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Zusammenfassung
Master of Computer Simulations for Science and Engineering

Application of Finite Volume and Finite Element methods to distributed

optimal control of semi-linear elliptic equations

by Giedrius Arbaciauskas

Diese Arbeit befasst sich mit dem Problem der optimalen Steuerung linearer sowie semi-

linearer partieller Differentialgleichungen zweiter Ordnung, wobei die Steuerung über das

Gebiet Ω verteilt ist. Das semilineare elliptische Randwertproblem wird analysiert, in-

dem sowohl Existenz einer eindeutigen Lösung und einer optimalen Steuerung gezeigt,

als auch notwendige Optimalitätsbedingungen hergeleitet werden. Die Probleme werden

unter Verwendung des Finite-Volumen-Verfahrens und der Finite-Elemente-Methode

diskretisiert. Der Semilinearität wird dadurch begegnet, dass die Differentialgleichung

mithilfe des Newton-Verfahrens linearisiert wird. Das Ziel dieser Arbeit ist es, ver-

schiedene Optimierungsverfahren und Diskretisierungstechniken vorzustellen und anzuwen-

den, um den Zustand und die Steuerung zu finden, welche das dazugehörige Kosten-

funktional unter Erfüllung linearer und semilinearer partieller Differentialgleichungen

als Nebenbedingung minimieren.

Beim ersten Optimierungsverfahren wird das lineare Optimalsteuerungsproblem auf ein

quadratisches Optimierungsproblem reduziert, welches in MATLAB mittels quadprog

gelöst werden kann. Bei der zweiten Methode werden beide Probleme mithilfe von

fmincon optimiert, einmal mit und einmal ohne Verwendung des Gradienten des re-

duzierten Kostenfunktionals. Der Vergleich der Resultate ergibt, dass ersteres zu einer

erheblichen Laufzeitverminderung führt, da der Gradient bereits im Vorfeld berechnet

wird. Schließlich wird die Methode der projizierten Gradienten eingeführt, welche von

allen Verfahren die größte Effizienz aufweist.

http://www.tu-berlin.de
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Chapter 1

Introduction

Optimal control is of great importance in many areas of science such as aerospace,

robotics, economics, chemistry, mechanics, physics, vehicle dynamics ,life sciences and

in many other fields. Processes to be optimized can be modelled by ordinary differential

equations (ODEs) [1–3], where only one independent variable is used, however not every-

thing can be modelled in this way. Therefore, partial differential equations (PDEs) need

to be used, in which two or more independent variables appear [4–10]. Some examples

would be heating, cooling and fluid flow problems. Thus, optimal control of PDEs is

described in this thesis. In many cases we want to control these processes to achieve a

desired state. Therefore, the optimal control theory is required [5, 11, 12].

Optimal control problems are formulated as optimization problems governed by a PDE,

sometimes constrained on a control. There are many types of PDEs. In this thesis we

focus on second-order linear and semi-linear elliptic equations [5, 13, 14]. A discretization

of the problem has to be done as the equations are infinite dimensional equations. Two

advanced numerical methods, Finite Volume Method (FVM) [4, 15] and Finite Element

Method (FEM) [4–6, 13–16] will be introduced and used to obtain the discretization.

However the discretization must be very fine in order to achieve more accurate results.

After the problem is transformed into optimization problem and discretized, it can be

solved using many different optimization methods. Popular mathematical modelling

program MATLAB is used for this purpose, which enables us to solve and visually

represent different optimal control problems [16, 17]. Optimization functions such as

quadprog, fmincon and fmincon with supplied gradient as well as projected gradient

method are used to minimize the problem.

The objective of this thesis is to present and discretize linear and semi-linear elliptic

distributed control problems using different numerical methods. Then transform optimal

1



Chapter 1. Introduction 2

control problem into optimization problem, solve it using different optimization methods

and compare the results.

At first the problem is introduced in Chapter 2. Then the existence of a solution and

necessary optimality conditions are discussed.

In Chapter 3 and 4 two numerical methods are introduced: Finite Volume Method

(FVM) and Finite Element Method (FEM). Then the optimal control problem is dis-

cretized.

Optimal control problem is transformed into optimization problem in Chapter 5 and

several optimization methods are introduced. Finally, the numerical results of three-

dimensional examples are presented and different methods are compared, followed by

the conclusion in Chapter 6.



Chapter 2

Distributed optimal control of

elliptic PDE

The optimal control of PDEs is an optimization problem. A state on a space domain

is considered, given by the PDE. In many cases we want to control this state in order

to achieve a desired solution. For example, steel factory produces thick plates of steel,

which need to be cooled down to a desired temperature using water injectors before

moving on to the next stage. However, there is always a limit on how much water each

injector can supply. This limit can be represented by constraints on the control, where

the injector is represented by the control.

In this Chapter two problems will be introduced: linear - in section 2.1 and semi-linear

- in section 2.2. Then the semi-linear elliptic boundary value problem will be analysed,

since the linear case is a particular type of the semi-linear. We will start by analysing

existence and uniqueness of solution to the given PDE 2.10b in section 2.3. In the next

section 2.4, the existance of an optimal control will be shown. Finally, the optimality

conditions will be derived in the last section 2.5.

2.1 Convex problem

Let us consider an area Ω ⊂ R3, that has to be cooled or heated, where Ω = [0, 1]2. The

area is governed by a second-order linear elliptic PDE and can be controlled using the

heating sources in the domain Ω. The aim of this problem is to choose the control u(x),

so that the temperature y(x) is the closest to a desired temperature distribution yΩ(x)

in Ω, where x represents coordinates x1 and x2. The homogeneous Dirichlet boundary

condition is given on Ω.

3



Chapter 2. Distributed optimal control of elliptic PDE 4

This can be modelled in a following way:

min J(y, u) :=
1

2

∫
Ω
|y(x)− yΩ(x)|2 dΩ +

λ

2

∫
Ω
|u(x)|2 dΩ, (2.1a)

subject to the state equation −∆y(x) = u(x) in Ω

y(x) = 0 on Γ,
(2.1b)

with the pointwise control constraints to the control u

ua(x) ≤ u(x) ≤ ub(x) u(x) ∈ Uad. (2.1c)

However, in this particular case of the general problem, we investigate a special ansatz

2.1e of the control function, where the control function u(x) is of the form

u(x) =
k∑
i=1

uiei(x), (2.1d)

with real values control parameter ui and finitely many given distribution functions

ei : Ω→ R (Figure 2.1). Moreover, we have the control constraints to the control ui

umin ≤ ui ≤ umax ui ∈ Uad,k, (2.1e)

where umin < umax are given real numbers. Here Uad is a set of admissible controls

Uad = {u ∈ L∞(Ω) : ua(x) ≤ u(x) ≤ ub(x) for a.e. x ∈ Ω} (2.2)

By 2.1e, a special set Uad,k is given, but this set of controls does not have the form of

2.1c,

Uad,k = {u ∈ L2(Ω) : u =
k∑
i=1

uiei, umin ≤ ui ≤ umax, i = 1, . . . , k, ui ∈ R}. (2.3)

We take ei(x) as a basis function

ei(x) =

1 , x ∈ Ei for i = 1, . . . , k

0 ,else
(2.4)

where Ei ⊂ Ω for i = 1, . . . , k is the set of all (x1, x2) with ai < x1 < bi and ci < x2 < di

(See Figure 2.1).

In the given problem the desired state yΩ ∈ L2(Ω), u, ua, ub ∈ L2(Ω) and ui ∈ L2(Ω) for
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i = 1, . . . , k (for L2 space see Definition 2.1). λ ≥ 0 represents regularization parameter.

Depending on it, the optimal solution to the desired one has to change. Regularization

parameter needs to be small, between 10−3 and 10−7, as the cost functional J needs

to be minimized. The factor 1
2 , placed in front of the integrals, has no effect on a

solution and used only to cancel out factor 2 appearing after differentiation. ∆ denotes

the Laplacian operator [4]: ∆y = ∂2y
∂x21

+ ∂2y
∂x22

. Also, as explained in a previous section,

the pointwise control constraints arise naturally depending on a problem, for example,

heating or cooling capacities [5].

Figure 2.1: Distributed control problem with ui - control parameter and Ei - set of
indexes of the nodes of distribution i

The aim is to find optimal control u together with associated state y.

This problem is called linear-quadratic elliptic distributed control problem, because: J is

a quadratic functional, the state y is governed by a linear elliptic PDE and the control

acts on a domain Ω [5].

Lets define the space Lp as follows:

Definition 2.1. (See Chapter 2.2 in [5])The linear space of all (equivalence classes of)

Lebesgue measurable functions y : Ω→ R that satisfy∫
Ω
|y(x)|p dx <∞ (2.5)

is denoted by LP (Ω) for 1 ≤ p <∞. Endowed with the corresponding norm

‖y‖LP (Ω) =

(∫
Ω
|y(x)|p dx

) 1
p

. (2.6)

Here L2(Ω) space is a real Hilbert space , where

‖y‖L2(Ω) =
√

(y, y)L2(Ω) (2.7)
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is a norm and

(y, y)L2(Ω) =

∫
Ω
y(x)y(x) dx (2.8)

is a scalar product.

Definition 2.2. (See Chapter 2.2 in [5]) For L∞(Ω) the Banach space of all (equivalence

classes of) Lebesgue measurable and bounded functions is denoted by the norm:

‖y‖L∞(Ω) = ess sup
x∈Ω
|y(x)| = inf

|F |=0

(
sup
x∈Ω\F

|y(x)|

)
, (2.9)

where ”ess sup” means essential supremum.

