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Propositions 

accompanying the thesis: 

A Modified Gradient Formulation for Ensemble Optimization under 
Geological Uncertainty 

Rahul-Mark Fonseca 

1. Ensemble-based optimization workflows are a very good alternative to adjoint-based 
optimization workflows for realistic reservoir models when accounting for geological 
uncertainty (Chapter 3 & 7). 
 

2. The modified robust ensemble gradient formulation which has been developed in 
Chapter 2 of this thesis is not only theoretically more ‘robust’ compared to the original 
formulation, but also computationally as efficient.  
 

3. Flexibility to different control types such as injection rates, bottom hole pressures, 
inflow control valve settings, etc., and different varieties of reservoir simulators is the 
biggest advantage of ensemble-based techniques for optimization workflows.  
 

4. When a certain number of models is used to provide a description of the uncertainties 
present, utilizing all the uncertainty (models) for the optimization is more ‘robust’ 
than selecting a subset of models to describe uncertainty (Chapter 5).  
 

5. The biggest hindrance in the real world towards the application of Closed Loop 
Reservoir Management techniques is not technological, but mental barriers towards 
the application of new techniques.  
 

6.  In today’s scientific world a lot of ‘new’ research is merely a combination of pre-
existing ideas and less of new ‘original’ ideas (Chapter 4). 
 

7. Procrastination is the art of habitually delaying the execution of more important tasks 
for significantly less important tasks. Every PhD student should be awarded a double 
degree: 1. Doctor of Philosophy and 2. Doctor of Procrastination. The order being a 
point for debate.  
 

8. The anonymity provided by social media has given birth to a behavioural anomaly: 
“Tigers on Twitter, Mice in Reality”.  
 

9. “Religion keeps the poor from murdering the rich.” (Napoleon Bonaparte). This is 
especially true in under-developed countries like India.  
 

10. The grass is never greener on the other side, it is only a different shade.  
 
 
 

These propositions are regarded as opposable and defendable, and have been approved as 
such by the supervisor, Prof. dr. ir. J.D. Jansen and Prof. dr ir. P.M.J. Van den Hof 
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A Modified Gradient Formulation for Ensemble Optimization under 
Geological Uncertainty 

Rahul-Mark Fonseca 

1. Op ensembles gebaseerde optimalisatiemethoden vormen een zeer goed alternatief 
voor op adjungatie gebaseerde optimalisatiemethoden wanneer rekening moet 
worden gehouden met geologische onzekerheden in realistische reservoirmodellen 
(Hoofdstuk 3 & 7). 
 

2. De aangepaste formulering voor de robuuste ensemble gradiënt die werd ontwikkeld 
in Hoofdstuk 2 van dit proefschrift is niet alleen theoretisch ‘robuuster’ dan de 
originele formulering, maar ook net zo efficiënt in de berekening. 
 

3. Het grootste voordeel van op ensembles gebaseerde optimalisatiemethoden is de 
flexibiliteit om een verscheidenheid aan controletypen te gebruiken zoals injectie 
debiet, druk op de putbodem, de instellingen van instroomcontrolekleppen, etc., 
alsmede verschillende reservoirsimulatortypen. 
 

4. Wanneer een bepaald aantal modellen gebruikt wordt om de bestaande onzekerheden 
weer te geven is het gebruiken van al deze modellen voor de optimalisatie ‘robuuster’ 
dan het selecteren van een subset om de onzekerheden te beschrijven (Hoofdstuk 5). 
 

5. Het grootste opstakel in de daadwerkelijke toepassing van terugkoppelingsprincipes 
in reservoirmanagement is niet technologisch van aard, maar wordt gevormd door de 
metale weerstand jegens de toepassing van nieuwe technieken. 
 

6. In de hedendaagse wetenschappelijke wereld bestaat ‘nieuw’ onderzoek veelal uit het 
combineren van reeds bestaande ideeën en minder uit ‘originele’ ideeën (Hoofdstuk 
4). 
 

7. Procrastinatie is de kunst van het uit gewoonte uitstellen van belangrijke taken ten 
bate van minder belangrijke taken. Elke promovendus zou een dubbele graad moeten 
verdienen: 1. Doctor in de Wetenschappen en 2. Doctor in de Procrastinatie. Over de 
volgorde kan gediscussiëerd worden. 
 

8. De anonimiteit op sociale media heeft geleid tot het ontstaan van een 
gedragsanomalie: “Tijgers op Twitter, Wezels in Werkelijkheid”. 
 

9. “Religie weerhoudt de armen ervan de rijken te vermoorden.” (Napoleon Bonaparte). 
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10. Het gras is nooit groener aan de overkant, maar heeft slechts een andere tint. 
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INTRODUCTION 
 

 
Energy security to sustain the demands of rapidly growing developing nations has 

been one of the driving forces for the ever increasing demand of hydrocarbons i.e. 
petroleum and natural gas, which are finite natural resources. The energy consumption 
of the emerging economies such as India, China, Brazil etc. has grown at nearly 100% 
over the past decade, see; BP Statistical Review of World Energy (2014). At the same 
time, the evolution of alternative energy sources has not been keeping pace with rising 
energy demand. Additionally, while applications of alternative energy sources such as 
solar, wind, biofuels etc. might be economically feasible in developed countries in the 
near future, in developing countries practically little or no infrastructure exists to 
efficiently use these alternative energy sources. Thus the dependency on traditional 
energy sources such as petroleum and natural gas will continue. This coupled with an 
increasing world population and a quest for higher standards of living will further 
increase the energy demand. The increased energy demand together with the 
decreasing availability of ‘easy oil’, i.e. hydrocarbons which are relatively easy to 
extract from deep below the earth’s surface, has led to an increasing number of 
applications which use advanced technologies to improve and increase recovery of 
hydrocarbons. A class of these advanced technologies are enhanced oil recovery 
methods which use a range of complex substances like chemicals, polymers etc. to 
increase the total volumetric recovery of hydrocarbons from existing reservoirs. These 
techniques have also been successfully applied to more complex and challenging 
reservoirs, commercial development of which was not possible till recently, and is 
heavily dependent on oil prices. On the other hand, with traditional (reactive) reservoir 
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management practices, currently the worldwide recovery factor, i.e. the ratio between 
the volume of hydrocarbons produced to the total hydrocarbon volume present, is 
approximately 30%; see; BP Statistical Review of World Energy (2014). Thus, on 
average, we produce only 30% of the oil actually present in the subsurface while 
leaving behind approximately 70%, i.e. we leave behind more than we produce. This is 
partly due to economic and technical viability but also many times due to an inefficient 
production process. Thus the question arises as to whether using a proactive reservoir 
management strategy instead of the traditional reactive strategy will aid in increasing 
the total volume of hydrocarbons produced.  

1.1 Closed Loop Reservoir Management  

Recent advances in technology have made it possible to control the production of 
hydrocarbons through a system of wells. Such devices, in general terminology, are 
called Inflow Control Devices (ICDs) which are installed in wells and can be operated 
either mechanically, hydraulically or even remotely. Wells which have been installed 
with such technology are called Smart Wells. In addition to the ability to control the 
production process nowadays, wells can be equipped with downhole measurement 
devices such as pressure and temperature sensors or also devices to measure flow rates, 
fluid compositions etc. These measurement devices provide significantly more 
information about the production process in the well from the reservoir compared to 
traditional wells, Jansen et al. (2005). In addition with an increase in computing power 
we are able to build models that are assumed to be representative of the system i.e. the 
real reservoir being produced. To generate a model of the reservoir, information is 
obtained from various sources such as seismic data, well logs, geological insight etc. 
which are highly uncertain. This coupled with the fact that we cannot “see” any 
reservoir, as it is buried deep below the surface of the earth, these models are usually 
not representative of the true reservoir description. Thus information obtained from the 
measurement devices can be used to update/improve the reservoir model. In the 
petroleum industry this has traditionally been done manually in  batch mode, i.e. once 
every 4-5 years, and is known as "history matching". Oliver and Chen (2011) provide 
an extensive review of various computer-assisted history matching techniques 
available, their advantages and drawbacks. Thus in essence while history matching 
updates the uncertain parameters to “match” the history, it really aims to improve the 
predictive capability of the models being used. 
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Fig. 1.1: Illustration of the closed-loop reservoir management framework. Taken from 
Jansen et al. (2009). 

