, other 

equally important physical properties like irregularities in the table are still unknown, meaning that uncertainty 

will not decrease. The associated uncertainty is known as aleatoric uncertainty or statistical uncertainty, which 

is uncertainty we simply cannot (or do not want to) reduce. In a computer model this uncertainty can be 

added by using random functions. The counterpart of aleatoric uncertainty is epistemic uncertainty, associated 

with processes that are unknown or not fully understood but could be known and are of influence on the 

probability of the outcome; for instance the asymmetry of an asymmetric dice. Not adding the asymmetry to 

the model will give simulated PDF’s that differ from PDF’s established with real observations. The difference is 

                                                                 
13 The opposite can be the case as well: by conditioning it might be very well possible to isolate the data/observations that 
contain more uncertainty than the whole dataset on average. In that case the Conditional PDF is wider than the Marginal 
PDF.   
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associated with the epistemic uncertainty of that specific unknown physical process. Real observations are 

therefore not only of importance for the validation of model predictions, but also for the validation of 

uncertainty quantification. 

It can be concluded that if in statistical models the PF’s can be constructed based on observations from reality, 

than this is more valuable than constructing them based on model observations. This is especially true if not all 

processes are fully understood. However, this is not always as easy as in the previous example. For modelling 

of hurricane impact, three main problems can be addressed: 

1) Not enough real observations; 

2) Not all (physical) processes are known; 

3) The more complexity is added to the model, the more observations are necessary. 

Hurricanes do not happen often and it is simply not possible to repeat the event multiple times under the full 

range of conditions. The number of observations is thus limited. So this is where physics-based modelling can 

be brought into play as a secret weapon, in order to substitute the real observations with observations from 

simulations. These models are a reflection of reality and based on hindcasts against past observations. This 

entails a second problem. Without enough observations, it is hard to say if all processes of influence are (well) 

represented in the model and therefore hard to determine if all possible outcomes can be covered with model 

simulations. Moreover, the uncertainties associated with these unknown processes, either epistemic or 

aleatoric, are hard to quantify since validation possibilities are limited. You could say that there are blind spots. 

The attribution of these blind spots to the total amount of uncertainty is often hard to determine. The burning 

down of a complete block of houses (see ‘Secondary Direct Damage’ in paragraph 2.2.1.2), caused by power 

short circuits, can be seen as an example of this. Some processes will not be known before it happens and 

change the beforehand assumed hazard pathways. 

Third, it should be noted that adding more complexity to a model, in order to better present processes of 

influence and therefore lower uncertainty, comes with a price. The more processes and variables are added to 

predict the outcome, the more observations are necessary to construct the CPT’s in statistical models. The 

number of variables, relations and bins (for the discretisation) included in the model drive the required 

minimum amount of data to get qualitatively good predictions. This is in analogy with the example of throwing 

three dice instead of one. 

1.2.2.1. Damage Curves 

As has been described in paragraph 1.2.1.2 damage curves are used to couple local storm conditions to local 

damage, for instance to a house. Unfortunately, they do not cope with uncertainty. The damage (ratio) is 

always the same for 1m of water, whether it is building A or building B, which makes them deterministic. In 

reality however, this is certainly not true, see the spreading in Figure 1-12. 

 

Figure 1-12 - Depth - Damage scatter plot with the corresponding damage curve (Merz et al. 2004) 
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It should be noted that deterministic damage curves are definitely a shortcoming in reaching the goal of 

quantifying all uncertainties at play. However, they proved to be useful in the quantification of risk on a large 

spatial scale level. This is because some uncertainty of the prediction on building level becomes relatively small 

when you aggregate to larger spatial scale levels; one could say that that the errors average out. The standard-

deviation/mean ratio for the average damage of a number of comparable houses is relatively smaller than the 

damage for one single house. This phenomenon can be best explained by considering the hypothetical case of 

a stochastic random variable (eligibly damage to a building) for which counts14: 

For one random variable X (damage to one house):  

 𝐸[𝑋] =  𝜇          𝑠𝑡𝑑[𝑋] =  𝜎          
𝑠𝑡𝑑[𝑋]

𝐸[𝑋]
=  

𝜎

𝜇
 

For n independent but equal random variables (damage to n houses):              

 𝐸[𝑋̅] =  𝜇           𝑠𝑡𝑑[𝑋̅] =  
𝜎

√𝑛
          

𝑠𝑡𝑑[𝑋̅]

𝐸[𝑋̅]
=  

𝜎

𝜇
∙

𝟏

√𝒏
  

And 

𝐸[𝑋1+ . . . +𝑋𝑛 ] = 𝜇 ∙ 𝑛           𝑠𝑡𝑑[𝑋1+ . . . +𝑋𝑛] =  𝜎 ∙ √𝑛          
𝑠𝑡𝑑[𝑋1+ . . . +𝑋𝑛]

𝐸[𝑋1+ . . . +𝑋𝑛]
=  

𝜎

𝜇
∙ √𝒏 

The assumption of independent samples does unfortunately not hold for the kind of damage predictions in 

present thesis since (spatial) correlation is at play; two houses that lay close to each other are likely to have a 

correlated error (E[X] – X). This is for instance because of similarities in geospatial properties; more about this 

can be found in chapter 0 and 0. Moreover, not every damage prediction has the same distribution and thus 

the same standard deviation. However, this phenomenon  (drop in standard deviation after aggregation) can 

to a certain extend be observed in practice and is for example described in ‘Damage to residential buildings 

due to flooding of New Orleans after hurricane Katrina ‘ (Pistrika and Jonkman 2009). 

1.2.3. Morphological Processes during the Storm 
Most of the earlier mentioned impact models assume that the dominant forces, causing the damage to assets 

at risk, can be first of all found in inundation depth, followed by wave attack and flow velocity; see paragraph 

1.2.1.2.  Where all three hazards are hydraulic properties, only the hydrodynamics are taken into account 

within the models; the morphodynamics during the storm are neglected, which makes computations less 

complex and cheaper. The price you have to pay for this simplification highly depends on local properties like 

coastal configuration, soil properties and human protection measures. For some coasts, of which the Long 

Island coastline is part of, it can have large consequences for the outcome of prediction.  

In paragraph 1.2.1.1 it is stated that hurricanes have the ability to change the appearance of sandy coasts 

drastically. Natural or human made barriers (e.g. dunes, dikes, mangrove areas) can breach locally or get 

flushed away completely during the storm and change the initial situation in such a way that the local 

hydraulic characteristics (inundation depth, wave heights) inland can increase significantly.  This can be 

compared with changing the rules during a game; neglecting the morphodynamics is like denying that the rules 

have been changed and within that analogy this means that the chance of winning –or making good 

predictions - decreases. 

It must be noted that the morphodynamics have a strong two-dimensional character. A dune breach may 

occur at one spot, but the effects can reach much further than the specific transect when the water is 

spreading in all directions. Moreover, some areas show threshold problems: damage only occurs when some 

threshold is reached. This is for instance the case with dike systems: when a given storm may or may not be 

                                                                 
14 From “The research manual: Design and statistics for applied linguistics” (Hatch and Lazaraton 1991) 
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able to cause a breach (threshold storm), a large uncertainty in the damage prediction can be expected. 

Especially for early warning systems this can be a big issue, where for risk quantification purposes these 

uncertainties will even out over the full set of events. 

1.2.4. Spatial Scale and Applicability issues 
In paragraph 1.2.1.2 it is stated that the more observations are made the better predictions can be made since 

more complexity can be added to the statistical model. More observations can come from real world 

observations to a certain extend and thereafter only from more (physics-based) model simulations. As a 

consequence the computational expenses will rise. Computational expenses on its turn are always bounded 

and therefore there is an inversely proportional relationship between the amount of complexity added to the 

statistical model and the process of quantifying uncertainties. 

Next to the increase of computational expenses due to adding of complexity to the statistical model, there is 

also an increase of expenses when one increases the amount of processes and thus complexity in the physics-

based models. Adding 

morphodynamics in particular 

will raise the prediction skill 

of local storm conditions and 

thus indirectly the precision 

of damage predictions. 

However, computational time 

will increase as well. Less 

model simulations will solve 

this problem, but has its 

negative impacts on the 

amount of observations again. 

In this way the complexity of 

both statistical and physics-

based models are bounded. 

Moreover, the smaller the 

spatial scale level of analysis is, 

the more detail the physics-

based models should contain. 

This has, again, its impact on 

computational time. Another 

disadvantage of more detail is 

that relatively large amounts of data should be gathered if one is still interested in a large area. The latter also 

can be of important to the statistical model. This is because damage observations are scarce; the larger the 

area, the more damage observations. 

The above mentioned dilemmas are well known in the numerical modelling industry. In general, the way to 

cope with them is to: 1) find out which goals are important for the application; 2) pick the right scale level of 

analysis and application; 3) add as much complexity until the means become insufficient. The latter is easier 

said than done. Where to add complexity and where not (physics-based models versus statistical model) 

should be extensively analysed. A representation of the axis of freedom, means and goals is given in Figure 

1-13. 

  

Figure 1-13 - A representation of the axis of freedom 
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1.3. Delineation 

Considering Figure 1-13 again, most of the discussed model methodologies from paragraph 1.2.1.2 did not 

include the quantification of uncertainty in their main goals, but focused only on damage predictions and/or 

risk quantification. Developing a model concept including all three aspects is too large a topic for a time limited 

study like this. Therefore, this thesis focuses only on the prediction of damage and quantification of the 

corresponding uncertainties, leaving the risks out. This makes some decisions easier but limits the applicability, 

of which the impacts are elaborated in the discussion part (Chapter 0). 

Some other simplifications have been made as well. First of all, the coupling is only researched on the object 

level, the lowest spatial scale level. Reasoning for this can be found in the idea that if the concept works on the 

lowest spatial scale, it will probably work as well on aggregated levels. Secondly, not at all types of damage are 

considered, but only direct tangible damage to residential buildings. A lot of data is available for that type of 

asset and it attributed the most to the total direct damage caused by Hurricane Sandy: almost 60% of the total 

losses (see paragraph 1.1.1.2). Third, this research is limited to the application of Bayesian Belief Networks as a 

statistical modelling tool and XBeach as part of the physics-based modelling train for the propagation of 

hazards. Both are choices and have their own limitations, which are in more detail elaborated in chapter 0. In 

this limited context probabilistic relations between vulnerability indicators, local storm exposure 

characteristics and corresponding damage are established and analysed. 

1.4. Research Questions 

1.4.1. Main Question 
Based on the insights from the background, the defined problems and delineation the following main question 

is derived: 

What are the steps needed to connect hazard modelling to impact modelling in order to predict damage in a 

probabilistic way? 

1.4.2. Sub Questions 
 

1. What model approach and structure can be used best and which aspects are important? 

2. What are the effects of model resolution and inclusion of morphodynamic processes on prediction 

skill? 

3. Which aspects are of influence on the quantification of uncertainty and what is the sensitivity of 

choices (number of variables, connections and bins)? 

4. How can vulnerability and socio-economic data be integrated and what are the corresponding effects 

on prediction skill and the quantification of uncertainty? 

1.5. Research Approach 

1.5.1. Approach 
To answer the questions posited in section 1.4 the following steps are taken. First of all a new modelling 

concept has been developed, which is introduced and extensively substantiated in chapter 0. To give a proof of 

concept the Rockaway Peninsula has been chosen as a case study. The study site is analysed and in chapter 2 

geographical properties, socio–economic aspects and vulnerability to storms are elaborated, followed by an 

analysis on Sandy’s impact and summary of the available data for the area. The implementation of the model 

concept is described in section 3.2. 
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The results, both from the physics-based modelling part and the statistical model, are given in chapter 0. This 

is also where the sensitivity of variables and impact of choices to damage prediction skill and uncertainty 

quantification are presented. The results are discussed in chapter 0 and based on the obtained insights 

recommendations are given for future research.  

1.5.2. Objectives and Deliverables 
The following objectives and deliverables are derived: 

1. Results of Hurricane Sandy simulations executed with the physics-based models and straightforward 

description of output; 

2. A proof of the proposed model concept; 

3. Recommendations for future research; 

4. Conclusions – answers to the main and sub questions.  
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2. Study Site 
This chapter elaborates geographical and socio-economic properties of the Rockaway Peninsula, both before 

and after Hurricane Sandy struck the area. The specific pathways of the hazards are described in section 2.2 

and the data that has been used for the implementation of the concepts of Chapter 3 are summarized 

together with the corresponding sources in Section 2.3. 

2.1. Rockaway Peninsula 

2.1.1. Geographical analysis 

2.1.1.1. Coastal Configuration 

Most parts of the US East Coast can be considered as barrier coasts, showing sandy coastlines with wide 

beaches, dunes, typical barrier islands in front of the coast and behind it estuaries or lagoons. The Long Island 

coastline, of which the Rockaway Peninsula is part of, forms no exception. In the top panel of Figure 2-1 typical 

configurations of barrier coasts can be seen and in the lower panel a top view of the South-Western part of 

Long Island is presented. The peninsula is thus a typical barrier spit. 

 

Figure 2-1 - Top panel: typical configurations of barrier coasts (source: Royal HaskoningDHV); lower panel: top view of the South-

Western part of Long Island (source: Google Earth) 

It can be seen that the Rockaway Peninsula (encircled in red) is part of a lagoon system consisting of: 1) the 

Jamaica Bay with the typical shoals; 2) the Rockaway inlet, which connects the Jamaica Bay to the Lower New 

York Bay in the west and; 3) the barrier split, which is the Rockaway Peninsula itself. Barrier coasts are wave 

dominated and exposed to mixed-energy sea states. It should be noted that these coastal systems are typically 

very dynamic: large storms can easily change the configuration of the coast. Since barrier islands, either 

attached to the mainland (spits) or isolated by inlets, are sandy low lying areas they can breach or move 

hundreds of meters land inwards when overwash or inundation occurs during high storm surges. Historical 

maps show that this has also been the case for the Jamaica Bay area during the past centuries; see Figure 2-2. 
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Figure 2-2 – Schematic evolution of the Jamaica Bay (source: Royal HaskoningDHV) 

Looking at the cross shore profile of a typical barrier island (Figure 2-3), one can distinguish the following 

elements: 1) a nearshore surf zone with migrating submerged sand bars; 2) sandy beaches consisting of the 

steeper intertidal zone and a higher situated berm; 3) a fore dune at the ocean side and a back dune at the bay 

side with a sheltered area in between (inter dune); 4) a back-barrier bay (lagoon or creek) with tidal marshes 

and shoals. The bay, sheltered from waves, traps a lot of fine muddy sediments and has the ability to give 

home to rich and divers ecosystems. 

 

Figure 2-3 - Features of a Barrier Island (source: CUNY15) 

                                                                 
15 http://www.geo.hunter.cuny.edu/bight/beach.html 
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The Rockaway-Jamaica Bay system consists roughly out of the same features as in Figure 2-3, but human 

intervention changed the natural configuration radically. Larger parts of the back dune and inter dune areas 

are cultivated and turned into urban areas. The beaches are maintained by the US Army Corps of Engineers 

(USACE) and on top of a fore dune (better described as a human made berm) a 5 mile long board walk is 

constructed. At the bay side of the peninsula the transition from island to lagoon is fixed by a local access road, 

named Beach Channel Drive. These human interventions changed the natural dynamics of the system, which is 

elaborated extensively in the next section. 

 The orientation of the peninsula is East-West, which is in agreement with the direction of net alongshore 

sediment transport. The latter is caused by a dominant incoming sea swell coming from the South-East, 

approaching the coastline under an angle. Some other geographical characteristics of the area are given here: 

 The berm crest reaches on average to a height of 8.9 ft. or 2.7 m above North American Vertical 

Datum of 1988 coordinate system (NAVD88), where Mean Sea Level (MSL) is at 0 m NAVD88 with a 

tidal range of 1.8 m (NOAA 2013). 

 The ground levels of the residential areas are on average 2.23 m high (referenced to NAVD88). The 

buildings in the first block from the ocean side are located on higher grounds (+/- 3.5 m) and the 

blocks behind on lower grounds (+/- 1.5 m). See Figure 2-4 in which the ground elevations per 

building are shown spatially; 

 Jamaica Bay is in general shallow with bed levels within the tidal range or a little bit below, but the 

main channels are deeper (-10 m below MSL) and are located directly behind the Rockaway Peninsula; 

see also Figure 3-16. 

 

Figure 2-4 - Ground Elevations per building in meters ref. to NAVD88 (source: NYC buildings dataset) 

2.1.1.2. Morphodynamics 

Different physical processes drive morphological changes of barrier coasts in general and the Rockaway 

Peninsula specifically. In Figure 2-5 the forces and corresponding morphological effects of these processes are 

schematically shown. In the case of long-term equilibrium, morphological impacts caused by the dominant 

processes (e.g. high waves and surge) during a storm are ‘restored’ by a much slower recovering process 

(mainly wind and low waves). For this research only the physical processes during storms are of importance 
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and therefore explanation is restricted to these only. However, it is good to realize that for the general 

appearance and configuration of the barrier coast the long term processes (e.g. dune formation by wind and 

vegetation, the alongshore drifts, net onshore directed transport during low-energy sea states) are equally 

important. 

 

Figure 2-5 - Nearshore Dynamics (source: Royal HaskoningDHV) 

The Long Island coastline is exposed to Nor’easters during the winter months and rare hurricanes during the 

hurricane season, which normally starts in June and ends in the month of November. Although this means that 

threats are present almost the whole year round, sea states are in the winter on average rougher than in 

summer, causing a difference in winter and summer profile; see the differences between the two profiles in 

Figure 2-5. This is because during high-energy sea states the onshore directed sediment transport processes 

are dominated by the offshore directed transport processes. During hurricanes and Nor’easters this dominancy 

is huge and since large amounts of sediments are transported offshore the waterfront retreats inland. The first 

stage, which is always reached during these storms, is schematically shown in Figure 2-6 and is referred to as 

the swash regime.  

 

Figure 2-6 - Different regimes during a storm (source: USGS16) 

The other three stages can happen subsequently when water levels rise. If the water levels are high enough 

the dunes are attacked by the waves and will episodically erode away. This step is referred to as the collision 

regime. During the overwash regime the water levels and waves are so high that waves are overtopping the 

partly eroded dune crest. The last stage is known as the inundation regime when the water level is higher than 

the (remaining) dune crest height and when sediment is transported from the beaches and fore dune to the 

                                                                 
16 http://coastal.er.usgs.gov/hurricanes/impact-scale/inundation.php 
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hinterland (inundation regime). It should be noted that next to these cross shore processes, alongshore 

processes can be of great importance as well. Spatial differences in alongshore erosion rates and weak spots in 

the fore dunes can cause local breaching. Moreover, during high surges the water levels in the Jamaica Bay will 

rise as well, which can cause flooding of the Rockaway Peninsula from the bay side; this is known as back-

barrier flooding, which happened during Hurricane Sandy as well. 

2.1.1. Socio-economic analysis 
Nowadays, the Rockaway Peninsula is primarily a residential area. However, this was completely different in 

the turn of the 20th century, when the New Yorkers vacationed in brand-new hotels and bungalows enjoying 

the Rockaway beaches. With the advent of automobiles in the 1920’s this started to change, since that made 

driving to more distant beaches at Long Island possible (Chan et al. 2013). Because of this drop in tourism, a 

lack of economic opportunities due to geographical isolation and exposure to erosion and weather, the area 

pauperized rapidly. In the 1940’s and 1950’s politicians decided to use the Rockaways to accommodate the 

growing need for affordable housing and relocated New York residents who had to be displaced for large city’s 

renewal projects to the Rockaways. Today, the heritage of these choices can still be seen. Of the 80 public 

housing communities of whole Queens County, 21 are located on the Rockaways, exposing a vulnerable group 

of residents, of which a lot are in need of social services and assistance, to hazardous storm surges (Chan et al. 

2013). 

 

Figure 2-7 - Map showing neighbourhoods (Source: Project Jamaica Bay) 

As of 2010, the Rockaway Peninsula is home to approximately 112,518 residents (Chan et al. 2013) who live in 

the communities of Breezy Point, Roxbury, Fort Tilden, Jacob Riis Park, Belle Harbor, Hammels, Arverne, 

Bayswater, Neponsit, Seaside, Rockaway Beach, Somerville, Rockaway Park and in the east Far Rockaways. Of 

them 40%  are African American, 34% white, 21% Hispanic and the residual 5% Asian or of other race. 

According to the American Community Survey (ACS), the average household incomes show huge spatial 

variability, ranging from 120,000 dollars per year in the western part to less than 20,000 dollars per year in one 

of the communities, see Figure 2-8.  
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Figure 2-8 - Median Income in the Rockaways (source: Averne East Study) 

The Rockaways incorporate 44,325 housing units in 2011 according to the American Census Bureau. 87% of 

these units are occupied of which 62% (a majority) are renter-occupied and 5% are vacant properties, 

predominantly for own use. 18% of the buildings contain more than 20 housing units, which reflect the high 

concentration of public housing properties. The construction material of most single-family houses (majority of 

buildings) is wood with concrete foundations and basement with brick cladding, where larger buildings are 

generally completely made of concrete (Guy Carpenter 2013). The fact that both rich and poor have 

experienced the impacts of Hurricane Sandy and the high density and variability of residential buildings makes 

the Rockaway very interesting for present study. 

 

Figure 2-9 - Predominant land use class per tax lot, obtained from the PLUTO dataset 

Next to residential purposes the Land use of the Rockaway Peninsula mainly consists of open space, outdoor 

recreation and vacant land; hardly any commercial or industrial activity can be found in the area. Land use can 

be spatially observed from Figure 2-9, which comes from the PLUTO dataset from the NYC Department of City 

Planning.  
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2.2. Sandy’s Hazard Pathways and Impacts 

Sandy’s overall propagation and impacts are already discusses in section 1.1.1.2. This section will elaborate on 

the specific hazard sources and pathways at the Rockaways, together with the corresponding impacts. How 

the super storm interacted with the existing geographical components of the system and what the 

corresponding impacts were is discussed. Sandy’s eye made landfall near Brigantine, New Jersey, which is as 

the crow flies over 120km away from the Rockaway Peninsula. Nevertheless, the Rockaways got the full load 

where wind speeds were maximal on the North-West side of the eye, which in combination with the 

geographical features appeared to be unfavourable for New York and surroundings. 

2.2.1. Hazard Sources and Pathways 

2.2.1.1. Surge and Inundation 

The notion of storm tide, storm surge, water level and inundation level can differ. In this thesis storm tide 

refers to the water level including the abnormal rise of sea level caused by the cyclone (storm surge) in 

combination with the astronomical tide, which is in agreement with the terminology of NOAA17. Water levels 

in general can refer to storm tide, but in this thesis it will include short and long waves as well. All are 

referenced to a level (e.g. Mean Lower Low Water (MLLW) or NAVD88, which is more or less equal Mean Sea 

Level). Inundation depth though is often not very clear defined.  In this thesis inundation depth is defined as 

the difference between the water level excluding short waves but including storm surge, tide, setup and long 

waves; and the topographic level (of the ground elevation). 

In Paragraph 1.1.1.1 it is stated that storm tides of 

4.4 m (ref. to MLLW) have been observed near the 

Battery (station NOAA), exceeding the previous 

record of Hurricane Dona (1960). Where the Battery 

is located in the New York Upper Bay area, The 

Rockaway Peninsula is located outside the Bay and 

more exposed to open sea. Unfortunately, no water 

level recording gauges are situated directly offshore 

of the Rockaway Peninsula, which makes it hard to 

make a comparison to the battery. The closest 

station is SDHN418 near Sandy Hooke, NJ, located on 

the ocean side of the Lower Bay, which recorded a 

storm tide of 13.2 ft. or 4.03 m above MLLW and 

equivalently: 3.175 m above NAVD88. Hereby it is 

noted that the sensor stopped recording just before 

the expected time of the peak and it is likely that the storm tide peak would be pretty much equal to the storm 

tide at the Battery (NOAA 2013). It is therefore assumed that storm tides in front of the Rockaway Peninsula 

were a little bit higher than the last recorded levels. Moreover, it is assumed that storm tide in the Jamaica Bay 

was in the same order as well, which is in agreement with a temporary storm tide sensor from USGS19 

(installed a day before landfall) at the water side of Broad Channel, showing a storm tide of 10.38 ft. or 3.16 m 

above NAVD88; see Figure 2-11. 

                                                                 
17 http://www.nhc.noaa.gov/surge/ 
18 Station SDHN4 - 8531680 - http://www.ndbc.noaa.gov/station_page.php?station=sdhn4 
19 SSS-NY-QUE-005WL - Jamaica Bay at Broad Channel at Queens, NY - Storm-Tide Sensor 

Station SDHN4 

Buoy 44065 

USGS storm-tide sensor 

The Battery 

Figure 2-10 - Gauging Stations and USGS’s temporary                  

storm-tide sensor (based on a figure of NOAA) 
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Figure 2-11 - water level records in time by USGS's temporary storm-tide sensor (source: USGS) 

Comparing the bay side storm tides to the ground 

elevations of the peninsula, it can be concluded that back-

barrier flooding was indeed inevitable and corresponding 

local inundations depths in the order of 1 to 2 meter are 

explainable (E. Blake 2013; PlaNYC 2013). According to the 

Army Corps (USACE 2013) Sandy’s storm tide at the berm 

(the small maintained fore dune with boardwalk) was 11.6 

ft. or 3.53 m above NAVD88, which is higher than the 

offshore storm tide approximation, possibly as a result of 

wind and wave set up. This means that the depth over berm 

was 2.7 ft. or 0.82 m; overwash and inundation were thus 

both at play. The Army Corps state that at some areas the 

beaches were heavily eroded and at these places the 

boardwalk was completely destroyed, mainly because of 

the wave impact; see Figure 2-13.  

Figure 2-12 - Oblique aerial photographs of Neponsit, NY (source: USGS). 

The view is looking northwest across Rockaway Peninsula. Sand was 

washed from the beach into the streets, and towards the bayside of the 

island, and several rows of ocean-facing houses were destroyed or 

damaged. The yellow arrow in each image points to the same feature. 

   

Figure 2-13 - Destroyed boardwalk (photographer: Nathan Kensinger) 

Especially the area between 90th and 149th street was heavily affected and overwash deposited piles of 

sediment from the pre-storm berm and beach land inwards; see Figure 2-12. In other areas, where the pre-

storm beaches were wider (which were also the areas with groins), the boardwalk suffered less damage and 

the full inundation regime was never reached. In Figure 2-14 the coastline has been divided in stretches with 

http://kensinger.blogspot.com/
http://ny.curbed.com/uploads/03_kensinger_rockaways_sandy_DSC_2847.jpg
http://ny.curbed.com/uploads/02_kensinger_rockaways_sandy_DSC_2857.jpg
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more or less similar damage properties, which are described in Table 2-1. 

 

Figure 2-14 - Overview of damage to the beaches and Boardwalk; based on aerial pictures taken directly after the storm. 

Table 2-1- Description of the situation and observed damaged for the locations of Figure 2-14. 

 

Next to the temporary storm-tide sensor at Broad Channel, the USGS collected multiple high water marks 

(McCallum et al. 2013). The locations of these marks within the area of interest are shown in Figure 2-15 and 

the corresponding elevations (ref. to NAVD88) and approximations for inundation depth are given in Table 2-2.  

 

Figure 2-15 - Location of the USGS high water marks 

Stretch From To Situation Damage 

A Beach 149th St Beach 126th St No Boardwalk, narrow beach wash-over till end of first block 

B Beach 126th St Beach 110th St Beach Walk Promenade, narrow beach Promenade swept away, wash-over 

C Beach 110th St Beach 90th St Boardwalk, narrow beach Boardwalk swept away, wash-over 

D Beach 90th St Beach 74th St Boardwalk, wider beach, groynes Boardwalk survived, heavy erosion of beach 

E Beach 74th St Beach 61th St Boardwalk, narrow beach, groynes Boardwalk mostly broken, wash-over 

F Beach 61th St Beach 40th St Boardwalk, wider beach, few groynes Boardwalk survived, erosion and wash-over 

G Beach 40th St Beach 35th St Boardwalk, narrow beach, few groynes Boardwalk mostly broken, wash-over 

1 

2
3 

4 

5 

6 

7 
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The locations of the high water marks are both interior and exterior, stating something about the maximum 

water levels with and without short waves. The differences are small, so it is assumed that at these locations 

waves are small compared to the surge and it can therefore be concluded that the high water marks give good 

approximations for the onshore storm tide. 

Table 2-2- USGS High water marks for the Rockaways 

# Name Elevation (NAVD88) Inundation Depth Description 

Feet         Meters Feet        Meters 
1 HWM-NY-QUE-729 12.7 3.87 5.4 1.65 wash line on side of house 

2 HWM-NY-QUE-728 10.7 3.26 3.6 1.10 wash line on wall inside building 

3 HWM-NY-QUE-727 10.8 3.29 0 0 debris line in parking lot 

4 HWM-NY-QUE-726 10.5 3.20 0 0 debris line 

5 HWM-NY-QUE-730 11.2 3.41 5.4 1.65 wash line in front of building 

6 HWM-NY-QUE-731 10.3 3.14 0 0 wash line on wall 

7 HWM-NY-QUE-007 10.7 3.26 4.5 1.37 debris line on fence 

 

2.2.1.2. Wind and Waves 

Wind and waves are in contrast to storm surge peak levels not measured within 

the study area. However, they are recorded by buoys offshore, of which buoy 

44065 20  from NOAA’s National Data Buoy Center is the closest and most 

interesting one. This buoy lies right in front of the Rockaway Peninsula, some 25 

km out of the coast where the average water depth is about 50 m. In Figure 2-17 

the hourly maximal wind gust speed (red dots) and sustained wind speeds (blue) 

are given in the upper panel. The significant wave height (Hs) is given in the lower 

panel. Both wind and wave graphs seem to be pretty much in phase with peaks 

around midnight, which is more or less the same as for the storm tide peak from 

Figure 2-11. 

 

Figure 2-17 - Wind speed and significant wave heights during Hurricane Sandy - recorded by buoy 44065 

Maximum wind gust speeds of 35 m/s (126 km/h) on the open water are high, but not uncommon for storms 

in the region. Sandy was technically not a hurricane anymore at the time of landfall, so this is also to be 

                                                                 
20 (LLNR 725) - New York Harbor Entrance - 15 NM SE of Breezy Point , NY 
http://www.ndbc.noaa.gov/station_page.php?station=44065 

Figure 2-16 - buoy 44065 

(source: NOAA) 

http://www.navcen.uscg.gov/?pageName=lightLists
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expected. On the contrary, significant wave heights of almost 10 m are extreme. They exceed the previous 

record of 7.95 m recorded at Buoy 44065 (during Hurricane Irene in 2011) and 9.30 m observed at the same 

buoy during the Nor-Easter of December 1992 (Sopkin et al. 2014). No return periods have been found for 

these records.  

