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Short summary

Hurricane Sandy (2012), which made landfall in New Jersey on October 29", made devastating impact on the
East Coast of the USA and struck major parts of New York City, including the economic centre of Manhattan.
The total damage (in the USA and Caribbean) is in excess of 100 billion US$ with estimates ranging between 78
and 97 billion USS for direct damage and over 10 to 16 billion USS for indirect damage due to business
interruption (M. Kunz et al., 2013).

Modelling impact (e.g. damage, fatalities) in the coastal zone due to hazardous storm events is a hardly
explored practice. It is difficult to predict damage correctly where damage observations are scarce and the
physical processes causing the damage are complex, diverse and can differ from site to site and event to event.
Moreover, an increasing interest exists in getting insights in the uncertainty of prediction.

This report explores on the possibilities in coupling physics-based hydraulic and morphodynamic modelling to
the practice of impact mapping by using Bayesian Belief Networks (BBN’s). Using BBN’s enables to look at the
impact in a probabilistic context, which fits well to the highly unpredictable and rare nature of hurricanes. The
morphodynamic storm impact model XBeach (Roelvink et al., 2009) is proposed as one of the process-based
models, since Hurricane Sandy pointed out that morphodynamic aspects can be of great importance for the
amount of damage. Part of the Rockaway Peninsula, NY, which has been severely damaged by Hurricane
Sandy’s surges, is used as case study. Only damage to residential buildings is considered in present study, in
which delivering a proof of concept for the presented approach is the main goal. In general it can be concluded
that the approach succeeded.
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Abstract

Hurricane Sandy (2012), which made landfall in New Jersey on October 29%", made devastating impact on the
East Coast of USA and struck major parts of New York City, including the economic centre of Manhattan. The
total damage (in the USA and Caribbean) is in excess of 100 billion US$ with estimates ranging between 78 and
97 billion USS for direct damage and over 10 to 16 billion USS for indirect damage due to business interruption
(M. Kunz et al., 2013).

Modelling impact (e.g. damage, fatalities) due to hazardous storm events is a hardly explored practice;
especially in the coastal zones where predominantly wind induced hazards from sea (e.g. inundation, wave
attack) cause the damage. It is difficult to predict damage correctly where damage observations are scarce and
the physical processes causing the damage are complex, diverse and can differ for different sites and events.
Moreover, an increasing interest exists in getting insights in the uncertainty of prediction. This report explores
on the possibilities in coupling physics-based hydraulic and morphodynamic modelling to the practice of
impact mapping by using Bayesian Belief Networks (BBN’s). Using BBN’s enables to look at the impact in a
probabilistic context, which fits well to the highly unpredictable and rare nature of hurricanes. Part of the
Rockaway Peninsula, NY, which has been severely damaged by Hurricane Sandy’s surges, is used as case study.
Only damage to residential buildings is considered in present study, in which delivering a proof of concept is
the main goal.

The morphodynamic storm impact model XBeach (Roelvink et al., 2009) is proposed as one of the process-
based models, since Hurricane Sandy pointed out that morphodynamic aspects can be of great importance to
the amount of damage, especially for the barrier islands in front of the US coastlines. The hazards,
predominantly coming from sea in the case of Hurricane Sandy, are propagated from large scale (100-1000 km)
to the building level (1-10 m) with a nested routine which includes XBeach on the lowest scale level. With the
use of extraction methods local hazard indicators are generated for every single residential building, which
have been successfully used in combination with building type indicators to predict damage. 5300
observations of a qualitative damage assessment were enough to train a Bayesian Belief Network that is
capable of reproducing the spatial pattern of the damage. Multiple analysis tools are available to analyse the
quality of prediction and uncertainty quantification and it is possible with ease to visualize that in space with
the use of an SQL database coupled to GIS software. In general it can be concluded that the presented
approach succeeded.

XBeach is capable of providing multiple local hazard indicators on the building level, which proved to having
predictive capacity. The indicators “inundation depth”, “wave attack”, “flow velocity” and (to a lesser extend)
“scour depth” give together much better predictions than they do alone. The implementation of XBeach
therefore fits perfectly in the multi-hazard approach that Bayesian Belief Networks make possible. On the
contrary, it must be said that setting up an XBeach model for high resolution simulations and relatively large
areas (order of 10 km wide) is a time consuming job. The results of the XBeach model used for present study
show a structural overestimation of storm conditions, which can be addressed to a poor calibration. This
assumedly limits the predictive skill of the statistical BBN model. There is still a large scope for improvement.

Some aspects of the approach have been studied in more detail; roughly, these aspects do either influence the
predictive qualities of the individual indicators or have to do with the configuration of the statistical model, the
Bayesian Belief Network. Considering the first category, it appeared that model resolution is not as important
as expected. Indicator values based on model runs with grid cell sizes of 3x3 m? in the urban areas give hardly
better predictions than runs with grid cell sizes of 9x9 m? where computational expenses are 25 times higher.
Next to this aspect, the extraction method, in which hazard indicators are generated out of the XBeach output
data, appeared to be very important for the predictive capacity of these indicators. The usage of (polygons of
the) building perimeter outlines to determine buffer zones around these buildings works fine. Moreover, it can
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be concluded that the extraction formulations and the size of extraction buffer zones around the buildings can
make a substantial difference for the predictive skill of the local hazard indicators. A courser grid asks for a
larger buffer zone in order to prevent that the buildings are predicted to be non-flooded where they in reality
have been flooded.

Considering the statistical model part, using Bayesian Belief Networks gives the opportunity to relate the
damage to multiple aspects instead of only one, which has great advantages over the market standard
approaches (in which the majority only considers the depth-damage relation). Comparing the spatial
distribution of the means of the conditional Probability Mass Functions (PMF’s) to the observed damage, it can
be concluded that the established BBN's are good in capturing the spatial variability in risk (given the event)
per building. Higher risks are predicted for the more severely damaged buildings. The BBN’s perform not so
well in predicting extremes where the most probable outcome of prediction for the most severely damaged
buildings almost always concerns an underestimation of the damage.

Next to indicators that indicate the local severity of the hazards, the added value of implementing other
indicators has been studied as well. Adding nodes to the BBN indicating differences between buildings
increases the Log-likelihood ratio test scores of the hindcast, which implies an increase of the predictive skill of
the model. The “tax base” indicator appears to be most skilful, followed by “Building Class”, “Roof Height”,
“Shape Area” and “Residential Units per building” in that specific order. It is said that one has to be really
careful with adding too much nodes. The consequences of the latter are demonstrated in present report: the
predictions become worse if too much complexity is added to the BBN (when the amount of data is said to be
over-fitted). This also becomes the case when more bins per node and mutual relations between the nodes are
added.

Also the quantification of uncertainty depends strongly on the number of nodes, bins and relations within the
BBN. More complexity in the network needs to be compensated by more training data in order to avoid poorly
substantiated PMF’s and retain the same quality of prediction. Quantities indicating uncertainty, such as
standard deviation of these conditional PMF’s, can be easily visualized in space and support statements about
the confidence of the predictions. However, quantitatively the PMF’s do not cover all sources of uncertainty in
the approach as it is proposed right now. Mainly uncertainties concerning structural over- or underestimations
(for instance due to too high XBeach boundary conditions) are not represented in the distributions of
predictions. This is a direct cause of the training of the BBN’s, which is based on the results of only one XBeach
run.

Aggregation of the damage predictions to higher spatial scale levels, such as a neighbourhood or a complete
city, is not straightforward within the present approach. Aggregation of risk given the event (mean of the
PMF’s) is a matter of summation. On the contrary, since (spatial) correlation between the predictions is at
stake, predictions made in a certain area cannot be seen as independent. This, in combination with the fact
that not all uncertainty is incorporated in the PMF’s, makes aggregation of uncertainty difficult. Future
research is necessary in order to find ways to overcome those aggregation issues.
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1. Introduction

1.1. Motivation

In the night of October 29t to October 30 of 2012 Hurricane Sandy made landfall near Brigantine, New Jersey.
Not even a category 3 storm on the Saffir -Simpson Hurricane Wind Scale (Schott et al. 2012) during landfall,
Sandy affected 24 states and devastated larger parts of New Jersey and New York. With more than 286
(indirect) fatalities and over $68 billion USS of damages, Hurricane Sandy became the second-costliest
hurricane in the United States history, ranked after Katrina (2005) (Kunz et al. 2013).

Even though records over the past 50 years may suggest that a hurricane like Sandy is highly exceptional and
not to be expected in New Jersey and New York, long term statistics tend to show different, see paragraph
1.1.1.2. Not the storm on itself was exceptional but in hybridity with other factors, such as a high tide and
geographical features, it led to a tremendous disaster. The willingness to prevent similar disasters from
happening in the future together with the strong politic and economic powers centred in the heart of New
York City give a unigue momentum to several new initiatives. New York is determined to make a change
(PlaNYC 2013) to become more resilient.

Hurricanes (in more general: Tropical Cyclones) can be found in several parts of the world, where warm ocean
waters near the equator cause low pressure areas which are traded towards the coastal zones and increase in
strength during their traveling above the warm water. Tropical Cyclones can cause massive natural hazards,
which may have huge impact on nature and human being. In low lying coastal areas surging water can induce
enormous floods, which has proven to be more destructive than the accompanying winds in some cases. In the
case of Sandy storm surges were far more troublesome than winds. This all should be put in a broader
perspective by looking at future developments worldwide: on the one hand we have to deal with a non-
beneficial climate change; on the other hand usage and economic value of coastal zones will increase further.
Both are expected to increase risks in these areas significantly.

This has led to a common awareness of and willingness to control these risks, in order to minimize them in the
future. On the one hand data are gathered indicating the damages and giving input to the understanding of
the corresponding failure mechanisms. On the other hand we are more and more capable of simulating storm
events and corresponding hydrodynamic and morphodynamic characteristics. Bringing these two aspects
together is one of the challenges we are facing today in obtaining insight in the risks we are exposed to. This
master thesis is a first attempt to couple the hydrodynamics and morphodynamics of a storm to its impacts by
using Bayesian Belief Networks (BBN’s), in order to demonstrate the statistical relationships. The result is a
concept proving impact model, applied to hurricane Sandy and a study site at the Rockaway Peninsula, NY.

The significance of a fully statistical impact model can be found in several applications. It can provide for
instance a very powerful tool for decision makers in order to determine whether or not to implement defence
measures. It would be very useful to have information like “A 1/100year storm will probably cause that
amount of damage/fatalities at that location if that measure is applied”. Play the what-if game and you will
guantitatively know how well a measure performs. Moreover this would give the opportunity to investigate
the impact of future developments like climate change.

1.1.1. Hurricane Sandy
It is clear that wind induced storm surges, either caused by a tropical storm or other type of wind storm can
cause large disasters in coastal areas. The next two paragraphs will give some background information about
some characteristics of Hurricane Sandy (track, intensity) and its impact.
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1.1.1.1.Characteristics

Major Hurricane
—Traslat St Hurricane Sandy
Wave/tow 22-29 October 2012
;;’ni::z:‘:;‘:::el at 1200 UTC 115 m Dh

N PP Minimum Pressure

90° 85° 80° 75° 70° 65° 60" ss°

Figure 1-1 - Intensity and track of Hurricane Sandy (2012) from NOAA website

The track and intensity of Hurricane Sandy are shown in Figure 1-1. Generated in the Caribbean Sea on
October 22", Sandy moved towards the Atlantic Ocean. Just before hitting Jamaica it became a Tropical
Cyclone (Category 3 or higher). After some weakening due to shear over the south-eastern and central
Bahamas, it interacted with an upper-level trough and surface front near the north-western Bahamas and
underwent a partial extra tropical transition (E. Blake 2013). At this point the weather forecast models of
NOAA’s National Hurricane Center (NHC)! were not in agreement with each other; most hurricanes at this
point turn east towards the Atlantic Ocean. However, Sandy turned on a rare track northwest due to a high
pressure area in the north and another low pressure area in the east, see Figure 1-2.

During its propagation towards the US East Coast
(towards New Jersey and New York) Sandy retrained its
strength and made landfall as a category 2 hurricane.
After landfall Sandy turned northward and finally
dissipated near Lake Erie (point 31 in Figure 1-1) after
causing heavy rainfall in Pennsylvania, Maryland, New
Jersey, Delaware and Virginia (100 to 200 mm).
Additionally, Sandy caused severe snow storms especially
in the southern and central Appalachian with snow

amounts up to 1m (Kunz et al. 2013).

Hurricane Sandy caused measured wind speeds of 185
km/h during landfall, which is pretty severe but not

uncommon for Atlantic tropical storms. What Hurricane Figure 1-2 - High pressure areas (red) and Low pressure

Sandy made unique were not the meteorological areas (blue) made Sandy turn northwest. Picture by NHC

characteristics on its own, but a combination of multiple (2012)

1 http://www.nhc.noaa.gov/
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factors. It was the hybridity that made it unique:

e Avery rare track. The severest hurricanes from the past 150 years in north-eastern US all approached
the mainland more parallel to the coast. Sandy made landfall almost perpendicular to the coast (E. S.
Blake et al. 2013);

e Aforward speed of 20 knots, which is relatively fast?;

e An abnormally large wind spanning diameter of about 1700 km, covering almost the complete East
Coast and caused by the extra tropical transition;

e An extremely low air pressure of 945 mb in the eye, which is the lowest ever recorded for north-
eastern US;

e Sandy made landfall during high annual tide in combination with a full moon.

One could argue that Sandy’s timing couldn’t have been worse. The interaction between winds (direction and
velocities), air pressure and the topographic configuration of the coast caused very large surge levels,
especially northeast of the hurricane’s eye in the York Bight. This was even increased by an astronomical high
tide, leading to inundation of large areas along the coast and major parts of New York City (see Figure 1-4). At
the Battery in Lower Manhattan water levels were measured of 14.6 ft (4.3 m) referenced to Mean Lower Low
Water (MLLW), which exceeded the previous record set by Hurricane Dona (1960). Moreover, the sea state
with waves over 10 m was the severest since the mid-1970’s, with wave heights over 30 ft (+/- 10m),
exceeding the conditions of Irene (2011) and the Nor’easter of 1992 (Guy Carpenter 2013). According to Hall
and Sobel® who performed probability analyses on model simulations of a synthetically generated track set,
Sandy’s surge can be considered to be a 700-year event. Other sources state that because of future
developments like climate change a 500-year surge could happen every 25 to 240 years by the end of the
century (Lin et al. 2012).
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Figure 1-4 - Sandy inundation map by FEMA (Source: Figure 1-3 - Sandy before landfall - Wind speed and
NOAA) schematization of track by NASA

1.1.1.2.Impacts
Hurricane Sandy caused damage in many states, of which New York and New Jersey were affected the most.
She impacted an area that is good for approximately 10% of the US economic output (GuyCarpenter 2013).
Moreover, it made it in the top three of deadliest hurricanes in the US with a total of 113 fatalities nationwide
(Mihr et al. 2012); see Table 1-1 for a historic overview of fatalities in New York City only.

2This is not necessarily a bad thing; hurricanes with high forward speeds show higher storm surge peaks while lower inland
volumes of flood (Rego and Li 2009)
3‘On the impact angle of Hurricane Sandy's New Jersey landfall’ (Hall and Sobel 2013)
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Table 1-1 - Most lethal hurricanes for New York *

Hurricane Year Fatalities
New England 1938 60
Sandy 2012 48
Edna 1945 29
Norfolk 1821 17
Five 1894 10

The actual causes of these fatalities differ from falling down during repair (or preparation) work at building
roofs to drowning in the flood. In ‘CEDIM FDA-Report on Hurricane Sandy 22-30 October 2012’ (Mihr et al.
2012), which hereafter is referred to as the CEDIM report, it is stated that a lot of people stayed home during
Sandy while evacuation was recommended, because they expected Sandy to be less severe than predictions
broadcasted in the media. This experience was probably based on the experience with Hurricane Irene, which
struck the area one year before and was indeed less severe than predicted.

Besides fatalities, Hurricane Sandy affected over 305,000 houses only in New York state (Kunz et al. 2013). In
some areas more than 1/5™ of the houses have been completely destroyed, of which Breezy Point and
Rockaway Beach, both located on the Rockaway Peninsula (Queens County), are good examples (PlaNYC 2013).
According to the NHESS report (Kunz et al. 2013), energy systems are amongst the most important critical
infrastructure due to their essential role in sustaining socioeconomic systems. More than 8.7 million
households (21.3 million people) were victim of power outages during the storm on 29 and 30 October, of
which 3.37 million were still waiting for electric supply after one week. This is a record for the US for power
outages caused by hurricanes, leaving Irene (6 million households) and Isabel (4.3 million) behind. Power
outages during the storm also have their effect on loss of life. First of all they limit the self-help capacity of
humans (Muhr et al. 2012); secondly, they can cause electrical fires, which for instance happened in Breezy
Point (Rockaway Peninsula) where at least 100 houses burned down to the ground. The strong winds
accompanying the storm make fast spreading of the fires possible.

Other types of infrastructure have been affected as well. Metro services in New York City were disrupted for
months because of flooded tunnels and some stations have not yet been fully repaired at the time of writing
this report. Moreover, some areas were extremely hard to reach the days after the storm; At Rockaway
Peninsula inundation caused large piles of debris in the streets, consisting of sand from the eroded dunes,
inundation wood, insulation and household items. The 5 km long boardwalk in Rockaway Beach, which was
situated at the beach front, was at some places completely destroyed or tilted from its foundation and flushed
away inland. Similar to the damaged electrical system the sewing system and gas and fresh water supply
systems were severely damaged. This implied disruption of normal life for months, even to those whom
houses and businesses were spared during the storm.

The economic losses for New York State can be divided in direct and indirect losses:

o Direct losses: damage to housing, transit, road and bridges, business impact etc. See Figure 1-5 for a
breakdown of direct losses (total of 32.8 billion USS for New York State).

o Indirect losses: failure of physical or economic linkages causing cascading effects (e.g. manufacture
sector out of power for days). Business interruption losses have been estimated between 10.8 and
15.5 billion USS.

For the direct losses an estimated breakdown is made by Cuomo in 2012 (Kunz et al. 2013), which is shown in
the diagram of Figure 1-5. It can be seen that damage to infrastructure attributes pretty much the same to

4 source: CEDIM FDA-Report on Hurricane Sandy (Muhr et al. 2012)
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total direct losses as damage to housing. However, it should be noted that damage to housing affects the
individual citizen more.
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Figure 1-5 - A breakdown of direct losses in New York State (in million USS$ and %) reported Cuomo (2012) and graphed by Kunz et al.
(2013)

The total economic losses in the US due to hurricane Sandy’s direct damages is estimated to be 97 billion US
dollars, (Kunz et al. 2013), of which an approximated 32.8 billion US dollars can be assigned to New York
(according to Governor Andrew Cuomo). This makes Sandy the second costliest hurricane in US history after
Hurricane Katrina (2005). However, this should be put in perspective by normalizing total costs of historical
events to the cost base of 2005. This has been done for the hurricanes within the period of 1900 till 2005
(Pielke Jr et al. 2008) and is later updated till 2012. The outcome is graphed in Figure 1-6.
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Figure 1-6 - Normalized US Hurricane Damage (source: Pielke et al.)

It can be concluded that hazardous events like Sandy and Katrina are not just events from the past decade, but
did happen on a regular basis over the past 100 years and probably will happen the coming decades as well.

Impact Modelling of Hurricane Sandy on the Rockaways I 17



1.2. Problem Definition

From section 1.1 it can be learned that hazardous storms like Hurricane Sandy are very complex events. The
processes steering the storm propagation are mostly at play on a global and regional spatial scale, but the
related impacts do highly depend on local properties like geographic configuration of the coast, socio-
economic aspects and the vulnerability of buildings and infrastructure. This section copes with these
difficulties and the problems in modelling impacts are addressed.

1.2.1. Background

1.2.1.1.Hazard Modelling

The dictionary states about hazard “A possible source of danger: a thing likely to cause injury”. > A more
technical definition is given by the UNISDR: “The combination of the probability of an event and its negative
consequences”.® In the case of hurricanes, it can be learned from Sandy (but also from other examples like
hurricane Katrina) that the danger in low lying coastal areas mainly comes from sea. In the field of hydraulic
engineering, modelling of wind induces surge and sea states is certainly not new. A broad range of 1D, 2D and
3D physics-based numerical model software packages can be made use of, which can and have been used to
simulate storm events like Hurricane Sandy. Amongst these physics-based models (sometimes referred to as
deterministic, comprehensive or process-based models) are noticeable: Delft3D, D-Flow FM, SWAN and
XBeach from TU Delft, Deltares and partners’; the MIKE software packages from DHI%; and ADCIRC from the
University of North Carolina®.

Fluid dynamics, the study of fluids in motion, lies at the heart of most of the equations these numerical models
solve. Water bodies are constantly affected by external and internal forces concerning gravity, inertia, air-
water interactions, water-bed interactions, internal friction, earth rotation and density variations in for
instance temperature and salinity. All these processes influence the hydraulic properties (e.g. water levels and
wave heights) in time and space. For centuries scientist try to understand these physical processes and, since
the invention of computers, describing them in numerical computer models.

The physical processes are translated into (fundamental) equations, of which the most are based on the
conservation of mass, momentum and energy. Important contributions in the field of hydraulic engineering
can be found in the Boussinesq approximation, Navier-Stokes equations and Stokes theorem. In numerical
models external forces are parameterized and initial states (temporal boundary conditions) have to be
determined, together with domain boundary states (spatial boundary conditions). Space and time are
discretised to make computations finite and with use of time and space stepping the propagation of
disturbances (relative to an equilibrium state) are computed. In this way water levels, wave heights, flow
velocity and many other properties can be simulated for meteorological storm events.

With the continuously increasing processing speed of computers, more and more complexity can be added to
these physics-based numerical models while keeping computation expenses within limits. On the other hand
research provides more and more understanding of the physical processes. These two aspects together
attributed to the fact that physics-based modelling has become extremely important in the field of hydraulic
engineering.

For the simulation of wind induces surges and waves at deep water (>20 m water depth) different forces and
processes are dominant than for instance the water propagation during floods in urban areas. In sandy coastal

> The American Heritage® Dictionary of the English Language, Fourth Edition
6 http://www.unisdr.org/we/inform/terminology

7 http://www.deltares.nl/nl/software

8 http://www.mikebydhi.com

° http://www.adcirc.org
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zones, found in most parts of the US East Coast, the morphological changes due to storms can have significant
impacts on the coastal appearances. Some software packages, like XBeach, are specifically made for modelling
these morphological impacts and show fairly good results, which for instance can be seen in the study
‘Modelling storm impacts on beaches, dunes and barrier islands’ (Roelvink et al. 2009). It should be noted that
all software packages have their own range of applicability and limitations at the same time.

1.2.1.2.Impact Modelling
Living on planet earth is just dangerous; no matter where you are, there are always risks. As long as human
kind exists, people in general and politicians in specific try to minimize these risks for the benefits of
themselves and the community. Understanding of possible social and economic impacts of hazardous events is
therefore a key element, together with the accompanying probability of occurrence. Not only hurricanes cause
hazards, but one can think of natural hazards in general (caused by earthquakes, landslides, tornados, volcanos
and epidemics) and human caused hazards like terroristic attacks and burgling.

Risk, damage and impact have different meanings in different contexts to different kind of people. For coastal
engineers the notion of hurricane impact usually refers to morphological impacts to the coast. This is
completely different though for people with other expertise, of which insurers and politicians should be
specifically named here. In general impact refers to the effect/consequence of a force, which is not necessarily
damage. Where this thesis is about the destructiveness of hurricanes, impact refers here to damage in the
forms of social and economic disruption in general and loss of life, physical damage and monetary losses
specifically. Damage on itself can be split up as well and in this thesis the distinction between direct and
indirect, tangible and intangible damage have been made, of which examples can be found in Table 1-2. For
risk many definitions exist. Most of them seem to include the two dimensions consequence and probability.
For this research the definition of Helm is used: “Risk = Probability of a Hazard x Consequences” (Helm 1996),
where consequence is actually a synonym for impact and consists of both aspects exposure and vulnerability
(Klijn et al. 2004). The consequences of present study are the concerned damages. The risk in monetary
perspective for instance can be expressed in dollars/year.

Traditionally, (semi-)public research institutes and tgpje 1.2 - Categorization of damage (source: Jonkman et
universities are charged with the task of quantifying al., 2008)

these risks as indispensable first step for the purpose B e e T e

of minimizing them. An example can be found in the

Tangible and Intangible and
“Prediction of seasonal climate-induced variations in priced unpriced
global food production” (lizumi, Toshichika Hirofumi Then: o Mesieses « Fatalities
Sakuma, Yokozawa et al. 2012), where statistical crop * Capital assets and * Injuries
. Lo . inventory
failure prediction models were linked to ensemble « Business interruption o T i il
seasonal climatic forecasts. It can be used in order to (inside the flooded area) moral damages
. . . . . . * Vehicles + Utilities and
predict food shortages, which is especially interesting communica tion
in developing countries. + Agricultural land and + Historical and
cattle cultural losses
o i * Roads, utility and + Environmental
One way to lessen the (indirect) impacts of hazardous communication infrastructure  losses
events is to insure property and goods. The * Evacuation and rescue
. . . operations
(re)insurance market can be both public and private. e Reconstruction of flood
(Re)-insurers are interested in the economic losses of defences
h ds i d d . . . ® Clean up costs
azards in order to determine insurance premiums, . . . Damage for companies + Societal disruption
which are profitable in the long run. Several financial outside the flooded area
. . . .y * Adjustments in production » Psychological
service providers are active on the market, providing g S o =
and consumption pattems traumas
risk modelling services to reinsurers, insurance outside the flooded area
. . . * Temporary housing of + Undermined trust in
companies, large investment companies and . -
evacuees public authorities

governmental bodies. Since the 1980’s these services
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have become more and more advanced and the models are known as ‘Catastrophe Models’, or shorter ‘Cat
Models’ (Grossi and TeHennepe 2008). Most of these models were empirical and have a statistical background.
Since consequences of large natural hazardous events are immense and probability is often low, it is difficult to
use statistical analysis tools in order to improve probabilistic approaches. Major events — including
catastrophes in 2011 and 2012 such as earthquakes in New Zealand, Japan Earthquake and Tsunami and
Hurricane Sandy— continue to demonstrate the levels of uncertainty that can exist in model results (Lloyd’s
2013).

Hydraulic engineers tend to start from a physical point of view, understanding the physics of the hazard, where
the risk managers start from the impact side of the story, trying to distinguish different kinds of impact and
break down costs. As is explained above, determining risk requires quantification of an event’s impact and the
related probability. The latter can be determined fairly easy for some types of hazards. Car theft for instance
happens on regular basis and with statistical tools one can determine the probability of occurrence. However,
for rare events like hurricanes this cannot easily be done. The insurance branch is therefore integrating more
and more physics into their models in order to bring the driving forces in their models back to a level for which
using statistics is possible again, for instance on water levels and wave heights or meteorological
characteristics of a hurricane. This is where both worlds come together.

General Approaches
A wide variety of impact models can be found in the industry and the model approaches show large mutual
differences. In “Comparative flood damage model assessment: towards a European approach” (Jongman et al.
2012) seven different damage models for river floods from different countries are compared. Because the
analogy with wind induced sea flooding is large, the methodologies are comparable. Jongman states that
amongst others differences can be found in:

e Scale of application: local, regional or national;

e  Units of analysis: Surface area (e.g. urban area) or individual objects (e.g. house);
e Hydrological characteristics: depth, inundation duration, velocity, debris;

e  Data method: empirical, synthetic;

e Cost base: replacement value, depreciated value;

e Predicted damage: direct versus indirect and tangible versus intangible.

It is concluded that different applications ask for different approaches. However, one thing all methods have in
common is that they consist of several modules representing the necessary modelling steps. A graphical
representation of the Florida

/ Hazard Definition Hurricane Model 2013a

methodology from EQECAT is shown
in Figure 1-7. It should be noted that
the figure distinguishes between

Propagation of the
Hazard to the site o

Estimation of damage and loss. First, the direct
\ tangible damages are determined in

a physical context. Subsequently, in

the ‘Estimation of Loss’-module the
Estimation of monetary consequences of these

* damages are calculated; not only for

the direct but also for the indirect

mr and secondary damages, which for

AN ABS GROUP comPany Il
. . . instance includes business
Figure 1-7 - Methodology of the Florida Hurricane Model 2013a

interruption and inflation.
(source: EQECAT)
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To make this more concrete and tangible another representation can be found in Figure 1-8, including spatial
scales and some characteristics of the different information levels. Based on historical data a synthetic dataset
of possible hurricanes is constructed, of which the track and intensity are calculated with meteorological
forecast models. The hydraulic effects of these meteorological characteristics are propagated towards the
areas of interest (in front of the coast) and corresponding large scale storm conditions (order of 1-10km) are
calculated, of which wind speed and inundation depth are the most important ones. In order to determine
local inundation depth (information level 3), the differences between large scale storm tide levels (information
level 2) and local ground elevation levels are approximated. The last step is referred to as the ‘bathtub’
concept, where the water surface onshore is assumed to be as flat as a mirror. With use of vulnerability curves
(also known as damage curves) the impacts are calculated; see information level 4. The last step comprises a
financial module, which estimated the losses per storm event or aggregates the losses over a synthetic set of
events in order to gain overall risk (information level 5).

Spatial scale: Spatial scale: Spatial scale: Spatial scale:

Macro Micro

Information level 1 Information level 3 Information level 4 Information level 5

Hicane. Largescale Local conditions Impact Overall Risk

characteristics storm conditions
Surge, wind, Damage, Costs, fatalities,
waves fatalities uncertainty

Intensity, track,
(probability)

Synthetic datas Storm conditions Inundation Damage Risk mapping

Figure 1-8 - Overall Model Methodology with spatial scales and properties of different information levels

1.2.1.3. Surge and Wave Induced Damage Estimations

In step 4 in Figure 1-8 the link is made between forcing (storm characteristics) and response (damage to
objects at risk). To do so, more information is necessary on land use, vulnerability and sometimes socio-
economic features. A presentation of the HIS-SSM*® methodology on damage estimation is given in Figure 1-9.
This can be seen as the general procedure for the estimation of direct physical damages, consisting of three
main elements: (1) determination of flood characteristics; (2) assembling information on land use data and
maximum damage amounts; (3) application of stage-damage functions that relate the extent of economic
damage to the flood characteristics (Pistrika and Jonkman 2009).

10 Impact Model of The Dutch Department of Waterways and Public Works (Dutch: Rijkswaterstaat)
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Figure 1-9 - Schematization of the HIS-SSM model methodology (source: Rijkswaterstaat)

In section 1.1.1 it is already mentioned that in low lying coastal zones the largest threats come from the sea
and not from hurricane winds. Therefore, the storm characteristics for most of the impact models reduces to
hydraulic properties (and no meteorological properties anymore), knowing inundation depth (surge level
relative to the ground level) and sometimes wave height and/or flow velocity. In general the coupling is done
with use of damage functions, of which an example is shown in Figure 1-9. Relative damage curves relate the
forcing (in this case inundation depth) to a damage ratio between 0 and 1. The damage ratio indicates which
percentage of the (value of the) exposed asset will be damaged/lost by the force. The total loss can be derived
by:

Loss = damage ratio x value

When the value is monetary, loss becomes cost, of which the meaning varies. In ‘Damage to residential
buildings due to flooding of New Orleans after hurricane Katrina’ by Pistrika and Jonkman (2009) the damage
ratio (or percentage damage value) relates the financial total loss of a building (value) to the cost of repairs
(loss), which implies that the damage ratio can be more than 1 if the cost of repair is more than the financial
total loss of a building. However, it is most common to use damage fractions, which are always between 0 and
1 and have also been used in HIS-SSM. On the contrary, absolute damage curves relate the forcing directly to
costs. The categorization of the assets at risk differ per model, but for every asset category (e.g. single family
building, flat building, high way, bridge) a damage curve has to be made. The number of assets categories used
and thus damage curves varies from several curves to hundreds and depends on the scale of analysis and how
easily damage curves can be established. Roughly they are established in three different ways:

1. By observation data regression;
2. By expert judgement;
3. By implementing knowledge from researches on the physical resistance.
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Data regression is generally preferred since real observations do not tell lies, but this is only feasible when a
sufficient amount of data is available. Pistrika and Jonkman (2009) analysed the direct damages of Hurricane
Katrina to residential buildings in New Orleans. They found that there is no clear one-on-one relationship
between flood characteristics and the exact value of observed damage percentages. The derived damage
curves vary for different areas within the domain (spatial variations). Moreover, the spatial level of detail of
the analysis appeared to be very important for the relative strength of the depth-damage relationships.

Expert judgement and research on the resistance of assets are mainly used when a sufficient amount of
damage observations is absent. ‘What if’-analyses can be used to establish the damage curves. For the
example of residential buildings, one can imagine what happens when the water rises and which parts of a
representative house will be flooded and which parts of the contents will or won’t be spared. With logic a
damage curve can be constructed. The effect of structural damage can be added with the use of knowledge
from structural resistance studies; for instance ‘Wood Frame Building Response to Rapid-Onset Flooding’
(Becker et al. 2011). The HAZUS-MH methodology??!, as an example, is using a combination of data and what-if
reasoning to determine their depth-damage relations (Hazus —MH 2.1 Hurricane Model - User Manual n.d.). It
must be said that this method is far from ideal since important aspects may be forgotten or the corresponding
effects underestimated; a few centimetres of salt water in a house for instance, can already severely damage
wall isolation and drywalls, which involves high accompanying costs.

It should be noted that differences in establishing methods and the (spatial) variety of the data can give large
differences in damage curves for different models but similar assets. Figure 1-10 shows damage curves for
seven different river flood damage models for the same asset category. The large mutual differences illustrate
the amount of uncertainty that is at play.
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fabric”. The functions of each damage model are based on a manual selection of available damage classes, except for the JRC Model.
(source: Jongman et al. 2012)

11 http://www.fema.gov/hazus
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1.2.2. Quantifying Uncertainty of Predictions

The meaning of risk can be very abstract, but it is not difficult to make it quantitative (see paragraph 1.2.1.2). It
is tangible and can be expressed in units, for instance dollars/year or number of fatalities per event.
Uncertainty (or certainty) is on the contrary more abstract and says something about the quality of prediction.
The dictionary states about uncertainty “not clearly or precisely determined; indefinite; unknown”*2. This is
very vague of course, but there are ways to make it more tangible and quantitative as well. This is where
statistics comes into play, which provides multiple tools to do so. One of these tools is probabilistic logic, which
combines the capacity of probability theory with the capacity of deductive reasoning. To understand how
much uncertainty is at play it is important to know how probable the predicted most-probable event is and
equally important: to know how probable other possible predicted (or non-predicted) events are. Indicators
for uncertainty are for instance standard deviation and percentiles. In general, Indicators that say something
about the shape and distribution of the outcome’s Probability Function (PF) say something about the
uncertainty.