In addition to improving predictability, the models can also be used to optimize the 
volumes of hydrocarbons produced or an economic objective based on the volumes 
produced. For example, the settings over time of the ICDs or injection and production 
rates are variables which are often used in optimization. Traditionally, reservoir 
management strategies have been reactive in nature. E.g., in scenarios where water is 
injected into the reservoir to increase the volume of oil produced, the wells will be 
stopped from producing only when it is no longer commercially viable to continue 
production. Using optimal control theory in conjunction with reservoir models, such a 
reactive reservoir management strategy can be made “proactive”. There are many 
techniques which can be used to find a set of optimal controls, references of which can 
be found in [Brouwer and Jansen (2004), Sarma et al. (2005), Jansen (2011), Chen et 
al. (2009), Do and Reynolds (2013), etc.]  

Jansen et al. (2005) proposed to combine the history matching step with the 
optimization step together in a closed loop framework to achieve an improved reservoir 
management strategy. Fig. 1.1 shows a block-diagram representation of the closed loop 
reservoir management process taken from Jansen et al. (2009). As can be observed in 
Fig. 1.1, there are two distinct loops, an optimization loop in blue and the history 
matching/model updating loop in red. In the remainder of this thesis we will focus on 
the application of different techniques for optimization (blue loop) and do not consider 
the history matching (red loop).  

1.2 Optimization 

Several studies have shown that there is considerable scope to improve the 
economic life-cycle performance of oil fields through the use of formal optimization 
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methods in conjunction with reservoir simulation models. For such problems, gradient-
based techniques, in terms of accuracy and computational efficiency, are the most 
successful and widely applied. A very efficient way to perform such model-based life-
cycle optimization is with the aid of gradient-based methods where the gradient is 
obtained through an adjoint technique. An overview of the adjoint method used in 
Brouwer and Jansen (2004), Sarma et al. (2005) amongst others, and a large number of 
references can be found in the review paper by Jansen (2011). Oliver et al. (2008) 
provides a review and relevant references detailing the application of the adjoint 
method in reservoir engineering for computer-assisted history matching. The adjoint 
method not only provides the most accurate gradient, it is also computationally very 
efficient. However, it is an intrusive method, requiring access to the simulator source 
code as well as extensive implementation efforts. Because it is practically impossible 
to access commercial simulator source codes for implementation of the adjoint there is 
a need for alternative methods for model-based production optimization in which the 
simulator is treated as a black-box. Additionally the adjoint method is not very flexible 
in adaptation to different control types such as water injection rates, oil production 
rates, bottom hole pressures, settings of inflow control devices or valves etc,. These 
limitations of the adjoint method have led to the development of alternative gradient-
based techniques. One such alternative gradient-based technique and its applicability to 
a range of different problems is investigated in this thesis. 

1.3 Research Objectives 

The main objective of this research is to  

Investigate the applicability of an approximate gradient technique to balance 
long and short-term production optimization targets with and without 
uncertainty. 

For this purpose we : 
 Investigate the applicability of using a computationally efficient method for 

ensemble optimization under geological uncertainty and develop a 
theoretical understanding of the method. 

 Investigate the impact of ensemble size on the quality of an approximate 
gradient to be used for optimization with and without geological uncertainty 
using principles of hypothesis testing and statistical principles.  

 Investigate the impact of adaptively updating the covariance matrix which is 
used to generate the ensemble of controls used in the estimate of the 
approximate gradient during the optimization process.  
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 Investigate the applicability of various bi-objective optimization techniques 
using an approximate gradient to achieve balanced long and short-term 
production optimization. 

 Investigate the applicability of the ensemble optimization technique 
incorporating geological uncertainty for bi-objective optimization to 
optimize inflow control device settings of a sector model inspired from a 
real field case. 

1.4 Thesis Outline  

In this section we provide an introduction of the general concepts investigated based 
on the research objectives in the different chapters included in this thesis.  

1.4.1 Ensemble Optimization (EnOpt) : Chapter 2 

The approximate gradient technique considered in this thesis is the Ensemble 
Optimization (EnOpt) method, inspired by the Ensemble Kalman Filter (EnKF) 
method. Predecessors to the EnOpt method were proposed by Lorentzen et al. (2006) 
and Nwaozo (2006), where after Chen (2008) and Chen et al. (2009) gave systematic 
descriptions of the method as mostly used today. Chen (2008) proposed the now 
standard formulation of the EnOpt method which uses an ensemble of randomly 
perturbed control vectors to approximate a gradient of the objective function with 
respect to some specific controls. Thereafter, several publications addressed 
applications and computational aspects of the method; see e.g. Chaudhri et al. (2009), 
Chen and Oliver (2010), Su and Oliver (2010), Leeuwenburgh et al. (2010), and Chen 
and Oliver (2012). In a recent paper, Do and Reynolds (2013) demonstrate that EnOpt 
can be interpreted as a member of a broader class of approximate-gradient methods 
that also includes the simultaneous perturbation stochastic approximation (SPSA) 
method. The major advantages of EnOpt are its ease of implementation, flexibility to 
adapt to different control types and ability to be used with any reservoir simulator. The 
major drawback of this method, relative to the adjoint method, is its computational 
inefficiency and inaccuracy of the gradient approximation. Most of the publications 
about EnOpt have focused on large-scale water flooding production optimization 
problems starting from a single reservoir model. However, in reality the geological and 
reservoir modeling process is fraught with uncertainties since a reservoir is modeled 
using uncertain interpretations based on uncertain data sources such as seismic, well 
logs etc. Incorporating these uncertainties into the optimization framework is vital to 
achieve results of any practical significance. This uncertainty will translate into a 
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distribution of possible objective function values which cannot be adequately 
characterized by a single model outcome. Yeten et al. (2003) described an approach to 
account for geological uncertainty during well-location optimization with the aid of 
multiple models. Van Essen et al. (2009) provided a list of references of non-petroleum 
engineering applications that incorporated uncertainty within the modeling and control 
framework. They introduced a ‘robust optimization’ methodology in conjunction with 
the adjoint method to include the effect of uncertainties into the optimization 
framework. They used an ensemble of equi-probable reservoir models with differing 
geology and maximized the expectation of the objective function over this ensemble of 
models. Chen (2008) introduced this robust optimization concept within the ensemble 
optimization framework. They proposed the use of an ensemble of controls of equal 
size as the ensemble of geological models. Coupling of one member from the control 
ensemble with one member of the geological ensemble, a mean gradient can be 
approximated with the EnOpt formulation. This formulation, while computationally 
very attractive for robust optimization, has received scant attention with respect to its 
theoretical understanding. Recently Fonseca et al. (2014) demonstrated a case wherein 
the original formulation for ensemble-based robust optimization leads to inferior 
results and suggested a modified gradient formulation, which through the aid of 
numerical experiments showed that the modified formulation achieved significantly 
better results, i.e. higher objective function values with the same computational 
efficiency.  

This chapter will first give the theory of the Ensemble Optimization (EnOpt) 
method as used in this thesis for deterministic (nominal) optimization problems. 
Following this, the theory underlying EnOpt for robust optimization is provided along 
with theoretical reasoning which provides insights into the superior performance of the 
modified robust EnOpt gradient formulation.  

1.4.2 Impact of Ensemble Size on Gradient Quality: Chapter 3 

For EnOpt the two main inputs that influence the quality of the approximate 
gradient are the covariance matrix used to create the ensemble of perturbed controls 
and the number of control samples generated, i.e. the ensemble size. The effect of the 
covariance matrix has been investigated recently in Fonseca et al. (2015) and a 
theoretical foundation for the use of a varying covariance matrix has been provided in 
Stordal et al. (2014). However none of those studies have performed a detailed 
investigation into the effect of ensemble size on the estimated ensemble gradient 
quality. In this chapter we aim to quantify the ensemble size required to approximate a 
gradient comparable to the adjoint gradient especially for robust optimization 



1. INTRODUCTION   

 

 

7  
 

problems, using principles from hypothesis testing and statistical analysis. We first 
provide an introduction of the test statistics used to validate our results using a  
hypothesis testing methodology. This will be followed by a detailed set of experiments 
on a widely used optimization test function, the Rosenbrock function, for cases with 
and without model uncertainty. Finally we test the proposed methodology on a 
medium-sized reservoir model, again with and without geological uncertainty. We also 
show through numerical experiments the effect of a poor quality gradient on the 
optimization process for both deterministic i.e. single model realisation and robust 
optimization cases. 

