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Dynamic Multimodal Measurement of
Depression Severity Using Deep Autoencoding

Hamdi Dibeklioğlu∗ , Member, IEEE, Zakia Hammal∗, Member, IEEE, and Jeffrey F. Cohn, Member, IEEE

Abstract—Depression is one of the most common psy-
chiatric disorders worldwide, with over 350 million people
affected. Current methods to screen for and assess depres-
sion depend almost entirely on clinical interviews and self-
report scales. While useful, such measures lack objective,
systematic, and efficient ways of incorporating behavioral
observations that are strong indicators of depression pres-
ence and severity. Using dynamics of facial and head move-
ment and vocalization, we trained classifiers to detect three
levels of depression severity. Participants were a commu-
nity sample diagnosed with major depressive disorder. They
were recorded in clinical interviews (Hamilton Rating Scale
for Depression, HRSD) at seven-week intervals over a pe-
riod of 21 weeks. At each interview, they were scored by
the HRSD as moderately to severely depressed, mildly de-
pressed, or remitted. Logistic regression classifiers using
leave-one-participant-out validation were compared for fa-
cial movement, head movement, and vocal prosody individ-
ually and in combination. Accuracy of depression severity
measurement from facial movement dynamics was higher
than that for head movement dynamics, and each was sub-
stantially higher than that for vocal prosody. Accuracy us-
ing all three modalities combined only marginally exceeded
that of face and head combined. These findings suggest that
automatic detection of depression severity from behavioral
indicators in patients is feasible and that multimodal mea-
sures afford the most powerful detection.

Index Terms—Depression severity, Facial movement
dynamics, Head movement dynamics, Multimodal fusion,
Vocal prosody.

I. INTRODUCTION

D EPRESSION is one of the most common psychological
disorders and a leading cause of disease burden [1]. Nearly
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14.8 million people in the United States suffer from depression.
The social and personal costs of major depression and related
unipolar disorders are substantial. Depression increases the risk
of suicide some 20-fold. Economic losses approach 40 billion
dollars per year. The World Health Organization predicts that
depression will become the leading cause of disease burden
(mortality plus morbidity) within the next 15 years [2]. Re-
liable, objective, and efficient screening and measurement of
depression severity are critical to identify individuals in need of
treatment and to evaluate treatment response.

Many symptoms of depression are observable. The Diag-
nostic and Statistical Manual of Mental Disorders (DSM-5)
[3], the standard for psychiatric diagnosis in the U.S., de-
scribes a range of audiovisual depression indicators. These
include facial expression and demeanor, inability to sit still,
pacing, hand-wringing and other signs of psychomotor agita-
tion, slowed speech and body movements, reduced interpersonal
responsiveness, decreased vocal intensity, and neuromotor dis-
turbances [3]–[5]. Yet, often these indicators are not taken
into account in screening, diagnosis, and evaluation of treat-
ment response. Depression assessment relies almost entirely
on patients’ verbally reported symptoms in clinical interviews
(e.g., the clinician-administered Hamilton Rating Scale for De-
pression [6]) and self-report questionnaires (e.g., Beck De-
pression Inventory [7]). These instruments, while useful, fail
to include visual and auditory indicators that are powerful
indices of depression. Recent advances in computer vision
and signal processing for automatic analysis and modeling of
human behavior could play a vital role in overcoming this
limitation.

A. Related Work

Psychomotor symptoms such as gross motor activity, facial
expressiveness, body movements, and speech timing differ be-
tween depressed and normal comparison groups [3]–[5]. Con-
sequently, an automatic and objective assessment of depression
from behavioral signals is of increasing interest to clinical
and computer scientists. The latter use signal processing, com-
puter vision, and pattern recognition methodologies. From the
computer-science perspective, research has sought to iden-
tify depression from vocal utterances [8]–[13], facial expres-
sion [14]–[17], head movements/pose [16], [18], [19], body
movements [18], and gaze [20]. While most research is limited
to a single modality, there is increasing interest in multimodal
approaches to depression detection [21], [22].
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A challenge for automatic measurement of depression sever-
ity is the lack of available, suitable audio-video archives of be-
havioral observations of individuals that have clinically relevant
depression. Well-labeled unscripted audio-visual recordings of
clinically relevant variation in depression severity are necessary
to train classifiers. Because the confidentiality of patient data
must be protected, clinical databases such as the one used in
this paper are not generally available.

One option so far was to recruit participants that have a range
of depressive symptoms without regard to whether they meet
DSM-5 diagnostic criteria. The recent Audio/Visual Emotion
Challenge (AVEC) is a leading example. AVEC explored auto-
matic measurement of the behavior of non-clinical participants
partaking in an individual Human-Computer Interaction (HCI)
task. The objective of the challenge was to automatically predict
the level of participants’ self-reported depression on the Beck
Depression Inventory-II (BDI) [21]. AVEC provided common
data for multiple research groups to analyze and compare their
results.

The AVEC depression database is composed of audio-video
recordings of 300 participants with a wide range of BDI scores.
For each recording, the database includes self-reported BDI,
spatiotemporal Local Gabor Binary Patterns (LGBP-TOP) video
features, and a large set of voice features (a set of low level voice
descriptors and functionals extracted using the freely open-
source openEAR [23] and openSMILE [24]).

Using AVEC and a few non-publicly available resources [25],
audiovisual detection of depression has been proposed [26]–
[33]. In [28] for instance, visual bag-of-words (BoW) features
computed from space time interest points (STIP), were com-
bined with mel-frequency cepstral coefficients (MFCCs) fea-
tures. Extracted audiovisual features were then fused at the
feature level and modeled using support vector regressors
(SVRs) to measure self-reported BDI [28].