This can easily be demonstrated by throwing a dice, of which the amount of eyes afterwards is called the
outcome. A set of outcomes is called the event and all possible outcomes the sample space. In the case of a
dice the number “1” is one of the outcomes and throwing “1” is an event. In order to figure out for instance
what the most probable outcome, average, standard deviation etc. is, one needs to know two things:

1) The full set of possible events;
2) The chance/probability of occurrence of every single event.

To gain that information one can use logic (exact formulations), real observations or synthetic observations.
For the outcome of throwing a dice it is easy to get real observations: if one throws a few hundred times and
applies a statistical analysis, one comes pretty close to the theoretical answer. The latter can be obtained by
logic and the use of statistical formulas (which is on itself also based on logic): six possible events; all equally
probable; an average of 3.5 and; a standard deviation of 1.709. It is said that for (a perfect) dice an exact
answer can easily be determined, but for more complicated cases this becomes quickly impossible. As a
combination of the first two methods, it would also be possible to synthesize observations by ‘throwing’ dice
with a computer. By deriving variables, determining their variability and the mutual (physical) relations from
the observations are generated, which again can be statistically analysed. This wouldn’t be very thrilling for the
example of one dice, since there is only one variable influencing the outcome, knowing the number of eyes
thrown with the dice.

But what if the outcome would depend on more variables, which is most of the time the case in reality? Let’s
take for instance the sum of three dice, for which the probability of occurrence is not equal for all events
anymore. For instance, the event ‘total nr of eyes = 11’ is more likely than ‘total nr of eyes = 18’. A prediction
that uses that knowledge would therefore be better than choosing randomly. With a computerized random
function the throwing of one dice can easily be simulated and with the use of relations (in this case: outcome
sum of three independent dice) a set of observations can be created. By analysing these observations the Joint
Probability Density Functions (PDF’s or discretized form: Joint Probability Mass Functions or PMF’s) of the
variables can be derived. These Joint PDF's or PMF’s are used in statistical models to establish not only
marginal PDF’s (without prior knowledge), but also conditional PDF’'s of PMF’s (based on known conditions).
Conditional PMF’s written in table form are also known as Conditional Probability Tables (CPT’s). If one would,
for example, know what the number of eyes is for one of the dice (for instance ‘total nr of eyes on dice 1 ‘= 6),
the situation is conditioned and the corresponding conditional PMF’s of the outcome (sum of dice) as well. The
prediction of the outcome can now be better; see Figure 1-11. This is because the PMF of the sum of the dice
is dependent on each of the three dice and will change if more is known about these dice. The conditional
probability function will be narrower than the marginal PDF and the narrower the smaller uncertainty is

12 http://www.thefreedictionary.com/uncertain
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relatively. This is in analogy with the explanation of the dictionary: uncertainty = unknowing; and vice versa,
certainty = knowing.

Probability for throwing three dices
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Figure 1-11 - Probability Mass Functions of the sum of three dice

It should be noted that the PMF’s of Figure 1-11 are created with statistical formulations, which makes the
obtained PMF’s exact (assuming perfect dice), or in other words: the PMF’s do not contain errors. If one wants
to approach the PMF'’s of Figure 1-11 based on real or synthesized data, one needs a certain minimum amount
of observations in order to minimize errors in the marginal and conditional PMF’s. For the example of three
dice more observations are necessary than for the example with only one dice to obtain equally certain
probability functions. This is because there are more variables, implying a larger set of unique combinations
(paths) and possible events. Conditional PF’s are based on a smaller fraction of the data than that is used for
the marginal PF. That fraction of data should always be numerous enough to obtain joint PDF’s or PMF’s with
certain confidence in order to be able to derive good conditional PF’s or CPT’s. The other way around this
counts as well: to which extend one can condition on (or isolate parts of) the data is limited given a finite
number of data. Conditioning can give narrower conditional PDF’s*® and thus better (more certain) predictions,
but will at some point also exhaust the data resulting in poorly substantiated PDF’s or PMF’s; the data is said to
being over-fitted.

In the example of the three dice not all (physical) processes of influence are known and fully understood. One
could for instance try to include the angle of the hand and speed while throwing in a computer model in an
attempt to improve the prediction by reducing the uncertainty. Even if you would know these things, other
equally important physical properties like irregularities in the table are still unknown, meaning that uncertainty
will not decrease. The associated uncertainty is known as aleatoric uncertainty or statistical uncertainty, which
is uncertainty we simply cannot (or do not want to) reduce. In a computer model this uncertainty can be
added by using random functions. The counterpart of aleatoric uncertainty is epistemic uncertainty, associated
with processes that are unknown or not fully understood but could be known and are of influence on the
probability of the outcome; for instance the asymmetry of an asymmetric dice. Not adding the asymmetry to
the model will give simulated PDF’s that differ from PDF’s established with real observations. The difference is

13 The opposite can be the case as well: by conditioning it might be very well possible to isolate the data/observations that
contain more uncertainty than the whole dataset on average. In that case the Conditional PDF is wider than the Marginal
PDF.
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associated with the epistemic uncertainty of that specific unknown physical process. Real observations are
therefore not only of importance for the validation of model predictions, but also for the validation of
uncertainty quantification.

It can be concluded that if in statistical models the PF’s can be constructed based on observations from reality,
than this is more valuable than constructing them based on model observations. This is especially true if not all
processes are fully understood. However, this is not always as easy as in the previous example. For modelling
of hurricane impact, three main problems can be addressed:

1) Not enough real observations;
2) Not all (physical) processes are known;
3) The more complexity is added to the model, the more observations are necessary.

Hurricanes do not happen often and it is simply not possible to repeat the event multiple times under the full
range of conditions. The number of observations is thus limited. So this is where physics-based modelling can
be brought into play as a secret weapon, in order to substitute the real observations with observations from
simulations. These models are a reflection of reality and based on hindcasts against past observations. This
entails a second problem. Without enough observations, it is hard to say if all processes of influence are (well)
represented in the model and therefore hard to determine if all possible outcomes can be covered with model
simulations. Moreover, the uncertainties associated with these unknown processes, either epistemic or
aleatoric, are hard to quantify since validation possibilities are limited. You could say that there are blind spots.
The attribution of these blind spots to the total amount of uncertainty is often hard to determine. The burning
down of a complete block of houses (see ‘Secondary Direct Damage’ in paragraph 2.2.1.2), caused by power
short circuits, can be seen as an example of this. Some processes will not be known before it happens and
change the beforehand assumed hazard pathways.

Third, it should be noted that adding more complexity to a model, in order to better present processes of
influence and therefore lower uncertainty, comes with a price. The more processes and variables are added to
predict the outcome, the more observations are necessary to construct the CPT’s in statistical models. The
number of variables, relations and bins (for the discretisation) included in the model drive the required
minimum amount of data to get qualitatively good predictions. This is in analogy with the example of throwing
three dice instead of one.

1.2.2.1.Damage Curves
As has been described in paragraph 1.2.1.2 damage curves are used to couple local storm conditions to local
damage, for instance to a house. Unfortunately, they do not cope with uncertainty. The damage (ratio) is
always the same for 1m of water, whether it is building A or building B, which makes them deterministic. In
reality however, this is certainly not true, see the spreading in Figure 1-12.
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Figure 1-12 - Depth - Damage scatter plot with the corresponding damage curve (Merz et al. 2004)
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It should be noted that deterministic damage curves are definitely a shortcoming in reaching the goal of
quantifying all uncertainties at play. However, they proved to be useful in the quantification of risk on a large
spatial scale level. This is because some uncertainty of the prediction on building level becomes relatively small
when you aggregate to larger spatial scale levels; one could say that that the errors average out. The standard-
deviation/mean ratio for the average damage of a number of comparable houses is relatively smaller than the
damage for one single house. This phenomenon can be best explained by considering the hypothetical case of
a stochastic random variable (eligibly damage to a building) for which counts#:

For one random variable X (damage to one house):

_ — std[X] _c
EX]=pu std[X]= o EIA] .

For n independent but equal random variables (damage to n houses):

o 1
u n

_ o std[X]
T Vn E[X]

E[X]=u std[X]
And
std[X;+...+X,] o

E[Xy+ . 4X, ] = - td[X,+ ... +X,] = o _ 2.
Dot tXul=pen o stdlot o tXal = oV SR = Ve

The assumption of independent samples does unfortunately not hold for the kind of damage predictions in
present thesis since (spatial) correlation is at play; two houses that lay close to each other are likely to have a
correlated error (E[X] — X). This is for instance because of similarities in geospatial properties; more about this
can be found in chapter 0 and 0. Moreover, not every damage prediction has the same distribution and thus
the same standard deviation. However, this phenomenon (drop in standard deviation after aggregation) can
to a certain extend be observed in practice and is for example described in ‘Damage to residential buildings
due to flooding of New Orleans after hurricane Katrina ‘ (Pistrika and Jonkman 2009).

1.2.3. Morphological Processes during the Storm

Most of the earlier mentioned impact models assume that the dominant forces, causing the damage to assets
at risk, can be first of all found in inundation depth, followed by wave attack and flow velocity; see paragraph
1.2.1.2. Where all three hazards are hydraulic properties, only the hydrodynamics are taken into account
within the models; the morphodynamics during the storm are neglected, which makes computations less
complex and cheaper. The price you have to pay for this simplification highly depends on local properties like
coastal configuration, soil properties and human protection measures. For some coasts, of which the Long
Island coastline is part of, it can have large consequences for the outcome of prediction.

In paragraph 1.2.1.1 it is stated that hurricanes have the ability to change the appearance of sandy coasts
drastically. Natural or human made barriers (e.g. dunes, dikes, mangrove areas) can breach locally or get
flushed away completely during the storm and change the initial situation in such a way that the local
hydraulic characteristics (inundation depth, wave heights) inland can increase significantly. This can be
compared with changing the rules during a game; neglecting the morphodynamics is like denying that the rules
have been changed and within that analogy this means that the chance of winning —or making good
predictions - decreases.

It must be noted that the morphodynamics have a strong two-dimensional character. A dune breach may
occur at one spot, but the effects can reach much further than the specific transect when the water is
spreading in all directions. Moreover, some areas show threshold problems: damage only occurs when some
threshold is reached. This is for instance the case with dike systems: when a given storm may or may not be

¥ From “The research manual: Design and statistics for applied linguistics” (Hatch and Lazaraton 1991)
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able to cause a breach (threshold storm), a large uncertainty in the damage prediction can be expected.
Especially for early warning systems this can be a big issue, where for risk quantification purposes these
uncertainties will even out over the full set of events.

1.2.4. Spatial Scale and Applicability issues
In paragraph 1.2.1.2 it is stated that the more observations are made the better predictions can be made since
more complexity can be added to the statistical model. More observations can come from real world
observations to a certain extend and thereafter only from more (physics-based) model simulations. As a
consequence the computational expenses will rise. Computational expenses on its turn are always bounded
and therefore there is an inversely proportional relationship between the amount of complexity added to the
statistical model and the process of quantifying uncertainties.

Next to the increase of computational expenses due to adding of complexity to the statistical model, there is
also an increase of expenses when one increases the amount of processes and thus complexity in the physics-
based models. Adding
morphodynamics in particular

will raise the prediction skill

goals = —_ of local storm conditions and
thus indirectly the precision

of damage predictions.

T '\ \ T y / \ However, computational time
will increase as well. Less

model simulations will solve
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Figure 1-13 - A representation of the axis of freedom computational time. Another

disadvantage of more detail is

that relatively large amounts of data should be gathered if one is still interested in a large area. The latter also

can be of important to the statistical model. This is because damage observations are scarce; the larger the
area, the more damage observations.

The above mentioned dilemmas are well known in the numerical modelling industry. In general, the way to
cope with them is to: 1) find out which goals are important for the application; 2) pick the right scale level of
analysis and application; 3) add as much complexity until the means become insufficient. The latter is easier
said than done. Where to add complexity and where not (physics-based models versus statistical model)
should be extensively analysed. A representation of the axis of freedom, means and goals is given in Figure
1-13.
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1.3. Delineation

Considering Figure 1-13 again, most of the discussed model methodologies from paragraph 1.2.1.2 did not
include the quantification of uncertainty in their main goals, but focused only on damage predictions and/or
risk quantification. Developing a model concept including all three aspects is too large a topic for a time limited
study like this. Therefore, this thesis focuses only on the prediction of damage and quantification of the
corresponding uncertainties, leaving the risks out. This makes some decisions easier but limits the applicability,
of which the impacts are elaborated in the discussion part (Chapter 0).

Some other simplifications have been made as well. First of all, the coupling is only researched on the object
level, the lowest spatial scale level. Reasoning for this can be found in the idea that if the concept works on the
lowest spatial scale, it will probably work as well on aggregated levels. Secondly, not at all types of damage are
considered, but only direct tangible damage to residential buildings. A lot of data is available for that type of
asset and it attributed the most to the total direct damage caused by Hurricane Sandy: almost 60% of the total
losses (see paragraph 1.1.1.2). Third, this research is limited to the application of Bayesian Belief Networks as a
statistical modelling tool and XBeach as part of the physics-based modelling train for the propagation of
hazards. Both are choices and have their own limitations, which are in more detail elaborated in chapter 0. In
this limited context probabilistic relations between vulnerability indicators, local storm exposure
characteristics and corresponding damage are established and analysed.

1.4. Research Questions

1.4.1. Main Question
Based on the insights from the background, the defined problems and delineation the following main question
is derived:

What are the steps needed to connect hazard modelling to impact modelling in order to predict damage in a
probabilistic way?

1.4.2. Sub Questions

1. What model approach and structure can be used best and which aspects are important?

What are the effects of model resolution and inclusion of morphodynamic processes on prediction
skill?
3. Which aspects are of influence on the guantification of uncertainty and what is the sensitivity of

choices (number of variables, connections and bins)?
4. How can vulnerability and socio-economic data be integrated and what are the corresponding effects

on prediction skill and the quantification of uncertainty?

1.5. Research Approach

1.5.1. Approach
To answer the questions posited in section 1.4 the following steps are taken. First of all a new modelling
concept has been developed, which is introduced and extensively substantiated in chapter 0. To give a proof of
concept the Rockaway Peninsula has been chosen as a case study. The study site is analysed and in chapter 2
geographical properties, socio—economic aspects and vulnerability to storms are elaborated, followed by an
analysis on Sandy’s impact and summary of the available data for the area. The implementation of the model
concept is described in section 3.2.
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The results, both from the physics-based modelling part and the statistical model, are given in chapter 0. This
is also where the sensitivity of variables and impact of choices to damage prediction skill and uncertainty
quantification are presented. The results are discussed in chapter 0 and based on the obtained insights
recommendations are given for future research.

1.5.2. Objectives and Deliverables
The following objectives and deliverables are derived:

1. Results of Hurricane Sandy simulations executed with the physics-based models and straightforward
description of output;

2. A proof of the proposed model concept;

3. Recommendations for future research;

4. Conclusions —answers to the main and sub questions.
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2.  Study Site

This chapter elaborates geographical and socio-economic properties of the Rockaway Peninsula, both before
and after Hurricane Sandy struck the area. The specific pathways of the hazards are described in section 2.2
and the data that has been used for the implementation of the concepts of Chapter 3 are summarized
together with the corresponding sources in Section 2.3.

2.1. Rockaway Peninsula

2.1.1. Geographical analysis

2.1.1.1.Coastal Configuration
Most parts of the US East Coast can be considered as barrier coasts, showing sandy coastlines with wide
beaches, dunes, typical barrier islands in front of the coast and behind it estuaries or lagoons. The Long Island

coastline, of which the Rockaway Peninsula is part of, forms no exception. In the top panel of Figure 2-1 typical
configurations of barrier coasts can be seen and in the lower panel a top view of the South-Western part of
Long Island is presented. The peninsula is thus a typical barrier spit.

Figure 2-1 - Top panel: typical configurations of barrier coasts (source: Royal HaskoningDHV); lower panel: top view of the South-
Western part of Long Island (source: Google Earth)

It can be seen that the Rockaway Peninsula (encircled in red) is part of a lagoon system consisting of: 1) the
Jamaica Bay with the typical shoals; 2) the Rockaway inlet, which connects the Jamaica Bay to the Lower New
York Bay in the west and; 3) the barrier split, which is the Rockaway Peninsula itself. Barrier coasts are wave
dominated and exposed to mixed-energy sea states. It should be noted that these coastal systems are typically
very dynamic: large storms can easily change the configuration of the coast. Since barrier islands, either
attached to the mainland (spits) or isolated by inlets, are sandy low lying areas they can breach or move
hundreds of meters land inwards when overwash or inundation occurs during high storm surges. Historical
maps show that this has also been the case for the Jamaica Bay area during the past centuries; see Figure 2-2.
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Figure 2-2 — Schematic evolution of the Jamaica Bay (source: Royal HaskoningDHV)

Looking at the cross shore profile of a typical barrier island (Figure 2-3), one can distinguish the following

elements: 1) a nearshore surf zone with migrating submerged sand bars; 2) sandy beaches consisting of the

steeper intertidal zone and a higher situated berm; 3) a fore dune at the ocean side and a back dune at the bay

side with a sheltered area in between (inter dune); 4) a back-barrier bay (lagoon or creek) with tidal marshes

and shoals. The bay, sheltered from waves, traps a lot of fine muddy sediments and has the ability to give

home to rich and divers ecosystems.
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Figure 2-3 - Features of a Barrier Island (source: CUNY*)

15 http://www.geo.hunter.cuny.edu/bight/beach.html
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The Rockaway-Jamaica Bay system consists roughly out of the same features as in Figure 2-3, but human
intervention changed the natural configuration radically. Larger parts of the back dune and inter dune areas
are cultivated and turned into urban areas. The beaches are maintained by the US Army Corps of Engineers
(USACE) and on top of a fore dune (better described as a human made berm) a 5 mile long board walk is
constructed. At the bay side of the peninsula the transition from island to lagoon is fixed by a local access road,
named Beach Channel Drive. These human interventions changed the natural dynamics of the system, which is
elaborated extensively in the next section.

The orientation of the peninsula is East-West, which is in agreement with the direction of net alongshore
sediment transport. The latter is caused by a dominant incoming sea swell coming from the South-East,
approaching the coastline under an angle. Some other geographical characteristics of the area are given here:

e The berm crest reaches on average to a height of 8.9 ft. or 2.7 m above North American Vertical
Datum of 1988 coordinate system (NAVD88), where Mean Sea Level (MSL) is at 0 m NAVD88 with a
tidal range of 1.8 m (NOAA 2013).

e The ground levels of the residential areas are on average 2.23 m high (referenced to NAVD88). The
buildings in the first block from the ocean side are located on higher grounds (+/- 3.5 m) and the
blocks behind on lower grounds (+/- 1.5 m). See Figure 2-4 in which the ground elevations per
building are shown spatially;

e Jamaica Bay is in general shallow with bed levels within the tidal range or a little bit below, but the
main channels are deeper (-10 m below MSL) and are located directly behind the Rockaway Peninsula;

see also Figure 3-16.

Figure 2-4 - Ground Elevations per building in meters ref. to NAVD88 (source: NYC buildings dataset)

2.1.1.2.Morphodynamics
Different physical processes drive morphological changes of barrier coasts in general and the Rockaway
Peninsula specifically. In Figure 2-5 the forces and corresponding morphological effects of these processes are
schematically shown. In the case of long-term equilibrium, morphological impacts caused by the dominant
processes (e.g. high waves and surge) during a storm are ‘restored’ by a much slower recovering process
(mainly wind and low waves). For this research only the physical processes during storms are of importance
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and therefore explanation is restricted to these only. However, it is good to realize that for the general
appearance and configuration of the barrier coast the long term processes (e.g. dune formation by wind and
vegetation, the alongshore drifts, net onshore directed transport during low-energy sea states) are equally
important.

Summer profile ——
Wintes profile

Figure 2-5 - Nearshore Dynamics (source: Royal HaskoningDHV)

The Long Island coastline is exposed to Nor’easters during the winter months and rare hurricanes during the
hurricane season, which normally starts in June and ends in the month of November. Although this means that
threats are present almost the whole year round, sea states are in the winter on average rougher than in
summer, causing a difference in winter and summer profile; see the differences between the two profiles in
Figure 2-5. This is because during high-energy sea states the onshore directed sediment transport processes
are dominated by the offshore directed transport processes. During hurricanes and Nor’easters this dominancy
is huge and since large amounts of sediments are transported offshore the waterfront retreats inland. The first
stage, which is always reached during these storms, is schematically shown in Figure 2-6 and is referred to as
the swash regime.

Swash Regime Collision Regime Overwash Regime Inundation Regime

No net change to the system Net dune erosion Net onshore transport on the Net onshore transport on the
order of 100 meters order of 1,000 meters

Figure 2-6 - Different regimes during a storm (source: USGS*®)

The other three stages can happen subsequently when water levels rise. If the water levels are high enough
the dunes are attacked by the waves and will episodically erode away. This step is referred to as the collision
regime. During the overwash regime the water levels and waves are so high that waves are overtopping the
partly eroded dune crest. The last stage is known as the inundation regime when the water level is higher than
the (remaining) dune crest height and when sediment is transported from the beaches and fore dune to the

16 http://coastal.er.usgs.gov/hurricanes/impact-scale/inundation.php
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hinterland (inundation regime). It should be noted that next to these cross shore processes, alongshore
processes can be of great importance as well. Spatial differences in alongshore erosion rates and weak spots in
the fore dunes can cause local breaching. Moreover, during high surges the water levels in the Jamaica Bay will
rise as well, which can cause flooding of the Rockaway Peninsula from the bay side; this is known as back-
barrier flooding, which happened during Hurricane Sandy as well.

2.1.1. Socio-economic analysis

Nowadays, the Rockaway Peninsula is primarily a residential area. However, this was completely different in
the turn of the 20™ century, when the New Yorkers vacationed in brand-new hotels and bungalows enjoying
the Rockaway beaches. With the advent of automobiles in the 1920’s this started to change, since that made
driving to more distant beaches at Long Island possible (Chan et al. 2013). Because of this drop in tourism, a
lack of economic opportunities due to geographical isolation and exposure to erosion and weather, the area
pauperized rapidly. In the 1940’s and 1950’s politicians decided to use the Rockaways to accommodate the
growing need for affordable housing and relocated New York residents who had to be displaced for large city’s
renewal projects to the Rockaways. Today, the heritage of these choices can still be seen. Of the 80 public
housing communities of whole Queens County, 21 are located on the Rockaways, exposing a vulnerable group
of residents, of which a lot are in need of social services and assistance, to hazardous storm surges (Chan et al.
2013).
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Figure 2-7 - Map showing neighbourhoods (Source: Project Jamaica Bay)

As of 2010, the Rockaway Peninsula is home to approximately 112,518 residents (Chan et al. 2013) who live in
the communities of Breezy Point, Roxbury, Fort Tilden, Jacob Riis Park, Belle Harbor, Hammels, Arverne,
Bayswater, Neponsit, Seaside, Rockaway Beach, Somerville, Rockaway Park and in the east Far Rockaways. Of
them 40% are African American, 34% white, 21% Hispanic and the residual 5% Asian or of other race.
According to the American Community Survey (ACS), the average household incomes show huge spatial
variability, ranging from 120,000 dollars per year in the western part to less than 20,000 dollars per year in one
of the communities, see Figure 2-8.
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Figure 2-8 - Median Income in the Rockaways (source: Averne East Study)

The Rockaways incorporate 44,325 housing units in 2011 according to the American Census Bureau. 87% of
these units are occupied of which 62% (a majority) are renter-occupied and 5% are vacant properties,
predominantly for own use. 18% of the buildings contain more than 20 housing units, which reflect the high
concentration of public housing properties. The construction material of most single-family houses (majority of
buildings) is wood with concrete foundations and basement with brick cladding, where larger buildings are
generally completely made of concrete (Guy Carpenter 2013). The fact that both rich and poor have
experienced the impacts of Hurricane Sandy and the high density and variability of residential buildings makes

the Rockaway very interesting for present study.
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Figure 2-9 - Predominant land use class per tax lot, obtained from the PLUTO dataset

Next to residential purposes the Land use of the Rockaway Peninsula mainly consists of open space, outdoor
recreation and vacant land; hardly any commercial or industrial activity can be found in the area. Land use can
be spatially observed from Figure 2-9, which comes from the PLUTO dataset from the NYC Department of City
Planning.
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2.2.  Sandy’s Hazard Pathways and Impacts

Sandy’s overall propagation and impacts are already discusses in section 1.1.1.2. This section will elaborate on
the specific hazard sources and pathways at the Rockaways, together with the corresponding impacts. How
the super storm interacted with the existing geographical components of the system and what the
corresponding impacts were is discussed. Sandy’s eye made landfall near Brigantine, New Jersey, which is as
the crow flies over 120km away from the Rockaway Peninsula. Nevertheless, the Rockaways got the full load
where wind speeds were maximal on the North-West side of the eye, which in combination with the
geographical features appeared to be unfavourable for New York and surroundings.

2.2.1. Hazard Sources and Pathways

2.2.1.1.Surge and Inundation

The notion of storm tide, storm surge, water level and inundation level can differ. In this thesis storm tide
refers to the water level including the abnormal rise of sea level caused by the cyclone (storm surge) in
combination with the astronomical tide, which is in agreement with the terminology of NOAAY. Water levels
in general can refer to storm tide, but in this thesis it will include short and long waves as well. All are
referenced to a level (e.g. Mean Lower Low Water (MLLW) or NAVD88, which is more or less equal Mean Sea
Level). Inundation depth though is often not very clear defined. In this thesis inundation depth is defined as
the difference between the water level excluding short waves but including storm surge, tide, setup and long
waves; and the topographic level (of the ground elevation).
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Figure 2-10 - Gauging Stations and USGS’s temporary storm tide of 13.2 ft. or 4.03 m above MLLW and
storm-tide sensor (based on a figure of NOAA) equivalently: 3.175 m above NAVDS88. Hereby it is

noted that the sensor stopped recording just before
the expected time of the peak and it is likely that the storm tide peak would be pretty much equal to the storm
tide at the Battery (NOAA 2013). It is therefore assumed that storm tides in front of the Rockaway Peninsula
were a little bit higher than the last recorded levels. Moreover, it is assumed that storm tide in the Jamaica Bay
was in the same order as well, which is in agreement with a temporary storm tide sensor from USGS'®
(installed a day before landfall) at the water side of Broad Channel, showing a storm tide of 10.38 ft. or 3.16 m
above NAVDSS; see Figure 2-11.

17 http://www.nhc.noaa.gov/surge/
18 Station SDHN4 - 8531680 - http://www.ndbc.noaa.gov/station_page.php?station=sdhn4
19 SSS-NY-QUE-005WL - Jamaica Bay at Broad Channel at Queens, NY - Storm-Tide Sensor
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Figure 2-11 - water level records in time by USGS's temporary storm-tide sensor (source: USGS)

Comparing the bay side storm tides to the ground
elevations of the peninsula, it can be concluded that back-
barrier flooding was indeed inevitable and corresponding
local inundations depths in the order of 1 to 2 meter are
explainable (E. Blake 2013; PIaNYC 2013). According to the
Army Corps (USACE 2013) Sandy’s storm tide at the berm
(the small maintained fore dune with boardwalk) was 11.6
ft. or 3.53 m above NAVD88, which is higher than the
offshore storm tide approximation, possibly as a result of
wind and wave set up. This means that the depth over berm
was 2.7 ft. or 0.82 m; overwash and inundation were thus
both at play. The Army Corps state that at some areas the
beaches were heavily eroded and at these places the
boardwalk was completely destroyed, mainly because of
the wave impact; see Figure 2-13.

Figure 2-12 - Oblique aerial photographs of Neponsit, NY (source: USGS).
The view is looking northwest across Rockaway Peninsula. Sand was
washed from the beach into the streets, and towards the bayside of the
island, and several rows of ocean-facing houses were destroyed or
damaged. The yellow arrow in each image points to the same feature.

November 5, 2012

i\

Figure 2-13 - Destroyed boardwalk (photographer: Nathan Kensinger)

Especially the area between 90™ and 149™ street was heavily affected and overwash deposited piles of
sediment from the pre-storm berm and beach land inwards; see Figure 2-12. In other areas, where the pre-
storm beaches were wider (which were also the areas with groins), the boardwalk suffered less damage and
the full inundation regime was never reached. In Figure 2-14 the coastline has been divided in stretches with
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more or less similar damage properties, which are described in Table 2-1.
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[ Eroded away due to Sandy
mmmm Boardwalk heavily damaged
mmm Boardwalk survived

Figure 2-14 - Overview of damage to the beaches and Boardwalk; based on aerial pictures taken directly after the storm.

Table 2-1- Description of the situation and observed damaged for the locations of Figure 2-14.

Stretch

From

To

Situation

Damage

Beach 149t St

Beach 126 St

No Boardwalk, narrow beach

wash-over till end of first block

Beach 126t St

Beach 110t St

Beach Walk Promenade, narrow beach

Promenade swept away, wash-over

Beach 110t St

Beach 90 St

Boardwalk, narrow beach

Boardwalk swept away, wash-over

Beach 90 St

Beach 74t St

Boardwalk, wider beach, groynes

Boardwalk survived, heavy erosion of beach

Beach 74t St

Beach 61t St

Boardwalk, narrow beach, groynes

Boardwalk mostly broken, wash-over

Qlmmo|0 W >

Beach 61t St

Beach 40™ St

Boardwalk, wider beach, few groynes

Boardwalk survived, erosion and wash-over

Beach 40 St

Beach 35 St

Boardwalk, narrow beach, few groynes

Boardwalk mostly broken, wash-over

Next to the temporary storm-tide sensor at Broad Channel, the USGS collected multiple high water marks
(McCallum et al. 2013). The locations of these marks within the area of interest are shown in Figure 2-15 and
the corresponding elevations (ref. to NAVD88) and approximations for inundation depth are given in Table 2-2.
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Figure 2-15 - Location of the USGS high water marks
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The locations of the high water marks are both interior and exterior, stating something about the maximum
water levels with and without short waves. The differences are small, so it is assumed that at these locations
waves are small compared to the surge and it can therefore be concluded that the high water marks give good
approximations for the onshore storm tide.

Table 2-2- USGS High water marks for the Rockaways

# Name Elevation (NAVD88) Inundation Depth Description
Feet Meters Feet Meters

1 HWM-NY-QUE-729 12.7 3.87 5.4 1.65 | wash line on side of house

2 HWM-NY-QUE-728 10.7 3.26 3.6 1.10 | wash line on wall inside building

3 HWM-NY-QUE-727 10.8 3.29 0 0 | debris line in parking lot

4 HWM-NY-QUE-726 10.5 3.20 0 0 | debrisline

5 HWM-NY-QUE-730 11.2 3.41 5.4 1.65 | wash line in front of building

6 HWM-NY-QUE-731 10.3 3.14 0 0 | wash line on wall

7 HWM-NY-QUE-007 10.7 3.26 4.5 1.37 | debris line on fence

2.2.1.2.Wind and Waves
Wind and waves are in contrast to storm surge peak levels not measured within
the study area. However, they are recorded by buoys offshore, of which buoy
440652%° from NOAA’s National Data Buoy Center is the closest and most
interesting one. This buoy lies right in front of the Rockaway Peninsula, some 25
km out of the coast where the average water depth is about 50 m. In Figure 2-17
the hourly maximal wind gust speed (red dots) and sustained wind speeds (blue)
are given in the upper panel. The significant wave height (Hs) is given in the lower

Figure 2-16 - buoy 44065
(source: NOAA)

panel. Both wind and wave graphs seem to be pretty much in phase with peaks
around midnight, which is more or less the same as for the storm tide peak from
Figure 2-11.

Sustained wind speeds (biue) and hourly maximal wind gust speeds (red)

35

N oW
=]

wind speed (m/s)
n
S

g
Oct28 00:00 Oct28 08:00 Oct28 16:00 Oct29 00:00 Oct29 08:00 Oct29 16:00 Oct30 00:00 Oct30 08:00 Oct30 16:00 Oct31 00:00
time

Significant wave height during Hurricane Sandy (blue)
10
T T T T T T T T

significant wave height (m)

0 | | | | | | |
OctZ800:00  Oct2808:00  Oct28 1600 Oct2300:00  Oct2908:00  Oct29 1600 Octad 00:00  Oct30 08:00  Oct30 16:00  Oct31 00:00
time

Figure 2-17 - Wind speed and significant wave heights during Hurricane Sandy - recorded by buoy 44065

Maximum wind gust speeds of 35 m/s (126 km/h) on the open water are high, but not uncommon for storms
in the region. Sandy was technically not a hurricane anymore at the time of landfall, so this is also to be

20 (LLNR 725) - New York Harbor Entrance - 15 NM SE of Breezy Point , NY
http://www.ndbc.noaa.gov/station_page.php?station=44065
—
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expected. On the contrary, significant wave heights of almost 10 m are extreme. They exceed the previous
record of 7.95 m recorded at Buoy 44065 (during Hurricane Irene in 2011) and 9.30 m observed at the same
buoy during the Nor-Easter of December 1992 (Sopkin et al. 2014). No return periods have been found for
these records.

Wind predictions from the North American Meso-scale Forecast System (NAM) model simulations from the
National Centre for Environmental Prediction (NCEP) give a clear idea of the spatial and temporal propagation
of wind direction. The black arrows in Figure 2-18 represent these wind directions for three different moments
in time: before, during and after the peak of the storm. The yellow dot is the location of buoy 44065 and the
red arrow shows the direction of the corresponding recorded half hourly mean wind direction. It can be seen
that the wind is turning from almost parallel to perpendicular to the coast. Moreover, the wind direction
simulations are in agreement with the observations.

wind direction at Oct29 21:00 wind direction at Oct30 00:00
T JR—— i
40.6 & st ; ' E. A : &
P e
g 40 55 e A “
o i Doy
T WSERBELE e =
s T
g OB e <SS SSY
L
40.4 oo Au N
4085 430 A A AN
74 -73.9 -738 737 -736 74 739 738 -73.7 -736 74 739 738 737 -736
¥-coor (WGS84) ¥-coor (WGS84) ¥-coor (WGS84)
wave direction at Oct29 21:00 wave direction at Oct30 00-00 wave direction at Oct30 03:00
4065 v — 65— 40,65 S —
40,67+ s 40,6 B s
T 4055 = T =
w o=l w
g g 8 s
z 2 2
8 S S 4045 .
g g g
Ee = T 40.4 g bt \
- 40.35 s -
74 739 738 -73.7 -736 74 739 738 -73.7 -736 74 739 -73.8 -73.7 -736
¥-coor (WGS84) ¥-coor (WGS84) ¥-coor (WGS84)

Figure 2-18 - Upper panels: wind directions observed (red) and simulated (black) with the North American Meso-scale Forecast System
(NAM) model; lower panels: wave directions observed (blue) and simulated (white) with SWAN

The white arrows in the three lower panels in Figure 2-18 show the wave directions at the same three
moments. These wave directions are generated with a SWAN model of the New York Bight and Long Island,
which is elaborated in more detail in section 3.2. Again, the observed records of buoy 44065 (blue arrows) are
added as well. It can be concluded that the SWAN model, which uses the wind simulation of NAM as input, is
in agreement with the observations and that the mean wave direction rotates towards the coast during the
storm as well.

