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Abstract

Traffic congestion at signalized intersections is a big economical and eco-
logical problem. Handcrafted traffic light controllers (TLCs) are currently
used to minimize the impact, but they are expensive to design and maintain
and their performance degrades over time. Predictive TLCs and advanced
driver assistance systems (ADAS) form a potential solution but are still un-
feasible in practice today because of their computational complexity and
unpredictability.

The distributed predictive TLC developed in this thesis, called DIR-
ECTOR, is feasible and enables time to green/red and green light optimal
speed advice (GLOSA) systems. DIRECTOR utilizes predictions of the ar-
riving traffic flows and a model of the current queue length to optimize the
traffic light schedule. It can operate in two modes; Ad-hoc mode, where the
schedule is generated and applied right away, and fixed-ahead mode, where
the schedule is fixed in advance to enable ADAS. DIRECTOR’s design makes
it scalable and suitable for live learning, eliminating the need for expensive
(re)calibrations and improving its performance with more and better data,
which will become available in the near future.

A long short-term memory recurrent neural network is developed to pre-
dict the arriving traffic flows. On a case study this network proves to be on
average 4.7% more accurate than the current state-of-the-art model, which
is significant for a controller’s performance.

Simulations of the same case study intersection, which is currently equipped
with a state-of-the-art actuated controller with green wave coordination,
show that in ad-hoc mode DIRECTOR performs similar to the current con-
troller. DIRECTOR reduces the average delay per vehicle by 1% (from 10.4s
to 10.3s) at the cost of an increase of 15% in the average number of stops
per vehicle (from 0.40 to 0.46) compared to the current controller. Simula-
tions with ideal predictions show that, in ad-hoc mode, DIRECTOR has the
potential to improve the average delay by 8.7% (from 10.4s to 9.5s) while
keeping the number of stops equal (at 0.40).

Simulations with GLOSA show a 30% reduction in the average number of
stops at the cost of a 13% increase of the travel time compared to the ad-
hoc mode. Combining this with ideal predictions shows that DIRECTOR in
fixed-ahead mode has the potential to keep the average delay equal compared
to the current controller, which will greatly improve traffic flow.

Compared to a more typical Dutch actuated controller, DIRECTOR achieves
a delay reduction of 39% in ad-hoc mode and 23% in fixed-ahead mode.

Overall, DIRECTOR is a new data-driven traffic light controller that is
relatively easy to set up, reduces costs, can enable advanced driver assistance
systems, is futureproof and has the potential to greatly improve traffic flow.
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Chapter 1

Introduction

1.1 Background

The costs of congested traffic flow are estimated at $700 Bn [22] mainly
due to travel time delays and fuel inefficiencies. Part of these losses are
caused by stop-and-go behavior at signalized intersections. In an attempt
to decrease these losses the efficiency of traffic light controllers has improved
tremendously over the years moving from fixed-cycle to adaptive to actuated
control. This section provides a brief introduction on signalized intersection
control explaining the historic development, the important concepts and the
ongoing efforts to further improve traffic flow in the future.

1.1.1 Signalized intersection control 101

Signalized intersections by definition have a negative impact on local traffic
flow since their purpose is to control access to an intersection by stopping
vehicles from conflicting directions. Nevertheless their existence is crucial for
road safety. Hence, the challenge is to design signalized intersection control
mechanisms that have the least negative impact on the traffic flow.

Before the different types of control can be discussed a better under-
standing of the terminology is required. First of all an intersection is the
connection point of several links. In this thesis a link is defined as a road
segment that is connected to the intersection. The intersection’s purpose is
to ensure a vehicle’s safe passage from an origin link to a destination link.
A matching origin link and destination link are called an origin-destination
pair (OD).

Each link will have one or more signals assigned to it, one for each lane
feeding traffic into the intersection. A signal grants or prohibits the traffic
on its lane access to the intersection. In practice this is done using green
and red light signals, respectively. Granting access is also called servicing. A
signal group is defined as a combination of signals that are always serviced
together and have the same id. Non-conflicting signals are signals that can

1
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be serviced simultaneously without the possibility of traffic intersecting with
each other, i.e. without the possibility of causing an accident.

A phase group is a combination of signal groups that the traffic light
controller will service simultaneously. A phase is defined as the period that
a phase group is serviced. A traffic light schedule is defined as a sequence
of phases. The challenge of intersection control optimization is to construct
the optimal traffic light schedule with regards to the desired optimization
metric(s) within the intersection’s boundary conditions.

Traditionally the optimization metrics have always been the cumulative
or average travel time delay, which is the time lost due to non-free flow
conditions caused by for example other vehicles or signalized intersections.
Other traditional metrics are the number of stops or the queue lengths at
an intersection. More recently, ecological impact has gained in importance
leading to optimization metrics such as the fuel efficiency and, CO2 or NOx
emissions. In practice a combination of metrics is often used for optimiza-
tion, leading to a trade-off when making a scheduling decision.

The boundary conditions for intersection control differ per intersection
and are dependent on local legislation and the road owner’s preferences. A
simple example of a legislative boundary condition is the minimum duration
of amber (a.k.a. orange) when a signal transitions from green to red. An-
other example is the maximum time that a signal group is allowed to remain
unserviced. This last example is an example of both a safety and a fairness
boundary condition. When a signal group is not serviced for too long a
road user may think that he or she will not be serviced and drive through
a red signal, possibly leading to a dangerous situation. A fairness condition
ensures that, although general optimization of the intersection might bene-
fit from a particular signal group not being serviced for a while, road users
waiting at that particular signal group are not penalized unfairly.

1.1.2 Taxonomy of signalized intersection control mechan-
isms

There are four main types of signalized intersection control. In order of
improving performance they are:

1. Fixed-time control

2. Adaptive control

3. Actuated control

4. Model predictive control

The simplest signalized intersection control mechanism is unoptimized fixed-
time control. Fixed-time control refers to the fact that the schedule of the
controller is fixed. The duration of each phase and the order in which signal

2
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groups are serviced is determined offline. This is done arbitrarily in the
case of unoptimized control or based on historic traffic data in the case of
optimized control.

Optimized fixed-time control refers to a fixed-time controller where the
duration of each phase and the order of servicing phase groups is optimized
offline with respect to historic traffic flow data. However, traffic flow patterns
change over time and therefore the performance of the optimized fixed-time
controller degrades over time.

Adaptive signalized intersection control tries to solve this problem by
adapting the controller’s schedule to the recent changes in traffic flow. The
controller is equipped with an algorithm that determines the configuration
of several control parameters based on the intensity of traffic flow on its links
in the recent history. In practice a history of approximately 15 minutes is
taken into account. An example of such a configuration parameter is the
duration of each phase. SCOOT [42] is one of the most widely deployed
examples of an adaptive controller.

Actuated control in contrast does not look at the historic arrival flows
but rather acts directly based on the intersection’s detectors. Intersections
operated by an actuated controller are usually equipped with:

• stopline detectors located at the stopline to detect vehicles waiting at
the intersection

• queue detectors located approximately 10-50 meters away from the
stopline to detect the presence of longer queues at the intersection

• optionally also arrival detectors located approximately 80-100 meters
away from the stopline to detect the arrival of vehicles

The actuated controller is equipped with a finite state machine that determ-
ines how to respond to the traffic detected at the intersection. It is more
responsive than the previously described controller types as it evaluates and
adjusts its planned schedule on a seconds timescale. The number of possible
corrections and the timescale on which these adjustments can take place is
called a controller’s degree of flexibility.

A model predictive controller is similar to an actuated controller in terms
of flexibility. The difference is that a model predictive controller uses a
model to predict the vehicle arrivals and departures at the intersection. This
model enables the controller to optimize the traffic flow beyond the detection
horizon described above. This leads to improved performance compared to
the actuated controller given a sufficiently accurate prediction model.

Table 1.1 shows an overview of the different controller types and their
features. It also shows what the ideal controller would look like.

The above description of the different controller types is still very gen-
eric and there exist many different implementations of each. An actuated

3
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Controller type Online optimization Flexible Optimize beyond detection horizon 100% predictable

Fixed-time 7 7 7 !

Adaptive ! 7 7 7

Actuated ! ! 7 7

Model predictive ! ! ! 7

Ideal ! ! ! !

Table 1.1: Overview of different traffic control mechanisms and their fea-
tures. A checkmark means that the controller has the particular feature. A
cross means the controller does not.

controller can for example be implemented with or without the freedom to
change the order of phase servicing, which impacts both performance and
system complexity.

Another important distinction is the way in which network optimization
is performed. A combination of local optima can lead to an unstable net-
work [31], an example of such a situation occurs when an intersection’s
outflowing link is completely occupied but the intersection still tries to feed
more traffic into the link based on its local optimization. This can lead to a
gridlock that completely blocks the intersection.

Network optimization is used to prevent the likelihood of such events
occurring. A well-known example of such measures are green waves, where
a series of connected intersections are synchronized in order to give passage
without stops along a particular road segment. Such controllers are called
coordinated controllers. In order to make coordination possible, traditional
signalized intersection controllers operate based on cycles. Within a cycle
each signal group will be serviced. The service duration of each phase group
is called the split time. An offset is then used to synchronize the intersection
controllers. Model predictive controllers can perform network optimization
by including the interaction between intersections in the prediction model.

In practice hybrid forms of the different controller types might be used.
Road owners might for example deploy a fixed-time/adaptive controller dur-
ing the peak hours (when most traffic arrives at the intersection, usually in
the morning and evening) to facilitate a green wave while a traffic actuated
controller is used during the non-peak hours (outside the peak hours).

Much more can be said about the domain of signalized intersection con-
trol but the above description should provide sufficient insight in order to
understand and evaluate the concepts described in this thesis.

1.1.3 The transition to autonomous vehicles

The introduction of connected vehicles (vehicles that are capable of com-
munication with other vehicles, infrastructure or the internet) and fully
autonomous vehicles will change the traffic landscape in the nearby future.
This section discusses some of the developments and challenges in the sig-
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nalized intersection domain related to the rise of these new technologies.
The development of fully autonomous vehicles is underway. Prototypes by

companies like Waymo and Uber are already being tested on the road [44, 48]
and it is only a matter of time until these vehicles reach a production stage
and society can enjoy the promised benefits of this technological advance-
ment [18]. This development will cause major disruption in the way traffic
is organized and infrastructural changes are required to get the most out of
this new technology.

A crucial question that still needs to be answered is how to transition from
human-controlled vehicles to fully autonomous vehicles while maintaining
safety standards and against minimal economic cost? Intersections form an
important challenge here. At some point human-controlled vehicles might
not be allowed on the road anymore and autonomous vehicles will be able
to communicate in order to achieve safe passage through an intersection
without the use of signals [15, 16, 17] or even completely without the use
of an intersection controller [51]. Dresner, Stone and VanMiddleworth show
that this should lead to great benefits in traffic flow efficiency [15, 16, 17,
51]. However, during the transition period an intersection controller is still
required to mediate between vehicles and it should do so with the greatest
achievable efficiency.

1.1.4 Advanced driver assistance systems

During the transition period connected vehicle technology can already lead
to great improvements in traffic flow [2, 3, 12, 36, 37, 47, 52]. To facilitate
these opportunities the Dutch government recently started the development
of a ‘smarter’ infrastructure. They initiated the Talking Traffic project in
collaboration with the industry [5]. The focus of the project is to develop a
state-of-the-art infrastructure to vehicle (I2V) and vehicle to infrastructure
(V2I) communication network. The technology has been developed and is
currently in the process of pilot deployments.

The Talking Traffic project is very wide in scope but in particular use-case
4 of the project is of interest for signalized intersection control. Use-case 4 of
the project aims to improve traffic flow through advanced driver assistance
systems (ADAS) by informing road users approaching an intersection. One
type of ADAS are systems that communicate the signal states and times
of signal changes, also called signal phase and timing (SPaT) information.
Examples are:

• Showing the time to green/red (T2G/R), which is a countdown until
the signal changes to green or red. Figure 1.1 visualizes the imple-
mentation of T2G/R.

• Providing a green light optimal speed advice (GLOSA), which is a
speed advice that makes sure a driver will arrive at an intersection

5
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when the signal is green [6]. Figure 1.2 visualizes the application of
GLOSA.

Figure 1.1: Visualization of time to green/red (T2G/R) countdowns.

Showing T2G/R countdowns at traffic lights aims to reduce the capacity
drop during queue clearance when the light turns green. In theory vehicles
should exit an intersection at full capacity. However, because drivers cannot
anticipate when the light will turn green there is a response delay in practice.
This delay is magnified throughout the queue leading to queue clearance at
only 75% of the road’s capacity [8].

Providing road users with GLOSA information enables them to adjust
their driving profiles to avoid fuel inefficient cyclic driving, i.e. they can
smoothen their trajectory and avoid unnecessary acceleration and decelera-
tion.

1.2 Problem statement

From Sections 1.1.3 and 1.1.4 it can be concluded that road owners are
facing two main challenges at signalized intersections in the near future:

1. Improve traffic flow through the use of advanced driver assistance sys-
tems use cases such as time to green/red and green light optimal speed
advice in a safe way.

2. Improve traffic flow through the transition from a completely human-
controlled to a completely autonomous vehicles traffic mix.

An important note is that both should be done in a safe and cost-effective
manner.

At first glance challenge 1 might not seem too complicated. However, as
explained in Section 1.1.2, the state-of-the-art actuated traffic controllers
adjust their schedule at the last second based on the current traffic state.

6
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Figure 1.2: Visualization of green light optimal speed advice (GLOSA) [49].
The vehicle is approaching a red signal at an intersection and receives a
speed advice that ensures it arrives when the signal has turned green.

This makes sense as this flexibility improves the traffic flow. However it
also makes it impossible to provide stable SPaT information for T2G/R or
GLOSA applications. This can lead to unsafe situations and user frustration.
As a matter of fact, as Table 1.1 shows, the only controller type that can
provide reliable SPaT information is a fixed-time controller. As discussed
in Section 1.1.2, a fixed-time controller is the least flexible and consequently
worst performing type of signalized intersection controller. Therefore there
is a need to develop a control mechanism that leads to SPaT stabilization
while maintaining traffic flow efficiency.

Furthermore, given challenge 2 it would be preferred if the solution for
challenge 1 would be able to accommodate the transition from human drivers
to fully autonomous vehicles.

The problem can then be summarized as:

Developing an intersection controller that can stabilize signal
phase and timing information and is capable of optimizing traffic
flow for human drivers, autonomous vehicles and a mix of the
two in a safe and cost-effective way.

To guarantee stable SPaT information the traffic light controller must
schedule and fix phase groups at least some time before the phase group

7
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is serviced. The only way to achieve this without inherently compromising
performance is using a model predictive controller. The hypothesis under
investigation in this thesis is that the stated problem can be solved using a
model predictive controller.

1.3 Research question

Following the hypothesis from Section 1.2 the research question is formulated
as:

Can a model predictive control-based signalized intersection con-
troller lead to stabilized signal phase and timing information that
enables advanced driver assistance systems use-cases while main-
taining traffic flow at least as good as a state-of-the-art actuated
traffic controller?