Wind predictions from the North American Meso-scale Forecast System (NAM) model simulations from the 

National Centre for Environmental Prediction (NCEP) give a clear idea of the spatial and temporal propagation 

of wind direction. The black arrows in Figure 2-18 represent these wind directions for three different moments 

in time: before, during and after the peak of the storm. The yellow dot is the location of buoy 44065 and the 

red arrow shows the direction of the corresponding recorded half hourly mean wind direction. It can be seen 

that the wind is turning from almost parallel to perpendicular to the coast. Moreover, the wind direction 

simulations are in agreement with the observations. 

 

Figure 2-18 - Upper panels: wind directions observed (red) and simulated (black) with the North American Meso-scale Forecast System 

(NAM) model; lower panels: wave directions observed (blue) and simulated (white) with SWAN 

The white arrows in the three lower panels in Figure 2-18 show the wave directions at the same three 

moments. These wave directions are generated with a SWAN model of the New York Bight and Long Island, 

which is elaborated in more detail in section 3.2. Again, the observed records of buoy 44065 (blue arrows) are 

added as well. It can be concluded that the SWAN model, which uses the wind simulation of NAM as input, is 

in agreement with the observations and that the mean wave direction rotates towards the coast during the 

storm as well. 

Near the coast the wave heights decrease because of the wave breaking in limited water depths. However, 

larger waves easily overtopped the fore dunes and at the location of the breaches waves penetrated into the 

residential areas. How far these waves penetrate into the area is not really clear, but it is noticed that the 

elevation of the high water marks is not much higher than the maximum recorded storm tide of the temporary 

USGS storm-tide sensor in the Jamaica Bay. Therefore it is assumed that at the locations of the high water 

marks, the wave heights of both long and short waves are relatively small. Since all high water marks are at the 

bay-side of the area, this information can’t be used as an indication for wave heights on the ocean side of the 

Peninsula. However, post-sandy pictures of destroyed houses close to the beach give proof of severe wave 

attack; see Figure 2-20. 
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2.2.1. Impacts 

2.2.1.1. Morphological Impacts 

The USACE has conducted multiple LIDAR surveys in order to obtain high-resolution topographical datasets 

covering most parts of the Long Island coastline, including the Rockaway Peninsula. The LIDAR datasets are 

also elaborated in section 3.2 and in detail described in Appendix D. In addition to their normal survey 

campaign, for which they survey every 5-7 years, the USACE conducted a post-sandy survey. The differences 

between pre- and post-Sandy LIDAR data show the erosion and sedimentation caused by the storm, indicating 

the morphological impact. A visualisation of the topographical changes is shown in Figure 2-19. 

 

Figure 2-19 - Bed level changes due to Sandy. Left upper panel: pre-Sandy LIDAR, right upper panel: post-Sandy LIDAR, panels below: 

differences between post- and pre-Sandy LIDAR 

In the upper panels pre- and post-Sandy LIDAR data are plotted and the differences (sedimentation is positive 

and erosion negative) are plotted in the lower panels. The post-processing technics differ: buildings, trees and 

other objects have been filtered out in the post-Sandy LIDAR (bare earth) and not in the pre-Sandy LIDAR. This 

is why the buildings have been removed in the sedimentation-erosion subplots; see Appendix A for more 

details on this. Moreover, some blue spots can be noticed in the sedimentation/erosion subplots, especially in 

the middle part of the peninsula. These spots can be ignored, since they are not caused by actual erosion but 

correspond to objects like trees and cars. Unfortunately, a good bare earth extraction of the LIDAR was not 

available.  

From Figure 2-19 it becomes clear that the overwash regime has been reached during the storm. The beaches 

and berm have been eroded heavily and due to the overwash large amounts of sand have been deposited 

behind the berm in the residential areas. In the lower right plot the sedimentation between 0 and 1 m ref. to 

NAVD88 is given, which shows the inland overwash deposits more clearly. Especially between the white stripes 

in the blocks directly behind the sand berm, deposits can be observed. Figure 2-12, which shows the overwash 

in the areas directly behind the berm, is taken between these two white stripes. 

2.2.1.2. Direct Damage 

According to ‘Post-Sandy: Damage Survey’ (Guy Carpenter, 2013) both eastern and western part of the 

Rockaway Peninsula are considered two of the eleven most affected areas in the US, where they make 
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distinction between the Breezy Point community (west) and Rockaway community (east). This paragraph 

elaborates the direct damage to different kinds of assets, but focusses on damage to individual property 

(residential buildings and belongings) as a direct result of the overwash and inundation. Normal water damage 

(deterioration of assets because of getting wet) and structural failure related damage due to hydraulic forcing 

are both considered as primary damage, together with wind damage. Secondary damage, which is additional 

damage caused by the primary damage, can have many elements and depends strongly on the pre-storm 

situation. Fire damage caused by electrical short circuit burnings is an example of secondary damage21.  

Primary Direct Damage 

The surveyors of Guy Carpenter found a few roof tops missing some shingles and only one boarded upper-

story window, indicating that wind induced damage was minimal. On the contrary, water induced damage was 

significant. In the Breezy Point area most houses had interior flood damage. Large debris piles out front of the 

buildings consisting of inundated wood, insulation and household items confirm the interior flooding. Roads 

were therefore impassable and the fact that traffic lights were broken worsened the situation. The water and 

gas supply networks were damaged too. About the Rockaway area they state that every property was severely 

inundated. Although most properties looked undamaged from the exterior, large piles of debris in front of the 

houses showed different. Sand residues were found well inland from the foot of 116th street up to Rockaway 

Beach Boulevard, which corresponds to the area with narrower beaches and fully eroded berm (see paragraph 

2.2.1.1). In the same area more aggressive wave battering effects were clearly visible as well. Figure 2-20 gives 

a selection of pictures taken from the post-sandy situation. 

    
Figure 2-20 - The oceanfront of The Rockaways has been almost completely demolished by wave battering (photos by Nathan Kensinger) 

The task of short term disaster assistance and guidance of the rebuilding process is assigned to the federal 

organisation FEMA. The weeks after Sandy FEMA performed surveys in major parts of the Sandy affected area 

in order to assess the damages. The Hurricane Sandy Imagery Based Preliminary Damage Assessments (IPDA) is 

one of these assessments. Imagery collected by the Civil Air Patrol (CAP) and NOAA was then processed by 

analysts at ImageCat in order to use the results to expedite housing assistance for disaster survivors (FEMA 

2013). Based on the aerial pictures buildings were divided into 4 categories: Affected, Minor, Major and 

Destroyed, of which a more detailed description can be found in Section 2.3. A visualisation of the spatial 

distribution of the damage from the ImageCat dataset (ImageCat Imagery Based PDA22) is shown in Figure 2-21. 

                                                                 
21 Notice the difference between secondary and indirect damage, where secondary damage has a physical relation to the 
storm and indirect damage a relation to the disrupted socio-economic situation. 
22 http://fema.maps.arcgis.com/home/webmap/viewer.html?webmap=307dd522499d4a44a33d7296a5da5ea0 

http://kensinger.blogspot.com/
http://ny.curbed.com/uploads/01_kensinger_rockaways_sandy_DSC_3642.jpg
http://ny.curbed.com/uploads/21_kensinger_rockaways_sandy_DSC_3564.jpg
http://ny.curbed.com/uploads/18_kensinger_rockaways_sandy_DSC_3544.jpg
http://ny.curbed.com/uploads/09_kensinger_rockaways_sandy_DSC_3062.jpg
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Figure 2-21 - Spatial representation of the ImageCat damage Analysis 

From Figure 2-21 the following conclusions can be drawn: 

 The most severely damaged buildings (destroyed or major damage) are almost all located in the 

ocean fronting rows; 

 The rest of the buildings within the first block from the beach are not too much damaged, which is 

assumed having a relation with the higher ground elevation levels within that area, see Figure 2-4;  

 Some hotspots can be designated, for instance in the middle of the eastside of the area, which can be 

seen in the zoomed view on the right side. 

Additional to the aerial survey, FEMA has sent thousands of surveyors into the field23, as part of their Housing 

Assistance Program. The goal was to find out which households qualify for temporary housing and/or financial 

assistance for repair and replacements costs, in addition to the contribution of insurance companies. The 

corresponding reports and data are not public and it appeared to be impossible to get it from FEMA in the 

form needed for present study; namely coupled to geospatial information. 

Secondary Direct Damage 

Not directly related to the forcing of the water or wind, secondary direct damage can still be related directly to 

the storm. Besides short circuit burns, not much is documented about Sandy’s secondary direct damage at the 

Rockaways. However, the fires had an immense impact on some communities. As is already mentioned in 

section 1.1.1.2, 111 houses completely burned down to the ground at Breezy Point. The results can be seen in 

Figure 2-22. Also in Belle Harbor six residential buildings burned down at Beach 130th Street and at Rockaway 

Beach Boulevard a broken power line fell on a three-story building and caused a fire, burning down 19 of the 

surrounding buildings. This hazard on its own took care of more than 125 of the in total 195 completely 

devastated buildings in the Rockaway Peninsula area.  

                                                                 
23 Found on FEMA’s timeline of Hurricane Sandy: http://www.fema.gov/hurricane-sandy-timeline 
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Figure 2-22 - Short-circuit fires burned down complete neighbourhood at Breezy Point and some other places in the area (Photographs 

by USACE and Nathan Kensinger amongst others) 

It is questionable whether this number of burned down houses is representative or rather exceptional. The 

answer is not easy to find, but it is for sure not exceptional, given that an internet search for electrical fires 

caused by Sandy results in multiple stories about other cases in several states, of which the boardwalk fire in 

Seaside Park, NJ, is most noticeable. Moreover, New York Daily News states that the New York Police 

Department (NYPD) has concluded that 68 of the 94 separately originated fires during Sandy started due to 

electrical causes24.  

2.2.1.3. Monetary Losses 

As has been mentioned before, data on monetary damage have been surveyed by FEMA, but these data were 

not available for present study. Nonetheless, to some extend the data is public, which is shortly summarized 

here in order to give an idea of what is out there. FEMA only published their observations of the survivors that 

got the maximum grant of $31,900 that was rewarded from the FEMA Individual Assistance Program per 

postcode. With it come the unmet needs25, the gross income per year of the household and the number of 

members of the household; see Figure 2-23. However, an address or anything else that could have been 

helped to trace back the geospatial identity is not given; unfortunately, because this is of great importance for 

present study. 

Obviously, much more people got a grant from FEMA lower than the maximum amount, which are not 

published in the list. FEMA was willing to give an indication of the spread of the grants: in New York City, of the 

                                                                 
24 http://www.nydailynews.com/new-york/sea-water-surge-behind-serious-sandy-fires-fdny-article-1.1226891 
25 Adding this up to the maximum grant a total damage to the property of that specific victim can be determined. 

http://kensinger.blogspot.com/
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152,766 total FEMA registrants, the average grant for homeowners and renters were $11,612 and $5,333 

respectfully, which adds up to a total of about 1 billion dollars.  

 

Figure 2-23 - impression of the available data on monetary damage. Source: FEMA’s Community Recovery Resource 

Mapping Tool26. 

2.3. Data 

Most of the sources and datasets have already been discussed in the previous sections of this chapter. Three 

of them are elaborated in more detail here, knowing the ImageCat dataset, the buildings dataset from the NYC 

Department of Information Technology and Telecommunications and the PLUTO dataset from NYC 

Department of City Planning. All consist of geospatial identities of the object to which properties are attached. 

For the ImageCat dataset the geospatial information consists of points, for the PLUTO dataset of tax lots (with 

polygons corresponding to the perimeter outlines of the lots) and for the buildings dataset these are buildings 

(with building polygons). A spatial representation of the three datasets is given in Figure 2-24. 

 

Figure 2-24 - Spatial representation of the ImageCat, Buildings and PLUTO datasets 

                                                                 
26 http://fema.maps.arcgis.com/home/webmap/viewer.html?webmap=c8e880eb4e7f4996ac26947884205da0 
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Based on geospatial querying the properties data from the ImageCat and PLUTO datasets have been assigned 

to the building polygons and therefore combined with the properties data of the buildings dataset (see 

Appendix A for more detail on the coupling process). In this way all properties can be used as damage 

indicators on the same spatial scale level (scale of analysis), which is on the building level. An example of this 

can be found in section 2.2, where Figure 2-21 shows the property ‘physical damage’ from the ImageCat 

dataset (originally dots) assigned to the corresponding building polygons.  

The ImageCat dataset consists of qualitative descriptions of the damage; see Appendix J. Based on aerial 

pictures the structural and exterior damage has been observed and mapped. Based on this in combination 

with inundation depth (established based on water levels from storm simulations) the buildings have been 

classified as “Affected”, “Minor damaged”, “Major Damaged” or “Destroyed”. Where all urban areas were 

flooded, all buildings are assumed to be at least affected by the inundation. The consequence is that there are 

no non-damaged buildings within the area. Probably this is not 100% true, but that is not a big problem for 

delivering a proof of concept within this thesis. Considering the other two datasets, Table 2-3 and Table 2-4 

show the relevant properties of the Buildings and PLUTO datasets and a brief description. 

Table 2-3 - Properties of the Buildings dataset 

Buildings 

Property Description 

Height roof Height of the roof referenced to local ground level 

Building type Residential, garage or commercial 

Ground elevation The elevation of the ground referenced to NAVD88 

Shape surface area The ground floor area of the building 

 

Table 2-4 - Properties of the PLUTO dataset 

PLUTO 

Property Description 

Number of buildings on lot The number of buildings on the tax lot 

Number of floors In the primary building on the tax lot, the number of full and partial stories 
starting from the ground floor 

Building class A code describing the major use of structures on the tax lot 

Lot area Total area of the tax lot 

Floor area of total building The total gross area of all buildings 

Residential units The sum of residential units in all buildings on the tax lot 

Tax base - assessed  value The tax lot’s estimated full market value multiplied by a uniform 
percentage for the property’s tax class 

 

It should be noted that studying the added value of including an indicator like construction material would be 

very interesting. However, data on the construction type of buildings are not included in the PLUTO or the 

buildings dataset. That information is available (though not publically) and forms part of the Mass Appraisal 

System (MAS) dataset from NYC Department of Buildings. Unfortunately MAS is not easy to work with27, which 

is why it is not used for present study. Moreover, for the villages Breezy Point and Roxbury PLUTO data are 

only available on aggregated level. For both villages PLUTO contains only one big lot (whole village) in the 

dataset, which can also be seen in Figure 2-9.  

                                                                 
27 Strongly recommended by the NYC City Hall 
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3. Methods 
This chapter describes the concept, implementation and considered scenarios. In section 3.1 the general 

concept is elaborated. Section 3.2 is about implementation of this concept on the case study and section 3.3 is 

about the scenarios which are considered in analysing different aspects of the approach. 

3.1. Concept 

3.1.1. Physical Process Description 
As has been described in paragraph 1.2.1.1 modelling storm propagation has already extensively been done 

and documented within the field of hydraulic engineering, either for coastal purposes or rivers. In general all 

approaches for simulating the physical aspects of storms follow a fairly similar pattern: start with a large and 

coarse model, covering the complete area of influence of the storm, and zoom in to the scale of analysis by 

using more detailed but smaller nested models. When the amount of detail is sufficient, enough information 

on that spatial scale can be extracted from the models and can be used as indicators for the severity of the 

hazards locally. This general approach is also used for present study. 

The actual implementation of the storm propagation differs per impact model and mainly depends on the 

choices the modellers had to make to achieve their goals: predicting damage; quantifying risk; or quantifying 

uncertainty. This is elaborated in subsection 1.2.4. To reach the goals of present study, which are predicting 

damage and quantifying uncertainties, the following choices/requirements have been made: 

 The scale of analysis is on the object level, where the objects are residential buildings; 

 The model grid resolution (micro spatial scale level) must therefore be in the order of 1-10m; 

 At least the storm characteristics inundation depth, wave height, stream velocity and scour depth 

should be able to extract from the simulations on that spatial scale; 

 The scale of application should be in the order of kilometres in order to include a sufficient amount of 

observations. 

The scale of application determines the dimensions of the area of interest for which the damage predictions 

have to be made. This is for instance the scale of the Rockaway peninsula for present study. In order to gain 

the required amount of detail in the area of application the storm characteristics have to be propagated from a 

much larger macro scale level to the scale of analysis. In theory it would be possible to cover all spatial scales 

in one single model. However, to properly simulate the storm on the largest spatial scale level the domain 

should be taken fairly large (in the order of 100-1000 km in both x and y direction) to cover the whole area 

that is significantly influenced by and influences the storm. Combining a large domain with the requirement of 

a high model resolution (1-10m) is computationally and economically infeasible. It should be noted that this 

disadvantage can be overcome by using unstructured grid models (with the use of non-equidistant and/or 

meshed grid configurations, such as in D-Flow FM). However, in such a setup it is cumbersome to rerun the 

model. Moreover, with a nested model one could for instance turn on morphology only in the nested model 

on the lowest scale level. This is why the nested approach is considered to be the best for the present study. 
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Figure 3-1 - Schematic representation of the proposed approach 

In the next paragraph 3.1.1.1 the choice of implementing XBeach is explained, which is a key element for the 

approach of present study. XBeach is capable of propagating storm characteristics just offshore (meso scale 

level information with a resolution of 100-1000m) to the desired micro scale level onshore. How many steps 

and models are necessary for the propagation from macro to meso scale depends on the study site, what 

information is available and whether other operational models are available or not. The proposed approach is 

schematically shown in Figure 3-1. 

In analogy with physical approaches, this approach has a causal order: large storm characteristics cause 

smaller storm scale characteristics, causing on its turn damages. The larger and most dominant forces 

(astronomical and meteorological forces) are coped with on the largest spatial scale, whereas for instance 

wave attack and the vulnerability of a house are included on the lowest spatial scale. Moreover, in the nesting 

approach it is assumed these processes on the smaller spatial scale have no effect on the processes on the 

larger scale. 

3.1.1.1. Morphodynamic influences 

Subsection 1.2.3 showed that neglecting of morphodynamics is definitely a shortcoming for a lot of (coastal) 

sites for which the Rockaway Peninsula serves proof. This is one of the main problems addressed in Chapter 1. 

In order to solve this problem, inclusion of the morphodynamics is essential. To do so, one can make use of a 

handful of numerical models (e.g. Delft3D, Mike, XBeach). Differences between these models can be found in 

the type of numerical schemes, type of formulas solved (both in hydraulics and morphodynamics) and some 

other aspects such as the ‘avalanching’ module, the wave group module and infragravity waves module in 

XBeach (Deltares 2010). Since this research is not about developing a fully proved operational impact model, 

but about giving proof of concept, a thorough comparison -weighting pros and cons- has not been made. 

However, there are reasons for choosing XBeach. One of the main reasons can be found in the fact that it has 

shown good performances in modelling morphodynamics of barrier islands exposed to hurricanes (McCall et al. 

2010). In Figure 2-6 the schematisation of the four different storm surge regimes can be seen for which XBeach 
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has been designed for the case of Santa Rosa Island, FL, under Hurricane Ivan conditions, as has been defined 

by Abby Sallenger (2000)28. 

 The processes described in XBeach are the long waves, travelling with the wave groups and released in the 

surf zone, and together with the storm surge level and short waves cause dune erosion during storms. The 

long waves are solved separately from short waves, which are assumed to be important for sediment transport 

processes only. The physical processes are solved in a 

specific order: first the hydrodynamics are considered; 

secondly, instabilities in the dune face are predicted, 

causing local avalanches of sand (see Figure 3-2). The 

subsequent sediment transport, directed offshore 

(collision regime) or onshore (overwash and inundation 

regime), is a function of flow velocity and stirring effects of 

short waves. The corresponding local transport rates are 

used to update the bed levels, which on its turn affects the 

hydraulics. With this constant feedback loop in time 

XBeach is capable of coping with breaching and large 

sediment depositions during the storm. In this way the storm propagation can be simulated in better 

agreement with reality. The formulations XBeach solves are summarized in Appendix C; more detailed 

information can be found in the XBeach manual. 

 

Figure 3-3 - Regimes during Hurricane Ivan (2004) at Beasley Park, FL (source: Dave Thompson, USGS) 

A representation of XBeach simulating the collision, overwash and inundation regime for Hurricane Ivan (2004) 

hitting Beasley Park, FL, is given in Figure 3-3. From McCall et al. 29 it can be concluded that XBeach is doing a 

fairly good job in predicting the morphological changes to barrier islands. The differences in predicted and 

observed bed levels after Hurricane Ivan are fairly small, as can be seen in Figure 3-4.  

                                                                 
28 ‘Storm Impact Scale for Barrier Island’ (Sallenger 2000) 
29 ‘Two-dimensional time dependent hurricane overwash and erosion modelling at Santa Rosa Island’ (McCall et al. 2010) 

Figure 3-2 - Instabilities cause episodic sliding down of 

land slumps. This is simulated by the avalanching-

module 
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Figure 3-4 - Observed and predicted bed level changes are in agreement. XBeach shows skill for predicting hurricane impacts at barrier 

islands. 

Where XBeach is designed for storm impacts to sandy coasts, it is assumed to perform adequately for other 

sites than Santa Rosa as well, including the Rockaway Peninsula. There are differences though; The Rockaways 

have been subject to extensive urbanisation where this was not the case for Santa Rosa Island. For sites with 

other geographical configurations and soil compositions it might be interesting to compare the performances 

of different numerical models as well.  

It should be noted that XBeach is designed for fairly high resolution purposes and it is far from ideal to use for 

storm simulations on larger spatial scales due to high accompanying computational expenses. XBeach should 

therefore always be used in combination with and nested into another numerical model, in which detailed 

processes such as morphodynamics and long wave are turned off. As has been mentioned before, a summary 

of the formulations XBeach uses can be found in Appendix C.  

3.1.2. Statistical Opportunities 
This section is about the opportunities in approaching the physics-based modelling from a probabilistic 

perspective. First, the uncertainty that comes with the physics-based modelling is described in more detail. 

Secondly, the approach to quantify these uncertainties is explained in general and in more detail for the 

coupling of local hazard characteristics to damage. 

3.1.2.1.  Uncertainty in Physics-based Modelling 

Paragraph 1.2.1.1 elaborates storm simulations and the storm propagation in time, space and spatial scale, 

based on simplified physical relations. The way these physics-based models work is deterministic; every unique 

combination of input (initial conditions, boundary conditions and parameters) produces only one possible 

outcome, the prediction. This prediction is based on a simplified world and how it matches reality is not 

exactly known. As has been extensively elaborated in paragraph 1.2.1.2 the ability of quantifying uncertainty 

(or certainty) of these predictions is of great importance in modelling risks. Subsection 0 addressed the 

problems in quantifying uncertainties in hurricane impact modelling. For physics-based modelling in general 

the following aspects attribute to the uncertainty of outcome: 

1) Simplification of complex reality; 

2) Uncertainty in model input; 

3) Numerical (in)accuracy 
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Since it is simply impossible to cover full complexity of reality in models, the predicted future state will always 

partly be wrong and therefore unknown. It is said to be an approximation. Moreover, the output is as good as 

the input. However, it could be worse: if the involved processes are unstable, irregularities (uncertainties) can 

grow exponentially. The same holds for numerical schemes, which are used to solve the physical relations: 

uncertainties or irregularities can grow to infinity (explode) or decay when there is numerical stability. 

If we now combine the insight of these uncertainties with the model train proposed in subsection 3.1.1, it can 

be concluded that every additional step is adding uncertainty to the final outcome. This is schematically shown 

in Figure 3-5. The part of the uncertainty that is epistemic gives opportunities, since that part of the 

uncertainty can be reduced. The aleatoric part of the uncertainty cannot be reduced, but can still be quantified. 

  

Figure 3-5 - Schematic representation of the growing uncertainty within the model train (not based on real data) 

3.1.2.2.  The Probabilistic Approach  

Exactly the same principles as has been described in subsection 0 can be used in order to quantify 

uncertainties in the model train: real and synthetic data can be used to feed a statistical model with prediction 

skill. By coupling the right variables in the right order (from large spatial scale towards final impacts) it is 

theoretically possible to quantify uncertainty for every step in the process. This is schematically shown in 

Figure 3-6. Comparably information levels as in Figure 1-8 and Figure 3-1 are shown again. If the most 

important variables on every level are interlinked in a network and dependency relations trained with a 

sufficient amount of data (real observations and partly generated by the physics-based modelling train) a 

statistical model can be created with the potential of predicting overall impact or risk. Based on information 

from the highest spatial scale level (boundary conditions on level 1) predictions for the lowest spatial scale 

level can be made in a fully probabilistic way. 
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Figure 3-6 - Information on all levels can be coupled with the use of a statistical model 

In subsection 1.2.4 the problems are addressed that are involved in this process. Overcoming all of these 

problems for every step in the model train can easily embody multiple theses. As is explained in section 1.3 

this thesis will only focus on the step in which local storm conditions are coupled to actual damage. The sets of 

variables encircled in green are therefore the relevant ones for the present study. One thing that becomes 

clear from section 0 is that the more observations are available the better; this is in general true for all 

statistical approaches. Although storms like Hurricane Sandy are exceptional, one storm can provide multiple 

observations on the smallest spatial scale level. This can best be explained on the basis of Figure 3-7. 

 

Figure 3-7 - Two comparable houses are subject to different (maximal) hazard intensities during the same storm 

In the left part of the figure a house is shown during a storm, situated at location A. A comparable house, 

situated at location B, is shown in the right part during the same storm. The local storm conditions for the 
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same storm differ due to geographical and geospatial variations in the impacted area.  This is not only the case 

for these two houses, but for every building in the area. For a densely populated area as New York City, and 

the Rockaway Peninsula as part of it, this can give thousands of damage observations. The good part is that the 

damage caused by Sandy has been surveyed really thoroughly and for almost every house in the area a 

damage observation is available, both physical and monetary, although the latter was not available for present 

study; see Chapter 2. If it would be possible to couple this information with local storm conditions from 

hurricane Sandy model simulations, a direct relationship can be established between (simulated) storm and 

(observed) damage. With this method not only inundation depth can be coupled to the corresponding 

damages; the dependency of damage to indicators like wave attack, flow velocity and scour depth can be 

established as well. In analogy to the example with dice: the more one knows the more certain a prediction 

becomes. By just establishing the relationships and analysing them, the added value of specific indicators can 

be examined. Moreover, not only indicators indicating the severity of the hazards can be used as predictor.  

Additionally, other variables, indicating the vulnerability of buildings and the amount of value at risk, can be 

added as well.  

The flow chart in Figure 3-8 is an example of a potential structure. The overall configuration is based on 

knowledge of what happens during a storm and the damaging factors. Considering the physical damage, the 

forcing (destructive power of the hazards) and resistance (strength of the properties at risk) determine what 

the structural damage to a building is. Considering monetary damage, the physical damage to the structure is 

obviously important; whether a building collapses or not makes for instance a big difference. However, even 

without large structural damage, monetary damage to walls and contents due to inundation can still be 

substantial. Therefore a direct link with the local hazard characteristics is added as well. Additionally, the value 

of the property at risk becomes important too when the monetary consequences of a hazardous event are of 

interest.  

 

Figure 3-8 - Schematic representation of some damage indicators with potential and how they relate to eachoter; Note: this is an 

example and can differ from site to site 
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3.1.2.3.  Indicating Damage 

Which indicators should be added depends on the data that are available for the study site. Information about 

the construction type for instance can be useful; a house built of masonry is probably stronger than a house 

built of wood. A flat building containing multiple households can probably withstand more severe storms than 

a single-family house. This kind of information can be used to make a better prediction for physical or 

structural damage. Again, the added value can be examined. For value at risk indicators other data might be 

interesting. A flooded building containing high value contents will have larger corresponding damages than an 

empty building. Information like household income, functionality of the building and ground floor surface 

might be useful indicators. Hereby it should be noted that indicators like household income are often sensitive 

to privacy issues and are therefore not always available. The same holds for data on monetary damage. 

In the Multi-variate flood damage assessment of Merz et al. (2013) a correlation analysis has been carried out 

for a dataset of more than 1000 records of direct damage to residential buildings in Germany, mostly caused 

by river floods. The Pearson correlation coefficients between 28 potential predictors (damage indicators) and 

the loss ratio (rloss) have been established and are shown in Figure 3-9, where blue dots stand for a significant 

correlation.  

 

Figure 3-9 - Pearson correlation of the 29 variables (28 candidate damage predictors and loss ratio); significant correlation (1% 

significance level) is marked by a dot (source: (Merz, Kreibich, and Lall 2013)) 

A description of the abbreviations can be found in Appendix B. Some conclusions are stated here, which can be 

used as a starting point: 

 The loss ratio (rloss) mainly depends on flood impact predictors where first the water depth (wst) and 

secondly contamination indicator (con) appear to be the most important ones; 

 Early warning/emergency measures appear to be important together with building characteristics, 

where correlations with the loss ratio are high as well; 

 Within the socio-economic status predictors, income and household size show a high correlation with 

the loss ratio; 
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 Mutual dependencies between the flood impact predictions (hydraulic and hydrologic aspects) are 

high. 

The number of variables that can be added (more complexity) depends on the number of observations and 

how the variables mutually relate. This is more extensively elaborated in the next section. Moreover, it should 

be noted that predictions can only be made within the range of the data that is used for training the model. If 

a different storm causes much larger local storm conditions near a different type of house than has been used 

to establish the relationships, a good prediction will not be possible to make30. To overcome this problem it is 

recommended to use data from different areas and different storms for the establishments of the 

relationships. This has been done in the multi-variate flood damage assessment of Merz et al., but not for the 

proof of concept in this master thesis. Only observations of the Rockaway-Sandy case study are used for the 

training, which limits the range of applicability but still provides a solid base for demonstrating the concept. 

3.1.3. Bayesian Belief Networks 
From subsection 3.1.2 it becomes clear that with the use of statistical tools it is possible to look at the model 

train of subsection 3.1.1 from a probabilistic perspective. Especially for the coupling of local storm 

characteristics with damage -for which a nice set of observations can be created relatively easy- there are 

opportunities, but how to do this? Creating joint PDF’s or PMF’s for two dependant variables is not difficult, 

but what if more variables are involved in a network comparable to the flow chart of Figure 3-8? 