Near the coast the wave heights decrease because of the wave breaking in limited water depths. However,
larger waves easily overtopped the fore dunes and at the location of the breaches waves penetrated into the
residential areas. How far these waves penetrate into the area is not really clear, but it is noticed that the
elevation of the high water marks is not much higher than the maximum recorded storm tide of the temporary
USGS storm-tide sensor in the Jamaica Bay. Therefore it is assumed that at the locations of the high water
marks, the wave heights of both long and short waves are relatively small. Since all high water marks are at the
bay-side of the area, this information can’t be used as an indication for wave heights on the ocean side of the
Peninsula. However, post-sandy pictures of destroyed houses close to the beach give proof of severe wave
attack; see Figure 2-20.
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2.2.1. Impacts

2.2.1.1.Morphological Impacts
The USACE has conducted multiple LIDAR surveys in order to obtain high-resolution topographical datasets
covering most parts of the Long Island coastline, including the Rockaway Peninsula. The LIDAR datasets are
also elaborated in section 3.2 and in detail described in Appendix D. In addition to their normal survey
campaign, for which they survey every 5-7 years, the USACE conducted a post-sandy survey. The differences
between pre- and post-Sandy LIDAR data show the erosion and sedimentation caused by the storm, indicating
the morphological impact. A visualisation of the topographical changes is shown in Figure 2-19.

Pre-Sandy LIDAR (2010) in meters above NAVD88 Post-Sandy LIDAR (2012) in meters above NAVD88

7386 855 7385 73845 7384 7385 73855 7385

Overwash deposits in meters

73845 84

s 7384
(zoomed

Sedimentation (+) and erosion (-) in meters

Figure 2-19 - Bed level changes due to Sandy. Left upper panel: pre-Sandy LIDAR, right upper panel: post-Sandy LIDAR, panels below:
differences between post- and pre-Sandy LIDAR

In the upper panels pre- and post-Sandy LIDAR data are plotted and the differences (sedimentation is positive
and erosion negative) are plotted in the lower panels. The post-processing technics differ: buildings, trees and
other objects have been filtered out in the post-Sandy LIDAR (bare earth) and not in the pre-Sandy LIDAR. This
is why the buildings have been removed in the sedimentation-erosion subplots; see Appendix A for more
details on this. Moreover, some blue spots can be noticed in the sedimentation/erosion subplots, especially in
the middle part of the peninsula. These spots can be ignored, since they are not caused by actual erosion but
correspond to objects like trees and cars. Unfortunately, a good bare earth extraction of the LIDAR was not
available.

From Figure 2-19 it becomes clear that the overwash regime has been reached during the storm. The beaches
and berm have been eroded heavily and due to the overwash large amounts of sand have been deposited
behind the berm in the residential areas. In the lower right plot the sedimentation between 0 and 1 m ref. to
NAVDSS is given, which shows the inland overwash deposits more clearly. Especially between the white stripes
in the blocks directly behind the sand berm, deposits can be observed. Figure 2-12, which shows the overwash
in the areas directly behind the berm, is taken between these two white stripes.

2.2.1.2.Direct Damage
According to ‘Post-Sandy: Damage Survey’ (Guy Carpenter, 2013) both eastern and western part of the
Rockaway Peninsula are considered two of the eleven most affected areas in the US, where they make
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distinction between the Breezy Point community (west) and Rockaway community (east). This paragraph
elaborates the direct damage to different kinds of assets, but focusses on damage to individual property
(residential buildings and belongings) as a direct result of the overwash and inundation. Normal water damage
(deterioration of assets because of getting wet) and structural failure related damage due to hydraulic forcing
are both considered as primary damage, together with wind damage. Secondary damage, which is additional
damage caused by the primary damage, can have many elements and depends strongly on the pre-storm
situation. Fire damage caused by electrical short circuit burnings is an example of secondary damage?*.

Primary Direct Damage
The surveyors of Guy Carpenter found a few roof tops missing some shingles and only one boarded upper-
story window, indicating that wind induced damage was minimal. On the contrary, water induced damage was
significant. In the Breezy Point area most houses had interior flood damage. Large debris piles out front of the
buildings consisting of inundated wood, insulation and household items confirm the interior flooding. Roads
were therefore impassable and the fact that traffic lights were broken worsened the situation. The water and
gas supply networks were damaged too. About the Rockaway area they state that every property was severely
inundated. Although most properties looked undamaged from the exterior, large piles of debris in front of the
houses showed different. Sand residues were found well inland from the foot of 116™ street up to Rockaway
Beach Boulevard, which corresponds to the area with narrower beaches and fully eroded berm (see paragraph
2.2.1.1). In the same area more aggressive wave battering effects were clearly visible as well. Figure 2-20 gives

a selection of pictures taken from the post-sandy situation.

- 5 = 2 i 5 . e
Figure 2-20 - The oceanfront of The Rockaways has been almost completely demolished by wave battering (photos by Nathan Kensinger)

The task of short term disaster assistance and guidance of the rebuilding process is assigned to the federal
organisation FEMA. The weeks after Sandy FEMA performed surveys in major parts of the Sandy affected area
in order to assess the damages. The Hurricane Sandy Imagery Based Preliminary Damage Assessments (IPDA) is
one of these assessments. Imagery collected by the Civil Air Patrol (CAP) and NOAA was then processed by
analysts at ImageCat in order to use the results to expedite housing assistance for disaster survivors (FEMA
2013). Based on the aerial pictures buildings were divided into 4 categories: Affected, Minor, Major and
Destroyed, of which a more detailed description can be found in Section 2.3. A visualisation of the spatial
distribution of the damage from the ImageCat dataset (ImageCat Imagery Based PDA??) is shown in Figure 2-21.

21 Notice the difference between secondary and indirect damage, where secondary damage has a physical relation to the
storm and indirect damage a relation to the disrupted socio-economic situation.
22 http://fema.maps.arcgis.com/home/webmap/viewer.htm|?webmap=307dd522499d4a44a33d7296a5da5eal
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Figure 2-21 - Spatial representation of the ImageCat damage Analysis

From Figure 2-21 the following conclusions can be drawn:

e The most severely damaged buildings (destroyed or major damage) are almost all located in the
ocean fronting rows;

e The rest of the buildings within the first block from the beach are not too much damaged, which is
assumed having a relation with the higher ground elevation levels within that area, see Figure 2-4;

e Some hotspots can be designated, for instance in the middle of the eastside of the area, which can be
seen in the zoomed view on the right side.

Additional to the aerial survey, FEMA has sent thousands of surveyors into the field?, as part of their Housing
Assistance Program. The goal was to find out which households qualify for temporary housing and/or financial
assistance for repair and replacements costs, in addition to the contribution of insurance companies. The
corresponding reports and data are not public and it appeared to be impossible to get it from FEMA in the
form needed for present study; namely coupled to geospatial information.

Secondary Direct Damage

Not directly related to the forcing of the water or wind, secondary direct damage can still be related directly to
the storm. Besides short circuit burns, not much is documented about Sandy’s secondary direct damage at the
Rockaways. However, the fires had an immense impact on some communities. As is already mentioned in
section 1.1.1.2, 111 houses completely burned down to the ground at Breezy Point. The results can be seen in
Figure 2-22. Also in Belle Harbor six residential buildings burned down at Beach 130" Street and at Rockaway
Beach Boulevard a broken power line fell on a three-story building and caused a fire, burning down 19 of the
surrounding buildings. This hazard on its own took care of more than 125 of the in total 195 completely
devastated buildings in the Rockaway Peninsula area.

23 Found on FEMA’s timeline of Hurricane Sandy: http://www.fema.gov/hurricane-sandy-timeline
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Figure 2-22 - Short-circuit fires burned down complete neighbourhood at Breezy Point and some other places in the area (Photographs
by USACE and Nathan Kensinger amongst others)

It is questionable whether this number of burned down houses is representative or rather exceptional. The
answer is not easy to find, but it is for sure not exceptional, given that an internet search for electrical fires
caused by Sandy results in multiple stories about other cases in several states, of which the boardwalk fire in
Seaside Park, NJ, is most noticeable. Moreover, New York Daily News states that the New York Police
Department (NYPD) has concluded that 68 of the 94 separately originated fires during Sandy started due to
electrical causes?.

2.2.1.3.Monetary Losses

As has been mentioned before, data on monetary damage have been surveyed by FEMA, but these data were
not available for present study. Nonetheless, to some extend the data is public, which is shortly summarized
here in order to give an idea of what is out there. FEMA only published their observations of the survivors that
got the maximum grant of $31,900 that was rewarded from the FEMA Individual Assistance Program per
postcode. With it come the unmet needs?, the gross income per year of the household and the number of
members of the household; see Figure 2-23. However, an address or anything else that could have been
helped to trace back the geospatial identity is not given; unfortunately, because this is of great importance for
present study.

Obviously, much more people got a grant from FEMA lower than the maximum amount, which are not
published in the list. FEMA was willing to give an indication of the spread of the grants: in New York City, of the

24 http://www.nydailynews.com/new-york/sea-water-surge-behind-serious-sandy-fires-fdny-article-1.1226891
25 Adding this up to the maximum grant a total damage to the property of that specific victim can be determined.
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152,766 total FEMA registrants, the average grant for homeowners and renters were $11,612 and $5,333
respectfully, which adds up to a total of about 1 billion dollars.
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Figure 2-23 - impression of the available data on monetary damage. Source: FEMA’s Community Recovery Resource
Mapping Tool?6.

2.3. Data

Most of the sources and datasets have already been discussed in the previous sections of this chapter. Three
of them are elaborated in more detail here, knowing the ImageCat dataset, the buildings dataset from the NYC
Department of Information Technology and Telecommunications and the PLUTO dataset from NYC
Department of City Planning. All consist of geospatial identities of the object to which properties are attached.
For the ImageCat dataset the geospatial information consists of points, for the PLUTO dataset of tax lots (with
polygons corresponding to the perimeter outlines of the lots) and for the buildings dataset these are buildings
(with building polygons). A spatial representation of the three datasets is given in Figure 2-24.

ImageCat
Buildings
PLUTO

Google Hybrid

Figure 2-24 - Spatial representation of the ImageCat, Buildings and PLUTO datasets

26 http://fema.maps.arcgis.com/home/webmap/viewer.htm|?webmap=c8e880eb4e7f4996ac26947884205da0
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Based on geospatial querying the properties data from the ImageCat and PLUTO datasets have been assigned
to the building polygons and therefore combined with the properties data of the buildings dataset (see
Appendix A for more detail on the coupling process). In this way all properties can be used as damage
indicators on the same spatial scale level (scale of analysis), which is on the building level. An example of this
can be found in section 2.2, where Figure 2-21 shows the property ‘physical damage’ from the ImageCat
dataset (originally dots) assigned to the corresponding building polygons.

The ImageCat dataset consists of qualitative descriptions of the damage; see Appendix J. Based on aerial
pictures the structural and exterior damage has been observed and mapped. Based on this in combination
with inundation depth (established based on water levels from storm simulations) the buildings have been
classified as “Affected”, “Minor damaged”, “Major Damaged” or “Destroyed”. Where all urban areas were
flooded, all buildings are assumed to be at least affected by the inundation. The consequence is that there are
no non-damaged buildings within the area. Probably this is not 100% true, but that is not a big problem for
delivering a proof of concept within this thesis. Considering the other two datasets, Table 2-3 and Table 2-4
show the relevant properties of the Buildings and PLUTO datasets and a brief description.

Table 2-3 - Properties of the Buildings dataset

| Buildings |
Property Description
Height roof Height of the roof referenced to local ground level
Building type Residential, garage or commercial
Ground elevation The elevation of the ground referenced to NAVD88
Shape surface area The ground floor area of the building

Table 2-4 - Properties of the PLUTO dataset

T

Property Description

Number of buildings on lot The number of buildings on the tax lot

Number of floors In the primary building on the tax lot, the number of full and partial stories
starting from the ground floor

Building class A code describing the major use of structures on the tax lot

Lot area Total area of the tax lot

Floor area of total building The total gross area of all buildings

Residential units The sum of residential units in all buildings on the tax lot

Tax base - assessed value The tax lot’s estimated full market value multiplied by a uniform
percentage for the property’s tax class

It should be noted that studying the added value of including an indicator like construction material would be
very interesting. However, data on the construction type of buildings are not included in the PLUTO or the
buildings dataset. That information is available (though not publically) and forms part of the Mass Appraisal
System (MAS) dataset from NYC Department of Buildings. Unfortunately MAS is not easy to work with?’, which
is why it is not used for present study. Moreover, for the villages Breezy Point and Roxbury PLUTO data are
only available on aggregated level. For both villages PLUTO contains only one big lot (whole village) in the
dataset, which can also be seen in Figure 2-9.

27 Strongly recommended by the NYC City Hall
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3. Methods

This chapter describes the concept, implementation and considered scenarios. In section 3.1 the general
concept is elaborated. Section 3.2 is about implementation of this concept on the case study and section 3.3 is
about the scenarios which are considered in analysing different aspects of the approach.

3.1. Concept

3.1.1. Physical Process Description

As has been described in paragraph 1.2.1.1 modelling storm propagation has already extensively been done
and documented within the field of hydraulic engineering, either for coastal purposes or rivers. In general all
approaches for simulating the physical aspects of storms follow a fairly similar pattern: start with a large and
coarse model, covering the complete area of influence of the storm, and zoom in to the scale of analysis by
using more detailed but smaller nested models. When the amount of detail is sufficient, enough information
on that spatial scale can be extracted from the models and can be used as indicators for the severity of the
hazards locally. This general approach is also used for present study.

The actual implementation of the storm propagation differs per impact model and mainly depends on the
choices the modellers had to make to achieve their goals: predicting damage; quantifying risk; or quantifying
uncertainty. This is elaborated in subsection 1.2.4. To reach the goals of present study, which are predicting
damage and quantifying uncertainties, the following choices/requirements have been made:

e The scale of analysis is on the object level, where the objects are residential buildings;

e The model grid resolution (micro spatial scale level) must therefore be in the order of 1-10m;

e At least the storm characteristics inundation depth, wave height, stream velocity and scour depth
should be able to extract from the simulations on that spatial scale;

e The scale of application should be in the order of kilometres in order to include a sufficient amount of
observations.

The scale of application determines the dimensions of the area of interest for which the damage predictions
have to be made. This is for instance the scale of the Rockaway peninsula for present study. In order to gain
the required amount of detail in the area of application the storm characteristics have to be propagated from a
much larger macro scale level to the scale of analysis. In theory it would be possible to cover all spatial scales
in one single model. However, to properly simulate the storm on the largest spatial scale level the domain
should be taken fairly large (in the order of 100-1000 km in both x and y direction) to cover the whole area
that is significantly influenced by and influences the storm. Combining a large domain with the requirement of
a high model resolution (1-10m) is computationally and economically infeasible. It should be noted that this
disadvantage can be overcome by using unstructured grid models (with the use of non-equidistant and/or
meshed grid configurations, such as in D-Flow FM). However, in such a setup it is cumbersome to rerun the
model. Moreover, with a nested model one could for instance turn on morphology only in the nested model
on the lowest scale level. This is why the nested approach is considered to be the best for the present study.
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Figure 3-1 - Schematic representation of the proposed approach

In the next paragraph 3.1.1.1 the choice of implementing XBeach is explained, which is a key element for the
approach of present study. XBeach is capable of propagating storm characteristics just offshore (meso scale
level information with a resolution of 100-1000m) to the desired micro scale level onshore. How many steps
and models are necessary for the propagation from macro to meso scale depends on the study site, what
information is available and whether other operational models are available or not. The proposed approach is
schematically shown in Figure 3-1.

In analogy with physical approaches, this approach has a causal order: large storm characteristics cause
smaller storm scale characteristics, causing on its turn damages. The larger and most dominant forces
(astronomical and meteorological forces) are coped with on the largest spatial scale, whereas for instance
wave attack and the vulnerability of a house are included on the lowest spatial scale. Moreover, in the nesting
approach it is assumed these processes on the smaller spatial scale have no effect on the processes on the
larger scale.

3.1.1.1.Morphodynamic influences
Subsection 1.2.3 showed that neglecting of morphodynamics is definitely a shortcoming for a lot of (coastal)
sites for which the Rockaway Peninsula serves proof. This is one of the main problems addressed in Chapter 1.

In order to solve this problem, inclusion of the morphodynamics is essential. To do so, one can make use of a
handful of numerical models (e.g. Delft3D, Mike, XBeach). Differences between these models can be found in
the type of numerical schemes, type of formulas solved (both in hydraulics and morphodynamics) and some
other aspects such as the ‘avalanching’ module, the wave group module and infragravity waves module in
XBeach (Deltares 2010). Since this research is not about developing a fully proved operational impact model,
but about giving proof of concept, a thorough comparison -weighting pros and cons- has not been made.
However, there are reasons for choosing XBeach. One of the main reasons can be found in the fact that it has
shown good performances in modelling morphodynamics of barrier islands exposed to hurricanes (McCall et al.
2010). In Figure 2-6 the schematisation of the four different storm surge regimes can be seen for which XBeach
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has been designed for the case of Santa Rosa Island, FL, under Hurricane Ivan conditions, as has been defined
by Abby Sallenger (2000)%,

The processes described in XBeach are the long waves, travelling with the wave groups and released in the
surf zone, and together with the storm surge level and short waves cause dune erosion during storms. The
long waves are solved separately from short waves, which are assumed to be important for sediment transport
processes only. The physical processes are solved in a

specific order: first the hydrodynamics are considered; (b)
secondly, instabilities in the dune face are predicted, T

causing local avalanches of sand (see Figure 3-2). The
subsequent sediment transport, directed offshore

(collision regime) or onshore (overwash and inundation

regime), is a function of flow velocity and stirring effects of

short waves. The corresponding local transport rates are - - - o
Figure 3-2 - Instabilities cause episodic sliding down of

used to update the bed levels, which on its turn affects the land slumps. This is simulated by the avalanching-

hydraulics. With this constant feedback loop in time ..
XBeach is capable of coping with breaching and large

sediment depositions during the storm. In this way the storm propagation can be simulated in better
agreement with reality. The formulations XBeach solves are summarized in Appendix C; more detailed

information can be found in the XBeach manual.

Collision - Overwash Overwash Peak of the Storm: Inundation

Figure 3-3 - Regimes during Hurricane Ivan (2004) at Beasley Park, FL (source: Dave Thompson, USGS)

A representation of XBeach simulating the collision, overwash and inundation regime for Hurricane lvan (2004)
hitting Beasley Park, FL, is given in Figure 3-3. From McCall et al. ?° it can be concluded that XBeach is doing a
fairly good job in predicting the morphological changes to barrier islands. The differences in predicted and
observed bed levels after Hurricane lvan are fairly small, as can be seen in Figure 3-4.

28 ‘Storm Impact Scale for Barrier Island’ (Sallenger 2000)
23 ‘Two-dimensional time dependent hurricane overwash and erosion modelling at Santa Rosa Island’ (McCall et al. 2010)
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. Table 1
Back barrier Skill and bias of the simulated post-storm
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Figure 3-4 - Observed and predicted bed level changes are in agreement. XBeach shows skill for predicting hurricane impacts at barrier
islands.

Where XBeach is designed for storm impacts to sandy coasts, it is assumed to perform adequately for other
sites than Santa Rosa as well, including the Rockaway Peninsula. There are differences though; The Rockaways
have been subject to extensive urbanisation where this was not the case for Santa Rosa Island. For sites with
other geographical configurations and soil compositions it might be interesting to compare the performances
of different numerical models as well.

It should be noted that XBeach is designed for fairly high resolution purposes and it is far from ideal to use for
storm simulations on larger spatial scales due to high accompanying computational expenses. XBeach should
therefore always be used in combination with and nested into another numerical model, in which detailed
processes such as morphodynamics and long wave are turned off. As has been mentioned before, a summary
of the formulations XBeach uses can be found in Appendix C.

3.1.2. Statistical Opportunities
This section is about the opportunities in approaching the physics-based modelling from a probabilistic
perspective. First, the uncertainty that comes with the physics-based modelling is described in more detail.
Secondly, the approach to quantify these uncertainties is explained in general and in more detail for the
coupling of local hazard characteristics to damage.

3.1.2.1. Uncertainty in Physics-based Modelling

Paragraph 1.2.1.1 elaborates storm simulations and the storm propagation in time, space and spatial scale,
based on simplified physical relations. The way these physics-based models work is deterministic; every unique
combination of input (initial conditions, boundary conditions and parameters) produces only one possible
outcome, the prediction. This prediction is based on a simplified world and how it matches reality is not
exactly known. As has been extensively elaborated in paragraph 1.2.1.2 the ability of quantifying uncertainty
(or certainty) of these predictions is of great importance in modelling risks. Subsection 0 addressed the
problems in quantifying uncertainties in hurricane impact modelling. For physics-based modelling in general
the following aspects attribute to the uncertainty of outcome:

1) Simplification of complex reality;
2) Uncertainty in model input;
3) Numerical (in)accuracy
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Since it is simply impossible to cover full complexity of reality in models, the predicted future state will always
partly be wrong and therefore unknown. It is said to be an approximation. Moreover, the output is as good as
the input. However, it could be worse: if the involved processes are unstable, irregularities (uncertainties) can
grow exponentially. The same holds for numerical schemes, which are used to solve the physical relations:
uncertainties or irregularities can grow to infinity (explode) or decay when there is numerical stability.

If we now combine the insight of these uncertainties with the model train proposed in subsection 3.1.1, it can
be concluded that every additional step is adding uncertainty to the final outcome. This is schematically shown
in Figure 3-5. The part of the uncertainty that is epistemic gives opportunities, since that part of the
uncertainty can be reduced. The aleatoric part of the uncertainty cannot be reduced, but can still be quantified.

100% -

Percentage of
total uncertainty

A—
. W Epistemic uncertainty
M Aleatoric uncertainty
0% T T T T 1
NI G\
X\ X\ X\ X\ K\
NZ NZ NZ NZ NZ
O O o o o
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O O O O O
<& ) ) ) &

Figure 3-5 - Schematic representation of the growing uncertainty within the model train (not based on real data)

3.1.2.2. The Probabilistic Approach

Exactly the same principles as has been described in subsection 0 can be used in order to quantify
uncertainties in the model train: real and synthetic data can be used to feed a statistical model with prediction
skill. By coupling the right variables in the right order (from large spatial scale towards final impacts) it is
theoretically possible to quantify uncertainty for every step in the process. This is schematically shown in
Figure 3-6. Comparably information levels as in Figure 1-8 and Figure 3-1 are shown again. If the most
important variables on every level are interlinked in a network and dependency relations trained with a
sufficient amount of data (real observations and partly generated by the physics-based modelling train) a
statistical model can be created with the potential of predicting overall impact or risk. Based on information
from the highest spatial scale level (boundary conditions on level 1) predictions for the lowest spatial scale
level can be made in a fully probabilistic way.
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Figure 3-6 - Information on all levels can be coupled with the use of a statistical model

In subsection 1.2.4 the problems are addressed that are involved in this process. Overcoming all of these
problems for every step in the model train can easily embody multiple theses. As is explained in section 1.3
this thesis will only focus on the step in which local storm conditions are coupled to actual damage. The sets of
variables encircled in green are therefore the relevant ones for the present study. One thing that becomes
clear from section 0 is that the more observations are available the better; this is in general true for all
statistical approaches. Although storms like Hurricane Sandy are exceptional, one storm can provide multiple
observations on the smallest spatial scale level. This can best be explained on the basis of Figure 3-7.

Figure 3-7 - Two comparable houses are subject to different (maximal) hazard intensities during the same storm

In the left part of the figure a house is shown during a storm, situated at location A. A comparable house,
situated at location B, is shown in the right part during the same storm. The local storm conditions for the
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same storm differ due to geographical and geospatial variations in the impacted area. This is not only the case
for these two houses, but for every building in the area. For a densely populated area as New York City, and
the Rockaway Peninsula as part of it, this can give thousands of damage observations. The good part is that the
damage caused by Sandy has been surveyed really thoroughly and for almost every house in the area a
damage observation is available, both physical and monetary, although the latter was not available for present
study; see Chapter 2. If it would be possible to couple this information with local storm conditions from
hurricane Sandy model simulations, a direct relationship can be established between (simulated) storm and
(observed) damage. With this method not only inundation depth can be coupled to the corresponding
damages; the dependency of damage to indicators like wave attack, flow velocity and scour depth can be
established as well. In analogy to the example with dice: the more one knows the more certain a prediction
becomes. By just establishing the relationships and analysing them, the added value of specific indicators can
be examined. Moreover, not only indicators indicating the severity of the hazards can be used as predictor.
Additionally, other variables, indicating the vulnerability of buildings and the amount of value at risk, can be
added as well.

The flow chart in Figure 3-8 is an example of a potential structure. The overall configuration is based on
knowledge of what happens during a storm and the damaging factors. Considering the physical damage, the
forcing (destructive power of the hazards) and resistance (strength of the properties at risk) determine what
the structural damage to a building is. Considering monetary damage, the physical damage to the structure is
obviously important; whether a building collapses or not makes for instance a big difference. However, even
without large structural damage, monetary damage to walls and contents due to inundation can still be
substantial. Therefore a direct link with the local hazard characteristics is added as well. Additionally, the value
of the property at risk becomes important too when the monetary consequences of a hazardous event are of
interest.

Building Type
variables

Constructural

XBeach - local storm
characteristics Functional

Wave attack

Inundation depth ( # households

U

A

Velocities

Monetary %[ I :> *Fully probabilistic
Damage - *Use for predictions

Figure 3-8 - Schematic representation of some damage indicators with potential and how they relate to eachoter; Note: this is an
example and can differ from site to site
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3.1.2.3. Indicating Damage

Which indicators should be added depends on the data that are available for the study site. Information about
the construction type for instance can be useful; a house built of masonry is probably stronger than a house
built of wood. A flat building containing multiple households can probably withstand more severe storms than
a single-family house. This kind of information can be used to make a better prediction for physical or
structural damage. Again, the added value can be examined. For value at risk indicators other data might be
interesting. A flooded building containing high value contents will have larger corresponding damages than an
empty building. Information like household income, functionality of the building and ground floor surface
might be useful indicators. Hereby it should be noted that indicators like household income are often sensitive
to privacy issues and are therefore not always available. The same holds for data on monetary damage.

In the Multi-variate flood damage assessment of Merz et al. (2013) a correlation analysis has been carried out
for a dataset of more than 1000 records of direct damage to residential buildings in Germany, mostly caused
by river floods. The Pearson correlation coefficients between 28 potential predictors (damage indicators) and
the loss ratio (rloss) have been established and are shown in Figure 3-9, where blue dots stand for a significant
correlation.
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Figure 3-9 - Pearson correlation of the 29 variables (28 candidate damage predictors and loss ratio); significant correlation (1%
significance level) is marked by a dot (source: (Merz, Kreibich, and Lall 2013))

A description of the abbreviations can be found in Appendix B. Some conclusions are stated here, which can be
used as a starting point:

e The loss ratio (rloss) mainly depends on flood impact predictors where first the water depth (wst) and
secondly contamination indicator (con) appear to be the most important ones;

e Early warning/emergency measures appear to be important together with building characteristics,
where correlations with the loss ratio are high as well;

e  Within the socio-economic status predictors, income and household size show a high correlation with
the loss ratio;
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e Mutual dependencies between the flood impact predictions (hydraulic and hydrologic aspects) are
high.

The number of variables that can be added (more complexity) depends on the number of observations and
how the variables mutually relate. This is more extensively elaborated in the next section. Moreover, it should
be noted that predictions can only be made within the range of the data that is used for training the model. If
a different storm causes much larger local storm conditions near a different type of house than has been used
to establish the relationships, a good prediction will not be possible to make3°. To overcome this problem it is
recommended to use data from different areas and different storms for the establishments of the
relationships. This has been done in the multi-variate flood damage assessment of Merz et al., but not for the
proof of concept in this master thesis. Only observations of the Rockaway-Sandy case study are used for the
training, which limits the range of applicability but still provides a solid base for demonstrating the concept.

3.1.3. Bayesian Belief Networks
From subsection 3.1.2 it becomes clear that with the use of statistical tools it is possible to look at the model
train of subsection 3.1.1 from a probabilistic perspective. Especially for the coupling of local storm
characteristics with damage -for which a nice set of observations can be created relatively easy- there are
opportunities, but how to do this? Creating joint PDF’'s or PMF’s for two dependant variables is not difficult,
but what if more variables are involved in a network comparable to the flow chart of Figure 3-8?

To establish the dependency relationships between the variables one can make use of several types of
statistical models. For this thesis Bayesian Belief Networks (BBN’s) are used, but it is not proven that other
methods, like Neural Networks, would do worse or better. Bayesian Belief Network (BBN or short: Bayesian
net), forming part of the directed acyclic graphical model family, is a probabilistic model, which represents a
set of random variables and the mutual conditional dependencies based on data via directed acyclic graphs.
The principle is based on the Bayes’ rule, which relates the odds of an observant event, here called Oj, to a to
be predicted event Fi (from Forecast). The odds of event Fi can be expresses, both before (prior to) and after
(posterior to) conditioning on event Oj or another (set of) observation(s). For events O; and F; the Bayes rule
formulation is gives as follows:

p(F:10;) = p(0;|F,)p(F)/p(0))

Where p(Fi|0;) is the updated conditional probability of a forecast, Fi, given a set of observation (prior
knowledge), O;. A number of good examples can be found on the internet3! and in textbooks®?, which explain
and demonstrate the principles in more detail. A brief introduction to the principle is given below.

For this thesis, the Netica software package from Norsys® is used to construct and work with the BBN’s.
Constructing a BBN model consists roughly of two phases:

1) Determining the network structure;
2) Training of the network.

The first phase implies determining relevant variables, which are involved in a certain process, and connecting
these variables with arrows, indicating the mutual conditional dependencies. To make this more tangible the

30 It must be said that within Netica the prediction goes to complete uncertainty if the entry is out the range of applicability,
which is a good feature. This is in more detail elaborated in paragraph 4.3.1.3.

31 For instance: http://people.cs.pitt.edu/~milos/courses/cs2001/cs2001-2.pdf and

http://artint.info/html/Artint_148.html

32 For instance: ‘The Theory that would not Die’ by Sharon Bertsch McGrayne and ‘Bayesian Networks and Decision Graphs’
by Finn V. Jensen and Thomas D. Nielsen

33 https://www.norsys.com/netica.html
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example of the three dice is used again. The number of eyes thrown for each dice are variables (in Netica
variables are called nodes) and the sum of the three dice is another one, see Figure 3-10.

Building the network Training the network
Dice 1 dice_1
T 167 1 166
2 167 2 168
3 167 3 166
4 167 -
5 167 Sum of Dices g 123 sum_dices
6 167 3 ggg 6 167 3 065
: 4 154
5 625 Sy 5 289
& 5 625 6 468
Dice 2 7 6.25 dice_2 7 6.92
1 167 8 625 1 165 8 961
9. 67 9 625 2 167 9 114
3 167 | 10 625 3 165 |10 123
4 167 ™ 11 625 4 169 ™ 11 123
5 167 12 625 5 166 12 114
68 167 13 625 6 168 13 961
14 6.25 14 692
15 625 S 15 468
: 16 6.25 - 16 289
Dice 3 17 625 dice_3 17 155
; ]g; 18 6.25 1 166 18 066
, 2 166
3 467 3 174 SOSES
4 167 4 166
5 167 5 165
6 167 6 166
35+17

Figure 3-10 - Left: non-trained net of the dice example; right: trained net

The arrows are all directed from the dice (parent nodes) to the variable ‘sum of dices’ (child node), since the
sum depends on the number of eyes that have been thrown with the three dice. This example has discrete
states, which Netica is capable of handling well. Continues nodes on the contrary, Netica is not capable to cope
with, but discretized continuous variables (in bins) does the trick3*. This is amongst others important for the
continues local storm conditions like inundation depth ranging from 0 to several meters and can be discretised
by using a bin size of for instance 1m. Since Netica only allows using discrete nodes, the conditional probability
functions have become CPT’s.

The training phase consists of ‘feeding’ the network with training data. These data contain observations, either
obtained from surveys or model simulations. When trained well, every node in the network has an
unconditioned marginal PMF (possible values/states and corresponding probabilities). For the example of the
three dice the trained situation is shown in Figure 3-10 on the right side; trained on a set of 10,000
observations® created with Matlab’s random function.

Since variables can be mutually dependent, the distribution of a certain variable will change when the
value/state of a related variable is known, e.g. the number of eyes on dice 1 is 6; see the result in Figure 3-11.
On the right side of Figure 3-11 the opposite of the left side has been done. Now the outcome (sum of the eyes
on the dice) is known. The CPT’s of the dice show what Bayes things (has learned) the number of eyes on the
dice would probably have been given the fact that the result (sum of the dice) was 10. This means that Netica
is also capable of giving predictions upstream (in the opposite direction of the arrows).

34 Other software packages are developed that can handle continues variables. One of these packages is Uninet (TU Delft
2008). Unfortunately, Uninet is not capable of working with non-numerical nodes with states like ‘affected’, ‘minor’, ‘major’
and ‘destroyed’, which is a great disadvantage for present study.

35 Note: due to a lack of anything better, the results of (physics-based) model simulations, which are used as training data
for the statistical model, are called ‘observations’ as well, where they have of course not been observed in reality.
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Figure 3-11 - Example of the three dice; left: conditioned on one of the dice and right: conditioned on the sum of the dice.

It should be noted that in the left part of Figure 3-11 Netica still gives a chance of occurrence for the sum of
dice being 1, which is of course not possible. Moreover, the marginal PMF’s in Netica of Figure 1-11 are not
100% the same as the PMF’s of the data. This is because the PMF’s are not directly extracted from a database,
but calculated with use of the established joint distributions (Joint PMF’s) (Norsys Software Corp. 1997). This
makes the BBN much faster, but the outcome is not one on one with reality anymore; Netica is a model and
thus the outcome is an approximation. This is also the reason for the little differences between the dice,
considering the probability of the predictions, together with the fact that there are small differences within the
training data as well. Nonetheless, it can be seen that Bayesian Nets work great for dice.

Now we want to know how well it works for predicting damage. Finding a starting point for the overall
structure of the BBN is not difficult. As a matter of fact, it should look pretty much the same as the flow chart
in Figure 3-8. On the contrary, optimizing the structure is a difficult and time consuming job. Some structure
characteristics are not always easy to determine where they can make a large difference. From reference
studies on the prediction of dune erosion impact (Den Heijer et al. 2011) and the prediction and assimilation of
surf-zone processes (Plant and Holland 2011), which are elaborated in more detail in Appendix H, some
valuable insights can be gained:

e  For picking the right indicators and establishing the right relations, a lot of process and system
knowledge is required (or life becomes not so easy);

e Bayesian networks do not perform well outside the ranges of the training data;

e The more nodes and the more states (bins) per node are added, the more training data are required;
see section 1.2.1 as well.

e The more arrows or links are added, the more training data are required;

e Which nodes should be coupled by an arrow is not always clear, which can make optimization a time
consuming job.