Using a similar approach, Joshi and colleagues [27], com-
bined STIPs and MFCCs with other visual features (e.g.,
Spatiotemporal Local Binary Patterns (LBP-TOP)) and audio
features (such as fundamental frequency, loudness, and inten-
sity). BoW features were then learned for each of the extracted
audiovisual feature sets using SVMs. Feature and decision level
fusion strategies were compared for the automatic audiovisual
detection of depression.

In related work, Jain and colleagues [29], combined visual
LBP-TOP features with Dense Trajectories and low level au-
dio descriptors provided in [21]. The extracted audiovisual
features were encoded using a Fisher Vector representation
and a linear SVR was used to learn BDI score classification.
In [31], visual Motion History Histogram (MHH) features were
measured from three different visual texture features (Local Bi-
nary Patterns, Edge Orientation Histogram, and Local Phase
Quantization) and combined with low-level audio descriptors
provided in [21]. Partial Least Square (PLS) and Linear regres-
sion algorithms were used to model the mapping between the
extracted features and BDI scores for face and voice features
separately, followed by a decision based combination. In [32],
the authors combined two regression models using LGBP-TOP
video features with another single regression model based on

acoustic i-vectors to compute a final BDI score. In another con-
tribution, [26] combined temporal patterns of head pose and
eye/eyelid movements. A hybrid fusion method of the scores
obtained from individual modalities and their combination was
used to detect presence from absence of depression.

In all but a few cases, such as [34], previous efforts have
relied on high dimensional audiovisual descriptors to detect
self-reported depression severity. In contrast, using AVEC data,
Williamson and his colleagues [34] investigated the specific
changes in coordination, movement, and timing of facial and vo-
cal signals as potential symptoms for self reported BDI scores.
They proposed a multi-scale correlation structure and timing
feature sets from video-based facial action units (AUs) and
audio-based vocal features. They combined the extracted com-
plementary features using a Gaussian mixture model and ex-
treme learning machine classifiers to predict BDI scores.

Despite increasing efforts, the current state of the art has
not yet achieved the goal of automatic, reliable, and objective
measurement of depression severity from behavioral indicators
of affected individuals. Multimodal measurement of depression
severity raises several issues. Many of these are shared with
other applications of automatic and multimodal human behavior
analysis.

1) One is whether one or another modality is more infor-
mative. Ekman [35] for instance proposed that for af-
fect recognition, facial expression is more revealing than
body; he was equivocal about face relative to voice. Alter-
natively, one could imagine that high redundancy across
channels would render modest any potential gain pro-
vided by a multimodal approach for depression severity
measurement. Comparative studies are needed to explore
this issue.

2) A second issue is choice of context. AVEC explored
audiovisual expression in the context of an individual
human-machine interaction task, for which audience ef-
fects would likely be absent. However, research by Frid-
lund and others [36] suggests that when an audience is
present, signal strength of nonverbal behavior increases.
Nonverbal reactions to and from others present additional
sources of information. For instance, switching-pause or
turn-taking latency can only be measured in social inter-
action. Context influences what behaviors occur and their
intensity.

B. Proposed Contribution

Reduced reactivity is consistent with many evolutionary theo-
ries of depression and highlights the symptoms of psychomotor
retardation [37]–[39]. To capture aspects of psychomotor retar-
dation and agitation in clinically relevant participants, we used
dynamic measures of expressive behavior.

1) In contrast to previous work, all participants met DSM-4
or DSM-5 criteria for major depression as determined
by diagnostic interview. Diagnostic criteria matter for
at least two reasons. First, many non-depressive disor-
ders are confusable with depression. Post-traumatic stress
disorder (PTSD) and generalized anxiety disorder, for
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instance, share overlapping symptoms with depression.
Second, people with history of depression may differ
from those without depression in personality factors or in
other non-specific ways [40]. By using diagnostic criteria
and focusing on change in depression severity, we were
able to rule out other sources of influence.

2) Compared with previous efforts, we focused on an in-
terpersonal context, clinical interviews. Informed by the
psychology literature on depression, we anticipated that
the interpersonal nature of clinical interviews would
heighten discriminability across modalities.

3) We investigated the discriminative power of three
modalities—facial movement dynamics, head movement
dynamics, and vocal prosody—individually and in com-
bination to measure depression severity. Symptom sever-
ity was ground-truthed using state-of-the-art depression
severity interviews.

4) Instead of using a large number of descriptors or se-
lecting informative features individually, we investigated
the selection of an optimum feature set by maximizing
the combined mutual information for depression severity
measurement.

Part of this work has been presented at the ACM International
Conference on Multimodal Interaction [41].

II. MATERIALS

A. Participants

Fifty-seven depressed participants (34 women, 23 men) were
recruited from a clinical trial for treatment of depression. They
ranged in age from 19 to 65 years (mean = 39.65) and were
Euro- or African-American (46 and 11, respectively). At the
time of the study, all met DSM-4 criteria [42] for Major De-
pressive Disorder (MDD). DSM-4 (since updated to DSM-5)
is the standard in the U.S. and much of the world. Although
not a focus of this study, participants were randomized to either
anti-depressant treatment with a selective serotonin re-uptake
inhibitor (SSRI) or Interpersonal Psychotherapy (IPT). Both
treatments are empirically validated for the treatment of depres-
sion [43]. Data from 49 participants were available for analysis.
Participant loss was due to change in original diagnosis, severe
suicidal ideation, and methodological reasons (e.g., missing au-
dio or video).

B. Observational Procedures

Symptom severity was evaluated on up to four occasions at
1, 7, 13, and 21 weeks post diagnosis and intake by ten clini-
cal interviewers (all female). Interviewers were not assigned to
specific participants. Four interviewers were responsible for the
bulk of the interviews but the number of interviews per inter-
viewer varied. The median number of interviews per interviewer
was 14.5; four conducted six or fewer.