1.4.3 Covariance Matrix Adaptation (CMA-EnOpt): Chapter 4 

When using EnOpt the gradient of the objective function with respect to the vector 
of control variables is approximated by first evaluating the objective function values 
for an ensemble of control vectors. This ensemble of control vectors is generated from 
a multi-Gaussian random distribution with a constant prescribed covariance matrix. 
The gradient is then estimated through an optimal regression model using a least-
squares approach. As an alternative to exact or approximate gradient-based 
optimization methods one can revert to gradient-free methods such as genetic 
algorithms or evolutionary strategies as developed in the ‘machine-learning’ 
community. One of the latter, called the Covariance Matrix Adapted-Evolutionary 
Strategy (CMA-ES), which was developed by Hansen and co-workers (Hansen and 
Ostermeier 1996, 2001, Hansen 2006), has recently been used for well placement 
optimization by Ding (2008) and Bouzarkouna et al. (2011), in a flooding optimization 
problem by Schulze-Riegert et al. (2011), and for a smart well optimization problem by 
Pajonk et al. (2011). The main idea in CMA-ES is to systematically adapt the variance 
of the control vector sample in directions that have proven to be successful. In this 
chapter we propose an improvement to EnOpt in which the use of a constant prescribed 
covariance matrix throughout the optimization is replaced with a covariance matrix 
that is constantly adapted using the CMA-ES logic. We will refer to the resulting 
hybrid scheme as Covariance Matrix Adapted EnOpt (CMA-EnOpt). CMA-EnOpt 
combines the advantage of explicitly using gradient information to achieve faster 
convergence (EnOpt) with the continuous adaptation of the covariance matrix (CMA) 
to improve the gradient estimate via improved sampling using “local” knowledge of 
the nature of the objective function search space. In this chapter we first provide an 
application of CMA-EnOpt to a small synthetic 3D reservoir model and a modified 
version of the Brugge benchmark model. A comparison of the results to those obtained 
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with EnOpt will illustrate the advantages of CMA-EnOpt for relatively large-scale 
model-based production optimization. 

1.4.4 Hierarchical Bi-Objective Production Optimization: Chapter 5 

Various model-based optimization studies have shown the potential of using 
optimal control theory for dynamic optimization of petroleum systems, thereby 
improving overall reservoir management. Most of these studies used a single reservoir 
model to optimize a single life-cycle (i.e. long-term) objective, for example, water 
flooding strategies that typically aim to prevent early water breakthrough at the 
production wells. The resulting operating strategies are suboptimal, since in reality 
well and field operation strategies are typically based on operational production criteria 
such as delivery contracts, which are governed by much shorter time horizons (days to 
weeks or months) than life-cycle objectives (years to decades). In fact, strategies that 
optimize short-term operational objectives are often in conflict with optimal long-term 
strategies. Jansen et al. (2009) observed that significantly different optimized long-term 
water flooding strategies result in nearly equal values of the objective function, defined 
as net present value (NPV). Thus, there exist multiple solutions to the optimization 
problem, and different initial starting points may lead to different solutions in an 
optimal subset of the decision variable space. They concluded that the life cycle 
optimization problem is ill-posed as a result of the non-uniqueness of the solution. A 
similar non-uniqueness in minimizing the mismatch between measured and simulated 
data during computer-assisted history matching was demonstrated by Oliver et al. 
(2008). This implies the presence of redundant degrees of freedom (DOFs) in the high 
dimensional optimization problems which could possibly be exploited to optimize 
multiple objectives. This idea, together with the (indirect) indication that the DOFs 
appear to manifest themselves as ridges in the objective function, formed the basis for 
the hierarchical multi-objective optimization structure proposed by Van Essen et al. 
(2011). They suggested two variants of a hierarchical optimization scheme to include 
secondary objectives into the life cycle optimization using the adjoint formulation. 
They observed a significant increase in short-term objectives with minimal change to 
the primary objective function for both the variants. Similar results were obtained by 
Chen et al. (2012) and Suwartadi et al. (2012). In this chapter the applicability of 
EnOpt instead of the adjoint method when using the hierarchical structure for bi-
objective optimization is investigated for cases with and without geological 
uncertainty.  
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1.4.5 Generate a Pareto Front using Ensemble Optimization : Chapter 6 

When dealing with conflicting objectives decision makers usually prefer to have 
multiple strategies to choose from. Isebor and Durlofsky (2014) applied an 
evolutionary algorithm to generate points along a “Pareto” front for a bi-objective 
water flooding problem. Yasari et al. (2014) applied the popular NSGA-II evolutionary 
algorithm also to generate a Pareto front. Liu and Reynolds (2014) applied the normal 
boundary intersection method (NBI) first introduced in Das and Dennis (1998) to a bi-
objective water flooding problem for cases with and without geological uncertainty 
using the adjoint technique. In this chapter the applicability of EnOpt to generate 
points along a “Pareto” front with acceptable computational effort, and its applicability 
to solve constrained optimization problems using the augmented Lagrangian method 
are investigated for two problems, one where ICD settings are the controls and the 
other where injection rates are the controls.  

1.4.6 Robust Bi-Objective Optimization of On/Off Inflow Control Devices 

A second reason for sub-optimality resulting from life-cycle optimization is the 
inherent uncertainty present in the geological and petro-physical modeling that forms 
the basis for the reservoir model. In an example Van Essen et al. (2009) showed that 
robust optimization increased the expected value and reduced the variance of the 
optimized strategy applied to the different geological realizations in comparison to a 
reactive strategy using the adjoint formulation for gradient-based optimization. Chen et 
al. (2009) reported a successful application of this approach to the SPE Brugge 
benchmark case. Recently Raniolo et al. (2013) and Li et al. (2012), have investigated 
the applicability of approximate gradient techniques for life-cycle robust water 
flooding optimization while Yang et al. (2011) applied the robust optimization 
principle to a Steam-Assisted Gravity Drainage (SAGD) application. A limited number 
of optimization studies such as Bailey et al. (2005), Sarma et al. (2008), Alhutali et al. 
(2009), Chaudhri et al. (2010), Forouzanfar et al. (2013), Van Essen et al. (2010) and 
Raniolo et al. (2013) amongst others have used realistic field scale or sector models. 
Most of the studies that use realistic real field models concerned single-objective 
optimization on a single geological realization, with the exception of Alhutali et al. 
(2009) and Raniolo et al. (2013) performed single-objective optimization using an 
ensemble of geological realizations. In this chapter we use an ensemble of sector 
models inspired from a real field case for the optimization. The settings of Inflow 
Control Devices (ICDs) which have discrete settings, i.e. either 0 or 1, are the controls 
used. However, EnOpt, like any other gradient-based technique, cannot efficiently 
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handle discrete control problems. Through the use of a re-parameterization of the 
controls into switching times the controls are transformed into continuous variables 
which can be efficiently handled by EnOpt. In this chapter the applicability of EnOpt 
incorporating geological uncertainty for hierarchical bi-objective optimization over an 
ensemble of sector models inspired from a real field case is investigated. 
 