Subquestions related to this research question are:

1. Can a model predictive controller outperform a state-of-the-art optim-
ized actuated controller in terms of traffic flow?

2. Can data-driven approaches improve the performance of a state-of-
the-art heuristics-based model predictive controller in terms of traffic
flow?

3. Can a model predictive control-based intersection controller lead to
stable enough signal phase and timing information to make safe ap-
plication of advanced driver assistance systems possible?

4. Does the application of T2G/R and GLOSA improve performance in
terms of traffic flow efficiency considering the cost required to make
these applications feasible?

1.4 Research scope

When answering the research question the practical restrictions of legal and
road safety boundary conditions are taken into account. Industry standards
are used to evaluate whether the traffic light controller meets the require-
ments for practical application.

Throughout this thesis there is no distinction between detector types. The
assumption is that the necessary detectors are in place and functional within
industry fault tolerance margins.

The study is also not concerned with the means of getting ADAS inform-
ation to the road users. The traffic light controller works independent of

8
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whether the road owner decides to use road signs, in-car displays, smart-
phones or another method to inform the users.

Furthermore, the study focuses on standard vehicle road users, i.e. cars
and trucks. The impact of pedestrians, bicycles, public transport and blue
vehicles (police, ambulance and firetrucks) is not investigated although the
traffic light controller should be able to deal with these types of road users.

1.5 Report outline

To answer the research question a custom traffic light controller was de-
veloped called. The controller is called DIRECTOR (Data-driven Intersec-
tion and Road Environment Controller for Traffic Optimization in Real-
time). The remainder of this report describes the design, development and
evaluation of DIRECTOR.

After this introduction chapter, Chapter 2 will explore the related work
in literature in more depth. Next, Chapter 3 explains the conceptual design
of DIRECTOR. Chapter 4 explains the design of a new short-term traffic
flow prediction algorithm. Then chapter 5 elaborates on the theory behind
and implementation of DIRECTOR. Chapter 6 describes the extension of
DIRECTOR’s implementation from Chapter 5 to enable advanced driver as-
sistance systems. Chapter 7 outlines the experimental setup used for the ex-
ecution and evaluation of all experiments. The results of these experiments
can be found in Chapter 8 followed by the conclusions and recommendations
for future work in chapter 9.

9
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Chapter 2

Related work

This chapter covers advancements in literature related to this thesis. In
particular it covers the areas of signal phase and timing (SPaT) prediction,
short-term traffic flow prediction, model predictive control approaches for
signalized intersections, dealing with errors and uncertainty in traffic flow
detection and advanced driver assistance systems (ADAS).

2.1 Signal phase and timing prediction

As the prediction of SPaT information is crucial for ADAS like GLOSA and
T2G/R many papers have been published on the topic.

2.1.1 Floating car data based approaches

One approach found in literature is to predict SPaT information based on
floating car data (FCD). Floating car data is data generated by road users
sharing their location, e.g. for navigation purposes. Axer & Friedrich fol-
lowed this approach when they recently attempted to estimate SPaT in-
formation based on low-frequency (15 seconds sampling interval) FCD [3].
Axer & Friedrich base their SPaT estimation on historic vehicle trajector-
ies, which they split into crossing and stopping trajectories. They aggregate
these trajectories into frequencies for a given time interval. The green time
is then estimated by maximizing the consistency of crossing and stopping
frequencies.

A major limitation of their approach is the requirement of a similar cycle
length and phase sequence for the same time period of a workday. This
limits the applicability of their approach. According to the authors this
limitation is reasonable since actuated traffic control behaves like fixed-time
control in situations with a constant high traffic demand.

An important contribution of Axer & Friedrich to the FCD-based research
is that their experiments are performed using micro-simulations that take
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positioning errors caused by GNSS (e.g. GPS) into account [3]. The results
of their simulations of a peak hour show that their average prediction errors
for green times are approximately 2 and 6 seconds for the start and end
times, respectively.

Fayazi et al. used sparse bus location data (every 200 meters or 10-80
seconds) to infer the fixed-time schedule of intersections in a crowded area of
San Francisco (USA) [19]. Using statistical methods based on three months
of historic data they are able to predict the green start times with a root
mean squared error (RMSE) of 2.5 seconds and a maximum error of ap-
proximately 8 seconds. Their evaluation was done by conducting a real-
time experiment at the actual intersection. A nice feature of their statistical
approach is that the performance should improve when more FCD sources
become available in the future.

2.1.2 Vehicle detection based approaches

Another approach is to predict the SPaT information using Markov chains
based on combinations of signal states and corresponding detector counts.
Barthauer & Friedrich evaluated the usefulness of such an algorithm for
several I2V applications (GLOSA, a T2G countdown signal and start-stop
assistance) [4]. The algorithm under evaluation is originally developed by
Menig et al. [38]. Barthauer & Friedrich evaluate the performance of the al-
gorithm as the probability that the predicted signal switching time is within
the error bound for a particular application. The authors conclude that the
algorithm does not meet the requirements for the described applications.
These requirements were defined theoretically and therefore might be even
stricter in practice. They also note that the risk of erroneous predictions is
still unclear.

2.1.3 Other approaches

Mahler & Vahidi used a simple probabilistic mechanism to predict green
times based on a linear relationship between the average green time, the
average red time and the current state of the signals [36, 37]. A limitation
of their prediction mechanism is the need for a constant cycle length. Un-
fortunately they don’t provide an evaluation of their prediction quality since
their papers are focused on fuel efficiency improvements through the applic-
ation of GLOSA. Their prediction mechanism is a method to achieve this
and not evaluated on its own. The authors note that information on how
long the signal has been red or green already could improve their prediction
accuracy.

Recently, several master theses have been dedicated to SPaT prediction.
Khakhutskyy decomposed the SPaT prediction problem into five subprob-
lems [26]:
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• Traffic flow prediction (regression)

• Phase length prediction (classification)

• Phase activity prediction (classification)

• Next phase prediction (classification)

• Combining the phase predictions

Khakhutskyy performed the phase length prediction with k-nearest neigh-
bors (kNN) and a feedforward neural network (FFNN). The phase activity
prediction (will a phase end within the next couple of seconds) is done using
a FFNN and decision trees. Decision trees were used for the next phase pre-
diction. Khakhutskyy’s model achieves a RMSE of less than 5 seconds for
coordinated-actuated traffic light control and 11 seconds for fully-actuated
mode. He concludes that this is sufficient for ADAS that require longer
prediction horizons and lower accuracy like GLOSA, although the opinions
on this matter differ in literature and practice.

Boyd attempted SPaT prediction using a classification and regression tree
(CaRT) algorithm and a long short-term memory (LSTM) network [7]. She
generated traffic flow and SPaT information using a simulator and then used
the simulation outputs to train and evaluate the models. She concludes
that the LSTM model outperforms the CaRT model with a top accuracy of
97.78%. However, it remains unclear how exactly this metric is defined.

Scheepjens used support vector regression (SVR) to predict the switching
times (from red to green and green to red) of actuated traffic light con-
trollers [43]. He created two separate models per signal group, one for the
prediction of switching to green (best mean absolute error of 0.85 seconds
and 99% within 4 seconds) and another for the prediction of switching to
red (best mean absolute error of 2.42 seconds and 81% within 4 seconds).

2.2 Short-term traffic flow prediction

Helmy provides a great summary of the main analytical models for traffic
flow progression [21]. She highlights the three most important models:

• Lighthill & Witham’s fluid dynamic traffic model [34]

• Pacey’s diffusion model

• Robertson’s platoon dispersion model [41]

Pacey’s model is a modification of Lighthill & Witham’s model and Robertson’s
model is a modification of Pacey’s model. Each modification fixes an in-
valid assumption of the older model. It is therefore not surprising that
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Robertson’s model has been proven to be the most accurate of these mod-
els. His model describes the downstream arrival flows as a function of the
upstream departure flows and the travel time between the upstream and
downstream locations. It requires accurate calibration of parameters in or-
der to model the traffic progression properly. Many papers have been pub-
lished attempting to simplify this calibration process with little success. For
an overview of these papers see Helmy’s thesis [21].

The analytical models suffer from a major assumption, which is the con-
servation of vehicles from upstream to downstream. This limits the applic-
ation of these models at roads where traffic might leave the road (through a
so-called sink) or enter the road (through a source) mid-way. Hence, a data-
driven method might be more suitable for traffic flow prediction. Khakhut-
skyy therefore designed a recurrent neural network (RNN) to predict the
amount of traffic flowing from one intersection to another. However due
to a lack of accurate data he was unable to properly evaluate the model’s
performance.

Helmy was able to design and evaluate a RNN for traffic flow predic-
tion [21]. Her model takes the upstream departure flows, the presence of
a queue downstream, the traffic split between downstream lanes, the states
of the downstream signals and information about the day of the week and
time of the day as inputs. The model then outputs the arrival flows down-
stream. The model is trained with backpropagation through time (BPTT).
Using a case study with real data Helmy showed that her RNN outperforms
Robertson’s model in terms of prediction accuracy. Her model especially
outperforms the analytical model in congested traffic conditions, which is
something most analytical models are not designed to cope with.

2.3 Long short-term memory networks

Recurrent neural networks have proven to be great tools for various applic-
ations [39]. Helmy confirmed this for the challenge of short-term traffic flow
prediction [21]. However, for many purposes traditional RNNs are far from
perfect. Hence, researchers have been looking for ways to boost their per-
formance. In particular the invention of long short-term memory led to a
great improvement.

Christopher Olah wrote a blog about the basics of recurrent neural net-
works (RNNs) and long short-term memory (LSTM) networks. This is a
great introduction for the reader unfamiliar with these concepts [39]. The
remainder of this section briefly summarizes the problem of conventional
recurrent neural networks and how long short-term memory solves it.

Hochreiter showed that conventional RNNs trained with backpropagation
through time (BPTT) are unable to learn long-term time dependencies.
With BPTT the error signals flowing backward in time tend to either blow
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up, leading to oscillating weights, or vanish, leading to loss of information.
This is because the backpropagated error over time exponentially depends
on the size of the weights [23].

Hochreiter & Schmidhuber found a solution to this problem in the form
of long short-term memory [24]. The intuition behind their concept is to
replace (some) hidden neurons with memory cells. Each memory cell intern-
ally has a constant error flow, which enables the memory cell to store inputs
over a longer period of time. The memory cells have input and output gates
(propagation functions with weights that can be trained) that determine
whether the content of the memory cell should be changed or propagated,
respectively. Through training of the memory cells’ weights, long-term de-
pendencies can be recognized by the LSTM network. Through experiments
with both short and long time-lag problems Hochreiter & Schmidhuber show
that LSTM networks clearly outperform conventional RNNs in terms of ac-
curacy and required training time.

2.4 Model predictive intersection controllers

Model predictive control (MPC) is an online model-based control approach
in which a prediction model and optimization function are used to determine
the control actions that optimize a given performance criterion over a given
time horizon subject to given constraints [10, 35]. De Schutter et al. provide
a good introduction to the application of MPC in the domain of traffic
network optimization [13]. In the remainder of this section several imple-
mentations of a model predictive controller for signalized intersection control
are explored.

2.4.1 Centralized approaches

Van Katwijk et al. describe a taxonomy of MPC algorithms for traffic con-
trol [50]. Combining the advantages and disadvantages of several algorithms
from literature they propose and evaluate a hybrid algorithm. Their evalu-
ation is done using microsimulations of a single intersection and compared to
a traffic actuated controller. The authors conclude that predictive control
can improve the traffic flow quite substantially (28-36% for their simula-
tions) but that there is an important trade-off between computational com-
plexity and performance, which depends on the geometry of an intersection,
the demand at an intersection and the prediction horizon. This trade-off
is important given the real-time computation requirement of traffic light
controllers.
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2.4.2 Distributed approaches

SURTRAC

Xie et al. found a way to reduce the computational complexity of the MPC
approach to intersection control [54]. Their idea is to reduce the state space
and transform the problem into a single machine scheduling problem. The
authors model vehicle flows based on a simple model and then aggregate
arrivals to create clusters of arriving vehicles that are handled as indivis-
ible jobs in a forward-recursive scheduling algorithm. Their state reduc-
tion strategy leads to a computational complexity that is polynomial in the
prediction horizon. The performance of their algorithm is evaluated in real-
world scenario network simulations. The results show a maximum reduction
of approximately 20% in terms of travel time delay compared to the current
fixed-time coordinated signal timing plans.

Xie et al. acknowledge that their implementation has a prediction horizon
that is limited by the travel time between two intersections [54]. Therefore
they propose an extension in the form of a coordination mechanism between
neighboring intersection in a follow-up paper [53]. Their solution is that in-
tersections communicate their planned departure flows to their downstream
neighbors, hence increasing the prediction horizon of those downstream in-
tersections. To guarantee network-wide stability downstream each inter-
section monitors if its queues might spill back onto upstream intersections.
When that happens the intersection changes its schedule to service those
queues first.

The work from Xie et al. has been developed for real-world application
and is called SURTRAC (Scalable URban TRAffic Control). A live im-
plementation of the SURTRAC system has been deployed and evaluated
in Pittsburgh (Pennsylvania, USA) by Smith et al. [45, 46]. The test site
consists of nine intersections with link lengths ranging from 90 to 500 feet
between them (on average 272 feet). SURTRAC is compared to the original
traffic light controller that operated as an offline-optimized coordinated ac-
tuated controller during the peak hours and as a simple actuated controller
during the remainder of the day. Evaluation of the system was done using
drive-through runs along the 12 highest volume routes in the network. Each
route was taken 12 times per scenario, i.e. 144 runs for the base case and
144 runs for SURTRAC. Based on these measurements the authors conclude
that SURTRAC improved the traffic flow by approximately 25-40%. How-
ever, the reliability of these numbers could be questioned given the small
sample size of their measurements.

Self-controlling traffic lights

Lämmer et al. describe the queueing process at an intersection as a hybrid
dynamical system using a combination of first order differential equations
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with predicted vehicle arrival flows as the main input [30]. Their method
enables the real-time computation of the queue clearance time and expected
cumulative travel time delay of a particular lane. Consequently, they can
optimize the traffic light control with regards to the cumulative travel time
delay. An evaluation of the application of their methods is not present in
their original paper [30].

In a follow-up paper Lämmer & Helbing build on this concept to cre-
ate a mechanism for self-controlling traffic lights in order to optimize for
travel time delay based on the predicted short-term arrival flows [31]. The
traffic flows are predicted according to Lighthill and Whitham’s fluid dy-
namic traffic model [34], which is sufficiently accurate for short-term urban
road traffic flow predictions according to the authors. Lämmer & Helbing
propose a non-periodic optimization technique for individual intersections
that create locally optimal schedules. They note that a combination of
local optima can lead to instability throughout a network [28]. The authors
therefore also propose a stabilization mechanism. This mechanism makes
sure that non-dominant links are sufficiently serviced and prevents spillbacks
at the start of any link. Their final proposed control algorithm is a hybrid of
this optimization and stabilization mechanism and leads to guaranteed sta-
bility in a traffic network as long as the incoming flows remain smaller than
the saturating flow (the maximum road capacity). Lämmer & Helbing eval-
uate their mechanism using artificial simulations pushing their system at the
boundary conditions. They compare their results to a fixed-time schedule
where the offsets and cycle lengths are adjusted locally, i.e. a semi-adaptive
control mechanism. Their results show that their new control mechanism
significantly outperforms the semi-adaptive control algorithm in terms of
average queue length and thus also cumulative travel time delay.