Besides insight in the limitations these papers also show that usage of BBNs can lead to powerful tools and are
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very well applicable in the field of coastal engineering. In both studies the statistical BBN model appeared to
be well capable of reproducing the physical patterns with prediction skills in the order of 0.7 to 0.9. Moreover,
the uncertainty is incorporated really well in the prediction and the models run relatively fast.

3.2. Implementation

The concepts of section 3 have been applied to the Rockaway study site described in chapter 2. This section
will elaborate on the implementation of all steps and briefly describe all elements.

3.2.1. Overall model structure

As has been concluded in section 3.1 the final structure will probably differ from site to site, since it highly
depends on what kind of information is available. For the propagation of the storm four different models are
used: Delft3D (twice), D-Flow FM and XBeach. For the largest spatial scale level the open source model
software package Delft3D (including SWAN)3 is used, which embodies larger parts of the East Coast and
includes the physical processes wind, wave and surge. One spatial scale level lower, the New York Bight is
modelled in Delft3D again for the propagation of waves (but also including the processes surge and wind again)
and D-Flow Flexible Mesh (D-Flow FM)¥ for the surge (also including wind). For the last spatial scale step the
XBeach software package is used for the Rockaway peninsula, in which the process wind has been turned off
and morphology turned on next to the processes wave and tide.

The Delft3D and D-Flow FM models were already set up for this area and calibrated for Sandy beforehand. The
D-flow FM model gives better storm surge results in the Jamaica Bay, but has not yet been coupled to SWAN.
This is why for the wave propagation the Delft3D model is used on that same scale level. An overall flow chart
of the different elements is given in Figure 3-12.

Meteorological data - Geographical data j BBN structure:
Geographical data io

« Spatial orientation - Arrows
* Damage

Netica

Bayesian Network
PostgreSQL Y

database

(object level) Matlab

Statistical analyses

QuantumGISs

Spatial visualisation

Figure 3-12 — Flow Chart: model structure and flow of information

Since coupling of all information is quite data extensive an SQL database is created with use of PostgreSQL3.

Next to all the local storm conditions, simulated from XBeach, also other types of data are stored in the

36 http://oss.deltares.nl/web/delft3d/
37 http://oss.deltares.nl/web/delft3d/d-flow-flexible-mesh
38 http://www.postgresgl.org/
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database, knowing building polygons, building height, damage observations, information on household income,
etc. With the use of the PostgreSQL’s extension PostGIS*® it becomes easy to join all different datasets based
on geospatial querying; see Appendix A for the coupling of data based on geospatial information. Moreover,
PostGIS gives the possibility to make a direct connection between the SQL database and QuantumGlIS (short:
QGIS)* which is an open source alternative for the ArcGIS software packages. QGIS makes it easy to spatially
visualize predictions, of which Figure 2-4 is an example.

With the use of Netica’s Java and Python APIs in combination with Python and Matlab a connection between
Netica and the SQL database has been established which makes it possible to train the BBN fairly easily. And in
the opposite direction: storing predictions extracted from Netica into the database again, which then can be
visualized spatially again with the use of QGIS. By storing all information in one directory overview is
guaranteed.

3.2.1.1.Area of Application
The area that has been described in Chapter 2 embodies the whole Rockaway Peninsula. However, for the
implementation the western part of the Rockaway Peninsula has not been included within the area of
application. The following reasoning lies at the root of this decision:

1) PLUTO data are not available on the object level for this area;

2) A huge amount of buildings was destroyed by the electrical fire, of which the physics have not been
taken into account in present study*;

3) Computational time for the XBeach runs would double where there wouldn’t be twice as much
damage observations. This is because the western part of the Rockaway Peninsula is mostly rural.

In Figure 3-13 the boundaries of the area of application are shown. Within this area almost 7800 buildings can
be found of which 24% are garages. Of the other 76%, 5300 buildings contain at least one residential unit.
These statistics are based on the PLUTO data.

Legend

Area of Application
& Google Hybrid

Figure 3-13 - Area of Application

39 http://postgis.net/

40 http://www.qgis.org/en/site/

41 Electrical fires seem to be significant for the total amount of damage. It is therefore recommended to study the driving
forces for these phenomena in more detail.
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3.2.2. Describing the elements

3.2.2.1.Netica
The most important element (considering the purpose of present thesis) is the Netica part, which includes the
Bayesian Belief Networks. More than one BBN structure has been tested, of which the different structures are
elaborated in section 3.3. The result of the performed analyses can be found in chapter 0. The structure of
Figure 3-14 forms a starting point for more comprehensive Bayesian nets.

Maximum
inundation
depth
Maximum
significant

wave height § ‘ Physical |
[ W\ | damage

Maximum £
water
velocity

. Maximum
= scour depth

Figure 3-14 - Local hazard indicator nodes coupled to the damage node. The yellow arrows can be added to include the mutual
dependencies between the local hazard indicators

Storm characteristics indicating the hazards on the building level are coupled with black arrows to the results
of the ImageCat damage survey with the four categories: “Affected”, “Minor damage”, “major Damage” and
“destroyed”. The local storm conditions are not mutually independent and therefore orange arrows are added
between these nodes. These connections are based on knowledge about the underlying physical processes.
First of all, wave height is bounded by water depth and therefore inundation depth. Secondly, both inundation
depth and wave height influence the flow velocity, which is a combination of stream velocity and orbital
motions. Third, bed erosion (which is called scour around obstacles like buildings) is influenced by flow velocity
and wave action stirring up the sediment. One possible arrow is absent, between inundation depth and scour
depth, since it is assumed that the corresponding dependency is only indirect via significant wave height and
flow velocity. The way these indicators have been determined from the XBeach simulations is discussed in the

next subsection.

The number of bins is also a variable. More bins per node will yield more detail, but increases the required
amount of observations. This has been elaborated in previous chapters as well. The effects of the number of
bins on the validation error and calibration error are analysed as well and the results can be found in
paragraph 4.3.1.3 of the results.

To the simple structure of Figure 3-14 more variables are added indicating the type of the building, which can
be seen in the schematization of Figure 3-15. The added value of these variables is discussed in the results in

Subsection 4.3.2. It should be noted that the damage node is specifically named “physical”. Monetary damage
could have been included as well if that data was available, but that would probably ask for another

configuration as for instance can be seen in Figure 3-8.
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Figure 3-15 - Local hazard indicator nodes coupled to the damage node. The yellow arrows can be added to include the
mutual dependencies between the local hazard indicators. Additionally, the building type indicators are shown on the
right side, connected to the damage node with blue arrows.

3.2.2.2.XBeach
To determine the local storm conditions an XBeach model has been set up for the area of application. The set
up and all model inputs are extensively elaborated in Appendix C. An overall view and the most important
assumptions are given here.

o Bathymetrical input - final configuration
4496 — 10

/
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4494~
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| 1 | 1 | 1
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4489

Figure 3-16 - Bathymetry input for the XBeach Model (elevation in m ref. to NAVD88)

Impact Modelling of Hurricane Sandy on the Rockaways I 63



In Figure 3-16 the final topo-bathymetry input is plotted, which is composed of LIDAR data from three different
surveys performed by USACE and bathymetrical data from the Coastal Relief Model (CRM)*. The model
domain is almost 9 by 4 km? large and the grid size varies between 25 by 25 m? at the offshore boundary and
at minimum 3 by 3 m? in the area of interest near buildings. This implies 711 by 2403 grid cells in total, which
can be considered as a very large XBeach model. Running one Linux simulation with 32 cpu’s takes about three
days. Multiple things have been done to decrease the simulation time, which includes the usage of a
morphological factor of 10 and fairly large wave bins of 20 degrees; see Appendix C.

The grid size onshore of 3 by 3 m? is the result of computational limitations: a smaller grid size would be
unfeasible due to a corresponding increase of the computational time. A larger grid size is assumed to have
negative effects on the amount of detail captured. The latter is studied by comparing the result to results of
similar runs with 5 by 5 m? and 9 by 9 m? grid cell sizes onshore. More detail is given in section 3.3 and the
results are discussed in chapter 0. A zoomed view of the bathymetry is shown in Figure 3-17.

Pre-Sandy Lidar - ground level elevation (m above NAVD88)

40.5666

40.5664

40.5662

40.566

--> Northing (deg. NAD83)

40.5658

40.5656

-73.8715 -73.871 -73.8705 -73.87 -73.8695 -73.869
--> Easting (deg. NAD83)

Figure 3-17 - Zoomed view of the topo-bathymetry input file with building polygons (thin black lines) and an 10m-offset of these
polygons (thick black line)

On top of the bathymetry the building polygons are plotted, which are used to make a seamless transitions
between the different data layers and to determine which cells lay within a building and therefore have to be
non-erodible during the simulation. By offsetting the building polygons with 10 m a buffer zone is created. The
indices of the cells lying within that buffer zone are assigned to that specific building. These cells are used to
determine the local hazard indicators after the simulation has finished. Results from chapter 0 show that there
is scope for improvement on this part. The four hazards “inundation depth”, “wave attack”, “flow velocity” and
“scour depth” are represented in the BBN’s by indicators. For the determination of the four hazard indicators,
extraction formulations have been used. Inundation Depth is assumed to be the most important one and for
that indicator more than one formulation has been tried of which the results in relation to the damage is
compared. These formulations are given in paragraph 3.3.2; here formulations of the other three indicators
are given.

42 http://www.ngdc.noaa.gov/mgg/coastal/coastal.html
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To end up with one indicator value per building per storm event, aggregation in time and space (over the cells)
is necessary. The following formulations for wave attack, scour depth and flow velocity have been used, where
cursive text corresponds to spatial aggregation operations and underlined to temporal aggregation operations:

e  Wave attack: max(max( Hs )), the absolute maximum of the local significant wave height during the
storm. The cell for which this is maximal is taken.

e Scour depth: max(max( heo— hb)), the absolute maximum of the difference between initial bed level
and bed level during the storm. The cell for which this is maximal is taken.

e Flow velocity: max(max( ((Umean,30min)?+ (Vmean,30min))%>)), the maximum of the half hourly mean
velocity vector. The cell for which this is maximal is taken.

With:  hyo = initial bed level (from the LIDAR data)
hb = updated bed level
Hs = significant wave height
Umean,30min = the 30min mean flow velocity in x-direction
Vmean,30min = the 30min mean flow velocity in y-direction

The flow velocity is based on means instead of maxima, because it is not said that during the maximum of the
velocity in y-direction (vmax) the velocity in x-direction (umax) is maximum as well. It should be noted that other
formulations of these variables might work as well, maybe even better. However, for delivering a proof of
concept it is assumed to be of minor importance here. Scour depth can be considered as a strange indicator,
since 1) in the post-Sandy data hardly any scour has been observed in the urban areas (pavements and
vegetation prevent this from happening); 2) sedimentation (overwash deposits) was dominant over erosion
onshore. However, bed level changes are caused by a combination of inundation, waves and velocity, which
are considered the most important indicators. Therefore, scour depth (or bed level change) might be an
indicator with potential. Moreover, for other case studies scour can play a role in the stability of buildings,
which makes it interesting to research its added value.

Within the area of application (area of interest in Figure 3-18) more than 7800 buildings are situated of which
a bit more than 5300 are residential and overlap with the other datasets, knowing PLUTO and ImageCat. The
two areas on the side of the domain are shadow zones. Since the normative wave direction is West-northwest

(see Figure 2-17), the shadow zone at the east side is a bit larger.

Figure 3-18 - The area of interest (or area of application) and shadow zones within the XBeach model domain.
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The boundary conditions, both wave and surge are extracted from Delft3D and D-Flow FM respectively. Both
models are briefly elaborated in the next subsection. At the bay side wave conditions are neglected, because
the bay is sheltered by the Rockaway Peninsula. In Figure 3-19 the water levels, significant wave height and
significant wave period are graphed in time for Hurricane Sandy.
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Figure 3-19 - XBeach boundary conditions: tide, wave height and wave period; red for bay side and blue for the ocean side.

The water levels have been predicted fairly well compared to temporarily installed water level gauges and
records of offshore buoys. These gauges predicted slightly lower water levels during the peak (order of 10-30
cm) than D-Flow-FM does at the offshore boundary. The significant wave height and wave period have both
been corrected with scaling factors obtained from a comparison between observations of Buoy 44065 (see
section 2.2), which is located several kilometres out of the coast, and observations of the Delft3D simulation.
This is also discussed in Appendix D.
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3.2.2.3.Delft3D and D-Flow Flexible Mesh

Delft3D - US East Coast

Figure 3-20 - Bathymetry input of Delft3D - US East Coast model

The Delft3D US East Coast model is set up by Maarten van Ormondt (Deltares) and no documentation is yet
published. It ranges from Nova Scotia (Canada) to South Carolina and it has a minimum grid size of
approximately 5.5 by 5.5 km?. The SWAN wave grid is a factor two courser. The bathymetry is coming from the
Coastal Relief Model and the boundary conditions for Hurricane Sandy are:

e Tidal information: amplitudes and phases of 13 tidal components from TPXO7.2 dataset*? for 26
boundary locations;

e Wave conditions: No wave boundaries, so all waves are internally created;

e  Wind: NOAA’s North American Meso-scale Forecast System (NAM).

Results of model simulations have been compared to observations of multiple buoys located within the model
domain and it can be concluded that the model performs fairly well. See Appendix E for more detail.
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Figure 3-21 - Bathymetry input of Delft3D — New York Bight model

43 https://www.esr.org/polar_tide_models/Model_TPXO71.html
— —
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The Delft3D New York Bight model is developed by Deltares and Royal HaskoningDHV and is not documented
either. It ranges from Long Branch, NJ to the state of Rhode Island and has a minimum grid size of 500 by 500
m?, which is thus 10 times finer than the US East Coast model. The SWAN wave grid is a factor two courser
again. The bathymetry is coming from the NGDC Coastal Relief Model in combination with Shuttle Radar
Topography Mission (SRTM)* data and the boundary conditions for Hurricane Sandy are:

e Tidal information: nested in the Delft3D — US East Coast model;
e Wave conditions: nested in the Delft3D — US East Coast model;
e  Wind: NOAA’s North American Meso-scale Forecast System (NAM).

Model simulations have been compared to observations of buoys located within the model domain and it can
be concluded that the model underestimates the wave conditions quite significantly; see Appendix E.
Unfortunately, there have no particular reasons been found yet for this underestimation. Measures to
compensate for this have been preferred over model optimization, since the latter has potential of being very
time consuming. See Appendix D.5 for more detail.

D-Flow Flexible Mesh — New York Bight
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Figure 3-22 - Bathymetry input of D-Flow FM — New York Bight model.

The D-Flow FM - New York Bight model is developed in 2013 by Deltares and Royal HaskoningDHV as a better
alternative for the Delft3D —New York Bight model (Tuinhof 2013). It ranges from Long Branch, NJ to the state
of Rhode Island as well, but the southern and eastern boundaries are curved and angled. Since D-Flow FM
works with a flexible mesh grid, size and form depend on water depth and hydraulic configurations. A zoomed
view of the grid in the Jamaica Bay is shown in Figure 3-23. The bathymetry is coming from the NGDC Coastal
Relief Model in combination with Shuttle Radar Topography Mission (SRTM).

44 http://srtm.csi.cgiar.org/
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Figure 3-23 - Grid configuration in the Jamaica Bay and around the Rockaway Peninsula.

The boundary conditions for Hurricane Sandy are based on:

e Tidal information: nested in the Delft3D — US East Coast model;
e Wave conditions: nested in the Delft3D — US East Coast model;
e  Wind: NOAA’s North American Meso-scale Forecast System (NAM).

Model simulations have been compared to observations of multiple buoys located within the model domain
and it can be concluded that the model performs adequately. For more detail see the report ‘Modeling New
York in D-Flow FM’ by Taco Tuinhof*® and Appendix F. Moreover, the master input files of the two Delft3D and
D-Flow FM model can be found in Appendix E.

3.3. Scenarios

3.3.1. XBeach Runs
As is stated in section 3.2 three XBeach runs have been executed with three different grid resolutions and
corresponding cell sizes of 3x3, 5x5 and 9x9 m?2. This is in order to study the sensitivity of the damage
predictions to model resolution. These resolutions have been chosen, because of the following reasons:

1) 3x3 m?is considered the smallest grid cell size, since a smaller grid size would be infeasible due to a
corresponding increase of the computational time.

2) In Figure 3-24 the Cumulative Distribution Function (CDF) is given for a length indicator (square root
of the ground floor area) of all residential buildings within the domain. The grid cell size should be at
least smaller than the majority of the buildings in order to extract information with detail on the
object level. 9x9 m? is considered the largest grid cell size for which this is still true.

3) 5x5 m?is used for the third run, where the length scale ratios 3/5 and 5/9 are pretty much equal.

45 http://kennisonline.deltares.nl/3/m/search/products.html?qtype=1&qg=tuinhof
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Figure 3-24 - Cumulative distribution function of the building length indicator (blue), which is the square root of the ground floor area;
9m is marked in green and the 10%- and 50%-quintiles in red.

The runs are compared to observations on hydro- and morphodynamics and on how well the extracted local
storm characteristics can be used as indicators for damage predictions with use of the Bayesian Belief Network.

3.3.2. Local Hazard indicators-Damage Relations

Depth-Damage
Since the depth-damage relation is assumed to be the most important one, these are analysed more
extensively in this thesis. Inundation depth is said to be the difference between the water level and the ground
elevation. Again, to end up with one value per building per storm aggregation in time and space (nearby cells)
is necessary. The formulations for the extraction of the other hazard indicators all take the maximum in time
and space, except for flow velocity. For inundation depth more options are considered, like (half-hourly) mean
or minima. Three axis of freedom can be distinguished:

Temporal aggregation: absolute maximum or maximum of 30minute-means;

2. Spatial aggregation: minimum, mean or maximum of surrounding cells;

3. Order: subtracting (bed level from water level) before aggregating (in space and time) or the other
way around.

Not all possible combinations are assumed to have potential. The following eight formulations are compared,
where cursive text corresponds to spatial (over the cells) operations and underlined to temporal (over time)
operations:

Table 3-1 - Eight different extraction formulations for the inundation depth indicator

# Order (first) Temporal aggr. Spatial aggr. Formulation

1. Aggregate Max Max Max( max( hs) ) —Min( hyo )

2. Aggregate Max Mean Mean( max( hs) ) —Min( hyo )

3. Aggregate Max Min Min( max( hs) ) — Min( hpo )

4. Subtract Max Max Max( max( hs—hpo) )

5. Aggregate Max of 30minute-mean Max Max( max( hsmean,30min) ) = Min( hgo )
6. Aggregate Max of 30minute-mean Mean Mean( max( hsmean,30min) ) — Min( hyo )
7. Aggregate Max of 30minute-mean Min Min( max( hsmean,zomin) ) — Min( hpo )
8. Subtract Max of 30minute-mean Max Max( max( hs mean,30min—hbo) )
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In addition to this, the inundation depths gained from the XBeach simulations are compared to inundation
depth establishment based on the bathtub concept, which assumes one single water level for the whole area.
Both are compared in relation to the damages as well. In analogy with the water level variations, also the
ground elevation levels can be chosen differently. According to the concept the ground elevation levels are
taken from the bathymetrical file and thus from the LIDAR data, but it is also possible to use the ground
elevation levels from the Buildings dataset; see section 2.3. In combination with the water level options, four
alternatives to determine inundation depth are compared in relation to damage:

1) Water levels from XBeach and ground elevation levels based on LIDAR;

2) Water levels from bathtub concept and ground elevation levels based on LIDAR;

3) Water levels from XBeach and ground elevation levels based on Building dataset;

4) Water levels from bathtub concept and ground elevation levels based on Building dataset.

Wave Attack, Flow Velocity and Scour Depth
Next to the depth-damage relations also the wave-damage, velocity-damage and scour-damage relations have
been studied. The correlations with damage are given in section 4.2 and the corresponding added value to the
prediction of damage is discussed in ‘Coupling Storm Conditions to Damage’ (section 4.3.1). Moreover, the
differences of Bayesian nets with and without mutual connections between the local hazard indicators are
elaborated. This means with and without the orange arrows from Figure 3-8.

3.3.3. Indicators for building type and value at risk
The sensitivity of the damage observations and predictions to the following indicators is studied:

e Building height;

e Surface area of the ground floor;

e Tax base value (which is also based on the size of the building and lot area);
e Number of residential units in building;

e  Building class.

Most of these indicators speak for themselves; “building class” needs some additional explanation. The
classification is based on functional aspects. More than 150 different classification groups (in the PLUTO
dataset) are brought back to 5:

o A: One family dwellings;
e  B: Two family dwellings;
e C: Walk-up apartments;
e D:Elevator apartments;
e  Other.

In the case of multiple functionalities per building the one is used which has the largest share of surface area.
Detailed descriptions of the building type indicators and classes are given in appendix J.
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4, Results
4.1. XBeach

In this section the skill of XBeach and the extraction of local hazard indicators are elaborated. The
hydrodynamics and morphodynamics are compared to the observations and the differences are discussed
partly here but also in chapter 0. In this section some results are given for the 3x3m? run, as has been
described in section about implementation.

It must be said that the model is poorly calibrated and not validated at all. The 3x3m? run with scaled wave
boundary conditions gives far from best results. Considering the morphodynamics (see subsection 4.1.2) the
5x5m? run with non-scaled waves appeared to give better results when comparing to the observed erosion
and sedimentation. However, this conclusion has been drawn too late in the process and with a limited
amount of time the best shot had to be taken, which is presented here. A comparison on grid resolution in the
urban areas (3x3m?, 5x5m? and 9x9m?) is made in relation to the damage, which is elaborated in section 0.

4.1.1. Hydrodynamics

Surge

In Figure 4-1 the water levels are plotted together with the updated bathymetry, both in a top view and in
cross section. The three regimes collision, overwash and inundation can be distinguished. Approximately 2.5
hours before the tide peak (offshore) the beaches and berm have already been eroded heavily, as can be seen
in the cross section of the upper left panel. One hour later (10pm), the berm gets overtopped at multiple
places and the berm starts breaching. A little later after midnight, during the peak of the tide, larger part of the
area is flooded by the sea water. First the water comes from the ocean side and after the peak a gradient in
the opposite direction lets the water flow from the Jamaica Bay side into the domain. This can be explained by
the phase lag in surge between the offshore and bay side boundary; see Figure 3-19.
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Figure 4-1 - Snapshots of the simulated hazard propagation: Upper left panel: collision regime with heavy beach erosion; upper right
panel: overwash regime with high long waves penetrating into the urban area; lower left panel: inundation regime where almost the
whole peninsula is flooded; lower right panel: post-Sandy situation (note updated bed)

It should be noted that the inundation regime has only been reached at some locations, where at other
locations the beach and berm prevented this from happening. The cross-sectional plot in the lower right panel
shows the change in bed level for a location where the inundation regime was reached. According to the
XBeach run, three areas can be assigned as hotspots, where the inundation regime was reached and severe
flooding was at stake. These areas are encircled with red. If we compare this to the observations discussed in
paragraph 2.2.1.1 it can be concluded that the model predicts two of these hotspot locations well, knowing the
area in the middle and the western part of the domain. On the contrary, the eastern part did not show full
inundation in reality, where there was still a relative wide stretch of beach observed after the storm. Moreover,
hardly any sediment deposits were found inland at these spots and the boardwalk survived.

In Figure 4-2 the absolute maximum surge level for each grid cell is graphed, which includes tide and long
waves. The non-flooded areas are white. In the same figure, in the three lower panels, the surge levels are
given for the locations of the three high water marks within the domain. Comparing the peaks with the high
water marks an underestimation is found for locations 5, where for location 6 and 7 overestimation is at stake,
both in the order of 20-50cm. Thereby, it is assumed that the high water marks correspond to the highest
water levels excluding short waves, which are negligible at these locations. The latter holds according to Figure
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4-3 as well.

The underestimation of the storm tide at location 5 can be explained by the large white gap south of it
corresponding to a non-flooded area, which shelters that location from the ocean side. However, the area
corresponding to the white gap did flood in reality, which can be learned from the ImageCat damage dataset.
Comparing the ground elevation levels from the buildings dataset and LIDAR (see Figure 2-4 and Figure 3-16) it
can be concluded that this problem can be assigned to obstructing objects in the LIDAR data. The non-flooded
area contains a lot of vegetation (mainly trees), which seems to be problematic for the water flowing into that
area.

w10° ®Beach results - maximum storm tide including long waves (h) in meters (ref. to NAVDEE)
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Figure 4-2 - upper panel: Maximum simulated storm tide including long waves; lower panels: observed and simulated water levels at
location 4,5 and 6

The overestimation of the other two locations seems to be more in line with the rest of the domain. Although
~3.8 m water levels are high compared to the observed high water marks, they are still low compared to water
levels in larger part of the domain. Especially at the ocean side of the peninsula maximum surge levels of 4.5 to
5 m are no exception. Moreover, in the zoomed view of Figure 4-2 it can be seen that around buildings,
especially the higher ones, the maximum water levels rise to 6 m and even higher. These local peaks are
assumed to be caused by local instabilities due to steep bed level gradients.

Comparing the results with the observations, a structural overestimation of the water levels is likely. However,
it is hard to underpin this since 1) at the ocean side no high water marks are documented for verification and 2)
the assumption that the absolute maximum water level gives a good approximation for the high water marks
can be wrong. Nonetheless, a structural overestimation is not necessarily a big problem for delivering a proof
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of concept for present study. As long as all observations are overestimated to the same extend, Bayes might
be forgivable. On the contrary, the local peaks due to instabilities do form a problem, which is is discussed in
more detail in subsection 4.1.3.

Waves
In Figure 4-3 the absolute maximum significant wave height for each grid cell is graphed. It can be concluded
that the height of the waves decreases when they approach the coast. This is in line with expectation, since
wave height is limited by depth. The maximum significant wave heights are in the order of 2-3 m near the first
buildings, which is considered pretty severe. The waves rapidly decay between the buildings and wave height
becomes negligeble even within the first block from the beach.

w10° ®Beach results - maximum significant wave height (Hs) in meters
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Figure 4-3 — Maximum simulated significant wave height (Hs)

Since the maximum water levels are assumed to be overestimated by XBeach, the question can be asked
whether this can be explained by too high infragravity waves (long waves). The long wave heights are a direct
result of the offshore wave boundary conditions, which have been scaled to an offshore buoy; see paragraph
3.2.2.2. The scaling implies an increase of the significant wave height gained from the Delft3D/SWAN model by
a factor of 1.5, which is quite a lot. This might have been wrong, implying an overestimation. From the scatter
plots in Figure 4-4 it can be concluded that a 5x5m run with non-scaled wave conditions gives onshore lower
maximum storm tide levels and wave conditions than with scaled conditions. However, the differences are
minimal and the 5x5 m? non-scaled wave run still shows an overestimation compared to the observed (see
Appendix G). The onshore hydraulic sensitivity to offshore variability in significant wave height is thus not so
high. Moreover, It can be concluded that other reasons must be there as well for the overestimations of
onshore hydraulic storm characteristics, other than uncertainty in wave boundary conditions.
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Scatter plots : 5x5m2 Scaled Waves run vs 5x5m2 NON-Scaled Waves run
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Figure 4-4 - Scatter plots: 5x5m2 Scaled Waves run vs 5x5m2 NON-Scaled Waves run

Velocity

The magnitude of the absolute maximal occurred Lagrangian flow velocities during Hurricane Sandy have been
plotted in Figure 4-5. The lighter band in front of the coast corresponds to the surf zone and the high velocities
in that area can be assigned to alongshore water flow induced by the refracting waves. A lot of the wave
energy transforms into kinetic energy, which in the overwash and inundation regime results in flooding of the
streets. The street pattern is clearly visible and the wider the street, the higher the maximal velocities. In the
middle of the model domain maximal velocities of 4 m/s can be seen, which is quite high for urban areas. In
the western part of the domain in the non-flooded area (white gap in Figure 4-2) the water is blocked, which
limits the flow velocities around this area. It is therefore assumed that the velocities are underestimated at
these locations. On the bay site this is in analogy with the water levels, but on the ocean side the kinetic
energy of the waves has to go somewhere and transforms in potential energy again, piling up the water in the
streets. The blockage of the non-flooded area might therefore, locally, be an explanation for the assumed
overestimation of the water levels. In the other areas no such large blockage can be found, but local objects
like trees are the visible cause of smaller obstacles in the LIDAR data.
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Figure 4-5 - Maximum simulated absolute flow velocity (m/s) (Lagrangian flow)
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The direction of the maximal velocities during the time of occurrence varies, but is mainly offshore directed.
This can be explained by Figure 4-6 in which the time of occurrence is spatially shown. The darker orange
colors correspond to a time of occurrence after the offshore tide peak. At that time the berm has already
completely eroded away near breaches and forms no obstacle to the water anymore. After the offshore tide
peak the water gradient becomes negative and water flows from high (bay side) to low (ocean side), mainly
channelling through the streets. In the zoomed view of Figure 4-6 the lighter orange colors correspond to a
time of occurrence before the storm tide peak. This can be explained by the fact that these areas are sheltered
from bay side flooding mostly by buildings. The local (lower) maximal flow velocities are therefore caused by
incoming water from the ocean side in combination with wave celerity.
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Figure 4-6 - Time of occurrence of the maximum simulated flow velocity; The colors correspond to the timeline graphed below the map
and the offshore storm surge levels have been plotted as well to give a reference.

Last, it should be noted that the comparison between the 5x5m? runs with and without scaled wave boundary
conditions did give some differences in flow velocities; see Figure 4-4. This shows that a substantial part of the
additional wave energy in the scaled run is transformed into kinetic energy. Unfortunately, no flow velocity
observations have been documented which can support the calibration and validation process.

4.1.2. Morphodynamics
The purpose of including morphodynamics is first of all to better predict the hazard propagation in time.
Therefore, it is most important that the erosion and erosion rates of natural and manmade barriers (beach and
berm which reduce the hazard intensity behind it) are predicted in harmony with reality. If these barriers
erode too fast, the hazard intensity in the hinterland will be overestimated and vice versa. Secondly, scour
depth and sediment deposits in urban areas are of interest.
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Figure 4-7 - Morphological change. From left to right: initial bed levels, predicted post-Sandy bed levels, observed post-Sandy bed levels
and the difference between these two.

In Figure 4-7 maps of the post-Sandy bed level changes are given for the observations (second panel) and the
XBeach results (third panel) of the 3x3m run with scaled waves. In the first panel one can see the initial bed
levels and in the last panel the difference between predicted and observed bed level changes. The following
things can be concluded:

e At the beach and berm much more predicted erosion can be found than observed; see the large long
stretched blue band;

e The littoral zone shows a large sedimentation/erosion gradient at the place where LIDAR data
overlaps the CRM data;

e Ingeneral larger inland sediment deposits are predicted than observed.

In Figure 4-8 three areas have been zoomed into, which tell the story in more detail. At location one (western
part of the domain), the erosion at the beach is predicted fairly well. However, the erosion doesn’t stop near
the first buildings but continues into the streets of the first block. This is not in line with the observations.
More inland, in the middle of the peninsula, the influence of LIDAR differences is clearly visible: the pre-Sandy
LIDAR (XBeach input) still contains all the trees and other vegetation in this area and thus the XBeach output as
well, whereas in the Post-Sandy LIDAR these obstacles have been filtered out. The difference of these two
indicates therefore intense sedimentation, which is of course not true.

At location two, in the middle of the domain, XBeach overestimates the erosion at the beach and berm,
whereas inland sedimentation is overestimated. It is assumed that the latter is a direct result of the first,
because the erosion of the berm enables the inundation regime from happening. For location three similar
overestimation can be seen. However, here the differences between predicted and observed are even larger.
The beach in this area is at its widest and together with the larger groins less erosion is observed. Moreover,
the boardwalk here is mainly intact. On the contrary, XBeach doesn’t show less erosion than in the other parts,
which is hard to explain.
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Figure 4-8 - The same as Figure 4-7 but now zoomed views of three representative locations.

The overestimation of the beach erosion, especially in the eastern part, cannot only be explained by too severe
offshore storm conditions. Results of the 5x5 non-scaled wave run, which are graphed in Appendix G, show
much better agreement between predicted and observed beach and berm erosion. However, the
overestimation in the eastern part of the domain stays the same. The sudden transition of LIDAR to CRM data
in the littoral zone, which is at these specific areas visible, might give some explanations for this; see Figure 4-9.
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Figure 4-9 - Cross sectional plot of the initial bed level profile. The sudden jump in bed level due to CRM-LIDAR differences is encircled
inred.

The drop in bed level, encircled in red, is not natural for sandy beaches and is caused by the inaccuracy of the
CRM data. Therefore it is probable that the littoral zone in XBeach has less sand than in reality and more
sediment from the beaches is transported offshore to compensate for this, which implies an increase of the
erosion rate onshore. Hereby it should be said that even if the bathymetry is more veracious than it is right
now, than it would still be difficult to predict morphological changes correctly for this particular case study.
Sandy was a critical storm, breaching the berm at some places and at other places not. A small change in
offshore boundary conditions can therefore have a large effect on the morphological changes and the
accompanying consequences for the urban areas. This is in analogy with a threshold problem.
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scatter plot: predicted vs observed

Figure 4-10 - Scatter plot: predicted (vertical) versus
observed (horizontal) bed levels. The colors
correspond to the initial bed levels (in meters ref. to
NAVDSS)

Figure 4-10 holds a scatter plot of the
predicted and observed bed level changes.
The colors correspond to the initial bed
levels. It can be concluded that the
nearshore parts (-6m to Om) and the
beaches (Om to 2m) are predicted fairly
well and thus XBeach shows skill. The

observed ---> sedimentation

Initial bed level

erosion <---

predictions onshore are insufficient and in
general one could say that the higher the

initial bed level is, the worse the prediction
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erosion <— predicted —> sedimentation becomes. One explanation for this can be

found in the earlier mentioned differences
between pre- and post-Sandy LIDAR. Trees for instance will end up in the dark red zone, showing observed
erosion and negligible predicted erosion. Another explanation can be found in the fact that the cells just
outside the building polygons are not assigned as non-erodible cells. Building walls are not straight but a bit
blurred in the LIDAR data and therefore these erodible cells have higher initial bed levels. In XBeach heavy
erosion can be seen around especially higher buildings and the sediment is deposited in neighbouring cells.
This is shown in Figure 4-11.
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Figure 4-11 - Predicted bed level changes around a relative high building with corresponding cross section in which the initial bed level
and predicted post-Sandy bed level are plotted.