The thesis is based on publications written during the completion of the PhD 
project. Chapter specific conclusions are provided at the end of each chapter. The 
thesis is concluded with a short overview of the general conclusions from this thesis 
followed by a list of future perspectives and further research areas regarding the 
applicability of approximate gradient techniques such as EnOpt for balanced long and 
short term optimization of oil recovery.  
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ENSEMBLE OPTIMIZATION: A THEORETICAL VIEW 
 

 
There are numerous methods for model-based optimization of hydrocarbon 

recovery. These methods can be classified into two general classes, derivative-based 
and derivative free techniques. Derivative/Gradient-based methods have been shown to 
be computationally more efficient than derivative free methods. Among the gradient-
based methods the adjoint approach, see Jansen (2011) for an overview, provides the 
most accurate gradient and is computationally very efficient. However the adjoint 
approach has the disadvantage that it requires access to the simulation code to be 
implemented. Chen (2008) and Chen et al. (2009) introduced the ensemble-based 
optimization method (EnOpt)1, an approximate gradient-based method which is 
computationally less attractive than the adjoint method but does not require simulator 
access and has proven to achieve good results. An earlier, somewhat different version 
of EnOpt was proposed by Lorentzen et al. (2006) and Nwaozo (2006), and there exist 
other ensemble-based methods such as the simultaneous perturbation stochastic 
approximation (SPSA; Spall et al., 1998), or the covariance matrix adaptation 
evolutionary strategy (CMA-ES; Hansen, 2006) to perform model based optimization 
studies. Do and Reynolds (2013) provided theoretical connections between the various 
approximate gradient techniques. This chapter details the formulations of the ensemble 
optimization (EnOpt) technique for deterministic and robust optimization problems 
investigated in this thesis and outlines a more ‘robust’ theoretical understanding of the 
method. 

                                                           
1 This chapter is based on Fonseca, R.M., Chen, B., Jansen, J.D. and Reynolds, A.C. 2015: Theoretical 
Understanding of an Approximate Ensemble-based Gradient incorporating Geological Uncertainty. Submitted to 
International Journal of Numerical Methods in Engineering 
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2.1 Ensemble Optimization (EnOpt) 

This technique, as proposed by Chen (2008) and Chen et al. (2009), is a stochastic 
gradient-based optimization method, which utilizes an ensemble of control vectors to 
estimate a gradient. EnOpt approximates the gradient based on the sensitivity of the 
ensemble averaged over the objective function with respect to the controls. Distinct 
characteristics of the EnOpt method are (Chen, 2008; Chen et al., 2009):  

 The search direction (gradient) is obtained from the ensemble of controls 
generated.  

 It is largely independent of simulator specifics, and requires minimal code 
development. 

 It has been shown to work with high-dimensional control vectors, for e.g. 
the Brugge test case, see Peters et al. (2013) for an overview of the results. 

 It can be applied to maximize the expected objective function based on 
multiple geological realizations. 

Approximating the gradient from the sensitivity of the ensemble enables the use of any 
type of control variable without modification to the existing algorithm, thus another 
advantages of the method is its flexibility. Additionally with increases in computing 
power and resources the method is inherently parallelizable as each ensemble member 
can be evaluated independently thus the computational efficiency is another attractive 
feature of this technique.   

2.1.1 Objective Function 

The two most commonly used objective functions for production optimization are 
ultimate recovery or an economic objective such as Net Present Value (NPV). The 
flexibility of EnOpt allows any objective function to be used, in this thesis we chose 
the objective function J to be the NPV, defined in the usual fashion as 
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where qo,k is the oil production rate in bbl/day, qwp,k is the water production rate in 
bbl/day, qwi,k is the water injection rate in bbl/day, ro is the price of oil produced in 
$/bbl, rwp is the cost of water produced in $/bbl, rwi  is the cost of water injected in 
$/bbl, tk is the difference between consecutive time steps in days, b is the discount 
factor expressed as a fraction per year, tk is the cumulative time in days corresponding 
to time step k, and t is the reference time period for discounting, typically one year.   
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2.1.2 Ensemble-Based Deterministic Formulation 

In model-based reservoir management applications, for a given model m and a 
vector of control inputs u, ( , )y u m  is the solution of a system of nonlinear partial 
differential equations for an initial-boundary-value problem (IBVP). As we assume this 
system of equations is deterministic, J is a function of u and y only, i.e., ( , ).J J u m  
Often the solution of the IBVP can only be approximated via the solution of a system 
of nonlinear discrete equations generated from a finite volume formulation as is the 
case for the problems considered in this thesis and in many other studies such as Chen 
et al. (2009), Do and Reynolds (2013), Fonseca et al. (2015) etc.  

In this section we outline the standard formulation of the EnOpt algorithm for 
deterministic (i.e., single model realization) optimization as proposed by Chen et al. 
(2009). We take u to be a single control vector containing all the control variables to be 
optimized. This vector has length N equal to the product of the controllable well 
parameters (number of well settings like bottom hole pressures, rates or valve settings) 
and the number of control time steps. Chen et al. (2009) sample the initial mean control 
vector from a Gaussian distribution while, at later iteration steps the final control 
vector of the previous iteration is taken as the mean control. However the initial 
controls can also be chosen by the user, as will be done in our experiments. 

 1 2 .T
Nu u uu   (2.2) 

To estimate the EnOpt gradient, a multivariate, Gaussian distributed ensemble {u1, u2, 
…, uM} is generated with a distribution mean u and a predefined distribution 
covariance matrix C  where M is the ensemble size. During the iterative optimization 
process, u is updated until convergence, whereas C  is, traditionally, kept constant. [An 
alternative procedure, in which C  is updated during the optimization process, is 
described in Fonseca et al. (2015), see chapter 4]. In our implementation of EnOpt the 
ensemble members ui, i = 1, 2, …, M, are created using 

 1 2 ,i iu u C z  (2.3) 

and  

 
1

1 M

i
iM

u u  (2.4) 

where we use a Cholesky decomposition to calculate 1 2C , and draw zi from a 
univariate Gaussian distribution, this is not a requirement and  other distributions can 
be used, see, Sarma and Chen (2014) who used Sobol sampling to generate the 
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ensemble of control vectors. To estimate the gradient, a mean-shifted ensemble matrix 
is defined as 

 1 2 .MU u u u u u u  (2.5) 

A mean-shifted objective function vector is defined as  

 1 2( ) ( ) ( ) ,
T

MJ J J J J Jj u u u  (2.6) 

where the average of the objective function is given by  

 
1

1 ( ).
M

i
i

J J
M

u  (2.7) 

The approximate gradient as proposed by Chen (2008) and Chen et al. (2009) is given 
by  

 1  ,uu uJg C c  (2.8) 

where 

 1 ( ),
1

T
uu M

C UU  (2.9) 

and 

 1 ( ),
1uJ M

c Uj  (2.10) 

are ensemble (sample) covariance and cross-covariance matrices respectively. (Note 
that cuJ is a one-dimensional matrix, i.e. a vector.) For the usual case where M < N, 
matrix Cuu is rank-deficient, and Chen (2008) and Chen et al. (2009) therefore propose 
not to use expression (2.8) but, instead, to use 

 1  = ,uu uu uJ uJg C C c c  (2.11) 

or  

  .uu uJg C c  (2.12) 

Alternatively, the pre-multiplication in equation (2.12) can be performed with C , 
leading to 

 .uJg Cc  (2.13) 
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All three expressions (2.11), (2.12) and (2.13) can be interpreted as modified 
(regularized or smoothed) approximate gradients. In this thesis usually a straight 
gradient is used, i.e. expression (2.8), computed as the underdetermined least squares 
solution 

 1 †( )Tg UU Uj U j . (2.14) 

where the superscript † indicates the Moore-Penrose pseudo inverse, which is 
conveniently computed using a singular value decomposition (SVD); see, e.g., Golub 
et a;. (1998) Strang (2006), where the SVD on U has a truncation level of 0.999. 
Moreover, it is also possible to use single-smoothed and double-smoothed versions of 
equation (2.14) : 

 †( )g C U j , (2.15) 

 †( ) g CC U j , (2.16) 

Equation (2.14) was also described in Dehdari and Oliver (2012), while Do and 
Reynolds (2013) recently demonstrated that it is akin to what is known as a ‘Simplex 
gradient’ in, e.g., Conn et al. (2009). Do and Reynolds (2013) also provided theoretical 
connections between various ensemble methods such as simultaneous perturbation 
stochastic approximation (SPSA), Simplex gradient, EnOpt etc. Moreover, they 
proposed a modification to the gradient formulation which uses the current control 
vector u  and the corresponding objective function value J  to calculate the control 
and objective function anomalies U and j: 

 1 2 ,MU u u u u u u  (2.17) 

 1 2( ) ( ) ( ) ( ) ( ) ( ) ,
T

MJ J J J J Jj u u u u u u  (2.18) 

where the superscript  is the optimization iteration counter. Equations (2.11)-(2.16) 
can all be used to estimate a gradient-based on either the original [equations (2.5) and 
(2.6)] or the modified [equations (2.17) and (2.18)] formulations. Thus we can estimate 
as many as twelve different gradient formulations for deterministic cases. Note that the 
regularized gradients g , g  and g  are dimensionally inconsistent, in the sense that 
their elements do not have the same magnitude as those of g. Chen and Oliver (2012), 
Oliveira and Reynolds (2014), and Zhao et al. (2013) use equation (2.12) or equation 
(2.13) for the gradient estimate. When using diagonal covariance matrices, equations 
(2.11) and (2.13) or any of the regularized gradient varieties act only as a scaling of the 
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magnitude of the gradient and have no impact on the direction of the gradient. In 
chapter 4 we investigate the impact of the covariance matrix on the gradient estimate 
used during an optimization experiment for different cases.  