2.2 Non-convex problem

However, not all the problems are linear. Sometimes semi-linear or quasilinear equations

are required to model a more realistic simulation [5]. Lets introduce a second problem:

a second-order semi-linear elliptic distributed control problem. It is modelled in the same

way as 2.1, except a non-linear function d(x, y) is added in Ω to the state equation:

min J(y, u) :=
1

2

∫
Ω
|y(x)− yΩ(x)|2 dΩ +

λ

2

∫
Ω
|u(x)|2 dΩ, (2.10a)

subject to the state equation−∆y(x) + d(x, y) = u(x) in Ω

y(x) = 0 on Γ,
(2.10b)

with the pointwise control constraints to the control u

ua(x) ≤ u(x) ≤ ub(x) u(x) ∈ Uad. (2.10c)

Here, as in linear case, we investigate a special ansatz 2.10e of the control function,

where the control function u(x) is of the form

u(x) =
k∑
i=1

uiei(x), (2.10d)

with real values control parameter ui and finitely many given distribution functions

ei : Ω→ R (Figure 2.1). Moreover, we have the control constraints to the control ui

umin ≤ ui ≤ umax ui ∈ Uad,k, (2.10e)
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where umin < umax are given real numbers. The sets of admissible controls are the same

as for the convex problem in Chapter 2.1:

Uad = {u ∈ L∞(Ω) : ua(x) ≤ u(x) ≤ ub(x) for a.e. x ∈ Ω} (2.11)

By 2.10e, a special set Uad,k is given, but this set of controls does not have the form of

2.10c,

Uad,k = {u ∈ L2(Ω) : u =

k∑
i=1

uiei, umin ≤ ui ≤ umax, i = 1, . . . , k, ui ∈ R}. (2.12)

We also take ei(x) as a basis function

ei(x) =

1 , x ∈ Ei for i = 1, . . . , k

0 ,else
(2.13)

where Ei ⊂ Ω for i = 1, . . . , k is the set of all (x1, x2) with ai < x < bi and ci < y < di

(See Figure 2.1).

Here, the same as in a linear case, desired state yΩ ∈ L2(Ω), u, ua, ub ∈ L2(Ω) and

ui ∈ L2(Ω) for i = 1, . . . , k (for L2 space see Definition 2.1).

Since the linear case is a particular case of the semi-linear, only the theory for semi-linear

equation will be used to show existence of a unique solution and optimal control as well

as to derive the optimality conditions.

2.3 Existence and uniqueness of solution

The cost functional 2.10a needs to be minimized in order to satisfy the state equation

2.10b and constraints 2.10c on a control.

Equation −∆y + d(x, y) = u can not have a classical solution y ∈ C2(Ω) ∩ C(Ω̄) as

control u ∈ L2(Ω). Therefore, we will look for the weak formulation of the PDE and the

weak solution y in the space H1
0 (Ω) instead.

The following theory works for all convex, closed sets Uad ⊂ L2(Ω), in particular : by

2.1c and 2.10c or by special ansatz 2.1e and 2.10e.

First of all, H1 space and some necessary assumptions need to be defined:

Definition 2.3. (See Chapter 2.2.3 in [5]) H1(Ω) is a Hilbert space, defined as

H1(Ω) = {y ∈ L2(Ω) : Diy ∈ L2(Ω), i = 1, . . . , N}, (2.14)
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with the corresponding norm

‖y‖H1(Ω) =

(∫
Ω

(y2 + |∇y|2) dx

) 1
2

, (2.15)

where

|∇y|2 = (D1y)2 + · · ·+ (DNy)2, (2.16)

and the scalar product

(u, v)H1(Ω) =

∫
Ω
uv dx+

∫
Ω
∇u · ∇v dx. (2.17)

Here H1
0 (Ω) is defined as

H1
0 (Ω) = {y ∈ H1(Ω) : y|Γ = 0}, (2.18)

with the corresponding norm

‖y‖2H1
0 (Ω) =

∫
Ω
|∇y|2 dx, (2.19)

where ”y|Γ = 0” means that y is 0 on a boundary Γ.

Assumption 2.4. (See Assumption 4.2 in [5]) Let the following assumptions be fulfilled:

(i) Ω ⊂ RN , N ≥ 2 is a bounded Lipschitz domain.

(ii) For all y ∈ R the non-linear function d = d(x, y) : Ω × R → R is bounded,

measurable and twice continuous differentiable with respect to x ∈ Ω, for every fixed

y ∈ R. Furthermore, it is locally Lipschitz continues and monotone increasing in

y for almost all x ∈ Ω.

Assumption 2.5. (See Assumption 4.3 in [5])

(i) Let d(x, 0) = 0 for almost all x ∈ Ω and d be globally bounded, i.e. there is a

positive constant M , such that for all y ∈ R

|d(x, y)| ≤M for a.e x ∈ Ω

Then follows the definition of a weak derivative:

Definition 2.6. (See p.27 in [5]) Let y ∈ L1
loc(Ω), which denotes the set of all locally

integrable functions in Ω, be given together with some multi-index α. If a function
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w ∈ L1
loc(Ω) satisfies∫

Ω
y(x)Dαv(x) dΩ = (−1)|α|

∫
Ω
w(x)v(x) dΩ for all v ∈ C∞0 (Ω)

then w is called the weak derivative of y (associated with α).

In order to derive the weak formulation, both sides of the semi-linear elliptic boundary

value problem 2.10b are multiplied by a test function v ∈ H1
0 (Ω) and integrated over Ω:

−
∫

Ω
∆yv dΩ +

∫
Ω
d(x, y)v dΩ =

∫
Ω
uv dΩ. (2.20)

After using integration by parts, Gauss’ divergence theorem [4] and consideration of the

boundary conditions we get the following:

−
∫

Γ

∂y

∂n
v dΓ +

∫
Ω
∇y · ∇v dΩ +

∫
Ω
d(x, y)v dΩ =

∫
Ω
uv dΩ, (2.21)

where n is the outward unit normal to Γ. Since v vanishes on Γ, therefore the weak

formulation is:∫
Ω
∇y · ∇v dΩ +

∫
Ω
d(x, y)v dΩ =

∫
Ω
uv dΩ, ∀v ∈ H1

0 (Ω). (2.22)

Definition 2.7. [5] Let the Assumptions 2.4 and 2.5 hold. Then a state equation 2.10b

has a weak solution y ∈ H1
0 (Ω), if it satisfies the weak formulation 2.22 for all v ∈ H1

0 (Ω).

Theorem 2.8. (See Theorem 4.4 in [5]) Suppose that Assumption 2.4 and 2.5 hold.

Then for all u ∈ L2(Ω), the elliptic boundary value problem 2.10b has a unique weak

solution y ∈ H1
0 (Ω).

For the proof, we refer to the chapter 4.2.2 in [5].

However, the Theorem 2.8 does not work for d(x, y) = y3, or y5, as Assumption 2.5,

which states that d(x, y) is bounded cannot be satisfied. Therefore, let as use only

Assumption 2.4 and state that in this case the PDE 2.10b has a weak solution y ∈
H1

0 (Ω) ∩ L∞(Ω) if it satisfies the weak formulation 2.22.

Theorem 2.9. (See Theorem 4.7 in [5]) Suppose that Assumption 2.4 hold and d(x, y) =

0 for almost all x ∈ Ω. Then for all u ∈ Lr(Ω), where r > N
2 the semi-linear elliptic

boundary value problem 2.10b has a unique weak solution y ∈ H1
0 (Ω) ∩ L∞(Ω). The

solution y is also continuous on Ω̄.

Again, for the proof, we refer to the chapter 4.2.3 in [5].
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Remark 2.10. Theorem 2.9 works also for u with special ansatz.

Based on the previous theorem, we introduce linear and continuous control-to-state op-

erator which maps the control function u to the state y:

G : Lr(Ω)→ H1
0 (Ω) ∩ C(Ω̄) u 7→ y(u). (2.23)

We will also introduce embedding operator A, where A : H1
0 (Ω)∩C(Ω̄)→ L2(Ω), which

assigns to each function y ∈ H1
0 (Ω) ∩ C(Ω̄) the same function in L2(Ω). Here A is also

linear and continuous operator. We define new operator S by multiplying G by A:

S = GA, (2.24)

which maps the control function u to the state y

S : Lr(Ω)→ L2(Ω) u 7→ y(u). (2.25)

Therefore, we consider the reduced cost functional f of 2.10a, where y = Su

J(y, u) = J(Su, u) = f(u) (2.26)

min
u∈Uad

f(u) =
1

2
‖Su− yΩ‖2L2(Ω) +

λ

2
‖u‖2L2(Ω) (2.27)

As for all bounded u, we have a unique weak solution y. Hence the same applies for ~u

in 2.1d, constructed as the finite sum of the ei.

2.4 Existence of optimal control

As we have found out in the previous section, semi-linear elliptic PDE 2.10b has a unique

solution y ∈ H1
0 (Ω) ∩ L∞(Ω) for u ∈ Lr(Ω), where r > N

2 . Now we need to check if an

optimal control for the problem 2.10 exists.

Let us start with the definition of existence of optimal control, followed by some prop-

erties of operator G.