Interviews were conducted using the Hamilton Rating Scale
for Depression (HRSD) [6]. HRSD is a clinician-rated multiple
item questionnaire to measure depression severity and respo-
nse to treatment. The HRSD rates the severity of depression

Fig. 1. Face-to-face clinical interview setup.

by probing mood, feelings of guilt, suicide ideation, insom-
nia, agitation or retardation, anxiety, weight loss, and somatic
symptoms. Each item is scored on a 3- or 5-point Likert type
scale, depending on the item, and the total score is compared
to the corresponding descriptor. Interviewers were expert in the
HRSD and reliability was maintained above 0.90. Variation in
HRSD scores is used as a guide to evaluate recovery by detect-
ing ordinal ranges of depression severity. HRSD scores of 15 or
higher are generally considered to indicate moderate to severe
depression; scores between 8 and 14 indicate mild depression;
and scores of 7 or lower indicate remission [44].

Interviews were recorded using three hardware-synchronized
analogue cameras and two unidirectional microphones (see
Fig. 1). Two cameras were positioned approximately 15◦ to
the participant’s left and right. One camera recorded the par-
ticipant’s face and one camera recorded a full body view (see
Fig. 1 left). A third camera recorded the interviewer’s shoulders
and face from approximately 15◦ to the interviewer’s right (see
Fig. 1 right). Audio-visual data from the camera and microphone
to the participant’s right were used in this study.

Missing data occurred due to missed appointments or tech-
nical problems. Technical problems included failure to record
audio or video, occurrence of audio or video artifacts, and in-
sufficient data. The distribution of the data (i.e., number and
mean duration of sessions per HRSD score) from the begin-
ning of the first question to the end of the interview is reported
in Fig. 2. Videos were digitized into a resolution of 640× 480
pixels at a rate of 29.97 frames per second (see Section III-
A). Audio was digitized at 48 kHz and later down-sampled
to 16 kHz for speech processing. To be included for audio
analysis, we required a minimum of 20 speaker turns of at
least 3 seconds in length and at least 50 seconds of vocaliza-
tion in total (see Section III-B) [11]. Using these data and the
cut-off scores described above, we defined three ordinal de-
pression severity classes: moderate to severe depression, mild
depression, and remission (i.e., recovery from depression).
The final sample was 130 sessions from 49 participants:
58 moderate to severely depressed, 35 mildly depressed, and
37 remitted.
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Fig. 2. (a) Number of sessions per HRSD score and (b) mean duration
(with standard deviation) of the interviews (per HRSD score) from the
beginning of the first question to the end of the interview.

III. AUDIOVISUAL FEATURE EXTRACTION

Depression alters the timing of nonverbal behavior [3]. To
capture changes in visual and auditory modalities, we focused
on the dynamics of facial and head movement, and vocal funda-
mental frequency and switching pauses. We thus include both
visual and auditory measures.

A. Visual Measures

1) Automatic Tracking of Facial Landmarks and Head
Pose: Previous research has used person-dependent Active Ap-
pearance Models (AAMs) to track the face and facial features
(e.g., [14], [19]). Because AAMs must be pre-trained for each
participant, they are not well suited for clinical applications or
large numbers of participants. We used a fully automatic, person-
independent, generic approach that is comparable to AAMs to
track the face and facial features, referred to as ZFace [45]. The
robustness of this method for 3D registration and reconstruction
from 2D video has been validated in a series of experiments (for
details, see [45], [46]).

ZFace performs 3D registration from 2D video with no pre-
training. This is done using a combined 3D supervised descent
method [47], where the shape model is defined by a 3D mesh and
the 3D vertex locations of the mesh [45]. ZFace registers a dense
parameterized shape model to an image such that its landmarks
correspond to consistent locations on the face. We used ZFace
to track 49 facial landmarks (fiducial points) and 3 degrees of
out-of-plane rigid head movements (i.e., pitch, yaw, and roll)
from 2D videos (see Fig. 3).

Fig. 3. The automatically tracked three degrees of freedom of head
pose and the 49 facial landmarks.

2) Preprocessing of the Extracted Facial Landmarks
and Head Pose: Most previous work in affect analysis uses
holistic facial expressions, action units, or valence. Because our
interest is the dynamics rather than the configuration of facial
expression, we used only facial and head movement dynamics.

Facial movement dynamics was represented using the time
series of the coordinates of the 49 tracked fiducial points. To
control for variation due to rigid head movement, fiducial points
were first normalized by removing translation, rotation, and
scale. To reduce tracking errors that could happen, the movement
of the normalized 98 time series (49 fiducial points × x and y
coordinates) was smoothed by the 4253H-twice method [48]
and used to measure the dynamics of facial movement between
clinical interviews.

Likewise, head movement dynamics was represented using
the time series of the 3 degrees of freedom of out-of-plane rigid
head movement. These movements correspond to head nods
(i.e., pitch), head turns (i.e., yaw), and lateral head inclinations
(i.e., roll). Similar to fiducial points, head angles were smoothed
using the 4253H-twice method [48] prior to analysis.

3) Per-Frame Encoding of Facial and Head Movement:
Our goal is to automatically estimate depression severity scores
from the moment-to-moment changes (i.e., per frame changes)
of the smoothed measures of head and facial movement. To
achieve this goal, we faced three main challenges: (1) The move-
ments of individual fiducial points and head pose orientations are
highly correlated. (2) Both facial and head movement measures
include redundant information and complex relations that cannot
be revealed by linear methods, such as the conventional Prin-
ciple Component Analysis (PCA) and Canonical Correlation
Analysis [49]. (3) Only a single label (i.e., Remission, Mild,
and Moderate to Severe) is available for each session. Per-frame
class labels are not available. To meet these challenges, we
used deep learning based methods [50], [51] and, in particu-
lar, Stacked Denoising Autoencoders (SDAE) [52]. SDAE has
emerged as one of the most successful unsupervised methods
to discover unknown non-linear mappings between features
(which in our case are the face and head movement dynam-
ics) and outcomes (which in our case are depression severity
scores) while coping with high dimensionality and redundancy.
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Fig. 4. Overview of the proposed approach. (a) Tracking of facial landmarks and head pose, (b) per-frame encoding through stacked denoising
autoencoders, (c) extraction of per-frame dynamics (amplitude, velocity, and acceleration), and (d) per-video encoding through improved Fisher
vector coding or compact dynamic feature set.