Gradient-based optimization requires the gradient ( )TdJ dg u  which is used 
within an optimization algorithm to iteratively optimize the objective function. For a 
detailed description of various available optimization algorithms see, e.g., Nocedal and 
Wright (2006). Individual chapters in this thesis contain more information about the 
optimization algorithm used. Usually the elements of the control vector are required to 
stay within upper and lower bounds, and different approaches for such bound control 
problems are available. Moreover, in addition to these constraints on the inputs, there 
may be constraints on the outputs of the simulator, which are much more difficult to 
handle. For all the problems considered in this thesis we only consider simple bound 
constraints. 

2.2 Robust Optimization 

The previous section outlines the mathematical formulations of the EnOpt method 
when a single model realization is used. In our application the model used is a 
geological model. Geological modeling and interpretation is an inherently uncertain 
process. Incorporating these uncertainties into the optimization framework reduces the 
uncertainty involved with the optimization; see Yeten et al. (2003). Van Essen et al. 
(2009) first presented for petroleum engineering applications a ‘robust optimization’, 
i.e. optimization over an ensemble of geological realizations which represents the 
geological uncertainty, methodology. In an example they showed that this technique 
increased the expected value and reduced the variance of the optimized strategy 
applied to the different geological realizations in comparison to a reactive strategy 
using adjoint-based optimization.  

2.2.1 Original Ensemble-based Robust Formulation 

An EnOpt formulation for robust optimization was introduced in Chen (2008) and 
Chen and Oliver (2010) wherein they use two ensembles, one of controls and another 
of geological models, which consist of M members each. Intuitively in such a scenario 
we would require M2 function evaluations for a gradient estimate which is 
computationally not attractive. Thus, in order to make the method computationally 
more efficient, Chen (2008) provided an argumentation for the possibility of evaluating 
only M samples to approximate the robust EnOpt gradient. To estimate a ‘robust 
gradient’, she coupled one member from the control ensemble with one member of the 
geological ensemble, i.e. in a 1:1 ratio, which is referred to as the ‘original 
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formulation’ in this thesis. Recently Stordal et al. (2014) reached a similar conclusion 
starting from a different mathematical viewpoint. Thus for robust optimization using 
the formulation proposed by Chen (2008) we have 

 1 2 ,MU u u u u u u  (2.19) 

where u is as defined in equation (2.4) and the objective function anomalies for robust 
optimization is given by  

 1 1 2 2( , ) ( , ) ( , ) ,
T

M MJ J J J J Jj u m u m u m  (2.20) 

where m1, m2, …… mM represent the different geological realizations used to quantify 
the model uncertainty and where the expectation of the objective function is given by  

 
1

1 ( , ).
M

i i
i

J J
M

u m  (2.21) 

2.2.2 Modified Ensemble-Based Robust Formulation 

The formulation proposed by Chen (2008) was found to achieve optimized 
strategies the objective function of which was inferior to a traditional reactive control 
strategy, see Raniolo et al. (2013) and Fonseca et al. (2014). Additionally, the 
theoretical understanding of using this 1:1 ratio is still incomplete. As an alternative to 
this formulation, Fonseca et al. (2014) propose a modified formulation for the robust 
EnOpt gradient which no longer uses the mean-shifted control samples and objective 
values, equations (2.19) and (2.20). Instead, in equation (2.22) the control sample mean 
u  is replaced by the control vector of the current iteration step, u : 

 1 2 MU u u u u u u , (2.22) 

The new formulation replacing equation (2.20) is 

 1 1 1[ ( , ) ( , ) ( , ) ( , )] .T
M M MJ J J Jj u m u m u m u m  (2.23) 

Note that equation (2.17) is identical to equation (2.22) as used in the deterministic 
modified expression of Do and Reynolds (2013), but that equation (2.18) is different 
from equation (2.23). This modified gradient formulation [based on equations (2.22) 
and (2.23)] behaves distinctly different compared to the original robust formulation 
[based on equations (2.19) and (2.20)] for the following reasons: 
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 First, because the subtractions in the objective function values in equation 
(2.23) are with respect to the individual objective function values ( , )iJ u m  
and not with respect to the mean. 

 Second, because for bound-constrained control problems, u  and u may be 
shifted with respect to each other.  

 Thirdly, because the effect of outliers which may strongly influence the mean 
value used in our least-squares approach to estimate the gradient is reduced in 
the modified formulation. The vector j can be viewed as a weighting factor in 
the gradient estimate which is significantly different in the modified 
formulation compared to the original formulation.   

In the next section we provide a theoretical reasoning which justifies the use of the 
modified formulation for optimization problems. 

2.2.2.1 Use of Different Ratio’s 

All the gradient formulations i.e. equations (2.11)-(2.16) for deterministic 
optimization are also applicable for robust optimization. Together with the robust 
modified formulation [equations (2.22) and (2.23)] this leads to a total of 18 potential 
robust gradient formulations for the 1:1 ratio (i.e. one control perturbation for each 
geological realization) approach.  However, another distinction can be made if we use 
other ratios. E.g., Raniolo et al. (2013) suggest the use of 20 control perturbations for 
every model realization. For every model realization, using the 1:20 ratio, they 
estimate an individual gradient, where after they take the mean of the individual 
gradients to obtain the robust gradient. This formulation will hereafter be referred to as 
the ‘Mean of Individual Gradients’ (MIG). Alternatively, one can combine all the 
controls and objective function anomalies to estimate a single robust gradient, i.e. not 
estimate individual gradients for every model realization. This approach will hereafter 
be referred to as the ‘Hotch-Potch Gradient’ (HPG). This additional distinction leads to 
a total of 30 potential formulations [2 times 18 minus 6 because for the MIG approach 
there is no difference between using equations (2.18) and (2.23)]. 

2.3  Theoretical Understanding of EnOpt for Robust Optimization 

In this section we provide a theoretical reasoning for the inferior results obtained 
with the original robust EnOpt formulation and a justification for the use of the 
modified robust EnOpt formulation described above. In this section we consider the 
problem of finding u which maximizes the expectation over m, which is a random 
vector with a known probability density function (pdf), of a nonlinear objective 
function J. Throughout we assume that the uncertainty in m can be represented by 
sampling its pdf to obtain an ensemble of Ne realizations, mi, i = 1, 2, ……., Ne and 
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thus approximate the expectation of J with respect to m as the mean of the set 

1[ ( , )] ,eN
i iJ u m  i.e., 

 
1

1( ) ( , ),
eN

E k
ke

J J
N

u u m  (2.24) 

where ( )EJ u denotes the approximation of the expectation [ ( , )].E Jm u m  At iteration  
of EnOpt, we generate Ne control samples, using equation (2.5) the mean of the control 
samples is given by equation (2.6). For the robust original formulation, at each 
iteration , Chen et al. (2009) define ( , )J u m  by 

 
1

1( , ) ( , ).
eN

i
ie

iJ J
N

u m u m  (2.25) 

Although Chen et al. (2009) do not give a specific interpretation of equation (2.25), the 
right side of (2.25) can be interpreted as an approximation of the mean of J, m and u. 
Note that at each iteration, the original EnOpt formulation uses one perturbation of u  
per reservoir model. In this original formulation, Chen (2008) computed a singly-
smoothed search direction as 
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1
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iJ J
N

d u u u m u m  (2.26) 

The original formulation also suggest a pre-multiplication of equation (2.26) by C , see 
equations (2.11)-(2.13). In an attempt to show that d  defined in equation (2.26), 
represents a reasonable approximation of uuC times the true gradient g, is desirable, 
Chen et al. (2009)  make two assumptions, the first of which is that 