Definition 2.11. (See [5]) A state ȳ = Gū is called the optimal state associated with ū

and control ū ∈ Uad is called an optimal control if f(ū) ≤ f(u) for all u ∈ Uad.
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Here Uad, Uad,k and ~Uad,k are the sets of admissible controls and are given by

Uad = {u ∈ L∞(Ω) : ua(x) ≤ u(x) ≤ ub(x) for a.e. x ∈ Ω}, (2.28)

Uad,k = {u ∈ L2(Ω) : u =
k∑
i=1

uiei, umin ≤ ui ≤ umax, i = 1, . . . , k, ui ∈ R}, (2.29)

~Uad,k = {~u : umin ≤ ui ≤ umax, i = 1, . . . , k}. (2.30)

We will be using Assumption 2.4 to define properties of G in the following theorem:

Theorem 2.12. (See Theorem 4.16 in [5]) Let the Assumption 2.4 be satisfied. For

r > N
2 the mapping G is Lipschitz continuous from Lr(Ω) into H1

0 (Ω)∩C(Ω̄) with L > 0

such that

‖y1 − y2‖H1
0 (Ω) + ‖y1 − y2‖C(Ω̄) ≤ L‖u1 − u2‖Lr(Ω) (2.31)

for every ui ∈ Lr(Ω) and yi = G(ui), i = 1,2.

For the proof, we refer to the chapter 4.5.1 in [5].

Theorem 2.13. (See Theorem 4.17 in [5]) Let the Assumption 2.4 be satisfied. Then

for any r > N
2 the control-to-state operator G is Frechet differentiable from Lr(Ω) into

H1
0 (Ω) ∩C(Ω̄). Its directional derivative at ū ∈ Lr(Ω) in the direction u is presented by

G′(ū)u = y, (2.32)

where y is the weak solution to the boundary value problem linearised at ȳ = G(ū):−∆y + dy(x, ȳ)y = u in Ω

y = 0 on Γ
(2.33)

Again, for the proof, we refer to the chapter 4.5.1 in [5].

Using the theorems above and the assumption we get the following existance theorem

for the general case of our optimal control of semi-linear elliptic PDE 2.10.

Theorem 2.14. (See Theorem 4.15 in [5]) Under Assumption 2.4, problem 2.10 has at

least one optimal control ū with associated optimal state ȳ = y(ū) ∈ H1
0 (Ω) ∩ C(Ω̄).
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However, lets consider the particular case, where the control function u(x) is expressed

as 2.10b −∆y(x) + d(x, y) =
∑k

i=1 uiei(x) in Ω

y(x) = 0 on Γ.
(2.34)

Therefore, we need to introduce another linear operator T , where

T : Rk → Lr(Ω) ~u 7→ u(x) =
k∑
i=1

uiei(x). (2.35)

Then we define a new linear operator Λ = AGT , where

G : Lr(Ω)→ H1
0 (Ω) ∩ C(Ω̄) u 7→ y(u) (2.36)

A : H1
0 (Ω) ∩ C(Ω̄)→ L2(Ω) y(u) 7→ y(u) (2.37)

Here,

Λ : Rk → L2(Ω) ~u 7→ y(u), (2.38)

with its adjoint operator

Λ∗ : L2(Ω)→ Rk y(u) 7→ ~u. (2.39)

Therefore, we consider the reduced cost functional f of 2.10a, where y = Λ~u

min
u∈~Uad,k

f(~u) =
1

2
‖Λ~u− yΩ‖2L2(Ω) +

λ

2
‖u‖2L2(Ω) (2.40)

Using Definition 2.11, vector ~̄u ∈ ~Uad,k is called an optimal control vector if f(~̄u) ≤ f(~u)

for all ~u.

Proof: The set of admissible controls ~Uad,k is bounded and closed, hence compact. The

mapping from ~u to the objective functional value is continuous. Therefore, by using

Weierstrass theorem we get that ∃~̄u ∈ ~Uad,k that

f(~̄u) = min
~u∈~Uad,k

f(~u) (2.41)

2.5 Necessary optimality conditions

As it was proved in the previous section, our given semi-linear elliptic PDE 2.10 has

at least one optimal control ū and the associated optimal state ȳ. Now we need to
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check what conditions these two vectors satisfy. We will do so by finding the first order

optimality conditions for the given PDE. These need to be satisfied by both vectors ū

and ȳ.

The necessary optimality conditions can be derived using the formal Lagrange method,

where L represents the Lagrangian function with its parameter p. Using system of

equations 2.10, the function is given as follows:

L(y, u, p) = J(y, u)−
∫

Ω
(−∆y + d(x, y)− u)p dΩ−

∫
Γ
ypdΓ (2.42)

From PDE 2.10b, y = 0 on a boundary, thus the last term disappears. Furthermore, we

apply integration by parts and Gauss divergence theorem for ∆y. Therefore, we get the

following:

L(y, u, p) = J(y, u) +

∫
Ω

(y∆p− d(x, y)p+ up) dΩ−
∫

Γ
y
∂p

∂n
dΓ (2.43)

After computing the derivatives of L, we find that the second and third conditions in

the optimality system are as follows:

∇yL(ȳ, ū, p)y = 0 (2.44)

∇uL(ȳ, ū, p)(u− ū) ≥ 0 ∀u ∈ Uad (2.45)

We need to solve inequalities 2.44 and 2.45 to get the necessary optimality conditions:

Ly(ȳ, ū, p)y =

∫
Ω

(ȳ − yΩ)y dΩ +

∫
Ω

(y∆p− dy(x, ȳ)py) dΩ−
∫

Γ
y
∂p

∂n
dΓ

=

∫
Ω

(ȳ − yΩ + ∆p− dy(x, ȳ)p)y dΩ−
∫

Γ
y
∂p

∂n
dΓ

Lu(ȳ, ū, p)(u− ū) =

∫
Ω
λū(u− ū) dΩ +

∫
Ω
p(u− ū) dΩ

=

∫
Ω

(p+ λū)(u− ū) dΩ ≥ 0

Therefore:

Ly(ȳ, ū, p)y =

∫
Ω

(ȳ − yΩ + ∆p− dy(x, ȳ)p)y dΩ−
∫

Γ
y
∂p

∂n
dΓ (2.46)

Lu(ȳ, ū, p)(u− ū) =

∫
Ω

(p+ λū)(u− ū) dΩ ≥ 0 (2.47)

Equations 2.46 and 2.47 give the necessary optimality conditions:
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State equation: −∆y + d(x, y) = u in Ω

y = 0 on Γ
(2.48a)

Equation 2.46 is a weak formulation for the following adjoint equation, which is the

linearized state equation: −∆p+ dy(x, ȳ)p = y − yΩ in Ω

p = 0 on Γ
(2.48b)

Equation 2.47 is the variational inequality for every optimal control ū with associated

adjoint state p ∈ H1
0 (Ω) ∩ C(Ω̄) for the general case:∫

Ω
(p+ λū)(u− ū) dΩ ≥ 0 ∀u ∈ Uad (2.48c)

Variational inequality 2.48c can be reformulated as a minimization problem [5]:∫
Ω

(p+ λū)ūdΩ ≤
∫

Ω
(p+ λū)udΩ, (2.49)

hence ∫
Ω

(p+ λū)ūdΩ = min
u∈Uad

∫
Ω

(p+ λū)udΩ ∀u ∈ Uad (2.50)

Theorem 2.15. (See Chapter 4.6 in [5])Let the Assumption 2.4 hold and let ū be a

locally optimal control for the problem 2.10 and p be the associated adjoint state. Then

the minimum of the 2.50 problem for a.e.x ∈ Ω

min
u∈Uad

∫
Ω

(p(x) + λū(x))u dΩ ∀u ∈ Uad (2.51)

is attained at u = ū(x).

For λ > 0, the projection formula is as follows:

ū(x) = P[ua(x),ub(x)]

{
− 1

λ
p(x)

}
for a. e. x ∈ Ω (2.52)

Therefore all the necessary optimality conditions have been derived in 2.48.
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Now, let us find the variational inequality for the particular control function 2.10d by

inserting it into 2.48c

∫
Ω

(p+λ

k∑
j=1

ūjej)(

k∑
i=1

(ui − ūi)ei) dΩ =

=

∫
Ω

k∑
i=1

p(ui − ūi)ei) dΩ + λ

∫
Ω

k∑
i,j=1

ūjej(ui − ūi)ei dΩ

=

k∑
i=1

(ui − ūi)
(∫

Ω
p(x)ei(x) dΩ

)
+ λ

k∑
i,j=1

ūj(ui − ūi)
∫

Ω
eiej dΩ

= (~u− ~̄u) ·


∫

Ω pe1 dΩ
...∫

Ω pek dΩ

+ λ~̄u ·D(~u− ~̄u) ≥ 0 ∀~u ∈ ~Uad,k (2.53)

where

~p =


∫

Ω pe1 dΩ
...∫

Ω pek dΩ

 and Dij =

∫
Ω
eiej dΩ. (2.54)

Then the variational inequality for optimal vector ~̄u

(~p+ λDT ~̄u, ~u− ~̄u)Rk ≥ 0 ∀~u ∈ ~Uad,k (2.55)

Then for λ > 0, the associated projection formula becomes:

ūi = P[umin,umax]

{
− 1

λ
Diip̄i

}
i = 1, . . . , k (2.56)



Chapter 3

Finite Volume Method

In Chapter 2 optimal control problems governed by second-order linear and semi-linear

elliptic partial differential equations were introduced. Semi-linear problem was analysed:

existence of the unique solution and optimal control, as well as necessary optimality con-

ditions was proven. However, these PDEs are still in the infinite dimension. Therefore,

the next step would be to discretize both of the PDEs 2.1b and 2.10b, to obtain a finite

dimensional problem. Let us not forget that the discretization must be very fine, in

order to find an acceptable approximation. In Chapter 3 and the following Chapter 4

we will introduce and apply two discretization methods. We will start by Finite Volume

Method (FVM), which is the most popular amongst engineers. It solves the PDE after

integrating it over the control volume. This is a standard advanced numerical method.