Lämmer & Helbing then developed a generalized version of their stabil-
ization mechanism [32]. They propose a supervising process that adds con-
straints to the local optimization strategy such that it will always perform
as least as good as a fixed-time strategy would. The general idea behind the
stabilization mechanism is to increasingly restrict the freedom of the local
optimization strategy as queues mount for any direction, hence guarantee-
ing in-time servicing of each direction within the bounds of a fixed-time
controller. Lämmer & Helbing also show the results of a simulation of a
complex network of 13 intersections in the center of Dresden, Germany [32].
They compare the result of their generalized stabilization mechanism and
the optimization mechanism from their previous work [31] with the current
adaptive coordinated control system, which includes green waves and public
transport priority. The authors find that their system significantly outper-
forms the current system in terms of average travel time delay for all modes
of transport (-56% for public transport, -9% for cars and trucks and -36%
for pedestrians).

To show the impact of the previously described methodology Lämmer
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performed a live experiment controlling two of the previously simulated in-
tersections in Dresden [29]. In this study Lämmer compares the current VS-
PLUS controller to his self-controlled mechanism. Both control algorithms
were observed for 3 weekdays. The detection horizon of vehicle flows was
approximately 250 meters and the prediction horizon for traffic estimation
was set to 2 minutes. The average vehicle flow was used for prediction bey-
ond the detection horizon. The study’s results are promising as they show
a significant reduction in average travel time delay (-37.8% for pedestrians,
-33.6% for bicycles, -80.4% for public transport and -38.4% for cars and
trucks) compared to the base case, despite a 10% increase in traffic volume
compared to the base case. Another interesting observation is that the VS-
PLUS green wave leads to more stops than the self-control mechanism. Of
course this experiment does not provide a general proof that the self-control
methodology is always superior to other control mechanisms, but the results
are promising and provide a starting point for further exploration.

2.4.3 Other approaches

Microsimulation based control

Brouwer & Van der Bijl developed a method for predictive traffic light optim-
ization through a microscopic real-time traffic simulation model [9]. They
model the progression of unique individual vehicles based on a fusion of tra-
ditional sensors (e.g. loop detectors or cameras) with FCD. Using this pre-
dicted progression they are able to optimize singular intersections or even
entire networks. Simulations of their methodology show a 40% reduction in
cumulative travel time delay(from 30 hours to 18 hours) for an intersection
in Tilburg, the Netherlands, and a 25% reduction of delay for a saturated
intersection in Rotterdam, the Netherlands, during the evening peak hours.
They also claim to be able to deal with priority for special services such
as public transport and to enable driver assistance use-cases. Unfortunately
the work by Brouwer & Van der Bijl lacks a detailed description of the meth-
ods used, nor do they provide an evaluation of the reliability of their SPaT
information for driver assistance use-cases.

Floating Car Data-based conrol

Krajzewicz et al. describe the major achievements of the COLOMBO project
(cooperative self-organizing system for low carbon mobility at low penetra-
tion rates) [27]. Among other things the project aimed at optimizing traffic
light control based on FCD at low penetration rates. Their schedule selec-
tion method is inspired by the ant algorithm, a method from the field of
artificial intelligence. The authors claim that their method leads to travel
time delay reduction compared to fixed-time traffic lights at 10% penetration
and that similar performance to actuated traffic lights is achieved at 25%
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penetration. At higher penetration rates their algorithm outperforms cur-
rent actuated traffic lights. These results are all generated using microscopic
simulations.

2.4.4 Summary

Table 2.1 summarizes the controllers covered in this section based on some
of the key features.

Paper Guaranteed network stability Fixed computation time Feasible today

Brouwer & van der Bijl [9] Unknown 7 !

SURTRAC [45, 46] Unknown 7 !

Krajzewicz et al. [27] Unknown 7 7

Van Katwijk et al. [50] ! 7 !

Lämmer et al. [29, 30, 31, 32] ! ! !

Table 2.1: Overview of discussed literature on model predictive intersec-
tion controllers. A checkmark means that the controller has the particular
feature. A cross means the controller does not.

2.5 Dealing with errors and uncertainty

Both actuated and predictive traffic control algorithms rely heavily on sensors.
Many types of sensor errors can occur in practice, examples found in literat-
ure are: double lane detectors that count only one vehicle instead of two or
more [21], broken detectors that overestimate or underestimate the flow [21],
sharply turning vehicles being missed by the detector [45], large vehicles be-
ing double-counted [45], influence of weather [45], etcetera. This section
explores how systems can deal with some of these errors. Furthermore, it
discusses how systems in literature deal with predictions beyond the up-
stream detection horizon, i.e. further in time than the farthest upstream
detector.

2.5.1 Arrival flow correction

In order to correct for underestimation of the queue length SURTRAC uses
two mechanisms [45]. Firstly, they use the link arrival/departure-ratio (AD-
ratio, the number of arrivals divided by the number of departures). The
idea is that (hypothetical) sources and sinks can lead to an AD-ratio < 1 if
vehicles have been missed. To solve this problem the arrival flow is divided
by the AD-ratio.

The queue clearance time is the time it takes to service an entire queue.
SURTRAC’s second mechanism is using an elastic queue clearance time tQC ,
which is proportional to an elasticity ratio relaQC . relaQC is defined as a sigmoid
function of the queue length [45].
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2.5.2 Prediction beyond the upstream detector horizon

Lämmer et al. use the average historic traffic flow for each link as a best
guess for arriving vehicles beyond the upstream detectors [31]. SURTRAC
uses the expected scheduled departures from the upstream intersections [46,
45]. SURTRAC intersections communicate to all neighboring intersections
therefore implicitly propagating information in a distributed fashion.

2.6 Advanced driver assistance systems

Advanced driver assistance systems enable possible travel time reduction,
fuel savings and greenhouse gas emission reduction. This sections explores
the requirements and benefits of such systems.

De Nunzio et al. developed a method that can calculate the sub-optimal
energy-efficient route for each individual vehicle in real-time when the green
time intervals of a sequence of upcoming traffic lights is known in ad-
vance [12]. In microscopic evaluations of an artificial traffic network they
showed that a penetration rate of 100% leads to a 28.5% reduction in energy
consumption and 4% reduction in average travel time. These results could
be improved even more when V2V communication would be taken into ac-
count. Major limitations of their work are the assumption of free flow traffic
conditions and up-front knowledge of reliable far future SPaT information
(several intersections away).

Asadi & Vahidi utilize SPaT information to enable the concept of pre-
dictive cruise control [2]. Their solution is based on the concept of adaptive
cruise control where a vehicle attempts to maintain a speed vtarget while
keeping a safe distance from any obstacles (other vehicles) in front of the
vehicle. They extend the adaptive cruise control by taking SPaT information
into account to optimize the vehicles trajectory for minimal idling at traffic
lights and minimal fuel consumption. Asadi & Vahidi evaluate their solution
using a simulation of a real traffic network with historic SPaT data. They
estimate the fuel consumption using a detailed powertrain model. Their
results show a 4.2% reduction of travel time and a 41.8% reduction of fuel
consumption compared to traditional adaptive cruise control. The authors
note that an extensive statistical analysis is still required to determine the
attainable gains of their approach and that the influence of different traffic
conditions could impact their results.

Stevanovic et al. investigated the relationship between traffic actuation,
signal timing optimization and the application of GLOSA [47]. Without
taking safety issues of fluctuating GLOSA information into account they
evaluate the impact on travel time, number of stops and fuel efficiency for
eight scenarios (all possible combinations of with and without traffic actu-
ation, signal timing optimization and GLOSA) using the VISSIM micro-
scopic simulation software [20]. The authors conclude that:
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• Signal timing optimization remains of vital importance.

• The application of GLOSA is beneficial for fixed-time signals.

• GLOSA is not beneficial for actuated signals until an accurate SPaT
estimation method is found.

They found that without a reliable prediction algorithm the application of
GLOSA decreases the performance.

Mahler & Vahidi used a relatively simple prediction algorithm (as de-
scribed in section 2.1.3) to enable a GLOSA implementation that should
lead to optimal fuel efficiency [36, 37]. Their speed advice is based on a cost
function that is the weighted sum of accelerations, decelerations and idling
time at a red light. With custom simulations of fixed-time traffic lights
they show that for particular configurations a 61% and on average a 16%
improvement of fuel efficiency is possible using their setup. Simulations of
a series of real traffic actuated intersections based on historic data show a
6% average improvement of the fuel efficiency. A clear limitation of their
evaluation is that they ran simulations with singular cars, hence excluding
the influence of other traffic.

Wan et al. investigated this influence of traffic [52]. They developed a
fuel efficiency optimizing speed advisory system (SAS) and evaluated it for
different penetration rates and different traffic densities through simulations
of a series of intersections controlled by fixed-time traffic light schedules. The
authors show that their mechanism achieves a fuel efficiency improvement
of approximately 25% at the cost of a 2-8% decrease in traffic flow. This
indicates that traffic flow and fuel optimization are not necessarily the same
problem. Furthermore, the authors show that increasing penetration rates
further improve the fuel efficiency of vehicles that do not receive a speed
advice (at the cost of increased travel time). A limitation of the work done
by Wan et al. is the lack of an evaluation in the case of traffic actuated
control.

2.7 Conclusion

From the literature study described in this chapter several conclusions can
be drawn:

• To the best of the author’s knowledge no signal phase and timing
prediction method exists that is capable of enabling advanced driver
assistance systems without reducing the performance of the control
algorithm.

• To the best of the author’s knowledge the state-of-the-art in data-
driven short-term traffic flow prediction is Helmy’s recurrent neural
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network [21]. Furthermore, this model has been proven to outperform
a state-of-the-art analytical prediction model.

• Long short-term memory networks have been proven to outperform
regular RNNs in many applications.

• Model predictive control has a great potential for traffic control but
most MPC approaches suffer from a trade-off between computational
complexity and real-time response.

• Distributed MPC approaches like SURTRAC and the self-organizing
traffic light provide a scalable solution for traffic control. Although
each has its own limitations.

• Different traffic control algorithms are tough to compare as each al-
gorithm is evaluated in a different environment with a unique base
case controller.

• Advanced driver assistance systems have a great potential to reduce
the cumulative travel time delay, improve driver comfort and reduce
greenhouse gas emissions at signalized intersections. However, that
is only the case when reliable SPaT information is available over a
sufficiently long prediction horizon.
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Chapter 3

Conceptual design

This chapter describes the conceptual design of a signalized intersection
controller called DIRECTOR (Data-driven Intersection and Road Environ-
ment Controller for Traffic Optimization in Real-time). The design choices
are based on the observations from the literature review in Chapter 2.

From the literature study it is clear that distributed model predictive con-
trol has the greatest potential for further improvement of signalized inter-
section control in a scalable way. However, the current distributed control-
lers rely heavily on heuristics and assumptions regarding the flow of traffic.
Research has shown that data-driven traffic flow methods can outperform
analytical models. It therefore makes sense to create a distributed predictive
controller that utilizes a data-driven traffic flow prediction model.

Advanced driver assistance systems (ADAS) have a great potential to
improve traffic flow and reduce greenhouse gas emissions. However due to
the lack of a reliable signal phase and timing (SPaT) prediction method it
cannot be applied in practice. In order to safely use advanced driver as-
sistance systems like T2G/R and GLOSA 100% accurate SPaT information
is required. This is only possible when the the schedule is fixed ahead of
time. Doing this efficiently requires insight in the future traffic situation.
Since predictive controllers inherently have insight into the future situation
it makes sense to develop a predictive controller to enables ADAS.

The conceptual design of such a predictive intersection controller is ex-
plained in Figure 3.1 and contains the following building blocks:

1. Short-term traffic flow prediction model (Chapter 4)

2. Queue length prediction model (Chapter 5)

3. Predictive traffic light controller (Chapters 5 and 6)

4. Advanced driver assistance systems module (Chapter 6)

Detailed descriptions of the building blocks are described in the next chapters.
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Figure 3.1: Illustration of DIRECTOR’s conceptual design [21]. Traffic
moves from the left intersection (upstream) to the right intersection (down-
stream). The upstream departures are counted and used as input for a
prediction model. The prediction model predicts the evolution of queues
downstream. Using the predicted queue length over time a traffic light con-
troller (TLC) optimizes the schedule. This schedule is fixed some time be-
fore it is actually executed. That guarantees knowledge of the future SPaT
information and thus enables advanced driver assistance systems.

DIRECTOR’s conceptual design, as outlined in Figure 3.1, is also fu-
tureproof. Because of the data-driven nature of the system its performance
should only increase towards the future with more and better data becoming
available. Figure 3.2 shows this self-enforcing cycle.

The design enables ADAS, which leads to two consequences. Firstly, the
driving behavior will become more predictable, which leads to traffic flow
patterns that are easier to predict. Secondly, the use-cases will attract more
users to connected vehicle technology, which leads to an increase in available,
more detailed data. This increase in available, accurate data again leads to
improvements in the flow prediction. Hence, DIRECTOR should be able
to deal with the transition from human drivers to connected vehicles to
autonomous vehicles without big, expensive changes to the infrastructure.
Furthermore, its performance will improve along the way.
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Figure 3.2: Schematic drawing of the self-enforcing cycle of DIRECTOR’s
conceptual design from Figure 3.1, which leads to a stable traffic light sched-
ule that enables GLOSA and T2G/R.
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Chapter 4

LSTM network design for
short-term traffic flow
predictions

This chapter describes the implementation of the arrival flow prediction
model. The model is inspired by the state-of-the-art in short-term traffic
flow prediction, which is the recurrent neural network (RNN) architecture
by Helmy [21].

4.1 State-of-the-art prediction model architecture

Helmy discovered that for short-term traffic flow prediction a RNN can
outperform analytical models. She identified five input variables of influence:

• Time

• Departure flows (number of vehicles leaving upstream per time bin)

• The presence of queues downstream

• Arrival flows (number of vehicles arriving downstream per time bin)

• The signal states downstream (red, amber or green)

The output of the model is the number of vehicles arriving during a time
bin ∆t seconds from now. ∆t is referred to as the prediction horizon.

Helmy included each of the input variables for a particular number of
timesteps back in time. This number of timesteps can differ per variable. A
downside of Helmy’s approach is that it requires a long brute-force process
to identify the best configuration of timesteps per variable.
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4.2 LSTM architecture

In order to create a prediction model that is more accurate and user-friendly
than Helmy’s model, the model proposed in this thesis makes use of long
short-term memory (LSTM) to learn the contribution of each variable over
time based on the training data. Figure 4.1 visualizes the architecture of
this model1.
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Figure 4.1: Schematic drawing of the proposed LSTM architecture. Each
variable is included for n timesteps. The LSTM layer learns the importance
over time for each variable.