SDAE is a deep network based on stacking layers of denoising
autoencoders. They are locally trained to learn representations
that are insensitive to small irrelevant changes in the inputs (see
Fig. 4(b)). Each hidden layer (i.e., denoising autoencoder) of
the resulting deep network learns efficient representations of
the corresponding inputs. In order to force the hidden layer to
discover robust features instead of simply learning the input’s
identity, the autoencoder is trained to reconstruct the input from
a “corrupted version” of the input [52], [53]. A stochastic cor-
ruption process randomly sets some of the elements of the input
x to 0 resulting in a corrupted version x̃ [52], [53]. The corrup-
tion is only used for the training process. A different corrupted
version of x is generated each time the training example x is
presented. Each hidden layer is then learned using a denoising
autoencoder, which maps a corrupted version x̃ of input x ∈ Rp

to a latent representation y ∈ Rq , and then maps it back to the
original space z ∈ Rp , where p and q denote the sizes of the in-
put x and the latent representation y, respectively. The denoising
autoencoder is trained by minimizing the reconstruction error
‖x − z‖2 .

The first hidden layer of the SDAE is trained to reconstruct the
input data, and the following hidden layers are trained to recon-
struct the states of the layers below, respectively (see Fig. 4(b)).
Transformation weights are initialized at random and then
optimized by gradient descent. Once a stack of encoders has
been built, the entire deep autoencoder is then trained to fine-
tune all the parameters together to obtain an optimal reconstruc-
tion using gradient-based backpropagation [51].

In the current contribution, we used a separate 3-layer SDAE
deep network architecture (i.e., SDAE with 3 hidden layers) to
encode efficient per-frame representations of both facial move-
ment and head movement (see Fig. 4(b)). Each SDAE was
trained using the normalized and smoothed 49 facial landmark
coordinates and smoothed 3 head pose orientations, respectively
(see Section III-A2 and Fig. 4(a)). For each SDAE deep network
architecture (face and head), the number of units per each hidden

TABLE I
THE LIST OF THE CONSIDERED HYPERPARAMETERS OF SDAES

Hyperparameter Considered values

Number of units per hidden layer
{� d

4 �, � d
2 �, d, � 3 d

2 �, 2d
}

Fixed learning rate {0.001, 0.01}
Number of pre-training epochs {30, 50}
Corruption noise level {0.1, 0.2, 0.4}

Note: d is the per frame features’ dimensionality of the input
data. Noise level corresponds to the fraction of corrupted inputs.
Number of pretraining epochs corresponds to the pretraining of
the denoising autoencoders. Fixed learning rate corresponds to
the fixed error values for pretraining and fine-tuning.

layer, and other hyperparameters of SDAE were determined dur-
ing training by minimizing the prediction error (the difference
between estimated and actual depression severity scores). The
list of the investigated hyperparameters is given in Table I. For
a compact representation of facial features, the number of units
of the 3rd hidden layer (i.e., dimension of the learned facial
representation) of the corresponding SDAE deep network was
empirically set to 15. The number of units of the 3rd hidden
layer for the head SDAE (see Fig. 4(b)) was automatically set
to 5 for most folds of the cross-validation (see Section V).

After training, each SDAE deep network learned a transfor-
mation of the extracted per-frame features to an effective repre-
sentation. By applying the learned per-frame encoding to each
frame of the video, the SDAE-based outputs were combined
into an effective n × dfinal time series representation D (n being
the number of frames of a given video and dfinal the dimension
of the learned features) describing the video.

The obtained SDAE-based time series D ∈ Rn×dfinal encoded
how the SDAE-based representation of input elements (facial
landmark coordinates and head angles, respectively) changed
over time across the video (see Fig. 4(c)). Considering that each
column Di (i ∈ {1, 2, . . . , dfinal}) of data matrix D corresponds
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TABLE II
TWENTY ONE FEATURES DEFINED IN DFS

Feature Definition

Maximum Ampl.: max(D)

Mean Amplitude:

[ ∑
D

η (D) ,

∑
D+

η (D+ )
,

∑
D−

η (D−)

]

STD of Amplitude: std(D)

Maximum Speed:
[
max(|V|) , max(|V+|) , max(|V−|)]

Mean Speed:

[ ∑
V

η (V) ,

∑
V+

η (V+ )
,

∑
V−

η (V−)

]

STD of Speed: std(V)

Maximum Accel.:
[
max(|A|) , max(|A+|) , max(|A−|)]

Mean Accel.:

[ ∑
A

η (A) ,

∑
A+

η (A+ )
,

∑
A−

η (A−)

]

STD of Accel.: std(A)

+ /− Frequency:
[

τ +

η (A+ )
, τ−

η (A−)

]

Note: (+) refers to features measured form increasing segments and
(−) to features measured form decreasing segments (see Fig. 5). D
corresponds to the amplitude, V velocity, and A acceleration.

to a specific movement, we computed the dynamic changes of
these movements over time. The velocity of change of the ex-
tracted dfinal time series was then computed as the derivative
of the corresponding values as Vi = dDi

dt , measuring the veloc-
ity of change of the per-frame facial (or head pose) features
from one frame to the next (see Fig. 4(c)). Similarly, the accel-
eration of change of the per-frame facial (or head pose) features
was computed as the derivative of the corresponding velocities
as Ai = d2 Di

dt2 . For the purpose of alignment of the three time se-
ries (D, V , and A), the first two frames of videos were discarded
from all analyses. For simplicity, D, V , and A will hereafter be
referred to as amplitude, velocity, and acceleration, respectively
(see Fig. 4(c)).