To establish the dependency relationships between the variables one can make use of several types of 

statistical models. For this thesis Bayesian Belief Networks (BBN’s) are used, but it is not proven that other 

methods, like Neural Networks, would do worse or better. Bayesian Belief Network (BBN or short: Bayesian 

net), forming part of the directed acyclic graphical model family, is a probabilistic model, which represents a 

set of random variables and the mutual conditional dependencies based on data via directed acyclic graphs. 

The principle is based on the Bayes’ rule, which relates the odds of an observant event, here called Oj, to a to 

be predicted event Fi (from Forecast). The odds of event Fi can be expresses, both before (prior to) and after 

(posterior to) conditioning on event Oj or another (set of) observation(s). For events Oj and Fi the Bayes rule 

formulation is gives as follows: 

𝑝(𝐹𝑖|𝑂𝑗) = 𝑝(𝑂𝑗|𝐹𝑖)𝑝(𝐹𝑖)/𝑝(𝑂𝑗) 

Where p(Fi|Oj) is the updated conditional probability of a forecast, Fi, given a set of observation (prior 

knowledge), Oj. A number of good examples can be found on the internet31 and in textbooks32, which explain 

and demonstrate the principles in more detail. A brief introduction to the principle is given below. 

For this thesis, the Netica software package from Norsys33 is used to construct and work with the BBN’s. 

Constructing a BBN model consists roughly of two phases: 

1) Determining the network structure;  

2) Training of the network. 

The first phase implies determining relevant variables, which are involved in a certain process, and connecting 

these variables with arrows, indicating the mutual conditional dependencies. To make this more tangible the 

                                                                 
30 It must be said that within Netica the prediction goes to complete uncertainty if the entry is out the range of applicability, 
which is a good feature. This is in more detail elaborated in paragraph 4.3.1.3. 
31 For instance: http://people.cs.pitt.edu/~milos/courses/cs2001/cs2001-2.pdf and  
http://artint.info/html/ArtInt_148.html 
32 For instance: ‘The Theory that would not Die’ by Sharon Bertsch McGrayne and ‘Bayesian Networks and Decision Graphs’ 
by Finn V. Jensen and Thomas D. Nielsen 
33 https://www.norsys.com/netica.html 

http://www.amazon.com/Sharon-Bertsch-McGrayne/e/B001IOBN0S/ref=dp_byline_cont_book_1
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example of the three dice is used again. The number of eyes thrown for each dice are variables (in Netica 

variables are called nodes) and the sum of the three dice is another one, see Figure 3-10. 

 

Figure 3-10 - Left: non-trained net of the dice example; right: trained net 

The arrows are all directed from the dice (parent nodes) to the variable ‘sum of dices’ (child node), since the 

sum depends on the number of eyes that have been thrown with the three dice. This example has discrete 

states, which Netica is capable of handling well. Continues nodes on the contrary, Netica is not capable to cope 

with, but discretized continuous variables (in bins) does the trick34. This is amongst others important for the 

continues local storm conditions like inundation depth ranging from 0 to several meters and can be discretised 

by using a bin size of for instance 1m. Since Netica only allows using discrete nodes, the conditional probability 

functions have become CPT’s. 

The training phase consists of ‘feeding’ the network with training data. These data contain observations, either 

obtained from surveys or model simulations. When trained well, every node in the network has an 

unconditioned marginal PMF (possible values/states and corresponding probabilities).  For the example of the 

three dice the trained situation is shown in Figure 3-10 on the right side; trained on a set of 10,000 

observations35 created with Matlab’s random function. 

Since variables can be mutually dependent, the distribution of a certain variable will change when the 

value/state of a related variable is known, e.g. the number of eyes on dice 1 is 6; see the result in Figure 3-11. 

On the right side of Figure 3-11 the opposite of the left side has been done. Now the outcome (sum of the eyes 

on the dice) is known. The CPT’s of the dice show what Bayes things (has learned) the number of eyes on the 

dice would probably have been given the fact that the result (sum of the dice) was 10. This means that Netica 

is also capable of giving predictions upstream (in the opposite direction of the arrows). 

                                                                 
34 Other software packages are developed that can handle continues variables. One of these packages is Uninet (TU Delft 
2008). Unfortunately, Uninet is not capable of working with non-numerical nodes with states like ‘affected’, ’minor’, ’major’ 
and ‘destroyed’, which is a great disadvantage for present study.  
35 Note: due to a lack of anything better, the results of (physics-based) model simulations, which are used as training data 
for the statistical model, are called ‘observations’ as well, where they have of course not been observed in reality.  
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Figure 3-11 - Example of the three dice; left: conditioned on one of the dice and right: conditioned on the sum of the dice. 

It should be noted that in the left part of Figure 3-11 Netica still gives a chance of occurrence for the sum of 

dice being 1, which is of course not possible. Moreover, the marginal PMF’s in Netica of Figure 1-11 are not 

100% the same as the PMF’s of the data. This is because the PMF’s are not directly extracted from a database, 

but calculated with use of the established joint distributions (Joint PMF’s) (Norsys Software Corp. 1997). This 

makes the BBN much faster, but the outcome is not one on one with reality anymore; Netica is a model and 

thus the outcome is an approximation. This is also the reason for the little differences between the dice, 

considering the probability of the predictions, together with the fact that there are small differences within the 

training data as well. Nonetheless, it can be seen that Bayesian Nets work great for dice. 

Now we want to know how well it works for predicting damage. Finding a starting point for the overall 

structure of the BBN is not difficult. As a matter of fact, it should look pretty much the same as the flow chart 

in Figure 3-8. On the contrary, optimizing the structure is a difficult and time consuming job. Some structure 

characteristics are not always easy to determine where they can make a large difference.  From reference 

studies on the prediction of dune erosion impact (Den Heijer et al. 2011) and the prediction and assimilation of 

surf-zone processes (Plant and Holland 2011), which are elaborated in more detail in Appendix H, some 

valuable insights can be gained: 

 For picking the right indicators and establishing the right relations, a lot of process and system 

knowledge is required (or life becomes not so easy); 

 Bayesian networks do not perform well outside the ranges of the training data; 

 The more nodes and the more states (bins) per node are added, the more training data are required; 

see section 1.2.1 as well. 

 The more arrows or links are added, the more training data are required; 

 Which nodes should be coupled by an arrow is not always clear, which can make optimization a time 

consuming job. 

Besides insight in the limitations these papers also show that usage of BBNs can lead to powerful tools and are 
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very well applicable in the field of coastal engineering. In both studies the statistical BBN model appeared to 

be well capable of reproducing the physical patterns with prediction skills in the order of 0.7 to 0.9. Moreover, 

the uncertainty is incorporated really well in the prediction and the models run relatively fast. 

3.2. Implementation 

The concepts of section 3 have been applied to the Rockaway study site described in chapter 2. This section 

will elaborate on the implementation of all steps and briefly describe all elements.  

3.2.1. Overall model structure 
As has been concluded in section 3.1 the final structure will probably differ from site to site, since it highly 

depends on what kind of information is available. For the propagation of the storm four different models are 

used: Delft3D (twice), D-Flow FM and XBeach. For the largest spatial scale level the open source model 

software package Delft3D (including SWAN)36 is used, which embodies larger parts of the East Coast and 

includes the physical processes wind, wave and surge. One spatial scale level lower, the New York Bight is 

modelled in Delft3D again for the propagation of waves (but also including the processes surge and wind again) 

and D-Flow Flexible Mesh (D-Flow FM)37 for the surge (also including wind). For the last spatial scale step the 

XBeach software package is used for the Rockaway peninsula, in which the process wind has been turned off 

and morphology turned on next to the processes wave and tide. 

The Delft3D and D-Flow FM models were already set up for this area and calibrated for Sandy beforehand. The 

D-flow FM model gives better storm surge results in the Jamaica Bay, but has not yet been coupled to SWAN. 

This is why for the wave propagation the Delft3D model is used on that same scale level. An overall flow chart 

of the different elements is given in Figure 3-12. 

 

Figure 3-12 – Flow Chart: model structure and flow of information 

Since coupling of all information is quite data extensive an SQL database is created with use of PostgreSQL38. 

Next to all the local storm conditions, simulated from XBeach, also other types of data are stored in the 

                                                                 
36 http://oss.deltares.nl/web/delft3d/ 
37 http://oss.deltares.nl/web/delft3d/d-flow-flexible-mesh 
38 http://www.postgresql.org/ 



Impact Modelling of Hurricane Sandy on the Rockaways 
 

 | 61  

database, knowing building polygons, building height, damage observations, information on household income, 

etc. With the use of the PostgreSQL’s extension PostGIS39 it becomes easy to join all different datasets based 

on geospatial querying; see Appendix A for the coupling of data based on geospatial information. Moreover, 

PostGIS gives the possibility to make a direct connection between the SQL database and QuantumGIS (short: 

QGIS)40 which is an open source alternative for the ArcGIS software packages. QGIS makes it easy to spatially 

visualize predictions, of which Figure 2-4 is an example. 

With the use of Netica’s Java and Python APIs in combination with Python and Matlab a connection between 

Netica and the SQL database has been established which makes it possible to train the BBN fairly easily. And in 

the opposite direction: storing predictions extracted from Netica into the database again, which then can be 

visualized spatially again with the use of QGIS. By storing all information in one directory overview is 

guaranteed. 

3.2.1.1. Area of Application 

The area that has been described in Chapter 2 embodies the whole Rockaway Peninsula. However, for the 

implementation the western part of the Rockaway Peninsula has not been included within the area of 

application. The following reasoning lies at the root of this decision: 

1) PLUTO data are not available on the object level for this area; 

2) A huge amount of buildings was destroyed by the electrical fire, of which the physics have not been 

taken into account in present study41; 

3) Computational time for the XBeach runs would double where there wouldn’t be twice as much 

damage observations. This is because the western part of the Rockaway Peninsula is mostly rural. 

In Figure 3-13 the boundaries of the area of application are shown. Within this area almost 7800 buildings can 

be found of which 24% are garages. Of the other 76%, 5300 buildings contain at least one residential unit. 

These statistics are based on the PLUTO data. 

 

Figure 3-13 - Area of Application 

  

                                                                 
39 http://postgis.net/ 
40 http://www.qgis.org/en/site/ 
41 Electrical fires seem to be significant for the total amount of damage. It is therefore recommended to study the driving 
forces for these phenomena in more detail. 
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3.2.2. Describing the elements 

3.2.2.1. Netica 

The most important element (considering the purpose of present thesis) is the Netica part, which includes the 

Bayesian Belief Networks. More than one BBN structure has been tested, of which the different structures are 

elaborated in section 3.3. The result of the performed analyses can be found in chapter 0. The structure of 

Figure 3-14 forms a starting point for more comprehensive Bayesian nets. 

 

Figure 3-14 - Local hazard indicator nodes coupled to the damage node. The yellow arrows can be added to include the mutual 

dependencies between the local hazard indicators 

Storm characteristics indicating the hazards on the building level are coupled with black arrows to the results 

of the ImageCat damage survey with the four categories: “Affected”, “Minor damage”, “major Damage” and 

“destroyed”. The local storm conditions are not mutually independent and therefore orange arrows are added 

between these nodes. These connections are based on knowledge about the underlying physical processes. 

First of all, wave height is bounded by water depth and therefore inundation depth. Secondly, both inundation 

depth and wave height influence the flow velocity, which is a combination of stream velocity and orbital 

motions. Third, bed erosion (which is called scour around obstacles like buildings) is influenced by flow velocity 

and wave action stirring up the sediment. One possible arrow is absent, between inundation depth and scour 

depth, since it is assumed that the corresponding dependency is only indirect via significant wave height and 

flow velocity. The way these indicators have been determined from the XBeach simulations is discussed in the 

next subsection. 

The number of bins is also a variable. More bins per node will yield more detail, but increases the required 

amount of observations. This has been elaborated in previous chapters as well. The effects of the number of 

bins on the validation error and calibration error are analysed as well and the results can be found in 

paragraph 4.3.1.3 of the results. 

To the simple structure of Figure 3-14 more variables are added indicating the type of the building, which can 

be seen in the schematization of Figure 3-15. The added value of these variables is discussed in the results in 

Subsection 4.3.2. It should be noted that the damage node is specifically named “physical”. Monetary damage 

could have been included as well if that data was available, but that would probably ask for another 

configuration as for instance can be seen in Figure 3-8.   
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Figure 3-15 - Local hazard indicator nodes coupled to the damage node. The yellow arrows can be added to include the 

mutual dependencies between the local hazard indicators. Additionally, the building type indicators are shown on the 

right side, connected to the damage node with blue arrows. 

3.2.2.2. XBeach 

To determine the local storm conditions an XBeach model has been set up for the area of application. The set 

up and all model inputs are extensively elaborated in Appendix C. An overall view and the most important 

assumptions are given here. 

 

Figure 3-16 - Bathymetry input for the XBeach Model (elevation in m ref. to NAVD88) 
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In Figure 3-16 the final topo-bathymetry input is plotted, which is composed of LIDAR data from three different 

surveys performed by USACE and bathymetrical data from the Coastal Relief Model (CRM)42. The model 

domain is almost 9 by 4 km2 large and the grid size varies between 25 by 25 m2 at the offshore boundary and 

at minimum 3 by 3 m2 in the area of interest near buildings. This implies 711 by 2403 grid cells in total, which 

can be considered as a very large XBeach model. Running one Linux simulation with 32 cpu’s takes about three 

days. Multiple things have been done to decrease the simulation time, which includes the usage of a 

morphological factor of 10 and fairly large wave bins of 20 degrees; see Appendix C. 

The grid size onshore of 3 by 3 m2 is the result of computational limitations: a smaller grid size would be 

unfeasible due to a corresponding increase of the computational time. A larger grid size is assumed to have 

negative effects on the amount of detail captured. The latter is studied by comparing the result to results of 

similar runs with 5 by 5 m2 and 9 by 9 m2 grid cell sizes onshore. More detail is given in section 3.3 and the 

results are discussed in chapter 0. A zoomed view of the bathymetry is shown in Figure 3-17. 

 

Figure 3-17 - Zoomed view of the topo-bathymetry input file with building polygons (thin black lines) and an 10m-offset of these 

polygons (thick black line) 

On top of the bathymetry the building polygons are plotted, which are used to make a seamless transitions 

between the different data layers and to determine which cells lay within a building and therefore have to be 

non-erodible during the simulation. By offsetting the building polygons with 10 m a buffer zone is created. The 

indices of the cells lying within that buffer zone are assigned to that specific building. These cells are used to 

determine the local hazard indicators after the simulation has finished. Results from chapter 0 show that there 

is scope for improvement on this part. The four hazards “inundation depth”, “wave attack”, “flow velocity” and 

“scour depth” are represented in the BBN’s by indicators. For the determination of the four hazard indicators, 

extraction formulations have been used. Inundation Depth is assumed to be the most important one and for 

that indicator more than one formulation has been tried of which the results in relation to the damage is 

compared. These formulations are given in paragraph 3.3.2; here formulations of the other three indicators 

are given.  

                                                                 
42 http://www.ngdc.noaa.gov/mgg/coastal/coastal.html 



Impact Modelling of Hurricane Sandy on the Rockaways 
 

 | 65  

To end up with one indicator value per building per storm event, aggregation in time and space (over the cells) 

is necessary. The following formulations for wave attack, scour depth and flow velocity have been used, where 

cursive text corresponds to spatial aggregation operations and underlined to temporal aggregation operations: 

 Wave attack: max(max( Hs )), the absolute maximum of the local significant wave height during the 

storm. The cell for which this is maximal is taken. 

 Scour depth: max(max( hb0 – hb )), the absolute maximum of the difference between initial bed level 

and bed level during the storm. The cell for which this is maximal is taken. 

 Flow velocity: max(max( ((umean,30min)2
 + (vmean,30min)2)0.5)), the maximum of the half hourly mean 

velocity vector. The cell for which this is maximal is taken. 

With: hb0  = initial bed level (from the LIDAR data) 

hb  = updated bed level 

Hs  = significant wave height 

umean,30min = the 30min mean flow velocity in x-direction 

vmean,30min = the 30min mean flow velocity in y-direction 

The flow velocity is based on means instead of maxima, because it is not said that during the maximum of the 

velocity in y-direction (vmax) the velocity in x-direction (umax) is maximum as well. It should be noted that other 

formulations of these variables might work as well, maybe even better. However, for delivering a proof of 

concept it is assumed to be of minor importance here. Scour depth can be considered as a strange indicator, 

since 1) in the post-Sandy data hardly any scour has been observed in the urban areas (pavements and 

vegetation prevent this from happening); 2) sedimentation (overwash deposits) was dominant over erosion 

onshore. However, bed level changes are caused by a combination of inundation, waves and velocity, which 

are considered the most important indicators. Therefore, scour depth (or bed level change) might be an 

indicator with potential. Moreover, for other case studies scour can play a role in the stability of buildings, 

which makes it interesting to research its added value. 

Within the area of application (area of interest in Figure 3-18) more than 7800 buildings are situated of which 

a bit more than 5300 are residential and overlap with the other datasets, knowing PLUTO and ImageCat. The 

two areas on the side of the domain are shadow zones. Since the normative wave direction is West-northwest 

(see Figure 2-17), the shadow zone at the east side is a bit larger. 

 

Figure 3-18 - The area of interest (or area of application) and shadow zones within the XBeach model domain. 
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The boundary conditions, both wave and surge are extracted from Delft3D and D-Flow FM respectively. Both 

models are briefly elaborated in the next subsection. At the bay side wave conditions are neglected, because 

the bay is sheltered by the Rockaway Peninsula. In Figure 3-19 the water levels, significant wave height and 

significant wave period are graphed in time for Hurricane Sandy. 

 

Figure 3-19 - XBeach boundary conditions: tide, wave height and wave period; red for bay side and blue for the ocean side. 

The water levels have been predicted fairly well compared to temporarily installed water level gauges and 

records of offshore buoys. These gauges predicted slightly lower water levels during the peak (order of 10-30 

cm) than D-Flow-FM does at the offshore boundary. The significant wave height and wave period have both 

been corrected with scaling factors obtained from a comparison between observations of Buoy 44065 (see 

section 2.2), which is located several kilometres out of the coast, and observations of the Delft3D simulation. 

This is also discussed in Appendix D.  
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3.2.2.3. Delft3D and D-Flow Flexible Mesh 

Delft3D – US East Coast 

 

Figure 3-20 - Bathymetry input of Delft3D - US East Coast model 

The Delft3D US East Coast model is set up by Maarten van Ormondt (Deltares) and no documentation is yet 

published. It ranges from Nova Scotia (Canada) to South Carolina and it has a minimum grid size of 

approximately 5.5 by 5.5 km2. The SWAN wave grid is a factor two courser. The bathymetry is coming from the 

Coastal Relief Model and the boundary conditions for Hurricane Sandy are: 

 Tidal information: amplitudes and phases of 13 tidal components from TPXO7.2 dataset43 for 26 

boundary locations; 

 Wave conditions: No wave boundaries, so all waves are internally created; 

 Wind: NOAA’s North American Meso-scale Forecast System (NAM). 

Results of model simulations have been compared to observations of multiple buoys located within the model 

domain and it can be concluded that the model performs fairly well. See Appendix E for more detail. 

Delft3D – New York Bight 

 

Figure 3-21 - Bathymetry input of Delft3D – New York Bight model 

                                                                 
43 https://www.esr.org/polar_tide_models/Model_TPXO71.html 
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The Delft3D New York Bight model is developed by Deltares and Royal HaskoningDHV and is not documented 

either. It ranges from Long Branch, NJ to the state of Rhode Island and has a minimum grid size of 500 by 500 

m2, which is thus 10 times finer than the US East Coast model. The SWAN wave grid is a factor two courser 

again. The bathymetry is coming from the NGDC Coastal Relief Model in combination with Shuttle Radar 

Topography Mission (SRTM)44 data and the boundary conditions for Hurricane Sandy are: 

 Tidal information: nested in the Delft3D – US East Coast model; 

 Wave conditions: nested in the Delft3D – US East Coast model; 

 Wind: NOAA’s North American Meso-scale Forecast System (NAM). 

Model simulations have been compared to observations of buoys located within the model domain and it can 

be concluded that the model underestimates the wave conditions quite significantly; see Appendix E. 

Unfortunately, there have no particular reasons been found yet for this underestimation. Measures to 

compensate for this have been preferred over model optimization, since the latter has potential of being very 

time consuming. See Appendix D.5 for more detail. 

D-Flow Flexible Mesh – New York Bight 

 

Figure 3-22 - Bathymetry input of D-Flow FM – New York Bight model. 

The D-Flow FM - New York Bight model is developed in 2013 by Deltares and Royal HaskoningDHV as a better 

alternative for the Delft3D –New York Bight model (Tuinhof 2013). It ranges from Long Branch, NJ to the state 

of Rhode Island as well, but the southern and eastern boundaries are curved and angled. Since D-Flow FM 

works with a flexible mesh grid, size and form depend on water depth and hydraulic configurations. A zoomed 

view of the grid in the Jamaica Bay is shown in Figure 3-23. The bathymetry is coming from the NGDC Coastal 

Relief Model in combination with Shuttle Radar Topography Mission (SRTM). 

                                                                 
44 http://srtm.csi.cgiar.org/ 
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Figure 3-23 - Grid configuration in the Jamaica Bay and around the Rockaway Peninsula. 

 The boundary conditions for Hurricane Sandy are based on: 

 Tidal information: nested in the Delft3D – US East Coast model; 

 Wave conditions: nested in the Delft3D – US East Coast model; 

 Wind: NOAA’s North American Meso-scale Forecast System (NAM). 

Model simulations have been compared to observations of multiple buoys located within the model domain 

and it can be concluded that the model performs adequately. For more detail see the report ‘Modeling New 

York in D-Flow FM’ by Taco Tuinhof45 and Appendix F. Moreover, the master input files of the two Delft3D and 

D-Flow FM model can be found in Appendix E. 

3.3. Scenarios 

3.3.1. XBeach Runs 
As is stated in section 3.2 three XBeach runs have been executed with three different grid resolutions and 

corresponding cell sizes of 3x3, 5x5 and 9x9 m2. This is in order to study the sensitivity of the damage 

predictions to model resolution. These resolutions have been chosen, because of the following reasons: 

1) 3x3 m2 is considered the smallest grid cell size, since a smaller grid size would be infeasible due to a 

corresponding increase of the computational time. 

2) In Figure 3-24 the Cumulative Distribution Function (CDF) is given for a length indicator (square root 

of the ground floor area) of all residential buildings within the domain. The grid cell size should be at 

least smaller than the majority of the buildings in order to extract information with detail on the 

object level. 9x9 m2 is considered the largest grid cell size for which this is still true. 

3) 5x5 m2 is used for the third run, where the length scale ratios 3/5 and 5/9 are pretty much equal. 

                                                                 
45 http://kennisonline.deltares.nl/3/m/search/products.html?qtype=1&q=tuinhof 
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Figure 3-24 - Cumulative distribution function of the building length indicator (blue), which is the square root of the ground floor area; 

9m is marked in green and the 10%- and 50%-quintiles in red. 

The runs are compared to observations on hydro- and morphodynamics and on how well the extracted local 

storm characteristics can be used as indicators for damage predictions with use of the Bayesian Belief Network. 

3.3.2. Local Hazard indicators-Damage Relations 

Depth-Damage 

Since the depth-damage relation is assumed to be the most important one, these are analysed more 

extensively in this thesis. Inundation depth is said to be the difference between the water level and the ground 

elevation. Again, to end up with one value per building per storm aggregation in time and space (nearby cells) 

is necessary. The formulations for the extraction of the other hazard indicators all take the maximum in time 

and space, except for flow velocity. For inundation depth more options are considered, like (half-hourly) mean 

or minima.  Three axis of freedom can be distinguished: 

1. Temporal aggregation: absolute maximum or maximum of 30minute-means; 

2. Spatial aggregation: minimum, mean or maximum of surrounding cells; 

3. Order: subtracting (bed level from water level) before aggregating (in space and time) or the other 

way around. 

Not all possible combinations are assumed to have potential. The following eight formulations are compared, 

where cursive text corresponds to spatial (over the cells) operations and underlined to temporal (over time) 

operations: 

Table 3-1 - Eight different extraction formulations for the inundation depth indicator 

# Order (first) Temporal aggr. Spatial aggr. Formulation 

1. Aggregate Max Max Max( max( hs ) ) – Min( hb0 ) 
2. Aggregate Max Mean Mean( max( hs ) ) – Min( hb0 ) 
3. Aggregate Max Min Min( max( hs ) ) – Min( hb0 ) 
4. Subtract Max Max Max( max( hs – hb0 ) ) 
5. Aggregate Max of 30minute-mean Max Max( max( hs,mean,30min ) ) – Min( hb0 ) 
6. Aggregate Max of 30minute-mean Mean Mean( max( hs,mean,30min ) ) – Min( hb0 ) 
7. Aggregate Max of 30minute-mean Min Min( max( hs,mean,30min ) ) – Min( hb0 ) 
8. Subtract Max of 30minute-mean Max Max( max( hs,mean,30min – hb0 ) ) 

 CDF building length indicator 

 9m line 

 10%- and 50%-quintile lines 

= square root of the building ground floor area 
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In addition to this, the inundation depths gained from the XBeach simulations are compared to inundation 

depth establishment based on the bathtub concept, which assumes one single water level for the whole area. 

Both are compared in relation to the damages as well. In analogy with the water level variations, also the 

ground elevation levels can be chosen differently. According to the concept the ground elevation levels are 

taken from the bathymetrical file and thus from the LIDAR data, but it is also possible to use the ground 

elevation levels from the Buildings dataset; see section 2.3. In combination with the water level options, four 

alternatives to determine inundation depth are compared in relation to damage: 

1) Water levels from XBeach and ground elevation levels based on LIDAR; 

2) Water levels from bathtub concept and ground elevation levels based on LIDAR; 

3) Water levels from XBeach and ground elevation levels based on Building dataset; 

4) Water levels from bathtub concept and ground elevation levels based on Building dataset. 

Wave Attack, Flow Velocity and Scour Depth 
Next to the depth-damage relations also the wave-damage, velocity-damage and scour-damage relations have 

been studied. The correlations with damage are given in section 4.2 and the corresponding added value to the 

prediction of damage is discussed in ‘Coupling Storm Conditions to Damage’ (section 4.3.1). Moreover, the 

differences of Bayesian nets with and without mutual connections between the local hazard indicators are 

elaborated. This means with and without the orange arrows from Figure 3-8. 

3.3.3. Indicators for building type and value at risk 
The sensitivity of the damage observations and predictions to the following indicators is studied: 

 Building height; 

 Surface area of the ground floor; 

 Tax base value (which is also based on the size of the building and lot area); 

 Number of residential units in building; 

 Building class. 

Most of these indicators speak for themselves; “building class” needs some additional explanation. The 

classification is based on functional aspects. More than 150 different classification groups (in the PLUTO 

dataset) are brought back to 5: 

 A: One family dwellings; 

 B: Two family dwellings; 

 C: Walk-up apartments; 

 D: Elevator apartments; 

 Other. 

In the case of multiple functionalities per building the one is used which has the largest share of surface area. 

Detailed descriptions of the building type indicators and classes are given in appendix J.  
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4. Results 

4.1. XBeach 

In this section the skill of XBeach and the extraction of local hazard indicators are elaborated. The 

hydrodynamics and morphodynamics are compared to the observations and the differences are discussed 

partly here but also in chapter 0. In this section some results are given for the 3x3m2 run, as has been 

described in section about implementation. 

It must be said that the model is poorly calibrated and not validated at all. The 3x3m2 run with scaled wave 

boundary conditions gives far from best results. Considering the morphodynamics (see subsection 4.1.2) the 

5x5m2 run with non-scaled waves appeared to give better results when comparing to the observed erosion 

and sedimentation. However, this conclusion has been drawn too late in the process and with a limited 

amount of time the best shot had to be taken, which is presented here. A comparison on grid resolution in the 

urban areas (3x3m2, 5x5m2 and 9x9m2) is made in relation to the damage, which is elaborated in section 0. 

4.1.1. Hydrodynamics 

Surge 

In Figure 4-1 the water levels are plotted together with the updated bathymetry, both in a top view and in 

cross section. The three regimes collision, overwash and inundation can be distinguished. Approximately 2.5 

hours before the tide peak (offshore) the beaches and berm have already been eroded heavily, as can be seen 

in the cross section of the upper left panel. One hour later (10pm), the berm gets overtopped at multiple 

places and the berm starts breaching. A little later after midnight, during the peak of the tide, larger part of the 

area is flooded by the sea water. First the water comes from the ocean side and after the peak a gradient in 

the opposite direction lets the water flow from the Jamaica Bay side into the domain. This can be explained by 

the phase lag in surge between the offshore and bay side boundary; see Figure 3-19. 
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Figure 4-1 - Snapshots of the simulated hazard propagation: Upper left panel: collision regime with heavy beach erosion; upper right 

panel: overwash regime with high long waves penetrating into the urban area; lower left panel: inundation regime where almost the 

whole peninsula is flooded; lower right panel: post-Sandy situation (note updated bed) 

It should be noted that the inundation regime has only been reached at some locations, where at other 

locations the beach and berm prevented this from happening. The cross-sectional plot in the lower right panel 

shows the change in bed level for a location where the inundation regime was reached. According to the 

XBeach run, three areas can be assigned as hotspots, where the inundation regime was reached and severe 

flooding was at stake. These areas are encircled with red. If we compare this to the observations discussed in 

paragraph 2.2.1.1 it can be concluded that the model predicts two of these hotspot locations well, knowing the 

area in the middle and the western part of the domain. On the contrary, the eastern part did not show full 

inundation in reality, where there was still a relative wide stretch of beach observed after the storm. Moreover, 

hardly any sediment deposits were found inland at these spots and the boardwalk survived. 

In Figure 4-2 the absolute maximum surge level for each grid cell is graphed, which includes tide and long 

waves. The non-flooded areas are white. In the same figure, in the three lower panels, the surge levels are 

given for the locations of the three high water marks within the domain. Comparing the peaks with the high 

water marks an underestimation is found for locations 5, where for location 6 and 7 overestimation is at stake, 

both in the order of 20-50cm. Thereby, it is assumed that the high water marks correspond to the highest 

water levels excluding short waves, which are negligible at these locations. The latter holds according to Figure 



Impact Modelling of Hurricane Sandy on the Rockaways 
 

 | 75  

4-3 as well. 