The model includes all variables for n timesteps back in time and the
LSTM layer learns the dependencies automatically based on the training
data. As described in Chapter 2 this approach has been proven to outper-

1Appendix A visualizes the architecture of Helmy’s RNN model for comparison
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form conventional RNN architectures for many applications [39].
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Chapter 5

Predictive controller design

This chapter describes the design of DIRECTOR’s model predictive control
algorithm. It is inspired by the self-organizing traffic light concept developed
by Lämmer et al. [29, 30, 31, 32]. The algorithm is redesigned from the
ground up to address some of the limitations, incorporate the LSTM traffic
flow prediction model and enable advanced driver assistance systems.

The chapter covers the design by starting from the basic intuition behind
the methodology and then continuously adding features that improve the
model’s reflection of reality.

5.1 Intuition behind DIRECTOR

The goal of DIRECTOR’s algorithm is to minimize the average travel time
delay per vehicle within the boundary conditions set by the regulating au-
thorities and road owners. The intuition behind DIRECTOR is to use the
cumulative travel time delay in the near future as the value of the cost func-
tion. The cumulative travel time delay is the sum of the travel time delays
of all vehicles.

The travel time delay DOD accumulated for a certain origin-destination
pair OD from time tstart to tend is given by Equation 5.1,

DOD(tstart, tend) =

∫ tend

t=tstart

ρOD(t) (5.1)

where ρOD is the number of queued vehicles on the link. Figure 5.1 illustrates
the relation between the number of queued vehicles and the cumulative travel
time delay.

For an intersection with a set of completely conflicting origin-destination
pairs it is possible to periodically calculate DOD for each origin-destination
pair and then schedule the OD that would lead to the largest cumulative
travel time delay if left unserviced.

Let us assume a scheduling decision needs to be made now at time t0
and the next decision will be made at time t1. The scheduled OD at time
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Figure 5.1: Example of how a queue evolves in practice, starting with two
queued vehicles at time t = 0 and with new vehicles arriving at the back of
the queue at t = {2, 5, 8, 10}. The blue line denotes the number of queued
vehicles ρ(t). The shaded area is the cumulative travel time delay D(0, 10)
incurred by the queue.

t0, denoted as χ(t0), is then the OD with the highest priority at time t0,
denoted as π(t0). Equation 5.2 describes this mathematically. ODs is the
intersection’s set of origin-destination pairs.

χ(t0) = arg max
OD∈ODs

{
πOD(t0)

}
= arg max

OD∈ODs

{
DOD(t0, t1)

}
= arg max

OD∈ODs

{∫ t1

t=t0

ρOD(t)

} (5.2)

However, this assumes that direct switching between phase groups is safe
and that ρOD(t) for each origin-destination pair is known. But future values
of ρOD(t) cannot be known exactly. The challenge therefore is to accurately
estimate ρOD(t) in the future.
ρOD(t) can be described by Equation 5.3. ρOD(t0) is equal to the number

of vehicles currently queued for origin-destination pair OD. ∆ρ+
OD(t0, t) and

∆ρ−OD(t0, t) are the number of vehicles that will arrive at and depart from
origin-destination pair OD in the interval [t0, t], respectively.

ρOD(t) = ρOD(t0) + ∆ρOD(t0, t) = ρOD(t0) + ∆ρ+
OD(t0, t)−∆ρ−OD(t0, t) (5.3)
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Since the goal is to service the OD that would lead to the greatest increase
in travel time delay if not serviced, when calculating the cumulative travel
time delay the assumption is that no vehicles depart, i.e. ∆ρ−OD(t0, t) = 0.
Equation 5.3 then simplifies to Equation 5.4.

ρOD(t) = ρOD(t0) + ∆ρ+
OD(t0, t) (5.4)

Given a prediction of the vehicle arrivals it is possible to predict the travel
time delay according to Equation 5.1 and then schedule the most demanding
OD according to Equation 5.2.

Vehicles can be predicted within a chosen time period or bin size according
to the LSTM traffic flow prediction model described in Chapter 4. This bin
size will be denoted as tbin. Because the exact arrival times of the predicted
vehicles in the interval [t, t+ tbin] are unknown1 an assumption is required.
Without further information regarding the arrival patterns of vehicles a
uniform distribution of arrivals will be assumed.

In order to easily calculate the travel time delay during an interval [t, t+ tbin]
a representation of the average queue length during the interval is desired.
The average queue length during the interval [t, t+ tbin] will be denoted as
ρOD[T ], where T is the index of the bin (note the difference in notation, the
average queue length during an interval is denoted with square brackets).
ρOD[T ] is given by Equation 5.5.

ρOD[T ] =

{
ρOD(t0) + 1

2 ·∆ρ
+
OD(t0, t0 + tbin) T = 0

ρOD[T − 1] + 1
2 ·∆ρ

+
OD(t0 + T · tbin, t0 + (T + 1) · tbin) T > 0

(5.5)

Figure 5.2 and Table 5.1 illustrate the transformation from ρ(t) to ρ[T ]
for time bins of size 10 seconds.

Using the average queue length per interval it is possible to calculate
the cumulative travel time delay according to ρOD[T ]. This leads to the
discretized version of Equation 5.1 represented by Equation 5.6.

DOD[Tstart, Tend] = tbin ·
Tend∑

T=Tstart

ρOD[T ] (5.6)

Assuming that a new scheduling decision is made every time a new pre-
diction is made2, i.e. t1 = t0 + tbin, Equation 5.2 can be rewritten to

1The LSTM network predicts the number of vehicles arriving during the time bin, not
their exact arrival times within the time bin.

2It is possible to use a rolling horizon for the predictions, i.e. predict at a higher
frequency than every tbin. For simplicity this option is excluded in this thesis.
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Figure 5.2: The example from Figure 5.1 extended to 20
seconds. The orange dashed line indicates the assumed
average queue length according to Equation 5.5.

ρ[0] ρ[1]

4 7.5

Table 5.1: Average queue
length assuming uniform dis-
tribution of arrivals in 10
seconds bins for the example
from Figure 5.2.

Equation 5.7.

χ(t0) = arg max
OD∈ODs

{
π(t0)

}
= arg max

OD∈ODs

{
DOD(t0, t1)

}
≈ arg max

OD∈ODs

{
DOD[0, 0]

}
= arg max

OD∈ODs

{
tbin ·

0∑
T=0

ρOD[T ]

}

= arg max
OD∈ODs

{ 0∑
T=0

ρOD[T ]

}
= arg max

OD∈ODs

{
ρOD[0]

}

(5.7)

The approximately equal sign indicates that the discretized version is an
approximation of the true cumulative travel time delay. tbin can be discarded
as it is a constant multiplier in the argmax function.

Example 5.1.1. Table 5.2 shows an example situation at an intersection
consisting of three completely conflicting origin-destination pairs 0, 1 and 2.

The example starts out with 2, 1 and 1 vehicles queued for ODs 0, 1 and 2,
respectively. Between now (t0) and the next decision making time (t1) 4, 3
and 7 vehicles are expected to arrive at ODs 0, 1 and 2, respectively. Filling
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OD ρOD(t0) ∆ρ+
OD(t0, t1) ρOD[0] πOD(t0)

0 2 4 4 4

1 1 3 2.5 2.5

2 1 7 4.5 4.5

Table 5.2: Example situation at an intersection consisting of 3 completely
conflicting origin-destination pairs.

out these details in Equation 5.7 leads to:

χ(t0) ≈ arg max
OD∈{0,1,2}

{
ρOD[0]

}
= arg max

{
ρ0[0], ρ1[0], ρ2[0]

}
= arg max

{
4, 2.5, 4.5

}
= 2

This means that OD 2 will be scheduled next. Even though the immediate
queue length of OD 0 is greater, more vehicles are expected to arrive at OD
2, and hence, servicing OD 2 is preferred to minimize the cumulative travel
time delay.

Equation 5.7 captures the basic idea that larger queues cause more travel
time delay and that cars that are in the queue earlier contribute more to the
travel time delay. Therefore Equation 5.7 forms a good basis for a signalized
intersection control algorithm. However, Equation 5.7 is still slightly too
simple to be used in real scenarios as some of the underlying assumptions
do not hold in practice. DIRECTOR’s basic approach therefore requires
some extensions to live up to reality.

5.2 Extending DIRECTOR with switching penal-
ties

One of the assumptions underlying Equation 5.7 is the possibility to in-
stantly switch between phase groups. In reality, for safety reasons, there is
at least an intergreen time tig between one signal changing from green to
amber and the next signal turning green. A typical value for tig is in the
range of 3 to 8 seconds. During this time no vehicles can be serviced by the
intersection. Hence, switching phase groups leads to potential inefficiencies
at the intersection and should therefore be incorporated in DIRECTOR’s
decisionmaking algorithm.
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Figure 5.3: The example from Figure 5.1 re-
visited. The red shaded area indicates the
switching penalty for the other ODs if this
OD is currently being serviced and the inter-
green time tig is 5 seconds.

Figure 5.4: The discretized version of Fig-
ure 5.3. The red shaded area indicates the
switching penalty for the other ODs if this
OD is currently being serviced and the inter-
green time tig is 5 seconds.

A switching penalty can be used to take switching inefficiencies into ac-
count [31]. The idea is that this penalty reduces the priority of the phase
groups currently not being serviced and therefore increases the relative im-
portance of the phase group currently being serviced. Equation 5.8 rewrites
Equation 5.2 to include such a term. εOD(t0) is the switching penalty ap-
plicable to origin-destination pair OD at time t0.

χ(t0) = arg max
OD∈ODs

{
π(t0)

}
= arg max

OD∈ODs

{
DOD(t0, t1)− εOD(t0)

}
(5.8)

The question is then how large this switching penalty should be. It should
be equal to the cumulative travel time delay caused by the switch. This
additional travel time delay is equal to the number of vehicles that could
have been serviced during tig if a switch would not have occurred multiplied
by the time they have been waiting. The switching penalty can then be
described by Equation 5.9.

εOD(t0) =

{
0 if OD = χ(t−1)∫ tig
t=t0

ρχ(t−1)(t) if OD 6= χ(t−1)
(5.9)

χ(t−1) is the origin-destination pair currently being serviced (scheduled at
time t−1 = t0 − tbin). Figure 5.3 illustrates the application of Equation 5.9.

Using the discretized average queue length Equation 5.9 can be rewritten
to Equation 5.10. This is under the assumption that tig ≤ tbin. Figure 5.4
illustrates the application of Equation 5.10.

εOD(t0) =

{
0 if OD = χ(t−1)

tig · ρχ(t−1)[0] if OD 6= χ(t−1)
(5.10)

Substituting this result in Equation 5.8 the scheduling algorithm is given
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by Equation 5.11.

χ(t0) = arg max
OD∈ODs

{
DOD(t0, t1)− εOD(t0)

}
≈ arg max

OD∈ODs

{
DOD[0, 0]− εOD(t0)

}

= arg max
OD∈ODs

{
(
tbin ·

∑0
T=0 ρOD[T ]

)
− 0 if OD = χ(t−1)(

tbin ·
∑0

T=0 ρOD[T ]

)
− tig · ρχt−1 [0] if OD 6= χ(t−1)

}

= arg max
OD∈ODs

{
∑0

T=0 ρOD[T ] if OD = χ(t−1)(∑0
T=0 ρOD[T ]

)
− tig

tbin
· ρχt−1 [0] if OD 6= χ(t−1)

}

= arg max
OD∈ODs

{{
ρOD[0] if OD = χ(t−1)

ρOD[0]− tig
tbin
· ρχt−1 [0] if OD 6= χ(t−1)

}

(5.11)

The last term of Equation 5.11 intuitively makes sense as the fraction
tig
tbin

is the fraction of the time period tbin that no vehicles can be serviced.
For simplicity this term will be defined as the switching penalty σOD(t0).
Equation 5.12 describes the explicit definition.

σOD(t0) =
εOD(t0)

tbin
=

{
0 if OD = χ(t−1)
tig
tbin
· ρχ(t−1)[0] if OD 6= χ(t−1)

(5.12)

This simplifies Equation 5.11 to Equation 5.13.

χ(t0) ≈ arg max
OD∈ODs

{
ρOD[0]− σOD(t0)

}
(5.13)

To illustrate the influence of the switching penalty Example 5.1.1 is re-
visited in Example 5.2.1.

Example 5.2.1. In this example the assumptions are that OD 1 is currently
being serviced, i.e. χt−1 = 1, and that tig = 5 seconds. tbin is still 10 seconds.
Table 5.3 then shows the results according to Equations 5.12 and 5.13.

OD ρOD[t0] ρ+
OD(t0, t1) ρOD[0] σOD(t0) πOD(t0)

0 2 4 4 1.25 2.75

1 1 3 2.5 0 2.5

2 1 7 4.5 1.25 3.25

Table 5.3: Example situation at an intersection consisting of 3 completely
conflicting origin-destination pairs. χt−1 = 1, tig = 5 seconds and tbin =
10 seconds.
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Substituting the values from Table 5.3 in Equation 5.13 gives:

χ(t0) ≈ arg max
OD∈{0,1,2}

{
ρOD[0]− σOD(t0)

}
= arg max

{
(4− 1.25), (2.5− 0), (4.5− 1.25)

}
= arg max

{
2.75, 2.5, 3.25

}
= 2

Hence, in this example the scheduling decision has not changed, OD 2 will
still be scheduled. However, Table 5.3 shows that even though the scheduling
decision has not changed, the relative priority of OD 1 did increase compared
to the example without a switching penalty.

5.3 Extending DIRECTOR to create dynamic green
waves

As it takes time to switch between phase groups it makes sense to prepare
in advance for large platoons of vehicles that will have to stop if there is a
queue that still needs to be emptied upon the platoon’s arrival. Therefore
it makes sense to take vehicle arrivals further into the future into account
as well. This section describes the extension of DIRECTOR to include
predicted arrivals from t2 = t1 + tbin, where t1 = t0 + tbin as before.

Including future arrivals can be done by taking the travel time delay up
to t = t2 into account, which can be calculated by filling out the correct
values in Equations 5.5 and 5.6. This leads to Equation 5.14.

DOD(t0, t2) ≈ DOD[0, 1]

= tbin ·
1∑

T=0

ρOD[T ]

= tbin · (ρOD[0] + ρOD[1])

(5.14)

The scheduling decision is then governed by Equation 5.15.

χ(t0) = arg max
OD∈ODs

{
DOD(t0, t2)− εOD(t0)

}
≈ arg max

OD∈ODs

{
DOD[0, 1]− εOD(t0)

}
= arg max

OD∈ODs

{ 1∑
T=0

ρOD[T ]− σOD(t0)

}
= arg max

OD∈ODs

{
ρOD[0] + ρOD[1]− σOD(t0)

}
(5.15)
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To illustrate the influence of taking arrivals further in the future into
account Example 5.2.1 will be revisited in Example 5.3.1.

Example 5.3.1. In this example the same assumptions hold as in Ex-
ample 5.2.1. Table 5.4 shows the results according to Equations 5.5 and 5.15.