More information and examples of this method can be found in [4, 15].

In section 3.1 we will start with an introduction to the FVM. Then in section 3.2 linear

elliptic PDE 2.1b will be discretized, followed by a semi-linear PDE 2.10b in section 3.4.

However, the semi-linear part causes an additional problem, therefore, the Newton’s

method will be introduced and applied to the equation in section 3.3 in order to linearise

it first.

3.1 Mesh of the unit square

We will consider a rectangular domain Ω = [0, 1]2 governed by a PDE with homogeneous

Dirichlet boundary condition, which means y = 0 on a boundary. A square mesh is

applied to the domain and the unknown values of y are placed on the nodes. In Figure

3.1 y is represented by red and black points: red - internal nodes, black - boundary

nodes. In the same figure m represents the number of points in either direction of the

mesh.

16
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We have chosen a horizontal numbering style, where values of the vector y are placed

sequentially on the nodes (Figure 3.2).

Figure 3.1: Mesh of the do-
main Ω. Red nodes - internal,

black nodes - boundary

Figure 3.2: Horizontal
numbering style of the do-

main Ω

Let us consider one node of the vector y and call it j. We use the 4 surrounding

neighbouring nodes of y and denote them as follows: right - ”j+1”, left - ”j-1”, above

- ”j+m”, bellow - ”j-m”. Then the control volume Ωj , with edges in the middle of two

nodes y, is constructed. It can be seen in the Figure 3.3, where h = 1
m−1 represents the

distance between two nodes. For the sake of simplicity, h is chosen to be the same in x1

and x2 direction.

Figure 3.3: Control volume Ωj
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3.2 Discretization of the linear boundary value problem

Lets consider the linear second-order elliptic partial differential equation 2.1b described

in Chapter 2.1: −∆y(x) = u(x) x ∈ Ω

y(x) = 0 x ∈ Γ,
(3.1)

where the control function u(x) is of the form

u(x) =

k∑
i=1

uiei(x), (3.2)

with control parameter ui, which has real variables, and finitely many given distribution

functions ei : Ω→ R

We take ei(x) as described in Chapter 2.1

ei(x) =

1 , x ∈ Ei for i = 1, . . . , k

0 ,else
(3.3)

where Ei ⊂ Ω for i = 1, . . . , k is the set of all (x1, x2) with ai < x < bi and ci < y < di

(See Figure 2.1).

We integrate the equation 3.1 over the control volume Ωj

−
∫

Ωj

∆y dΩ =

∫
Ωj

k∑
i=1

uiei dΩ (3.4)

Apply Gauss’ divergence theorem

−
∫

Γj

∂y

∂n
dΓ =

∫
Ωj

k∑
i=1

uiei dΩ (3.5)

Using central differences for ∂y
∂n and middle point integration rule for the right hand side,

we get: ∮
Γj

=

∫
ΓS
j

+

∫
ΓE
j

+

∫
ΓN
j

+

∫
ΓW
j

(3.6)
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where,

−
∫

ΓS
j

∂y

∂n
dΓ ≈ yj − yj−m

h
h = yj − yj−m (3.7)

−
∫

ΓE
j

∂y

∂n
dΓ ≈ yj − yj+1

h
h = yj − yj+1 (3.8)

−
∫

ΓN
j

∂y

∂n
dΓ ≈ yj − yj+m

h
h = yj − yj+m (3.9)

−
∫

ΓW
j

∂y

∂n
dΓ ≈ yj − yj−1

h
h = yj − yj−1 (3.10)

∫
Ωj

k∑
i=1

uiei dΩ =

uih2 , for all nodes ∈ Ei for i = 1, . . . , k

0 ,else
(3.11)

Remark 3.1. y(xj) = yj everywhere.

Adding equations 3.7 to 3.10 and 3.11 together gives the discretization equation:

−yj−1 − yj+1 + 4yj − yj−m − yj+m =

uih2 , for all nodes ∈ Ei for i = 1, . . . , k

0 ,else
(3.12)

Therefore, we end up in a matrix-vector form

A~y = ~u, (3.13)

where A ∈ Rm×m is a sparse matrix and ~y, ~u ∈ Rm×1.

As it was mentioned before, in order to get an acceptable approximation, we need to use

a very fine mesh (m is inversely proportional to h). Hence, mathematical programming

software MATLAB will be used for the discretization of the PDE 3.1 applying equation

3.12. The use of MATLAB for PDEs is extensively elaborated in [16, 17].

First of all, let us consider a simple Example 1, where k = 1, ui = 1, Ei = Ω (contains

all the node points y) for i = 1, . . . , k and m = 30. Therefore, the control function

u(x) = 1 for all x in domain Ω:−∆y(x) = u(x) x ∈ Ω

y(x) = 0 x ∈ Γ
(3.14)
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The discretization equation for PDE 3.14 is as follows:

−yj−1 − yj+1 + 4yj − yj−m − yj+m = 1 · h2 (3.15)

By discretizing this PDE using FVM on MATLAB and visually representing the solution

vector y for given settings we get the following results in Figure 3.4.

Figure 3.4: Example 1 - discretized solution of the linear PDE 3.14 using FVM, for
m = 30, k = 1, ui = 1 and Ei = Ω for i = 1, . . . , k.

Next, let us consider three more examples for PDE 3.1 with its discretization equation

3.12. We choose ui = 100, to highlight the difference from the semi-linear part,and

m = 72 (number of internal points in either direction of the mesh) for i = 1, . . . , k:

Example 2: k = 9 and Ei = 4 - means Ei is a square composed of 4 cells;

Example 3: k = 9 and Ei = 16 - means Ei is a square composed of 16 cells;

Example 4: k = 4 and Ei = 36 - means Ei is a square composed of 36 cells;

Again, we discretize this PDE using FVM on MATLAB and visually represent the

solution vector y in 3D and 2D. Example 2 is shown in Figure 3.5, where we have a

discretized solution of 9 distribution functions ei. Each area Ei is a square composed of

4 cells for i = 1, . . . , k. Examples 3 and 4 can be seen in Figures 3.6 and 3.7, respectively.
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Figure 3.5: Example 2 - discretized solution of the linear PDE 3.1 using FVM, for
m = 72, k = 9, ui = 100 and Ei = 4 for i = 1, . . . , k.

Figure 3.6: Example 3 - discretized solution of the linear PDE 3.1 using FVM, for
m = 72, k = 9, ui = 100 and Ei = 16 for i = 1, . . . , k.

Figure 3.7: Example 4 - discretized solution of the linear PDE 3.1 using FVM, for
m = 72, k = 4, ui = 100 and Ei = 36 for i = 1, . . . , k.
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In fact, we can not discretize semi-linear elliptic PDE 2.10b directly, as it has a semi-

linear part. Therefore, in the next section we will learn how to linearize it first.

3.3 Newton’s method

There are many different methods which help to deal with semi-linear PDEs. Picard’s

and Newton’s methods are among the most popular classical iterative methods. In gen-

eral, Picard’s method converges linearly, while Newton’s - quadratically in a neighbour-

hood of the root, provided that the initial guess was chosen correctly [4]. In this section

we will introduce and apply Newton’s method to our given semi-linear PDE 2.10b, as it

converges much faster than Picard’s.

Lets consider a semi-linear second-order elliptic partial differential equation 2.10b de-

scribed in Chapter 2.2. −∆y(x) + d(x, y) = u(x) in Ω

y(x) = 0 on Γ
(3.16)

Suppose we have a current approximation of the solution yn of the equation 3.16 with

the goal that yn → y as n → ∞. Every estimate yn is obtained by solving a linear

system of equations.

Let us write equation 3.16 as function f(y):

f(y) = −∆y + d(y)− u (3.17)

Next we calculate the derivative of the function 3.17:

f ′(y) = d′(y) (3.18)

Then we can derive a formula for a better approximation yn+1 [4]:

f ′(yn)(yn+1 − yn) + f(yn) = 0 (3.19)

After substitution we get the following:

−∆yn+1 + d(yn) + d′(yn)(yn+1 − yn) = u (3.20)
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Putting unknown values to the left hand side and known - to the right, we get the

following:

−∆yn+1 + d′(yn)yn+1 = u− d(yn) + d′(yn)yn (3.21)

where yn is the previous known value and yn+1 is unknown.

The convergence of the Newton’s method is sensitive to the good initial guess y0. There

are different ways to choose it. We will find initial guess y0 by solving PDE 3.16 without

the semi-linear part.

3.4 Discretization of the semi-linear boundary value prob-

lem

Lets consider the semi-linear second-order elliptic partial differential equation 2.10b

described in Chapter 2.2. −∆y(x) + d(x, y) = u(x) x ∈ Ω

y(x) = 0 x ∈ Γ,
(3.22)

where

u(x) =
k∑
i=1

uiei(x). (3.23)

We take ei(x) as a basis function (the same as in section 3.2).