 
1

1 .
n

i
i

eN
u uu  (2.27) 

Because the set 1{ } eN
i iu  are samples from ( , ),  u C u defined in equation (2.5) is an 

unbiased, consistent estimator of u  which is a good approximation for Ne sufficiently 
large. However, this approximation may actually be inaccurate if the upper and/or 
lower bounds on u force truncation of the samples. For example, suppose that the 
controls are simply the liquid rates at producers and at iteration  some of these 
controls are close to the lower bound of zero and some are close to the upper bound. 
Then a sample iu may have some negative entries which have to be truncated to zero 
in order to run the simulator to evaluate the objective function. Depending on the 
implementation and physics, it may also be necessary to truncate entries of iu that 
exceed the upper bound to the upper bound, for e.g. when controls are Inflow Control 
Valve (ICV) settings. In these circumstances, equation (2.27) becomes an invalid 
approximation because the truncated versions of iu are no longer samples from the 
distribution ( , ).u C  The second assumption of Chen et al. (2009) is that for any m, 
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1

1( , ( , ) ( , ) ( ,) )
eN

i i
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J J J J
N

u m u m u m u m  (2.28) 

and the third assumption is that for any m and u, 

 ( , ) ( , ) ( ( , )) ( - ).TJ J Ju m u m u m u u  (2.29) 

The third assumption, equation (2.29) is simply a standard Taylor series approximation 
but the second assumption equation (2.28) is tenuous as it suggests that for any 
realization mi , ( ), , )(iJ Ju m u m from which it follows that 

 1 2( , ) ( , ) ( , ),
eNJ J Ju m u m u m  (2.30) 

which is clearly an invalid approximation unless the variance in the prior model for the 
random vector m is sufficiently small so that when the vector of controls u  is applied 
to each of these models, the same objective function value is obtained. 

2.3.1 Modified Formulation : Theoretical Reasoning 

Instead of relying on the potentially unreliable approximations given in equations 
(2.27) and (2.28), it would be far better to use a search direction that does not rely on 
these approximations. Following the modified formulation introduced in Fonseca et al. 
(2014), we define a foundational search direction as 

 
1 1

1 1 ( )( ( , ) ( , )) ,( )
pe NN

i i k k
k ie p

J J
N N

d u u u m u m  (2.31) 

where Np is the number of independent random of samples of ( , )u C used in equation 
(2.31). Thus at each optimization iteration, we use Np random samples to generate an 
approximation to ( , )kJuC u m . We could use a different set of Np samples for each 
mk or for computational efficiency, we can use the same Np samples to generate the 
approximation of ( , )kJuC u m for all k. If we use a different set of control 
perturbations for each ,  1, 2, ,k ek Nm then we have to change notation slightly, i.e., 
we let , ,  1, 2,i k ej Nu denote the set of samples used to generate an approximate 
gradient of ( , )kJ u m In this case, equation (2.31) should be replaced by 

 , ,
1 1

1 1 ( )( ( , ) ( , )) .( )
pe NN

i k i k k k
k ie p

J J
N N

d u u u m u m  (2.32) 

Assuming all second derivatives of J are continuous and bounded, the error in the first 
order Taylor series 

 , ,( , ) ( , ( ( , )) ( )) T
i k k k k i kJ J Juu m u m u m u u  (2.33) 
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satisfies 

 2
, , , , 2

1 ( ) ( )
2i k i k k i k i ke u u H u u u u   

where kH  denotes the Hessian matrix given by [( ( , )) ].T
k kJu uH u m  Using 

equation (2.33) in equation (2.32) gives the approximation 

 , ,
1 1

1 1 ( )( ) ( , ) .( )
pe NN

T
i k i k k

k ie p

J
N N ud u u u u u m  (2.34) 

We let uE denote the expectation with respect to u. Then, taking the expectation of 
equation (2.34) assuming that all ,i ku are samples from ( , )u C  gives 
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 (2.35) 

where ( )EJ u is the approximation of the expectation of ( , )J u m with respect to m as 
defined by equation (2.24). It is important to note that as m is a constant we do not 
need any derivative w.r.t. m and the error in equations (2.34) and (2.35) is 

2
, , 2(max ).i k i ku u  We refer to the search direction of equation (2.32) [or equation 

(2.31)] as StoSAG (Stochastic Simplex Approximate Gradient). We see that the error 
in the StoSAG gradient goes to zero as 2

, 2 0i ku u which is satisfied if 

, ~ ( , )i ku C  where 0  as  with probability 1.  
On the other hand, following the same reasoning, Fonseca et al. (2015) show that 

for the original EnOpt formulation 2
2 2max {( ) }( )i ii u u m m  represents 

the error. Thus if the uncertainty is large, i.e., 2
2( )im m is large, then the error will 

be large which is another reason why the original EnOpt formulation is less ‘robust’ 
compared to StoSAG. Here we have obtained a search direction which approximates 

( )Euu JC u without invoking the potentially invalid assumptions of Chen et al. (2009) 
represented by equations (2.27) and (2.28). It is also important to note that one of the 
advantages of the equation (2.28) used by Chen et al. (2009) is its computational 
efficiency which arises that equation (2.28) uses only one perturbation of the control 
vector u  per model realization and hence requires only Ne simulation runs of J(u,m). 
On the other hand, the theoretically sound search direction of equation (2.32) requires 
Np x Ne evaluations of J(u,m) i.e. Np x Ne simulation runs. However, one can select 
Np=1 when applying equation (2.32) and in this case, StoSAG has the same 
computational efficiency as standard EnOpt. Note that equation (2.35) applies for 
Np=1. Moreover, Fonseca et al. (2014) and Fonseca et al. (2015) show that equation 
(2.32) with Np=1 leads to a methodology that results in a higher net-present-value than 



2. ENSEMBLE OPTIMIZATION: A THEORETICAL VIEW   

 

22 
 

is achievable with the original EnOpt formulation proposed by Chen (2008). Although 
Fonseca et al. (2015) indicate that far more accurate estimates of ( )Euu JC u  can be 
obtained by using Np>>1, when using Np>>1 not only does the computational effort 
increase substantially it is practically impossible to know a-priori what value of Np 
should be considered and thus a user defined choice needs to be made. 

2.3.2 Justification for the ‘Simplex Gradient’ 

Fonseca et al. (2015) observe that higher net-present values can be obtained if 
instead of using equation (2.32) to form a steepest ascent search direction, one instead 
generates an approximation for ( )EJ u to use as a search direction. This suggestion 
may be particularly important when the bounds on u force the truncation of some 
components of a sample ~ ( , )iu u C  and whenever it is unclear what correlation 
length to choose in a covariance function in order to generate the covariance matrix C
or when the optimal solution of the well control problem is such that the values of two 
temporally consecutive controls at a well are radically different, as occurs, for 
example, when the optimal solution is bang-bang see, Sudaryanto and Yortsos (2001), 
Zandvliet et al. (2007) etc. When the ,i ku  used in equation (2.32) are truncated, 

 ,
1

1 ( )( )[ ]
pN

T
i k i

ip

E
Nu u u u u C  (2.36) 

and equation (2.35) is no longer valid. However, one can still obtain an approximation 
of ( )uu EJC u  by first using a simplex gradient, see Conn et al. (2009), to 
approximate ( )EJ u  and then multiplying this gradient by .C  In line with the 
notation used in the preceding section, we define the Nu x Np matrix U and the Np x 1 
vector , ,kj  for k= 1, 2, …….. Ne respectively, by 

 1 ,
,

, 2 ,[ ,]
pk k N

k
ku u uU u u u  (2.37) 
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1, ,[ ( , ) ( ) ( , ) ( )].
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k k N k kJ J J Jj u m u u m u  (2.38) 

Then using the first order Taylor series of equation (2.33) and the definitions of 
equations (2.37) and (2.38), it easily follows that for each k, k= 1, 2, …….. Ne. 