4) Per-Video Encoding of Facial and Head Movement:
Because videos of interviews varied in length, the extracted time
series features of different videos varied in length. It was thus
useful to encode the extracted time series descriptors with fixed
length per-video descriptors (see Fig. 4(d)). To this end, we
used two different representations to describe the videos with a
fixed length representation: (1) Improved Fisher Vector (IFV)
coding [54], and (2) Compact Dynamic Feature Set (DFS) [41].

In the IFV-based representation, amplitude, velocity, and
acceleration measures were first concatenated for each frame.
Using a Gaussian mixture model (GMM) with 64 Gaussian
distributions, these combined measurements were encoded into
a 384 × dfinal (64 × 2 × 3 × dfinal) dimensional IFV for each
video. The resulting feature vectors were then normalized by
power normalization [54] and l2-norm.

The compact DFS-based representation corresponds to
21 features extracted for each of the elements of the dfinal time
series as described in Table II, yielding 21 × dfinal dimensional
descriptor per video. Based on previous research [55], DFS
comprises key measurements of amplitude, velocity, and ac-
celeration, as well as taking into account the direction of the

Fig. 5. Increasing and decreasing segments on an amplitude signal.

change in the extracted time series. This is done by dividing
each time series into increasing (+ ) and decreasing (−) seg-
ments (see Fig. 5 and Table II). In Table II, signals symbolized
with superindex (+ ) and (−) denote the segments of the related
signal with continuous increase and continuous decrease in am-
plitude, respectively. η defines the length (number of frames)
of a given time series. τ+ and τ− denote the number of in-
creasing and decreasing amplitude segments in the time series
sequence, respectively. In some cases, the features cannot be cal-
culated; for instance, if we extract features from a continuously
increasing times series, no decreasing segment can be detected
[η (D−) = 0]. In such conditions, all the features describing the
related segments are set to zero.

Using IFV coding and DFS, 5760 (384 × 15) dimensional
IFV and 315 (21 × 15) dimensional DFS representations were
obtained as per-video facial features. Similarly, 384 × dfinal di-
mensional IFV and 21 × dfinal dimensional DFS representations
were obtained as per-video head features.

B. Vocal Measures

1) Preprocessing: Because audio was recorded in a clin-
ical office setting rather than laboratory setting, some acoustic
noise was unavoidable. To reduce noise level and equalize inten-
sity, Adobe Audition II [11] was used. An intermediate level of
40% noise reduction was used to achieve the desired signal-to-
noise ratio without distorting the original signal [11]. Each pair
of recordings was transcribed manually using Transcriber soft-
ware [56], then force-aligned using CMU Sphinx III [57], and
post-processed using Praat [58]. Because session recordings ex-
ceeded the memory limits of Sphinx, it was necessary to segment
recordings prior to forced alignment. While several approaches
to segmentation were possible, we segmented recordings at tran-
scription boundaries; that is, whenever a change in speaker
occurred [11]. Except for occasional overlapping speech, this
approach resulted in speaker-specific segments. Forced align-
ment produced a matrix of four columns: speaker (which en-
coded both individual and simultaneous speech), start time, stop
time, and utterance. To assess the reliability of the forced align-
ment, audio files from 30 sessions were manually aligned and
compared with the segmentation yielded by Sphinx [11]. Mean
error(s) for onset and offset were 0.097 and 0.010 seconds for
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participants, respectively. The forced alignment timings were
used to identify speaker-turns and speaker diarization for the
subsequent automatic feature extraction [11].

2) Vocal Features: Previous investigations have revealed
that compared to non-depressed participants, depressed partic-
ipants presented reduced speech variability and monotonicity
in loudness and pitch [59]–[62], reduced speech [63], reduced
articulation rate [64], and increased pause duration [11], [65].
Consistent with alternative methods, and because we were inter-
ested in severity assessment and not in diagnostic, in preliminary
work we investigated a number of possible vocal features for
the measurement of depression severity. We considered both
frequency and timing features such as fundamental frequency
(f0), Maxima Dispersion Quotient (MDQ), Peak Slope (PS),
Normalized Amplitude Quotient (NAQ), Quasi Open Quotient
(QOQ), and switching pause durations [11], [12]. However, pre-
liminary results showed that only switching pause durations and
f0 were correlated with depression severity [11], [12]. For this
reason, we used only these measures.

Switching pause (SP), or latency to speak, is defined as the
pause duration between the end of one speaker’s utterance and
the start of the other speaker’s utterance. SPs were identified
from the matrix output of Sphinx [11]. So that back channel
utterances would not confound SPs, overlapping voiced frames
were excluded. SPs were aggregated to yield mean duration
and coefficient of variation (CV) for both participants and inter-
viewers. The CV is the ratio of standard deviation to the mean
[11]. It reflects the variability of SPs when the effect of mean
differences in duration is removed. To characterize the partici-
pants’ latency to speak, mean, variance, and CV of SP durations
were computed over the whole session and used for automatic
measurement of depression severity.

Vocal fundamental frequency (f0) for each utterance was
computed automatically using the autocorrelation function in
Praat [58] with a window shift of 10 ms [11]. To measure
dynamic changes in the fundamental frequency, mean ampli-
tude, variation coefficient of amplitude, mean speed, and mean
acceleration of f0 over the whole session were extracted and
used for automatic measurement of depression severity. Since
microphones were not calibrated for intensity, intensity mea-
sures were not considered.