As the PDE 3.22 is semi-linear, we will be using Newton’s method (described in section

3.3) to linearise the equation. First of all we find the initial guess y0. We can do so by

solving the equation without the semi-linear part:−∆y0(x) = u(x) x ∈ Ω

y0(x) = 0 x ∈ Γ
(3.24)

PDE 3.24 is the same as linear PDE 3.1 in Chapter 3.2. After repeating the same steps

and substituting control function 3.23 into PDE 3.24, we end up with the following
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discretization equation:

−y0
j−1 − y0

j+1 + 4y0
j − y0

j−m − y0
j+m =

uih2 , for all nodes ∈ Ei for i = 1, . . . , k

0 ,else
(3.25)

Solution y0 can be obtained using mathematical software MATLAB. Now, as we found

the initial vector y0, we can use it to start the Newton iteration. After applying Newton’s

method to the semi-linear PDE 3.22, we get equation (3.21):

−∆yn+1 + d′(yn)yn+1 =
k∑
i=1

uiei − d(yn) + d′(yn)yn. (3.26)

Let us take d(y) = y3. Then we get the following:

−∆yn+1 + 3(yn)2yn+1 =
k∑
i=1

uiei − (yn)3 + 3(yn)2yn (3.27)

−∆yn+1 + 3(yn)2yn+1 =

k∑
i=1

uiei + 2(yn)3 (3.28)

Integrating the equation 3.28 over the control volume Ωj , as in section 3.2, gives the

following result:∫
Ωj

−∆yn+1 dΩ = −yn+1
j−1 − y

n+1
j+1 + 4yn+1

j − yn+1
j−m − y

n+1
j+m (3.29)∫

Ωj

3(yn)2yn+1 dΩ = 3(ynj )2

∫
Ωj

yn+1 dΩ = 3(ynj )2yn+1
j h2 (3.30)∫

Ωj

2(yn)3 dΩ = 2(ynj )3

∫
Ωj

dΩ = 2(ynj )3h2 (3.31)

∫
Ωj

k∑
i=1

uiei dΩ =

uih2 , for all nodes Ei for i = 1, . . . , k

0 ,else
(3.32)

Inserting all equations from 3.29 to 3.32 in to equation 3.28 gives the discretization

equation:

−yn+1
j−1 − y

n+1
j+1 + 4yn+1

j − yn+1
j−m − y

n+1
j+m + 3(ynj )2yn+1

j h2 =

uih2 + 2(ynj )3h2 in Ei

2(ynj )3h2 else,
(3.33)

where yn is the previous known value and yn+1 is unknown. For comparison, red colour

illustrates the differences from the linear discretization equation 3.12.
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We will again consider the same three examples (2 - 4) for the semi-linear PDE 3.22

using its discretization equation 3.33: Ex.2 - k = 9, Ei = 4; Ex.3 - k = 9, Ei = 16; Ex.4

- k = 4, Ei = 36. We choose ui = 100 and m = 72 for i = 1, . . . , k and discretize this

PDE using FVM on MATLAB. After three Newton iterations, we can visually represent

the solution vector y in 3D and 2D. All three examples are shown in Figures 3.8, 3.9

and 3.10.

Figure 3.8: Example 2 - discretized solution of the semi-linear PDE 3.22 using FVM,
for m = 72, k = 9, ui = 100 and Ei = 4 for i = 1, . . . , k.

Figure 3.9: Example 3 - discretized solution of the semi-linear PDE 3.22 using FVM,
for m = 72, k = 9, ui = 100 and Ei = 16 for i = 1, . . . , k.
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Figure 3.10: Example 4 - discretized solution of the semi-linear PDE 3.22 using FVM,
for m = 72, k = 4, ui = 100 and Ei = 36 for i = 1, . . . , k.

The results are almost identical to the ones in linear case, demonstrated in examples 2,

3 and 4 in Chapter 3.2 (Figures 3.5, 3.6 and 3.7, respectively). This becomes obvious

after investigating discretization equation 3.33 in more detail, where the differences from

the linear case are marked in red. The values in red are very small due to the vector

y and constant h (in this case h2 ≈ 0.000199). The difference is more apparent after

representing the norm of the solution vector y in the Euclidean space (See table 3.1).

FVM
Linear PDE:

‖~y1‖Rm×m

Semi-linear PDE:

‖~y2‖Rm×m ‖~y1 − ~y2‖Rm×m

Ex.2: k = 9, Ei = 4 3.2990 3.2983 0.0007

Ex.3: k = 9, Ei = 16 13.1616 13.1144 0.0472

Ex.4: k = 4, Ei = 36 13.6163 13.5634 0.0529

Table 3.1: Comparison of the solution vector y using FVM between linear and semi-
linear PDEs, when m = 72 and ui = 100 for i = 1, . . . , k.



Chapter 4

Finite Element Method

In Chapter 3 Finite Volume Method was introduced. The linear and semi-linear elliptic

PDEs 2.1b and 2.10b were discretized and visually represented using MATLAB. New-

ton’s method was also introduced in order to linearize the semi-linear problem 2.10b.

Three examples were introduced for both problems and the results were compared in

Table 3.1. In Chapter 4 we will introduce and also apply another popular discretiza-

tion method, which became very relevant during the last three decades: Finite Element

Method. More information and examples of this method can be found in [4–6, 13–16].

We will start the section 4.1 with an introduction to the FEM. After that, the linear

elliptic PDE 2.1b will be discretized in section 4.2, followed by the semi-linear PDE 2.10b

in section 4.3. Again, we will use Newton’s method to linearise a semi-linear PDE.

4.1 Introduction

Finite Element Method finds an appropriate solution of the PDE numerically, in an

indirect way. The domain Ω is decomposed into smaller triangular elements called finite

elements. This method is very useful for unstructured grids. In FEM we construct basis

functions ψi, for i = 1, . . . , n, where n is the number of nodes, which has finite support

in such a way, that the Mass and Stiffness matrices are sparse. Therefore, it is very

convenient for computer implementation.

Again, we will consider a rectangular domain Ω = [0, 1]2, governed by a PDE with

homogeneous Dirichlet boundary condition. A triangular mesh is applied to the domain

Ω creating finite elements with the unknown values of y placed on the nodes. This can

be seen in Figure 4.1, where m is the number of nodes in either direction of the mesh

27
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Figure 4.1: FEM mesh of the domain Ω

and y is represented by black and red nodes: black nodes represent boundary and the

red nodes represent internal points.

4.2 Discretization of the linear boundary value problem

The same as in Chapter 3.2, we consider the linear elliptic PDE 2.1b:−∆y(x) = u(x) x ∈ Ω

y(x) = 0 x ∈ Γ,
(4.1)

where

u(x) =
k∑
i=1

uiei(x). (4.2)

Also, we consider ei(x) as a basis function:

ei(x) =

1 ,in x ∈ Ei for i = 1, . . . , k

0 ,else
(4.3)

First of all, we will convert the original boundary value problem 4.1 into its weak form

by multiplying both sides by a sufficiently smooth test function ψ ∈ H1
0 (Ω) and integrate

over Ω. We are considering a standard Galerkin approach meaning that the test function

is in the same space as the solution.

−
∫

Ω
∆yψ dΩ =

∫
Ω
uψ dΩ (4.4)
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After integration by parts, Gauss’ divergence theorem and consideration of the boundary

conditions we get the following weak formulation:∫
Ω
∇y · ∇ψ dΩ =

∫
Ω
uψ dΩ. (4.5)

Next, we perform a discretization of the weak formulation 4.5. We will write function

y(x) as a linear combination of the continuous piecewise linear basis functions ψi:y(x) =
∑m2

i=1 yiψi(x)

ψ → ψj , j ∈ {1, . . . ,m2},
(4.6)

where yi is the unknown and m2 is the number of node points. We also choose ψ = ψj

as the basis function. By inserting 4.6 into 4.5, we get:

∫
Ω

( m2∑
i=1

yi∇ψi
)
∇ψj dΩ =

∫
Ω
uψj dΩ (4.7)

Since yi is a scalar unknown, we can place it outside the integral:

m2∑
i=1

yi

∫
Ω
∇ψi · ∇ψj dΩ =

∫
Ω
uψj dΩ (4.8)

This can be defined in the following form:

m2∑
i=1

Sijyi = uj , (4.9)

where

Sij =

∫
Ω
∇ψi · ∇ψj dΩ, (4.10)

uj =

∫
Ω
uψj dΩ. (4.11)

Here Sij(y) is a Stiffness matrix. We want it to be sparse. Next, we insert control

function 4.2 into 4.11:

uj =

k∑
i=1

ui

∫
Ω
eiψj dΩ. (4.12)
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We want to express the right hand side using the Mass matrix. Hence, as ei(x) is the

distribution function and ψ is the basis function, we can express ei(x) as follows:

ei(x) =

m2∑
t=1

ψt(x)δtEi , (4.13)

where δtEi is:

δtEi =

1 if t ∈ Ei

0 else
(4.14)

Then we insert ei(x) into equation 4.12:

k∑
i=1

ui

∫
Ω

( m2∑
t=1

ψtδtEi

)
ψj dΩ =

m2∑
t=1

k∑
i=1

uiδtEi

∫
Ω
ψtψj dΩ,

where

Mtj =

∫
Ω
ψtψj dΩ, (4.15)

bt =
k∑
i=1

uiδtEi (4.16)

Here Mtj is the Mass matrix and we want it to be sparse. Finally, we end up with the

following form:

m2∑
i=1

Sijyi =
m2∑
t=1

Mtjbt (4.17)

Next step is to find the global element matrices Sij and Mtj using the local element

matrices:

Sij =

ne∑
p=1

∫
ep

∇ψi · ∇ψj dΩ =

ne∑
p=1

S
ep
ij , (4.18)

Mtj =

ne∑
p=1

∫
ep

ψtψj dΩ =

ne∑
p=1

M
ep
tj . (4.19)

Here ne is the number of elements and p represents the current element (Figure 4.2).