4.1.3. Local hazard indicators

The local hazard indicators “inundation depth”, “wave attack”, “flow velocity” and “scour depth” are extracted
from the XBeach results according to chapter 0. It is to be expected that overestimations of the onshore storm
characteristics also have their impact on the local hazard indicators. Nonetheless, as long as the over- or
underestimation is structural, buildings with major observed damage will probably still correspond to higher
indicator values than buildings with minor or no damage. To what extend this is the case is studied and is
elaborated in the next two sections. Here the spatial distributions and associated marginal probability mass
functions are given for the 3x3 m? run. Comparisons between different runs have been made, but only in
relation to the observed damage, which is discussed in section 4.2.
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Inundation Depth
Inundation depth indicators extracted from the XBeach results according to formulation 1 from Table 3-1 in
subsection 3.3.2 can be graphed spatially. An example is given in Figure 4-12.
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Figure 4-12 - Impression of the spatial distribution of the inundation depth indicator

Next to the above used formulation, seven other ways to determine the local inundation depth have been
defined and posited. To compare for the whole domain, the spatial distribution can be best illustrated by
interpolating the local conditions (one record per building) to the rest of the urban area of the domain. The
result is shown in Figure 4-13. Note that buildings surrounded with more free space will attribute to a larger
area of the collored map. The PMF’s are given in Figure 4-14.
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Figure 4-13 - Inundation depth indicators according to the 9 different extraction formulations

One general problem that can be observed is that the erosion around high buildings in XBeach (see subsection
4.1.2), which does not exist in reality, is taken normative for the inundation indicator; the dark red areas in the
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graphs correspond to buildings for which this is the case. By taking the spatial minimum of the water level (of
the surrounding cells) the results seem to be less sensitive to this problem than by taking the mean or
maximum. Moreover, starting with subtracting the ground elevation from the water level gives more realistic
results than starting with spatial and temporal aggregating. The latter can give unrealistic high inundation
depths (> 20 m for formulation 1 and 5). However, where differences are small it is hard to pick one based on
the above information. The depth damage relations, discussed in section 4.2, give more insight in the
functionality of the different formulations.
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Figure 4-14 - Marginal Probability Mass Functions of the inundation depth indicator according to the 9 different extraction formulations
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Figure 4-15 - Left: Spatial distribution of the wave attack indicator; right: marginal Probability Mass Function of the wave attack
indicator

The indicator “wave attack” is defined as the maximum occurred significant wave height in space and time.
The spatial distribution of maximum wave height appeared to be straightforward in subsection 4.1.3: the
waves are relatively high on the beach and quickly decay land inwards. Exactly the same can be observed for
the wave attack indicator; see Figure 4-15 for a similar spatial distribution as for the inundation depth.
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In Figure 4-16 three zoomed views of the spatial distribution of the wave attack indicator are plotted. Where
inundation depth showed an unrealistic positive correlation with building height, this does not seem to be the
case for significant wave height, which is good.
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Figure 4-16 - three Impressions of the spatial distribution of the wave attack indicator
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Figure 4-17 - Left: Spatial distribution of the flow velocity indicator; right: marginal Probability Mass Function of the flow velocity

indicator

In analogy with wave attack, the spatial distribution of the flow velocity indicator shows a fairly similar picture
as can be seen in Figure 4-17. Some streets are definitely subject to higher flow velocities than others. If this is
a correct representation of reality, is hard to say. There is definitely a lot of inaccuracy due to objects
obstructing the flow; see subsection 4.1.1. Velocity-damage relationships in section 4.2 give more insights on
this matter.
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Figure 4-18 - three Impressions of the spatial distribution of the flow velocity indicator
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Figure 4-19 - Left: Spatial distribution of the scour depth indicator; right: marginal Probability Mass Function of the scour depth
indicator

As is elaborated in subsection 4.1.2 observed scour depths around buildings are negligible, where
sedimentation was dominant and pavements or vegetation prevented scour from happening. Although streets
and gardens are not set to non-erodible in XBeach, sedimentation was still the main XBeach output on land;
see Figure 4-7. Nonetheless, over 15% of the buildings show a maximum occurred scour depth of at least 2
meter, which can be seen in Figure 4-19. This is again caused by the erosion around especially high buildings, in
analogy with the overestimations of the inundation depth. Therefore scour depth shows a high correlation
with building height; see Figure 4-20 and the Pearson correlations in the next section. This correlation has of
course no physical explanation but finds it origin in the way XBeach is set up and the extraction
method/formulation.
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Figure 4-20 - three Impressions of the spatial distribution of the scour depth indicator

4.1.4. Grid resolution
The other subsections in this section only consider the results of the run with a grid cell size of 3x3m? in the
urban areas. This subsection compares these results with hazard indicator values extracted from runs with cell
sizes of 5x5m? and 9x92. In Appendix G, visualisations of the XBeach output for these runs are given for water
levels, bed level changes, waves and flow velocity. In general it can be concluded that the big picture is pretty
much the same. More important are the effects on the final hazard indicators, which are elaborated here.

Except for the grid resolution, all other model properties were exactly the same during the XBeach runs.
Considering the extraction method for the local storm conditions, keeping all parameters the same gave the
following problem: more than 60% of the buildings were assigned as ‘non-flooded’ for the 9x9m? run. In
comparison to the 3x3m? run with only 14% non-flooded buildings, 60% is quite significant. The following can
give explanation: in the case of the 9x9m? in combination with a 10m-buffer zone only one or no cell at all falls
within the buffer for the majority of the buildings. Moreover, a lot of these ‘lonely’ cells appear to be non-
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flooded due to a high ground elevation level (influenced by noise of the building). To a lesser extent this is also
the case for the 5x5m? run. The 10m-buffer zone is thus too small, but what happens when a larger buffer
zone is taken? To find out, three comparisons are made between:

1) Local hazard indicators of the 3x3m?, 5x5m? and 9x9m? runs extracted with use of the same
10m buffer;

2) Local hazard indicators of the 3x3m?, 5x5m? and 9x9m? runs extracted with the use of three
different buffers, knowing 10, 18 and 30 meter respectively.

3) Local hazard indicators of the 3x3m? run for the earlier mentioned different buffer zone sizes
in order to say something about the effect of using a larger buffer size.

In Figure 4-21 the PMF’s of the four indicators are graphed for the three different runs with a 10m buffer for
the extraction. Remark the peaks at zero for the 9x9m? run, which reflects the large amount of ‘non-flooded’
buildings (over 60%).
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Figure 4-21 - Marginal PMF's of the four local hazard indicators for runs with grid cell sizes of 3x3, 5x5 and 9x9 m? and equal extraction

buffer areas

In the following graphs the buffer size is adjusted to the grid resolution. The corresponding non-flooded
percentages are given in Table 4-1, which are now almost all mutually equal. Still, the 3x3m? run shows less
non-flooded buildings, which is assumed to be caused by the fact that water will easier flow to sheltered areas

with finer grid resolutions.
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Table 4-1 - Percentage non non-flooded per run and buffer size related to the minimum grid cell size

Run Buffer Percentage
Size (m) Non-Flooded (%)
3x3m? run 10 14
5x5m? run 18 18
9x9m? run 30 18

The impact on the hazard indicators of larger buffers for courser grids can be seen in Figure 4-22, where
mutual differences between the runs are now smaller for inundation depth, wave attack and scour depth. Flow
velocity on the contrary (lower left panel) shows a significant shift to higher velocities for a courser grid and
related larger buffer zone. Whether this phenomenon can be assigned to the variability in grid resolution or
variability in size of the extraction buffer zone can be answered by comparing the results of Figure 4-22 and
Figure 4-23. In the latter the PMF’s are given of local hazard indicators for the 3x3m? run extracted with
different buffer zone sizes. The same shift can be observed and therefore it is concluded that an increased
buffer zone causes an increase in flow velocities. A logical explanation can be found in the fact that in the
middle of the street higher flow velocities are more likely to occur. This is in analogy with higher flow velocities
in the main channel of a river. The middle of the street falls easily within the buffer zone when the buffer
expands 30m from the building perimeter outlines and less easy with an expansion length of 10m.
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Figure 4-22 - Marginal PMF's of the four local hazard indicators for runs with grid cell sizes of 3x3, 5x5 and 9x9 m2 extracted with
different buffer sizes
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Figure 4-23 - Marginal PMF's of the four local hazard indicators extracted from the run with a grid cell size of 3x3 m2 for different
extraction buffer areas

Another thing that can be observed from Figure 4-23 is that the PMF’s seem to be fairly sensitive to the buffer
zone size. Whether this sensitivity also holds for the quality of damage predictions is elaborated in the next
section. Here it is concluded that the choice of extraction method and/or formulations can be very
determinative for the obtained distributions.

4.2. Damage Dependencies

In this section the local hazard indicators and other potential indicators are discussed in relation to the
physical damage from the ImageCat dataset. These relations are one-on-one, which means that simple
correlation, sensitivity formulations and BBN’s with only two nodes are sufficient enough to demonstrate the
mutual dependencies. In the next section (section 0) the real potential of Bayesian nets is elaborated by adding
more variables.

In analogy with the Muti-variate flood damage assessment (Merz, Kreibich, and Lall 2013) the Pearson
correlation have been determined between different indicators; see also chapter 0. The same thing has been
done for the present study as well, of which the results are shown in Figure 4-24.
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Figure 4-24 - Pearson correlations between potential indicators. Inundation Depth is according to formulation 8, which is
max( max( hs,mean,30min-hb0))

The Pearson correlation is expressed in the Pearson product-moment correlation coefficient, which is
formulated as:

cov(X,Y)  E(X — px)(Y — py)]

TxdTy Tx Ty

Pxy =

In the figure dark red stands for a strong positive correlation (--> +1.0) and dark blue for a strong negative
correlation (--> -1.0). A coefficient of 0 means no correlation at all. Some mutual dependencies are
straightforward; for instance building height is positively correlated with the ground surface area of a building.
In general, it can be seen that the building type indicators are strongly correlated with each other and the local
hazard indicators mutually as well. This is in line with expectations. On the contrary, the found correlation
between local hazard indicators and the observed ImageCat damages*® are, to put it lightly, counterintuitive.
The positive depth-damage correlation is weak and a negative damage correlation for wave attack and scour
depth are not to be expected. An explanation for this can be found in the fact that Pearson’s formulation
assumes a linear relationship between the indicators, which is not necessarily true for all combinations.

To give a more realistic picture of the damage relations, Figure 4-25 gives the probability of the damage
conditioned on A) the 10% lowest values of the specific variable and B) the 10% highest?’. The variables are the
same as in Figure 4-24. The marginal probability distribution is plotted as well in green in the upper left panel.

46 To calculate the Pearson correlation coefficients for the damages the qualitative description of the ImageCat dataset
(affected, minor, major and destroyed) have been substituted by quantitative values, knowing 1, 2, 3 and 4 respectively.
One should be careful with drawing conclusions on the results, but whether a correlation is positive or negative can be
concluded with sufficient confidence.

47 Note: the PMF’s are not based on output of a BBN, but directly established from all data.
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Additionally, Figure 4-26 shows the change of probability between the lower and higher conditions for the
different damage classes.
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Figure 4-25 - PMF's of Damage conditioned on different indicators with 1) the lowest 10% (blue); 2) the highest 10% (red). Left upper
panel: marginal PMF of damage.

One of the remarkable things that can be concluded from these figures is that for higher significant wave
height the chance of a building being “affected” increases significantly and the chance of “minor damage”
decreases. This indicates a decrease of risk, where one would expect the opposite. This can be explained by
geographical features of the peninsula. It can be seen in Figure 4-3 that waves are rapidly decaying between
the buildings and therefore the buildings with the highest wave attack are all found in the block closest to the
beach. In Figure 2-4 in subsection 2.1.1 it can be seen that these houses have been built on higher grounds.
Therefore, the inundation depth during Sandy was lower, which can also be seen in Figure 4-13. Studying the
relation to damage of one hydraulic variable without considering the influence of other properties can thus
give a distorted picture of reality. This is a direct result of spatial correlations within the domain.
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Figure 4-26 - Difference of probability between PMF's conditioned on either the 10% lowest values or 10% highest. Left: absolute
difference; right: relative difference on a logarithmic scale. Red means that the probability of the PMF conditioned on the 10% highest
values is higher and blue vice versa.
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Figure 4-27 - Simple Bayesian net with the inundation depth indicator as predictor for damage

For inundation depth the correlation with damage is positive, where the chance on ‘major damage’ and
‘destroyed’ increases when higher inundation depths are found within the XBeach results. The eight different
formulations for the inundation depth indicator are now considered in relation to the damage. Both the
Pearson correlation coefficient and the Log-Likelihood Ratio (LLR) test scores for the simple Bayesian net of
Figure 4-27 are given in Table 4-2, together with the mean and standard deviation of all candidate indicator
values. The LLR test is very much suitable to relatively compare predictions of competing models or model
configuration. In the test the log-likelihood of the prediction (in this case the CPT after conditioning on
“inundation depth”) is compared to the log-likelihood of the marginal probability, according to:

LLR; = log {p(Fil0))r,= 0,} = log {p(F)r,= o}

Here F is the forecast and O is the observed on which is conditioned. If the log-likelihood ratio is positive, the
model has predictive skill, but if the ratio is negative the prediction is worse than guessing based on the
marginal probability. By summing the LLR’s of all hindcast events the LLR test score can be determined. The
larger the score, the better the model performs. See Appendix |.2 for a more extensive elaboration of the LLR
ratio test concept.

Impact Modelling of Hurricane Sandy on the Rockaways I 91



Table 4-2 - Pearson correlation and log-likelihood ratio test scores for the indicator 'Inundation Depth' extracted from the XBeach

results according to eight different formulations

Mean water Mean Std Pearson LLR test score Relative to
level (m ref. depth correlation perfect check
NAVDS88)
Aggregate Max Max 5.25 2.38 1.94 -0.01 71.03 0.05
Aggregate Max Mean 4.37 1.59 0.88 0.08 73.97 0.05
Aggregate Max Min 3.99 1.23 0.73 0.14 90.48 0.06
Subtract Max Max - 1.21 0.75 0.06 76.63 0.05
Aggregate Max of Max 5.13
30min-mean 2.28 1.72 0.02 79.22 0.05
Aggregate Max of Mean 4.25
30min-mean 1.48 0.87 0.12 84.92 0.06
Aggregate Max of Min 3.87
30min-mean 1.13 0.71 0.21 98.74 0.07
Subtract Max of Max
30min-mean - 1.09 0.73 0.12 84.97 0.06

From Table 4-2 it can be concluded that formulation 7 scores best, which subtracts the minimum initial bed
level from the normative water level derived by taking the minimum in space and maximum of the half-hourly
mean in time. Moreover, the LLR-test scores are positive, which means that the Bayesian net shows some
prediction skill. However, the scores are only a bit larger than zero compared to the perfect check®®, which has
a score of 1480. This means that it performs barely better than randomly guessing from the marginal damage
PMF.

In subsection 4.1.3 it is stated that the more conservative formulations are better capable of filtering out the
inaccuracies due to the non-realistic erosion around buildings. In addition to this insight, it can be concluded
from Table 4-2 that de indicators based on these formulations also have a higher predictive capacity. The
inaccuracies are thus of influence. Moreover, the predicted mean water levels are relatively high compared to
the high water marks. This raises the question if the bathtub concept, having none of these inaccuracies at all,
would do better. By taking the mean of the high water marks (3.27m above NAVD88) as the bath tub water
level and subtracting the minimum bed levels extracted from XBeach the following results are found:

Table 4-3 - Pearson correlation and log-likelihood ratio test scores for the indicator 'Inundation Depth' based on the bath tub concept
with a constant water level of 3.27m above NAVDS88

method formulation Mean water Mean Std Pearson LLR-test score Relative to

level (m ref. depth depth correlation perfect check
NAVD88)

(B8 Bathtub hs,be — Min( hyo ) 3.27 0.69 0.62 0.46 299.62 0.20

The conclusions is that using one single water level for the whole domain works better than using water levels
extracted from the XBeach results. But is this because XBeach overestimates the water levels structurally or
because of a wrong prediction of the spatial variability? In the maximum water levels. In Figure 4-28 the
Pearson correlation coefficient is plotted for different bathtub water levels, together with the LLR-test score
relative to the perfect check.

48 The Perfect check is explained in more detail in Appendix 1.2. In a nutshell: it is the LLR-test score for a certain node (in
this case ‘Damage’) conditioned on itself; it gives therefore the highest possible score and forms an upper limit for the skill
of prediction.
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Figure 4-28 - The log-likelihood ratio test scores for the bathtub concept with varying water levels, divided by the perfect check score
(red) and the Pearson correlation coefficient.

The Pearson correlation peaks for a bathtub water level of 3.65 m (above NAVD88). For higher water levels the
correlation does not change much, which strengthens the theory that for present study an overestimation of
the hazard indicators is not a big problem as long as it is structural (see section 4.1.3). Based on this graph it
can be concluded that it is not the overestimation of the water level that decreases the prediction skill, but it
must be the incapability of this specific XBeach model to represent the spatial variability of the water level
realistically.

It is noticed that the graph of the relative LLR-test score shows two saddle points with local minima. An
explanation for this might be found in the fact that Netica uses bins to discretize the nodes, implying that the
classification of the bins also has its influence on the quality of prediction. This is not further studied in this
thesis, but it is recommended to look at in more detail in future research.

Next to the water surface elevation levels, the inundation depth depends on the ground elevation level. For
the formulations 1to 3 and 5 to 7 these are extracted from the LIDAR by determining the minimal bed level of
the surrounding cells. However, ground elevation per building is available in the Buildings dataset as well. In
Figure 4-24 and Figure 4-26 it can be seen that these ground elevation levels are more strongly correlated to
the damage than the ground elevation levels from the LIDAR data. Therefore, the LLR-test scores for the
inundation depth based on the ground elevation levels from the Buildings dataset have been determined as
well. The scores are given in Table 4-4 and from these results it can be concluded that the inundation depth
indicator based on the buildings data scores better when using the bathtub concept, but worse when using the
XBeach results. It is assumed that this is because the Buildings data ground elevation levels are more accurate
than the levels based on the LIDAR. However, inaccuracy of the XBeach bathymetrical input will subsequently
influence the output and thus the water levels.

Table 4-4 - Log-likelihood ratio test scores for the inundation depth indicator based on a combination of A) XBeach results or the

bathtub concept and B) ground elevations from the LIDAR data or Buildings data.

Ground elevation\Water Level XBeach — formulation 7 Bathtub concept: 3.27m ref. to NAVD83

LIDAR data 98.74 299.62
Buildings data ‘ 44.73 G 437.38

It should be noted that having both options is a luxurious position; for other sites the buildings data might not

be available and then LIDAR does work. Moreover, it is likely that the extraction method can still be optimized,
but that goes beyond the scope of present study.
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4.3. Bayesian Belief Network

The chance of two nearby lying houses showing similar damage predictions is larger than for two distant
houses. This is assumedly mainly because of geographical features, which show variations on a larger scale
than the building level. This phenomenon is in present thesis understood as spatial correlation. Reason for the
spatial correlation of the damage is that some (but not all) physical processes that cause the damage are
correlated in space; e.g. inundation depth and wave attack. Considering only one physical process as damage
indicator and neglecting other spatially correlated indicators, can give a distorted picture of the actual
indicator-damage relations, as can be learned from the findings in subsection 4.1.3. It must be said that this is
inescapable when you only use data from one storm at one study site.

As an extreme hypothesis, if one would be able to correctly determine all physical processes on the building
level that influence the damage (both for the establishing of the statistical relations and the conditioning for
the prediction), these negative effects of spatial correlation wouldn’t exist. Therefore, another way to
minimize the negative effects of spatial correlation, besides using data from a wide range of study sites and
storms, is to condition on more indicators (or on more important ones). Bayesian Nets are extremely useful for
doing so, as is demonstrated in this section.

4.3.1. Coupling Storm Conditions to Damage
The local storm conditions are separately studied in relation to the damage in the previous section; here they
are combined. Two net configurations are considered: 1) one with only connections between the local storm
nodes and damage (left panel of Figure 4-29); 2) and one where Connections are added between the local

storm characteristics according to the configuration of Figure 3-8; see the right panel®.
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Figure 4-29 - Local storm conditions coupled to damage in a Bayesian Belief Network. Left: no arrows between local hazard indicators;
right: mutually coupled local hazard indicators

For both configurations some hindcasting scenarios have been carried out. The resulting LLR-test scores are
given in Table 4-5. It can be concluded that conditioning on more indicators raises the quality of prediction.
This means that when more is known, the prediction becomes better, which is in line with the theory discussed
in chapter 3.

49 Note that the marginal distributions of the ‘ImageCat Damage’ are not the same as each other and differ from the
marginal distribution in reality as well. This is because Netica does not use the real data for the distributions of child nodes
but established CPT’s instead. The (conditional) distributions are therefore only a reflection of reality.
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Table 4-5 — Log-likelihood ratio test scores for different hindcasting scenarios

Hindcast Conditioning on: LLR-test score:
scenarios Inundation Wave Attack Flow Physical Configuration 1 | Configuration 2

Depth Velocity Damage Absolute Relative | Absolute Relative
1 1 0 0 0 0 13 0.01 63 0.04
2 0 1 0 0 0 241 0.15 278 0.19
3 0 0 1 0 0 19 0.01 32 0.02
4 0 0 0 1 0 2 0.00 60 0.04
5 1 1 0 0 0 263 0.16 331 0.22
6 1 1 1 0 0 415 0.26 376 0.25
7 1 1 1 1 0 515 0.32 405 0.27
Perfect 0 0 0 0 1 1607 1.00 01496 1.00
Check

»n o u

“Wave attack” is the most skilful indicator, followed by “flow velocity”, “inundation depth” and “scour depth”.
This was to be expected based on the results of previous sections. Netica’s sensitivity analysis can confirm this;
see Table 4-6 showing the results for configuration 2. Another interesting thing that can be observed is that
the sum of the individual LLR-test scores (scenario 1 to 4) is less than the combined score of hindcast scenario
7, which implies that the individual components work like a team. Together they are better able to tell what is
actually happening.

Table 4-6 - Netica's sensitivity analysis of configuration 2: variance reduction of Beliefs.

Variance of Beliefs

Node Mutual Info Percent

ImageCat Damage 13.566 100.000
Wave Attack 0.186 13.700 0.037
Inundation Depth 0.054 3.980 0.007
Flow Velocity 0.027 1.990 0.005
Scour Depth 0.048 3.560 0.009

If we now compare both configurations, two things can be concluded. First, configuration 2 scores better when
conditioned on only one indicator. This makes sense since the other indicators are now better known as well
(their mutual dependency is used). Hereby it should be noted that in the case of Rockaway Peninsula the
bigger waves are found on relative higher grounds and thus lower inundation depths. Adding this inverse
proportionality as a relation in the network (with configuration 2 as a result) may work fine for the Rockaways
where it will decrease the negative effects of spatial correlation when conditioning on one indicator. However,
this can be totally wrong when using these relations for predictions to other sites. In that case configuration 2
will probably not perform better than configuration 1. The second conclusion that can be drawn is that for
conditioning on all indicators (hindcast scenario 7) configuration 1 seems to do better.

Hereby, it is important to note that the Bayesian nets have been trained on 100% of the data and the
hindcasting has been performed for exactly the same observations (also 100% of the data). This means that
Netica is always familiar with every event the nets are conditioned on during the hindcasting, since that same
event is also used for training purposes. When the BBN is used for predicting a new situation, this will be
different, since the hindcasting dataset differs from the training dataset. How well the BBN is capable of

501t can be seen that the Perfect Check differs for the two configurations. This is because CPT’s of both models are
different. The fact that the score for configuration 1 is higher does not necessarily mean that it is better capable of
representing reality, only that the hindcast data better fits to what Netica thinks is reality.
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predicting this new situation depends amongst others on the quality of the CPT’s. Too many nodes or bins will
have a negative influence on the quality. This can be best explained by an example; see the illustration of
Figure 4-30. The white dots are random picked observations for two variables. With two bins all possible
conditioning combinations are covered by observations (white dots); the CPT’s can thus be well substantiated.
Four bins give some extra detail, which makes the prediction better, but now some (red) cells and thus some
corresponding poorly substantiated CPT’s can be find as well. With eight bins the number of empty (red) cells
increases further, which on a certain moment makes the model worse instead of better. The same problem
occurs when more nodes are added, which also results in more conditioning combinations.

2 hing per node 4 hing per node 8 hins per node

--»values node 2
--»values node 2
--»values node 2

--» walues node 1 --= values node 1 --=walues node 1
Figure 4-30 - Example (no results); More bins give more detail, but at a certain point also less validation for the CPT's.

Within the 5333 available data points 144 of the 256 (= 4*) possible conditioning combinations are not found
for configuration 1 and 2. For the corresponding blind spots, Netica assumes all possible outcomes to be
equally probable (Affected: 25%, Minor: 25%, Major: 25%, Destroyed: 25%). This default will become dominant
when the number of nodes or bins increases. Hereby it must be noted that from the 144 poorly substantiated
combinations, some are not likely to happen (e.g. 0-0.1 m inundation and 1-3 m high waves).

Instead of 100% usage of the data for both training and hindcast purposes, it is also possible to train the BBN’s
with a randomly picked 90% of the observations and performing hindcast scenario 7 on the other 10%. This
has been done 10 times (changing the spatial distribution of the 90% training data and thus 10% hindcasting
data) and the results can be found in Table 4-7.

Table 4-7 - Log-likelihood ratio test scores for 10 runs; trained with randomly picked 90% of the observations and hindcasting with the
remaining 10%

LLR test score — Configuration 1 LLR test score — Configuration 2

46 161 0.29 36 151 0.24
51 163 0.31 39 151 0.26
41 158 0.26 27 145 0.19
43 159 0.27 30 146 0.2

43 169 0.25 32 159 0.2

52 163 0.32 40 150 0.26
45 152 0.29 33 141 0.24
42 155 0.27 31 143 0.22
53 165 0.32 42 154 0.27
49 158 0.31 40 149 0.27

465 1603 0.29 350 1489 0.24
4.4 5.0 0.03 5.1 5.4 0.03
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The average of the ratio for both configurations can now be compared with the results from Table 4-5. The
ratio drops from 0.32 to 0.29 and 0.27 to 0.24 for configuration 1 and 2 respectively. This is in line with
expectations. Moreover, in 34 of the 5330 (0.6%) hindcast cases the BBN was not familiar with the given
conditions, resulting in a practically flat conditional PMF. It is assumed that if this percentage gets much higher,
the predictions will become worse. This is elaborated in more detail in the bin analysis of paragraph 4.3.1.3.

4.3.1.1.Spatial Correlation

The negative effects of spatial correlation have been mentioned already a few times. Where the damage
predictions are spatially correlated, also the bias (difference between predicted and actually observed) is
spatially correlated. If for instance the hazard indicators within the training data are structurally overestimated
(or underestimated) and the harzard indicators used for the prediction are not (and vice versa), the quality of
prediction becomes worse. It is hard to say how disadvantageous this is for making predictions for other sites,
since no other site is studied in present thesis. However, the negative effects can already be seen within this

study site area. In theory, the
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Figure 4-31 - Ten randomly picked locations within the urban areas of the model domain.

Table 4-8 - Log-likelihood ratio test scores for 10 runs; hindcasting on the observations of the 10% closest buildings and trained with the
remaining 90%.

location LLR test score — Configuration 1

LLR test score — Configuration 2

1 43 160 0.27
2 35 130 0.27
3 12 154 0.08
4 26 131 0.2
5 -34 197 -0.17
6 29 181 0.16
7 10 124 0.08
8 21 79 0.27
9 27 110 0.25
40 130 0.3
209 1396 0.17
22.1 34.6 0.14
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Again, the average of the ratios for both configurations can now be compared with the results from Table 4-7
and Table 4-8. The ratios drop even more from 0.32 to 0.21 and 0.27 to 0.17 on average for configuration 1
and 2 respectively.

It wouldn’t be fair to assign this drop in score only to the negative effects of spatial correlation when only
considering one study site. In 51 of the 5330 (1.0%) hindcast cases Netica was not familiar with the given
conditions, which is an increase compared to the 0.6% for the evenly distributed 90-10 experiment. When the
Bayesian net is less familiar with the given conditions of the hindcast, uncertainty will increase and the LLR
decrease, resulting in a lower score. This phenomenon is certainly at stake as well.

Moreover, it can be concluded that the standard deviation of the scores increased significantly, implying a
larger spatial variance in the quality of prediction. For location 5 the LLR test score is negative, which means
that the statistical model does worse than guessing based on the marginal PMF, where on the contrary the
results for location 10 are on average better.

4.3.1.2.Grid Resolution

As is discussed in section 4.1.4 a buffer size of 10m is small for a minimum grid cell size of 9x9m?. The effects
on the log-likelihood-ratio test score of the BBN according to configuration 2 are clear: scores get worse for a
larger grid cell size; see Table 4-9. By adjusting the buffer size to the grid resolution, the non-beneficial effects
of too much ‘non-flooded’ buildings can be minimized, which results in better scores for the 5x5m? and 9x9m?
runs. But now the opposite seems to be true: higher scores for higher grid resolutions. This raises the question
if a courser grid is actually better than a grid with very high resolution or the increase in score is caused by a
larger buffer size. This is hard to say based on the scores, since differences are small, but it is a fact that the
scores for the 3x3m? run increase too when the buffer size is taken larger.

Table 4-9 - Log-likelihood ratio test scores for configuration 2 and extraction formulations 7; the results for different runs and varying
extraction buffer sizes are given.

Run \ buffer size

3x3 m?
5x5 m?
9x9 m? 178

W

4.3.1.3.Number of bins
The number of bins per node in this section is set to four. This number is not picked randomly but based on an

analysis, of which the results are graphed in Figure 4-32. The BBN’s with the structures of configuration 1 and 2
have been tested with 2 until 10 bins per node. Calibration corresponds in this context to a set of observation
used for the training of the BBN and validation corresponds to a set of observations that is used for the
hindcasting. One can fit any data set better and better by increasing the bins (calibration). However, if one only
fits noise in the calibration set, the validation becomes worse. In that case better calibration also means
overfitting the data in the model causing a decrease in the robustness of prediction.

The error rate grades how often the most likely prediction matched the observations. The error rate for both
validation and calibration are pretty much similar and unchanging until 4 or 5 bins, then calibration gets better
and validation worse. This is logical, since more bins means more resolution, but the quality of the joint and
conditional distributions become worse where the establishing is based on less data; this has also been
explained in section 4.3.1. The data are divided into three sets and the shading shows the standard deviation
of the three estimates around the mean (central blue or red line) of the estimates.
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The lower the error rate value is the better, which would suggest 3 or 4 bins, but 5 bins seem to be justified as
well. With more than 5 bins the calibration improves but the validation increases rapidly. By this measure the
chosen number of 4 bins (bins = 0 in the graph) is fine with a fairly low error rate of 25%.

0.45 mean of damage for ErrorRate over bins
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Figure 4-32 - Mean of damage for ErrorRate over bins

It should be noted that more similar analysis could be executed in order to find the optimal number of bins per
node. However, this is of minor importance for delivering a proof of concept. Moreover, the outcome would
be different if one decides to use less local hazard indicators, other additional nodes and more or less
observations.

4.3.1.4.Most Probable and Risk

Table 4-10 - Most probable damage versus observed; total counts per combination

Observed - Most Probable Predicted Percentage
{Number of Counts) Affected  Minor  Major Destroyed correct
Affected 60.9%
Minor 94.2%
Major 11.5%
Destroyed 7.4%
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In Table 4-10 the observations are coupled to the most probable outcome of the prediction, which is the
outcome within the prediction with the highest probability. Based on the column ‘percentage correct’ it can be
concluded that the model is very good at predicting minor damage and less good at predicting affected, major
damage and destroyed respectively. This makes sense because wherever you look in the domain, also in the
severest damaged areas, minor damaged buildings can be found in large numbers. Therefore minor damage
will in most of the predictions predominate.

This does not mean that the Bayesian net is not capable of predicting higher risks for more severely damaged
buildings. One of the problems with the ImageCat damage dataset for analysing the skill of prediction is that
observations are not quantitative. By assigning the values 1, 2, 3, 4 to “affected”, “minor damage”, “major
damage” and “destroyed” respectively, it becomes easier to take for instance the mean of the conditional
PMF’s. The latter has been done per combination of Table 4-10 and the results are given in Table 4-11. The
mean of a conditional PMF is a measure for the expected average damage, where a higher mean means more
risk. Based on these results it can be concluded that if the most probable outcome is the same for two

buildings, the risk can still differ.
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Table 4-11 - Mean of the conditional damage PMF's; categrorized on the combinations of observed and most probable predicted.

Mean of conditional PMF’s Predicted
Affected Minor Major Destroyed

(categorized on Observed - Most Probable)

Affected
Minor
Major

observed
Risk increases

Destroyed

Another way to check if the model shows skill is looking at the mean predicted probabilities given the observed.
In Table 4-12 the mean chances are given with in green the mean predicted probability of what actually has
been observed. As an example: for all buildings that are observed as being destroyed, the mean predicted
chance of being destroyed is 5.8%. This is not a big chance, but it is at least higher than the mean predicted
chance of buildings being destroyed while that in reality didn’t happen. The fact that the values in green cells
are all maximal in their column implies that the Bayesian net not only has some skill for affected and minor
damage, but also for major damage and destroyed. However, this is marginal.

Table 4-12 - Average of the predicted probabilities given the observed

Predicted Mean probabilities Predicted
given the observed Affected Minor  Major Destroyed Total
Affected 50.1% 39.8%
Minor 13.4% 75.3%
Major 12.4% 66.5%
Destroyed 17.4% 60.7%
Marginal PMF
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4.3.1.1.Uncertainty

The good part of working with Bayesian Belief Networks is that it is easy to find out how confident the
prediction is. In Table 4-13 the average of standard deviations are given for the configuration 1 and 2 per
hindcasting scenario (see also Table 4-5). Again, this is only possible by assigning quantitative values to the
qualitative descriptions of the damage (1, 2, 3 and 4). In absolute sense the standard deviations do not say
much, but mutual comparisons are now possible to make. From the table it can be concluded that the
uncertainty of prediction decreases by conditioning on more indicators. The quality of prediction thus grows.
Another conclusion is that for conditioning on only one indicator the predictions of the BBN with configuration
2 are more confident. This is to be expected since the mutual dependencies between the local storm
conditions provide extra information.

Table 4-13 - Mean standard deviation of hindcasted PMF's for configuration 1 and 2 and different hindcast scenarios.

Hindcast Number Mean Standard Deviation
scenarios of nodes Configuration 1

Configuration 2

1 0.788 0.631
1 0.787 0.601
1 0.804 0.640
1 0.797 0.636
2 0.769 0.585
3 0.676 0.570
4 0.543 0.543
Perfect Check [ 0 0
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If we now look at hindcast scenario 7 in more detail and condition on the observed the results of Table 4-14
can be gained. Differences between configuration 1 and 2 are negligible as can be seen. Another conclusion
that can be drawn is that the BBN is more certain in predicting the “minor” and “major” damage than
“Affected” and “Destroyed”. This makes sense, since both contain a lot of noise. Moreover, it has already been
mentioned that destroyed appears to be hard to predict since it is an extreme.

Table 4-14 - Mean standard deviation of the hindcasted PMF's given the observed for configuration 1 and 2 and hindcast scenario 7.

Mean Standard deviation of Configuration 1 Configuration 2
prediction given the observed

Affected
Minor
Major
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Destroyed
Unconditioned

4.3.1.2.Spatial variability
Now we know that it is hard to use the model for predicting which buildings will be destroyed (the extremes).

However, a higher risk for these buildings has been predicted (see paragraph 4.3.1.4). Here we look at the
spatial variability of the prediction.