IV. FEATURE SELECTION AND DEPRESSION

SEVERITY ESTIMATION

To reduce redundancy and select the most discriminative
audiovisual feature set, the Min-Redundancy Max-Relevance
(mRMR) algorithm [66] was used for feature selection. Com-
pared to the closely related Canonical Correlation Analysis
(CCA) based feature selection, which optimizes the mutual cor-
relation between labels and feature set, mRMR is an incremental
method for minimizing redundancy while selecting the most rel-
evant features based on mutual information. The efficiency of
mRMR to select the best set of individual features by max-
imizing the combined mutual information was established in
previous research (e.g., [67]–[69]). We used it for the first time
for audiovisual depression severity measurement.

More specifically, let Sm−1 be the set of selected m − 1
features, then the mth feature can be selected from the set {F −
Sm−1} as:

max
fj ∈F −Sm −1

⎡

⎣I (fj , c) − 1
m − 1

∑

fi ∈Sm −1

I (fj , fi)

⎤

⎦ , (1)

where I is the mutual information function and c is a target class.
F and S denote the original feature set, and the selected sub set
of features, respectively. Eq. (1) is used to determine which
feature is selected at each iteration of the algorithm. The size
of the selected feature set is determined based on the validation
error.

Due to notable overlap in the feature space, density-based
(probabilistic) models would be an efficient choice for dis-
tinguishing between depression severity scores. Given this
consideration, logistic regression classifiers using leave-one-
participant-out cross-validation were employed for depression
severity measurement from facial movement dynamics, head
movement dynamics, and vocal prosody, separately and in com-
bination. Each regression model describes the distribution over
a class y as a function of features φ as follows:

p(y | φ) =
1

1 + exp(−y wT φ)
(2)

The model can be trained by maximizing the log-likelihood of
the training data under the model with respect to the model pa-
rameters w. Then, unseen features can be classified by maximiz-
ing the above equation over the trained classes (see Section V).

V. EXPERIMENTAL RESULTS

We seek to discriminate three levels of depression severity
(moderate-to-severe, mild, and remitted) from facial movement
dynamics, head movement dynamics, and vocal prosody sepa-
rately and in combination. To do so, we used a two-level leave-
one-participant-out cross-validation scheme. For each iteration
a test fold was first separated. A leave-one-participant-out cross-
validation was then used to train the whole system (i.e., SDAE
and logistic regression) and optimize the corresponding hy-
perparameters without using the test partition. The optimized
parameters included the regularization hyperparameter of the
logistic regression classifier, number of features selected by
mRMR, and the hyperparameters of the SDAE (i.e., number of
units per hidden layer, fixed learning rate, number of pre-training
epochs, and corruption noise level). The optimized parameters
were then used to measure the classification error on the test set.
This process was repeated for all participants.

For the fusion of modalities, whole sets of features were first
combined into one low-abstraction vector; feature selection was
then applied to optimize the informativeness of the feature com-
binations. Thus, each modality could effectively contribute to
the selected set of features even though the numbers of fea-
tures (whole set) of facial, head pose, and vocal modalities were
different.

Performance was quantified two ways. One was the mean
accuracy over the three levels of severity. The other was
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TABLE III
ACCURACY OF DEPRESSION SEVERITY CLASSIFICATION USING DIFFERENT PER-FRAME AND PER-VIDEO BASED ENCODING FOR FACIAL MOVEMENT

DYNAMICS AND HEAD MOVEMENT DYNAMICS

Representation Classification Accuracy (%) Weighted Kappa

Frame Video Remission Mild Moderate to Severe Mean

Facial Movement Dynamics

SDAE Outputs IFV 67.57 65.71 84.48 72.59 0.62 ± 0.059
SDAE Outputs DFS 64.86 60.00 79.31 68.06 0.53 ± 0.062
Raw IFV 59.46 60.00 81.03 66.83 0.52 ± 0.062
Raw DFS 56.76 57.14 81.03 64.98 0.50 ± 0.063

Head Movement Dynamics

SDAE Outputs IFV 62.16 54.29 79.31 65.25 0.51 ± 0.063
SDAE Outputs DFS 59.46 48.57 77.59 61.87 0.48 ± 0.064
Raw IFV 56.76 45.71 75.86 59.44 0.46 ± 0.064
Raw DFS 54.05 40.00 74.14 56.06 0.40 ± 0.065

Note: Weighted kappa is the proportion of ordinal agreement above what would be expected to occur by
chance.

weighted kappa [70]. Weighted kappa is the proportion of or-
dinal agreement above what would be expected to occur by
chance [70].

A. Assessment of Visual Features

We investigated the discriminative power of the proposed per-
frame features (using the stacked denoising autoencoders, see
Section III-A3) and per-video based features (using IFV and
DFS, see Section III-A4) to measure depression severity from
facial and head movement dynamics (see Table III). The feature
selection step was included for both approaches. Raw data for
head movement dynamics reported in Table III correspond to
the time series of the 3 degrees of freedom of the smoothed rigid
head movement (see Section III-A2). Likewise, raw data for fa-
cial movement dynamics were represented using the time series
of the registered and smoothed coordinates of the 49 tracked
fiducial points (see Section III-A2). For a compact representa-
tion, principal component analysis was used to reduce the 98
time series to 15 time series components that account for 95%
of the variance (see Table III).

As shown in Table III, for both facial movement and head
movement, the SDAE-based per-frame encoding together with
IFV-based per-video encoding performed best. In all conditions,
SDAE-based per-frame encoding achieved higher performance
than than did raw features. Similarly, IFV-based per-video en-
coding performed best compared with the DFS-based per-video
encoding (see Table III). Given these results, the SDAE-based
per-frame encoding together with IFV-based per-video encoding
was used in the remaining experiments.