The underestimation of the storm tide at location 5 can be explained by the large white gap south of it 

corresponding to a non-flooded area, which shelters that location from the ocean side. However, the area 

corresponding to the white gap did flood in reality, which can be learned from the ImageCat damage dataset. 

Comparing the ground elevation levels from the buildings dataset and LIDAR (see Figure 2-4 and Figure 3-16) it 

can be concluded that this problem can be assigned to obstructing objects in the LIDAR data. The non-flooded 

area contains a lot of vegetation (mainly trees), which seems to be problematic for the water flowing into that 

area.  

 

Figure 4-2 - upper panel: Maximum simulated storm tide including long waves; lower panels: observed and simulated water levels at 

location 4, 5 and 6 

The overestimation of the other two locations seems to be more in line with the rest of the domain. Although 

~3.8 m water levels are high compared to the observed high water marks, they are still low compared to water 

levels in larger part of the domain. Especially at the ocean side of the peninsula maximum surge levels of 4.5 to 

5 m are no exception. Moreover, in the zoomed view of Figure 4-2 it can be seen that around buildings, 

especially the higher ones, the maximum water levels rise to 6 m and even higher. These local peaks are 

assumed to be caused by local instabilities due to steep bed level gradients.  

Comparing the results with the observations, a structural overestimation of the water levels is likely. However, 

it is hard to underpin this since 1) at the ocean side no high water marks are documented for verification and 2) 

the assumption that the absolute maximum water level gives a good approximation for the high water marks 

can be wrong. Nonetheless, a structural overestimation is not necessarily a big problem for delivering a proof 
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of concept for present study. As long as all observations are overestimated to the same extend, Bayes might 

be forgivable. On the contrary, the local peaks due to instabilities do form a problem, which is is discussed in 

more detail in subsection 4.1.3. 

Waves 

In Figure 4-3 the absolute maximum significant wave height for each grid cell is graphed. It can be concluded 

that the height of the waves decreases when they approach the coast. This is in line with expectation, since 

wave height is limited by depth. The maximum significant wave heights are in the order of 2-3 m near the first 

buildings, which is considered pretty severe. The waves rapidly decay between the buildings and wave height 

becomes negligeble even within the first block from the beach.   

 

Figure 4-3 – Maximum simulated significant wave height (Hs) 

Since the maximum water levels are assumed to be overestimated by XBeach, the question can be asked 

whether this can be explained by too high infragravity waves (long waves). The long wave heights are a direct 

result of the offshore wave boundary conditions, which have been scaled to an offshore buoy; see paragraph 

3.2.2.2. The scaling implies an increase of the significant wave height gained from the Delft3D/SWAN model by 

a factor of 1.5, which is quite a lot. This might have been wrong, implying an overestimation. From the scatter 

plots in Figure 4-4 it can be concluded that a 5x5m run with non-scaled wave conditions gives onshore lower 

maximum storm tide levels and wave conditions than with scaled conditions. However, the differences are 

minimal and the 5x5 m2 non-scaled wave run still shows an overestimation compared to the observed (see 

Appendix G). The onshore hydraulic sensitivity to offshore variability in significant wave height is thus not so 

high. Moreover, It can be concluded that other reasons must be there as well for the overestimations of 

onshore hydraulic storm characteristics, other than uncertainty in wave boundary conditions. 
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Figure 4-4 - Scatter plots: 5x5m2 Scaled Waves run vs 5x5m2 NON-Scaled Waves run 

Velocity 

The magnitude of the absolute maximal occurred Lagrangian flow velocities during Hurricane Sandy have been 

plotted in Figure 4-5. The lighter band in front of the coast corresponds to the surf zone and the high velocities 

in that area can be assigned to alongshore water flow induced by the refracting waves. A lot of the wave 

energy transforms into kinetic energy, which in the overwash and inundation regime results in flooding of the 

streets. The street pattern is clearly visible and the wider the street, the higher the maximal velocities. In the 

middle of the model domain maximal velocities of 4 m/s can be seen, which is quite high for urban areas. In 

the western part of the domain in the non-flooded area (white gap in Figure 4-2) the water is blocked, which 

limits the flow velocities around this area. It is therefore assumed that the velocities are underestimated at 

these locations. On the bay site this is in analogy with the water levels, but on the ocean side the kinetic 

energy of the waves has to go somewhere and transforms in potential energy again, piling up the water in the 

streets. The blockage of the non-flooded area might therefore, locally, be an explanation for the assumed 

overestimation of the water levels. In the other areas no such large blockage can be found, but local objects 

like trees are the visible cause of smaller obstacles in the LIDAR data. 

 

Figure 4-5 - Maximum simulated absolute flow velocity (m/s) (Lagrangian flow) 
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The direction of the maximal velocities during the time of occurrence varies, but is mainly offshore directed. 

This can be explained by Figure 4-6 in which the time of occurrence is spatially shown. The darker orange 

colors correspond to a time of occurrence after the offshore tide peak. At that time the berm has already 

completely eroded away near breaches and forms no obstacle to the water anymore. After the offshore tide 

peak the water gradient becomes negative and water flows from high (bay side) to low (ocean side), mainly 

channelling through the streets. In the zoomed view of Figure 4-6 the lighter orange colors correspond to a 

time of occurrence before the storm tide peak. This can be explained by the fact that these areas are sheltered 

from bay side flooding mostly by buildings. The local (lower) maximal flow velocities are therefore caused by 

incoming water from the ocean side in combination with wave celerity. 

 

Figure 4-6 - Time of occurrence of the maximum simulated flow velocity; The colors correspond to the timeline graphed below the map 

and the offshore storm surge levels have been plotted as well to give a reference. 

Last, it should be noted that the comparison between the 5x5m2 runs with and without scaled wave boundary 

conditions did give some differences in flow velocities; see Figure 4-4. This shows that a substantial part of the 

additional wave energy in the scaled run is transformed into kinetic energy. Unfortunately, no flow velocity 

observations have been documented which can support the calibration and validation process. 

4.1.2. Morphodynamics 
The purpose of including morphodynamics is first of all to better predict the hazard propagation in time. 

Therefore, it is most important that the erosion and erosion rates of natural and manmade barriers (beach and 

berm which reduce the hazard intensity behind it) are predicted in harmony with reality. If these barriers 

erode too fast, the hazard intensity in the hinterland will be overestimated and vice versa. Secondly, scour 

depth and sediment deposits in urban areas are of interest. 
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Figure 4-7 - Morphological change. From left to right: initial bed levels, predicted post-Sandy bed levels, observed post-Sandy bed levels 

and the difference between these two. 

In Figure 4-7 maps of the post-Sandy bed level changes are given for the observations (second panel) and the 

XBeach results (third panel) of the 3x3m run with scaled waves. In the first panel one can see the initial bed 

levels and in the last panel the difference between predicted and observed bed level changes. The following 

things can be concluded: 

 At the beach and berm much more predicted erosion can be found than observed; see the large long 

stretched blue band; 

 The littoral zone shows a large sedimentation/erosion gradient at the place where LIDAR data 

overlaps the CRM data; 

 In general larger inland sediment deposits are predicted than observed. 

In Figure 4-8 three areas have been zoomed into, which tell the story in more detail. At location one (western 

part of the domain), the erosion at the beach is predicted fairly well. However, the erosion doesn’t stop near 

the first buildings but continues into the streets of the first block. This is not in line with the observations. 

More inland, in the middle of the peninsula, the influence of LIDAR differences is clearly visible: the pre-Sandy 

LIDAR (XBeach input) still contains all the trees and other vegetation in this area and thus the XBeach output as 

well, whereas in the Post-Sandy LIDAR these obstacles have been filtered out. The difference of these two 

indicates therefore intense sedimentation, which is of course not true. 

At location two, in the middle of the domain, XBeach overestimates the erosion at the beach and berm, 

whereas inland sedimentation is overestimated. It is assumed that the latter is a direct result of the first, 

because the erosion of the berm enables the inundation regime from happening. For location three similar 

overestimation can be seen. However, here the differences between predicted and observed are even larger. 

The beach in this area is at its widest and together with the larger groins less erosion is observed. Moreover, 

the boardwalk here is mainly intact. On the contrary, XBeach doesn’t show less erosion than in the other parts, 

which is hard to explain. 
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Figure 4-8 - The same as Figure 4-7 but now zoomed views of three representative locations. 

The overestimation of the beach erosion, especially in the eastern part, cannot only be explained by too severe 

offshore storm conditions. Results of the 5x5 non-scaled wave run, which are graphed in Appendix G, show 

much better agreement between predicted and observed beach and berm erosion. However, the 

overestimation in the eastern part of the domain stays the same. The sudden transition of LIDAR to CRM data 

in the littoral zone, which is at these specific areas visible, might give some explanations for this; see Figure 4-9. 

 

Figure 4-9 - Cross sectional plot of the initial bed level profile. The sudden jump in bed level due to CRM-LIDAR differences is encircled 

in red. 

The drop in bed level, encircled in red, is not natural for sandy beaches and is caused by the inaccuracy of the 

CRM data. Therefore it is probable that the littoral zone in XBeach has less sand than in reality and more 

sediment from the beaches is transported offshore to compensate for this, which implies an increase of the 

erosion rate onshore. Hereby it should be said that even if the bathymetry is more veracious than it is right 

now, than it would still be difficult to predict morphological changes correctly for this particular case study. 

Sandy was a critical storm, breaching the berm at some places and at other places not. A small change in 

offshore boundary conditions can therefore have a large effect on the morphological changes and the 

accompanying consequences for the urban areas. This is in analogy with a threshold problem. 
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Figure 4-10 - Scatter plot: predicted (vertical) versus 

observed (horizontal) bed levels. The colors 

correspond to the initial bed levels (in meters ref. to 

NAVD88) 

Figure 4-10 holds a scatter plot of the 

predicted and observed bed level changes. 

The colors correspond to the initial bed 

levels. It can be concluded that the 

nearshore parts (-6m to 0m) and the 

beaches (0m to 2m) are predicted fairly 

well and thus XBeach shows skill. The 

predictions onshore are insufficient and in 

general one could say that the higher the 

initial bed level is, the worse the prediction 

becomes. One explanation for this can be 

found in the earlier mentioned differences 

between pre- and post-Sandy LIDAR. Trees for instance will end up in the dark red zone, showing observed 

erosion and negligible predicted erosion. Another explanation can be found in the fact that the cells just 

outside the building polygons are not assigned as non-erodible cells. Building walls are not straight but a bit 

blurred in the LIDAR data and therefore these erodible cells have higher initial bed levels. In XBeach heavy 

erosion can be seen around especially higher buildings and the sediment is deposited in neighbouring cells. 

This is shown in Figure 4-11. 

 

Figure 4-11 - Predicted bed level changes around a relative high building with corresponding cross section in which the initial bed level 

and predicted post-Sandy bed level are plotted. 

4.1.3. Local hazard indicators 
The local hazard indicators “inundation depth”, “wave attack”, “flow velocity” and “scour depth” are extracted 

from the XBeach results according to chapter 0. It is to be expected that overestimations of the onshore storm 

characteristics also have their impact on the local hazard indicators. Nonetheless, as long as the over- or 

underestimation is structural, buildings with major observed damage will probably still correspond to higher 

indicator values than buildings with minor or no damage. To what extend this is the case is studied and is 

elaborated in the next two sections. Here the spatial distributions and associated marginal probability mass 

functions are given for the 3x3 m2 run. Comparisons between different runs have been made, but only in 

relation to the observed damage, which is discussed in section 4.2. 
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Inundation Depth 

Inundation depth indicators extracted from the XBeach results according to formulation 1 from Table 3-1 in 

subsection 3.3.2 can be graphed spatially. An example is given in Figure 4-12. 

 

Figure 4-12 - Impression of the spatial distribution of the inundation depth indicator 

Next to the above used formulation, seven other ways to determine the local inundation depth have been 

defined and posited. To compare for the whole domain, the spatial distribution can be best illustrated by 

interpolating the local conditions (one record per building) to the rest of the urban area of the domain. The 

result is shown in Figure 4-13. Note that buildings surrounded with more free space will attribute to a larger 

area of the collored map. The PMF’s are given in Figure 4-14.  

 

Figure 4-13 - Inundation depth indicators according to the 9 different extraction formulations 

One general problem that can be observed is that the erosion around high buildings in XBeach (see subsection 

4.1.2), which does not exist in reality, is taken normative for the inundation indicator; the dark red areas in the 
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graphs correspond to buildings for which this is the case. By taking the spatial minimum of the water level (of 

the surrounding cells) the results seem to be less sensitive to this problem than by taking the mean or 

maximum. Moreover, starting with subtracting the ground elevation from the water level gives more realistic 

results than starting with spatial and temporal aggregating. The latter can give unrealistic high inundation 

depths (> 20 m for formulation 1 and 5). However, where differences are small it is hard to pick one based on 

the above information. The depth damage relations, discussed in section 4.2, give more insight in the 

functionality of the different formulations. 

 

Figure 4-14 - Marginal Probability Mass Functions of the inundation depth indicator according to the 9 different extraction formulations 

Wave Attack 

 

Figure 4-15 - Left: Spatial distribution of the wave attack indicator; right: marginal Probability Mass Function of the wave attack 

indicator 

The indicator “wave attack” is defined as the maximum occurred significant wave height in space and time. 

The spatial distribution of maximum wave height appeared to be straightforward in subsection 4.1.3: the 

waves are relatively high on the beach and quickly decay land inwards. Exactly the same can be observed for 

the wave attack indicator; see Figure 4-15 for a similar spatial distribution as for the inundation depth. 
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In Figure 4-16 three zoomed views of the spatial distribution of the wave attack indicator are plotted. Where 

inundation depth showed an unrealistic positive correlation with building height, this does not seem to be the 

case for significant wave height, which is good.   

 

Figure 4-16 - three Impressions of the spatial distribution of the wave attack indicator 

Flow Velocity 

 

Figure 4-17 - Left: Spatial distribution of the flow velocity indicator; right: marginal Probability Mass Function of the flow velocity 

indicator 

In analogy with wave attack, the spatial distribution of the flow velocity indicator shows a fairly similar picture 

as can be seen in Figure 4-17. Some streets are definitely subject to higher flow velocities than others. If this is 

a correct representation of reality, is hard to say. There is definitely a lot of inaccuracy due to objects 

obstructing the flow; see subsection 4.1.1. Velocity-damage relationships in section 4.2 give more insights on 

this matter. 

 

Figure 4-18 - three Impressions of the spatial distribution of the flow velocity indicator 
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Scour Depth 

 

Figure 4-19 - Left: Spatial distribution of the scour depth indicator; right: marginal Probability Mass Function of the scour depth 

indicator 

As is elaborated in subsection 4.1.2 observed scour depths around buildings are negligible, where 

sedimentation was dominant and pavements or vegetation prevented scour from happening. Although streets 

and gardens are not set to non-erodible in XBeach, sedimentation was still the main XBeach output on land; 

see Figure 4-7. Nonetheless, over 15% of the buildings show a maximum occurred scour depth of at least 2 

meter, which can be seen in Figure 4-19. This is again caused by the erosion around especially high buildings, in 

analogy with the overestimations of the inundation depth. Therefore scour depth shows a high correlation 

with building height; see Figure 4-20 and the Pearson correlations in the next section. This correlation has of 

course no physical explanation but finds it origin in the way XBeach is set up and the extraction 

method/formulation. 

 

Figure 4-20 - three Impressions of the spatial distribution of the scour depth indicator 

4.1.4. Grid resolution 
The other subsections in this section only consider the results of the run with a grid cell size of 3x3m2 in the 

urban areas. This subsection compares these results with hazard indicator values extracted from runs with cell 

sizes of 5x5m2 and 9x92. In Appendix G, visualisations of the XBeach output for these runs are given for water 

levels, bed level changes, waves and flow velocity. In general it can be concluded that the big picture is pretty 

much the same. More important are the effects on the final hazard indicators, which are elaborated here.  

Except for the grid resolution, all other model properties were exactly the same during the XBeach runs. 

Considering the extraction method for the local storm conditions, keeping all parameters the same gave the 

following problem: more than 60% of the buildings were assigned as ‘non-flooded’ for the 9x9m2 run. In 

comparison to the 3x3m2 run with only 14% non-flooded buildings, 60% is quite significant.  The following can 

give explanation: in the case of the 9x9m2 in combination with a 10m-buffer zone only one or no cell at all falls 

within the buffer for the majority of the buildings. Moreover, a lot of these ‘lonely’ cells appear to be non-
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flooded due to a high ground elevation level (influenced by noise of the building). To a lesser extent this is also 

the case for the 5x5m2 run. The 10m-buffer zone is thus too small, but what happens when a larger buffer 

zone is taken? To find out, three comparisons are made between:  

1) Local hazard indicators of the 3x3m2, 5x5m2 and 9x9m2 runs extracted with use of the same 

10m buffer; 

2) Local hazard indicators of the 3x3m2, 5x5m2 and 9x9m2 runs extracted with the use of three 

different buffers, knowing 10, 18 and 30 meter respectively.  

3) Local hazard indicators of the 3x3m2 run for the earlier mentioned different buffer zone sizes 

in order to say something about the effect of using a larger buffer size. 

In Figure 4-21 the PMF’s of the four indicators are graphed for the three different runs with a 10m buffer for 

the extraction. Remark the peaks at zero for the 9x9m2 run, which reflects the large amount of ‘non-flooded’ 

buildings (over 60%).  

 

Figure 4-21 - Marginal PMF's of the four local hazard indicators for runs with grid cell sizes of  3x3, 5x5 and 9x9 m2 and equal extraction 

buffer areas 

In the following graphs the buffer size is adjusted to the grid resolution. The corresponding non-flooded 

percentages are given in Table 4-1, which are now almost all mutually equal. Still, the 3x3m2 run shows less 

non-flooded buildings, which is assumed to be caused by the fact that water will easier flow to sheltered areas 

with finer grid resolutions. 
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Table 4-1 - Percentage non non-flooded per run and buffer size related to the minimum grid cell size 

Run Buffer  
Size (m) 

Percentage 
Non-Flooded (%) 

3x3m2 run 10 14 

5x5m2 run 18 18 

9x9m2 run 30 18 

 

The impact on the hazard indicators of larger buffers for courser grids can be seen in Figure 4-22, where 

mutual differences between the runs are now smaller for inundation depth, wave attack and scour depth. Flow 

velocity on the contrary (lower left panel) shows a significant shift to higher velocities for a courser grid and 

related larger buffer zone. Whether this phenomenon can be assigned to the variability in grid resolution or 

variability in size of the extraction buffer zone can be answered by comparing the results of Figure 4-22 and 

Figure 4-23. In the latter the PMF’s are given of local hazard indicators for the 3x3m2 run extracted with 

different buffer zone sizes. The same shift can be observed and therefore it is concluded that an increased 

buffer zone causes an increase in flow velocities. A logical explanation can be found in the fact that in the 

middle of the street higher flow velocities are more likely to occur. This is in analogy with higher flow velocities 

in the main channel of a river. The middle of the street falls easily within the buffer zone when the buffer 

expands 30m from the building perimeter outlines and less easy with an expansion length of 10m.    

 

Figure 4-22 - Marginal PMF's of the four local hazard indicators for runs with grid cell sizes of  3x3, 5x5 and 9x9 m2 extracted with 

different buffer sizes 
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Figure 4-23 - Marginal PMF's of the four local hazard indicators extracted from the run with a grid cell size of  3x3 m2 for different 

extraction buffer areas 

Another thing that can be observed from Figure 4-23 is that the PMF’s seem to be fairly sensitive to the buffer 

zone size. Whether this sensitivity also holds for the quality of damage predictions is elaborated in the next 

section. Here it is concluded that the choice of extraction method and/or formulations can be very 

determinative for the obtained distributions. 

4.2. Damage Dependencies 

In this section the local hazard indicators and other potential indicators are discussed in relation to the 

physical damage from the ImageCat dataset. These relations are one-on-one, which means that simple 

correlation, sensitivity formulations and BBN’s with only two nodes are sufficient enough to demonstrate the 

mutual dependencies. In the next section (section 0) the real potential of Bayesian nets is elaborated by adding 

more variables. 

In analogy with the Muti-variate flood damage assessment (Merz, Kreibich, and Lall 2013) the Pearson 

correlation have been determined between different indicators; see also chapter 0. The same thing has been 

done for the present study as well, of which the results are shown in Figure 4-24. 
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Figure 4-24 - Pearson correlations between potential indicators. Inundation Depth is according to formulation 8, which is 

max( max( hs,mean,30min – hb0 ) ) 

The Pearson correlation is expressed in the Pearson product-moment correlation coefficient, which is 

formulated as: 

 

In the figure dark red stands for a strong positive correlation (--> +1.0) and dark blue for a strong negative 

correlation (--> -1.0). A coefficient of 0 means no correlation at all. Some mutual dependencies are 

straightforward; for instance building height is positively correlated with the ground surface area of a building. 

In general, it can be seen that the building type indicators are strongly correlated with each other and the local 

hazard indicators mutually as well. This is in line with expectations. On the contrary, the found correlation 

between local hazard indicators and the observed ImageCat damages46 are, to put it lightly, counterintuitive. 

The positive depth-damage correlation is weak and a negative damage correlation for wave attack and scour 

depth are not to be expected. An explanation for this can be found in the fact that Pearson’s formulation 

assumes a linear relationship between the indicators, which is not necessarily true for all combinations. 

To give a more realistic picture of the damage relations, Figure 4-25 gives the probability of the damage 

conditioned on A) the 10% lowest values of the specific variable and B) the 10% highest47. The variables are the 

same as in Figure 4-24. The marginal probability distribution is plotted as well in green in the upper left panel. 

                                                                 
46 To calculate the Pearson correlation coefficients for the damages the qualitative description of the ImageCat dataset 
(affected, minor, major and destroyed) have been substituted by quantitative values, knowing 1, 2, 3 and 4 respectively. 
One should be careful with drawing conclusions on the results, but whether a correlation is positive or negative can be 
concluded with sufficient confidence. 
47 Note: the PMF’s are not based on output of a BBN, but directly established from all data. 
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Additionally, Figure 4-26 shows the change of probability between the lower and higher conditions for the 

different damage classes. 

 

Figure 4-25 - PMF's of Damage conditioned on different indicators with 1) the lowest 10% (blue); 2) the highest 10% (red). Left upper 

panel: marginal PMF of damage. 

One of the remarkable things that can be concluded from these figures is that for higher significant wave 

height the chance of a building being “affected” increases significantly and the chance of “minor damage” 

decreases. This indicates a decrease of risk, where one would expect the opposite. This can be explained by 

geographical features of the peninsula. It can be seen in Figure 4-3 that waves are rapidly decaying between 

the buildings and therefore the buildings with the highest wave attack are all found in the block closest to the 

beach. In Figure 2-4 in subsection 2.1.1 it can be seen that these houses have been built on higher grounds. 

Therefore, the inundation depth during Sandy was lower, which can also be seen in Figure 4-13. Studying the 

relation to damage of one hydraulic variable without considering the influence of other properties can thus 

give a distorted picture of reality. This is a direct result of spatial correlations within the domain. 
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Figure 4-26 - Difference of probability between PMF's conditioned on either the 10% lowest values or 10% highest. Left: absolute 

difference; right: relative difference on a logarithmic scale. Red means that the probability of the PMF conditioned on the 10% highest 

values is higher and blue vice versa. 

Depth-Damage Relations 

 

Figure 4-27 - Simple Bayesian net with the inundation depth indicator as predictor for damage 

For inundation depth the correlation with damage is positive, where the chance on ‘major damage’ and 

‘destroyed’ increases when higher inundation depths are found within the XBeach results. The eight different 

formulations for the inundation depth indicator are now considered in relation to the damage. Both the 

Pearson correlation coefficient and the Log-Likelihood Ratio (LLR) test scores for the simple Bayesian net of 

Figure 4-27 are given in Table 4-2, together with the mean and standard deviation of all candidate indicator 

values. The LLR test is very much suitable to relatively compare predictions of competing models or model 

configuration. In the test the log-likelihood of the prediction (in this case the CPT after conditioning on 

“inundation depth”) is compared to the log-likelihood of the marginal probability, according to: 

𝐿𝐿𝑅𝑗 = 𝑙𝑜𝑔 {𝑝(𝐹𝑖|𝑂̃𝑗)𝐹𝑖= 𝑂𝑗
} − 𝑙𝑜𝑔 {𝑝(𝐹𝑖)𝐹𝑖= 𝑂𝑗

} 

Here F is the forecast and O is the observed on which is conditioned. If the log-likelihood ratio is positive, the 

model has predictive skill, but if the ratio is negative the prediction is worse than guessing based on the 

marginal probability. By summing the LLR’s of all hindcast events the LLR test score can be determined. The 

larger the score, the better the model performs. See Appendix I.2 for a more extensive elaboration of the LLR 

ratio test concept. 
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Table 4-2 - Pearson correlation and log-likelihood ratio test scores for the indicator 'Inundation Depth' extracted from the XBeach 

results according to eight different formulations 

# First Time Space  
 
 

Mean water 
level (m ref. 
NAVD88) 

Mean 
depth 

Std Pearson 
correlation 

LLR test score Relative to  
perfect check 

1. Aggregate Max Max  5.25 2.38 1.94 -0.01 71.03 0.05 
2. Aggregate Max Mean  4.37 1.59 0.88 0.08 73.97 0.05 
3. Aggregate Max Min  3.99 1.23 0.73 0.14 90.48 0.06 
4. Subtract Max Max  - 1.21 0.75 0.06 76.63 0.05 
5. Aggregate Max of  

30min-mean 
Max  5.13 

2.28 1.72 0.02 79.22 0.05 
6. Aggregate Max of  

30min-mean 
Mean  4.25 

1.48 0.87 0.12 84.92 0.06 
7. Aggregate Max of  

30min-mean 
Min  3.87 

1.13 0.71 0.21 98.74 0.07 
8. Subtract Max of  

30min-mean 
Max   

- 1.09 0.73 0.12 84.97 0.06 

 

From Table 4-2 it can be concluded that formulation 7 scores best, which subtracts the minimum initial bed 

level from the normative water level derived by taking the minimum in space and maximum of the half-hourly 

mean in time. Moreover, the LLR-test scores are positive, which means that the Bayesian net shows some 

prediction skill. However, the scores are only a bit larger than zero compared to the perfect check48, which has 

a score of 1480. This means that it performs barely better than randomly guessing from the marginal damage 

PMF. 

In subsection 4.1.3 it is stated that the more conservative formulations are better capable of filtering out the 

inaccuracies due to the non-realistic erosion around buildings. In addition to this insight, it can be concluded 

from Table 4-2 that de indicators based on these formulations also have a higher predictive capacity. The 

inaccuracies are thus of influence. Moreover, the predicted mean water levels are relatively high compared to 

the high water marks. This raises the question if the bathtub concept, having none of these inaccuracies at all, 

would do better. By taking the mean of the high water marks (3.27m above NAVD88) as the bath tub water 

level and subtracting the minimum bed levels extracted from XBeach the following results are found: 

Table 4-3 - Pearson correlation and log-likelihood ratio test scores for the indicator 'Inundation Depth' based on the bath tub concept 

with a constant water level of 3.27m above NAVD88 

# method formulation  
 
 

Mean water 
level (m ref. 
NAVD88) 

Mean 
depth 

Std 
depth 

Pearson 
correlation 

LLR-test score Relative to  
perfect check 

1. Bathtub hs,bt – Min( hb0 )  3.27 0.69 0.62 0.46 299.62 0.20 

 

The conclusions is that using one single water level for the whole domain works better than using water levels 

extracted from the XBeach results. But is this because XBeach overestimates the water levels structurally or 

because of a wrong prediction of the spatial variability? In the maximum water levels. In Figure 4-28 the 

Pearson correlation coefficient is plotted for different bathtub water levels, together with the LLR-test score 

relative to the perfect check. 

                                                                 
48 The Perfect check is explained in more detail in Appendix I.2. In a nutshell: it is the LLR-test score for a certain node (in 
this case ‘Damage’) conditioned on itself; it gives therefore the highest possible score and forms an upper limit for the skill 
of prediction. 
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Figure 4-28 - The log-likelihood ratio test scores for the bathtub concept with varying water levels, divided by the perfect check score 

(red) and the Pearson correlation coefficient.  

The Pearson correlation peaks for a bathtub water level of 3.65 m (above NAVD88). For higher water levels the 

correlation does not change much, which strengthens the theory that for present study an overestimation of 

the hazard indicators is not a big problem as long as it is structural (see section 4.1.3). Based on this graph it 

can be concluded that it is not the overestimation of the water level that decreases the prediction skill, but it 

must be the incapability of this specific XBeach model to represent the spatial variability of the water level 

realistically.  

It is noticed that the graph of the relative LLR-test score shows two saddle points with local minima. An 

explanation for this might be found in the fact that Netica uses bins to discretize the nodes, implying that the 

classification of the bins also has its influence on the quality of prediction. This is not further studied in this 

thesis, but it is recommended to look at in more detail in future research. 

Next to the water surface elevation levels, the inundation depth depends on the ground elevation level. For 

the formulations 1to 3 and 5 to 7 these are extracted from the LIDAR by determining the minimal bed level of 

the surrounding cells. However, ground elevation per building is available in the Buildings dataset as well. In 

Figure 4-24 and Figure 4-26 it can be seen that these ground elevation levels are more strongly correlated to 

the damage than the ground elevation levels from the LIDAR data. Therefore, the LLR-test scores for the 

inundation depth based on the ground elevation levels from the Buildings dataset have been determined as 

well. The scores are given in Table 4-4 and from these results it can be concluded that the inundation depth 

indicator based on the buildings data scores better when using the bathtub concept, but worse when using the 

XBeach results. It is assumed that this is because the Buildings data ground elevation levels are more accurate 

than the levels based on the LIDAR. However, inaccuracy of the XBeach bathymetrical input will subsequently 

influence the output and thus the water levels. 

Table 4-4 - Log-likelihood ratio test scores for the inundation depth indicator based on a combination of A) XBeach results or the 

bathtub concept and B) ground elevations from the LIDAR data or Buildings data. 