To build the global Stiffness and Mass matrices, we first define the transformation from

the element in given domain to the standard element and then we obtain local Stiff-

ness and Mass matrices for each element. Afterwards, we obtain global Stiffness and

Mass matrices from local matrices using the mapping. This is followed by solving the
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Figure 4.2: Finite element triangle ep with three y nodes represented by x̄1, x̄2 and
x̄3

sparse linear system described in equation 4.17 to obtain the unknown yi. Then we

can construct the original solution y(x) using equation 4.6. After implementing this in

MATLAB, we get the following results for different examples:

Again, as in Chapter 3.2, we consider a simple Example 1, where k = 1, ui = 1 and

Ei = Ω for i = 1, . . . , k. Hence, the control function u(x) = 1 for the whole domain Ω

is: −∆y(x) = u(x) x ∈ Ω

y(x) = 0 x ∈ Γ
(4.20)

By discretizing this PDE using linear system 4.17 we obtain the following results for y

in Figure 4.3, where m = 30.

Figure 4.3: Example 1 - discretized solution of the linear PDE 4.20 using FEM, for
m = 30, k = 1, ui = 1 and Ei = Ω for i = 1, . . . , k.

Next, let us consider the three previous examples, Ex.2, Ex.3 and Ex.4, described in

Chapters 3.2 and 3.4, for linear PDE 4.1 using its linear system 4.17. We discretize this

PDE using FEM on MATLAB and plot the solution vector y. Examples 2, 3 and 4 are

represented in Figures 4.4, 4.5 and 4.6.
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Figure 4.4: Example 2 - discretized solution of the linear PDE 4.1 using FEM, for
m = 72, k = 9, ui = 100 and Ei = 4 for i = 1, . . . , k.

Figure 4.5: Example 3 - discretized solution of the linear PDE 4.1 using FEM, for
m = 72, k = 9, ui = 100 and Ei = 16 for i = 1, . . . , k.

Figure 4.6: Example 4 - discretized solution of the linear PDE 4.1 using FEM, for
m = 72, k = 4, ui = 100 and Ei = 36 for i = 1, . . . , k.
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4.3 Discretization of the semi-linear boundary value prob-

lem

Let us consider a semi-linear elliptic PDE 2.10b in the same way as in Chapter 3.4:−∆y(x) + d(x, y) = u(x) x ∈ Ω

y(x) = 0 x ∈ Γ,
(4.21)

where

u(x) =
k∑
i=1

uiei(x). (4.22)

Again, we use ei(x) as a basis function:

ei(x) =

1 , x ∈ Ei for i = 1, . . . , k

0 ,else
(4.23)

As the PDE 4.21 is semi-linear, we will be using Newton’s method to linearise it. We will

start by finding the initial vector y0 by solving the PDE 4.21 without the semi-linear

part d(x, y): −∆y0(x) = u(x) x ∈ Ω

y0(x) = 0 x ∈ Γ.
(4.24)

PDE 4.24 becomes the same as linear PDE 4.1 in Chapter 4.2, for which we have already

obtained vector y0 = y. Next step would be to apply the Newton’s method to the PDE

4.21 in the same way as described in Chapter 3.3. After doing so, we get the following

equation (3.21):

−∆yn+1 + d′(yn)yn+1 = u− d(yn) + d′(yn)yn, (4.25)

where yn is the previous known value and yn+1 is unknown. Again, lets take d(y) = y3,

which leads to the following linear PDE:−∆yn+1 + 3(yn)2yn+1 = u+ 2(yn)3 x ∈ Ω

yn+1 = 0 x ∈ Γ.
(4.26)
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Now, we will apply the FEM discretization. First of all, we will rephrase the newly

obtained boundary value problem 4.26 into its weak form by multiplying both sides by a

sufficiently smooth test function ψ ∈ H1
0 (Ω) and integrating over Ω. Again, we consider

a standard Galerkin approach, therefore, the test function is in the same space as the

solution.

−
∫

Ω
∆yn+1ψ dΩ +

∫
Ω

3(yn)2yn+1ψ dΩ =

∫
Ω
uψ dΩ +

∫
Ω

2(yn)3ψ dΩ (4.27)

After integration by parts, Gauss’ divergence theorem and consideration of the boundary

conditions we get the weak formulation:∫
Ω
∇yn+1 · ∇ψ dΩ + 3(yn)2

∫
Ω
yn+1ψ dΩ =

∫
Ω
uψ dΩ +

∫
Ω

2(yn)3ψ dΩ (4.28)

Next, we will express function y(x) as a linear combination of the continuous piecewise

linear basis functions ψi: y(x)n+1 =
∑m2

i=1 yiψi(x)

ψ → ψj , j ∈ {1, . . . , n},
(4.29)

where yi is the unknown and m2 is the number of the node points. By inserting 4.29

into 4.28, we get:

∫
Ω

( m2∑
i=1

yi∇ψi
)
∇ψj dΩ + 3(yn)2

∫
Ω

( m2∑
i=1

yiψi

)
ψj dΩ =

∫
Ω
uψj dΩ +

∫
Ω

2(yn)3ψj dΩ

Since, yi is the scalar unknown, we can place it outside the integral:

m2∑
i=1

yi

∫
Ω
∇ψi · ∇ψj dΩ + 3(yn)2

m2∑
i=1

yi

∫
Ω
ψiψj dΩ =

∫
Ω
uψj dΩ +

∫
Ω

2(yn)3ψj dΩ

Which can be written in a shorter form:

m2∑
i=1

Sijyi + 3(yn)2
m2∑
i=1

Mijyi = uj +

∫
Ω

2(yn)3ψj dΩ, (4.30)

where

Sij =

∫
Ω
∇ψi · ∇ψj dΩ, (4.31)

Mij =

∫
Ω
ψiψj dΩ, (4.32)

uj =

∫
Ω
uψj dΩ. (4.33)
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Here Sij(y) and Mij(y) are called Stiffness and Mass matrices, respectively. We want to

express the right hand side using Mass matrices. Hence, we insert the control function

u(x) into 4.33:

uj =

k∑
i=1

ui

∫
Ω
eiψj dΩ. (4.34)

As ei(x) is the distribution function and ψ is the basis function, we can express ei(x) as

follows:

ei(x) =

m2∑
t=1

ψt(x)δtEi , (4.35)

where δtEi is:

δtEi =

1 if t ∈ Ei

0 else .
(4.36)

Then we insert ei(x) into equation 4.34:

k∑
i=1

ui

∫
Ω

( m2∑
t=1

ψtδtEi

)
ψj dΩ =

m2∑
t=1

k∑
i=1

uiδtEi

∫
Ω
ψtψj dΩ,

where

Mtj =

∫
Ω
ψtψj dΩ, (4.37)

bt =

k∑
i=1

uiδtEi (4.38)

Here Mtj is also the Mass matrix. Therefore, we end up with the following form:

m2∑
i=1

Sijyi + 3(yn)2
m2∑
i=1

Mijyi =
m2∑
t=1

Mtjbt +

∫
Ω

2(yn)3ψj dΩ. (4.39)

However, we still have 2(yn)3 on the right-hand side. Lets call it φ(x):

φ(x) = 2(yn)3 (4.40)

We can repeat the procedure and express φ(x) as a linear combination of some basis

functions:

φ(x) =

m2∑
i=1

φiψi(x). (4.41)
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We insert φ(x) into 4.39:

m2∑
i=1

Sijyi + 3(yn)2
m2∑
i=1

Mijyi =

m2∑
t=1

Mtjbt +

m2∑
i=1

φi

∫
Ω
ψiψj dΩ. (4.42)

Now, we express the second term using the Mass matrix. Hence, the final sparse linear

system is of the following form:

m2∑
i=1

Sijyi + 3(yn)2
m2∑
i=1

Mijyi =
m2∑
t=1

Mtjbt + 2(yn)3
m2∑
i=1

Mij (4.43)

Next step is to find the global element matrices Sij and Mij using local element matrices:

Sij =

ne∑
p=1

∫
ep

∇ψi · ∇ψj dΩ =

ne∑
p=1

S
ep
ij , (4.44)

Mij =

ne∑
p=1

∫
ep

ψiψj dΩ =

ne∑
p=1

M
ep
ij . (4.45)

Here ne is the number of elements and p represents the current element (Figure 4.2).

We prepare and solve the sparse linear system 4.43 as described in Chapter 4.2. Then

we can construct the original solution y(x) using equation 4.29. After implementing this

in MATLAB, we get the following results.

Let us consider the three previous examples, Ex.2, Ex.3 and Ex.4, described in Chapters

3.2 and 3.4, for the semi-linear PDE 4.21 using its linear system 4.43. We discretize this

PDE using FEM on MATLAB and after three Newton iterations we get the solution

vector y. Examples 2, 3 and 4 are represented in Figures 4.7, 4.8 and 4.9, respectively.

Figure 4.7: Example 2 - discretized solution of the semi-linear PDE 4.21 using FEM,
for m = 72, k = 9, ui = 100 and Ei = 4 for i = 1, . . . , k.
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Figure 4.8: Example 3 - discretized solution of the semi-linear PDE 4.21 using FEM,
for m = 72, k = 9, ui = 100 and Ei = 16 for i = 1, . . . , k.

Figure 4.9: Example 4 - discretized solution of the semi-linear PDE 4.21 using FEM,
for m = 72, k = 4, ui = 100 and Ei = 36 for i = 1, . . . , k.