In Figure 4-33 the spatial variability of the mean of the CPT of the predicted damage for both configuration 1
and 2 is shown>L. The spatial pattern of the observed -the beach fronting houses severely damaged, the rows
behind barely and the lower lying areas in the rest of the domain showing minor or major damage- can be
found in the spatial distribution of the predictions as well, which is good. The observed spatial pattern of the

damage can thus be regained fairly well by the predictions. Configuration 1 and 2 both do a good job and the
mutual differences are very small.

51 Trained and hindcasted with 100% of the data
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Location 1 Location 2

Observed

Major
Destroyed

Configuration 1

Mean of PMF
1.0-1.2
1.2-1.4
1.4-1.6
1.6-1.8
1.8-2.0
2.0-22
2.2-24
24-26
2.6-28
28-3.0

Predicted

Configuration 2

Figure 4-33 - Spatial representation of the mean of predicted PMF's for configuration 1 and 2. The two upper panels show the observed.

For the standard deviation of the predictions one can do the same. This has been done and is shown in Figure
4-34. It can be seen that the BBN is quite confident about the predictions in the sheltered areas on the bay
side and the closer you come to the beach the higher the standard deviation becomes. Although the
differences are small, configuration 1 seems to be a little bit more confident in the areas close to the beach
(with the exception of the first row), which explains the higher LLR-test score ratio with the Perfect Check.
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Configuration 2

Configuration 1

Legend

Std of PMF
[ ] 0.327 -0.402
| | 0.402 -0.465
| | 0.465 -0.503
| | 0.503 -0.541
0.541 -0.591
0.591 -0.641
0.641 -0.704
0.704 -0.868
0.868 -1.019
1.019 -1.258

@] Google Hybrid

Figure 4-34 - Spatial representation of the standard deviation of predicted PMF's for configuration 1 and 2.

4.3.2. Building Type Indicators
The Bayesian net of section 4.3.1 with configuration 1 is here expanded with either one of the indicators “roof
height”, “ground floor surface area”, “residential units”, “tax base”, “building class” or a combination of these.
In Figure 4-24 it can be seen that these indicators show strong mutual positive correlations, which makes sense
(e.g. it is more likely that larger buildings are higher, have a larger surface area, contain more residential units,
have a higher tax base and fall in another building class than small buildings). Adding all five indicators might
therefore be unnecessary and even unwanted considering the negative effects of adding too much nodes.

However, to show these effects this has been done and described in this section as well.

For the hindcasting three configurations are used, which are here called configuration 3, 4 and 5 in order to
avoid confusion; see the figures below.
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Figure 4-35 - Trained Bayesian Belief Net with one building type indicator; the five different building type indicator nodes that have
been used are shown on the right side.
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Table 4-15 - Absolute and relative log-likelihood ratio test scores for configuration 3 with different building type indicator nodes.

Building type LLR-test scores
indicator

Roof Height
Shape Area
Residential Units
Tax Base

Building Class

Configuration 3 is based on configuration 1 with one additional building type indicator. The hindcasting results
of configuration 3 are given in Table 4-15. It can be concluded that “tax base” is the best indicator, both alone
and in combination with the local storm conditions, followed by “building class”, “roof height”, “shape area”
and “residential areas” respectively.

By adding all building type indicators, configuration 4 can be obtained; see Figure 4-36. In the same figure also
configuration 5 is shown, which also contains arrows between the local storm conditions. This is in analogy
with configuration 2. Again, some hindcasting scenarios have been carried out, of which the results are given
in Table 4-16. It should be noted that in the two configurations the building indicators are not mutually
connected, while there are strong dependencies; see Figure 4-24. This is because the relations can differ
significantly from site to site, which is in contrast with the mutual relations between the forcing indicators (the
underlying assumed physical principles are everywhere the same>?). Still, it would be worth trying connecting
them in future research.
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Figure 4-36 - Trained Bayesian Belief Nets with all building type indicators. Left: No arrows between the local hazard indicator nodes;
right: arrows between them.

52 This is only the case when the training data is composed out of a wide range of case studies. Else, spatial correlation and
the corresponding problems earlier discussed will be at stake.
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Table 4-16 - Absolute and relative log-likelihood ratio test scores for configuration 4 and 5 and different hindcast scenarios.

Hindcast Conditioning on: LLR-test score:

scenarios Local Hazard Roof Shape Residential Tax Building Configuration 4 | Configuration 5
indicators Height Area Units Base Class Absolute Relative I Absolute

8 1 0 0 0 0 0 213 0.10 133

9 1 0 0 0 1 0 255 0.12 175

10 1 0 0 0 1 1 316 0.15 236

11 1 1 0 0 1 1 405 0.19 324

12 1 1 1 0 1 1 515 0.24 435

13 1 1 1 1 1 1 1018 0.47 937
Perfect Check 1

LEENTS

0.06
0.08
0.11
0.16
0.21
0.45

The first conclusion that can be drawn from the results of Table 4-16 is that the LLR-test scores for hindcast
scenario 8 (only conditioned on the local hazard indicators) are worse than for hindcast scenario 7 of Table 4-5.
This implies that adding more nodes without conditioning on them has a bad influence on the quality of
prediction.

Secondly, it can be concluded that scores are increasing when more indicators are added. This looks promising,
because this often means that the BBN gets more skilful. However, the fact that the hindcasting is performed
based on the same observations as for the training is somehow misleading. With configuration 4 and 5, 327680
(= 4% x 5) combinations of conditions can be made. Again, a share of these combinations is extremely unlikely
or impossible to happen (e.g. 10-500 residential units in a one-family house). Still, only 1549 of these 327680
combinations are found within the dataset and the majority (99.5 %) of the covered combinations is thus not
represented by any observation in the training dataset. In contrast with the BBN’s from subsection 4.3.1 (with
only local hazard indicators), most of the CPT’s in Netica are now very poorly substantiated®3. This negatively
affects the quality of prediction and quantification of uncertainty.

Table 4-17 - Log-likelihood ratio test scores for 10 runs with configuration 4 and 5; hindcasting on the observations of the 10% closest
buildings and trained with the remaining 90%.

location LLR test score — Configuration 4

LLR test score — Configuration 5

1 66 257 0.26
2 103 243 0.42
3 30 233 0.13
4 71 242 0.29
5 9 219 0.04
6 24 196 0.12
7 -8 156 -0.05
8 14 76 0.19
9 7 86 0.09

92 244 0.38

408 1951 0.19

39.0 66.8 0.15

The negative effect on the quality of prediction can be best demonstrated by predicting something ‘new’.
Hindcast scenario 13 of Table 4-16 has also been executed on 10% of the observations corresponding to the

53 This is logical, since the number of bins is adjusted to the amount of data and the configuration with four indicator nodes.
With more nodes the bin analysis would suggest fewer bins, for instance 3 per node. The number of conditioning
combinations would in that case already drop from more than 300,000 to less than 20,000.
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buildings closest to the ten locations of Figure 4-31. The other 90% is used again for training purposes; see the
results in Table 4-17.

Compared to the relative LLR test scores for hindcasting on 100% of the data (0.47 for configuration 4 and 0.45
for configuration 5) scores of 0.21 and 0.19 respectively are very low. However, they are still positive and
pretty much the same as the scores of configuration 1 and 2 with the 10%-90%-hindcasting scenarios (0.21 for
configuration 1 and 0.17 for configuration 2; see Table 4-8 ). Where we thus see an increase in prediction skill
when adding more indicators (and thus more resolution) for the 100%-hindcasting scenarios, this increase
cannot be seen when considering the 10%-90%-hindcasting scenarios. The added value of extra indicators is
thus negatively compensated by the fact that the extra resolution decreases the range of applicability of the
network due to a lack of training data. It is assumed that this negative effect on the quality of prediction can
only become larger when using the Bayesian net for predictions on a completely new case study, where the
conditions (for the hindcasting) differ more significantly from the training data then in the above given
example.

The negative effect on the quantification of uncertainty can be seen by looking at the mean standard
deviations of the conditional PMF’s. Note that the mean standard deviation of the predictions decreased when
more local hazard indicators were added to the BBN in subsection 4.3.1; see Table 4-13. In Table 4-18 we see
the opposite happening, namely an increase of the standard deviation. An explanation for this can found in the
large number of poorly substantiated CPT’s. When this is the case (no or very few observations within the
training data for specific conditioning combinations) the standard deviation of the prediction (with Affected =1,
Minor = 2, Major = 3 and Destroyed =4) will go to 1.11, since Netica assumes that if nothing is known all
outcomes are equally probable. The result is that the quantification of uncertainty gets distorted and with
more of these poorly substantiated CPT’s the average standard deviation of the prediction (damage in this
case) will continue to increase. This is exactly what is happening by adding the building type indicators.

Table 4-18 - Mean standard deviation of hindcasted PMF's for configuration 4 and 5 and different hindcast scenarios.
Hindcast Scenarios Nr of nodes Mean Standard Deviation

Config. 1
+ Tax Base

+ Building Class

+ Roof Height

+ Shape Area

+ Residential units =
Config. 4

These negative effects can also be seen in space. In Figure 4-37 the observed, most probably outcome, mean
of the predicted PMF and standard deviation are shown. It can be seen that the most probable outcome is
almost a one-on-one copy of the observed. This is not because of the good prediction skill of the BBN but
because of the fact that the hindcasting has been performed based on the same data as the training. With 9
indicator nodes and more than 300,000 corresponding conditioning combinations the 5300 observations get
technically isolated within the net and during the hindcasting one will find a slightly higher predicted chance
for the actual observed outcome than for the others. The mean and standard deviation of the conditional
PMF’s confirm that this is happening, where the means are all much closer to 2.5 (which is the mean of 1, 2, 3
and 4) and the standard deviations much higher than in Figure 4-34.
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5. Discussion and Recommendations

In chapter 0 most of the results have already been discussed and some conclusions been drawn. Here they are
elaborated in a broader context.

5.1. Achievements

5.1.1. Overall Model Structure

Considering the overall model structure (including all components of Figure 3-12), it can be concluded that
most of the elements work well. The three used physics-based models in the model train, knowing Delft3D, D-
Flow FM and XBeach have been successfully coupled, which made a propagation of storm hazard from large to
very small scale possible. The use of an SQL database and related tools (e.g. PostGIS) appeared to be very
useful in joining all data on the same scale level of analysis, which is the building level. This also enabled an
easy coupling of the data to the Bayesian Belief Networks. Moreover, coupling of the database to QGIS made
spatial visualisation of the BBN input and output easy as well.

5.1.2. Physical Processes and Hazard Propagation

The implementation of XBeach for the hazard propagation from the nearshore to the buildings (scale of
analysis) entailed some difficulties. First of all, it is very time consuming to set up a fairly large XBeach model
which has the amount of detail as in present study. Secondly, although high resolution (topo-bathymetrical)
data was available, the input leaves a lot to be desired. The LIDAR dataset includes buildings, which is a must
to simulate flow around buildings, but also other obstacles such as trees and cars obstructing or even blocking
the flow completely. Bare earth LIDAR was not available to compromise for this problem. Moreover, in the surf
zone only low-resolution CRM data was available. For a critical storm like Sandy that data appeared to be
unsatisfactory, resulting in too much beach and berm erosion with all associated negative consequences. Also
the boundary conditions were subject to large uncertainty (especially the wave conditions) of which the
negative effects probably could have been reduced by a thorough calibration process. It must be said that with
a model in a stage like this all of these aspects have to be improved to ensure better result. With a limited
amount of time for present study this was simply not possible.

The results of the XBeach runs are therefore moderate showing a structural overestimation of the local storm
conditions; see section 4. However, this does not mean that the decision of using XBeach was a bad one. The
indicators “wave attack” and “flow velocities”, both based on XBeach approximations are considered very
beneficial; this is for instance not possible when using the bathtub concept. Even with the moderate results of
the used XBeach model runs the Bayesian nets are capable of delivering fairly good damage predictions.
Combining the information of multiple hazard indicators (representing different hazards) appears to give much
better results than only using one indicator. XBeach fits perfectly in this multi-hazard approach.

5.1.2.1.Morphodynamic Processes
Considering the inclusion of morphodynamic processes, other studies have pointed out that XBeach is really
good capable of predicting the morphodynamics due to storms like hurricane Sandy realistically. In order to
answer the question if inclusion of morphodynamic processes really improves the quality of prediction, it is
necessary to make a comparison on runs with and without morphodynamics. The answer will differ from case
to case, but it is for sure that inclusion pays off in some cases; for others the significant decrease of
computational expenses by excluding them can be more beneficial. Making these kind of comparison only
makes sense when the model is fully calibrated, which is not the case in present study. Therefore, firm
conclusion on this matter can’t be made based on present results. However, it can be concluded that in the
Rockaway-Sandy study case morphodynamics (e.g. breaching of the berm) formed a key element in the hazard
propagation and associated damages. It is assumed that an improved XBeach model will give much better
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predictions on morphodynamics and the thereon depending local storm conditions than it does right now; also
better than the results of the bathtub concept.

It must be said that simulation of the morphodynamics realistically is hard for other reasons as well in the case
of the Rockaways and Hurricane Sandy. Sandy is said to be a critical storm for the Rockaway peninsula since
the protective functioning of the beaches and berm were for a lot of places only slightly sufficient or slightly
insufficient. With the present model a structural overestimation of local storm conditions is at stake due to too
much erosion of the protective elements (beach and berm). The opposite can easily be the case as well: when
the morphodynamics are slightly underestimated, not enough beach and berm erosion can lead to large
underestimation of the local storm conditions in the hinterland if the beaches and berm manage to withstand
all forces. The accompanying uncertainty of this strong sensitivity can’t be found back in the damage
predictions when only one run is considered for the training of the BBN’s. A solution for this would be
executing multiple XBeach runs, varying the input within the range of uncertainty. This has not been done in
present study due to time limitations.

5.1.2.2.Model Resolution
Considering the model resolution, some problems with using XBeach appeared which cannot be addressed to
the inadequacies of the present model. One of these problems was that the 3x3m? run has larger bed level
gradients than the runs with courser grids, which causes unrealistic surging of the water around buildings. On
the contrary, the low-resolution run needs bigger extraction buffer zones in order to compensate for the
problem of buildings being assigned as ‘non-flooded’ where this was in reality not the case. Moreover, the
flow is easier obstructed by obstacles in the LIDAR for runs with courser grids.

In relation to the damage, the results of Table 4-9 show better LLR-test scores for the high resolution 3x3m?
run, but it is hard to draw conclusions from it, since differences are small. It seems that the added value of grid
cells smaller than 9x9m? is marginal, where the computational time was almost a factor 25 higher for the
3x3m? run (2300 versus 90 CPU hours). Based on this a courser grid is preferred, but it definitely depends on
the site (e.g. a lot of small allays and small buildings will asks for more detail). Note: it is not excluded that the
differences will be larger (or smaller) with an improved model.

As is explained above, inclusion of the morphodynamic processes is most of all interesting for better prediction
of the hazard propagations; the added value of the morphological indicator “scour depth” is considered to be
marginal. For the Rockaway Peninsula, but also for other sites, the normative erosion and sedimentation that
significantly changes this propagation can be found predominantly in the shore facing areas where (hardly) no
residential buildings are found. On the contrary, the desire for high grid resolution only exists for the urban
areas and not for the areas with beaches and dunes. Since high grid resolution and the inclusion of
morphodynamic processes are both competing due to scarcity of computational means, this raises the
question if bed level changes can be calculated by an XBeach model with a much courser grid, which then can
be coupled to a model with a much finer grid but with the morphodynamic processes turned off. This might
significantly reduce computational expenses and, as a pleasant side effect, encounter the
erosion/sedimentation problems around buildings.

5.1.3. Determining local hazard indicators
For the determination of the local hazard indicators one value per indicator per building needs to be extracted
from the XBeach output. The extraction method, including spatial and temporal aggregation, seems to work
well; by using the building perimeter outline polygons the extraction buffer zones can be determined fairly
easily. Subsequently the corresponding grid cells can be assigned to the specific building. Results, regarding the
inundation depth indicator, are given for different extraction formulations, showing that they can help
encountering the problems around buildings.
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As is mentioned above, unrealistic high water levels and bed level changes around buildings (especially the
higher ones) are approximated by the model, which appears to be unbeneficial for the damage predictions;
see section 4 and Table 4-4. This problem cannot be seen separately from grid resolution, the reach of the
non-erodible layer, the extraction method and formulations for the local hazard indicators. The high water
levels are assumedly caused by numerical instabilities due to high bed level gradients; something that is
inescapable with a high resolution grid in combination with (high) buildings. Figure 4-21 shows that the low-
resolution run (grid cell size 0f9x9m?) does have fewer problems with the high water levels around buildings.
This strengthens the assumption that this phenomenon is caused by high bed level gradients, which are
smaller for larger grid cells.

The high bed level changes around buildings, both erosion and sedimentation (see Figure 4-11), can be
addressed to the fact that the representation of buildings in the LIDAR data and building polygons (and thus
non-erodible layer within XBeach) do not match perfectly in the horizontal. Next to picking the right extraction
formulations, one could also think of other solutions to encounter this problem. Expanding the non-erodible
areas around buildings is one of them.

In general it can be concluded that all of these aspects appear to have a large impact on the final local hazard
indicators with corresponding influences on the quality of prediction. It is therefore recommended to study
this in more detail.

5.1.4. Predicting Damage

Even though XBeach results were moderate, combining the potential of multiple indicators in a BBN resulted in
a prediction tool that shows skill. With a model domain of only a few kilometres wide observations of about
5300 residential buildings can be used for training and hindcasting purposes. This number appeared to be
enough to demonstrate the possibilities of a BBN with four local hazard indicators. Both quantitative and
qualitative nodes can be used; Netica does not make a difference. However, the fact that the variable to
predict was non-numerical makes analysing the quality of prediction more difficult. Adding another node to
the BBN is easy and the added value can be quantitatively compared to alternatives; a bunch of analysis tools
is available to do so.

The limitations of the BBN’s are clear: adding more nodes will rapidly lower the quality of prediction and
uncertainty quantification since the number of data is not sufficient enough to substantiate all the relations
within the net. Compromises have to be made to encounter this problem, such as decreasing the number of
bins or increasing the scale of application.

The potential of building type indicators is analysed. It is demonstrated that by adding these indicators the
quality of prediction increases. The tax base indicator performs best, followed by the building class indicator.
For the building classification only functional differences are considered. Other ways of classification, such as
on building material stating something about the resistance of the building, was not possible with the available
data, but this is assumed to have potential as well. It must be said that tons of other indicators and
combinations can be tried too; the accompanying choices that have to be made depend on the number of data
available and (expected) mutual dependencies. The latter can be easily tested by applying correlation
formulations, such as Pearson’s correlation coefficient. This has been done in section 4.2. It is expected that
monetary damage instead of or in combination with physical/structural damage will give better results as well.
Supporting variables indicating the amount of value at risk, such as household income, are expected to be only
relevant in combination with monetary damage. It must be said that these types of data are not easy to get
due to privacy issues. Working together with (re)insurers or in closer collaboration with parties like FEMA
might give opportunities.

In present study the BBN is trained on observations of one storm and one study site only. From a mathematical
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(theoretical) point of view this is not strong; observations should be independent, where in this case
observations are clearly spatially correlated. In practice, these correlations limit the applicability of the BBN for
predicting damage for other sites and storms. To which degree this is the case, cannot be concluded from the
results presented. Validation of the model is required on other sites and storms. However, that the spatial
correlations negatively influence the quality of prediction can already be seen within the limits of this study.
First of all, it has proven to be very dangerous to draw conclusions on one-on-one relations; see ‘Depth-
Damage Relations’ in section 4.2. Secondly, hindcasting on specific areas of which the observations are not
used for training purposes shows a significant drop in LLR-test scores; see Table 4-8.

It must be said that the market standard damage curves are subject to the same problems concerning spatial
correlation. There are two ways to minimize these effects within this concept: 1) train the Bayesian nets on
data from more storms and sites (this is how market standard damage curves are improved as well); 2) or
include as much processes (in the form of indicators) as possible in the statistical model. With the existence of
option 2 for BBN’s they have a huge advantage over the current damage prediction methods.

5.1.5. Quantifying Uncertainty

The quantification of uncertainty is fairly easy with BBN’s. The standard deviations of individual predictions
(per building) can be determined and together they can be spatially visualized. In this way it is possible to
determine where and when predictions are or aren’t confident. The limitations of the Bayesian Belief Network,
considering the quality of uncertainty qualifications, are clear as well: the number of nodes, bins and relations
are limited by the number of training data. Iteratively these three aspects have to be balanced in order to
optimize the Bayesian Nets. Too much nodes, bins or mutual relations (arrows) result in a large share of poorly
substantiated CPT’s. The consequence is that the uncertainty of prediction increases due to Netica’s default
assuming all outcomes equally probable when the training data is insufficient for the amount of demanded
detail. Moreover, if the event to be predicted qua conditions falls outside the range of events on which the
BBN is trained, the uncertainties will be extremely large resulting in a low or negative LLR-test score; BBN’s do
not lie.

It is questionable what kinds of uncertainty are actually incorporated within Netica’s CPT’s (the predictions).
The answer lies in the training data. The inaccuracy within the predictive part of the input data is a source that
is included, which is mostly epistemic uncertainty. The inaccuracies in the LIDAR data (in some cases a bit
higher ground elevation levels than in reality, in others a bit lower) can be seen as examples. This is the main
reason why predictions can be better (more confident) when the XBeach model is improved; a better
representation of the spatial variability in the local storm conditions can then make a difference. Moreover,
the aleatoric uncertainty is incorporated as well. This comprises the uncertainty that cannot be explained by
adding more complexity. No building is for instance completely the same as another one. Even if they are
categorized the same for a million building type indicators and are subject to the same (discretized) forcing
conditions, the amount of damage can still differ in the end.

Uncertainties that are not incorporated are structural over- or underestimations within the input data.
Training the net based on local storm conditions that are structurally overestimated won’t cause any problem
if the local storm conditions for the prediction are structurally overestimated (in the same order) as well. This
is the case if you hindcast on the exact same observations, which has been done for this study. However, this is
not the case if you want to predict a new situation. Then a relative structural under- or overestimation in the
local hazard indicators between training data and prior data (used for the predictions) will give structural
higher or lower predictions. To incorporate the accompanying uncertainty one can think of the following
solution: run multiple scenarios per event with the physics-based models. One can for instance run a
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conservative, expected and optimistic scenario and train (and predict) on all**. This will only solve the problem
to a certain extend.

Finding solutions for structural over-or underestimation of other types of data is more difficult. One could for
instance think of structural variations in surveying technics (e.g. different damage formulations for different
sites) or variations in the surveyed quantity (e.g. a wooden one-family house in New York might be more
resilient than in other states). The only way to incorporate these uncertainties is to train the BBN’s with
observations from multiple other sites and storms.

5.1.6. Spatial Aggregation
In order to determine total expected damage for a block, neighbourhood or complete city, spatial aggregation
of predictions is necessary. The best guess for the expected total damage (or risk given the event) can be
determined by summing the means of the PMF’s of all predictions (here called the grand mean or GM). For
predictions of qualitative damage (qualitative description instead of numbers as is the case in present study)
this is not possible®, but in the case of monetary damage it is.

Aggregating the uncertainty to a higher scale level is unfortunately not straightforward, since (the bias of) the
individual predictions on the building level are spatially correlated; if the expected total amount of damage for
a certain house is overestimated in a prediction, it is to a certain extend likely that this is also the case for the
neighbouring houses. This correlation has been explained in subsections 0 and 4.3.1. Therefore damage
predictions for a certain area cannot be seen as independent stochastic events and are thus mutually
correlated with unknown joint probability distributions. This makes it very difficult to say what the uncertainty
of the aggregated prediction is.

l’ll pn =1

A + + =
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i=1 i=n aggregated prediction
Figure 5-1 - The problem with aggregating predictions to higher spatial scale levels

Upper and lower limits for the uncertainty might give some solution. The theoretical case of totally
independent predictions provide a lower limit. The square root of the standard deviation of the individual
predictions can then be summed to get the grand variance and subsequently the grand standard deviation. In
formula form this comes down to°%:

With: GS
GV

Grand Standard Deviation
Grand Variance

54 1t should be noted that if the presented BBN'’s in this thesis would be part of (or coupled to) a much larger BBN that
incorporates more information levels, the uncertainty due to structural over- or underestimation of the local storm
conditions, this would not be necessary since these uncertainties would then be included within the net.

55 One could of course use a numerical scale as substitution for the qualitative descriptions, but this is not always as
straightforward. Moreover, one has to be careful on attaching too much importance to the results.
56 http://www.burtonsys.com/climate/composite_standard_deviations.html

- _
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(7]
"

Standard Deviation
N = Total number of observations

The (grand) standard deviation of the grand mean is relatively much smaller than the standard deviation of
individual predictions. As an example: take 1000 comparable buildings with on average $ 50,000,- damage and
a standard deviation of $ 20,000,-, which is assumed to be realistic. The expected total amount of damage is 50
M dollar; the grand standard deviation now becomes 0.63 M dollar, which is a little bit more than 1% of the
expected total amount of damage. Where predictions of the total damage in the past showed errors in the
order of 50% or even more®’, a relative error of 1% seems most questionable. Moreover, this ratio keeps
decreasing for an increasing amount of buildings until the uncertainty becomes negligible. This lower limit is
thus not very practical.

Assuming fully mutually correlated predictions and all possible uncertainties incorporated in the corresponding
conditional PMF’s might have the potential of an upper limit. However, this is not easy and can be best
investigated when more storm scenarios and study sites are incorporated in the research. In that way all
uncertainties, including uncertainties regarding the input parameters of the model, can be incorporated on the
building level. Something like the weighted Std/mean ratio of the individual predictions might be useful as a
first guess for the GS/GM ratio. With the current concept, though, where the uncertainties of structural over-
or underestimations are not incorporated in the PMF’s, it is certainly not possible to determine this upper limit.

Considering all this together, the uncertainty of prediction on the aggregated level cannot be determined
within the present concept; other ways need to be developed in order to do so. However, comparing averaged
standard deviations for different areas within a site might still be useful, since it says something about the
confidence of prediction on the object level.

5.2.  Applicability of the Concept

Based on the results and considerations of sections 0 and 5, it can be concluded that using BBN’s as substitute
for the market standard damage curves is proven to be feasible. However, it must be said that the method is
extremely data extensive. If one wants to use more than 4 indicator nodes with four bins each (which is
assumed to be reasonable) much more than 5000 observations are necessary. Setting up multiple XBeach
models for different case studies would be a solution, but that is a time consuming job. For the American
situations where quite a lot of destructive hurricanes have caused damage, and subsequently the damage
observations have been documented fairly well, the concept offers opportunities. In the European situation,
for instance in the Netherlands, real wind induced sea flood with disastrous consequences are scarce. In that
case data has to be used from other countries, which entails additional uncertainty due to for instance
differences in building standards and surveying technics.

Moreover, data for other types of assets might be scarcer or harder to get than for residential buildings. This is
for instance the case for roads, of which damage observations are rare. About the damaging physical processes
also very little is documented. On the other hand, BBN’s have proven to be ideal tools for finding out which
aspects are important and which are not. In that sense Bayesian nets might offer some opportunities for these
types of assets if a critical number of data can be gathered.

Another benefit of the presented concept is that additional training data can be added fairly easy. Every time a
new event occurs, the model train can be setup, local hazard indicators can be generated and the Bayesian
nets can be updated. By automating this process a constant improvement of the quality of prediction can be
ensured. For an updated version of the BBN’s not much has to be done.

57 This can especially be concluded on the findings of “Comparative flood damage assessment towards an European
approach” (Jongman et al. 2012).
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5.3. Recommendations

It must be said that with all these axis of freedom a lot of optimizations can be carried out in order to improve
the results and further expand the findings of present study. This thesis comprises an exploratory research
only and to end up with a fully operational model much more research needs to be done.

The first and most important recommendation for future research is testing the concept with observations
from multiple study cases. The fact that present study was limited to data from only one event made
validation impossible. By considering more events, the uncertainties on aggregated level and the problems
with spatial correlations can be studied in more detail. It must be said that only one additional site or storm
might not be enough. At least several storms and sites are necessary to properly research these aspects. If so,
one can play with the datasets and vary with the distribution over hindcast and training purposes. In that way
a better understanding can be gained of how well the model approach works for predicting the impacts of new
situations and how much training data is necessary to obtain satisfactory results.

Secondly, it is recommended to further study the inclusion of morphodynamic processes. In order to do so, a
fully calibrated and optimized XBeach model is a must. Where in this study a lot of time was spend on high
resolution modelling, this appeared to be not so important. A grid cell size of 9x9 m? in the urban areas is
probably enough when obstacles in the bathymetrical data (e.g. trees, cars) are removed. The computational
expenses are then much lower, which makes running more simulations (varying input in the range of
uncertainty) better feasible. In that same way also the uncertainty of other XBeach input parameters can be
included in the predictions by training the BBN based on data from more conservative and more progressive
runs as well.

Third, the BBN’s can be further optimized. More configurations can be tested and compared, including
different indicator nodes, varying the number of bins and relations between nodes. Moreover, it would be
very interesting to study monetary damage predictions. It is therefore recommended to work in close relation
with either a governmental organisation, like FEMA, or (re)insurers to get the required data. To which extend
the BBN’s of present concept can be build out or coupled to other nets in order to cover more information
levels is a question that needs to be answered as well.

Furthermore it should be noted that other software packages can be tried as substitutes for some elements.
As a substitute for XBeach other models can be thought of; especially in areas where the morphodynamics are
not so important it is definitely recommended to use another type of model, which at least has to be capable
of approximating water levels, waves and flow velocity. Other hazard indicators can be considered too. Netica
has its limitations as well and an alternative can for instance be found in Uninet. Comparisons need to point
out which option is the best for what situation.
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6. Conclusions

In general it can be concluded that the presented model approach succeeded. The hazards, predominantly
coming from sea in the case of Hurricane Sandy, had to be propagated from large scale (100-1000 km) to the
building level (1-10 m). In order to do so, a nested routine is assumed to be most suitable. As part of the
nested structure the morphodynamic storm impact model XBeach is implemented to propagate the hazard
from the nearshore to the assets at risk (scale of analysis), which are limited to residential buildings only in
present study. With the use of extraction methods local hazard indicators are generated for every single
residential building. Together with building type indicators (e.g. building class, size parameters) these hazard
indicators have been used as damage predictors in the predicting element of the model structure: the
Bayesian Belief Network (BBN). In this statistical model observations of a qualitative damage assessment have
been coupled successfully to corresponding local hazard and building type indicators. 5300 damaged
residential buildings at the Rockaways, NY, were enough to train BBN’s capable of reproducing the spatial
pattern of the damage fairly well; see Figure 4-33 and Figure 4-34. Multiple analysis tools, like a bin-analysis
and log-likelihood ratio test, are available to analyse the quality of prediction and uncertainty quantification
and it is easy to visualize that in space with the use of an SQL database coupled to GIS software.

XBeach is capable of providing multiple local hazard indicators on the building level, which proved to having
predictive capacity. The indicators “inundation depth”, “wave attack” and “flow velocity” and (to a lesser
extend) “scour depth” give together much better predictions than they do alone; see Table 4-5. The
implementation of XBeach therefore fits perfectly in the multi-hazard approach that Bayesian Belief Networks
make possible. On the contrary, it must be said that setting up an XBeach model for high resolution
simulations (grid cell sizes of in the range of meters) with a relatively large model domain (8 km wide, see
Figure 3-16) requires high detailed input data and is a time consuming job. The results of the XBeach model
used for present study show a structural overestimation of storm conditions, which can be addressed to a poor
calibration process, uncertainties in the boundary conditions and problems with shortcomings in the
bathymetrical data. This assumedly limits the predictive skill of the statistical BBN model (e.g. hardly any
predictive capacity is found for inundation depth, which can be assigned to the bad representation of the
spatial variability in maximum simulated water levels). There is certainly a large scope for improvement, which
means that the results can only become better. However, for proof of concept the presented results are
sufficient enough.

Grid resolution of the XBeach model appears to be not as important as expected; indicator values based on
model runs with grid cell sizes of 3x3 m? in the urban areas give hardly better predictions than runs with grid
cell sizes of 9x9 m?; see Table 4-9. Computational expenses are 25 times higher though. Moreover, the added
value of including morphodynamic processes can’t be quantified based on the results of present study.
However, it can be concluded that morphodynamics are important for the hazard propagation in the treated
case study. XBeach has proven to be capable of coping with these morphodynamics in other studies.

Next to these aspects, the extraction method, in which hazard indicators are generated out of the XBeach
output, appeared to be very important for the predictive capacity of these indicators. It can be concluded that
the used method, in which the building perimeter outlines play a very important role, performs well; see
Figure 3-17. Extraction formulations and the size of extraction buffer zones around the buildings can make a
substantial difference; see Figure 4-23. From Table 4-4 it can be concluded that courser XBeach grids ask for
larger extraction buffer zones, which is to be expected.

Considering the statistical model part, the Bayesian Belief Networks give the opportunity to relate the damage
to multiple aspects instead of only one, which has great advantages over the market standard damage curves.
This is because together, the indicators give much better predictions, and the consequences of relations based
on special correlated training data are minimized. The established BBN’s are good in capturing the spatial
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variability in risk (given the event) per building, comparing the spatial distribution of the means of the
conditional PMF’s to the observed damages (Figure 4-33). The predicted chance of extreme damage for
buildings that had been extremely damaged in reality is higher than for buildings that suffered less damage.
However, for these extremely damaged buildings the predicted chance of being extremely damaged was often
still lower than the chance of being subject to minor damage. Therefore the BBN’s perform not so well in
predicting extremes; see the predicted most probable outcomes in Table 4-10. Considering the added value of
integrating vulnerability and socio-economic data, adding nodes indicating differences between buildings
increases the hindcasted Log-likelihood ratio test scores. The “tax base” indicator appears to be most skilful. It
is said that one has to be really careful with adding too much nodes. The consequences of the latter are
demonstrated in subsection 4.3.2: the predictions become worse if too much complexity is added to the BBN,
since in that case the limited amount of data gets overfitted. Adding nodes indicating the value of a property
at risk (e.g. household income, Tax Base Parameters) is assumed to have great potential as well, but only if
monetary damage is considered. The latter is recommended for future research.

Also the quantification of uncertainty depends strongly on the number of nodes, bins and relations added
within the BBN. More complexity in the network needs to be compensated by more training data in order to
retain the same quality of the PMF’s of the predictions. Indicators for uncertainty, such as standard deviation
of these conditional PMF’s, can be easily visualized in space (Figure 4-34) and used to say something about the
confidence of predictions. However, quantitatively the PMF’s do not cover all sources of uncertainty in the
approach as it is proposed right now. This is a direct cause of the limited training of the BBN’s, which is based
on the results of only one XBeach run and not multiple, more conservative and progressive, runs. Therefore,
uncertainties concerning structural over- or underestimations (for instance due to input parameter uncertainty
of the XBeach model) are not represented in the distributions of predictions.