Ground elevation\Water Level XBeach – formulation 7 Bathtub concept: 3.27m ref. to NAVD83 

LIDAR data 98.74 299.62 
Buildings data 44.73 437.38 

 

It should be noted that having both options is a luxurious position; for other sites the buildings data might not 

be available and then LIDAR does work. Moreover, it is likely that the extraction method can still be optimized, 

but that goes beyond the scope of present study.  
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4.3. Bayesian Belief Network 

The chance of two nearby lying houses showing similar damage predictions is larger than for two distant 

houses. This is assumedly mainly because of geographical features, which show variations on a larger scale 

than the building level. This phenomenon is in present thesis understood as spatial correlation. Reason for the 

spatial correlation of the damage is that some (but not all) physical processes that cause the damage are 

correlated in space; e.g. inundation depth and wave attack. Considering only one physical process as damage 

indicator and neglecting other spatially correlated indicators, can give a distorted picture of the actual 

indicator-damage relations, as can be learned from the findings in subsection 4.1.3. It must be said that this is 

inescapable when you only use data from one storm at one study site.  

As an extreme hypothesis, if one would be able to correctly determine all physical processes on the building 

level that influence the damage (both for the establishing of the statistical relations and the conditioning for 

the prediction), these negative effects of spatial correlation wouldn’t exist. Therefore, another way to 

minimize the negative effects of spatial correlation, besides using data from a wide range of study sites and 

storms, is to condition on more indicators (or on more important ones). Bayesian Nets are extremely useful for 

doing so, as is demonstrated in this section. 

4.3.1. Coupling Storm Conditions to Damage 
The local storm conditions are separately studied in relation to the damage in the previous section; here they 

are combined. Two net configurations are considered: 1) one with only connections between the local storm 

nodes and damage (left panel of Figure 4-29); 2) and one where Connections are added between the local 

storm characteristics according to the configuration of Figure 3-8; see the right panel49. 

            

Figure 4-29 - Local storm conditions coupled to damage in a Bayesian Belief Network. Left: no arrows between local hazard indicators; 

right: mutually coupled local hazard indicators 

For both configurations some hindcasting scenarios have been carried out. The resulting LLR-test scores are 

given in Table 4-5. It can be concluded that conditioning on more indicators raises the quality of prediction. 

This means that when more is known, the prediction becomes better, which is in line with the theory discussed 

in chapter 3. 

                                                                 
49 Note that the marginal distributions of the ‘ImageCat Damage’ are not the same as each other and differ from the 
marginal distribution in reality as well. This is because Netica does not use the real data for the distributions of child nodes 
but established CPT’s instead. The (conditional) distributions are therefore only a reflection of reality. 

Configuration 1 Configuration 2 
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Table 4-5 – Log-likelihood ratio test scores for different hindcasting scenarios 

 

“Wave attack” is the most skilful indicator, followed by “flow velocity”, “inundation depth” and “scour depth”. 

This was to be expected based on the results of previous sections. Netica’s sensitivity analysis can confirm this; 

see Table 4-6 showing the results for configuration 2. Another interesting thing that can be observed is that 

the sum of the individual LLR-test scores (scenario 1 to 4) is less than the combined score of hindcast scenario 

7, which implies that the individual components work like a team. Together they are better able to tell what is 

actually happening. 

Table 4-6 - Netica's sensitivity analysis of configuration 2: variance reduction of Beliefs. 

Node Mutual Info Percent Variance of Beliefs 

ImageCat Damage 13.566 100.000 0.320 

Wave Attack 0.186 13.700 0.037 

Inundation Depth 0.054 3.980 0.007 

Flow Velocity 0.027 1.990 0.005 

Scour Depth 0.048 3.560 0.009 

 

If we now compare both configurations, two things can be concluded. First, configuration 2 scores better when 

conditioned on only one indicator. This makes sense since the other indicators are now better known as well 

(their mutual dependency is used). Hereby it should be noted that in the case of Rockaway Peninsula the 

bigger waves are found on relative higher grounds and thus lower inundation depths. Adding this inverse 

proportionality as a relation in the network (with configuration 2 as a result) may work fine for the Rockaways 

where it will decrease the negative effects of spatial correlation when conditioning on one indicator. However, 

this can be totally wrong when using these relations for predictions to other sites. In that case configuration 2 

will probably not perform better than configuration 1. The second conclusion that can be drawn is that for 

conditioning on all indicators (hindcast scenario 7) configuration 1 seems to do better. 

Hereby, it is important to note that the Bayesian nets have been trained on 100% of the data and the 

hindcasting has been performed for exactly the same observations (also 100% of the data). This means that 

Netica is always familiar with every event the nets are conditioned on during the hindcasting, since that same 

event is also used for training purposes. When the BBN is used for predicting a new situation, this will be 

different, since the hindcasting dataset differs from the training dataset. How well the BBN is capable of 

                                                                 
50 It can be seen that the Perfect Check differs for the two configurations. This is because CPT’s of both models are 
different. The fact that the score for configuration 1 is higher does not necessarily mean that it is better capable of 
representing reality, only that the hindcast data better fits to what Netica thinks is reality.  

Hindcast 
scenarios 

Conditioning on: LLR-test score: 
Inundation 
Depth 

Wave Attack Flow 
Velocity 

Scour 
Depth 

Physical 
Damage 

Configuration 1  Configuration 2 

Absolute Relative  Absolute Relative 

1 1 0 0 0 0 13 0.01  63 0.04 
2 0 1 0 0 0 241 0.15  278 0.19 
3 0 0 1 0 0 19 0.01  32 0.02 
4 0 0 0 1 0 2 0.00  60 0.04 
5 1 1 0 0 0 263 0.16  331 0.22 
6 1 1 1 0 0 415 0.26  376 0.25 
7 1 1 1 1 0 515 0.32  405 0.27 
Perfect 
Check 

0 0 0 0 1 1607 1.00  501496 1.00 
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predicting this new situation depends amongst others on the quality of the CPT’s. Too many nodes or bins will 

have a negative influence on the quality. This can be best explained by an example; see the illustration of 

Figure 4-30. The white dots are random picked observations for two variables. With two bins all possible 

conditioning combinations are covered by observations (white dots); the CPT’s can thus be well substantiated. 

Four bins give some extra detail, which makes the prediction better, but now some (red) cells and thus some 

corresponding poorly substantiated CPT’s can be find as well.  With eight bins the number of empty (red) cells 

increases further, which on a certain moment makes the model worse instead of better. The same problem 

occurs when more nodes are added, which also results in more conditioning combinations. 

 

Figure 4-30 - Example (no results); More bins give more detail, but at a certain point also less validation for the CPT's. 

Within the 5333 available data points 144 of the 256 (= 44) possible conditioning combinations are not found 

for configuration 1 and 2. For the corresponding blind spots, Netica assumes all possible outcomes to be 

equally probable (Affected: 25%, Minor: 25%, Major: 25%, Destroyed: 25%). This default will become dominant 

when the number of nodes or bins increases. Hereby it must be noted that from the 144 poorly substantiated 

combinations, some are not likely to happen (e.g. 0-0.1 m inundation and 1-3 m high waves).  

Instead of 100% usage of the data for both training and hindcast purposes, it is also possible to train the BBN’s 

with a randomly picked 90% of the observations and performing hindcast scenario 7 on the other 10%. This 

has been done 10 times (changing the spatial distribution of the 90% training data and thus 10% hindcasting 

data) and the results can be found in Table 4-7. 

Table 4-7 - Log-likelihood ratio test scores for 10 runs; trained with randomly picked 90% of the observations and hindcasting with the 

remaining 10% 

 LLR test score – Configuration 1  LLR test score – Configuration 2 

Scenario 7 Perfect Check ratio Scenario 7 Perfect Check ratio 

 46 161 0.29  36 151 0.24 
 51 163 0.31  39 151 0.26 
 41 158 0.26  27 145 0.19 
 43 159 0.27  30 146 0.2 
 43 169 0.25  32 159 0.2 
 52 163 0.32  40 150 0.26 
 45 152 0.29  33 141 0.24 
 42 155 0.27  31 143 0.22 
 53 165 0.32  42 154 0.27 
 49 158 0.31  40 149 0.27 

Sum 465 1603 0.29  350 1489 0.24 
Std. 4.4 5.0 0.03  5.1 5.4 0.03 
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The average of the ratio for both configurations can now be compared with the results from Table 4-5. The 

ratio drops from 0.32 to 0.29 and 0.27 to 0.24 for configuration 1 and 2 respectively. This is in line with 

expectations. Moreover, in 34 of the 5330 (0.6%) hindcast cases the BBN was not familiar with the given 

conditions, resulting in a practically flat conditional PMF. It is assumed that if this percentage gets much higher, 

the predictions will become worse. This is elaborated in more detail in the bin analysis of paragraph 4.3.1.3. 

4.3.1.1. Spatial Correlation 

The negative effects of spatial correlation have been mentioned already a few times. Where the damage 

predictions are spatially correlated, also the bias (difference between predicted and actually observed) is 

spatially correlated. If for instance the hazard indicators within the training data are structurally overestimated 

(or underestimated) and the harzard indicators used for the prediction are not (and vice versa), the quality of 

prediction becomes worse. It is hard to say how disadvantageous this is for making predictions for other sites, 

since no other site is studied in present thesis. However, the negative effects can already be seen within this 

study site area. In theory, the 

perfect model would give 

qualitatively similar good results 

for different sub areas within 

the domain. In practice, this will 

not be the case, since the 

average bias of a sub areas will 

differ from place to place as well 

due to this spatial correlation. In 

Figure 4-31 ten randomly 

chosen locations within the 

domain are shown. For these 

locations the 10% nearest 

buildings are used for the 

hindcast and the other 90% for 

training purposes. The results 

for all ten locations are given in 

Table 4-8, together with the 

sum and standard deviation. 

Figure 4-31 - Ten randomly picked locations within the urban areas of the model domain. 

Table 4-8 - Log-likelihood ratio test scores for 10 runs; hindcasting on the observations of the 10% closest buildings and trained with the 

remaining 90%. 

location LLR test score – Configuration 1  LLR test score – Configuration 2 

Scenario 7 Perfect Check ratio Scenario 7 Perfect Check ratio 

1 62 178 0.35  43 160 0.27 
2 54 149 0.36  35 130 0.27 
3 32 174 0.18  12 154 0.08 
4 49 154 0.32  26 131 0.2 
5 -31 200 -0.15  -34 197 -0.17 
6 32 185 0.17  29 181 0.16 
7 12 126 0.09  10 124 0.08 
8 19 76 0.24  21 79 0.27 
9 13 96 0.13  27 110 0.25 
10 62 152 0.41  40 130 0.3 

Sum 304 1490 0.21  209 1396 0.17 
Std. 28.8 39.5 0.17  22.1 34.6 0.14 
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Again, the average of the ratios for both configurations can now be compared with the results from Table 4-7 

and Table 4-8. The ratios drop even more from 0.32 to 0.21 and 0.27 to 0.17 on average for configuration 1 

and 2 respectively. 

It wouldn’t be fair to assign this drop in score only to the negative effects of spatial correlation when only 

considering one study site. In 51 of the 5330 (1.0%) hindcast cases Netica was not familiar with the given 

conditions, which is an increase compared to the 0.6% for the evenly distributed 90-10 experiment. When the 

Bayesian net is less familiar with the given conditions of the hindcast, uncertainty will increase and the LLR 

decrease, resulting in a lower score. This phenomenon is certainly at stake as well. 

Moreover, it can be concluded that the standard deviation of the scores increased significantly, implying a 

larger spatial variance in the quality of prediction. For location 5 the LLR test score is negative, which means 

that the statistical model does worse than guessing based on the marginal PMF, where on the contrary the 

results for location 10 are on average better. 

4.3.1.2. Grid Resolution 

As is discussed in section 4.1.4 a buffer size of 10m is small for a minimum grid cell size of 9x9m2. The effects 

on the log-likelihood-ratio test score of the BBN according to configuration 2 are clear: scores get worse for a 

larger grid cell size; see Table 4-9. By adjusting the buffer size to the grid resolution, the non-beneficial effects 

of too much ‘non-flooded’ buildings can be minimized, which results in better scores for the 5x5m2 and 9x9m2 

runs. But now the opposite seems to be true: higher scores for higher grid resolutions. This raises the question 

if a courser grid is actually better than a grid with very high resolution or the increase in score is caused by a 

larger buffer size. This is hard to say based on the scores, since differences are small, but it is a fact that the 

scores for the 3x3m2 run increase too when the buffer size is taken larger. 

Table 4-9 - Log-likelihood ratio test scores for configuration 2 and extraction formulations 7; the results for different runs and varying 

extraction buffer sizes are given. 

Run \ buffer size 10m 18m 30m 

3x3 m2 405 451 501 
5x5 m2 354 477  
9x9 m2 178  496 

 

4.3.1.3. Number of bins 

The number of bins per node in this section is set to four. This number is not picked randomly but based on an 

analysis, of which the results are graphed in Figure 4-32. The BBN’s with the structures of configuration 1 and 2 

have been tested with 2 until 10 bins per node. Calibration corresponds in this context to a set of observation 

used for the training of the BBN and validation corresponds to a set of observations that is used for the 

hindcasting. One can fit any data set better and better by increasing the bins (calibration). However, if one only 

fits noise in the calibration set, the validation becomes worse. In that case better calibration also means 

overfitting the data in the model causing a decrease in the robustness of prediction. 

The error rate grades how often the most likely prediction matched the observations.  The error rate for both 

validation and calibration are pretty much similar and unchanging until 4 or 5 bins, then calibration gets better 

and validation worse. This is logical, since more bins means more resolution, but the quality of the joint and 

conditional distributions become worse where the establishing is based on less data; this has also been 

explained in section 4.3.1. The data are divided into three sets and the shading shows the standard deviation 

of the three estimates around the mean (central blue or red line) of the estimates.  
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The lower the error rate value is the better, which would suggest 3 or 4 bins, but 5 bins seem to be justified as 

well. With more than 5 bins the calibration improves but the validation increases rapidly. By this measure the 

chosen number of 4 bins (bins = 0 in the graph) is fine with a fairly low error rate of 25%. 

 

Figure 4-32 - Mean of damage for ErrorRate over bins 

It should be noted that more similar analysis could be executed in order to find the optimal number of bins per 

node. However, this is of minor importance for delivering a proof of concept. Moreover, the outcome would 

be different if one decides to use less local hazard indicators, other additional nodes and more or less 

observations. 

4.3.1.4. Most Probable and Risk 
Table 4-10 - Most probable damage versus observed; total counts per combination 

Observed - Most Probable 
(Number of Counts) 

Predicted Percentage 
correct Affected Minor Major Destroyed 

o
b

se
rv

e
d

 

Affected 549 350 1 1 60.9% 

Minor 136 2571 21 1 94.2% 

Major 30 284 41 0 11.5% 

Destroyed 5 19 1 2 7.4% 

 

In Table 4-10 the observations are coupled to the most probable outcome of the prediction, which is the 

outcome within the prediction with the highest probability. Based on the column ‘percentage correct’ it can be 

concluded that the model is very good at predicting minor damage and less good at predicting affected, major 

damage and destroyed respectively. This makes sense because wherever you look in the domain, also in the 

severest damaged areas, minor damaged buildings can be found in large numbers. Therefore minor damage 

will in most of the predictions predominate. 

This does not mean that the Bayesian net is not capable of predicting higher risks for more severely damaged 

buildings. One of the problems with the ImageCat damage dataset for analysing the skill of prediction is that 

observations are not quantitative. By assigning the values 1, 2, 3, 4 to “affected”, “minor damage”, “major 

damage” and “destroyed” respectively, it becomes easier to take for instance the mean of the conditional 

PMF’s. The latter has been done per combination of Table 4-10 and the results are given in Table 4-11. The 

mean of a conditional PMF is a measure for the expected average damage, where a higher mean means more 

risk. Based on these results it can be concluded that if the most probable outcome is the same for two 

buildings, the risk can still differ. 

bins 
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Table 4-11 - Mean of the conditional damage PMF's; categrorized on the combinations of observed and most probable predicted. 

Mean of  conditional PMF’s 
(categorized on Observed - Most Probable) 

Predicted 

Affected Minor Major Destroyed 

o
b

se
rv

e
d

 

Affected 1.44 1.92 2.38 2.50 

Minor 1.45 2.02 2.59 2.68 

Major 1.73 2.08 2.63 - 

Destroyed 1.83 2.08 2.74 2.59 

 

Another way to check if the model shows skill is looking at the mean predicted probabilities given the observed. 

In Table 4-12 the mean chances are given with in green the mean predicted probability of what actually has 

been observed. As an example: for all buildings that are observed as being destroyed, the mean predicted 

chance of being destroyed is 5.8%. This is not a big chance, but it is at least higher than the mean predicted 

chance of buildings being destroyed while that in reality didn’t happen. The fact that the values in green cells 

are all maximal in their column implies that the Bayesian net not only has some skill for affected and minor 

damage, but also for major damage and destroyed. However, this is marginal. 

Table 4-12 - Average of the predicted probabilities given the observed 

Predicted Mean probabilities 
given the observed 

Predicted  
Total Affected Minor Major Destroyed 

o
b

se
rv

e
d

 

Affected 50.1% 39.8% 6.9% 3.2% 100% 

Minor 13.4% 75.3% 9.5% 1.7% 100% 

Major 12.4% 66.5% 18.3% 2.9% 100% 

Destroyed 17.4% 60.7% 16.1% 5.8% 100% 

 Marginal PMF 21.3% 65.5% 10.6% 2.6% 100% 

4.3.1.1. Uncertainty 

The good part of working with Bayesian Belief Networks is that it is easy to find out how confident the 

prediction is. In Table 4-13 the average of standard deviations are given for the configuration 1 and 2 per 

hindcasting scenario (see also Table 4-5). Again, this is only possible by assigning quantitative values to the 

qualitative descriptions of the damage (1, 2, 3 and 4). In absolute sense the standard deviations do not say 

much, but mutual comparisons are now possible to make. From the table it can be concluded that the 

uncertainty of prediction decreases by conditioning on more indicators. The quality of prediction thus grows. 

Another conclusion is that for conditioning on only one indicator the predictions of the BBN with configuration 

2 are more confident. This is to be expected since the mutual dependencies between the local storm 

conditions provide extra information.  

Table 4-13 - Mean standard deviation of hindcasted PMF's for configuration 1 and 2 and different hindcast scenarios. 

Hindcast 
scenarios 

Number 
of nodes 

Mean Standard Deviation 

Configuration 1 Configuration 2 

1 1 0.788 0.631 
2 1 0.787 0.601 
3 1 0.804 0.640 
4 1 0.797 0.636 
5 2 0.769 0.585 
6 3 0.676 0.570 
7 4 0.543 0.543 
Perfect Check 4 0 0 
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If we now look at hindcast scenario 7 in more detail and condition on the observed the results of Table 4-14 

can be gained. Differences between configuration 1 and 2 are negligible as can be seen. Another conclusion 

that can be drawn is that the BBN is more certain in predicting the “minor” and “major” damage than 

“Affected” and “Destroyed”. This makes sense, since both contain a lot of noise. Moreover, it has already been 

mentioned that destroyed appears to be hard to predict since it is an extreme. 

Table 4-14 - Mean standard deviation of the hindcasted PMF's given the observed for configuration 1 and 2 and hindcast scenario 7. 

Mean Standard deviation of 
prediction given the observed 

Configuration 1 Configuration 2 

o
b

se
rv

e
d

 

Affected 0.658 0.657 
Minor 0.501 0.501 
Major 0.563 0.563 

Destroyed 0.659 0.659 

 Unconditioned 0.543 0.543 

 

4.3.1.2. Spatial variability 

Now we know that it is hard to use the model for predicting which buildings will be destroyed (the extremes). 

However, a higher risk for these buildings has been predicted (see paragraph 4.3.1.4). Here we look at the 

spatial variability of the prediction. 

In Figure 4-33 the spatial variability of the mean of the CPT of the predicted damage for both configuration 1 

and 2 is shown51. The spatial pattern of the observed -the beach fronting houses severely damaged, the rows 

behind barely and the lower lying areas in the rest of the domain showing minor or major damage- can be 

found in the spatial distribution of the predictions as well, which is good. The observed spatial pattern of the 

damage can thus be regained fairly well by the predictions. Configuration 1 and 2 both do a good job and the 

mutual differences are very small.  

                                                                 
51 Trained and hindcasted with 100% of the data 
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Figure 4-33 - Spatial representation of the mean of predicted PMF's for configuration 1 and 2. The two upper panels show the observed. 

For the standard deviation of the predictions one can do the same. This has been done and is shown in Figure 

4-34. It can be seen that the BBN is quite confident about the predictions in the sheltered areas on the bay 

side and the closer you come to the beach the higher the standard deviation becomes. Although the 

differences are small, configuration 1 seems to be a little bit more confident in the areas close to the beach 

(with the exception of the first row), which explains the higher LLR-test score ratio with the Perfect Check. 
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Figure 4-34 - Spatial representation of the standard deviation of predicted PMF's for configuration 1 and 2. 

4.3.2. Building Type Indicators 
The Bayesian net of section 4.3.1 with configuration 1 is here expanded with either one of the indicators “roof 

height“, “ground floor surface area”, “residential units”, “tax base”, “building class” or a combination of these. 

In Figure 4-24 it can be seen that these indicators show strong mutual positive correlations, which makes sense 

(e.g. it is more likely that larger buildings are higher, have a larger surface area, contain more residential units, 

have a higher tax base and fall in another building class than small buildings). Adding all five indicators might 

therefore be unnecessary and even unwanted considering the negative effects of adding too much nodes. 

However, to show these effects this has been done and described in this section as well. 

For the hindcasting three configurations are used, which are here called configuration 3, 4 and 5 in order to 

avoid confusion; see the figures below. 

 

Figure 4-35 - Trained Bayesian Belief Net with one building type indicator; the five different building type indicator nodes that have 

been used are shown on the right side. 

 

Configuration 3 
With: 
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Table 4-15 - Absolute and relative log-likelihood ratio test scores for configuration 3 with different building type indicator nodes. 

Building type 
indicator 

LLR-test scores 

Pefect 
check 

Conditioned on building type Conditioned on all 

Absolute Relative Absolute Relative 

Roof Height 1653 20 0.012 605 0.366 

Shape Area 1651 17 0.010 585 0.354 

Residential Units 1656 8 0.005 584 0.353 

Tax Base 1667 39 0.023 628 0.377 

Building Class 1675 25 0.015 618 0.369 

 

Configuration 3 is based on configuration 1 with one additional building type indicator. The hindcasting results 

of configuration 3 are given in Table 4-15. It can be concluded that “tax base” is the best indicator, both alone 

and in combination with the local storm conditions, followed by “building class”, “roof height”, “shape area” 

and “residential areas” respectively. 

By adding all building type indicators, configuration 4 can be obtained; see Figure 4-36. In the same figure also 

configuration 5 is shown, which also contains arrows between the local storm conditions. This is in analogy 

with configuration 2. Again, some hindcasting scenarios have been carried out, of which the results are given 

in Table 4-16. It should be noted that in the two configurations the building indicators are not mutually 

connected, while there are strong dependencies; see Figure 4-24. This is because the relations can differ 

significantly from site to site, which is in contrast with the mutual relations between the forcing indicators (the 

underlying assumed physical principles are everywhere the same52). Still, it would be worth trying connecting 

them in future research. 

 

Figure 4-36 - Trained Bayesian Belief Nets with all building type indicators. Left: No arrows between the local hazard indicator nodes; 

right: arrows between them. 

  

                                                                 
52 This is only the case when the training data is composed out of a wide range of case studies. Else, spatial correlation and 
the corresponding problems earlier discussed will be at stake. 

Configuration 4 Configuration 5 
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Table 4-16 - Absolute and relative log-likelihood ratio test scores for configuration 4 and 5 and different hindcast scenarios. 

 

The first conclusion that can be drawn from the results of Table 4-16 is that the LLR-test scores for hindcast 

scenario 8 (only conditioned on the local hazard indicators) are worse than for hindcast scenario 7 of Table 4-5. 

This implies that adding more nodes without conditioning on them has a bad influence on the quality of 

prediction. 

Secondly, it can be concluded that scores are increasing when more indicators are added. This looks promising, 

because this often means that the BBN gets more skilful. However, the fact that the hindcasting is performed 

based on the same observations as for the training is somehow misleading. With configuration 4 and 5, 327680 

(= 48 x 5) combinations of conditions can be made. Again, a share of these combinations is extremely unlikely 

or impossible to happen (e.g. 10-500 residential units in a one-family house). Still, only 1549 of these 327680 

combinations are found within the dataset and the majority (99.5 %) of the covered combinations is thus not 

represented by any observation in the training dataset. In contrast with the BBN’s from subsection 4.3.1 (with 

only local hazard indicators), most of the CPT’s in Netica are now very poorly substantiated53. This negatively 

affects the quality of prediction and quantification of uncertainty. 

Table 4-17 - Log-likelihood ratio test scores for 10 runs with configuration 4 and 5; hindcasting on the observations of the 10% closest 

buildings and trained with the remaining 90%. 

location LLR test score – Configuration 4  LLR test score – Configuration 5 

Scenario 13 Perfect Check ratio Scenario 13 Perfect Check ratio 

1 77 268 0.29  66 257 0.26 
2 117 256 0.46  103 243 0.42 
3 40 243 0.17  30 233 0.13 
4 85 256 0.33  71 242 0.29 
5 13 223 0.06  9 219 0.04 
6 26 198 0.13  24 196 0.12 
7 -2 162 -0.01  -8 156 -0.05 
8 15 77 0.19  14 76 0.19 
9 8 86 0.09  7 86 0.09 
10 106 259 0.41  92 244 0.38 

Sum 485 2028 0.21  408 1951 0.19 
Std. 43.8 71.7 0.16  39.0 66.8 0.15 

 

The negative effect on the quality of prediction can be best demonstrated by predicting something ‘new’. 

Hindcast scenario 13 of Table 4-16 has also been executed on 10% of the observations corresponding to the 

                                                                 
53 This is logical, since the number of bins is adjusted to the amount of data and the configuration with four indicator nodes. 
With more nodes the bin analysis would suggest fewer bins, for instance 3 per node. The number of conditioning 
combinations would in that case already drop from more than 300,000 to less than 20,000.   

Hindcast 
scenarios 

Conditioning on: LLR-test score: 
Local Hazard 
indicators 

Roof 
Height 

Shape 
Area 

Residential 
Units 

Tax 
Base 

Building 
Class 

Configuration 4  Configuration 5 

Absolute Relative  Absolute Relative 

8 1 0 0 0 0 0 213 0.10  133 0.06 
9 1 0 0 0 1 0 255 0.12  175 0.08 
10 1 0 0 0 1 1 316 0.15  236 0.11 
11 1 1 0 0 1 1 405 0.19  324 0.16 
12 1 1 1 0 1 1 515 0.24  435 0.21 
13 1 1 1 1 1 1 1018 0.47  937 0.45 

Perfect Check  1   1 
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buildings closest to the ten locations of Figure 4-31. The other 90% is used again for training purposes; see the 

results in Table 4-17. 

Compared to the relative LLR test scores for hindcasting on 100% of the data (0.47 for configuration 4 and 0.45 

for configuration 5) scores of 0.21 and 0.19 respectively are very low. However, they are still positive and 

pretty much the same as the scores of configuration 1 and 2 with the 10%-90%-hindcasting scenarios (0.21 for 

configuration 1 and 0.17 for configuration 2; see Table 4-8 ). Where we thus see an increase in prediction skill 

when adding more indicators (and thus more resolution) for the 100%-hindcasting scenarios, this increase 

cannot be seen when considering the 10%-90%-hindcasting scenarios. The added value of extra indicators is 

thus negatively compensated by the fact that the extra resolution decreases the range of applicability of the 

network due to a lack of training data. It is assumed that this negative effect on the quality of prediction can 

only become larger when using the Bayesian net for predictions on a completely new case study, where the 

conditions (for the hindcasting) differ more significantly from the training data then in the above given 

example. 

The negative effect on the quantification of uncertainty can be seen by looking at the mean standard 

deviations of the conditional PMF’s. Note that the mean standard deviation of the predictions decreased when 

more local hazard indicators were added to the BBN in subsection 4.3.1; see Table 4-13. In Table 4-18 we see 

the opposite happening, namely an increase of the standard deviation. An explanation for this can found in the 

large number of poorly substantiated CPT’s. When this is the case (no or very few observations within the 

training data for specific conditioning combinations) the standard deviation of the prediction (with Affected =1, 

Minor = 2, Major = 3 and Destroyed =4) will go to 1.11, since Netica assumes that if nothing is known all 

outcomes are equally probable. The result is that the quantification of uncertainty gets distorted and with 

more of these poorly substantiated CPT’s the average standard deviation of the prediction (damage in this 

case) will continue to increase. This is exactly what is happening by adding the building type indicators. 

Table 4-18 - Mean standard deviation of hindcasted PMF's for configuration 4 and 5 and different hindcast scenarios. 

Hindcast Scenarios Nr of nodes Mean Standard Deviation 

Config. 1 4 0.54 
 + Tax Base 5 0.59 
 + Building Class 6 0.66 
 + Roof Height 7 0.74 
 + Shape Area 8 0.78 
 + Residential units =  
Config. 4 

 
9 0.82 

 

These negative effects can also be seen in space. In Figure 4-37 the observed, most probably outcome, mean 

of the predicted PMF and standard deviation are shown. It can be seen that the most probable outcome is 

almost a one-on-one copy of the observed. This is not because of the good prediction skill of the BBN but 

because of the fact that the hindcasting has been performed based on the same data as the training. With 9 

indicator nodes and more than 300,000 corresponding conditioning combinations the 5300 observations get 

technically isolated within the net and during the hindcasting one will find a slightly higher predicted chance 

for the actual observed outcome than for the others. The mean and standard deviation of the conditional 

PMF’s confirm that this is happening, where the means are all much closer to 2.5 (which is the mean of 1, 2, 3 

and 4) and the standard deviations much higher than in Figure 4-34. 
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Figure 4-37 - Upper left panel: Spatial representation of observed damage; others: Spatial representation of most probable, mean and 

mean standard deviation of the hindcasted MPF's for configuration 4 and hindcast scenario 13 (conditioned on all indicators).  
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5. Discussion and Recommendations 
In chapter 0 most of the results have already been discussed and some conclusions been drawn. Here they are 

elaborated in a broader context. 