OD ρOD(t0) ∆ρ+
OD(t0, t1) ρOD[0] ∆ρ+

OD(t1, t2) ρOD[1] σOD(t0) πOD(t0)

0 2 4 4 2 5 1.25 7.75

1 1 3 2.5 10 7.5 0 10

2 1 7 4.5 2 5.5 1.25 8.75

Table 5.4: Example situation at an intersection consisting of 3 completely
conflicting origin-destination pairs. OD 1 has just been serviced, tig = 5
seconds and tbin = 10 seconds. The scheduling algorithm also takes travel
time delay due to arrivals from the interval [t1, t2] into account.

The scheduling decision according to Equation 5.15 then becomes:

χ(t0) = arg max
OD∈{0,1,2}

{
DOD(t0, t2)− εOD(t0)

}
≈ arg max

OD∈{0,1,2}

{
ρOD[0] + ρOD[1]− σOD(t0)

}
= arg max

{
(ρ0[0] + ρ0[1]− σ0(t0)), (ρ1[0] + ρ1[1]− σ1(t0)), (ρ2[0] + ρ2[1]− σ2(t0))

}
= arg max

{
(4 + 5− 1.25)0, (2.5 + 7.5− 0)1, (4.5 + 5.5− 1.25)2

}
= arg max

{
7.75, 10, 8.75

}
= 1

Note that the outcome of the scheduling decision has changed compared
to the previous examples. DIRECTOR recognizes that a big platoon of 10
vehicles will arrive at OD 1 and hence decides not to switch phase groups.
DIRECTOR decides to stop the 7 incoming vehicles at OD 2 in order to
service all 14 vehicles in the next 20 seconds at OD 1. Of course this decision
will be reevaluated at time t1 with the knowledge available to DIRECTOR
at that point in time.

5.4 Generalizing DIRECTOR to multi-OD phase
groups

In reality an intersection often has several non-conflicting ODs that can be
serviced simultaneously as a phase group PG. This section explains how
DIRECTOR can be generalized to deal with phase groups. The principle is
rather simple. The goal is to minimize the cumulative travel time delay at
the intersection. Therefore the phase group that would lead to the largest
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expected cumulative travel time delay if it is not serviced should be scheduled
next. This can be done by summing the expected cumulative travel time
delays of the ODs in each phase group and subtracting the phase group’s
switching penalty.

Since a schedule χ(t) now consists of a phase group, which is set of ODs
instead of a single OD, the definition of the switching penalty should be
adapted to this change. Equations 5.9, 5.10 and 5.12 should be rewritten to
Equations 5.16, 5.17 and 5.18.

εPG(t0) =
∑

OD∈χ(t−1)∧OD/∈PG

∫ tig

t=t0

ρOD(t) (5.16)

εPG(t0) = tig ·
∑

OD∈χ(t−1)∧OD/∈PG

ρOD[0] (5.17)

σPG(t0) =
εPG
tbin

=
tig
tbin
·

∑
OD∈χ(t−1)∧OD/∈PG

ρOD[0] (5.18)

The scheduling decision is then given by Equation 5.19. PGs is the inter-
section’s set of phase groups.

χ(t0) = arg max
PG∈PGs

{( ∑
OD∈PG

DOD(t0, t2

)
− εPG(t0))

}
≈ arg max

PG∈PGs

{( ∑
OD∈PG

DOD[0, 1]

)
− εPG(t0))

}

= arg max
PG∈PGs

{( ∑
OD∈PG

1∑
T=0

ρOD[T ]

)
− σPG(t0)

}
= arg max

PG∈PGs

{( ∑
OD∈PG

ρOD[0] + ρOD[1]

)
− σPG(t0)

}
(5.19)

5.5 Guaranteeing stability

Stability in intersection control is defined as having bounded queues at all
times [40] as long as the traffic demand does not exceed the intersection
capacity. An intersection’s capacity is equal to the maximum amount of
traffic that a cyclic, fixed-time controller can handle, since such an algorithm
does not suffer from inefficiencies due to extra phase group switches. Hence,
if a control algorithm performs at least as good as a stable, cyclic, fixed-time
controller at all times then the control algorithm can be considered stable.

The short-sightedness of a local optimization strategy, like the one de-
scribed in Section 5.4, is not guaranteed to be stable as it might lead to
inefficient use of the available capacity [31]. Therefore, a supervisory stabil-
ization mechanism is required.
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The idea is to have a local supervisory mechanism that selects phase
groups that require service and adds them to a first in first out (FIFO)
queue Ω. Whenever Ω is not empty, the next entry from Ω will be serviced.
Mathematically the scheduling decision is given by Equation 5.20.

χ(t0) =

head{Ω} if Ω 6= ∅

arg maxPG∈PGs

{(∑
OD∈PG ρOD[0] + ρOD[1]

)
− σPG(t0)

}
otherwise

(5.20)

5.5.1 Selection of phase groups

Unstable control of the intersection through Equation 5.19 can occur when
a queue spills back far enough to permanently cover the arrival detector.
DIRECTOR is then unable to detect new arrivals and will underestimate
the queue length, potentially leading to inefficient decisions and unbounded
queues. Hence, whenever an origin-destination pair has a queue covering its
arrival detectors a phase group containing the OD should be added to Ω.

The set of phase groups from which the entries for Ω are picked is an
ordered set, in the order of service in the stable, cyclic, fixed-time schedule.
If Ω is empty the phase group with the highest priority is selected from the
set of phase groups that services the required origin-destination pair. When
Ω is not empty the phase group that comes next in the ordered set after the
tail of Ω is selected. This selection process guarantees that in the worst-case
the phase groups will be scheduled in the same order as the stable, cyclic,
fixed-time controller.

5.5.2 Duration of green time

A phase group scheduled by the supervisory mechanism remains serviced
until the detector is no longer occupied or until the maximum allowed green
time is exceeded. When that happens the phase group is removed from the
queue. The duration of each phase group’s maximum green time gmaxPG is
key for the stability of the algorithm.

From now on the assumption will be that a stable, cyclic, fixed-time con-
troller exists for the intersection. Then, if the maximum green time of phase
group PG gmaxPG is equal to the green time allocated to phase group PG by
the fixed-time controller, the control algorithm can be considered stable.

To prove this, consider the worst-case, which is that all arrival detectors
are covered by queues. In that case Ω contains at most all phase groups of
the intersection. When Ω contains all phase groups and the maximum green
times of each phase group is equal to the green time allocated by a fixed-
time controller, the schedule produced based on Ω will at worst be equal to
the fixed-time controller schedule. Since that schedule is considered stable
the predictive controller schedule can also be considered stable.
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5.6 Dealing with real-world requirements

DIRECTOR is now proven to be stable and takes intergreen times into
account. However, for practical purposes other real-world requirements need
to be addressed as well. This section covers the most important remaining
requirements:

• Minimum green time: A green signal should remain green for at least
a minimum green time duration to provide road users enough time to
safely leave the intersection.

• Duration of amber : The duration of amber should allow road users to
safely come to a stop before the signal turns red given the applicable
speed limit.

• Minimum clearance time: A signal should be red for at least the min-
imum clearance time before a conflicting signal may turn green.

• Maximum time without service: The maximum time that an origin-
destination pair with a vehicle waiting is not serviced should not exceed
a particular period in order to avoid vehicles violating the red light.

• Priority : Some vehicles should get priority over others, e.g. public
transport or emergency service vehicles like an ambulance.

The remainder of this section addresses how these requirements can be
handled by DIRECTOR.

5.6.1 Minimum green time, duration of amber & minimum
clearance time

Adhering to these timing parameters is incorporated in DIRECTOR’s finite
state machine that controls the switching of signals. Note that the amber
time and minimum clearance time together form the intergreen time.

5.6.2 Maximum time without service

In practice a maximum time without service is defined to avoid vehicles viol-
ating a red light. This is the maximum time period between two consecutive
services while a vehicle was waiting. Hence, in order to guarantee safe oper-
ation of the intersection controller this requirement should be incorporated.

A simple way of addressing this issue is by adding another supervisory
mechanism that looks after the maximum time without service. Whenever
an origin-destination pair has a vehicle waiting longer than the maximum
time without service a phase group containing the OD will be added to
a FIFO queue Ψ. Phase groups from Ψ should be preferred over the other
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scheduling options to ensure safety, which would lead to a scheduling decision
given by Equation 5.21.

χ(t0) =


head{Ψ} if Ψ 6= ∅
head{Ω} if Ω 6= ∅

arg maxPG∈PGs

{(∑
OD∈PG ρOD[0] + ρOD[1]

)
− σPG(t0)

}
otherwise

(5.21)

Note that Equation 5.21 is only guaranteed to be stable when the max-
imum time without service tmax is at least as large as the cycle time tcycle of
the stable fixed-time controller on which the schedule is based, i.e. tmax ≥ tcycle.
If this is not the case, then the worst-case fixed-time schedule might be in-
terrupted, which would lead to additional inefficiencies that could cause
instability.

5.6.3 Priority

Depending on the context and goals of the road owner some vehicles have
priority over others. For example public transport or emergency services,
which should not be delayed. Trucks, which cause more greenhouse gas
emissions than regular cars when stopped, are another example. Or maybe
the traffic going into a city center should be discouraged by getting a lower
priority.

Handling priorities is not yet implemented in this thesis project. It is
considered as a part of future work. Nevertheless three options for the
implementation of handling priorities should be mentioned:

1. Implicit: Assign weights to different vehicle types.

2. Explicit: Add a phase group to the FIFO queues Ω or Ψ.

3. Explicit: Create an extra supervisory mechanism to handle priority
requests. This mechanism should be preferred over Ω and Ψ.
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Chapter 6

Enabling Advanced Driver
Assistance Systems

Chapter 5 described the design of a stable, predictive controller that re-
sponds ad hoc with a scheduling decision being made every tbin seconds.
This chapter builds on the design from Chapter 5 and describes how this
DIRECTOR implementation can and must be adjusted to enable advanced
driver assistance systems (ADAS) like time to green/red (T2G/R) and green
light optimal speed advice (GLOSA).

6.1 Requirements for Advanced Driver Assistance
Systems

To safely utilize T2G/R and GLOSA there are two main requirements:

• 100% accurate information on signal changes

• Accurate signal phase and timing information over a sufficiently large
prediction horizon (5-40 seconds)

As described before, in Chapters 1 and 2, modern intersection controllers and
prediction methods from literature have failed to meet these requirements.
The challenge is thus to develop DIRECTOR such that it performs well and
can meet the requirements mentioned above.

6.2 Meeting the requirements with DIRECTOR

The only way to guarantee that the predictions will be 100% accurate is to
fix the schedule ahead of time. Note that the earlier the schedule is fixed the
larger the prediction horizon will be. But also the greater the uncertainty
in the predicted inputs and hence the quality of the produced schedule.
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This section describes how DIRECTOR’s implementation from Chapter
5 needs to be adjusted to fix the schedule ahead of time. The starting
assumption will be that the DIRECTOR’s schedule will be fixed tbin, i.e. one
decision cycle, ahead of time. For simplicity the stabilization and maximum
time without service mechanisms are excluded in the beginning.

Before a new scheduling equation can be given some assumptions that no
longer hold need to be discussed.

6.2.1 Account for leaving vehicles

The assumption from Chapter 5 that the number of vehicles leaving from
origin-destination pair OD in the interval [t0, t] (∆ρ−OD(t0, t)) were ignored
in order to evaluate the impact of not servicing OD is no longer valid. The
interval for the assumption should be shifted by tbin as t1 = t0+tbin is the mo-
ment that the picked schedule will be applied. Under that new assumption
Equation 5.3 should be rewritten to Equation 6.1 instead of Equation 5.4.

ρOD(t) = ρOD(t0) + ∆ρ+
OD(t0, t)−∆ρ−OD(t0, t1) (6.1)

Where the number of vehicles leaving in the interval [t0, t1] is given by
Equation 6.2.

∆ρ−OD(t0, t1) =


0 if OD 6∈ χ(t0)

min
{
ρ(t0) + ∆ρ+

OD(t0, t1),∆ρ−,maxOD (t1 − t0 − tig)
}

if OD 6∈ χ(t−1)

min
{
ρ(t0) + ∆ρ+

OD(t0, t1),∆ρ−,maxOD (t1 − t0)
}

otherwise

(6.2)

Where ∆ρ−,maxOD (∆t) is the maximum number of vehicles that origin-
destination pair OD can service during an interval of ∆t seconds. The
minimum operator is necessary in case there are more vehicles queued than
the OD can service during the given interval.

In words Equation 6.2 describes the following cases:

• The first case of Equation 6.2 means that OD will not be serviced in
the interval [t0, t1]. Hence, no vehicles will leave.

• The second case means that OD will be serviced in the interval [t0, t1]
but requires intergreen time first. Therefore vehicles can leave the OD
but only during the interval[t0 + tig, t1].

• The last case means that the OD will be serviced in the interval [t0, t1]
and does not require intergreen time because the OD was already being
serviced before.

Following the reasoning above means that Equation 5.5, which describes
the discretization process, should be adjusted to Equation 6.3.

ρOD[T ] =

{
ρOD(t0) + 1

2 ·
(
∆ρ+

OD(t0, t0 + tbin)−∆ρ−OD(t0, t0 + tbin)
)

if T = 0

ρOD[T − 1] + 1
2 ·∆ρ

+
OD(t0 + T · tbin, t0 + (T + 1) · tbin) if T > 0

(6.3)
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6.2.2 Shift the switching penalty

Equations 5.16, 5.17 and 5.18 described the switching penalty for a switch
occurring at time t = t0. Now that the switch occurs at time t = t1 these
equations should be rewritten to Equations 6.4, 6.5 and 6.6.

εPG(t0) =
∑

OD∈χ(t0)∧OD/∈PG

∫ t1+tig

t=t1

ρOD(t) (6.4)

εPG(t0) = tig ·
∑

OD∈χ(t0)∧OD/∈PG

ρOD[1] (6.5)

σPG(t0) =
εPG
tbin

=
tig
tbin
·

∑
OD∈χ(t0)∧OD/∈PG

ρOD[1] (6.6)

6.2.3 Find schedule ahead of time

With a proper description of the queue length and the switching penalty it
is now possible to find the schedule tbin seconds ahead of time by shifting
Equation 5.19 by tbin. This leads to Equation 6.7.

χ(t0 + tbin) = χ(t1)

= arg max
PG∈PGs

{( ∑
OD∈PG

WOD(t1, t3)

)
− εPG(t0)

}
≈ arg max

PG∈PGs

{( ∑
OD∈PG

WOD[1, 2]

)
− εPG(t0)

}

= arg max
PG∈PGs

{( ∑
OD∈PG

2∑
T=1

ρOD[T ]

)
− σPG(t0)

}
= arg max

PG∈PGs

{( ∑
OD∈PG

ρOD[1] + ρOD[2]

)
− σPG(t0)

}
(6.7)

6.2.4 Guaranteed stability

Of course, similar to the ad-hoc implementation from Chapter 5, a super-
vising mechanism is required to guarantee stability. Since the only change
made was a shift in response time of tbin seconds the same mechanism as
in Chapter 5 can be used. The only difference will be that the controller
responds tbin seconds later. Nevertheless, the worst-case performance is still
equal to that of a stable fixed-time controller. Hence, a controller scheduling
according to Equation 6.8 will guarantee stability.