 
, ,

, ,
1

, , , ,

1 ( )( ( , ) ( , )) ( )

( )

,

[ , )]( ) (

pN
k k T

i k i k k k
ip

k k T k k T
k

J J
N

Ju

u u u m u m U j

U j U U u m
 (2.39) 

Thus, as in Fonseca et al. (2015) and Do and Reynolds (2013) an approximate 
stochastic gradient, denoted by ( , )kJu u m  is given by 
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 1, , , ,( , ) [ ( ) ( ) ( , ),]k k T k k T
k kJ Ju uu m U U U j u m  (2.40) 

for 1, 2, ek N  and instead of computing the inverse we use 
, † , , 1 ,( ) [ ( )]  k k k T kU U U U where the superscript † denotes the Moore-Penrose 

pseudo-inverse which can be obtained by singular value decomposition see Golub et al. 
(1998). Except for the fact that this gradient is stochastic because the u's are random 
vectors, the term ( , )kJu u m  is simply the simplex gradient of J at ( , )ku m , see 
Conn et al. (2009). It is important to note that the approximation of equation (2.39) 
applies regardless of how the perturbations around u are generated. Note that, this 
straight gradient can be multiplied by C  to obtain a single smoothed search direction 
which is distinctly different compared to the search direction that is an approximation 
of uuC times the true gradient given by equation (2.35). In addition to properly 
accounting for truncation of samples from ( , ),u C  the straight StoSAG gradient, 
i.e., equation (2.40) also avoids problems that can occur if we force temporal 
correlations on the controls at a well for a case where the true optimal controls vary 
significantly from one control step to the next as occurs for the bang-bang control case.  

 
Thus we have shown that StoSAG is theoretically more sound compared to the 

original formulation and using the simplex gradient formulation can be beneficial for 
problems usually encountered in petroleum engineering application. In this thesis the 
StoSAG formulation in some chapters is referred to as the ‘modified’ EnOpt 
formulation. A comparison of the original EnOpt formulation for robust optimization 
and the StoSAG or modified EnOpt formulation for robust optimization for different 
models within an optimization context is shown in chapters 3,5 and 7. 
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  3
 
EFFECT OF ENSEMBLE SIZE ON GRADIENT QUALITY 

 

 
Ensemble Optimization (EnOpt) has been shown to be a practical method to solve 

reservoir production optimization problems. Rather than relying on the availability of 
exact gradients, it involves the evaluation of approximate gradients that are estimated 
from an ensemble of perturbed controls and the corresponding objective function 
values. Fonseca et al. (2014) and Forouzanfar et al. (2015) showed that the size of the 
control perturbations, and the correlations between them, have a significant impact on 
the efficiency of the optimization process, as well as on the final objective function 
value. Adaptive perturbation schemes furthermore suggest that, in order to improve 
convergence, different perturbation sizes may be needed during initial and late stages. 
The relationship between the choice of perturbation covariance matrix, gradient 
regularization method and gradient quality, however, has not been explicitly 
determined. It is known that also ensemble size plays an important role, with larger 
ensemble sizes leading to better approximations of the exact gradient, but at a higher 
computational cost. Here, we introduce an experimental framework2 to numerically 
determine the ensemble gradient quality for variable ensemble size, perturbation size, 
and relative proximity of the control guess to the optimum. The gradient quality is 
established with a user-defined confidence level as the mean error with the exact 
gradient, as computed with e.g. the adjoint technique. This framework also enables us 
to investigate the impact of these parameters on the quality of the gradient in the 
presence of uncertainty, as represented by an ensemble of geological realizations. 

                                                           
2 This chapter is from, Fonseca, R.M., Kahrobaei, S., Van Gastel, L.J., Leeuwenburgh, O. and Jansen, J.D., 2015. 
Quantification of Impact of Ensemble size on Ensemble Gradient Quality using principles from Hypothesis Testing. 
Under Review at SPE Journal 
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Various formulations of the robust gradient, that is, the gradient of the expected 
objective function, are compared. A motivation for the chosen approach is first 
presented through a set of experiments on the well-known Rosenbrock function, and on 
an extension with uncertainty in the function parameters. Deterministic optimization 
experiments are performed with variable degrees of gradient quality, as determined by 
a specified directional error. A numerical approach is subsequently introduced to 
determine the ensemble size required to obtain gradients with the desired quality. This 
approach is also applied to a reservoir model with large uncertainty in the geological 
properties. Different robust gradient estimators are compared in combination with 
variable ensemble and perturbation size, where we differentiate between early and late 
stages of the optimization process. It is shown that a recently proposed modification of 
the EnOpt scheme for robust cases leads to a strong reduction in the required ensemble 
size for the same gradient quality. Further improvements can be obtained when 
multiple controls samples are applied to each realization, especially during the near-
convergence stages of the optimization, when the number of control samples is 
increased by a factor 10. These results provide practical guidelines for application of 
ensemble optimization to complex reservoir models at acceptable computational cost 
and illustrates the impact of gradient quality on an optimization experiment.  

3.1 Introduction 

Gradient-based algorithms have shown to be both effective and computationally 
efficient in model-based workflows for hydrocarbon recovery or net present value 
(NPV) optimization. Inspite of drawbacks such as computational efficiency and 
inaccuracy of the gradient estimate, recently many studies for e.g. Chen et al. (2009), 
Chen and Oliver (2010), and Leeuwenburgh et al. (2010) amongst others have 
demonstrated the applicability of EnOpt for large-scale production optimization 
problems. The major advantages of EnOpt are its ease of implementation, flexibility to 
adapt to different control types such as injection rates, bottom hole pressures, settings 
of inflow control devices etc., and ability to be used with any reservoir simulator.  

Van Essen et al. (2009) introduced a ‘robust optimization’ methodology in 
conjunction with the adjoint method to include the effect of uncertainties into the 
optimization framework using an ensemble of equi-probable reservoir models. Chen 
(2008) proposed a formulation of the EnOpt algorithm that could be applied to an 
ensemble of models i.e. for robust optimization. While this formulation is 
computationally very attractive in terms of the number of simulations required to 
obtain a gradient estimate for a given number of model realizations, it is not clear if 
these computational advantages outweigh possible disadvantages from the perspective 
of the gradient quality. Recently, Fonseca et al. (2014) presented a case wherein the 
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original formulation for ensemble-based robust optimization leads to inferior results  
and suggested a modified gradient formulation that was shown to produce improved 
results. These results were not analyzed in terms of the quality of the gradient, 
however, and alternative gradient formulations were not considered. 

The impact of the covariance matrix on the optimization process when using EnOpt 
has been investigated recently by Fonseca et al. (2015). Their experiments suggested 
that different perturbation sizes may be required at early and late stages of the 
optimization process to achieve the best overall performance. A theoretical foundation 
for the use of a covariance matrix updating scheme was provided by Stordal et al. 
(2015). Sarma and Chen (2014) investigated the impact of alternative sampling 
techniques on the quality of the gradient estimate. However, none of these studies have 
performed a detailed investigation into the effect of ensemble size on the estimated 
ensemble gradient quality. Given the potentially large implications of poor choices for 
the optimization inputs in terms of computational cost and quality of the result, there is 
a clear need for practical guidelines, supported by analysis of underlying theory and of 
empirical results. 

In this chapter we apply statistical analysis to quantify the relationship between 
ensemble size and gradient quality. We will focus especially on the robust optimization 
problem in which the number of control samples applied to each model realization may 
also be varied, leading to three different gradient algorithms, which will be compared. 
The analysis will be applied to both the initial stages of the optimization process, 
characterized by a fast increase in the objective function value, as well as to the late 
stages, typically characterized by slow convergence to the optimal value. In the 
remainder of this chapter we will first introduce the problem through a number of 
experiments performed with the well-known Rosenbrock function. A medium size 
reservoir model is subsequently introduced that forms the basis for further experiments 
in which an ensemble of realizations of geological properties is utilized to represent 
uncertainty. The quality of the estimated gradient resulting from the different robust 
gradient formulations will be compared, and related to the performance of an adjoint 
based optimization experiment. The impact of gradient quality on the optimization 
process is also investigated for deterministic optimization cases and a comparison of 
the optimization between adjoint based and EnOpt gradient formulation for robust 
optimization is investigated.  