5.1. Achievements 

5.1.1. Overall Model Structure 
Considering the overall model structure (including all components of Figure 3-12), it can be concluded that 

most of the elements work well. The three used physics-based models in the model train, knowing Delft3D, D-

Flow FM and XBeach have been successfully coupled, which made a propagation of storm hazard from large to 

very small scale possible. The use of an SQL database and related tools (e.g. PostGIS) appeared to be very 

useful in joining all data on the same scale level of analysis, which is the building level. This also enabled an 

easy coupling of the data to the Bayesian Belief Networks. Moreover, coupling of the database to QGIS made 

spatial visualisation of the BBN input and output easy as well. 

5.1.2. Physical Processes and Hazard Propagation 
The implementation of XBeach for the hazard propagation from the nearshore to the buildings (scale of 

analysis) entailed some difficulties. First of all, it is very time consuming to set up a fairly large XBeach model 

which has the amount of detail as in present study. Secondly, although high resolution (topo-bathymetrical) 

data was available, the input leaves a lot to be desired. The LIDAR dataset includes buildings, which is a must 

to simulate flow around buildings, but also other obstacles such as trees and cars obstructing or even blocking 

the flow completely. Bare earth LIDAR was not available to compromise for this problem. Moreover, in the surf 

zone only low-resolution CRM data was available. For a critical storm like Sandy that data appeared to be 

unsatisfactory, resulting in too much beach and berm erosion with all associated negative consequences. Also 

the boundary conditions were subject to large uncertainty (especially the wave conditions) of which the 

negative effects probably could have been reduced by a thorough calibration process. It must be said that with 

a model in a stage like this all of these aspects have to be improved to ensure better result. With a limited 

amount of time for present study this was simply not possible. 

The results of the XBeach runs are therefore moderate showing a structural overestimation of the local storm 

conditions; see section 4. However, this does not mean that the decision of using XBeach was a bad one. The 

indicators “wave attack” and “flow velocities”, both based on XBeach approximations are considered very 

beneficial; this is for instance not possible when using the bathtub concept. Even with the moderate results of 

the used XBeach model runs the Bayesian nets are capable of delivering fairly good damage predictions. 

Combining the information of multiple hazard indicators (representing different hazards) appears to give much 

better results than only using one indicator. XBeach fits perfectly in this multi-hazard approach. 

5.1.2.1. Morphodynamic Processes 

Considering the inclusion of morphodynamic processes, other studies have pointed out that XBeach is really 

good capable of predicting the morphodynamics due to storms like hurricane Sandy realistically. In order to 

answer the question if inclusion of morphodynamic processes really improves the quality of prediction, it is 

necessary to make a comparison on runs with and without morphodynamics. The answer will differ from case 

to case, but it is for sure that inclusion pays off in some cases; for others the significant decrease of 

computational expenses by excluding them can be more beneficial. Making these kind of comparison only 

makes sense when the model is fully calibrated, which is not the case in present study. Therefore, firm 

conclusion on this matter can’t be made based on present results. However, it can be concluded that in the 

Rockaway-Sandy study case morphodynamics (e.g. breaching of the berm) formed a key element in the hazard 

propagation and associated damages. It is assumed that an improved XBeach model will give much better 
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predictions on morphodynamics and the thereon depending local storm conditions than it does right now; also 

better than the results of the bathtub concept. 

It must be said that simulation of the morphodynamics realistically is hard for other reasons as well in the case 

of the Rockaways and Hurricane Sandy. Sandy is said to be a critical storm for the Rockaway peninsula since 

the protective functioning of the beaches and berm were for a lot of places only slightly sufficient or slightly 

insufficient. With the present model a structural overestimation of local storm conditions is at stake due to too 

much erosion of the protective elements (beach and berm). The opposite can easily be the case as well: when 

the morphodynamics are slightly underestimated, not enough beach and berm erosion can lead to large 

underestimation of the local storm conditions in the hinterland if the beaches and berm manage to withstand 

all forces. The accompanying uncertainty of this strong sensitivity can’t be found back in the damage 

predictions when only one run is considered for the training of the BBN’s. A solution for this would be 

executing multiple XBeach runs, varying the input within the range of uncertainty. This has not been done in 

present study due to time limitations. 

5.1.2.2. Model Resolution 

Considering the model resolution, some problems with using XBeach appeared which cannot be addressed to 

the inadequacies of the present model. One of these problems was that the 3x3m2 run has larger bed level 

gradients than the runs with courser grids, which causes unrealistic surging of the water around buildings. On 

the contrary, the low-resolution run needs bigger extraction buffer zones in order to compensate for the 

problem of buildings being assigned as ‘non-flooded’ where this was in reality not the case. Moreover, the 

flow is easier obstructed by obstacles in the LIDAR for runs with courser grids.  

In relation to the damage, the results of Table 4-9 show better LLR-test scores for the high resolution 3x3m2 

run, but it is hard to draw conclusions from it, since differences are small. It seems that the added value of grid 

cells smaller than 9x9m2 is marginal, where the computational time was almost a factor 25 higher for the 

3x3m2 run (2300 versus 90 CPU hours). Based on this a courser grid is preferred, but it definitely depends on 

the site (e.g. a lot of small allays and small buildings will asks for more detail). Note: it is not excluded that the 

differences will be larger (or smaller) with an improved model. 

As is explained above, inclusion of the morphodynamic processes is most of all interesting for better prediction 

of the hazard propagations; the added value of the morphological indicator “scour depth” is considered to be 

marginal. For the Rockaway Peninsula, but also for other sites, the normative erosion and sedimentation that 

significantly changes this propagation can be found predominantly in the shore facing areas where (hardly) no 

residential buildings are found. On the contrary, the desire for high grid resolution only exists for the urban 

areas and not for the areas with beaches and dunes. Since high grid resolution and the inclusion of 

morphodynamic processes are both competing due to scarcity of computational means, this raises the 

question if bed level changes can be calculated by an XBeach model with a much courser grid, which then can 

be coupled to a model with a much finer grid but with the morphodynamic processes turned off. This might 

significantly reduce computational expenses and, as a pleasant side effect, encounter the 

erosion/sedimentation problems around buildings. 

5.1.3. Determining local hazard indicators 
For the determination of the local hazard indicators one value per indicator per building needs to be extracted 

from the XBeach output. The extraction method, including spatial and temporal aggregation, seems to work 

well; by using the building perimeter outline polygons the extraction buffer zones can be determined fairly 

easily. Subsequently the corresponding grid cells can be assigned to the specific building. Results, regarding the 

inundation depth indicator, are given for different extraction formulations, showing that they can help 

encountering the problems around buildings. 
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As is mentioned above, unrealistic high water levels and bed level changes around buildings (especially the 

higher ones) are approximated by the model, which appears to be unbeneficial for the damage predictions; 

see section 4 and Table 4-4. This problem cannot be seen separately from grid resolution, the reach of the 

non-erodible layer, the extraction method and formulations for the local hazard indicators. The high water 

levels are assumedly caused by numerical instabilities due to high bed level gradients; something that is 

inescapable with a high resolution grid in combination with (high) buildings. Figure 4-21 shows that the low-

resolution run (grid cell size of9x9m2) does have fewer problems with the high water levels around buildings. 

This strengthens the assumption that this phenomenon is caused by high bed level gradients, which are 

smaller for larger grid cells. 

The high bed level changes around buildings, both erosion and sedimentation (see Figure 4-11), can be 

addressed to the fact that the representation of buildings in the LIDAR data and building polygons (and thus 

non-erodible layer within XBeach) do not match perfectly in the horizontal. Next to picking the right extraction 

formulations, one could also think of other solutions to encounter this problem. Expanding the non-erodible 

areas around buildings is one of them. 

In general it can be concluded that all of these aspects appear to have a large impact on the final local hazard 

indicators with corresponding influences on the quality of prediction. It is therefore recommended to study 

this in more detail. 

5.1.4. Predicting Damage 
Even though XBeach results were moderate, combining the potential of multiple indicators in a BBN resulted in 

a prediction tool that shows skill. With a model domain of only a few kilometres wide observations of about 

5300 residential buildings can be used for training and hindcasting purposes. This number appeared to be 

enough to demonstrate the possibilities of a BBN with four local hazard indicators. Both quantitative and 

qualitative nodes can be used; Netica does not make a difference. However, the fact that the variable to 

predict was non-numerical makes analysing the quality of prediction more difficult. Adding another node to 

the BBN is easy and the added value can be quantitatively compared to alternatives; a bunch of analysis tools 

is available to do so.  

The limitations of the BBN’s are clear: adding more nodes will rapidly lower the quality of prediction and 

uncertainty quantification since the number of data is not sufficient enough to substantiate all the relations 

within the net. Compromises have to be made to encounter this problem, such as decreasing the number of 

bins or increasing the scale of application. 

The potential of building type indicators is analysed. It is demonstrated that by adding these indicators the 

quality of prediction increases. The tax base indicator performs best, followed by the building class indicator. 

For the building classification only functional differences are considered. Other ways of classification, such as 

on building material stating something about the resistance of the building, was not possible with the available 

data, but this is assumed to have potential as well. It must be said that tons of other indicators and 

combinations can be tried too; the accompanying choices that have to be made depend on the number of data 

available and (expected) mutual dependencies. The latter can be easily tested by applying correlation 

formulations, such as Pearson’s correlation coefficient. This has been done in section 4.2. It is expected that 

monetary damage instead of or in combination with physical/structural damage will give better results as well. 

Supporting variables indicating the amount of value at risk, such as household income, are expected to be only 

relevant in combination with monetary damage. It must be said that these types of data are not easy to get 

due to privacy issues. Working together with (re)insurers or in closer collaboration with parties like FEMA 

might give opportunities. 

In present study the BBN is trained on observations of one storm and one study site only. From a mathematical 
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(theoretical) point of view this is not strong; observations should be independent, where in this case 

observations are clearly spatially correlated. In practice, these correlations limit the applicability of the BBN for 

predicting damage for other sites and storms. To which degree this is the case, cannot be concluded from the 

results presented. Validation of the model is required on other sites and storms. However, that the spatial 

correlations negatively influence the quality of prediction can already be seen within the limits of this study. 

First of all, it has proven to be very dangerous to draw conclusions on one-on-one relations; see ‘Depth-

Damage Relations’ in section 4.2. Secondly, hindcasting on specific areas of which the observations are not 

used for training purposes shows a significant drop in LLR-test scores; see Table 4-8. 

It must be said that the market standard damage curves are subject to the same problems concerning spatial 

correlation. There are two ways to minimize these effects within this concept: 1) train the Bayesian nets on 

data from more storms and sites (this is how market standard damage curves are improved as well); 2) or 

include as much processes (in the form of indicators) as possible in the statistical model. With the existence of 

option 2 for BBN’s they have a huge advantage over the current damage prediction methods. 

5.1.5. Quantifying Uncertainty 
The quantification of uncertainty is fairly easy with BBN’s. The standard deviations of individual predictions 

(per building) can be determined and together they can be spatially visualized. In this way it is possible to 

determine where and when predictions are or aren’t confident. The limitations of the Bayesian Belief Network, 

considering the quality of uncertainty qualifications, are clear as well: the number of nodes, bins and relations 

are limited by the number of training data. Iteratively these three aspects have to be balanced in order to 

optimize the Bayesian Nets. Too much nodes, bins or mutual relations (arrows) result in a large share of poorly 

substantiated CPT’s. The consequence is that the uncertainty of prediction increases due to Netica’s default 

assuming all outcomes equally probable when the training data is insufficient for the amount of demanded 

detail. Moreover, if the event to be predicted qua conditions falls outside the range of events on which the 

BBN is trained, the uncertainties will be extremely large resulting in a low or negative LLR-test score; BBN’s do 

not lie. 

It is questionable what kinds of uncertainty are actually incorporated within Netica’s CPT’s (the predictions). 

The answer lies in the training data. The inaccuracy within the predictive part of the input data is a source that 

is included, which is mostly epistemic uncertainty. The inaccuracies in the LIDAR data (in some cases a bit 

higher ground elevation levels than in reality, in others a bit lower) can be seen as examples. This is the main 

reason why predictions can be better (more confident) when the XBeach model is improved; a better 

representation of the spatial variability in the local storm conditions can then make a difference. Moreover, 

the aleatoric uncertainty is incorporated as well. This comprises the uncertainty that cannot be explained by 

adding more complexity. No building is for instance completely the same as another one. Even if they are 

categorized the same for a million building type indicators and are subject to the same (discretized) forcing 

conditions, the amount of damage can still differ in the end. 

Uncertainties that are not incorporated are structural over- or underestimations within the input data. 

Training the net based on local storm conditions that are structurally overestimated won’t cause any problem 

if the local storm conditions for the prediction are structurally overestimated (in the same order) as well. This 

is the case if you hindcast on the exact same observations, which has been done for this study. However, this is 

not the case if you want to predict a new situation. Then a relative structural under- or overestimation in the 

local hazard indicators between training data and prior data (used for the predictions) will give structural 

higher or lower predictions. To incorporate the accompanying uncertainty one can think of the following 

solution: run multiple scenarios per event with the physics-based models. One can for instance run a 
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conservative, expected and optimistic scenario and train (and predict) on all54. This will only solve the problem 

to a certain extend. 

Finding solutions for structural over-or underestimation of other types of data is more difficult. One could for 

instance think of structural variations in surveying technics (e.g. different damage formulations for different 

sites) or variations in the surveyed quantity (e.g. a wooden one-family house in New York might be more 

resilient than in other states). The only way to incorporate these uncertainties is to train the BBN’s with 

observations from multiple other sites and storms. 

5.1.6. Spatial Aggregation 
In order to determine total expected damage for a block, neighbourhood or complete city, spatial aggregation 

of predictions is necessary. The best guess for the expected total damage (or risk given the event) can be 

determined by summing the means of the PMF’s of all predictions (here called the grand mean or GM). For 

predictions of qualitative damage (qualitative description instead of numbers as is the case in present study) 

this is not possible55, but in the case of monetary damage it is. 

Aggregating the uncertainty to a higher scale level is unfortunately not straightforward, since (the bias of) the 

individual predictions on the building level are spatially correlated; if the expected total amount of damage for 

a certain house is overestimated in a prediction, it is to a certain extend likely that this is also the case for the 

neighbouring houses. This correlation has been explained in subsections 0 and 4.3.1. Therefore damage 

predictions for a certain area cannot be seen as independent stochastic events and are thus mutually 

correlated with unknown joint probability distributions. This makes it very difficult to say what the uncertainty 

of the aggregated prediction is. 

 

Figure 5-1 - The problem with aggregating predictions to higher spatial scale levels 

Upper and lower limits for the uncertainty might give some solution. The theoretical case of totally 

independent predictions provide a lower limit. The square root of the standard deviation of the individual 

predictions can then be summed to get the grand variance and subsequently the grand standard deviation. In 

formula form this comes down to56: 

GS =  √GV  =  √∑ S𝑖
2

𝑁

𝑖=1

 

With:  GS = Grand Standard Deviation 
  GV = Grand Variance 

                                                                 
54 It should be noted that if the presented BBN’s in this thesis would be part of (or coupled to) a much larger BBN that 

incorporates more information levels, the uncertainty due to structural over- or underestimation of the local storm 

conditions, this would not be necessary since these uncertainties would then be included within the net. 

55 One could of course use a numerical scale as substitution for the qualitative descriptions, but this is not always as 
straightforward. Moreover, one has to be careful on attaching too much importance to the results. 
56  http://www.burtonsys.com/climate/composite_standard_deviations.html 
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  S = Standard Deviation 
  N = Total number of observations 
 

The (grand) standard deviation of the grand mean is relatively much smaller than the standard deviation of 

individual predictions. As an example: take 1000 comparable buildings with on average $ 50,000,- damage and 

a standard deviation of $ 20,000,-, which is assumed to be realistic. The expected total amount of damage is 50 

M dollar; the grand standard deviation now becomes 0.63 M dollar, which is a little bit more than 1% of the 

expected total amount of damage. Where predictions of the total damage in the past showed errors in the 

order of 50% or even more57, a relative error of 1% seems most questionable. Moreover, this ratio keeps 

decreasing for an increasing amount of buildings until the uncertainty becomes negligible. This lower limit is 

thus not very practical. 

Assuming fully mutually correlated predictions and all possible uncertainties incorporated in the corresponding 

conditional PMF’s might have the potential of an upper limit. However, this is not easy and can be best 

investigated when more storm scenarios and study sites are incorporated in the research. In that way all 

uncertainties, including uncertainties regarding the input parameters of the model, can be incorporated on the 

building level. Something like the weighted Std/mean ratio of the individual predictions might be useful as a 

first guess for the GS/GM ratio. With the current concept, though, where the uncertainties of structural over- 

or underestimations are not incorporated in the PMF’s, it is certainly not possible to determine this upper limit. 

Considering all this together, the uncertainty of prediction on the aggregated level cannot be determined 

within the present concept; other ways need to be developed in order to do so. However, comparing averaged 

standard deviations for different areas within a site might still be useful, since it says something about the 

confidence of prediction on the object level. 

5.2. Applicability of the Concept 

Based on the results and considerations of sections 0 and 5, it can be concluded that using BBN’s as substitute 

for the market standard damage curves is proven to be feasible. However, it must be said that the method is 

extremely data extensive. If one wants to use more than 4 indicator nodes with four bins each (which is 

assumed to be reasonable) much more than 5000 observations are necessary. Setting up multiple XBeach 

models for different case studies would be a solution, but that is a time consuming job. For the American 

situations where quite a lot of destructive hurricanes have caused damage, and subsequently the damage 

observations have been documented fairly well, the concept offers opportunities. In the European situation, 

for instance in the Netherlands, real wind induced sea flood with disastrous consequences are scarce. In that 

case data has to be used from other countries, which entails additional uncertainty due to for instance 

differences in building standards and surveying technics. 

Moreover, data for other types of assets might be scarcer or harder to get than for residential buildings. This is 

for instance the case for roads, of which damage observations are rare. About the damaging physical processes 

also very little is documented. On the other hand, BBN’s have proven to be ideal tools for finding out which 

aspects are important and which are not. In that sense Bayesian nets might offer some opportunities for these 

types of assets if a critical number of data can be gathered. 

Another benefit of the presented concept is that additional training data can be added fairly easy. Every time a 

new event occurs, the model train can be setup, local hazard indicators can be generated and the Bayesian 

nets can be updated. By automating this process a constant improvement of the quality of prediction can be 

ensured. For an updated version of the BBN’s not much has to be done. 

                                                                 
57 This can especially be concluded on the findings of “Comparative flood damage assessment towards an European 
approach” (Jongman et al. 2012). 



Impact Modelling of Hurricane Sandy on the Rockaways 
 

 | 115  

5.3. Recommendations 

It must be said that with all these axis of freedom a lot of optimizations can be carried out in order to improve 

the results and further expand the findings of present study. This thesis comprises an exploratory research 

only and to end up with a fully operational model much more research needs to be done. 

The first and most important recommendation for future research is testing the concept with observations 

from multiple study cases. The fact that present study was limited to data from only one event made 

validation impossible. By considering more events, the uncertainties on aggregated level and the problems 

with spatial correlations can be studied in more detail. It must be said that only one additional site or storm 

might not be enough. At least several storms and sites are necessary to properly research these aspects. If so, 

one can play with the datasets and vary with the distribution over hindcast and training purposes. In that way 

a better understanding can be gained of how well the model approach works for predicting the impacts of new 

situations and how much training data is necessary to obtain satisfactory results. 

Secondly, it is recommended to further study the inclusion of morphodynamic processes. In order to do so, a 

fully calibrated and optimized XBeach model is a must. Where in this study a lot of time was spend on high 

resolution modelling, this appeared to be not so important. A grid cell size of 9x9 m2 in the urban areas is 

probably enough when obstacles in the bathymetrical data (e.g. trees, cars) are removed.  The computational 

expenses are then much lower, which makes running more simulations (varying input in the range of 

uncertainty) better feasible. In that same way also the uncertainty of other XBeach input parameters can be 

included in the predictions by training the BBN based on data from more conservative and more progressive 

runs as well.  

Third, the BBN’s can be further optimized. More configurations can be tested and compared, including 

different indicator nodes, varying the number of bins and relations between nodes. Moreover, it would be 

very interesting to study monetary damage predictions. It is therefore recommended to work in close relation 

with either a governmental organisation, like FEMA, or (re)insurers to get the required data. To which extend 

the BBN’s of present concept can be build out or coupled to other nets in order to cover more information 

levels is a question that needs to be answered as well. 

Furthermore it should be noted that other software packages can be tried as substitutes for some elements. 

As a substitute for XBeach other models can be thought of; especially in areas where the morphodynamics are 

not so important it is definitely recommended to use another type of model, which at least has to be capable 

of approximating water levels, waves and flow velocity. Other hazard indicators can be considered too. Netica 

has its limitations as well and an alternative can for instance be found in Uninet. Comparisons need to point 

out which option is the best for what situation. 

 

  



Impact Modelling of Hurricane Sandy on the Rockaways 
 

 | 116  

  



Impact Modelling of Hurricane Sandy on the Rockaways 
 

 | 117  

6. Conclusions 
In general it can be concluded that the presented model approach succeeded. The hazards, predominantly 

coming from sea in the case of Hurricane Sandy, had to be propagated from large scale (100-1000 km) to the 

building level (1-10 m). In order to do so, a nested routine is assumed to be most suitable. As part of the 

nested structure the morphodynamic storm impact model XBeach is implemented to propagate the hazard 

from the nearshore to the assets at risk (scale of analysis), which are limited to residential buildings only in 

present study. With the use of extraction methods local hazard indicators are generated for every single 

residential building. Together with building type indicators (e.g. building class, size parameters) these hazard 

indicators have been used as damage predictors in the predicting element of the model structure: the 

Bayesian Belief Network (BBN). In this statistical model observations of a qualitative damage assessment have 

been coupled successfully to corresponding local hazard and building type indicators. 5300 damaged 

residential buildings at the Rockaways, NY, were enough to train BBN’s capable of reproducing the spatial 

pattern of the damage fairly well; see Figure 4-33 and Figure 4-34. Multiple analysis tools, like a bin-analysis 

and log-likelihood ratio test, are available to analyse the quality of prediction and uncertainty quantification 

and it is easy to visualize that in space with the use of an SQL database coupled to GIS software. 

XBeach is capable of providing multiple local hazard indicators on the building level, which proved to having 

predictive capacity. The indicators “inundation depth”, “wave attack” and “flow velocity” and (to a lesser 

extend) “scour depth” give together much better predictions than they do alone; see Table 4-5. The 

implementation of XBeach therefore fits perfectly in the multi-hazard approach that Bayesian Belief Networks 

make possible. On the contrary, it must be said that setting up an XBeach model for high resolution 

simulations (grid cell sizes of in the range of meters) with a relatively large model domain (8 km wide, see 

Figure 3-16) requires high detailed input data and is a time consuming job. The results of the XBeach model 

used for present study show a structural overestimation of storm conditions, which can be addressed to a poor 

calibration process, uncertainties in the boundary conditions and problems with shortcomings in the 

bathymetrical data. This assumedly limits the predictive skill of the statistical BBN model (e.g. hardly any 

predictive capacity is found for inundation depth, which can be assigned to the bad representation of the 

spatial variability in maximum simulated water levels). There is certainly a large scope for improvement, which 

means that the results can only become better. However, for proof of concept the presented results are 

sufficient enough. 

Grid resolution of the XBeach model appears to be not as important as expected; indicator values based on 

model runs with grid cell sizes of 3x3 m2 in the urban areas give hardly better predictions than runs with grid 

cell sizes of 9x9 m2; see Table 4-9. Computational expenses are 25 times higher though. Moreover, the added 

value of including morphodynamic processes can’t be quantified based on the results of present study. 

However, it can be concluded that morphodynamics are important for the hazard propagation in the treated 

case study. XBeach has proven to be capable of coping with these morphodynamics in other studies. 

Next to these aspects, the extraction method, in which hazard indicators are generated out of the XBeach 

output, appeared to be very important for the predictive capacity of these indicators. It can be concluded that 

the used method, in which the building perimeter outlines play a very important role, performs well; see 

Figure 3-17. Extraction formulations and the size of extraction buffer zones around the buildings can make a 

substantial difference; see Figure 4-23. From Table 4-4 it can be concluded that courser XBeach grids ask for 

larger extraction buffer zones, which is to be expected.  

Considering the statistical model part, the Bayesian Belief Networks give the opportunity to relate the damage 

to multiple aspects instead of only one, which has great advantages over the market standard damage curves. 

This is because together, the indicators give much better predictions, and the consequences of relations based 

on special correlated training data are minimized. The established BBN’s are good in capturing the spatial 
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variability in risk (given the event) per building, comparing the spatial distribution of the means of the 

conditional PMF’s to the observed damages (Figure 4-33). The predicted chance of extreme damage for 

buildings that had been extremely damaged in reality is higher than for buildings that suffered less damage. 

However, for these extremely damaged buildings the predicted chance of being extremely damaged was often 

still lower than the chance of being subject to minor damage. Therefore the BBN’s perform not so well in 

predicting extremes; see the predicted most probable outcomes in Table 4-10. Considering the added value of 

integrating vulnerability and socio-economic data, adding nodes indicating differences between buildings 

increases the hindcasted Log-likelihood ratio test scores. The “tax base” indicator appears to be most skilful. It 

is said that one has to be really careful with adding too much nodes. The consequences of the latter are 

demonstrated in subsection 4.3.2: the predictions become worse if too much complexity is added to the BBN, 

since in that case the limited amount of data gets overfitted. Adding nodes indicating the value of a property 

at risk (e.g. household income, Tax Base Parameters) is assumed to have great potential as well, but only if 

monetary damage is considered. The latter is recommended for future research. 

Also the quantification of uncertainty depends strongly on the number of nodes, bins and relations added 

within the BBN. More complexity in the network needs to be compensated by more training data in order to 

retain the same quality of the PMF’s of the predictions. Indicators for uncertainty, such as standard deviation 

of these conditional PMF’s, can be easily visualized in space (Figure 4-34) and used to say something about the 

confidence of predictions. However, quantitatively the PMF’s do not cover all sources of uncertainty in the 

approach as it is proposed right now. This is a direct cause of the limited training of the BBN’s, which is based 

on the results of only one XBeach run and not multiple, more conservative and progressive, runs. Therefore, 

uncertainties concerning structural over- or underestimations (for instance due to input parameter uncertainty 

of the XBeach model) are not represented in the distributions of predictions. 

Aggregation of the damage predictions to higher spatial scale levels, such as a neighbourhood or a complete 

city, is not straightforward within the present approach. Aggregation of risk given the event (mean of the 

PMF’s) is a matter of summation. On the contrary, predictions for buildings in a certain area cannot be seen as 

independent, since (spatial) correlation between the predictions is at stake. This, in combination with the fact 

that not all uncertainty is incorporated in the PMF’s, makes aggregation of uncertainty difficult. Future 

research is necessary in order to find ways to overcome those aggregation issues. 
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A. Merging Data based on Geospatial Information 

To use all information on the same scale of application, which is the building level for this study, data from 

different datasets have been coupled. This is done based on geospatial information with the use of PostGIS 

SQL querying tools. The building polygons from the Buildings dataset have been used as a base and properties 

from the ImageCat and PLUTO datasets have been assigned to the building polygons based on geospatial 

relations. 

The ImageCat data are assigned to buildings as follows: 

1) The majority of the points fall within a polygon. These were coupled first; 

2) The rest of the damage observations have been attached to the closest polygon, which had not been 

coupled yet; 

3) The remaining building polygons, of which the majority corresponds to garages and pavilions, are not 

coupled to damage observations. 

It is noted that garages and other non-residential buildings are not included in the Bayesian Networks. Of the 

9800 buildings within the XBeach domain 7800 buildings fall within the area of application (the rest is situated 

within the shadow zones). Of these 7800 buildings a bit more than 5300 are residential buildings and to almost 

all of them a damage observation has been assigned. 

The PLUTO data are assigned to buildings as follows: 

1) All buildings falling completely within a tax lot, get the properties of that tax lot; 

2) All buildings that fall in two or more tax lots get the properties of the closest tax lot center. 

No buildings fall completely outside the tax lots, which makes the coupling less complicated. Some tax lots 

contain more houses. Properties like the tax base values and residential units are than divided by the number 

of buildings (excluding garages and pavilions again). This implies the assumption that in these cases all 

buildings are considered comparable. 
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B. Multi-variate flood damage assessment – 

abbreviation description 

In addition to Figure 3-9 on page 56. 
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C.     XBeach model formulations 

The formulations and descriptions in this appendix form a brief summary of the XBeach manual (Deltares 

2010).  

The physics-based model XBeach can use both a local and global coordinate system, but the configuration is 

always the same: the x-axis is oriented towards the coast, approximately perpendicular to the shoreline, see 

Fig XI. A staggered grid is used, in which fluxes (velocities, sediment transport, radiation stress gradients, etc.) 

are calculated on the interfaces of cells and conservative quantities (water level, bed level, etc.) are calculated 

in cell centres. 

C.1. Short wave equations 

Different from most other physics-based models, XBeach solves short wave equations (order of 10s per cycle) 

on the time scale of the long wave groups and thus long waves. Wave input data is reduces to a 2D-spectrum 

in which the directional distribution is taken into account (in bins, of which the size has to be predefined). The 

frequency distribution, however, is reduced to one single peak frequency. Time-varying wave action belongs to 

the possibility and is used for present study. The wave action balance reads: 

𝜕𝐴

𝜕𝑡
+

𝜕𝑐𝑔,𝑥

𝜕𝑥
+

𝜕𝑐𝑔,𝑦 ∙ 𝐴

𝜕𝑦
+

𝜕𝑐𝜃 ∙ 𝐴

𝜕𝜃
=  − 

𝐷𝑤𝑎𝑣𝑒𝑠

𝜎
 

With: A = wave action, which is defined as E/σ 

 E = wave energy 

 σ = intrinsic wave frequency 

 cg = wave group velocity 

 cθ = Velocity in directional space 

 Dwaves = the energy dissipation due to breaking waves 

The fourth term on the left side represents energy exchange between the bins due to refraction, which is on its 

turn caused by bottom friction and currents. In the newest versions of XBeach it is also possible to include a 

source term for wind-generation, which has not been used in present study; diffraction is not included. Wave 

breaking (ride side dissipation term) is modeled according to the Roelvink’s formulations (1993a). 

C.2. Roller energy balance 

XBeach uses a roller energy balance in order to model the energy redistribution of breaking waves. 