Aggregation of the damage predictions to higher spatial scale levels, such as a neighbourhood or a complete
city, is not straightforward within the present approach. Aggregation of risk given the event (mean of the
PMF’s) is a matter of summation. On the contrary, predictions for buildings in a certain area cannot be seen as
independent, since (spatial) correlation between the predictions is at stake. This, in combination with the fact
that not all uncertainty is incorporated in the PMF’s, makes aggregation of uncertainty difficult. Future
research is necessary in order to find ways to overcome those aggregation issues.

Impact Modelling of Hurricane Sandy on the Rockaways I 118



Appendices
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A.Merging Data based on Geospatial Information

To use all information on the same scale of application, which is the building level for this study, data from
different datasets have been coupled. This is done based on geospatial information with the use of PostGIS
SQL querying tools. The building polygons from the Buildings dataset have been used as a base and properties
from the ImageCat and PLUTO datasets have been assigned to the building polygons based on geospatial
relations.

The ImageCat data are assigned to buildings as follows:

1) The majority of the points fall within a polygon. These were coupled first;

2) The rest of the damage observations have been attached to the closest polygon, which had not been
coupled yet;

3) The remaining building polygons, of which the majority corresponds to garages and pavilions, are not
coupled to damage observations.

It is noted that garages and other non-residential buildings are not included in the Bayesian Networks. Of the
9800 buildings within the XBeach domain 7800 buildings fall within the area of application (the rest is situated
within the shadow zones). Of these 7800 buildings a bit more than 5300 are residential buildings and to almost
all of them a damage observation has been assigned.

The PLUTO data are assigned to buildings as follows:

1) All buildings falling completely within a tax lot, get the properties of that tax lot;
2) All buildings that fall in two or more tax lots get the properties of the closest tax lot center.

No buildings fall completely outside the tax lots, which makes the coupling less complicated. Some tax lots
contain more houses. Properties like the tax base values and residential units are than divided by the number
of buildings (excluding garages and pavilions again). This implies the assumption that in these cases all
buildings are considered comparable.
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B.Multi-variate flood damage assessment -
abbreviation description

In addition to Figure 3-9 on page 56.

Table 1. Description of the 28 candidate predictors (C: continuous. O: ordinal. N: nominal).

#  Predictors Type and range Amount of

data*
1 wst  Water depth C: 248 cm below ground to 670 cm above ground 2108
2 d Inundation duration C:1to 14400 2004
hydrologic, hydraulic aspects 3w Flow velocity indicator 0: 0 = still to 3 = high velocity 2120
4 con  Contamination indicator 0: 0 = no contamination to § = heavy contamination 2122

5 1p Retum pericd C:1to848yr 2158

6wt Early warning lead time C:0to336h 1364

7 wq  Quality of waming (: 1 =receiver of wamning knew exactly what to do to 6 = receiver 955

of wamning had no idea what to do
early warning and 8 ws Indicator of flood warning source @ 0 =no waming to 4= offictal warning through authorities 1675
EIMEIZENCy Measures 9 wi Indicater of flood warning information @: 0 =no helpful information to 11 = many helpful information 1631
10 wte  Lead time period elapsed without using it C:0to335h 842
for emergency measures

11 em Emergency measures indicator : 1 =no measures undertaken to 17 = many measures undertaken 2158

12 pre Precautionary measures indicator 0: 0 =no measures vadertaken to 38 =many. efficient measures undertaken 2158

. . 13 epre  Perception of efficiency of private precaution 0 very efficient to 6 —not efficient at all 2043
precaution. expetience 14 fe Flood experience indicator 0: 0 =m0 experience to 9 —recent flood experience 619
15 kh Eaowledge of flood hazard N (yes/no) 1472

16 bt Building type N (1 = nmltifamily house, 2 = semi-detached house, 3 = one-family honse) 1816

17 nofb Number of flats in building €21 to 45 flats 1726

building characteristics 18 fsb Floor space of building - 45 to 18000 m? 1496
19 bg Building quality @ 1=very good to 6 = very bad 1758

20 v Building value C:92244t0 3718677 € 1419

21 age  Age of the interviewed person C:16t0 95 wr 2007

22 hs Household size, i.e. number of persons C:1to 20 people 2125

23 chu Number of children (< 14 ¥r) in household C:0to 6 1877

24 eld Number of elderly persons (= 65 y1) C:0tod 1983

. . in household

socio-economic stafus 25 own Ownership structure N (1 =tenant: 2 = owner of flat: 3 = owner of building) 2158
26 inc Monthly net income in classes 0: 11 =below 500 € to 16 = 3000 € and more 1666

27 socp  Sociceconomic status according to Plapp (2003)  O: 3 —=very low socioeconomic status to 13 = very high sociceconomic status 1469

28  socs Sociceconomic status according to 0: 9 =very low socioeconemic status to 60 = very high sociceconomic status 1308

Schnell et al. (1999)

*Since not all people were willing to answer all questions, not all information is available for each interview.
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C. XBeach model formulations

The formulations and descriptions in this appendix form a brief summary of the XBeach manual (Deltares
2010).

The physics-based model XBeach can use both a local and global coordinate system, but the configuration is
always the same: the x-axis is oriented towards the coast, approximately perpendicular to the shoreline, see
Fig XI. A staggered grid is used, in which fluxes (velocities, sediment transport, radiation stress gradients, etc.)
are calculated on the interfaces of cells and conservative quantities (water level, bed level, etc.) are calculated
in cell centres.

C.1. Short wave equations

Different from most other physics-based models, XBeach solves short wave equations (order of 10s per cycle)
on the time scale of the long wave groups and thus long waves. Wave input data is reduces to a 2D-spectrum
in which the directional distribution is taken into account (in bins, of which the size has to be predefined). The
frequency distribution, however, is reduced to one single peak frequency. Time-varying wave action belongs to
the possibility and is used for present study. The wave action balance reads:

O_A 4 0cgx OcgyA 4 dcg- A _ Dyaves
at 0x dy a6 o
With: A = wave action, which is defined as E/o

E = wave energy

o] = intrinsic wave frequency

Ce = wave group velocity

Co = Velocity in directional space

Dwaves = the energy dissipation due to breaking waves

The fourth term on the left side represents energy exchange between the bins due to refraction, which is on its
turn caused by bottom friction and currents. In the newest versions of XBeach it is also possible to include a
source term for wind-generation, which has not been used in present study; diffraction is not included. Wave
breaking (ride side dissipation term) is modeled according to the Roelvink’s formulations (1993a).

C.2. Roller energy balance

XBeach uses a roller energy balance in order to model the energy redistribution of breaking waves.
Short wave energy is transformed in kinetic energy and is used as a source term in the roller energy
balance, which reads:

0E, O0cE, N dcyE, N dcgE,

= —D,+ D
ot ox dy 06 T Twaves
With:  Er = roller energy
C = roller celerity (assuming that waves and rollers propagate in the same direction)

Dr = the roller energy dissipation

Again, the velocity in directional space takes refraction into account. Furthermore, the roller energy dissipation
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Is given by Reniers et al. (2004a) combining the concepts of Deigaard (1993) and Svendsen (1984):

Sy(x,y.t,0) 29B.Ey
E(x,y,t) c

D.(x,y,t,0) =

In which Sr represents the radiation stresses, which can be directly determined from the spatial distribution of
wave energy. Moreover, also roller induced shear stresses are calculated from these spatial wave energy
distributions.

C.3. Shallow water equations

In order to solve the long infragravity waves, XBeach uses shallow water equations, both depth integrated
momentum and mass balance. However, only considering the long waves would not give a satisfying answer,
where the short waves cause mass fluxes and return currents in the littoral zone. Therefore, XBeach uses the
Generalized Lagrangian Mean (GLM) formulations (Andrew and Mclntyre,1978, Walstra et al.,2000), in which
the Lagrangian velocity is defined as the distance a water particle travels in one wave period, devided by that
period. The lagrangian velocity relates to the Eulerian velocity and Stokes drift by:

ut=ufF+u’S and  vi=vE4+0S
With:
u® = (Ewaves + 2 * Erouter) * c0S(6) and v® = (Ewaves *+ 2 Eroyer) - sin(6)

The stokes velocities are thus calculated from the wave and roller energy. The GLM equations, which are based
on the non-conservative dimensional form of the Saint Venant equations, are given as follows:

. . ul L, oul L, ouk L a%ul  92ul Tsx  TE an |, Fy
x-direction : —4ut—+vi——frt - (— —) ==_b_g— 4%
at + ax + ay f M dx2 + ay? ph ph 9 ox + ph
ovl ovk ovk a2yl 92yl T rf on | F
-direction : —+ vl —+ut——ful - ( —) =2_2_g—_42
Y at + ax + ay f M ax2 dy? ph ph dy  ph
. . an auln ovln
z-direction : —= - -
at dx ay

The horizontal eddy viscosity nn is in XBeach related to the roller energy dissipation Droller according to Reniers
et al. (2004). Moreover, the bed friction T is calculated with use of Eulerian velocities. The formulations are
solved in Xbeach in general. At the boundary multiple options are available (e.g. open or closed, Neumann
boundaries) for which divergent formulations are used. These formulations can be found in the XBeach manual.

C.4. Sediment transport

The depth averaged advection-diffusion equation according to Gallappatti and Vreugdenhil (1985) is used in
order to calculate the transports of sediment. Where the depth integrated Lagrangian velocity in the surf zone
is assumed to be zero on average (balance principle considering a closed system), the mass flux related to the
Stokes drift (and thus Stokes velocities) must be compensated by an equally large but opposite flux, which can
be related to the undertow (and thus the Eulerian Velocities). The undertow and thus the Eulerian velocities

are normative, resulting in:

d0hC OhCUE ohCvE 9

N N N hCeq — hC
Jat 0x dy 0x

Ts

k hac]+a[D 24 =
"oxl oyl ayl T
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With: C = depth-averaged sediment concentration

Dn = sediment diffusion coefficient

h = depth

Ceq = Equilibrium sediment concentration (depth-average)
Ts = Adaptation time scale

The adaptation time Ts, which depends amongst others on the water depth and fall velocity of the particles, is
a measure for the response time of a specific situation going to the equilibrium situation with Ceq. For Ceq
different sediment transport formulations do exist where in XBeach the formulation of Soulsby-van Rijn (1997)
has been implemented; see the manual for the basic formulation and variations.

C.5. Bed updating
Bed updating due to sediment transport is calculated with the following formulation®:

aZb + fmor <a%c GQy> =0

gt 1—p\dx 0dy
With: p = porosity
fmor = Morphological acceleration factor; see Appendix C.7
Zb = Bottom level
q = Sediment transport rate in x- or y-direction

The sediment transport rates gx and gy are depth integrated and are within XBeach determined with the
following formulations, which do not include the optional bed-slope correction factors here:

0 ey, 0) = [ 252 + [% [D ;’—i” and 4y 0oy, 0) =[] + [a"—y [Dah Z_ﬂ]

C.6. Avalanching module

The avalanching approach, as has been introduced in paragraph 3.1.1.1, accounts for the slumping of sandy
material when dune erosion is at stake. When a user-defined critical level is exceeded avalanching takes place
in the model:

When this critical level is reached, the bed-change within one time step is the determined as follows:
) 0z, 0z,
Az, = min <|E| — mcr> Ax, 0.05At |, when x >0

Az, = ( <|az”| )A 005At> h aZ"<0
Zp = max X me, | Ax, —0. , when Ep

Both conditions are always at stake at the same time in neighbouring cells. When the critical slope between
two adjacent grid cells is exceeded, sediment is exchanged between these two cells to the amount that is
needed to bring the slope gradient back to the critical situation.

8 Coastal Dynamics | — lecture notes (J. Bosboom & M. Stive,2012)
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C.7. Morphological acceleration factor

Important for this thesis, since it is used to speed up the computations, is the morphological factor (or short:

morfac). Calculating the bed level changes and updating the bed to its new state takes a lot of time and this is

why the morphological factor is used. As an example, if one uses a morfac of 10, the model runs effectively
only 6 minutes of every hydrodynamic hour including the morphodynamics. The morphological changes are

then multiplied everything with a factor 10, which then save a factor 10 in computation time. The assumption

that the result would be pretty much the same as without the morphological factor holds until a certain extend;
in practice a morfac of 10 normally works fine, but a higher factor is not recommended®®.

59 According experts within Deltares.
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D. XBeach model set-up

D.1. Bathymetrical /topographical data

This paragraph elaborates on the bathymetrical and topographical data used for the Rockaway Peninsula case
study. To obtain high resolution storm characteristics on land with the use of XBeach modelling it is very
important to have topographical and bathymetrical input that is at least as detailed as the desired output.

The US Army Corps of Engineers (USACE) has done multiple LIDAR surveys in order to obtain high-resolution
topo-bathy datasets covering most parts of the Long Island coastline, including Rockaway Peninsula. Although
the density of elevation data seems to be sufficient for the aim of this study, some remarks should be made:

e Some buildings have been deleted and at these locations you find data gaps.

e  For some layers, at some urban areas data are completely absent.

e In the other urban areas buildings, trees, cars and other objects caused trouble in capturing the right
elevations (noise), which has negative effects on the accuracy of the LIDAR data. The datasets are
corrected for this as good as possible, but the topographical profile will always be a bit blurry.

e  Geographical positioning is not as good as one would expect. The location (in the horizontal) of an
object can differ in the order of 100m for different layers.

All this has its effects on the accuracy and therefore outcome of the XBeach modelling. In order to reduce
these negative effects, datasets are combined and corrected where possible. Data gaps are filled in with use of
interpolation routines and information on building height. Next section gives a short elaboration on the final
topo-bathy file and the process of getting there.

The remaining of this section will give specific details on the used datasets and corresponding sources.
2005 USACE - Pre-Sandy

The 2005 topo-bathymetry of the United States Army Corps of Engineers (USACE) is part of a larger survey
campaign. For coastline of Delaware, Maryland, New Jersey, New York, North Carolina and Virginia bed
elevation levels have been measured by the department of Joint Airborne LIDAR Bathymetry Technical Center
of Expertise. This is part of the National Coastal Mapping Program and it is performed on a 5 to 7 year update
schedule®®. According to NOAA, the program uses the CHARTS system, which integrates topographic and
bathymetric LIDAR sensors, a digital camera, and a hyperspectral scanner on a single remote sensing platform.
The data can be downloaded on NOAA’s Digital Coast webpage, either gridded or in xyz. A visualisation of the
coverage in the model domain is given in Fig I, both an overview and zoomed in view. The resolution of the
dataset is 0.25 observations/meter and corresponds to a grid cell size of 2 x 2 m.

60 http://www.csc.noaa.gov/digitalcoast/data/chartstopobathy
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Fig | - Bed levels of the 2005 USACE survey. Upper panel: overview; lower panel: zoomed view of the squared box in the upper panel

It is noticed that where data are available, the dataset is pretty good: high resolution and not too much noise.
However, large and some smaller gaps can be found within the area of interest.

2010 USACE - Pre-Sandy

As part of the same program the ‘2005 USACE — Pre-Sandy’ LIDAR is part of, the 2010 survey looks fairly similar.
One important difference: within the area of interest no data gaps are found. Together with the fact that the
2010 survey has been the last survey carried out before Sandy, it is considered to be the most important
topographical dataset for present study. A visualisation of the coverage in the model domain is given in Fig Il,
both an overview and zoomed view. The resolution of the dataset is 0.25 observations/meter and corresponds
to a grid cell size of 2x 2 m.
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Fig Il - Bed levels of the 2010 USACE survey. Upper panel: overview; lower panel: zoomed view of the squared box in the upper panel

2012 USACE - Post-Sandy

The 2010 USACE survey is not part of the National Coastal Mapping Program and a different system than
CHARTS is used for the measurements, knowing the Coastal Zone Mapping and Imaging LIDAR (CZMIL) system.
The data were collected as a part of the Post Sandy effort to determine the morphological changes due to
Sandy above and below the mean water level in the NY coastal zone. In that perspective, buildings and other
terrain objects are of no interest and have therefore been filtered out as can be seen in Fig Ill. The larger
buildings have been completely removed resulting in data gaps, which correspond to the white spots in the
figure. The resolution of the dataset is 0.25 observations/meter and corresponds to a grid cell size of 2 x 2 m.
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Fig Il - Bed levels of the additional post-Sandy 2012 USACE survey. Upper panel: overview; lower panel: zoomed view of the squared
box in the upper panel
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Coastal Relief Model

Where the LIDAR data are mainly concentrated onshore, the Coastal Relief Model (CRM) bathymetrical dataset
is used for the offshore bed levels. It covers almost the complete US coast; east, west and the Gulf. According
to NOAA®!, the CRM is composed of bathymetrical and topographical sources of U.S. National Ocean
Service Hydrographic Database, the U.S. Geological Survey (USGS), the Monterey Bay Aquarium Research
Institute, the U.S. Army Corps of Engineers, Shuttle Radar Topography Mission (SRTM), and various other
academic institutions. The resolution of the gridded dataset is one observation every 3 arc-second and
corresponds to a grid cell size of about 90 x 90 m, which is considered relatively course compared to the LIDAR
data. However, as could have been expected, no buildings are located in the offshore areas, thus a high
resolution is less important. Moreover, the littoral zone, where most of the morphological impact can be
observed, is included in the LIDAR data as well. This implies that the resistant parts of the coastline, consisting
of dunes and beach fronts, are mostly captured in the previous mentioned datasets.

Coastal Relief Model - bed level above MSL
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Fig IV - Bed levels of the used CRM data.

D.2. Final bathymetrical input

The final bathymetrical input file for XBeach has been established by combining the available datasets, which
are elaborated in Appendix D.1, and some repair and interpolation routines.

To get the best result for every location within the domain a specific dataset should be used based on general
requirements. The following requirements are used to sequence the datasets for the interpolation process:

e  Where buildings are located (practically almost everywhere above Mean Sea level) a grid resolution of
at least 3x3m is required, which gives a preference for datasets with that same resolution or higher.

e Minimal noise and no deletion of buildings and other objects are both preferred.

e Although large onshore morphological changes are not expected in the 10 years before Hurricane
Sandy struck the area, observations which have been recorded closer to Sandy’s lifetime are
preferred.

61 http://www.ngdc.noaa.gov/mgg/coastal/crm.html
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Based on the above mentioned requirements the ‘2010 USACE’ is used for the areas above Mean Sea Level.
Data gaps are filled up with ‘2005 USACE’. The bathymetrical data from the CRM dataset is used for the areas
below Mean Sea Level (MSL), both in the littoral zone (Bay side and Ocean side) as in the deeper parts. The
result is shown in Fig V.
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Fig V - Spatial visualization of the merged topo-bathymetrical dataset

To be sure that the water flows in the XBeach runs where it flowed in reality some obstacles are removed.
Three bridges and corresponding ramps within the model domain have been lowered to surrounding
elevations, knowing Marine Parkway Bridge, the Cross Bay Bridge and the railway bridge in the northeast.
Moreover, the railway viaduct, which is constructed along the coastline and spans almost half of the model
domain, is removed as well. Fig VI illustrates the locations (left) and a zoomed view of one of the repairs (right,
Viaduct removal).
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Fig VI - Two visualisation (up and below) of the removing of the railway viaduct

Seamless transitions between the layers are very important for the sake of present study. Moreover, to extract
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local storm characteristics for every individual building after running the model, it is extremely important to
know where the buildings are located within the grid. This is because if you know which grid cells correspond
to a building, you can determine which grid cells are located directly next to the buildings which is useful for
post processing purposes. The more accurate this spatial distribution is known, the more accurate local storm
conditions can be determined. For a few buildings this can easily be done by looking to the depth file and
expert judgement, but how to do this for thousands of buildings?

D.2.1. Building Perimeter Outlines

To answer the above posited question: a polygon dataset is used which contains the perimeter outlines of
every building within the model domain. This polygon dataset has been obtained from FEMA, but is
constructed by the Department of Buildings of New York City (DOB). It consists of building polygons from every
single building in Queens, including the buildings within the model domain. In Fig VII the perimeter outlines of
the buildings are plotted on top of a Google Maps hybrid map.
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Fig VII - Building perimeter outlines of the DOB polygon dataset on top of a Google Maps layer

The polygons are very useful for post processing purposes, which are discussed in Chapter 0. However,
geographical positioning of the buildings seems to match poorly with the topo-bathymetrical layers, which can
be seen in Fig VIII (left). To overcome these spatial irregularities, all four LIDAR datasets are individually shifted,
rotated and skewed in such a way that all buildings in the LIDAR data (recognized by peaks in the elevation) fall
within their corresponding building polygons. The result is fairly good and can also be seen in Fig VIII (right) as
well.
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Fig VIII - Visualization of the building polygons on top of the merged topo-bathymetrical data. Left: original configuration matches
poorly; right: After shifting of the topographical data a good match is obtained.

In some parts of the model domain, buildings have been removed by the post processing LIDAR routines from
the surveyors or the building height is just lower than it is in reality due to blurriness. Therefore, the building
perimeter outlines are used once again to raise the grid cells that fall within the polygon to a minimum
building height of 7 meters above MSL, way above the maximum surge levels. The result can be seen in Fig IX.
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Fig IX — Visualization of the building polygons on top of the merged topo-bathymetrical data. Left: original file does
not contain all buildings; right: the bathymetrical file has been raised to a minimum height of 7m above MSL.

D.2.2. Non-Erodible Layer

XBeach is designed particularly for sandy coastal systems, capable of calculating morphological impacts due to
storm events to beaches, sand bars, dunes and (barrier) islands. As a default, every (vertical) obstacle in the
bathymetry will be taken as a large pile of sand, subject to erosion during floods. This is also the case for
buildings, while this is certainly not true in reality where (most of) the buildings will not change shape.
Neglecting this will locally cause an overestimation of the erosion and therefore an unrealistic change of
hydraulic properties (feedback loop in time) and will imply a change in sediment/erosion rates in the whole
system.

A solution for this unwanted effect can be found in the non-erodible layer possibility within XBeach. For every
grid cell one has to determine how many meters soil can be eroded away of the initial bed. Putting the
erodible depth values of grid cells within building polygons to zero, these cells practically become non-erodible
(sedimentation is still possible though). The erodible depth values of the other grid cells are set to 100, which
is far more than the expected maximum erosion, which is in the order of a couple of meters. A visualization of
the non-erodible layer is given in Fig IX.
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Fig X - Non-erodible layer plotted with the building perimeter outlines (white) on top of it. Blue is non-erodible, red is erodible.

It should be noted that some obstacles in the bathymetry, other than buildings, could be considered non-
erodible as well. This is for instance true for strong trees. However, since trees and other but similar objects
seem to be scarce within the model domain, these effects are neglected for the sake of simplicity. Moreover,
one could argue that paved streets and other kinds of land usage/coverage should be non-erodible as well or
at least interact differently with water flow than sand. Although the total surface of these areas is certainly not
negligible, the negative effects of omitting differentiation are assumed to be small. This is true because these
(urban) areas, located directly behind the beaches and dunes, mostly showed sedimentation and not erosion
for the case of Hurricane Sandy.

D.3. Grid properties

Grid properties depend on multiple factors. The final grid configuration is established based on four main

requirements:

e Near buildings in the area of interest the grid resolution should be dense enough to locally compute
hydraulic and morphologic properties in order to sufficiently indicate local storm conditions.

e Overall the grid resolution should be dense enough to propagate long waves from the boundaries
into the model domain.

e The domain should be laterally wide enough to prevent significant shadow zone effects within the
area of interest.

e The offshore boundary locations should be located so deep that the assumption of deep water holds.

e The total amount of grid cells should be minimized to decrease run time and expenses.

The latter contradicts the other three requirements, which makes the process subjective to expert judgement.
The following paragraphs elaborate on the choices made and with which expenses they come.

D.3.1. Domain
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The configuration of XBeach models knows few
degrees of freedom. In the XBeach manual (Deltares
2010) a figure of the required configuration can be
seen, which is also used for present study; see Fig XI.

The coordinate reference system (CRS) is chosen to be
global and has to be metric. Conversions from the
locally used systems NAD83 and WGS84 have been
made to the Universal Transverse Mercator (UTM)
reference system. For New York City and surroundings
the UTM zone corresponds to ‘18 T'. Moreover, the
grid should be rotated with angle alpha to have a
coastline alignment perpendicular to the Y-axis. This is
fairly true with an alpha of 113 degrees.
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The total model domain consists of multiple elements. First of all, the area of interest, which consists by itself

of the Rockaway Peninsula, as has been discussed in chapter 2, and the associated littoral zone. This is also the

impacted area by Hurricane Sandy. Secondly, a shadow zone on both sides is determined, of which the size

depends on wave direction during the storm event. During Sandy the waves were mainly coming from the

Southeast, which demands for a slightly larger shadow zone on the Far Rockaway side (East).
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Fig XIll - The area of interest (or area of application) and shadow zones within the XBeach model domain.

Where the littoral zone ends in seaward direction is arbitrary, but it depends on the wave conditions and
depth profile. With the rule of thumb h = Hs/ys® with significant wave height Hs = 10m and breaker index yb=
0.6 the depth where the littoral zone ends is estimated to be about 16m. A breaker index y» of 0.6 is on the
safe side compared to the theoretically based value of McCowan (1894) but less conservative compared to
the findings of Dally in 1985 (Nelson 1991). Moreover the domain should be extended in seaward direction to
a minimum depth. As a rule of thumb® this depth is reached when

¢, 1 1— (k- h)?
—gzz-(1+tanh‘1(k-h)-7( )>20.8

Gy k-h
With: Cg = group speed of the waves
Cp = phase speed of the waves
= water depth

= wave number

With use of the linear wave dispersion relation, a normative wave period of 10.5 m, and some iteration, a
depth of 22 meters appears to be on the save side and is therefore used. The Seaward extension is carried out
with a slope of 1/50.

D.3.2. Grid density

Also the grid density is subject to the requirements posited in the beginning of this section. A higher grid
density gives a higher output resolution, but everything comes with a price: computational time and expenses
will increase. This has been discussed in detail in section 1.2.4.

Multiple measures have been used of in order to decrease computational expenses: smaller area of interest;
smaller computational runtime; less wave bins; and (most effectively) a larger grid cell size. This was necessary,
since else a minimum grid resolution of 3 x 3 m in the urban areas of interest would not be computationally
feasible. In the other areas (near shore, offshore and in the shadow zones) the minimum grid size is based on
the propagation of long waves, which implies a dependency on depth and normative wave periods. As a result
the grid densities in X and Y direction are shown in Fig XIV.

62 From the book Coastal Dynamics | (Bosboom and Stive 2012)
63 Based on expert judgement within Deltares
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Fig XIV - Grid density. Left: in x-direction (cross-normal); right: in y-direction (along shore)

D.4. Surge

As has been discussed in the implementation section 3.2 surge levels during superstorm Sandy are extracted
from the D-FlowFM model, of which some results can be found in Appendix E. The reason for using the D-
FlowFM model is because it’s high resolution and good prediction skills in the Jamaica Bay compared to the
Delft3D - NYB model. It can be concluded that water levels are predicted fairly well with a relatively small
overestimation at the storm peak; 3.2m above MSL for the predicted water level (on the offshore boundary) in
comparison to the gauged water level of 3.2m above MSL (onshore), see Figure 3-19.

The predicted water levels offshore and observed onshore are thus the same, where one would expect higher
onshore water levels due to wind and wave setup. The surge levels are caused by wind, piling up the water
against the coast. It should be noted that wind is taken into account in the D-flowFM and Delft3D models, but
is neglected within the XBeach model. The assumption implies a small underestimation during the peak in the
order of 20-30cm with a fetch length of 2km, an average depth of 8m and maximum wind speeds of about
300km/h. Therefore this might imply a difference in predicted (offshore) and observed (onshore) water levels.

For both the offshore and bay side boundaries one time series of surge levels is used. It should be noted that
XBeach gives the opportunity of working with two series per boundary (on every corner one, so four in total),
which is in general preferable with relatively large domains. The boundary conditions are then interpolated for
every grid cell on the boundary (y-direction). However, when using this option, water levels exploded within
the domain after a few hours computational time for no particular reason. This is why | chose for only one
boundary per side, since that appeared to be stable on the contrary. This simplification has no further
disadvantages for present study, since water levels at both corners were pretty much the same for the case of
Sandy, see Fig XV.
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Bayside boundary - Water levels during Sandy at three different locations
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Fig XV - Alongshore variation in water level at the boundary locations. Upper panel: Bay side; lower panel: offshore

D.5. Waves

Comparable to the water level boundary conditions, wave boundary conditions have been extracted from
another model in which Xbeach is nested. The wave conditions are coming from the Delf3D - NYB model as has
been discussed in subsection 3.2.1. The Delft3D runs were executed parallel with SWAN and every half hour
2D energy wave spectra have been produced for the offshore boundary. Xbeach is capable of handling the
associated ‘.sp2’ files as input. A visualization of such a wave spectrum is given in Fig XVI.

Energy density spectrum

Energy (J/m2/Hz/degr)

300

frequency spreading (Hz)

directional spreading (degr)

Fig XVI - Energy density spectrum produced by SWAN during the peak of the storm

Wave conditions are imposed only at the offshore boundary and not on the bay side boundary. It is assumed
that waves are relatively small in the bay, due to the shallowness of the bay (bottom friction absorbs wave
energy) and the fact that it is sheltered by the Rockaway Peninsula.

Comparison predictions and buoy — Based on the 2D spectra, significant wave height Hs and significant wave
period Tmo:z can be determined. Both have been done for hurricane Sandy at the exact same location as
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NOAA's buoy 44065. A comparison can be found in Fig XVII.

Hs over time - red: observed, blue: Delft3D
T T T

Significant wave height Hs (m)

0 I \
12010729 D0:00 12010/29 06:00 1210520 12.00 12710729 18:00 12010730 00:00 12710730 05:00
time

Tm01 over time - red: observed, blue: Delft3D

1)

Significant wave period Tmo1
o
T
\\g

| |

0

1210/29 00:00 12/10/28 D600 12/10/29 12:00 12/10/2918:00 12/10/30 D0:00 12/10/30 06:00
time

Fig XVII - Wave properties significant wave height (upper) and significant wave period (lower panel) during the storm at the offshore
boundary. Red: observed; blue: modelled with Delft3D

It can be seen that Delft3D/SWAN underestimates the significant wave height with a factor 1.6 during the
storm peak and a factor 1.4 for the significant wave period. This is a significant underestimation and no
particular reason has been found yet. However, it is certainly not negligible and two solutions have been
proposed:

1. Improve: this implies a change in whitecapping formulations and coefficients. Larger wind speeds are
not preferred, since water level predictions have been proved to be fairly good.

2. Compensate: increasing of the energy in the 2D wave spectra so that Hs and Tmo1 are linearly scaled
with a factor 1.6 and 1.4 respectively.

Three different whitecapping formulations within SWAN, knowing van der Westhuysen, Komen and Rogers
(see also the XBeach manual), have been tried and all gave comparably results. This is why option two has
been chosen, of which the result can be seen in Fig XVIII.
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Hs over time - red: observed, blue: Delft3D, green: scaled Delft3D
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Fig XVIII- Wave properties significant wave height (upper) and significant wave period (lower panel) during the storm at the offshore
boundary. Red: observed; blue: non-scaled simulation with Delft3D; green: scaled simulation

Next to the scaled prediction and observation of the significant wave heights and periods at Buoy 44605,
another graph is added, which presents the scaled prediction at the boundary location. It should be noted that
due to the linearity of the scaling process storm conditions are probably slightly overestimated at the tails of
the storm. The effects to total damage and morphological changes of this overestimation are assumed to be
small, since most of the damage will be caused by the peak. Therefore these effects are neglected.

In Fig XIX significant wave height and period are graphed for both offshore corners. No large alongshore
variations in wave conditions are observed and this is why only one time series of sp2 files is used. This is in
analogy with the imposed water level boundaries (appendix D.4).

Significant wave height Hs per time interval - for both corners
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Fig XIX - Wave properties significant wave height (upper) and significant wave period (lower panel) during the storm at the two
offshore model domain corners

During the scaling of the ‘.sp2’ files the shape of the wave spectra has not been changed. This is very important,
because the directional spreading is assumed to be modeled correctly. In Fig XX the energy density spectrum
over time and wave direction during the storm is displayed. Directions are in degrees and nautical oriented. An
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upper and lower bound is given (red) between which 90% of the energy is situated, together with the

dominant wave direction.
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Fig XX - Energy per wave direction bin (10 degrees per bin) during hurricane Sandy. Betweeen the red lines 90% of the energy is situated.

During Sandy the dominant wave direction slightly changed from 120 to 140 nautical degrees, which

correspond both more or less to winds coming from the South-East. The two 90% energy-limits provide

bounds for the XBeach simulation. At any time
during the whole simulation more than 90% of
the wave energy is found between -10 and 190
nautical degrees.

Moreover, it should be noted that all energy
above 250 and below 70 degrees is oriented
offshore and will never reach a normal straight
coast, which is the case for present study. This
gives two limits, between which most of the
effective energy lays, knowing 70 and 190
degrees; see Fig XXI. Xbeach solves numerical
computations for every predefined wave bin and
with wave bin of 20 degrees (based on expert
judgment) six wave bins are used, instead of
(180/2). This
computational expenses in the order of 33%.

nine implies a saving of

Fig XXI - Determining effective wave directions
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Additional model input, different from everything discussed above, is given in this paragraph. Morphological
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parameters and sediment roughness coefficients are chosen XBeach default. This implies a Chezy roughness
coefficient of 0.17, based on a flow friction coefficient (cf) of 0.003 and C = sqrt(g/cf). Comparable values have
been used in the Delft3D and D-flowFM models. A morphological factor ‘Morfac’ of 10 is used to speed up the
process, which means that bed level changes are once in 10 time steps computed. This is another way to
reduce computations expenses (Deltares 2010). In Fig XXII a scatter plot of the morphological change is given
between two identical runs except for the morphological factor. One has a factor of 10, the other one of 1.
There are definitely differences in bed level change; especially on the horizontal and vertical axes of the scatter
plot strange results can be found (see red arrows). These differences can be explained by unnatural
sedimentation/erosion spots offshore and in the shadow zone (see red circles). However, for the majority of
the onshore cells (with colors corresponding to 0 or higher in the scatter plot) the results are pretty much
equal. Therefore, a morphological factor of ten seems to be justifiable®.
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Fig XXII - upper panels: absolute and relative bed level changes; lower panel: scatter plot - morfac 1 vs morfac = 10

Since XBeach’s numerical schemes are explicit, the time step depends on the Courant—Friedrichs—Lewy (CFL)
condition, knowing:
u- At

Ax S Cmax

54 It is not excluded that with other grid cell properties the differences will be larger (or smaller).
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With: C = Courant number

= Velocity
At = Time step
Ax = One-dimensional grid dimension
Crmax = Maximum Courant Number

The default in Xbeach for the maximum courant number is chosen to be 0.7 instead of the absolute max of 1
as criterion for stability. Output however is not derived for every time step, but every 10min for global
variables and every 30min for mean variables. The desired output variables depend on their use for the
Bayesian Network and are therefore elaborated in the implementation section 3.2.
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E. Delft3D and D-Flow FM model set-up

E.1.