Again, the results are almost identical to those of Examples 2, 3 and 4 in the linear

case (Figures 4.4, 4.5 and 4.6, respectively) in Chapter 4.2. The differences are more

apparent after representing the norm of the solution vector y in the Euclidean space (See

table 4.1).

FEM
Linear PDE:

‖~y1‖Rm×m

Semi-linear PDE:

‖~y2‖Rm×m ‖~y1 − ~y2‖Rm×m

Ex.2: k = 9, Ei = 4 3.2960 3.2953 0.0007

Ex.3: k = 9, Ei = 16 13.1510 13.1040 0.047

Ex.4: k = 4, Ei = 36 13.6038 13.5511 0.0527

Table 4.1: Comparison of the solution vector y using FEM between linear and semi-
linear PDEs, when m = 72 and ui = 100 for i = 1, . . . , k.



Chapter 5

Optimization methods for

optimal control problems

In Chapter 4 Finite Element Method was introduced. The linear and semi-linear ellip-

tic PDEs 2.1b and 2.10b, respectively were discretized and visually represented using

MATLAB.The same three examples were introduced for each of the two problems and

the results were compared in Table 4.1. As in Chapter 3, the semi-linear PDE was first

linearised using Newton’s method. In Chapter 5 we will introduce and apply different

optimization methods for both optimal control problems 2.1 and 2.10. We will test these

optimization methods for optimal control problems using Finite Volume and Finite El-

ement Methods and compare the results. There is a lot of information on numerical

optimization. As an example, the reader can be refereed to [5, 11, 12].

In section 5.1 we will start with preparation for optimization methods. After that, in

section 5.2 we will transform optimal control problem into reduced quadratic optimization

problem. Then we will start introducing and comparing optimization techniques for

linear and semi-linear optimal control problems 2.1 and 2.10: quadprog in section 5.2.1,

fmincon in section 5.2.2, whereas in sections 5.2.3 and 5.2.4 we will introduce fmincon

with supplied gradient and projected gradient methods. In section ?? we will draw a

conclusion from these methods.

5.1 Preparation

Let us consider two optimal control problems 2.1 and 2.10 presented in Chapter 2 as P1

and P2, respectively.

38
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P1 =



min J(y, u) := 1
2‖y − yΩ‖2L2(Ω) + λ

2‖u‖
2
L2(Ω)

−∆y(x) = u(x) in Ω

y(x) = 0 on Γ

ua(x) ≤ u(x) ≤ ub(x) u ∈ Uad

(5.1)

P2 =



min J(y, u) := 1
2‖y − yΩ‖2L2(Ω) + λ

2‖u‖
2
L2(Ω)

−∆y(x) + d(x, y) = u(x) in Ω

y(x) = 0 on Γ

ua(x) ≤ u(x) ≤ ub(x) u ∈ Uad

(5.2)

Here the control is situated on the Ω. For both cases we investigate a special ansatz 5.4

of the control function, where the control function u(x) is a linear combination of some

basis functions

u(x) =

k∑
i=1

uiei(x), (5.3)

with real values control parameter ui and finitely many given distribution functions

ei : Ω→ R (Figure 2.1). Moreover, we have the control constraints to the control ui

umin ≤ ui ≤ umax ui ∈ Uad,k, (5.4)

where umin < umax are given real numbers. We take ei(x) as a basis function

ei(x) =

1 , x ∈ Ei for i = 1, . . . , k

0 , else
(5.5)

We have previously discretized PDEs of P1 and P2 using FVM and FEM to obtain the

solution y. Next step would be to test different optimization methods for these problems

to find optimal ū and ȳ. For that reason, we will use the following general settings for

all four different techniques: m = 96, k = 9, initial control ui = 1 and Ei = 8 × 8 for

i = 1, . . . , k. For semi-linear case we will consider d(x, y) = y3 and we will always start

with linearisation of the equation using Newton’s method.
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5.2 Different optimization techniques for optimal control

problems

We will use the solution operator Λ of PDE introduced in Chapter 2 to derive the reduced

optimization problem for the linear case P1.

y(x) = Λu(x) (5.6)

Λu = Su = S
( k∑
i=1

uiei

)
(5.7)

J(y, u) = J(Su, u) = f(~u) (5.8)

By inserting 5.8 into cost functional, we get the reduced objective functional

min
~u∈~Uad,k

f(~u) =
1

2
‖Su− yΩ‖2L2(Ω) +

λ

2
‖u‖2L2(Ω)

=
1

2
‖Λ~u− yΩ‖2L2(Ω) +

λ

2
‖

k∑
i=1

uiei‖2L2(Ω) (5.9)

We want to transform problem P1 into reduced quadratic optimization problem. We

insert 5.3 into 5.6 to get the following functions:

yi(x) = Λei(x) i = 1, . . . , k, (5.10)

where functions yi(x) are the solution to the problems−∆y = ei , in Ω

y = 0 , on Γ

After solving k PDE’s, y = Λu can be found by superposition:

y =

k∑
i=1

uiyi(x) (5.11)
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Now the quadratic optimization problem can be established by inserting 5.3 and 5.11

into reduced cost functional

min
~u∈~Uad,k

f(~u) =
1

2

∥∥∥ k∑
i=1

uiyi − yΩ

∥∥∥2

L2(Ω)
+
λ

2

∥∥∥ k∑
i=1

uiei

∥∥∥2

L2(Ω)

=
1

2
‖yΩ‖2L2(Ω) −

k∑
i=1

ui(yΩ, yi)L2(Ω) +
1

2

k∑
i,j=1

uiuj(yi, yj)L2(Ω)

+
λ

2

k∑
i,j=1

uiuj(ei, ej)L2(Ω) (5.12)

The first term of the function is constant and we can remove it, as it does not influence

the optimization:

min
~u∈~Uad,k

f(~u) =
1

2

k∑
i,j=1

uiuj(yi, yj)L2(Ω) −
k∑
i=1

ui(yΩ, yi)L2(Ω)

+
λ

2

k∑
i,j=1

uiuj(ei, ej)L2(Ω) (5.13)

We can reduce the equation 5.13 by choosing the following notations:

ai = (yΩ, yi)L2(Ω) =

∫
Ω
yΩ(x)yi(x) dΩ (5.14)

Cij = (yi, yj)L2(Ω) =

∫
Ω
yi(x)yj(x) dΩ (5.15)

Dij = (ei, ej)L2(Ω) =

∫
Ω
ei(x)ej(x) dΩ (5.16)

H = C + λD (5.17)

Here C,D,H ∈ Rk×k and ~a ∈ Rk×1. Then using these notations, we can transform

problem 5.13 into the shorter form:

min
~u∈~Uad,k

f(~u) = min
~u∈~Uad,k

{
1

2
~uTH~u− ~aT~u

}
(5.18)

This reduced quadratic optimization problem of P1 can be solved using different opti-

mization methods, which we will discuss in the following sections. For the semi-linear

optimal control problem P2 we will use reduced cost functional 5.9.
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5.2.1 Optimization using quadprog

Let us consider reduced quadratic optimization problem 5.18. This problem can be

easily solved using code quadprog in MATLAB.

First, we discretize the optimal control problem P1 and then use quadprog to solve the

quadratic optimization problem. The aim here is to find the optimal control ~̄u, so that

ȳ is the closest to the desired state yΩ.

Figure 5.1: Optimization results of the optimal control problem P1 using FEM,
together with quadprog code in 3D: m = 96, k = 9, initial control ui = 1 and Ei = 8×8

for i = 1, . . . , k

Figure 5.2: Optimization results of the optimal control problem P1 using FEM,
together with quadprog code in 2D: m = 96, k = 9, initial control ui = 1 and Ei = 8×8

for i = 1, . . . , k

In Figures 5.1 and 5.2 we can see three plots representing different stages of the solution

of P1. First plot represents the solution y of the PDE. Second plot shows the chosen

desired solution yΩ, which is the solution that we would like to achieve at the control

points. Third plot represents the optimal solution state ȳ, which we get by finding the

optimal control vector ~̄u. The difference between using this method together with FVM

or FEM is seen in the Table 5.1.
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quadprog FVM FEM

CPU - time 1.57284 2.958231

f(~̄u) -0.0509 -0.0508

Table 5.1: Results of the quadprog optimization of the problem P1 using FVM and
FEM discretization

As it is seen in Figures 5.2, the optimization technique provides the accurate result,

because the optimal state at the chosen point is exactly the same as the desired solution

yΩ. However, quadprog does not work with semi-linear problems, hence we can not use

it for problem P2.

5.2.2 Optimization using fmincon

Quadratic optimization problem 5.18 can be easily optimized using another MATLAB

code fmincon, that finds the constrained minimum starting at an initial guess ~u0.

Figure 5.3: Optimization results of the optimal control problem P1 using FVM to-
gether with fmincon code in 3D: m = 96, k = 9, initial control ui = 1 and Ei = 8 × 8

for i = 1, . . . , k

Figure 5.4: Optimization results of the optimal control problem P1 using FVM to-
gether with fmincon code in 2D: m = 96, k = 9, initial control ui = 1 and Ei = 8 × 8

for i = 1, . . . , k
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In Figures 5.3 and 5.4 we can see the results of P1 using FVM together with fmincon

code. For semi-linear problem P2 we will use cost functional 5.9 to achieve optimization.

The results of different discretization techniques can be seen in the Table 5.2. We

get almost identical results for linear and semi-linear problems, which means that the

methods are working correctly. We can notice that FEM is slower than FVM, as the

number of calculations is greater in FEM. This should result in a more accurate solution.