Short wave energy is transformed in kinetic energy and is used as a source term in the roller energy 

balance, which reads: 

𝜕𝐸𝑟

𝜕𝑡
+

𝜕𝑐𝑥𝐸𝑟

𝜕𝑥
+

𝜕𝑐𝑦𝐸𝑟

𝜕𝑦
+

𝜕𝑐𝜃𝐸𝑟

𝜕𝜃
=  −𝐷𝑟 + 𝐷𝑤𝑎𝑣𝑒𝑠  

With: Er = roller energy 

 c = roller celerity (assuming that waves and rollers propagate in the same direction) 

 Dr = the roller energy dissipation 

Again, the velocity in directional space takes refraction into account. Furthermore, the roller energy dissipation 
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Is given by Reniers et al. (2004a) combining the concepts of Deigaard (1993) and Svendsen (1984): 

𝐷𝑟(𝑥, 𝑦, 𝑡, 𝜃) =  
𝑆𝑟(𝑥, 𝑦, 𝑡, 𝜃)

𝐸(𝑥, 𝑦, 𝑡)
∙

2𝑔𝛽𝑟𝐸𝑟

𝑐
 

In which Sr represents the radiation stresses, which can be directly determined from the spatial distribution of 

wave energy. Moreover, also roller induced shear stresses are calculated from these spatial wave energy 

distributions. 

C.3. Shallow water equations 

In order to solve the long infragravity waves, XBeach uses shallow water equations, both depth integrated 

momentum and mass balance. However, only considering the long waves would not give a satisfying answer, 

where the short waves cause mass fluxes and return currents in the littoral zone. Therefore, XBeach uses the 

Generalized Lagrangian Mean (GLM) formulations (Andrew and McIntyre,1978, Walstra et al.,2000), in which 

the Lagrangian velocity is defined as the distance a water particle travels in one wave period, devided by that 

period. The lagrangian velocity relates to the Eulerian velocity and Stokes drift by: 

𝑢𝑙 =  𝑢𝐸 + 𝑢𝑆  and 𝑣𝑙 =  𝑣𝐸 + 𝑣𝑆  

With: 

𝑢𝑆 = (𝐸𝑤𝑎𝑣𝑒𝑠 + 2 ∙ 𝐸𝑟𝑜𝑙𝑙𝑒𝑟) ∙ cos (𝜃) and 𝑣𝑆 = (𝐸𝑤𝑎𝑣𝑒𝑠 + 2 ∙ 𝐸𝑟𝑜𝑙𝑙𝑒𝑟) ∙ sin(𝜃) 

The stokes velocities are thus calculated from the wave and roller energy. The GLM equations, which are based 

on the non-conservative dimensional form of the Saint Venant equations, are given as follows: 

x-direction :  
𝜕𝑢𝐿

𝜕𝑡
+ 𝑢𝐿 𝜕𝑢𝐿

𝜕𝑥
+ 𝑣𝐿 𝜕𝑢𝐿

𝜕𝑦
− 𝑓𝑣𝐿 − 𝜂ℎ (

𝜕2𝑢𝐿

𝜕𝑥2 +
𝜕2𝑢𝐿

𝜕𝑦2 ) =
𝜏𝑠𝑥

𝜌ℎ
−

𝜏𝑏𝑥
𝐸

𝜌ℎ
− 𝑔

𝜕𝜂

𝜕𝑥
+

𝐹𝑥

𝜌ℎ
 

y-direction :  
𝜕𝑣𝐿

𝜕𝑡
+ 𝑣𝐿 𝜕𝑣𝐿

𝜕𝑥
+ 𝑢𝐿 𝜕𝑣𝐿

𝜕𝑦
− 𝑓𝑢𝐿 − 𝜂ℎ (

𝜕2𝑣𝐿

𝜕𝑥2 +
𝜕2𝑣𝐿

𝜕𝑦2 ) =
𝜏𝑠𝑦

𝜌ℎ
−

𝜏𝑏𝑦
𝐸

𝜌ℎ
− 𝑔

𝜕𝜂

𝜕𝑦
+

𝐹𝑦

𝜌ℎ
 

z-direction :  
𝜕𝜂

𝜕𝑡
=  −

𝜕𝑢𝐿ℎ

𝜕𝑥
−  

𝜕𝑣𝐿ℎ

𝜕𝑦
 

The horizontal eddy viscosity ηh is in XBeach related to the roller energy dissipation Droller according to Reniers 

et al. (2004). Moreover, the bed friction τb is calculated with use of Eulerian velocities. The formulations are 

solved in Xbeach in general. At the boundary multiple options are available (e.g. open or closed, Neumann 

boundaries) for which divergent formulations are used. These formulations can be found in the XBeach manual. 

C.4. Sediment transport 

The depth averaged advection-diffusion equation according to Gallappatti and Vreugdenhil (1985) is used in 

order to calculate the transports of sediment. Where the depth integrated Lagrangian velocity in the surf zone 

is assumed to be zero on average (balance principle considering a closed system), the mass flux related to the 

Stokes drift (and thus Stokes velocities) must be compensated by an equally large but opposite flux, which can 

be related to the undertow (and thus the Eulerian Velocities). The undertow and thus the Eulerian velocities 

are normative, resulting in: 

𝜕ℎ𝐶

𝜕𝑡
+

𝜕ℎ𝐶𝑈𝐸

𝜕𝑥
+

𝜕ℎ𝐶𝑣𝐸

𝜕𝑦
+

𝜕

𝜕𝑥
[𝐷ℎℎ

𝜕𝐶

𝜕𝑥
] +

𝜕

𝜕𝑦
[𝐷ℎℎ

𝜕𝐶

𝜕𝑦
] =

ℎ𝐶𝑒𝑞 − ℎ𝐶

𝑇𝑠
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With: C = depth-averaged sediment concentration 

 Dh = sediment diffusion coefficient 

 h = depth 

 Ceq = Equilibrium sediment concentration (depth-average) 

 Ts = Adaptation time scale 

The adaptation time Ts, which depends amongst others on the water depth and fall velocity of the particles, is 

a measure for the response time of a specific situation going to the equilibrium situation with Ceq. For Ceq 

different sediment transport formulations do exist where in XBeach the formulation of Soulsby-van Rijn (1997) 

has been implemented; see the manual for the basic formulation and variations. 

C.5. Bed updating 

Bed updating due to sediment transport is calculated with the following formulation58: 

𝜕𝑧𝑏

𝜕𝑡
+

𝑓𝑚𝑜𝑟

1 − 𝑝
(

𝜕𝑞𝑥

𝜕𝑥
+

𝜕𝑞𝑦

𝜕𝑦
) = 0 

With: p = porosity 

 fmor = Morphological acceleration factor; see Appendix C.7 

 zb = Bottom level 

 q = Sediment transport rate in x- or y-direction 

The sediment transport rates qx and qy are depth integrated and are within XBeach determined with the 

following formulations, which do not include the optional bed-slope correction factors here: 

𝑞𝑥(𝑥, 𝑦, 𝑡) = [
𝜕ℎ𝐶𝑈𝐸

𝜕𝑥
] + [

𝜕

𝜕𝑥
[𝐷ℎℎ

𝜕𝐶

𝜕𝑥
]]  and  𝑞𝑦(𝑥, 𝑦, 𝑡) = [

𝜕ℎ𝐶𝑈𝐸

𝜕𝑦
] + [

𝜕

𝜕𝑦
[𝐷ℎℎ

𝜕𝐶

𝜕𝑦
]] 

C.6. Avalanching module 

The avalanching approach, as has been introduced in paragraph 3.1.1.1, accounts for the slumping of sandy 

material when dune erosion is at stake. When a user-defined critical level is exceeded avalanching takes place 

in the model: 

|
𝜕𝑧𝑏

𝜕𝑥
| > 𝑚𝑐𝑟  

When this critical level is reached, the bed-change within one time step is the determined as follows: 

∆𝑧𝑏 = min ((|
𝜕𝑧𝑏

𝜕𝑥
| − 𝑚𝑐𝑟) ∆𝑥, 0.05∆𝑡) ,        𝑤ℎ𝑒𝑛 

𝜕𝑧𝑏

𝜕𝑥
> 0 

∆𝑧𝑏 = max (− (|
𝜕𝑧𝑏

𝜕𝑥
| − 𝑚𝑐𝑟) ∆𝑥, −0.05∆𝑡) ,        𝑤ℎ𝑒𝑛 

𝜕𝑧𝑏

𝜕𝑥
< 0 

Both conditions are always at stake at the same time in neighbouring cells. When the critical slope between 

two adjacent grid cells is exceeded, sediment is exchanged between these two cells to the amount that is 

needed to bring the slope gradient back to the critical situation. 

 
                                                                 
58  Coastal Dynamics I – lecture notes (J. Bosboom & M. Stive,2012) 
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C.7. Morphological acceleration factor 

Important for this thesis, since it is used to speed up the computations, is the morphological factor (or short: 

morfac). Calculating the bed level changes and updating the bed to its new state takes a lot of time and this is 

why the morphological factor is used. As an example, if one uses a morfac of 10, the model runs effectively 

only 6 minutes of every hydrodynamic hour including the morphodynamics. The morphological changes are 

then multiplied everything with a factor 10, which then save a factor 10 in computation time. The assumption 

that the result would be pretty much the same as without the morphological factor holds until a certain extend; 

in practice a morfac of 10 normally works fine, but a higher factor is not recommended59. 

  

                                                                 
59 According experts within Deltares. 
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D. XBeach model set-up 

D.1. Bathymetrical/topographical data 

This paragraph elaborates on the bathymetrical and topographical data used for the Rockaway Peninsula case 

study. To obtain high resolution storm characteristics on land with the use of XBeach modelling it is very 

important to have topographical and bathymetrical input that is at least as detailed as the desired output. 

The US Army Corps of Engineers (USACE) has done multiple LIDAR surveys in order to obtain high-resolution 

topo-bathy datasets covering most parts of the Long Island coastline, including Rockaway Peninsula. Although 

the density of elevation data seems to be sufficient for the aim of this study, some remarks should be made: 

 Some buildings have been deleted and at these locations you find data gaps. 

 For some layers, at some urban areas data are completely absent. 

 In the other urban areas buildings, trees, cars and other objects caused trouble in capturing the right 

elevations (noise), which has negative effects on the accuracy of the LIDAR data. The datasets are 

corrected for this as good as possible, but the topographical profile will always be a bit blurry. 

 Geographical positioning is not as good as one would expect. The location (in the horizontal) of an 

object can differ in the order of 100m for different layers.  

All this has its effects on the accuracy and therefore outcome of the XBeach modelling. In order to reduce 

these negative effects, datasets are combined and corrected where possible. Data gaps are filled in with use of 

interpolation routines and information on building height. Next section gives a short elaboration on the final 

topo-bathy file and the process of getting there. 

The remaining of this section will give specific details on the used datasets and corresponding sources. 

2005 USACE – Pre-Sandy 

The 2005 topo-bathymetry of the United States Army Corps of Engineers (USACE) is part of a larger survey 

campaign. For coastline of Delaware, Maryland, New Jersey, New York, North Carolina and Virginia bed 

elevation levels have been measured by the department of Joint Airborne LIDAR Bathymetry Technical Center 

of Expertise. This is part of the National Coastal Mapping Program and it is performed on a 5 to 7 year update 

schedule60. According to NOAA, the program uses the CHARTS system, which integrates topographic and 

bathymetric LIDAR sensors, a digital camera, and a hyperspectral scanner on a single remote sensing platform. 

The data can be downloaded on NOAA’s Digital Coast webpage, either gridded or in xyz. A visualisation of the 

coverage in the model domain is given in Fig I, both an overview and zoomed in view. The resolution of the 

dataset is 0.25 observations/meter and corresponds to a grid cell size of 2 x 2 m. 

                                                                 
60 http://www.csc.noaa.gov/digitalcoast/data/chartstopobathy 

http://www.csc.noaa.gov/digitalcoast/data/chartstopobathy
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Fig I - Bed levels of the 2005 USACE survey. Upper panel: overview; lower panel: zoomed view of the squared box in the upper panel 

It is noticed that where data are available, the dataset is pretty good: high resolution and not too much noise. 

However, large and some smaller gaps can be found within the area of interest. 

2010 USACE – Pre-Sandy 

As part of the same program the ‘2005 USACE – Pre-Sandy’ LIDAR is part of, the 2010 survey looks fairly similar. 

One important difference: within the area of interest no data gaps are found. Together with the fact that the 

2010 survey has been the last survey carried out before Sandy, it is considered to be the most important 

topographical dataset for present study. A visualisation of the coverage in the model domain is given in Fig II, 

both an overview and zoomed view. The resolution of the dataset is 0.25 observations/meter and corresponds 

to a grid cell size of 2 x 2 m. 
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Fig II - Bed levels of the 2010 USACE survey. Upper panel: overview; lower panel: zoomed view of the squared box in the upper panel 

2012 USACE – Post-Sandy 

The 2010 USACE survey is not part of the National Coastal Mapping Program and a different system than 

CHARTS is used for the measurements, knowing the Coastal Zone Mapping and Imaging LIDAR (CZMIL) system. 

The data were collected as a part of the Post Sandy effort to determine the morphological changes due to 

Sandy above and below the mean water level in the NY coastal zone. In that perspective, buildings and other 

terrain objects are of no interest and have therefore been filtered out as can be seen in Fig III. The larger 

buildings have been completely removed resulting in data gaps, which correspond to the white spots in the 

figure. The resolution of the dataset is 0.25 observations/meter and corresponds to a grid cell size of 2 x 2 m. 

 

Fig III - Bed levels of the additional post-Sandy 2012 USACE survey. Upper panel: overview; lower panel: zoomed view of the squared 

box in the upper panel 
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Coastal Relief Model 

Where the LIDAR data are mainly concentrated onshore, the Coastal Relief Model (CRM) bathymetrical dataset 

is used for the offshore bed levels. It covers almost the complete US coast; east, west and the Gulf. According 

to NOAA61, the CRM is composed of bathymetrical and topographical sources of U.S. National Ocean 

Service Hydrographic Database, the U.S. Geological Survey (USGS), the Monterey Bay Aquarium Research 

Institute, the U.S. Army Corps of Engineers, Shuttle Radar Topography Mission (SRTM), and various other 

academic institutions. The resolution of the gridded dataset is one observation every 3 arc-second and 

corresponds to a grid cell size of about 90 x 90 m, which is considered relatively course compared to the LIDAR 

data. However, as could have been expected, no buildings are located in the offshore areas, thus a high 

resolution is less important. Moreover, the littoral zone, where most of the morphological impact can be 

observed, is included in the LIDAR data as well. This implies that the resistant parts of the coastline, consisting 

of dunes and beach fronts, are mostly captured in the previous mentioned datasets. 

 

Fig IV - Bed levels of the used CRM data. 

D.2. Final bathymetrical input 

The final bathymetrical input file for XBeach has been established by combining the available datasets, which 

are elaborated in Appendix D.1, and some repair and interpolation routines. 

To get the best result for every location within the domain a specific dataset should be used based on general 

requirements. The following requirements are used to sequence the datasets for the interpolation process: 

 Where buildings are located (practically almost everywhere above Mean Sea level) a grid resolution of 

at least 3x3m is required, which gives a preference for datasets with that same resolution or higher. 

 Minimal noise and no deletion of buildings and other objects are both preferred. 

 Although large onshore morphological changes are not expected in the 10 years before Hurricane 

Sandy struck the area, observations which have been recorded closer to Sandy’s lifetime are 

preferred.  

                                                                 
61 http://www.ngdc.noaa.gov/mgg/coastal/crm.html 

http://www.ngdc.noaa.gov/mgg/bathymetry/hydro.html
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Based on the above mentioned requirements the ‘2010 USACE’ is used for the areas above Mean Sea Level. 

Data gaps are filled up with ‘2005 USACE’. The bathymetrical data from the CRM dataset is used for the areas 

below Mean Sea Level (MSL), both in the littoral zone (Bay side and Ocean side) as in the deeper parts. The 

result is shown in Fig V. 

 

Fig V - Spatial visualization of the merged topo-bathymetrical dataset 

To be sure that the water flows in the XBeach runs where it flowed in reality some obstacles are removed. 

Three bridges and corresponding ramps within the model domain have been lowered to surrounding 

elevations, knowing Marine Parkway Bridge, the Cross Bay Bridge and the railway bridge in the northeast. 

Moreover, the railway viaduct, which is constructed along the coastline and spans almost half of the model 

domain, is removed as well. Fig VI illustrates the locations (left) and a zoomed view of one of the repairs (right, 

Viaduct removal). 

 

 

Fig VI - Two visualisation (up and below) of the removing of the railway viaduct 

Seamless transitions between the layers are very important for the sake of present study. Moreover, to extract 
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local storm characteristics for every individual building after running the model, it is extremely important to 

know where the buildings are located within the grid. This is because if you know which grid cells correspond 

to a building, you can determine which grid cells are located directly next to the buildings which is useful for 

post processing purposes. The more accurate this spatial distribution is known, the more accurate local storm 

conditions can be determined. For a few buildings this can easily be done by looking to the depth file and 

expert judgement, but how to do this for thousands of buildings? 

D.2.1. Building Perimeter Outlines 

To answer the above posited question: a polygon dataset is used which contains the perimeter outlines of 

every building within the model domain. This polygon dataset has been obtained from FEMA, but is 

constructed by the Department of Buildings of New York City (DOB). It consists of building polygons from every 

single building in Queens, including the buildings within the model domain. In Fig VII the perimeter outlines of 

the buildings are plotted on top of a Google Maps hybrid map. 

 

Fig VII - Building perimeter outlines of the DOB polygon dataset on top of a Google Maps layer 

The polygons are very useful for post processing purposes, which are discussed in Chapter 0. However, 

geographical positioning of the buildings seems to match poorly with the topo-bathymetrical layers, which can 

be seen in Fig VIII (left). To overcome these spatial irregularities, all four LIDAR datasets are individually shifted, 

rotated and skewed in such a way that all buildings in the LIDAR data (recognized by peaks in the elevation) fall 

within their corresponding building polygons. The result is fairly good and can also be seen in Fig VIII (right) as 

well. 
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Fig IX – Visualization of the building polygons on top of the merged topo-bathymetrical data. Left: original file does 

not contain all buildings; right: the bathymetrical file has been raised to a minimum height of 7m above MSL. 

 

 

Fig VIII - Visualization of the building polygons on top of the merged topo-bathymetrical data. Left: original configuration matches 

poorly; right: After shifting of the topographical data a good match is obtained. 

In some parts of the model domain, buildings have been removed by the post processing LIDAR routines from 

the surveyors or the building height is just lower than it is in reality due to blurriness. Therefore, the building 

perimeter outlines are used once again to raise the grid cells that fall within the polygon to a minimum 

building height of 7 meters above MSL, way above the maximum surge levels. The result can be seen in Fig IX. 

 

D.2.2. Non-Erodible Layer  

XBeach is designed particularly for sandy coastal systems, capable of calculating morphological impacts due to 

storm events to beaches, sand bars, dunes and (barrier) islands. As a default, every (vertical) obstacle in the 

bathymetry will be taken as a large pile of sand, subject to erosion during floods. This is also the case for 

buildings, while this is certainly not true in reality where (most of) the buildings will not change shape. 

Neglecting this will locally cause an overestimation of the erosion and therefore an unrealistic change of 

hydraulic properties (feedback loop in time) and will imply a change in sediment/erosion rates in the whole 

system. 

A solution for this unwanted effect can be found in the non-erodible layer possibility within XBeach. For every 

grid cell one has to determine how many meters soil can be eroded away of the initial bed. Putting the 

erodible depth values of grid cells within building polygons to zero, these cells practically become non-erodible 

(sedimentation is still possible though). The erodible depth values of the other grid cells are set to 100, which 

is far more than the expected maximum erosion, which is in the order of a couple of meters. A visualization of 

the non-erodible layer is given in Fig IX.  
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Fig X - Non-erodible layer plotted with the building perimeter outlines (white) on top of it. Blue is non-erodible, red is erodible. 

It should be noted that some obstacles in the bathymetry, other than buildings, could be considered non-

erodible as well. This is for instance true for strong trees. However, since trees and other but similar objects 

seem to be scarce within the model domain, these effects are neglected for the sake of simplicity. Moreover, 

one could argue that paved streets and other kinds of land usage/coverage should be non-erodible as well or 

at least interact differently with water flow than sand. Although the total surface of these areas is certainly not 

negligible, the negative effects of omitting differentiation are assumed to be small.  This is true because these 

(urban) areas, located directly behind the beaches and dunes, mostly showed sedimentation and not erosion 

for the case of Hurricane Sandy. 

D.3. Grid properties 

Grid properties depend on multiple factors. The final grid configuration is established based on four main 

requirements: 

 Near buildings in the area of interest the grid resolution should be dense enough to locally compute 

hydraulic and morphologic properties in order to sufficiently indicate local storm conditions.  

 Overall the grid resolution should be dense enough to propagate long waves from the boundaries 

into the model domain. 

 The domain should be laterally wide enough to prevent significant shadow zone effects within the 

area of interest. 

 The offshore boundary locations should be located so deep that the assumption of deep water holds. 

 The total amount of grid cells should be minimized to decrease run time and expenses. 

The latter contradicts the other three requirements, which makes the process subjective to expert judgement.  

The following paragraphs elaborate on the choices made and with which expenses they come. 

D.3.1. Domain 
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The configuration of XBeach models knows few 

degrees of freedom. In the XBeach manual  (Deltares 

2010) a figure of the required configuration can be 

seen, which is also used for present study; see Fig XI. 

The coordinate reference system (CRS) is chosen to be 

global and has to be metric. Conversions from the 

locally used systems NAD83 and WGS84 have been 

made to the Universal Transverse Mercator (UTM) 

reference system. For New York City and surroundings 

the UTM zone corresponds to ’18 T’. Moreover, the 

grid should be rotated with angle alpha to have a 

coastline alignment perpendicular to the Y-axis. This is 

fairly true with an alpha of 113 degrees. 

 

Fig XII - Visualization of the final Bathymetrical file for the XBeach model 

The total model domain consists of multiple elements. First of all, the area of interest, which consists by itself 

of the Rockaway Peninsula, as has been discussed in chapter 2, and the associated littoral zone. This is also the 

impacted area by Hurricane Sandy.  Secondly, a shadow zone on both sides is determined, of which the size 

depends on wave direction during the storm event. During Sandy the waves were mainly coming from the 

Southeast, which demands for a slightly larger shadow zone on the Far Rockaway side (East). 

Fig XI - Normal XBeach model configuration (source: 

XBeach manual) 
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Fig XIII - The area of interest (or area of application) and shadow zones within the XBeach model domain. 

Where the littoral zone ends in seaward direction is arbitrary, but it depends on the wave conditions and 

depth profile. With the rule of thumb h = Hs/γb
62

 with significant wave height Hs = 10m and breaker index γb = 

0.6 the depth where the littoral zone ends is estimated to be about 16m. A breaker index γb of 0.6 is on the 

safe side compared to the theoretically based value of  McCowan (1894) but less conservative compared to 

the findings of Dally in 1985 (Nelson 1991). Moreover the domain should be extended in seaward direction to 

a minimum depth. As a rule of thumb63 this depth is reached when 

 
𝐶𝑔

𝐶𝑝

=
1

2
∙ (1 + tanh−1(𝑘 ∙ ℎ) ∙

1 − (𝑘 ∙ ℎ)2

𝑘 ∙ ℎ
) ≥ 0.8 

With: Cg  = group speed of the waves 

 Cp  = phase speed of the waves 

 h  = water depth 

 k  = wave number 

With use of the linear wave dispersion relation, a normative wave period of 10.5 m, and some iteration, a 

depth of 22 meters appears to be on the save side and is therefore used. The Seaward extension is carried out 

with a slope of 1/50. 

D.3.2. Grid density 

Also the grid density is subject to the requirements posited in the beginning of this section. A higher grid 

density gives a higher output resolution, but everything comes with a price: computational time and expenses 

will increase. This has been discussed in detail in section 1.2.4. 

Multiple measures have been used of in order to decrease computational expenses: smaller area of interest; 

smaller computational runtime; less wave bins; and (most effectively) a larger grid cell size. This was necessary, 

since else a minimum grid resolution of 3 x 3 m in the urban areas of interest would not be computationally 

feasible. In the other areas (near shore, offshore and in the shadow zones) the minimum grid size is based on 

the propagation of long waves, which implies a dependency on depth and normative wave periods. As a result 

the grid densities in X and Y direction are shown in Fig XIV. 

                                                                 
62 From the book Coastal Dynamics I (Bosboom and Stive 2012) 
63 Based on expert judgement within Deltares 
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Fig XIV - Grid density. Left: in x-direction (cross-normal); right: in y-direction (along shore) 

D.4. Surge 

As has been discussed in the implementation section 3.2 surge levels during superstorm Sandy are extracted 

from the D-FlowFM model, of which some results can be found in Appendix E. The reason for using the D-

FlowFM model is because it’s high resolution and good prediction skills in the Jamaica Bay compared to the 

Delft3D - NYB model. It can be concluded that water levels are predicted fairly well with a relatively small 

overestimation at the storm peak; 3.2m above MSL for the predicted water level (on the offshore boundary) in 

comparison to the gauged water level of 3.2m above MSL (onshore), see Figure 3-19.  

The predicted water levels offshore and observed onshore are thus the same, where one would expect higher 

onshore water levels due to wind and wave setup. The surge levels are caused by wind, piling up the water 

against the coast. It should be noted that wind is taken into account in the D-flowFM and Delft3D models, but 

is neglected within the XBeach model. The assumption implies a small underestimation during the peak in the 

order of 20-30cm with a fetch length of 2km, an average depth of 8m and maximum wind speeds of about 

300km/h. Therefore this might imply a difference in predicted (offshore) and observed (onshore) water levels. 

For both the offshore and bay side boundaries one time series of surge levels is used. It should be noted that 

XBeach gives the opportunity of working with two series per boundary (on every corner one, so four in total), 

which is in general preferable with relatively large domains. The boundary conditions are then interpolated for 

every grid cell on the boundary (y-direction). However, when using this option, water levels exploded within 

the domain after a few hours computational time for no particular reason. This is why I chose for only one 

boundary per side, since that appeared to be stable on the contrary. This simplification has no further 

disadvantages for present study, since water levels at both corners were pretty much the same for the case of 

Sandy, see Fig XV.  
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Fig XV - Alongshore variation in water level at the boundary locations. Upper panel: Bay side; lower panel: offshore 

D.5. Waves 

Comparable to the water level boundary conditions, wave boundary conditions have been extracted from 

another model in which Xbeach is nested. The wave conditions are coming from the Delf3D - NYB model as has 

been discussed in subsection 3.2.1. The Delft3D runs were executed parallel with SWAN and every half hour 

2D energy wave spectra have been produced for the offshore boundary. Xbeach is capable of handling the 

associated ‘.sp2’ files as input. A visualization of such a wave spectrum is given in Fig XVI.  

 

Fig XVI - Energy density spectrum produced by SWAN during the peak of the storm 

Wave conditions are imposed only at the offshore boundary and not on the bay side boundary. It is assumed 

that waves are relatively small in the bay, due to the shallowness of the bay (bottom friction absorbs wave 

energy) and the fact that it is sheltered by the Rockaway Peninsula. 

Comparison predictions and buoy – Based on the 2D spectra, significant wave height Hs and significant wave 

period Tm01 can be determined. Both have been done for hurricane Sandy at the exact same location as 
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NOAA’s buoy 44065. A comparison can be found in Fig XVII. 

 

Fig XVII - Wave properties significant wave height (upper) and significant wave period (lower panel) during the storm at the offshore 

boundary. Red: observed; blue: modelled with Delft3D 

It can be seen that Delft3D/SWAN underestimates the significant wave height with a factor 1.6 during the 

storm peak and a factor 1.4 for the significant wave period. This is a significant underestimation and no 

particular reason has been found yet. However, it is certainly not negligible and two solutions have been 

proposed: 

1. Improve: this implies a change in whitecapping formulations and coefficients. Larger wind speeds are 

not preferred, since water level predictions have been proved to be fairly good. 

2. Compensate: increasing of the energy in the 2D wave spectra so that Hs and Tm01 are linearly scaled 

with a factor 1.6 and 1.4 respectively.  

Three different whitecapping formulations within SWAN, knowing van der Westhuysen, Komen and Rogers 

(see also the XBeach manual), have been tried and all gave comparably results. This is why option two has 

been chosen, of which the result can be seen in Fig XVIII. 
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Fig XVIII- Wave properties significant wave height (upper) and significant wave period (lower panel) during the storm at the offshore 

boundary. Red: observed; blue: non-scaled simulation with Delft3D; green: scaled simulation 

Next to the scaled prediction and observation of the significant wave heights and periods at Buoy 44605, 

another graph is added, which presents the scaled prediction at the boundary location. It should be noted that 

due to the linearity of the scaling process storm conditions are probably slightly overestimated at the tails of 

the storm. The effects to total damage and morphological changes of this overestimation are assumed to be 

small, since most of the damage will be caused by the peak.  Therefore these effects are neglected.  

In Fig XIX significant wave height and period are graphed for both offshore corners. No large alongshore 

variations in wave conditions are observed and this is why only one time series of sp2 files is used. This is in 

analogy with the imposed water level boundaries (appendix D.4). 

 

Fig XIX - Wave properties significant wave height (upper) and significant wave period (lower panel) during the storm at the two 

offshore model domain corners 

During the scaling of the ‘.sp2’ files the shape of the wave spectra has not been changed. This is very important, 

because the directional spreading is assumed to be modeled correctly. In Fig XX the energy density spectrum 

over time and wave direction during the storm is displayed. Directions are in degrees and nautical oriented. An 
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upper and lower bound is given (red) between which 90% of the energy is situated, together with the 

dominant wave direction. 

 

Fig XX - Energy per wave direction bin (10 degrees per bin) during hurricane Sandy. Betweeen the red lines 90% of the energy is situated. 

During Sandy the dominant wave direction slightly changed from 120 to 140 nautical degrees, which 

correspond both more or less to winds coming from the South-East. The two 90% energy-limits provide 

bounds for the XBeach simulation. At any time 

during the whole simulation more than 90% of 

the wave energy is found between -10 and 190 

nautical degrees. 