B. Assessment of Modalities

Accuracy varied between modalities (Table IV). Facial move-
ment dynamics and head movement dynamics performed signif-
icantly better than vocal prosody (28.15% higher, t = −4.15, df
= 387, p ≤ 0.001 and 20.81% higher, t = −3.00, df = 387,
p ≤ 0.01, respectively). Facial movement dynamics and
head movement dynamics failed to differ from each other

significantly (7.34% higher, t = −1.22, df = 387, p> 0.1).
Overall, visual information performed better for depression
severity than vocal prosody.

To further assess the quality of the proposed dynamic feature
sets, we compared them with the dynamic features proposed in
our earlier work [41] and with alternative dynamic features that
include facial movement [14], head movement [19], or prosodic
features [11]. For a fair and accurate comparison between the
proposed dynamic features and alternative methods, it was nec-
essary to re-implement the alternative methods for: (1) the more
challenging problem of measurement of 3-levels of depression
severity (as compared to 2-classes classification), and (2) evalu-
ating them on our clinical data. Thus, we re-implemented previ-
ous methods as well as could be done from their description in
the corresponding papers (including adapting our own work [41]
to the problem of 3-levels of depression severity).

In our earlier work [41], facial and head movement dynam-
ics were modeled using the per-frame raw features described in
Section V-A and the DFS-based per-video features. The ex-
tracted per-video features were fed to a logistic regression clas-
sifier. In [14], the AAMs based fiducial point time series were
fed into a PCA resulting to 10 time series components account-
ing for a total of 95% of variance. The velocity of movement
of the extracted 10 time series was computed and segmented
into contiguous 10s intervals. The mean, median, and standard
deviation of velocities were computed for each interval. The
extracted statistics were concatenated for each interview and
used for final representation. In [19], head movements were
tracked by AAMs and modeled by Gaussian mixture mod-
els with seven components. Mean, variance, and component
weights of the learned GMMs were used as features. Addition-
ally, a set of head pose functionals was proposed, such as the
statistics of head movements and duration of looking in different
directions. In [11], fundamental vocal frequency, and switching
pause duration were shown to be informative for depression de-
tection. Mean value and coefficient of variation were used for
depression assessment. For a fair and accurate comparison, for
all re-implemented dynamic features, we used the same feature
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TABLE IV
ACCURACY OF DEPRESSION SEVERITY CLASSIFICATION USING THE DIFFERENT MODALITIES SEPARATELY

Modality Classification Accuracy (%) Weighted Kappa

Remission Mild Moderate to Severe Mean

Current Study

Facial Movement Dynamics 67.57 65.71 84.48 72.59 0.62 ± 0.059
Head Movement Dynamics 62.16 54.29 79.31 65.25 0.51 ± 0.063
Voice 54.05 8.57 70.69 44.44 0.23 ± 0.063

Alternative Methods

Facial Movement Dynamics [41] 56.76 57.14 81.03 64.98 0.50 ± 0.063
Facial Movements [14] 54.05 48.57 75.86 59.50 0.43 ± 0.065
Head Movement Dynamics [41] 54.05 40.00 74.14 56.06 0.40 ± 0.065
Head Movement GMM [19] 48.65 34.29 60.34 47.76 0.27 ± 0.065
Head Movement Functionals [19] 64.86 20.00 74.14 53.00 0.42 ± 0.062
Voice [11] 45.95 00.00 81.03 42.33 0.20 ± 0.057

Note: Alternative methods were reimplemented from their description in the corresponding papers for the mea-
surement of three levels of depression severity. For an accurate comparison, for each modality the same feature
selection and the same classification architecture were used. Note that the original classification procedure for [11]
and [14] does not include a feature selection step, while [19] uses a t-test threshold based feature selection. Voice
refers to the vocal features (see Section III-B).

selection algorithm (i.e., mRMR), the same classification proce-
dure (i.e., logistic regression), and the same accuracy measures.

As shown in Table IV, the proposed features outperformed
their counterparts for each modality. The accuracy of the pro-
posed facial movement dynamics was 7.6% and 13.1% higher
than that of facial movement dynamics in our earlier work [41],
and facial movement features in [14], respectively. Likewise, the
proposed head movement dynamics performed better than our
earlier work [41] (9.19% higher) and better than Gaussian Mix-
ture Model (GMM) in [19] (17.49% higher). A small increase
(2%) was obtained with the proposed prosodic features com-
pared to their counterpart in [11]. With the exception of our own
previous method [41], we re-implemented previously published
approaches. It is possible that had the original algorithms been
used, results for alternative approaches may have been different.
On the other hand, for comparison with our previous work [41],
we had benefit of the original code. The new proposed features
outperformed the previous one as shown in Table IV. To enable
other researchers to compare their own algorithms directly with
ours, we have arranged to release a version of the database (see
Section VII).

C. Assessment of Feature Selection

To evaluate the reliability and effectiveness of mRMR feature
selection (see Section IV), we compare mRMR results to no
feature selection (see Table V).

As shown in Table V, feature selection using mRMR algo-
rithm performed better than no feature selection in all but voice
features. This finding may be explained by the carefully de-
fined feature sets with a limited dimensionality (seven features
were used for voice in the current paper). Overall, the results
explicitly indicate the usefulness of maximizing the combined
mutual information of individual features for depression severity
measurement.

TABLE V
ACCURACY OF DEPRESSION SEVERITY CLASSIFICATION WITH AND WITHOUT

FEATURE SELECTION

Modality Mean Accuracy (%)

All features mRMR

Current Study

Facial Mov. Dynamics 65.68 72.59
Head Mov. Dynamics 59.87 65.25
Voice 43.54 44.44

Alternative Methods

Facial Mov. Dynamics [41] 54.26 64.98
Facial Movements [14] 51.46 59.50
Head Mov. Dynamics [41] 50.68 56.06
Head Mov. GMM [19] 45.63 47.76
Head Mov. Functionals [19] 47.29 53.00
Voice [11] 42.33 42.33

Note: Alternative methods were reimplemented from their description in the
corresponding papers for the measurement of three levels of depression sever-
ity. “All features” refers to no feature selection and mRMR refers to the
mRMR feature selection method. Best performing approach is boldfaced for
each modality/feature type. Voice refers to the vocal features (see Section
III-B). See Section V-B for definition of features for alternative methods.