χ(t1) =

head{Ω} if Ω 6= ∅

arg maxPG∈PGs

{(∑
OD∈PG ρOD[1] + ρOD[2]

)
− σPG(t0)

}
otherwise

(6.8)
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6.2.5 Real-world requirements

Fixing the schedule ahead of time also affects the responsiveness of the su-
pervisory mechanism dealing with the maximum time without service. Since
the schedule is decided tbin seconds ahead, DIRECTOR knows tbin seconds
ahead of time if an origin-destination pair will not be serviced within the
maximum time interval and can add it to the FIFO queue Ψ if required.
The scheduling algorithm is then similar to the algorithm from Chapter 5:

χ(t1) =


head{Ψ} if Ψ 6= ∅
head{Ω} if Ω 6= ∅

arg maxPG∈PGs

{(∑
OD∈PG ρOD[1] + ρOD[2]

)
− σPG

}
otherwise

(6.9)

6.2.6 Limitations

DIRECTOR’s process described to fix the schedule tbin seconds ahead of
time can theoretically be repeated recursively to fix the schedule any mul-
tiple of tbin seconds ahead of time. However, some practical limitations
influencing the maximum schedule fixing horizon exist.

• The prediction horizon of the vehicle arrival predictions is limited. At
some point no (accurate) predictions are available anymore.

• The delay in stabilizing measures might become too large. When the
time between an origin-destination pair OD being added to Ω and
actually servicing that OD becomes too large, queues might spill back
onto previous intersections leading to a gridlock and hence an instable
network.

• Fixing the schedule ahead of time further than the maximum time
without service would lead to a violation of the maximum time without
service and hence this is a hard limit for the schedule fixing horizon.

6.3 Advanced Driver Assistance Systems imple-
mentation

DIRECTOR is now able to deliver 100% accurate predictions for a prediction
horizon of at least tbin seconds. This section describes how this information
can be used to utilize T2G/R and GLOSA. First the T2G/R information is
derived. This information is then used to calculate the right GLOSA.

6.3.1 T2G/R

Every time a new schedule is fixed the T2G/R information must be updated.
The signal state of every origin-destination pair OD can be characterized by
three variables:
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• the current signal color signal colorOD

• the T2G countdown T2GOD

• the T2R countdown T2ROD

signal colorOD is either RED, AMBER or GREEN. The T2G/R count-
downs are either a strictly positive integer number (i.e. > 0) or unknown.
Unknown in this case means that DIRECTOR has not planned any change
for the OD in the coming schedule decision.

Throughout this reasoning the assumption will remain that the schedule
is fixed tbin seconds ahead of time and hence the T2G/R countdowns are
limited in horizon by tbin.

When an OD is red at the start of the current schedule (χ(t0)) but will
turn green in the next schedule (χ(t1)) the T2G countdown at time t0 is
T2GOD = tbin + tig because the schedule becomes active at time t0 + tbin
and then it takes an intergreen time tig until the signal actually turns green.

If the duration of a signal being amber is defined as tamber. Then when an
OD is green at the start of the current schedule but will turn red in the next
schedule the T2R countdown at time t0 is T2ROD = tbin + tamber because
the schedule becomes active at time t0 + tbin turning the signal from green
to amber. And then it takes an amber period tamber until the signal actually
turns red.

Using this logic the countdown can be set and then counted down until it
reaches 0 and the signal change occurs.

6.3.2 GLOSA

The T2G/R countdowns from above can be used to calculate the green light
optimal speed advice for the road users. Listing B.1 shows the pseudo code
of the relatively basic GLOSA implementation used in this thesis.

The idea is that the system calculates the speed at which the vehicle will
catch the green light when the information from the T2G/R countdowns
is available. The optimal speed advice is then compared to the minimum
and maximum speed limits to guarantee that the speed advice is within the
safety bounds. The minimum speed is determined by the road owner to
avoid dangerous situations. When no countdown information is available
the vehicle will be advised to follow the minimum or maximum speed de-
pending on whether the signal is red or green, respectively. In Listing B.1
distance is the distance between the vehicle and the stopline. Note that
this implementation does not take the queue length into account.

Furthermore, it might be desirable to advise the vehicle to arrive several
seconds before the signal change to green. This can be done using a cor-
rection in the T2G used for the calculations in Appendix B. An example of
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such an implementation is available on Github1.

1https://github.com/janceesvansenden/thesis. Access granted on request.
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Chapter 7

Experimental setup

This chapter explains the experimental setup used to evaluate DIRECTOR’s
different components and the final complete controller design. It explains
the case study, data preparation, tools and simulation details.

7.1 Case study

The case study used for this thesis is the intersection N205-N201 near
Hoofddorp (The Netherlands), which has three directions and connects the
N205 and N201 provincial roads. It has three intersections preceding it,
each at approximately thirty seconds driving distance. The availability of
all required sensors and the lack of influential sources and sinks make this
intersection a good candidate for DIRECTOR. For more details on the case
study location see Helmy’s thesis [21].

Figure 7.1 is a schematic drawing of the intersection showing all lanes,
possible vehicle movements and the detector configuration.

The intersection setup is quite complex with each origin link mapping
to two destination links and a highly adaptive control algorithm currently
controlling the signals. This complexity makes it hard to accurately predict
the vehicle flows and to improve upon the currently implemented control
algorithm.

7.2 Data

Historic data from the intersection is used for machine learning and system
evaluation in order to best reflect reality.

7.2.1 Data origin

The Dutch traffic light controllers (TLCs) log their data in the V-Log data
format [14]. Among the data stored are the detectors’ states, signals’ states
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Figure 7.1: Schematic overview of the case study intersection. The arrows
indicate the movements of traffic. The intersection has three directions
(indicated by the color of the arrows) with two origin-destination pairs each
(indicated by the arrows). The grey rectangles represent the loop detectors.
Each OD pair carries an ID according to Dutch traffic conventions, which is
why 1 and 5 are not present.

and the internal system state of the TLC. It should be noted that the V-Log
format only records changes of the system’s values and status.

The data used for the experiments in this study dates from January 2017
to May 2017. This data is compiled from the V-Log format to numerical
data that can be used for machine learning and simulation purposes.

7.2.2 Data preparation

Before machine learning or simulations can be attempted the numerical data
needs to be prepared for these purposes. This process is to a large extent
similar to Helmy’s data preparation process [21]. As noted in Chapter 4,
five input variables are required by the model:

• Time: The timestamp and day of the week are used as input variables.
The timestamp is included as the bin index from that day starting
with 0 at noon (12 PM). The day of the week is supplied as an integer
number from 1 to 7, where 1 means Sunday and 7 means Saturday.

• Departure flows: In order to predict vehicle flows it is required
to aggregate the loop detection values to flows of vehicles per time
unit. This is done by collecting the timestamps of vehicles leaving
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or arriving at detectors and aggregating this data over the desired
time bin size. Departure flows are determined by checking when the
upstream stopline detectors change status from ‘Car present’ to ‘No
car present’.

• Presence of queues: A queue is marked as present in a time bin
when at the end of the time bin the queue detector is occupied and
has been occupied for at least 3 seconds. ‘Queue present’ is represented
by a 1 and ‘No queue present’ is represented by a 0.

• Arrival flows: Similar to the departure flows. Arrival flows are meas-
ured by checking when the downstream arrival detectors change status
from ‘No car present’ to ‘Car present’.

• Signal states: The phase is included in the dataset by checking what
the status of the signals is at the end of the bin, i.e. red, green, amber.
Each color is represented by an integer value 0, 1 or 2, respectively.

Because of erroneous detector data only the first three weeks of the dataset
can be used for machine learning and simulations (see [21] for details).

Before using the data for machine learning the dataset is centered around
zero by subtracting the mean of each variable and then scaled between -1
and 1. According to common practice this dataset (containing the first three
weeks of data) is split into 60% training data, 20% validation data and 20%
test data.

7.3 Tools

Several off-the-shelf packages and programs were used to develop the exper-
imental setup. The components are linked together with custom code. All
the code developed for this thesis is available on Github1. Access to the re-
pository and data will be granted on request provided that, if the requested
information is proprietary, all owners of the requested information agree to
the request.

7.3.1 Machine learning

The Keras interface [11] for Tensorflow [1] was used to implement the ma-
chine learning experiments. Several methods from the Scipy package [25]
were used for data preparation and performance evaluation.

1https://github.com/janceesvansenden/thesis
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7.3.2 Traffic simulations

Vissim [20] is the main traffic simulation tool used by Dutch road owners.
The road owners already have Vissim models of most intersections, and
hence, it made sense to use Vissim2 as the simulation tool for the traffic
flow experiments.

Vissim is intended to be used via its graphical interface, but the soft-
ware also provides a COM (component object model) interface that enables
control using custom scripts written in, for example, python. The COM in-
terface has been the main method to control the vehicle inputs and signals,
and also to read the detector states during simulations.

For the N205-N201 case study a Vissim model was already available and
supplied by the province of Noord-Holland. The Vissim model supplied by
the province was adjusted to be able to replay historical data recorded on the
street in order to evaluate the control algorithms as accurately as possible.

7.4 Simulation details

Figure 7.2 shows a screenshot of the Vissim simulation model and explains
the most important features.

7.4.1 Vehicle inputs

Throughout the simulation vehicles approaching the intersection are added
based on the recorded historical data. Every ten seconds the historically
recorded flows are reproduced arriving at a random time within that ten-
second bin. The randomization is done by Vissim.

To properly evaluate the influence of GLOSA a second model was created
where the vehicle inputs are located ten seconds (average driving time) fur-
ther upstream. This increases the time that a vehicle is able to respond to
GLOSA. The downside is that the behavior of the vehicles in the simulation
leads to a greater spread of arrival times, which means that the predictions
are less accurate. This inaccuracy in the second model is the reason why
the first model (as shown in Figure 7.2) was used to evaluate the scenarios
without GLOSA.

7.4.2 DIRECTOR

DIRECTOR gets the prediction information from pre-calculated traffic flow
predictions based on the historical data and live detector information from
the vehicle detectors in the simulation, which are shown as blue rectangles
in Figure 7.2. Every 100 milliseconds DIRECTOR reads the states of the

2Version 10.06
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Figure 7.2: A screenshot of the Vissim simulation model. The black lines are
the vehicle inputs, i.e. the location where vehicles are created in the simu-
lation. The vehicle inputs are located right in front of the arrival detectors.
The detectors are the blue rectangles in the screenshot. The cumulative
travel time delay is measured via ‘vehicle travel times’-detectors. A pink
line indicates the start of a ‘vehicle travel times’-detector and a light blue
line indicates the end.

detectors and uses that information to count arriving and departing vehicles
and estimate the queue length for each origin-destination pair.

DIRECTOR can directly manipulate the traffic lights in the simulation
and update a signal’s state every second. This update frequency is a lim-
itation of the simulation software. In reality signal states can be updated
every 100 milliseconds.

7.4.3 Measurements

Travel times per vehicle are measured using ‘vehicle travel times’-detectors.
A ‘vehicle travel times’-detector measures the time it takes a vehicle to move
from one location to the next. It also calculates the delay that each passing
vehicle experiences compared to when the vehicle would have been able to
continue under free flow conditions, i.e. without a red signal or queue in its
way. The ‘vehicle travel times’-detector also measures the number of times a
vehicle has to stop3. The detectors measure the travel time from right after

3Most of the vehicles stop only 0 or 1 times. However, there are situations when a
vehicle may need to stop 2 or more times because of a long queue with short green time
intervals.

55



Confidential. Under embargo until 31 May 2019. Do not distribute without author’s consent.

the vehicle input to right behind the stopline as can be seen in Figure 7.2.
A pink line indicates the start of a travel time detector and a light blue line
indicates the end.
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Chapter 8

Results

8.1 LSTM network accuracy

To evaluate the performance of the LSTM short-term traffic flow prediction
model it is compared to the state-of-the-art RNN model by Helmy for all
three directions (all six origin-destination pairs). The metrics used for the
evaluation of the prediction models are:

• the root mean squared error (RMSE) for the absolute accuracy in
vehicles per 10 seconds.

• the normalized RMSE (NRMSE) for the relative accuracy. A NRMSE
of 1.00 means the model is as accurate as randomly drawing a sample
from the data. Anything smaller than 1.00 means the model shows
predictive abilities better than random guessing.

Table 8.1 shows the results of the evaluation per origin-destination pair.
Remember that there is one prediction model per intersection direction not
one per OD, i.e. one for ODs 2 & 3, one for 4 & 6, and one for 7 & 8.

Origin-Destination pairs
2 3 4 6 7 8

NRMSE (original) 0.43 1.00 0.82 0.74 0.74 0.42

NRMSE (LSTM) 0.40 0.97 0.82 0.73 0.71 0.39

RMSE (original) 1.38 0.72 0.70 0.82 0.92 1.16

RMSE (LSTM) 1.29 0.69 0.70 0.81 0.88 1.07

Difference (LSTM vs. original) -6.6% -3.6% +0.3% -1.2% -4.0% -7.6%

Avg. # vehicles/10s time bin 1.29 0.46 0.54 0.66 0.71 1.15

Table 8.1: Performance metrics of the short-term traffic flow prediction
models for each origin-destination pair in the case study. The RMSE is
given in vehicles per 10 seconds. The datapoints are the averages of 10
runs. The prediction horizon is 30 seconds.

Several things stand out from these results:
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• DIRECTOR’s LSTM model outperforms the original state-of-the-art
model for every OD except OD 4, where the difference could be called
negligible. The weighted average, where the number of vehicles per
time bin are taken as the weights, shows that the LSTM network
outperforms the original RNN by 4.7%.

• Where the state-of-the-art model was not able to reach a NRMSE
below 1.00 for one OD pair (OD pair 3), the LSTM model does reach
that performance for all OD pairs.

• The models find it relatively easier to predict the traffic flows for the
ODs that handle the most traffic (the ODs going straight: 2 and 8).
This makes sense as it is harder for the model to predict the rarer
occasion that a vehicle will take the turn.

• The performance improvement is more significant for the directions
that handle the most traffic (ODs 2 and 8). Apparently the LSTM
layer excels at recognizing this type of pattern.

8.2 Predictive controller performance

When evaluating the traffic flow for different traffic light controllers three
main metrics are of interest:

• the average delay or travel time per vehicle

• the average number of stops per vehicle

• the cumulative distribution function (CDF) of delay per vehicle

8.2.1 Switching Penalty and Dynamic Green Waves

To evaluate the concept of the switching penalty and dynamic green waves
24-hour simulations of ad-hoc control scenarios with perfect predictions were
conducted for various scenarios (using the ad-hoc simulation model with
vehicle inputs right behind the arrival detectors as explained in Chapter 7).
The average delay and number of stops in each scenarios are given in Table 8.2.
The best performing scenario is highlighted in bold. Figures 8.1a and 8.1b
show the CDF for the most and least dominant OD, respectively.

Three things stand out from Table 8.2:

• The controller with the switching penalty, but without the dynamic
green waves, leads to the best average performance.