Delft3D - US East Coast model

MDW file MDF file
[WaveFilelnformation] Ident #Delft3D-FLOW .03.02 3.39.26#
FileVersion = 02.00 Filcco #usn.grd#
Fmtcco #FR#
[General] Grdang 0.0000000e+00
OnlylnputVerify = false Filgrd #usn.enc#
SimMode = non-stationary Fmtgrd #FR#
TimeStep = - MNKmax 300232 1
DirConvention = nautical Thick 1.0000000e+02
ReferenceDate = 2012-01-01 Fildep #usn.dep#
TimePoint = 0.0000000e+00 Fmtdep #FR#
WaterLevel = 0.0000000e+00 Itdate #2012-01-01#
XVeloc = 0.0000000e+00 Tunit #M#
YVeloc = 0.0000000e+00 Tstart 4.2480000e+05
WindSpeed = 0.0000000e+00 Tstop 4.3677000e+05
WindDir = 0.0000000e+00 Dt 5.0000000e+00
Tzone 0
[Constants] Subl # W#
Gravity = 9.8100000e+00 Sub2 # W#
WaterDensity = 1.0000000e+03 Wnsvwp #N#
NorthDir = 9.0000000e+01 Whndint #Y#
MinimumDepth = 5.0000000e-02 Filwu #ncep_nam_sandy.amu#
Filwv #ncep_nam_sandy.amv#
[Processes] Filwp #ncep_nam_sandy.amp#
GenModePhys = 3 Zeta0 0.0000000e+00
WaveSetup = false uo [l
Breaking = true VO [l
BreakAlpha = 1.0000000e+00 Filbnd #usn_wl.bnd#
BreakGamma = 8.0000000e-01 Fmtbnd #FR#
Triads = false Filana #usn_wl.bca#
TriadsAlpha = 1.0000000e-01 Fmtana #FR#
TriadsBeta = 2.2000000e+00 Ag 9.8100000e+00
BedFriction = jonswap Rhow 1.0000000e+03
BedFricCoef = 6.7000000e-02 Alph0 8]
Diffraction = false Tempw = 1.5000000e+01
WindGrowth = true Salw = 3.1000000e+01
WhiteCapping = Komen Rouwav = # #
Quadruplets = true Wstres = 1.0000000e-03 0.0000000e+00 3.0000000e-03
Refraction = true 3.0000000e+01 1.5000000e-03 5.0000000e+01
FreqShift = true Rhoa 1.0000000e+00
WaveForces = radiation stresses Betac 5.0000000e-01
Equili #Y#
[Numerics] Tkemod # #
DirSpaceCDD = 5.0000000e-01 Ktemp 0
FreqSpaceCSS = 5.0000000e-01 Fclou 0.0000000e+00
RChHsTmO01 = 2.0000000e-02 Sarea 0.0000000e+00
RChMeanHs = 2.0000000e-02 Temint #Y#
RChMeanTmO1 = 2.0000000e-02 Roumet #M#
PercWet = 9.0000000e+01 Ccofu 2.0000000e-02
MaxIter = 5 Ccofv 2.0000000e-02
Xlo 0.0000000e+00
[Output] Vicouv 1.0000000e+00
TestOutputLevel = 0 Dicouv 1.0000000e+00
TraceCalls = false Htur2d #N#
UseHotFile = true Irov 0
MapWritelnterval = 6.0000000e+01 Iter 2
WriteCOM = true Dryflp #HYESH
COMwritelnterval = 3.0000000e+01 Dpsopt #MEAN#
Int2KeepHotfile = 7.2000000e+02 Dpuopt #MEAN#
AppendCOM = false Dryflc 1.0000000e-01
LocationFile = nyc.loc Dco -9.9900000e+02
WriteTable = false Tlfsmo 6.0000000e+01
WriteSpec1D = false ThetQH 0.0000000e+00
WriteSpec2D = true Forfuv #N#
Forfww #N#
[Domain] Sigcor #N#
Grid = usn_swn.grd Trasol #Cyclic-method#
BedLevelGrid = usn_swn.grd Momsol #Cyclic#
BedLevel = usn_swn.dep Filsta #usn.obs#
DirSpace = circle Fmtsta #FR#
NDir = 36 SMhydr #YYYYY#H
StartDir = 0.0000000e+00 SMderv #YYYYYY#H
EndDir = 3.6000000e+02 SMproc #YYYYYYYYYY#
NFreq = 24 PMhydr H#YYYYYY#
FregMin = 5.0000000e-02 PMderv #YYY#
FregMax = 1.0000000e+00 PMproc #YYYYYYYYYY#
FlowBedLevel = 1 SHhydr #YYYY#
FlowwaterLevel = 1 SHderv H#YYYYY#
FlowVelocity = 1 SHproc #YYYYYYYYYY#
Flowwind = 1 SHflux #YYYY#
Output = 1 PHhydr #YYYYYY#
PHderv #YYY#
PHproc #YYYYYYYYYY#
PHflux #YYYY#
Online #N#
Wagmod #N#
WaveOL #Y#
Prhis 0.0000000e+00 0.0000000e+00 0.0000000e+00
Flmap 4.2480000e+05 3.0000000e+01 4.3677000e+05
Flhis 4.2480000e+05 1.0000000e+01 4.3677000e+05
Flpp 4.2480000e+05 3.0000000e+01 4.3677000e+05
Flrst = 0.0000000e+00
AirOut = #Y#
Pavbnd = 1.0200000e+05
WaveOL =
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E.2.

MDW file

Delft3D - New York Bight model

[WaveFilelnformation]
FileVersion

[General]
OnlylnputVerify
SimMode
TimeStep
DirConvention
ReferenceDate
TimePoint
WaterLevel
XVeloc
YVeloc
WindSpeed
WindDir

[Constants]
Gravity
WaterDensity
NorthDir
MinimumDepth

[Processes]
GenModePhys
WaveSetup
Breaking
BreakAlpha
BreakGamma
Triads
TriadsAlpha
TriadsBeta
BedFriction
BedFricCoef
Diffraction
WindGrowth
WhiteCapping
Quadruplets
Refraction
FreqShift
WaveForces

[Numerics]
DirSpaceCDD
FreqSpaceCSS
RChHsTmO1
RChMeanHs
RChMeanTmO01
PercWet
MaxIter

[Output]
TestOutputLevel
TraceCalls
UseHotFile
MapWritelnterval
WriteCOM
COMWritelnterval
Int2KeepHotfile
AppendCOM
LocationFile
WriteTable
WriteSpec1D
WriteSpec2D

[Domain]
Grid
BedLevelGrid
BedLevel
DirSpace
NDir
StartDir
EndDir
NFreq
FregMin
FregMax
FlowBedLevel
FlowWaterLevel
FlowVelocity
FlowWind
Output

[Boundary]
Name
Definition
OverallSpecFile

02.00

simulation run
non-stationary
30-

nautical
2012-01-01
0.0000000e+00
0.0000000e+00
0.0000000e+00
0.0000000e+00
0.0000000e+00
0.0000000e+00

9.8100000e+00
1.0000000e+03
9.0000000e+01
5.0000000e-02

3

false

true
1.0000000e+00
8.0000000e-01
false
1.0000000e-01
2.2000000e+00
jonswap
6.7000000e-02
false

true

Komen

true

true

true

dissipation

5.0000000e-01
5.0000000e-01
2.0000000e-02
2.0000000e-02
2.0000000e-02
9.0000000e+01
5

0

false

true
3.0000000e+01
true
3.0000000e+01
7.2000000e+02
false

lisl.loc

false

false

true

nyc_swn.grd
nyc_swn.grd
nyc_swn.dep
circle

36
0.0000000e+00
3.6000000e+02
24
5.0000000e-02
1.0000000e+00
1

1
1
1
1
nyc.sp2

fromsp2file
nyc.sp2
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E.3. D-Flow FM - New York Bight model

MDU file

# Generated on 15:35:20, 10-10-2013
# Deltares, D-Flow FM Version 1.1.54.24756, Nov 08 2012, 02:02:12

[model]

Program = D-Flow FM

Version = 1.1.90.31666

AutoStart = 0 # Autostart simulation after loading MDU or not (0=no, 1=autostart, 2=autostartstop).

[geometry]

NetFile newyork_net.nc #*_net.nc

BathymetryFile #*xyb

WaterLevlniFile # Initial water levels sample file *.xyz

LandBoundaryFile landboundary.ldb # Only for plotting

ThinDamFile #*_thd.pli, Polyline(s) for tracing thin dams.

ThindykeFile #*._tdk.pli, Polyline(s) x,y,z, z = thin dyke top levels

ProflocFile #*_proflocation.xyz) x,y,z, z = profile refnumber

ProfdefFile #*_profdefinition.def) definition for all profile nrs

ManholeFile #*

WaterLevini 0. # Initial water level

BotLevUni -5. # Uniform bottom level, (only if Botlevtype>=3, used at missing z values in netfile

BotLevType = 3 # 1 : Bottom levels at waterlevel cells (=flow nodes), like tiles xz, yz, bl , bob = max(bl left, bl right)
# 2 : Bottom levels at velocity points (=flow links), Xu, yu, blu, bob = blu, bl = lowest connected link
# 3 : Bottom levels at velocity points (=flow links), using mean network levels xk, yk, zk bl = lowest connected link
# 4 : Bottom levels at velocity points (=flow links), using min network levels xk, yk, zk bl = lowest connected link
#5 : Bottom levels at velocity points (=flow links), using max network levels xk, yk, zk bl = lowest connected link

PartitionFile #*_part.pol, polyline(s) x,y

AnglLat 30. # Angle of latitude (deg), O=no Coriolis

Conveyance2D = 3 #-1:R=HU,0:R=H, 1:R=A/P, 2:K=analytic-1D conv, 3:K=analytic-2D conv

[numerics]

CFLMax = 0.7 # Max. Courant nr.

CFLWaveFrac = 0.1 # Wave velocity fraction, total courant vel = u + cflw*wavevelocity

AdvecType = 3 # Adv type, 0=no, 1= Wenneker, qu-udzt, 2=1, q(uio-u), 3=Perot g(uio-u), 4=Perot q(ui-u), 5=Perot q(ui-u) without itself

Limtypmom = 4 # Limiter type for cell center advection velocity, 0=no, 1=minmod,2=vanLeer,3=Kooren,4=Monotone Central

Limtypsa 4 # Limiter type for salinity transport, 0=no, 1=minmod,2=vanLeer,3=Kooren,4=Monotone Central

Icgsolver = 1 # Solver type , 1 = sobekGS_OMP, 2 = sobekGS_OMPthreadsafe, 3 = sobekGS, 4 = sobekGS + Saadilud

Hdam = 0. # Threshold for minimum bottomlevel step at which to apply energy conservation factor i.c. flow contraction

[physics]

UnifFrictCoef 65. # Uniform friction coefficient, 0=no friction

UnifFrictType 0 # 0=Chezy, 1=Manning, 2=White Colebrook, 3=z0 etc

Vicouv 1. # Uniform horizontal eddy viscosity

Smagorinsky 0. # Add Smagorinsky horizontal turbulence : vicu = vicu + ( (Smagorinsky*dx)**2)*S, e.g. 0.1

Elder 0. # Add Elder contribution 1 vicu = vicu + Elder*kappa*ustar*H/6), e.g. 1.0

irov 0 # O=free slip, 1 = partial slip using wall_ks

wall_ks 0. # Nikuradse roughness for side walls, wall_zO=wall_ks/30

Vicoww 0. # Uniform vertical eddy viscosity

TidalForcing 1 # Tidal forcing (0=no, 1=yes) (only for jsferic == 1)

Salinity = 0 # Include salinity, (0=no, 1=yes)

[wind]

ICdtyp = 3 # (), Cd = const, 2=S&B 2 breakpoints, 3= S&B 3 breakpoints

Cdbreakpoints = 1.0000000e-02 3.0000000e-03 1.5000000e-03
#(), e.g.0.00063 0.00723

Windspeedbreakpoints = 0.0000000e+00 2.5000000e+01 5.0000000e+01
#(m/s), e.q. 0.0 100.0

[time]

RefDate 20120101 # Reference date (yyyymmdd)

Tunit #M# # Time units in MDU (H, M or S)

DtUser 300. # User timestep in seconds (interval for external forcing update & his/map output)

DtMax 30. # Max timestep in seconds

Dtinit = 1 # Initial timestep in seconds

AutoTimestep = 0 # Use CFL timestep limit or not (1/0)

TStart = 4.2912000e+05 # Start time w.r.t. RefDate (in TUnit)

TStop = 4,3677000e+05 # Stop time w.r.t. RefDate (in TUnit)

[restart]

RestartFile = # Restart file, only map, hence: *_map.nc

RestartTime = 20020101000000 # Restart time (yyyymmddhhmmss)

[external forcing]

ExtForceFile = boundaries.ext #*.ext

[output]

ObsFile newyork.xyn # *.xyn Coords+name of observation stations.

CrsFile #*_crs.pli Polyline(s) definining cross section(s).

HisFile # *_his.nc History file in NetCDF format.

HisInterval 600. # Interval (s) between history outputs

XLSInterval 0. # Interval (s) between XLS history

FlowGeomFile 1200. #*_flowgeom.nc Flow geometry file in NetCDF format.

MapFile #*_map.nc Map file in NetCDF format.

Mapinterval 3600. # Interval (s) between map file outputs

Rstinterval 0. # Interval (s) between map file outputs

WagFileBase run # Basename (without extension) for all Delwag files to be written.

Wagnterval = 0. # Interval (in s) between Delwaq file outputs

StatsInterval = 0. # Interval (in s) between simulation statistics output.

SnapshotDir = # Directory where snapshots/screendumps are saved.
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F.Delft3D and D-Flow FM model results

In this appendix some results of the Delft3D and D-Flow FM models are given, considering the propagation of
wave information and surge. This is in addition to the brief descriptions of the models in paragraph 0. First the
propagation of storm tide (surge + astronomical tide) is graphed in space by using a few snapshots. This is
followed by a comparison of the simulated storm tide to the observations of water level gauging stations.
Subsequently the same is done for waves by considering the significant wave height and peak wave period. It
must be said that no conclusions about the results are drawn here.

F.1. Storm Tide Propagation

Spatial Visualization of the Simulated Storm Tides
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F.2.  Storm Tide- Observed versus Simulated

Location of the water level gauging stations
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F.3. Wave Propagation

Spatial Visualization of the Simulated Waves
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F.4. Waves- Observed versus Simulated

Location of the wave recording buoys.
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F.4.1. Significant Wave Height
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F.4.2. Peak Wave Period
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G.XBeach model results - multiple runs

3x3m2, scaled waves 5x5m2, scaled waves
9000 ool
8000 8000
7000 7000
w [— 5 w
% 6000 % 6000
8 8
£ 5000 £ 5000
= B 45 £ L
E E
S, 4000 S, 4000
£ £
e £
S 3000 S 3000
= c

2000 2000

1000 1000

0 i k) i 0 g i
0 2000 4000 0 2000 4000
easting (m in local CRS) easting (m in local CRS)
9x9m?2, scaled waves 5x5m2, non-scaled waves
9000 ' 9000
7000 7000
%) %) i
% 6000 % 6000
I ©
o (&}
2 5000 2 5000
£ L 445 £ L
£ E
S, 4000 S, 4000
£ c
= =
o 3000 o 3000
[ fe

2000 2000

1000 1000

i
0 o 3 0
0 2000 4000 0 2000 4000
easting (m in local CRS) easting (m in local CRS)

4.5

4.5

XBeach Results - Maximum storm tide including long waves (m ref. to NAVD88)

Impact Modelling of Hurricane Sandy on the Rockaways

| 152



3x3m2, scaled waves 5x5m2, scaled waves
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3x3m2, scaled waves

5x5m2, scaled waves
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3x3m2, scaled waves 5x5m2, scaled waves
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XBeach Results - Scatter plot: Predicted vs Observed
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H. Reference studies - Bayesian Belief
Networks

In the field of Coastal Engineering some papers have been written about the application of BBNs, for instance
for the prediction of dune erosion impact (Heijer, 2013) and the prediction and assimilation of surf-zone
processes (Plant & Holland, 2011).

Den Heijer investigated the usefulness of BBN’s in assessments for the safety of dune coasts. The BBN model,
constructed within the software package Netica, predicts dune erosion impact based on hydraulic boundary
conditions and a number of cross-shore profile indicators like crest height and beach slope. The configuration
of the network can be seen in Fig XXIII.
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Fig XXIII - Overview of the Bayesian Network (source: Den Heijer, 2013)

In both left and right side of the figure the variables (green boxes) and dependency relations (arrows) are
shown. The Network is strained with data obtained from empirical dune erosion simulations with the model
Duros+. Comparing the results of the BBN predictions and the Duros+ predictions a skill up 0.88 is found. In
this way the BBN can be used as a substitute for the Duros+ model, which has the advantage that not only
process knowledge can be integrated in impact assessments but also the accompanying uncertainties. Another
advantage can be found in the fact that predictions can be performed really fast, which is beneficial in
emergency forecasting. Den Heijer also found limitations for the usage of BBNs: “the model cannot be used
out of the range of the training data. A BBN is only capable of interpolating and extrapolating its training data”.

Plant and Holland demonstrated how a Bayesian Belief Network can be used to provide predictions of the
evolution of wave-height in the surf-zone given with sparse boundary condition-data from two buoys. They
show that predictions of a detailed geophysical model of the wave evolution are reproduced accurately using a
Bayesian approach, resulting in a forward prediction skill of 0.83. Moreover, uncertainties in the model inputs
were accurately transferred to uncertainty in output variables. Observed and simulated data at three places in
the surf-zone (at a depth of ~5m, ~4m and ~1.5m) were coupled in the Bayesian net; see Fig XXIV and Fig XXV.
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In this way a BBN has been created which was able to reproduce the detailed results obtained from a forward
model of surf-zone wave evolution. The cross-shore profile of Fig XXV also showed depth variations in along
shore direction, which was included as uncertainty in the input parameters in a second test. This caused an
increase of uncertainty in the output data which was in better agreement with reality than without including
that uncertainty. Plant and Holland state that the usage of BBN’s has several advantages: “It significantly
reduces the dimensionality of the problem, compared to detailed models; uncertainty estimates are made for
all predictions, and it is possible to estimate model parameters simultaneously with making the wave-height
prediction.”

More examples can be found in other fields, for instance the master thesis ‘Using Dynamic Nonparametric
Bayesian Belief Nets (BBNs) to Model Human Influences on Safety’ (Jager, 2013). These papers show that
usage of Bayesian Belief Networks can lead to powerful tools, as well as insight into their limitations.
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I. Tools of Analysis

[.1.Sensitivity Analysis

Sensitivity analysis is the study of appointing the uncertainty of a prediction or outcome to the different source.
The larger the sensitivity of an indicator is, the larger the dependency and more important the variable is for
the damage prediction.

Quantifying sensitivity between variables is straight forward for numerical variables, but not for non-numerical
variables like damage based on the ImageCat dataset (Affected, Minor, Major and Destroyed). In order to say
something about the sensitivity, extremes are studied and compared. For instance the conditional PMF’s of
the variable damage conditioned on the 10% lowest and 10% highest inundation depth observations are
compared; see Fig XXVI.
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Fig XXVI - Marginal (green) and conditional PMF's of damage; conditioned on either the 10% highest or 10% lowest inundation depths

I.2.(Log-)Likelihood Ratio Test

An approach to testing the Bayesian-network prediction is to compare it to a competing model. One such
competing model is for instance taking the marginal CPT (based on all the trainings data) as the prediction. In
the test the log-likelihood of the prediction is compared to the log-likelihood of the marginal probability,
according to:

P(Fi|5f)pi= 0;
R T

LLR; = log {p(Fil@-)Fi: 0]_} —log {P(F)r=0,}

Here F is the forecast and O is the observed on which is conditioned. If the log-likelihood ratio is positive, the
model shows predictive skill since the prediction is better than guessing randomly based on the marginal
distribution; if the ratio is negative the prediction is worse. In the Fig XXVII an example is given for a damage
prediction. Marginal and conditional PMF both give a competing prediction for the observed (which is “Major

Impact Modelling of Hurricane Sandy on the Rockaways I 160



damage” in this case). The corresponding Log-likelihood ratio LLR = log,,{0.28} — log,,{0.05} = 2.4429 is
positive, since the conditioned model gives a better prediction than the marginal distribution.
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09+ I Conditional Model |
na _
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Probability (-)
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\ Actually observed

Fig XXVII — Example - determining input for the Log-Likelihood ratio

By summing the LLR’s of all hindcast events the LLR test score can be determined. Therefore, if you consider
more hindcast events, the score will increase (or decrease in case of a negative score). So what is this score
worth? A way to answer that question is by looking at the perfect check. The perfect check is the score of the
LLR test in which the conditional PMF has a 100% probability for the actual observed. The log-likelihood ratio
for the example of above then becomesLLR = log,,{1.00} — log,,{0.05} = 2.9957. Again, the sum of the
LLR’s of all hindcast events results in the LLR test score. Relative to this LLR test score of the perfect check
different configurations can be compared.

Impact Modelling of Hurricane Sandy on the Rockaways I 161



J. FEMA Damage Classification description

Table 6-1 - Description of the Damage Classification which is used for the ImageCat Impact Analysis (source: FEMA)

FEMA DAMAGE CLASSIFICATION

VISIBLE IMAGERY BASED CLASSIFICATION

INUNDATION ASSESSMENTS

DAMAGE OBSERVED Roof Roof Collapsed Other
LEVEL DAMAGE Covering | Diaphragm Walls Considerations

Affected | Generally superficial Up to None None Gutters and/or Field Verified Flood Depth (or Storm
damage to solid 20% awning; loss of Surge): >0 to 2 feet relative to the ground
structures (loss of tiles vinyl or metal kurface at structure. Depth damage relationships
or roof shingles); some siding Imay vary based on building or foundation type,
mobile homes and light hs well as duration or velocity of flood event.
structures damaged or
displaced.

Minor Solid structures sustain | >20% Up to20% | None Collapse of Field Verified Flood Depth (or Storm Surge): 2
exterior damage (e.g., chimney; garage  [to 5 feet relative to the ground surface at
missing roofs or roof doors collapse Ktructure. Depth damage relationships may
segments); some mobile inward; failure of |vary based on building or foundation type, as
homes and light porch or carport  well as duration or velocity of flood event.
structures are destroyed,
many are damaged or Mobile homes
displaced. could be partially

off foundation

Major Wind: Some solid - >20% Some Mobile home Field Verified Flood Depth: Greater than 5 feet,
structures are destroyed; exterior could be . .
most sustain exterior wallsare | completely off ~ [modeling observed, relative to the ground
and interior damage collapsed. | foundation —if ~ purface at structure, and not high rise
(roofs missing, interior appears to be construction. Dgpth damage relat_lonshlps may
walls exposed); most repairable. \ary based on building or foundation type, as
mobile homes and light Well as duration or velocity of flood event.
structures are destroyed.

Storm Surge: Extensive Some Major is the general category where the onset
structural damage exterior of Substantial Damage (>50% of building
and/or partial collapse walls are alue) as defined by the National Flood

due to surge effects. collapsed Insurance Program (NFIP) may occur.

Partial collapse of
exterior bearing walls.
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K. PLUTO - Data Description®>

Field Name:
Format:
Data Source:

Description:

K.1. Tax Base Value

ASSESSED VALUE, TOTAL (AssessTot)
Numeric - 11 digits (99999999599)
Department of Finance - RPAD Master File

The assessed total value for Fiscal Year 2014.

The Department of Finance calculates the tentative assessed value by
multiplying the tax lot's estimated full market value by a uniform percentage
for the property's tax class.

Fig XXVIII — Total Assessed Value description from ‘PLUTO data Dictionary’ (Source: DOB NYC)

K.2. Residential Units per Building

The indicator ‘residential units per building’ is determined by the ratio of residential units per lot and buildings

per lot.
Field Name: UNITS, RESIDENTIAL {UnitsRes) Field Name:
Format: Numeric - 5 digits (99999) Format:
Data Source:  Department of Finance - RPAD Master File Data Source:
Description:  The sum of residential units in all buildings on the tax lot.
Description:

If there are no residential units in the tax lot, this field will be zero.

NOTE: Hotels/motels, nursing homes and SROs do not have residential
units, while boarding houses do have residential units.

BUILDINGS, NUMBER OF (NumBldgs)
Numeric - 5 digits (99999)

Department of City Planning - based on data from:
Department of City Planning - Geosupport System
Department of Finance - RPAD Master File

The number of buildings on the tax lot.

With few exceptions, buildings are permanent structures. If an assessor
values a semi-permanent structure, such as a parking attendants building,
thenit is considered a building.

NUMBER OF BUILDINGS does not include extensions.

Fig XXIX — Residential Units and Number of Buildings description from ‘PLUTO data Dictionary’ (Source: DOB NYC)

Field Name:
Format:

Data Source:

Description:

K.3. Building Class

BUILDING CLASS (BldgClass)

Alphanumeric - 2 characters Fig XXX - Building Class description
Department of City Planning - based on data from: from ‘PLUTO data Dictionary’ (source:
Department of Finance - RPAD Master File DOB NYC)

A code describing the major use of structures on the tax lot.

Building Classes were developed and are assigned by the Department of
Finance with the exception of Q0 and the mixed use condominium building
classes that were developed by the Department of City Planning (DCP). Q0
was assigned by DCP to government owned tax lots zoned as either Park or
ParkNYS that are predominantly used as open space. The mixed use
condominium building classes were assigned by DCP to condominiums that
contain a mix of residential and commercial units or more than one type of
residential or commercial unit

If there are multiple uses or buildings on a tax lot, the building class describes
the use with the greatest square footage on the tax lot. Several building
classes describe mixed use buildings (combinations of residential and office
or retail uses).

See Appendix C - Building Class Codes for codes and decodes.

55 The descriptions are directly copied out of the PLUTO Data Dictionary (2013)
http://www.nyc.gov/html/dcp/pdf/bytes/pluto_datadictionary.pdf
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Fig XXXI - Appendix C from ‘PLUTO data Dictionary’ (source: DOB NYC)
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ONE FAMILY DWELLINGS D. ELEVATOR APARTMENTS
Cape Cod 0. Co—op Conversion From Loft/Warehouse
Two Stories Detached (Small or Mod 1. i-fireproof (Without Stores)
Size, With or Without Attic) 2. Adistsin Resudence
One Story (Permanent Living Quarters) 3.  Fireproof (Standard Construction Without
Large Suburban Residence Stores)
City Residence 4.  Cooperatives (Other Than Condominiums)
Attached or Semi-Detached 5. Converted
Summer Cottages/Mobile Homes/Trailers 6.  Fireproof - With Stores
Mansion Type 7. Semi-Fireproof With Stores
Bungalow Colony/Land Coop Owned 8. Luxury Type
Miscellaneous (Old Buildings, Attached & 9. Miscellaneous
Semi-Detached Frame Houses, etc.)

E. WAREHOUSES
TWO FAMILY DWELLINGS 1. Fireproof
Brick 3. Semi-Fireproof
Frame 4. Frame, Metal
Converted (From One Family) 6. Governmental Warehouses
Miscellaneous (City Type, Old, etc.) 7. Warehouse, Self Storage

9. Miscellaneous
WALK UP APARTMENTS
Three Families F. FACTORY AND INDUSTRIAL
Over Six Families Without Stores BUILDING!
Five to Six Families 1. Heavy Manufadunng (Fireproof)
Four Families 2. Special Construction (Printing Plant, etc.,
Old Law Tenements Fireproof)
Converted Dwelling or Roommg House 4. Semi-Fireproof
Cooperative (Other Than Cond 5. Light Manufacturing
Over Six Families With Stores 8. Tank Fams
Co-Op Conversion From Loft/\W\ 9. Miscell
Garden Apartments/Mobile Home
Park/Trailer Park
GARAGES AND GASOLINE STATIONS K. STORE BUILDINGS (TAXPAYERS
Residential Tax Class 1 Garage INCLUDED)
Garage - Two or More Stories 1. One Story Store Building
Garage - One Story (Semi-Fireproofor 2. Two Story or Store and Office
Fireproof) 3. Department Stores, Multi-Story
Garage and Gas Station Combined 4. Stores, Apartments Above
Gas Station - With Enclosed Lubrication 5. Diners, Franchised Type Stand
Plant or Workshop 6. Shopping Centers With Parking Facilities
Gas Station - Without Enclosed Lubrication7.  Funeral Home
Plant or Workshop 9. Miscellaneous
Licensed Parking Lot
Unlicensed Parking Lot L. LOFT BUILDINGS
Garage With Showroom 1. Over Eight Stores (Mid-Manhattan Type
Miscellaneous With or Without Stores)

Fireproof - Loft and Storage Type (Without

HOTELS Retail Stores)
Luxury Type - Built Prior to 1960 Semi-Fireproof

Luxury Type - Built After 1960
Transient Occupancy-Midtown Mn Area
Motels

Private Club, Luxury Type

Apartment Hotels

Apartment Hotels-Co-op Owned
Dormitories

Miscellaneous

HOSPITALS AND HEALTH

Hospitals, Sanitariums, Mental Institutions
Infirmary

Dispensary

Staff Faciliies

Health Center, Child Center, Clinic
Nursing Home

Adult Care Facility

Miscellaneous

THEATRES

Art Type (Seating Capacity Under 400
Seats)

Art Type (Seating Capacity Over 400
Seats)

Motion Picture Theatre With Balcony
Legitimate Theatres (Theatre Sole Use of
Building)

Theatre as Part of Building of Other Use
T.V. Studios

Off-Broadway Type

Multi-Motion Picture Theatre
Miscellaneous
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With Retail Stores (Other Than Type 1)
Miscellaneous

CHURCHES, SYNAGOGUES, ETC.
Church, Synagogue, Chapel
Mission House (Non-Residential)
Parsonage, Rectory

Convents

Miscellaneous

ASYLUMS AND HOMES

Asylums

Homes for Indigent Children, Aged,
Homeless

Orphanages

Juvenile Detention Houses
Miscellaneous

OFFICE BUILDINGS

Fireproof - Up to Nine Stories

Ten Stories & Over (Side Street Type)
Ten Stories & Over (Main Avenue Type)
Tower Type

Semi-Fireproof

Bank Building (Designed Exclusively for
Banking)

Professional Buildings

With Residential Apartments
Miscellaneous

.
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PLACES OF PUBLIC ASSEMBLY
(INDOOR) AND CULTURAL
Concert Halls

Lodge Rooms

YWCA YMCA YWHA YMHA,PAL
Beach Club

Communny Center

Rathh

it Places, B , Boat

Houses

Museum

Library

Miscellaneous Including Riding Academies
and Stables

OUTDOOR RECREATION FACILITIES
Open Space

Parks

Playgrounds

Outdoor Pools

Beaches

Golf Courses

Stadium, Race Tracks, Baseball Fields
Tennis Courts

Marinas/Yacht Clubs

Miscellaneous

CONDOMINIUMS

Condo Billing Lot

6—10 Unit Residential Bldg, Residential
nit

Walk-up, Residential Unit

1-3 Story, Residential Unit

Apartment/Elevated, Residential Unit

Miscellaneous Commercial

1-3 Units, Residential Unit

1-3 Units, Commercial Unit

2-10 Unit Residential Bldg, Commercial

Unit

Condop

Cultural, Medical, Educational, etc.

Office Buildings

Commercial Building (Mixed Commercial

Condo Building Classffication Codes)

Residential Building (Mixed Residential

Condo Building Classification Codes)

Indoor Parking

Hotel/Boatel

Mixed Warehouse/Factory/Industrial &

Commercial

Zoned Primarily Resndenual Except Not
Manhattan Below 110

Police or Fire Depanmem

School Site or Yard

Library, Hospitals or Museums

Port Authority of NY and NJ

State & U.S.

Miscellaneous (Department of Real Estate
and Other Public Places)
EDUCATIONAL STRUCTURES

Public Elementary Junior and Senior High
Schools

Parochial Schools, Yeshivas

Schools or Academies

Training Schools

City University

Other Colleges and Universities
Theological Seminaries

Other Private Schools

Miscellaneous

SELECTED GOVERNMENT
INSTALLATIONS

(Excluding Office Buildings, Training
Schools, Academic, Garages,
Warehouses, Piers, Air Fields, Vacant

ow NxXs0n =X

© OpwN=

b

CEND phWN=SOC ON=
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onN w.m.wm,w.».w.w.—

OCRNDPNAWN =

Store Buildings — Retail
Mixed Residential & Commercial Building
(Mixed Residential & Commercial)

Condominium Rental
Non-Business Storage Space
Warehouse/Factory/Industrial

Mixed Residential, Commercial & Industrial
Mixed Residential & Warehouse

RESIDENCE - MULTIPLE USE
Primarily One Family with Two Stores or
Offices

Primarily One Family With Store or Office
Primarily Two Family With Store or Office
Primarily Three Family With Store or Office
Primarily Four Family With Store or Office
Primarily Five to Six Family With Store or
Office

Primarily One to Six Families with Stores
or Offices

TRANSPORTATION FACILITIES
(ASSESSED IN ORE)

Airports, Air Fields, Terminals
Piers, Docks, Bulkheads
Miscellaneous

UTILITY BUREAU PROPERTIES
Utility Company Land and Buildings
Bridges, Tunnels, Highways

Electric Utilities, Gas

Ceiling R.R.

Telephone Utilities

Communications Facilities (Other Than
Telephone)

Railroads, Private Ownership
Transportation, Public Ownership
Revocable Consents

Miscellaneous (Including Private
Improvements in City Land and in Public
Places)

VACANT LAND

Zoned Residential, Except Not Manhattan
Below 110 St

m gned Residential or Manhattan Below
Not Zoned Residential, but Adjacent to
Tax Class 1 Dwelling

Land, Vacant Sites, and Land Under Water
and Easements)

Fire Department

Police Department

Prisons, Jails, Houses of Detention
Military and Naval

Department of Real Estate

Department of Sanitation

Department of Ports and Terminals
Department of Public Works
Department of Environmental Protection

MISCELLANEOUS

Tennis Court, Pool, Shed, etc. Used in
Conjunction with Tax Class 1
Court House

Public Parking Areas

Post Office

Foreign Governments
United Nations

Land under Water
Easements

Cemeteries

Other
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Figure 3-19 - XBeach boundary conditions: tide, wave height and wave period; red for bay side and blue for the
ocean side. 66
Figure 3-20 - Bathymetry input of Delft3D - US East Coast model 67
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Figure 3-22 - Bathymetry input of D-Flow FM — New York Bight model. 68
Figure 3-23 - Grid configuration in the Jamaica Bay and around the Rockaway Peninsula. 69

Figure 3-24 - Cumulative distribution function of the building length indicator (blue), which is the square root of
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Figure 4-1 - Snapshots of the simulated hazard propagation: Upper left panel: collision regime with heavy
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Figure 4-2 - upper panel: Maximum simulated storm tide including long waves; lower panels: observed and
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Figure 4-6 - Time of occurrence of the maximum simulated flow velocity; The colors correspond to the timeline
graphed below the map and the offshore storm surge levels have been plotted as well to give a reference. 78
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