Also, we can see a huge difference in computational time between solving linear and semi-

linear optimal control problems. Therefore, it is not suitable for complicated problems,

as it might take too long to run.

fmincon FVM FEM

Linear Semi-linear Linear Semi-linear

CPU-time 2.17389 299.523994 3.553294 945.401196

f(~̄u) -0.0509 0.0717 -0.0508 0.0717

Table 5.2: Results of the fmincon optimization of the problems P1 and P2 using
FVM and FEM discretization

In general, fmincon is a slow method, because it computes gradient of objective func-

tional at every step. However, we can reduce the computational time by supplying

gradient to fmincon. Hence, the next step is to find ∇f(~u).

5.2.3 Optimization using fmincon with supplied gradient

We start by considering the reduced cost functional introduced in Chapter 5.2.

f(~u) =
1

2
‖Λ~u− yΩ‖2L2(Ω) +

λ

2
‖

k∑
i=1

uiei‖2L2(Ω) ~u ∈ ~Uad,k (5.19)

On the right-hand side we have

λ

2
‖

k∑
i=1

uiei‖2L2(Ω) =
λ

2

( k∑
i=1

uiei,

k∑
i=1

ujej

)
L2(Ω)

=
λ

2

k∑
i,j=1

uiuj(ei, ej)L2(Ω) =
λ

2
(~u,D~u)Rk (5.20)

where

Dij = (ei, ej)L2(Ω) =

∫
Ω
ei(x)ej(x) dΩ. (5.21)
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Hence

∇λ
2

(~u,D~u)Rk = λD~u. (5.22)

Then, by using gradient 5.22 we can write derivative of f in the direction h, where h

represents the rate of change

f ′(~u)~h = (Λ∗(Λ~u− yΩ),~h)Rk + (λD~u,~h)Rk , (5.23)

where the operator Λ∗ still needs to be found. According to [5], operator Λ∗ can be

given by the relation

(Λ~u, z)L2(Ω) = (~u,Λ∗z)Rk ∀z ∈ L2(Ω), ∀~u ∈ Rk. (5.24)

Then, by inserting 5.7 into 5.24 we get

(Λ~u, z)L2(Ω) = (S
( k∑
i=1

uiei

)
, z)L2(Ω) =

( k∑
i=1

uiei, S
∗z
)
L2(Ω)

=
k∑
i=1

ui(ei, S
∗z)L2(Ω) =

(
~u,


(p, e1)L2(Ω)

...

(p, ek)L2(Ω)


)

Rk

, (5.25)

where S∗ : L2(Ω) → L2(Ω) is the adjoint operator and S∗z = p is a solution to the

adjoint problem [5] −∆p = z in Ω

p = 0 on Γ.
(5.26)

Then

Λ∗z =


(p, e1)L2(Ω)

...

(p, ek)L2(Ω)

 (5.27)

Finally, using 5.22 and 5.27 we find the gradient

∇f(~u) =


(p, e1)L2(Ω)

...

(p, ek)L2(Ω)

+ λD~u ~u ∈ Rk (5.28)
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We get the adjoint equation for P1−∆p = y − yΩ in Ω

p = 0 on Γ.
(5.29)

We have previously obtained the adjoint equation for P2 in Chapter 2.5−∆p+ dy(x, ȳ)p = y − yΩ in Ω

p = 0 on Γ
(5.30)

Figure 5.5: Optimization results of the optimal control problem P2 using FEM to-
gether with fmincon with supplied gradient code in 3D: m = 96, k = 9, initial control

ui = 1 and Ei = 8× 8 for i = 1, . . . , k

In Figure 5.5 we can see the optimal state ȳ of P2 by using fmincon together with FEM.

Again, at one of the points we can see that the actual solution is following the desired

solution very closely.

fmincon + ∇ FVM FEM

Linear Semi-linear Linear Semi-linear

CPU-time 1.896378 50.087365 3.42329 516.93376

f(~̄u) -0.0505 0.0717 -0.0505 0.0717

Table 5.3: Results of the fmincon optimization with supplied gradient of the problems
P1 and P2 using FVM and FEM discretization

It can be seen from Table 5.3, that by supplying gradient of reduced cost functional f ,

we have managed to significantly reduce the CPU-time in the semi-linear problem.
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5.2.4 Projected gradient method

In this section we introduce the fourth optimization method, which is called Projected

gradient method. This method is the faster version of Conditioned gradient method,

which is quite slow as it converges linearly [5]. Again, consider the linear problem P1,

where we want to minimise the reduced cost functional 5.19

f(~u) =
1

2
‖Λ~u− yΩ‖2L2(Ω) +

λ

2
‖

k∑
i=1

uiei‖2L2(Ω) ~u ∈ ~Uad,k (5.31)

The algorithm proceeds as follows:

S1 Solve the state system of P1.

S2 Calculate the associated adjoint state p by solving the adjoint equation 5.29−∆p = y − yΩ in Ω

p = 0 on Γ.
(5.32)

S3 Calculate ∇f(~u)

∇f(~u) =


(p, e1)L2(Ω)

...

(p, ek)L2(Ω)

+ λD~u ~u ∈ Rk, (5.33)

and take the negative gradient as a descent direction

~v = −∇f(~u) (5.34)

S4 Choose the initial step size sn = s0 = 0.1 and check if it is true:

f(~un + sn~v) < f(~un) (5.35)

True: ~un+1 = ~un + sn~v; False: sn = sn
2

S5 If|∇f(~u)| ≤ ε - stop, otherwise start with S1.

For P2, we use Newton’s method introduced in Chapter 3 to linearise the equation. Now,

let us consider the semi-linear optimal control problem P2. We have the algorithm as

follows:

S1 Solve the state system of P2.

S2 Find the associated adjoint state p by solving the adjoint equation 5.30.

We repeat the rest of the steps as in the linear case above.
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Figure 5.6: Optimization results of the optimal control problem P2 using FVM to-
gether with Projected gradient method code in 2D: m = 96, k = 9, initial control ui = 1

and Ei = 8× 8 for i = 1, . . . , k

Figure 5.6 also shows that the optimal solution at the Ei areas is almost identical to the

desired solution.

Projected gradient method FVM FEM

Linear Semi-linear Linear Semi-linear

CPU-time 0.987159 37.059861 2.227709 252.214029

f(~̄u) -0.0508 0.0717 -0.0507 0.0717

Table 5.4: Results of the projected gradient method optimization with supplied gra-
dient of the problems P1 and P2 using FVM and FEM discretization

Table 5.4 shows the results of projected gradient method applied to the problems P1

and P2 together with FVM and FEM.

Now, let us take a look at the constraint example of P1 of quadprog method. We will

consider the constraint problem P1, where constraints are as follows:

−200 ≤ ui ≤ 200 ui ∈ Uad,k, (5.36)
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Let us use quadprog with FVM. For the unconstrained example we get vector ~u as

follows:

~u =



153.1022

218.6932

153.1022

0

0

0

−153.1022

−218.6932

−153.1022



(5.37)

whereas for the constraint example it is:

~u =



155.4989

200.0000

155.4989

−0.0000

−0.0000

−0.0000

−155.4989

−200.0000

−155.4989



(5.38)

We can see how the constraints affects the control vector ~u.



Chapter 6

Conclusion of the numerical

results

In Chapter 5 we have found the minimization solution to the linear and semi-linear opti-

mal control problems P1 and P2, respectively, by using different optimization techniques.

First of all, we have transformed the problem into reduced quadratic optimization prob-

lem and used it to find the optimal solutions for the linear optimal control problem P1,

while for the semi-linear problem P2 we have used the reduced cost functional. We have

also applied four optimization techniques: quadprog, fmincon, fmincon with supplied

gradient and projected gradient method. We have tested these methods using FVM and

FEM.

In Chapter 6, will summarize all the results. First of all, the optimal state y of every

Figure of P1 in Chapter 5 produced almost identical results. The same has happened for

problem P2. This is a good indicator that all four optimization methods together with

two different discretization techniques provide accurate results. This is well presented

in Table 6.1:

P1 - linear FVM FEM

CPU-time f(~̄u) CPU-time f(~̄u)

quadprog 1.57284 -0.0509 2.958231 -0.0508

fmincon 2.17389 -0.0509 3.553294 -0.0508

fmincon+∇ 1.896378 -0.0505 3.42329 -0.0505

PGM 0.987159 -0.0508 2.227709 -0.0507

Table 6.1: Results of all four optimization techniques applied to the linear optimal
control problem P1 using FVM and FEM discretization

50
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From Table 6.1 we can see that all three methods produce very similar results for the

linear problem P1. Overall, the computational time is very small. Even when the gradi-

ent is supplied to fmincon, the speed barely changes. However, the Projected Gradient

Method (PGM) is shown to be the fastest.

P2 - semi-linear FVM FEM

CPU-time f(~̄u) CPU-time f(~̄u)

fmincon 299.523994 0.0717 945.401196 0.0717

fmincon+∇ 50.087365 0.0717 516.93376 0.0717

PGM 37.059861 0.0717 252.214029 0.0717

Table 6.2: Results of three optimization techniques applied to the semi-linear optimal
control problem P2 using FVM and FEM discretization

From Table 6.2 we can see that all three methods produce very similar results, although

the computational time has seriously increased in the case of semi-linear PDE in P2. It

is clear that here fmincon with supplied gradient is a much better choice for optimization

than the fmincon on its own. However, PGM is again the fastest method of them all.
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