Moreover, it should be noted that all energy 

above 250 and below 70 degrees is oriented 

offshore and will never reach a normal straight 

coast, which is the case for present study. This 

gives two limits, between which most of the 

effective energy lays, knowing 70 and 190 

degrees; see Fig XXI. Xbeach solves numerical 

computations for every predefined wave bin and 

with wave bin of 20 degrees (based on expert 

judgment) six wave bins are used, instead of 

nine (180/2). This implies a saving of 

computational expenses in the order of 33%. 

 

D.6. Input parameters 

Additional model input, different from everything discussed above, is given in this paragraph. Morphological 

Fig XXI - Determining effective wave directions 
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parameters and sediment roughness coefficients are chosen XBeach default. This implies a Chezy roughness 

coefficient of 0.17, based on a flow friction coefficient (cf) of 0.003 and C = sqrt(g/cf). Comparable values have 

been used in the Delft3D and D-flowFM models. A morphological factor ‘Morfac’ of 10 is used to speed up the 

process, which means that bed level changes are once in 10 time steps computed. This is another way to 

reduce computations expenses (Deltares 2010). In Fig XXII a scatter plot of the morphological change is given 

between two identical runs except for the morphological factor. One has a factor of 10, the other one of 1. 

There are definitely differences in bed level change; especially on the horizontal and vertical axes of the scatter 

plot strange results can be found (see red arrows). These differences can be explained by unnatural 

sedimentation/erosion spots offshore and in the shadow zone (see red circles). However, for the majority of 

the onshore cells (with colors corresponding to 0 or higher in the scatter plot) the results are pretty much 

equal. Therefore, a morphological factor of ten seems to be justifiable64. 

 

Fig XXII - upper panels: absolute and relative bed level changes; lower panel: scatter plot - morfac 1 vs morfac = 10 

Since XBeach’s numerical schemes are explicit, the time step depends on the Courant–Friedrichs–Lewy (CFL) 

condition, knowing: 

𝐶 =
𝑢 ∙  ∆𝑡

∆𝑥
≤ 𝐶𝑚𝑎𝑥  

                                                                 
64 It is not excluded that with other grid cell properties the differences will be larger (or smaller). 
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With:  C = Courant number 

  u = Velocity 

  ∆t = Time step 

  ∆x = One-dimensional grid dimension 

  Cmax = Maximum Courant Number 

The default in Xbeach for the maximum courant number is chosen to be 0.7 instead of the absolute max of 1 

as criterion for stability. Output however is not derived for every time step, but every 10min for global 

variables and every 30min for mean variables. The desired output variables depend on their use for the 

Bayesian Network and are therefore elaborated in the implementation section 3.2. 
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E.  Delft3D and D-Flow FM model set-up 

E.1. Delft3D - US East Coast model 

MDW file              MDF file 

 
[WaveFileInformation] 
   FileVersion        =  02.00                                       
 
[General] 
   OnlyInputVerify    = false 
   SimMode            =  non-stationary                              
   TimeStep           =  30-                                         
   DirConvention      =  nautical                                    
   ReferenceDate      =  2012-01-01                                  
   TimePoint          =  0.0000000e+00                               
   WaterLevel         =  0.0000000e+00                               
   XVeloc             =  0.0000000e+00                               
   YVeloc             =  0.0000000e+00                               
   WindSpeed          =  0.0000000e+00                               
   WindDir            =  0.0000000e+00                               
 
[Constants] 
   Gravity             =  9.8100000e+00                               
   WaterDensity       =  1.0000000e+03                               
   NorthDir           =  9.0000000e+01                               
   MinimumDepth       =  5.0000000e-02                               
 
[Processes] 
   GenModePhys        =  3                                           
   WaveSetup          =  false                                       
   Breaking           = true                                        
   BreakAlpha         =  1.0000000e+00                               
   BreakGamma         =  8.0000000e-01                               
   Triads              = false                                       
   TriadsAlpha        =  1.0000000e-01                               
   TriadsBeta         =  2.2000000e+00                               
   BedFriction        =  jonswap                                     
   BedFricCoef        =  6.7000000e-02                               
   Diffraction        =  false                                       
   WindGrowth         = true                                        
   WhiteCapping       =  Komen                                       
   Quadruplets        =  true                                        
   Refraction         =  true                                        
   FreqShift          =  true                                        
   WaveForces         =  radiation stresses                           
 
[Numerics] 
   DirSpaceCDD        =  5.0000000e-01                               
   FreqSpaceCSS       =  5.0000000e-01                               
   RChHsTm01          =  2.0000000e-02                               
   RChMeanHs          =  2.0000000e-02                               
   RChMeanTm01       =  2.0000000e-02                               
   PercWet            =  9.0000000e+01                               
   MaxIter            =  5                                           
 
[Output] 
   TestOutputLevel    =  0                                           
   TraceCalls         =  false                                       
   UseHotFile         =  true                                        
   MapWriteInterval   =  6.0000000e+01                               
   WriteCOM           =  true                                        
   COMWriteInterval   = 3.0000000e+01                               
   Int2KeepHotfile    =  7.2000000e+02                               
   AppendCOM          =  false                                       
   LocationFile       =  nyc.loc                                     
   WriteTable         =  false                                       
   WriteSpec1D       =  false                                       
   WriteSpec2D        =  true                                        
 
[Domain] 
   Grid                =  usn_swn.grd                                 
   BedLevelGrid       =  usn_swn.grd                                 
   BedLevel           =  usn_swn.dep                                 
   DirSpace           =  circle                                      
   NDir                =  36                                          
   StartDir            =  0.0000000e+00                               
   EndDir             =  3.6000000e+02                               
   NFreq              =  24                                          
   FreqMin            =  5.0000000e-02                               
   FreqMax            =  1.0000000e+00                               
   FlowBedLevel       =  1                                           
   FlowWaterLevel     =  1                                           
   FlowVelocity       =  1                                           
   FlowWind           =  1                                           
   Output              =  1 
 

Ident   =  #Delft3D-FLOW  .03.02 3.39.26# 
Filcco  =  #usn.grd# 
Fmtcco  =  #FR# 
Grdang  =  0.0000000e+00 
Filgrd  = #usn.enc# 
Fmtgrd  =  #FR# 
MNKmax  =  300 232   1 
Thick   =  1.0000000e+02 
Fildep  =  #usn.dep# 
Fmtdep  =  #FR# 
Itdate  =  #2012-01-01# 
Tunit   =  #M# 
Tstart  =  4.2480000e+05  
Tstop   =  4.3677000e+05 
Dt      =  5.0000000e+00 
Tzone   =  0 
Sub1    =  #  W # 
Sub2    =  #  W# 
Wnsvwp  =  #N# 
Wndint  = #Y# 
Filwu  =  #ncep_nam_sandy.amu# 
Filwv   =  #ncep_nam_sandy.amv# 
Filwp   =  #ncep_nam_sandy.amp# 
Zeta0   =  0.0000000e+00 
U0      =  [.] 
V0      =  [.] 
Filbnd  =  #usn_wl.bnd# 
Fmtbnd  =  #FR# 
Filana  =  #usn_wl.bca# 
Fmtana  =  #FR# 
Ag      =  9.8100000e+00 
Rhow    =  1.0000000e+03 
Alph0   =  [.] 
Tempw   =  1.5000000e+01 
Salw    =  3.1000000e+01 
Rouwav  =  #    # 
Wstres  =  1.0000000e-03   0.0000000e+00   3.0000000e-03    

3.0000000e+01   1.5000000e-03   5.0000000e+01 
Rhoa    =  1.0000000e+00 
Betac   =  5.0000000e-01 
Equili  =  #Y# 
Tkemod  = #            # 
Ktemp   =  0 
Fclou   =  0.0000000e+00 
Sarea   = 0.0000000e+00 
Temint  =  #Y# 
Roumet  =  #M# 
Ccofu   =  2.0000000e-02 
Ccofv   =  2.0000000e-02 
Xlo     =  0.0000000e+00 
Vicouv  =  1.0000000e+00 
Dicouv  =  1.0000000e+00 
Htur2d  = #N# 
Irov    =  0 
Iter    =  2 
Dryflp  =  #YES# 
Dpsopt  =  #MEAN# 
Dpuopt  =  #MEAN# 
Dryflc  =  1.0000000e-01 
Dco     =  -9.9900000e+02 
Tlfsmo  =  6.0000000e+01 
ThetQH  =  0.0000000e+00 
Forfuv  =  #N# 
Forfww  =  #N# 
Sigcor  =  #N# 
Trasol  = #Cyclic-method# 
Momsol  = #Cyclic# 
Filsta  =  #usn.obs# 
Fmtsta  =  #FR# 
SMhydr  =  #YYYYY# 
SMderv  =  #YYYYYY# 
SMproc  =  #YYYYYYYYYY# 
PMhydr  =  #YYYYYY# 
PMderv  =  #YYY# 
PMproc  =  #YYYYYYYYYY# 
SHhydr  =  #YYYY# 
SHderv  =  #YYYYY# 
SHproc  =  #YYYYYYYYYY# 
SHflux  =  #YYYY# 
PHhydr  =  #YYYYYY# 
PHderv  =  #YYY# 
PHproc  =  #YYYYYYYYYY# 
PHflux  =  #YYYY# 
Online  =  #N# 
Waqmod  =  #N# 
WaveOL  =  #Y# 
Prhis   =  0.0000000e+00   0.0000000e+00   0.0000000e+00 
Flmap   =  4.2480000e+05    3.0000000e+01   4.3677000e+05 
Flhis   =  4.2480000e+05    1.0000000e+01   4.3677000e+05 
Flpp    =  4.2480000e+05   3.0000000e+01   4.3677000e+05 
Flrst   =  0.0000000e+00 
AirOut  =  #Y# 
Pavbnd  =  1.0200000e+05 
WaveOL  =  #Y# 
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E.2. Delft3D – New York Bight model 

 

 

MDW file  

  
[WaveFileInformation] 
   FileVersion        =  02.00                                       
 
[General] 
   OnlyInputVerify    =  simulation run                              
   SimMode            =  non-stationary                              
   TimeStep           =  30-                                         
   DirConvention      =  nautical                                    
   ReferenceDate      =  2012-01-01                                  
   TimePoint          =  0.0000000e+00                               
   WaterLevel         =  0.0000000e+00                               
   XVeloc             =  0.0000000e+00                               
   YVeloc             =  0.0000000e+00                               
   WindSpeed          =  0.0000000e+00                               
   WindDir            =  0.0000000e+00                               
 
[Constants] 
   Gravity             =  9.8100000e+00                               
   WaterDensity       =  1.0000000e+03                               
   NorthDir           =  9.0000000e+01                               
   MinimumDepth       =  5.0000000e-02                               
 
[Processes] 
   GenModePhys        =  3                                           
   WaveSetup          =  false                                       
   Breaking           =  true                                        
   BreakAlpha         =  1.0000000e+00                               
   BreakGamma         =  8.0000000e-01                               
   Triads              =  false                                       
   TriadsAlpha        =  1.0000000e-01                               
   TriadsBeta         =  2.2000000e+00                               
   BedFriction        =  jonswap                                     
   BedFricCoef        =  6.7000000e-02                               
   Diffraction        =  false                                       
   WindGrowth         =  true                                        
   WhiteCapping       =  Komen                                       
   Quadruplets        =  true                                        
   Refraction         =  true                                        
   FreqShift          =  true                                        
   WaveForces         =  dissipation                        
 
[Numerics] 
   DirSpaceCDD        =  5.0000000e-01                               
   FreqSpaceCSS       =  5.0000000e-01                               
   RChHsTm01          =  2.0000000e-02                               
   RChMeanHs          =  2.0000000e-02                               
   RChMeanTm01        =  2.0000000e-02                               
   PercWet            =  9.0000000e+01                               
   MaxIter            =  5                                           
 
[Output] 
   TestOutputLevel    =  0                                           
   TraceCalls         =  false                                       
   UseHotFile         =  true                                        
   MapWriteInterval   =  3.0000000e+01                               
   WriteCOM           =  true                                        
   COMWriteInterval   =  3.0000000e+01                               
   Int2KeepHotfile    =  7.2000000e+02                               
   AppendCOM          =  false                                       
   LocationFile       =  lisl.loc                                    
   WriteTable         =  false                                       
   WriteSpec1D        =  false                                       
   WriteSpec2D        = true                                        
 
[Domain] 
   Grid                =  nyc_swn.grd                                 
   BedLevelGrid       =  nyc_swn.grd                                 
   BedLevel           =  nyc_swn.dep                                 
   DirSpace           =  circle                                      
   NDir                =  36                                          
   StartDir            =  0.0000000e+00                               
   EndDir             = 3.6000000e+02                               
   NFreq              =  24                                          
   FreqMin            =  5.0000000e-02                               
   FreqMax            =  1.0000000e+00                               
   FlowBedLevel       =  1                                           
   FlowWaterLevel     =  1                                           
   FlowVelocity       =  1                                           
   FlowWind           =  1                                           
   Output              =  1                                           
 
[Boundary] 
   Name               =  nyc.sp2                                     
   Definition         =  fromsp2file                                 
   OverallSpecFile    =  nyc.sp2    
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E.3. D-Flow FM – New York Bight model 

MDU file 

  # Generated on 15:35:20, 10-10-2013 
# Deltares, D-Flow FM Version 1.1.54.24756, Nov 08 2012, 02:02:12 
 
[model] 
Program               =  D-Flow FM 
Version               =  1.1.90.31666 
AutoStart             =  0  # Autostart simulation after loading MDU or not (0=no, 1=autostart, 2=autostartstop). 
 
[geometry] 
NetFile                =  newyork_net.nc           # *_net.nc 
BathymetryFile        =                        # *.xyb 
WaterLevIniFile       =                        # Initial water levels sample file *.xyz 
LandBoundaryFile      =  landboundary.ldb     # Only for plotting 
ThinDamFile           =                        # *_thd.pli, Polyline(s) for tracing thin dams. 
ThindykeFile          =                        # *._tdk.pli, Polyline(s) x,y,z, z = thin dyke top levels 
ProflocFile           =                        # *_proflocation.xyz)    x,y,z, z = profile refnumber 
ProfdefFile           =                        # *_profdefinition.def) definition for all profile nrs 
ManholeFile           =                        # *... 
WaterLevIni           =  0.                    # Initial water level 
BotLevUni             =  -5.                   # Uniform bottom level, (only if Botlevtype>=3, used at missing z values in netfile 
BotLevType            =  3  # 1 : Bottom levels at waterlevel cells (=flow nodes), like tiles xz, yz, bl , bob = max(bl left, bl right) 
                                               # 2 : Bottom levels at velocity points  (=flow links),            xu, yu, blu, bob = blu,    bl = lowest connected link 
                                               # 3 : Bottom levels at velocity points  (=flow links), using mean network levels xk, yk, zk  bl = lowest connected link 
                                               # 4 : Bottom levels at velocity points  (=flow links), using min  network levels xk, yk, zk  bl = lowest connected link 
                                               # 5 : Bottom levels at velocity points  (=flow links), using max  network levels xk, yk, zk  bl = lowest connected link 
PartitionFile         =                        # *_part.pol, polyline(s) x,y 
AngLat                =  30.                    # Angle of latitude (deg), 0=no Coriolis 
Conveyance2D          =  3                     # -1:R=HU,0:R=H, 1:R=A/P, 2:K=analytic-1D conv, 3:K=analytic-2D conv 
 
[numerics] 
CFLMax                =  0.7                   # Max. Courant nr. 
CFLWaveFrac           =  0.1                   # Wave velocity fraction, total courant vel = u + cflw*wavevelocity 
AdvecType             =  3                     # Adv type, 0=no, 1= Wenneker, qu-udzt, 2=1, q(uio-u), 3=Perot q(uio-u), 4=Perot q(ui-u), 5=Perot q(ui-u) without itself 
Limtypmom             =  4                     # Limiter type for cell center advection velocity, 0=no, 1=minmod,2=vanLeer,3=Kooren,4=Monotone Central 
Limtypsa              =  4                     # Limiter type for salinity transport,           0=no, 1=minmod,2=vanLeer,3=Kooren,4=Monotone Central 
Icgsolver             =  1                     # Solver type , 1 = sobekGS_OMP, 2 = sobekGS_OMPthreadsafe, 3 = sobekGS, 4 = sobekGS + Saadilud 
Hdam                  =  0.                    # Threshold for minimum bottomlevel step at which to apply energy conservation factor i.c. flow contraction 
 
[physics] 
UnifFrictCoef         =  65.                   # Uniform friction coefficient, 0=no friction 
UnifFrictType         =  0                     # 0=Chezy, 1=Manning, 2=White Colebrook, 3=z0 etc 
Vicouv                 =  1.                    # Uniform horizontal eddy viscosity 
Smagorinsky           =  0.                    # Add Smagorinsky horizontal turbulence : vicu = vicu + ( (Smagorinsky*dx)**2)*S, e.g. 0.1 
Elder                  =  0.                    # Add Elder contribution                : vicu = vicu + Elder*kappa*ustar*H/6),   e.g. 1.0 
irov                   =  0                     # 0=free slip, 1 = partial slip using wall_ks 
wall_ks                =  0.                    # Nikuradse roughness for side walls, wall_z0=wall_ks/30 
Vicoww                =  0.                    # Uniform vertical eddy viscosity 
TidalForcing          =  1                     # Tidal forcing (0=no, 1=yes) (only for jsferic == 1) 
Salinity               =  0                     # Include salinity, (0=no, 1=yes) 
 
[wind] 
ICdtyp                 =  3                     # ( ), Cd = const, 2=S&B 2 breakpoints, 3= S&B 3 breakpoints 
Cdbreakpoints         =  1.0000000e-02 3.0000000e-03 1.5000000e-03       

# ( ),   e.g. 0.00063  0.00723 
Windspeedbreakpoints  =  0.0000000e+00 2.5000000e+01 5.0000000e+01              

# (m/s), e.g. 0.0      100.0 
 
[time] 
RefDate               =  20120101             # Reference date (yyyymmdd) 
Tunit                  =  #M#                    # Time units in MDU (H, M or S) 
DtUser                =  300.                  # User timestep in seconds (interval for external forcing update & his/map output) 
DtMax                 =  30.                   # Max timestep in seconds 
DtInit                 =  1.                    # Initial timestep in seconds 
AutoTimestep          =  0                     # Use CFL timestep limit or not (1/0) 
TStart                 =  4.2912000e+05                   # Start time w.r.t. RefDate (in TUnit) 
TStop                  =  4.3677000e+05            # Stop  time w.r.t. RefDate (in TUnit) 
 
[restart] 
RestartFile           =                        # Restart file, only map, hence: *_map.nc 
RestartTime           =  20020101000000       # Restart time (yyyymmddhhmmss) 
 
[external forcing] 
ExtForceFile          =  boundaries.ext       # *.ext 
 
[output] 
ObsFile               =  newyork.xyn   # *.xyn Coords+name of observation stations. 
CrsFile                =                        # *_crs.pli Polyline(s) definining cross section(s). 
HisFile                =                        # *_his.nc History file in NetCDF format. 
HisInterval           =  600.                 # Interval (s) between history outputs 
XLSInterval           =  0.                    # Interval (s) between XLS history 
FlowGeomFile          =  1200.                 # *_flowgeom.nc Flow geometry file in NetCDF format. 
MapFile               =                        # *_map.nc Map file in NetCDF format. 
MapInterval           =  3600.                 # Interval (s) between map file outputs 
RstInterval           =  0.                    # Interval (s) between map file outputs 
WaqFileBase           =  run                   # Basename (without extension) for all Delwaq files to be written. 
WaqInterval           =  0.                    # Interval (in s) between Delwaq file outputs 
StatsInterval         =  0.                    # Interval (in s) between simulation statistics output. 
SnapshotDir           =                        # Directory where snapshots/screendumps are saved. 
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F. Delft3D and D-Flow FM model results 

In this appendix some results of the Delft3D and D-Flow FM models are given, considering the propagation of 

wave information and surge. This is in addition to the brief descriptions of the models in paragraph 0. First the 

propagation of storm tide (surge + astronomical tide) is graphed in space by using a few snapshots. This is 

followed by a comparison of the simulated storm tide to the observations of water level gauging stations. 

Subsequently the same is done for waves by considering the significant wave height and peak wave period. It 

must be said that no conclusions about the results are drawn here. 

F.1. Storm Tide Propagation 
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F.2. Storm Tide– Observed versus Simulated 

 

 



Impact Modelling of Hurricane Sandy on the Rockaways 
 

 | 148  
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F.3. Wave  Propagation 
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F.4. Waves– Observed versus Simulated 

 

F.4.1. Significant Wave Height 
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F.4.2. Peak Wave Period 
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G. XBeach model results – multiple runs 
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H.    Reference studies - Bayesian Belief 

Networks 

In the field of Coastal Engineering some papers have been written about the application of BBNs, for instance 

for the prediction of dune erosion impact (Heijer, 2013) and the prediction and assimilation of surf-zone 

processes (Plant & Holland, 2011).  

Den Heijer investigated the usefulness of BBN’s in assessments for the safety of dune coasts. The BBN model, 

constructed within the software package Netica, predicts dune erosion impact based on hydraulic boundary 

conditions and a number of cross-shore profile indicators like crest height and beach slope. The configuration 

of the network can be seen in Fig XXIII. 

 

Fig XXIII - Overview of the Bayesian Network (source: Den Heijer, 2013) 

In both left and right side of the figure the variables (green boxes) and dependency relations (arrows) are 

shown. The Network is strained with data obtained from empirical dune erosion simulations with the model 

Duros+. Comparing the results of the BBN predictions and the Duros+ predictions a skill up 0.88 is found. In 

this way the BBN can be used as a substitute for the Duros+ model, which has the advantage that not only 

process knowledge can be integrated in impact assessments but also the accompanying uncertainties. Another 

advantage can be found in the fact that predictions can be performed really fast, which is beneficial in 

emergency forecasting. Den Heijer also found limitations for the usage of BBNs: “the model cannot be used 

out of the range of the training data. A BBN is only capable of interpolating and extrapolating its training data”. 

Plant and Holland demonstrated how a Bayesian Belief Network can be used to provide predictions of the 

evolution of wave-height in the surf-zone given with sparse boundary condition-data from two buoys. They 

show that predictions of a detailed geophysical model of the wave evolution are reproduced accurately using a 

Bayesian approach, resulting in a forward prediction skill of 0.83. Moreover, uncertainties in the model inputs 

were accurately transferred to uncertainty in output variables. Observed and simulated data at three places in 

the surf-zone (at a depth of ~5m, ~4m and ~1.5m) were coupled in the Bayesian net; see Fig XXIV and Fig XXV. 
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In this way a BBN has been created which was able to reproduce the detailed results obtained from a forward 

model of surf-zone wave evolution. The cross-shore profile of Fig XXV also showed depth variations in along 

shore direction, which was included as uncertainty in the input parameters in a second test. This caused an 

increase of uncertainty in the output data which was in better agreement with reality than without including 

that uncertainty. Plant and Holland state that the usage of BBN’s has several advantages: “It significantly 

reduces the dimensionality of the problem, compared to detailed models; uncertainty estimates are made for 

all predictions, and it is possible to estimate model parameters simultaneously with making the wave-height 

prediction.” 

More examples can be found in other fields, for instance the master thesis ‘Using Dynamic Nonparametric 

Bayesian Belief Nets (BBNs) to Model Human Influences on Safety’ (Jäger, 2013). These papers show that 

usage of Bayesian Belief Networks can lead to powerful tools, as well as insight into their limitations. 

  

Fig XXIV - overview BBN. H = wave height; h = depth; 

alpha = wave angle; T = wave period; gamma and beta 

are model parameters in TG83 (source: Plant and 

Holland, 2011) 

Fig XXV - Cross-shore profile (blue), wave height (green) 

and locations of observations (source: Plant and Holland, 

2011) 
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I.     Tools of Analysis 

I.1. Sensitivity Analysis 

Sensitivity analysis is the study of appointing the uncertainty of a prediction or outcome to the different source. 

The larger the sensitivity of an indicator is, the larger the dependency and more important the variable is for 

the damage prediction. 

Quantifying sensitivity between variables is straight forward for numerical variables, but not for non-numerical 

variables like damage based on the ImageCat dataset (Affected, Minor, Major and Destroyed). In order to say 

something about the sensitivity, extremes are studied and compared. For instance the conditional PMF’s of 

the variable damage conditioned on the 10% lowest and 10% highest inundation depth observations are 

compared; see Fig XXVI. 

 

Fig XXVI - Marginal (green) and conditional PMF's of damage; conditioned on either the 10% highest or 10% lowest inundation depths 

I.2. (Log-)Likelihood Ratio Test 

An approach to testing the Bayesian-network prediction is to compare it to a competing model. One such 

competing model is for instance taking the marginal CPT (based on all the trainings data) as the prediction. In 

the test the log-likelihood of the prediction is compared to the log-likelihood of the marginal probability, 

according to: 

𝐿𝐿𝑅𝑗 = 𝑙𝑜𝑔 {
𝑝(𝐹𝑖|𝑂̃𝑗)

𝐹𝑖= 𝑂𝑗

𝑝(𝐹𝑖)𝐹𝑖= 𝑂𝑗

} 

𝐿𝐿𝑅𝑗 = 𝑙𝑜𝑔 {𝑝(𝐹𝑖|𝑂̃𝑗)
𝐹𝑖= 𝑂𝑗

} − 𝑙𝑜𝑔 {𝑝(𝐹𝑖)𝐹𝑖= 𝑂𝑗
} 

Here F is the forecast and O is the observed on which is conditioned. If the log-likelihood ratio is positive, the 

model shows predictive skill since the prediction is better than guessing randomly based on the marginal 

distribution; if the ratio is negative the prediction is worse. In the Fig XXVII an example is given for a damage 

prediction. Marginal and conditional PMF both give a competing prediction for the observed (which is “Major 
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damage” in this case). The corresponding Log-likelihood ratio 𝐿𝐿𝑅 = 𝑙𝑜𝑔10{0.28} − 𝑙𝑜𝑔10{0.05} =  2.4429 is 

positive, since the conditioned model gives a better prediction than the marginal distribution. 

 

Fig XXVII – Example - determining input for the Log-Likelihood ratio 

By summing the LLR’s of all hindcast events the LLR test score can be determined. Therefore, if you consider 

more hindcast events, the score will increase (or decrease in case of a negative score). So what is this score 

worth? A way to answer that question is by looking at the perfect check. The perfect check is the score of the 

LLR test in which the conditional PMF has a 100% probability for the actual observed. The log-likelihood ratio 

for the example of above then becomes𝐿𝐿𝑅 = 𝑙𝑜𝑔10{1.00} − 𝑙𝑜𝑔10{0.05} =  2.9957. Again, the sum of the 

LLR’s of all hindcast events results in the LLR test score. Relative to this LLR test score of the perfect check 

different configurations can be compared. 
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J.  FEMA Damage Classification description 

Table 6-1 - Description of the Damage Classification which is used for the ImageCat Impact Analysis (source: FEMA) 

FEMA DAMAGE CLASSIFICATION VISIBLE IMAGERY BASED CLASSIFICATION INUNDATION ASSESSMENTS 

DAMAGE 

LEVEL 
OBSERVED 

DAMAGE 
Roof 

Covering 
Roof 

Diaphragm 
Collapsed 

Walls 
Other 

Considerations 
  

  
Affected Generally superficial 

damage to solid 
structures (loss of tiles 

or roof shingles); some 

mobile homes and light 
structures damaged or 

displaced. 

Up to 

20% 
None None Gutters and/or 

awning; loss of 
vinyl or metal 

siding 

Field Verified Flood Depth (or Storm 

Surge): >0 to 2 feet relative to the ground 
surface at structure. Depth damage relationships 

may vary based on building or foundation type, 

as well as duration or velocity of flood event. 

  

  
Minor Solid structures sustain 

exterior damage (e.g., 

missing roofs or roof 
segments); some mobile 

homes and light 
structures are destroyed, 

many are damaged or 

displaced. 

>20% Up to 20% None Collapse of 

chimney; garage 

doors collapse 
inward; failure of 

porch or carport 

Mobile homes 

could be partially 

off foundation 

Field Verified Flood Depth  (or Storm Surge): 2 

to 5 feet relative to the ground surface at 

structure.  Depth damage relationships may 
vary based on building or foundation type, as 

well as duration or velocity of flood event. 

  

  

  
Major Wind:  Some solid 

structures are destroyed; 
most sustain exterior 

and interior damage 

(roofs missing, interior 
walls exposed); most 

mobile homes and light 

structures are destroyed. 

- >20% Some 

exterior 
walls are 

collapsed. 

Mobile home 

could be 
completely off 

foundation – if 

appears to be 
repairable. 

Field Verified Flood Depth: Greater than 5 feet, 

modeling observed,relative to the ground 

surface at structure, and not high rise 

construction.   Depth damage relationships may 

vary based on building or foundation type, as 
well as duration or velocity of flood event. 

  

  

Storm Surge: Extensive 
structural damage 

and/or partial collapse 

due to surge effects. 
Partial collapse of 

exterior bearing walls. 

  
Some 
exterior 

walls are 

collapsed 

 
Major is the general category where the onset 
of Substantial Damage (>50% of building 

value) as defined by the National Flood 

Insurance Program (NFIP) may occur. 

  

  
Destroyed Wind:  Most solid and 

all light or mobile home 
structures destroyed. 

- - Majority 

of the 
exterior 

walls are 

collapsed. 

- - 

Storm Surge:  The 
structure has been 

completely destroyed or 

washed away by surge 
effects.  

- - Majority 
of the 

exterior 

walls are 
collapsed 
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K. PLUTO - Data Description65 

K.1. Tax Base Value 

 

 

 

 

K.2. Residential Units per Building 

The indicator ‘residential units per building’ is determined by the ratio of residential units per lot and buildings 

per lot. 

 

K.3. Building Class 

  

                                                                 
65 The descriptions are directly copied out of the PLUTO Data Dictionary (2013) 
http://www.nyc.gov/html/dcp/pdf/bytes/pluto_datadictionary.pdf 

Fig XXX - Building Class description 

from ‘PLUTO data Dictionary’ (source: 

DOB NYC) 

Fig XXVIII – Total Assessed Value description from ‘PLUTO data Dictionary’ (Source: DOB NYC) 

Fig XXIX – Residential Units and Number of Buildings description from ‘PLUTO data Dictionary’ (Source: DOB NYC) 
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Fig XXXI - Appendix C from ‘PLUTO data Dictionary’ (source: DOB NYC) 
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