• As expected, the switching penalty leads to fewer stops per vehicle.
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Scenario

Prediction
type

switching
penalty

dynamic
green waves

Avg. delay/vehicle (s) Avg. # stops/vehicle

Perfect knowledge ! ! 10.0 0.40

Perfect knowledge 7 ! 10.4 0.42

Perfect knowledge 7 7 9.5 0.42

Perfect knowledge ! 7 9.5 0.40

Table 8.2: Results of 24-hour simulations of the case study intersection
for different traffic light controller scenarios to evaluate the impact of the
switching penalty and dynamic green waves. The ad-hoc simulation model
with vehicle inputs right behind the arrival detectors is used. A 7 indicates
the absence of a feature, a !indicates the use of a feature.

• The dynamic green waves concept does not lead to better perform-
ance on average. When looking at the individual ODs however1, the
dynamic green waves do lead to better performance for all ODs (see
for example Figure 8.1a) except OD 6, which takes a big hit (see Fig-
ure 8.1b). That leads to a worse intersection performance overall. This
makes sense given the fact that OD 6 services relatively less traffic and
conflicts with the two busiest ODs (2 and 8). OD 6 and the average
intersection performance would therefore benefit from more short ser-
vice intervals for OD 6 during platoon gaps at ODs 2 and 8. The
dynamic green wave concept reduces the options for such intervals.

Because the results in this section show that the concept of dynamic green
waves does not lead to average performance improvements the remainder
of the simulation results describes controller implementations without this
concept2.

8.2.2 DIRECTOR’s performance

More 24-hour simulations were conducted to evaluate DIRECTOR’s per-
formance in comparison to an ideal scenario, the current on-street imple-
mentation and a more typical Dutch vehicle actuated controller (a CCOL
implementation). The current on-street controller is a state-of-the-art hand-
crafted actuated controller with green wave coordination. Table 8.3 and
Figures 8.2a and 8.2b show the results of these simulations.

The most important takeaways from these results are:

• The ad-hoc scenario with LSTM predictions (as would be used in
a deployment on the street) performs only slightly worse than with
perfect knowledge of future arrival flows.

1Data available in Appendix C.
2Other experiments including the use of LSTM predictions and GLOSA conducted with

dynamic green waves confirm that the dynamic green waves concept does not improve the
overall performance in these circumstances either.
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(a) OD 2. (b) OD 6.

Figure 8.1: Cumulative distribution function (CDF) of delay in several ad-
hoc control scenarios for the most and least dominant ODs (ODs 2 and 6,
respectively). SP is an acronym for Switching Penalty and DGW for Dy-
namic Green Waves. Note the different horizontal scales when comparing
figures (a) and (b).

• In comparison to the current on-street implementation, the ad-hoc im-
plementation of DIRECTOR performs similar. DIRECTOR performs
1% better in terms of average delay at the cost of a 15% increase in
the average number of stops. The perfect predictions case, however,
shows DIRECTOR’s potential to improve the average delay by 8.7%
at an equal average number of stops.

• One difference between DIRECTOR and the current on-street TLC
that stands out from Figures 8.2a and 8.2b is the worst-case delay,
which is a lot bigger for the current on-street TLC. This can have two
causes: 1) The simulation replay is not perfect meaning that some
vehicles do not catch a green signal in the simulation when they would
in reality. 2) The on-street TLC uses a different trade-off between
overall performance and fairness.

• The fixed-ahead scheduling mode suffers more from decreasing predic-
tion accuracy than the ad-hoc mode. This makes sense as the relative
importance of the predictions is greater in the fixed-ahead scheduling
mode.

• Both DIRECTOR and the current on-street controller strongly out-
perform the typical vehicle actuated controller. Table 8.3 shows that
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DIRECTOR achieves a delay reduction of 39% in ad-hoc mode and
23% in fixed-ahead mode. This shows the added value of green wave
coordination.

• Figure 8.2 shows that DIRECTOR achieves green wave coordination
similar to the current on-street controller. However, DIRECTOR
achieves this implicitly instead of through handcrafting such a mech-
anism explicitly.

Scenario

Prediction
type

Scheduling
mode

Avg. delay/vehicle (s) Avg. # stops/vehicle

Perfect Ad-hoc 9.5 0.40

LSTM Ad-hoc 10.3 0.46

Perfect Fixed-ahead 10.4 0.36

LSTM Fixed-ahead 12.9 0.43

Current on-street implementation 10.4 0.40

Vehicle actuated (CCOL) 16.8 0.43

Table 8.3: Results of 24-hour simulations of the case study intersection
for different traffic light controller scenarios to evaluate the impact of the
scheduling mode and the prediction quality. The ad-hoc simulation model
with vehicle inputs right behind the arrival detectors is used. Fixed-ahead
means the schedule was fixed 10 seconds in advance.

8.2.3 Stabilization

All simulation results in this chapter include the use of the stabilization
mechanism. Simulations that were run without the stabilization mechanism
showed that instability occurs because of two reasons:

1. Too many vehicles arriving from all directions during the peak hours,
which leads to an oscillating schedule that is unable to service all
arriving vehicles.

2. Vehicles being missed by the dual lane arrival detectors, which leads
to incorrect queue length estimations.

The stabilization mechanism resolves both problems and leads to the res-
ults in this chapter.

8.3 Advanced driver assistance system perform-
ance

Table 8.4 and Figures 8.3a and 8.3b summarize the results of the simula-
tions that show DIRECTOR’s performance when fixing the schedule ahead
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(a) OD 2. (b) OD 6.

Figure 8.2: Cumulative distribution function (CDF) of delay in several scen-
arios for the most and least dominant ODs (ODs 2 and 6, respectively). Note
the different horizontal scales when comparing figures (a) and (b).

and applying GLOSA. When calculating the GLOSA a minimum speed of
20 km/h and a maximum speed of 50 km/h was applied. The GLOSA was
updated every 5 seconds.

Since the target speed of the vehicles varies in some of these scenarios the
delay measured by the ‘vehicle travel times’-detectors is no longer accurate.
Therefore the travel time is taken as the metric for traffic flow instead in
these scenarios.

Scenario

ID
Prediction

type
Control

type
GLOSA

penetration rate
Avg. travel time/vehicle (s) Avg. # stops/vehicle

1 LSTM predictions Ad-hoc n\a 25.4 0.50

2 LSTM predictions Fixed-ahead 0% 29.0 0.50

3 Replay scenario 2 w/ GLOSA 100% 28.7 0.35

4 LSTM predictions Fixed-ahead 100% 28.6 0.36

Table 8.4: Results of 24- hour simulations of the case study intersection
for different traffic light controller scenarios. All scenarios use the GLOSA
model, where the vehicle inputs are located further upstream of the arrival
detectors. NB: the difference between scenario 3 and 4 is that scenario 3
replays the recorded schedule from scenario 2. Scenario 4 performs live con-
trol while using GLOSA, i.e. the schedule is generated during the simulation
similar to scenarios 1 and 2.

Some important observations can be drawn from Table 8.2:

• Fixing the schedule ahead leads to degrading performance (up to 14%
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increase in travel time). This makes sense as it requires more (possibly
invalid) assumptions to fix the schedule in advance. This is also in
accordance with the results from Section 8.2.2.

• Scenarios 3 & 4 show that applying a very simple form of GLOSA with
DIRECTOR reduces the average number of stops per vehicle by 30%
at the cost of a 13% increase in travel time compared to the ad-hoc
control. Note that this is for a very simple implementation of GLOSA.
The implementation assumes that there are no vehicles queued and
that acceleration and deceleration is instant. Hence, the final result
with a more accurate GLOSA implementation will be better, reducing
the travel time and number of stops.

• The fact that the results from scenarios 3 and 4 differ shows that the
scheduling decision making is affected by the use of green light optimal
speed advice. Simulations show that this is because the vehicle arrivals
are influenced by the green light optimal speed advice. Because the
prediction model is not trained on data with GLOSA applied its pre-
dictions are inaccurate. DIRECTOR therefore takes different schedul-
ing decisions, which lead to different performance results. In practice
online learning could be used to teach the model the new arrival flow
patterns with GLOSA. This can be expected to improve performance
according to the self-enforcing cycle in Figure 3.2.

8.4 Discussion

To place the results from the case study into context and evaluate how
well DIRECTOR can be expected to perform under different circumstances
several experiments have been performed.

To investigate the influence of the prediction quality on the performance,
simulations have been run where Gaussian noise is added to the perfect
predictions in order to simulate noisy predictions. Table 8.5 shows the results
of these simulations. The distribution of the noise is centered around zero
and the standard deviation of the distribution is equal to the multiplication
factor (second column of the table) times the standard deviation of the
historic vehicle arrivals of that origin-destination pair. Negative predictions
are corrected to zero to comply with real-life circumstances.

The results show that in ad-hoc mode DIRECTOR’s performance de-
grades only a little and, hence, the controller is quite robust against predic-
tion inaccuracies. For very little noise (0.5 times the standard deviation)
the performance is even negligibly better, but that is most likely a coin-
cidence caused by the modeling heuristics. In fixed-ahead scheduling mode
DIRECTOR can deal quite well with small prediction inaccuracies, but per-
formance degrades a lot faster for increasingly noisy predictions compared
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(a) OD 2. (b) OD 6.

Figure 8.3: Cumulative distribution function (CDF) of travel time in the
control scenarios from Table 8.4 for the most and least dominant OD
(ODs 2 and 6, respectively). GLOSA indicates the GLOSA penetration
rate. Note the different horizontal scales when comparing figures (a) and
(b).

to ad-hoc mode. This makes sense given the heavy reliance on accurate
predictions in the fixed-ahead scheduling mode.

Experiments were also conducted to evaluate the impact of dual lane
versus single lane arrival detectors. The case study is equipped with dual
lane arrival detectors, which have the downside that they occasionally miss
vehicles, leading to underestimation of the queue length. Table 8.6 describes
the results of simulations both with single and with dual lane detectors.
The results show a minor impact. This can be explained by the fact that,
although the single lane detectors do not miss vehicles, the single lane de-
tectors occasionally double count vehicles. This double-counting leads to
overestimation of the queue length. Thus, one inaccuracy is replaced by
another and the results remain approximately the same.

The LSTM model that predicts the vehicle arrivals relies on upstream
detectors being available to count the upstream vehicle departures. There
are many intersections where such upstream arrival detectors are not yet
available. In such cases a different prediction mechanism might be attempted
of which one of the simplest would be to use a moving average (MA) of
the past arrivals as a prediction for future arrivals. Such a scenario was
simulated and compared to the other prediction mechanisms. Table 8.7
shows the results. These show that it would likely be possible to operate
DIRECTOR in such cases, but for improved performance upstream detectors
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Scheduling mode
Std. dev.

mult. factor
Avg. delay/vehicle (s) Avg. # stops/vehicle

Ad-hoc 0 9.5 0.40

Ad-hoc 0.5 9.4 0.40

Ad-hoc 1 9.7 0.41

Ad-hoc 2 10.2 0.43

Ad-hoc 4 11.3 0.46

Fixed-ahead 0 10.4 0.36

Fixed-ahead 0.5 10.7 0.37

Fixed-ahead 1 11.3 0.40

Fixed-ahead 2 12.9 0.44

Fixed-ahead 4 14.9 0.48

Table 8.5: Results of simulations with predictions where Guassian noise is
added to perfect predictions. The distribution of the noise is centered around
zero and the distribution’s standard deviation is equal to the multiplication
factor times the standard deviation of the historical vehicle arrivals.

Scheduling mode Predictions Detector Avg. delay/vehicle (s) Avg. # stops/vehicle

Ad-hoc Perfect Dual 9.5 0.40

Ad-hoc Perfect Single 9.7 0.39

Ad-hoc LSTM Dual 10.3 0.46

Ad-hoc LSTM Single 10.4 0.44

Fixed-ahead Perfect Dual 10.4 0.36

Fixed-ahead Perfect Single 10.0 0.36

Fixed-ahead LSTM Dual 12.9 0.43

Fixed-ahead LSTM Single 12.7 0.44

Table 8.6: Results of simulations evaluating the impact of using single lane
arrival detectors versus dual lane arrival detectors.

would be preferred. Another downside of using such a simple prediction
mechanism compared to the LSTM model is that the LSTM model would
improve over time according to the cycle from Figure 3.2, which would be
unlikely for the simpler model.

Another interesting test case from Table 8.7 is the scenario with failing
detectors or connections that would lead to predictions being unavailable.
In that case the schedule would be based purely on the measured queue
length. This scenario is simulated by setting all predictions equal to zero.
Table 8.7 shows that for fixed-ahead scheduling such a situation would have
a relatively small impact on the delay (it actually improves compared to the
LSTM predictions), but a major impact on the number of stops. Scheduling
in fixed-ahead mode purely based on the measured queue length means that
the controller responds with a delay and without implicit green waves. This
leads to more intermediate phase group switches servicing the less crowded
origin-destination pairs more often. This frequent switching and delay lead
to an increase in the number of stops. Figure 8.4 confirms this.

The experiments in this section show that DIRECTOR is quite robust
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Predictions Avg. delay/vehicle (s) Avg. # stops/vehicle

Perfect 10.4 0.36

LSTM 12.9 0.43

MA 13.4 0.48

No predictions 12.1 0.59

Table 8.7: Comparison of different prediction mechanisms. All scenarios
were run in fixed-ahead scheduling mode. MA predictions means that a
5-minute moving average was used as predictions.

(a) OD 2. (b) OD 6.

Figure 8.4: Cumulative distribution function (CDF) of vehicle delay in
the control scenarios from Table 8.7 for the most and least dominant OD
(ODs 2 and 6, respectively). Note the different horizontal scales when com-
paring figures (a) and (b).

against inaccurate predictions and that there is good reason to believe that
DIRECTOR will also perform well at other intersections.
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Chapter 9

Conclusions and Future
Work

Traffic congestion at signalized intersections is a big economical and ecolo-
gical problem. Traffic congestion at signalized intersections is a big econom-
ical and ecological problem. Handcrafted traffic light controllers (TLCs) are
currently used to minimize the impact, but they are expensive to design and
maintain and their performance degrades over time as the traffic situation
changes. Predictive TLCs and advanced driver assistance systems (ADAS)
form a potential solution but are still unfeasible in practice today because of
their computational complexity and unpredictability. The question is there-
fore whether a model predictive control-based signalized intersection control-
ler can lead to stabilized signal phase and timing information that enables
advanced driver assistance systems use-cases while maintaining traffic flow
efficiency at least as good as a state-of-the-art actuated traffic controller?

The distributed predictive controller developed in this thesis, called DIR-
ECTOR, is feasible and enables time to green/red and green light optimal
speed advice (GLOSA) systems. DIRECTOR utilizes predictions of the ar-
riving traffic flows and a model of the current queue length to optimize the
traffic light schedule. It can operate in two modes; Ad-hoc mode, where the
schedule is generated and applied right away, and fixed-ahead mode, where
the schedule is fixed in advance to enable ADAS. DIRECTOR’s design makes
it scalable and suitable for live learning, eliminating the need for expensive
(re)calibrations and improving its performance with more and better data,
which will become available in the near future through the availability of
floating car data and the use of ADAS.