D. Multimodal Fusion

We evaluated the informativeness of the combination of dif-
ferent modalities for depression severity measurement (see Ta-
ble VI). Because the combination of individual features may
provide additional discrimination power, we concatenated fea-
tures of different modalities prior to feature selection. Decision-
level fusion strategies (i.e., SUM rule, PRODUCT rule, and
VOTING [71]) were also evaluated in our preliminary experi-
ments, yet did not perform as accurate as feature-level fusion
and were not included in the paper.
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TABLE VI
ACCURACY OF DEPRESSION SEVERITY CLASSIFICATION BY FUSING DIFFERENT MODALITIES

Modality Classification Accuracy (%) Weighted Kappa

Remission Mild Moderate to Severe Mean

Face + Head 75.68 71.43 86.21 77.77 0.71 ± 0.055
Face + Voice 67.57 65.71 86.21 73.16 0.66 ± 0.058
Head + Voice 67.57 51.43 82.76 67.25 0.59 ± 0.061
Head + Face + Voice 78.38 71.43 86.21 78.67 0.73 ± 0.054

Face and head refer to the facial movement dynamics and head movement dynamics, respectively. Voice refers to the vocal features.

Results for multimodal fusion are presented in Table VI.
Highest performance was achieved by fusion of all modal-
ities (78.67%), followed by the combination of facial and
head movement dynamics (77.77%), and then by facial move-
ment dynamics and vocal prosody (73.16%). Lowest perfor-
mance was achieved by fusion of head movement dynamics
and vocal prosody (67.25%). Accuracy of facial movement
dynamics and head movement dynamics together was signif-
icantly greater than head movement dynamics (12.52% higher,
t = 2.09, df = 516, p ≤ 0.05) but did not significantly differ
from facial movement dynamics alone (5.18% higher, t = 0.88,
df = 516, p> 0.1). While the fusion of all modalities signifi-
cantly improved the accuracy of individual use of head move-
ment dynamics (13.42% higher, t = 2.24, df = 516, p ≤ 0.05)
and prosodic features (34.23% higher, t = 5.04, df = 516,
p ≤ 0.001), the performance improvement found over facial
movement dynamics was moderate (6.08% higher, t = 1.03,
df = 516, p > 0.1). Combining the proposed prosodic features
with facial and head movement dynamics increased accuracy
only minimally. It is possible that had we considered additional
measures of prosody, prosody might have contributed more to
accuracy. We considered a large number of vocal features and
selected for inclusion those that significantly correlated with
depression severity. Further research will be needed to explore
this issue.

In related work, we found that depression severity is asso-
ciated with reduced head and lower body movement [18], [72]
and reduced vowel space [73], [74]. These findings are consis-
tent with observations in clinical psychology and psychiatry of
psychomotor retardation in depression; that is, a slowing and
attenuation of expressive behavior. Evolutionary perspectives
on depression [75] similarly propose that depression in this way
serves to decrease involvement with other persons. That is what
we found in our previous work [72].

Motivated by these findings and theory, the current study
extends previous efforts by integrating dynamic measures of
face, head, and voice to measure depression severity. We found
strong evidence that dynamic features reveal depression sever-
ity. A limitation of these findings is that while rooted in dynamic
measures they are unable to reveal how dynamics change with
respect to depression. Deep learning, which we used, while
powerful learning tool, suffers from lack of explainability. Fu-
ture work is needed to address this limitation.

This may be the first time that depression severity rather
than only presence-absence of depression has been measured.

From a clinical perspective, it is critical to measure change over
time in course of depression and its treatment. In clinical trials
for treatment of depression, response to treatment is quantified
as 50% decrease in symptom severity. The ability to detect
magnitude of change is subject of current work. Interventions
can only be assessed when severity of symptoms is measured
reliably.

VI. CONCLUSION

We proposed an automatic, multimodal approach to detect
depression severity in participants undergoing treatment for de-
pression. Deep learning based per-frame coding and per-video
Fisher-vector based coding were used to characterize the dynam-
ics of facial and head movement. Statistical criteria were used
to select vocal features. For each modality, selection among
features was performed using combined mutual information,
which improved accuracy relative to blanket selection of all fea-
tures regardless of their merit. For individual modalities, facial
and head movement dynamics outperformed vocal prosody. For
combinations, fusing the dynamics of facial and head move-
ment was more discriminative than head movement dynamics
and more discriminative than facial movement dynamics plus
vocal prosody and head movement dynamics plus vocal prosody.

VII. DISTRIBUTION OF CLINICAL DEPRESSION INTERVIEWS

To promote research on automated measurement of depres-
sion severity and enable other researchers to compare algorithms
directly with ours, de-identified features from the 130 clinical
interviews are available for academic research use. For each
video frame, the distribution includes summary vocal features
(see Section III-B), normalized 2D coordinates of the tracked 49
facial fiducial points (see Fig. 3), 3 degrees of freedom of head
pose (see Fig. 3), and deep autoencoded frame-based repre-
sentations of head and facial movement (see Section III-A3).
The data are available for non-commercial research from
http://www.pitt.edu/∼emotion/depression.htm.
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[23] F. Eyben, M. Wöllmer, and B. Schuller, “OpenEAR—Introducing the
Munich open-source emotion and affect recognition toolkit,” in Proc. Int.
Conf. Affective Comput. Intell. Interact., 2009, pp. 1–6.
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