DIRECTOR reevaluates its traffic light schedule at a fixed frequency (a
10-second interval is used throughout this thesis). When deciding which
lights to turn green or red DIRECTOR calculates the expected cumulative
delay the vehicles at the intersection will experience based on the measured
queue lengths and predicted vehicle arrivals. Instead of predicting the in-
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dividual vehicle arrivals, which is complex and computationally intensive,
DIRECTOR predicts the vehicle flows per time interval. To account for
the time that no vehicles can be serviced due to signal changes, a switching
penalty is introduced. Stability is guaranteed through a stabilization mech-
anism, which guarantees worst-case operation equal to a stable, fixed-time
traffic light controller.

To predict the arriving traffic flows a long short-term memory recurrent
neural network is developed. On a case study intersection that connects
two provincial roads this network proves to be on average 4.7% more ac-
curate than the current state-of-the-art model, which is significant for the
controller’s performance.

Simulations of the case study intersection, which is currently equipped
with a state-of-the-art actuated controller with green wave coordination,
show that in ad-hoc mode DIRECTOR performs similar to the current con-
troller. DIRECTOR reduces the average delay per vehicle by 1% (from 10.4s
to 10.3s) at the cost of an increase of 15% in the average number of stops
per vehicle (from 0.40 to 0.46) compared to the current controller. Simula-
tions with ideal predictions show that, in ad-hoc mode, DIRECTOR has the
potential to improve the average delay by 8.7% (from 10.4s to 9.5s) while
keeping the number of stops equal (at 0.40).

Simulations in fixed-ahead mode, with the schedule fixed 10 seconds in
advance and using a simple GLOSA implementation, show a reduction in
the average number of stops of 30% at the cost of a 13% increase of the
average travel time compared to the ad-hoc mode. Combining this with
ideal predictions shows that DIRECTOR in fixed-ahead mode shows the
potential to keep the average delay equal compared to the current on-street
controller while significantly reducing the number of stops, which would
greatly improve traffic flow ecologically and economically.

Compared to a more typical Dutch actuated controller, DIRECTOR achieves
a delay reduction of 39% in ad-hoc mode and 23% in fixed-ahead mode.

From these results the research question cannot be answered conclusively.
On the one hand DIRECTOR performs approximately equal to the current
state-of-the-art controller on the street and shows great potential for improv-
ing the traffic flow in ad-hoc mode. On the other hand in fixed-ahead mode,
which is required to enable ADAS, DIRECTOR performs worse in terms
of delay, but better in terms of stops. Simulations do show DIRECTOR’s
potential to outperform the current state-of-the-art controller given more ac-
curate predictions, which are likely to be achieved in the near future given
the rise of floating car data.

Several things are still worth investigating as future work. For example,
some decisions are still based on heuristics where they could be data-driven.
The queue dispatch rate is currently fixed but could be made data-driven
or based on a sigmoid function like in the SURTRAC system [46]. DIR-
ECTOR’s scheduling model could be extended with priority weights as de-

68



Confidential. Under embargo until 31 May 2019. Do not distribute without author’s consent.

scribed in Chapter 5. An automated way of generating the optimal weights
could be using a genetic algorithm where only the boundary conditions are
set by the road owner.

Also, the current stabilization mechanism only looks at the stability at the
arrival detectors. To avoid gridlocks in dense networks the system should
also look at the queues beyond the intersection. A possible solution would
be to integrate the concept of self-healing networks [33].

To further improve the prediction accuracy floating car data (FCD) could
be included as model inputs. When sufficient FCD is available the prediction
performance is likely to approach ideal predictions. The inclusion of signal
timing information in the model could also be of value. Another important
contribution would be to apply online learning in order to continuously tune
the prediction model.

When further evaluating DIRECTOR in simulations it would be interest-
ing to investigate its performance in different circumstances, e.g. in dense
city networks or very remote and relatively quiet locations. Furthermore,
it would be worth investigating how a network of DIRECTOR-controlled
intersections performs and if it is possible to expand the prediction horizon
without compromising performance to enable ADAS over longer distances.

A practical evaluation would also be highly valuable to better evaluate
DIRECTOR’s performance and get a better understanding of the impact
of road user behavior. At the time of writing, preparations for a factory
acceptance test1 are in progress and a road owner has expressed his interest
in conducting a pilot on the street.

Overall, DIRECTOR is a new, distributed, data-driven traffic light con-
troller that is easy to set up, reduces costs, can enable advanced driver
assistance systems, is futureproof and has the potential to greatly improve
traffic flow.

1Prerequisite for on-street deployment.
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Acronyms

AD-ratio arrival/departure-ratio. 19

ADAS advanced driver assistance systems. iii, 5, 6, 8, 9, 11, 13, 21, 23, 24,
31, 45, 67–69

BPTT backpropagation through time. 14

CaRT classification and regression tree. 13

CDF cumulative distribution function. 58, 60, 62, 64, 66

COLOMBO cooperative self-organizing system for low carbon mobility at
low penetration rates. 18

COM component object model. 54

DIRECTOR Data-driven Intersection and Road Environment Controller
for Traffic Optimization in Real-time. iii, 9, 23–25, 31, 35, 38, 39, 41,
42, 45, 46, 48, 49, 51, 54, 55, 58–61, 63–69

FCD floating car data. 11, 12, 18, 67–69

FFNN feedforward neural network. 13

FIFO first in first out. 41, 42

GLOSA green light optimal speed advice. iii, 5–8, 11–13, 20, 21, 23, 25,
45, 48, 49, 54, 59, 62–64, 67, 68

GNSS global navigation satellite system. 12

GPS global positioning system. 12

I2V infrastructure to vehicle. 5, 12, 78

kNN k-nearest neighbors. 13
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LSTM long short-term memory. iii, 13–15, 28, 31, 33, 57–59, 64, 65, 68

MPC model predictive control. 8, 11, 15, 16, 22, 23, 31, 67

NRMSE normalized root mean squared error. 57, 58

OD origin-destination pair. 1, 31–42, 46, 48, 49, 52, 57–60, 62–66, 83, 84

PG phase group. 39, 41

RMSE root mean squared error. 12, 13, 57

RNN recurrent neural network. iii, 14, 15, 21, 22, 27–29, 57, 58, 68, 79

SAS speed advisory system. 21

SPaT signal phase and timing. 5, 7, 8, 11–13, 18, 20–24, 45, 67

SVR support vector regression. 13

T2G time to green. 12, 49

T2G/R time to green/red. iii, 5–8, 11, 23, 25, 45, 48, 49, 67

T2R time to red. 49

TLC traffic light controller. iii, 7–9, 15, 16, 23, 24, 51, 52, 58–62, 67–69

V2I vehicle to infrastructure. 5, 78

V2V vehicle to vehicle. 20
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Glossary

cycle Period within which every signal group will be serviced. 4, 11, 12,
17, 43

floating car data Data generated by road users sharing their location. 11

green wave Traffic control mechanism where a series of connected inter-
sections are synchronized in order to give passage without stops along
a particular road segment. 4

intergreen time Minimum time between one signal changing from green
to amber and the next signal turning green. This time is chosen such
that the intersection is clear before the next signal turns green. 35,
36, 42, 46, 49

intersection Location where multiple roads intersect/connection point of
several links. 1

link Road segment that is connected to the intersection. 1, 31, 51

model predictive control Online model-based control approach in which
a prediction model and optimization function are used to determine
the control actions that optimize a given performance criterion over a
given time horizon subject to given constraints. 15

non-conflicting signals Signals that can be serviced simultaneously without
the possibility of traffic intersecting with each other. 1

non-peak hour Time outside of the peak hours. 4

offset Coordinated traffic control parameter that is used for synchroniza-
tion between neighboring intersections. 4, 17

origin-destination pair Pair of matching origin and destination links. 1,
31, 32, 34, 36, 37, 39, 41, 42, 46, 48, 52, 55, 57
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peak hour Time of the day when the most traffic is on the road. 4, 12, 16,
18, 61, 77

penetration rate Percentage of users using an application. 18–21

phase Period that a phase group is serviced. 2, 11, 13, 53, 78

phase group A combination of signal groups that the traffic light controller
will service simultaneously. 2, 7, 32, 35, 36, 38–43

queue clearance time Time it takes to service an entire queue. 19

saturating flow Maximum vehicle flow (vehicles/time unit) that a road is
able to service, i.e. the maximum road capacity. 17

schedule A sequence of phases. iii, 2, 18, 23–25, 40, 41, 43, 45–49, 61–63,
65, 67, 68

servicing Granting a signal group access to the intersection. 1

signal Means to grant or prohibit the traffic on its lane access to the inter-
section. 1, 51, 53, 55

signal group Combination of signals that are always serviced together and
have the same id. 1, 2

sink Location where road users can leave the road. 14, 51

source Location where road users can enter the road. 14, 51

split time The split time of a phase group is the duration of service within
a cycle allocated to the phase group. 4

Talking Traffic Project initiated by the Dutch government in collabora-
tion with the industry to develop and deploy the infrastructure re-
quired for vehicle to infrastructure and infrastructure to vehicle com-
munication. 5

traffic light controller System that controls the light states of the signals
at an intersection. 1, 2, 78

travel time delay Time lost during travel due to non-free flow conditions
caused by for example other vehicles or signalized intersections. 2,
16–18, 22, 31–36, 38–40, 55
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Appendix A

Helmy’s RNN architecture

time
(t=0) 

departure flows  
(t=-k to t=0) 

Fully connected 
layer

Fully connected  
layer

Outputs

t = Δt

queue presence  
(t=-l t=0) 

arrival flows 
(t=-m t=0) 

signal states 
(t=-n t=0) 

MAIN 
TARGET:
predicted

arrival 
flows 

predicted
queue

presence

predicted  
signal  
states 

Figure A.1: Schematic drawing of the RNN architecture by Helmy [21].
Each variable is included for a finetuned number of timesteps (indicated by
the integers k, l, m and n). Note that the number of included timesteps may
differ for each variable.
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Appendix B

GLOSA implementation

Listing B.1: Pseudo code of GLOSA implementation. signal is the target
signal of the vehicle. distance is the vehicle’s distance to the stopline. T2R
and T2G are the target signal’s countdowns.

def get GLOSA( s i gna l , d i s tance , T2R, T2G) :
i f ( s i g n a l i s GREEN and T2R i s unknown ) :

GLOSA = max speed
e l i f ( s i g n a l i s RED and T2G i s unknown ) :

GLOSA = min speed
e l i f ( s i g n a l i s RED and T2G i s known and T2R i s unknown ) :

GLOSA = min( d i s t anc e / T2G, max speed )
e l i f ( s i g n a l i s not RED and T2R i s known and T2G i s unknown ) :

s p e e d t o c a t c h g r e e n b e f o r e r e d = d i s t anc e / T2R
i f ( s p e e d t o c a t c h g r e e n b e f o r e r e d > max speed ) :

GLOSA = min speed
else :

GLOSA = max speed
e l i f ( both T2G and T2R are known ) :

i f ( s i g n a l i s GREEN) :
s p e e d t o c a t c h g r e e n b e f o r e r e d = d i s t anc e / T2R
i f ( s p e e d t o c a t c h g r e e n b e f o r e r e d < max speed ) :

GLOSA = max speed
# I f the current GREEN s i g n a l cannot be caught
else :

s p e e d t o c a t c h n e x t g r e e n a f t e r r e d = d i s t anc e / T2G
i f ( s p e e d t o c a t c h n e x t g r e e n a f t e r r e d < min speed ) :

GLOSA = min speed
else :

GLOSA = min( s p e e d t o c a t c h n e x t g r e e n a f t e r r e d , max speed )
# I f s i g n a l i s RED
else :
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s p e e d t o c a t c h g r e e n b e f o r e n e x t r e d = d i s t ance / T2R
i f ( s p e e d t o c a t c h g r e e n b e f o r e n e x t r e d > max speed ) :

GLOSA = min speed
# I f v e h i c l e i s a b l e to catch next GREEN b e f o r e i t turns RED again
else :

GLOSA = max( s p e e d t o c a t c h g r e e n b e f o r e n e x t r e d , min speed )
return GLOSA
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Appendix C

Simulation results per OD

Scenario
Avg. vehicle delay

per OD
Avg. # stops/vehicle

per OD
2 3 4 6 7 8 2 3 4 6 7 8

Perfect, w/ SP, w/ DGW 3.0 21.5 7.7 22.6 4.0 10.7 0.16 0.71 0.40 0.75 0.19 0.45

Perfect, w/o SP, w/ DGW 2.8 22.1 7.6 25.2 3.9 10.8 0.15 0.76 0.42 0.84 0.20 0.46

Perfect, w/o SP, w/o DGW 3.0 18.6 6.7 20.6 4.2 11.1 0.16 0.73 0.38 0.80 0.22 0.50

Perfect, w/ SP, w/o DGW 3.4 18.4 6.7 19.0 4.3 11.4 0.18 0.66 0.36 0.71 0.21 0.48

Table C.1: Detailed results per OD for the ad-hoc simulation scenarios in
Table 8.2. Several shortcuts and acronyms are used to describe the scenarios;
Perfect means perfect predictions, SP is an acronym for Switching Penalty
and DGW for Dynamic Green Waves.

Scenario
Avg. vehicle delay

per OD
Avg. # stops/vehicle

per OD
2 3 4 6 7 8 2 3 4 6 7 8

Perfect, Ad-hoc 3.4 18.4 6.7 19.0 4.3 11.4 0.18 0.66 0.36 0.71 0.21 0.48

LSTM, Ad-hoc 4.2 19.3 7.7 20.8 5.0 11.6 0.23 0.73 0.44 0.79 0.27 0.54

Perfect, Fixed-ahead 2.4 24.8 8.9 27.4 3.4 8.7 0.12 0.70 0.40 0.77 0.15 0.34

LSTM, Fixed-ahead 3.4 30.9 12.5 31.8 4.7 10.2 0.17 0.79 0.52 0.80 0.23 0.44

Curr. on-street impl. 4.1 22.8 8.4 18.9 5.3 11.2 0.21 0.70 0.38 0.64 0.24 0.45

Vehicle actuated 5.0 40.1 17.7 49.3 4.0 9.3 0.19 0.82 0.54 0.85 0.19 0.37

Table C.2: Detailed results per OD for the simulation scenarios in Table 8.3.
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Scenario
Avg. vehicle delay

per OD
Avg. # stops/vehicle

per OD
2 3 4 6 7 8 2 3 4 6 7 8

Perfect 2.4 24.8 8.9 27.4 3.4 8.7 0.12 0.70 0.40 0.77 0.15 0.34

LSTM 3.4 30.9 12.5 31.8 4.7 10.2 0.17 0.79 0.52 0.80 0.23 0.44

MA 4.6 30.5 12.2 31.9 5.2 11.2 0.23 0.84 0.57 0.88 0.26 0.49

No predictions 6.3 18.1 7.3 18.7 7.0 17.4 0.34 0.82 0.44 0.85 0.41 0.79

Table C.3: Detailed results per OD for the simulation scenarios in Table 8.7.
The tables shows the results of a comparison of different prediction mech-
anisms. All scenarios were run in fixed-ahead scheduling mode. MA predic-
tions means that a 5-minute moving average was used as predictions. Zeros
means that all predictions are set to 0.
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