3.2 Theory 

Chapter 2 contains a detailed overview of the ensemble optimization method used in 
this chapter. Most of the equations referred to in the results section can be found in 
chapter 2.  
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3.2.1 Adjoint method 

The adjoint method has been investigated extensively for use in data assimilation 
and production optimization. Detailed derivations for the production optimization case 
can be found in, e.g., Brouwer and Jansen (2004), Sarma et al. (2005), Kraaijevanger et 
al. (2007) and Jansen (2011). The adjoint method is the most accurate and 
computationally efficient method for computing a gradient. Computation of the 
gradient only requires one forward simulation and one fast backward computation. 
Therefore the number of simulation runs is independent of the number of controls. 
However for robust optimization using the adjoint requires running the forward and 
backward simulation for every geological realization, thus to compute the robust 
gradient, the same number of simulation runs will be performed as required for the 
robust EnOpt gradient using the 1:1 ratio. For our experiments we assume that the 
adjoint gradient is the exact gradient, which the EnOpt method tries to approximate. In 
this study the adjoint module available in the Shell in-house simulator was used 
(Kraaijevanger et al. 2007). 

3.2.2 Hypothesis testing 

We use principles from hypothesis testing to validate the research goal of this paper, 
namely to test if the approximate EnOpt gradient is comparable in quality to the adjoint 
gradient. To be able to determine the difference in gradients we compute the angle 
between them by using the dot product: 

 
.

cos( ) .adj ens

adj ens

g g
g g

 (3.1) 

the null hypothesis used is 

 0 : 10 .H  (3.2) 

The statistical inference method used is based on pre-defined confidence intervals for 
the testing parameters defined above. 

3.2.2.1 Confidence intervals 

Creating a confidence interval is a method to define a range at and the certainty that 
the true value of an estimated parameter lies within it, based on the knowledge of the 
sampling distribution (Dekking et al., 2005). In our numerical experiments we create a 
dataset of the parameter, given in equation (3.1). The parameter of interest  is the 
maximum allowable deviation of the EnOpt gradient with regard to the exact or adjoint 
gradient. As it is virtually impossible to achieve a 100% confidence, we apply a 
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confidence level of  = 0.95. The general definition of a confidence interval assumes a 
two-sided interval, i.e. an upper and a lower limit. However it is also possible to have a 
one-sided interval. As the test parameters used for the numerical experiments are 
absolute values of deviations we only want to find the confidence interval of the 
maximum deviation, thus the upper limit. Using a one-sided interval, the confidence 
interval is just the integral of the probability distribution, i.e. the cumulative density 
function (CDF). 

3.2.2.2 Methodology with Traditional Hypothesis Testing Principles 

 The EnOpt method samples random points from a normal distribution with a user-
defined standard deviation. The distribution of the test parameter( ) is, however, not 
normally distributed due to the non-linearity of the objective function and the function 
for the test statistics. In order to determine a confidence interval the distribution of the 
underlying parameters needs to be known. To test our null hypothesis we use a 
traditional hypothesis testing approach to either accept or falsify our hypothesis and 
estimate the necessary ensemble size as follows: 

 Sample points in the control space and compute the adjoint and EnOpt 
gradients at each point. 

 Count the number of points that satisfy the null hypothesis  
 Compute the confidence interval for the predefined maximum allowable 

error.  
 Repeat for varying ensemble sizes until the confidence interval is achieved.  

We have chosen the 95% confidence interval to test our methodology, however any 
different confidence interval can be chosen within the same workflow. Varying the 
desired confidence interval will automatically vary the ensemble size needed to accept 
our hypothesis. In essence an ensemble size is found that gives an accurate gradient 
approximation in a number of times equal to the confidence interval, i.e. if the 
numerical experiment would be repeated many times, 95% of the experiments would 
result in an approximate gradient within the error margin compared to the true (adjoint) 
gradient. For a more detailed explanation of confidence intervals see, e.g. Dekking et 
al. (2005). 

3.3 Numerical Example: Rosenbrock Function 

The methodology is first applied to the non-linear Rosenbrock function named after 
the mathematician who first used it to demonstrate his optimization algorithm, see 
Rosenbrock (1960). This analytical function has since been used as a standard test case 
in mathematical optimization. The Rosenbrock function consists of a curved narrow 
valley which most algorithms have little difficulty finding. However once found, the 
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difficulty lies in finding the global optimum which is situated inside the valley. 
Equation (3.3) is a slightly altered version, as it is multiplied by -1, making it a 
maximization problem opposed to a minimization problem: 

 2 2 2
1 2 2 1 1( , ) 100( ) (1 )J u u u u u . (3.3) 

The Rosenbrock function has an optimal solution J = 0 at (u1,u2) = [1 1]. This point lies 
on a long curved ridge; see Fig. 3.1 for a contour plot. Since it is an analytical function 
it is possible to compute the exact gradient. The red dots in Fig. 3.1 are 50 randomly 
distributed points in space which will be used to test our methodology. All the 
numerical experiments will be carried out over the same set of points for different 
scenarios. Since we are working with approximate gradient techniques the effect of 
different random sequences also needs to be accounted for. Therefore, all the 
experiments are repeated for 50 different random sequences. The results presented 
below are the mean values of the angles at the 50 points in space over 50 different 
random sequences.  

 
Fig. 3.1: Contour plot with value labels of Rosenbrock function given by equation (3.3). 
Red dots are 50 points randomly distributed in space. 

3.3.1 Deterministic Case 

We first test the hypothesis testing methodology which entails the calculation  of the 
angle between the gradient estimated by EnOpt and the exact gradient for different 
ensemble sizes. The points are uniformly distributed so as to capture the effect of the 
spatial variability in the objective space on the gradient quality, with many points that 
are on the ridge or on the edge of the ridge. This will to some degree ensure that once 
the right ensemble size is determined the EnOpt gradient will be comparable to the true 
gradient almost everywhere in space. The other important factor in determining a high-
quality ensemble gradient is the perturbation size used to generate the ensemble of 
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controls for the gradient estimate. Fig. 3.2 is the mean angle over the 50 spatial points 
and 50 random seeds versus an increasing ensemble size which shows the impact of 
ensemble size for varying perturbation sizes . We observe that, as expected, as  
decreases the gradient quality increases for smaller ensemble sizes while for an 
increasing ensemble size the gradient quality always improves. The Rosenbrock 
function is a two-control problem, thus we would need a maximum of three (i.e. n+1, 
where n is the problem dimension) simulations to estimate a ‘good’ gradient with the 
finite difference method provided the perturbation size is sufficiently small. Fig. 3.2 is 
a reconfirmation that EnOpt, for a small perturbation, also would require an ensemble 
size equal to 3 to estimate a ‘good’ gradient. For the largest value of  used we observe 
that even for an ensemble size of 300 we do not achieve a ‘good’ gradient at all the 50 
points in space. 

 
Fig. 3.2: Illustration of the trend in the mean angle over the 50 points in space and 50 
random seeds for an increasing ensemble size and varying perturbation sizes ( ). Lower 
values (green & red dots) of  give significantly better results compared to higher 
values (blue dots). 

We count that 38 of the 50 points satisfy our null hypothesis (38/50), i.e. 76% of the 
points, satisfy our hypothesis, and hence, with an ensemble size of 300 and a 
perturbation size ( ) equal to 0.1, we have a confidence interval of 76%. We also 
observe that for an ensemble size equal to 2 we cannot achieve good results and this is 
also the case for the different perturbation sizes. To achieve the confidence interval  
defined in this work we would need approximately 900 samples when using  = 0.1. 
We observe that for  = 0.01 with an ensemble size of 5 samples  we achieve a 100% 
confidence interval while for  = 0.001, i.e. one order of magnitude smaller, we 
achieve a 100% confidence interval with an ensemble size of 3 samples.  

The results show that gradient quality is strongly affected by the perturbation size 
which in turn determines the ensemble size needed to achieve good quality gradients. 
We observe that, for large perturbation sizes, we need significantly larger ensemble 
sizes to achieve the 95% confidence interval. For significantly smaller perturbation 
sizes we would need an ensemble size of 3, i.e. for an n dimensional problem we need 
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an ensemble size equal to n+1, just like if we were to estimate a finite difference 
gradient. 

3.3.2 Rosenbrock Function With Uncertainty 

The quality of the ‘robust’ EnOpt gradient has not been investigated before, so 
uncertainty in the Rosenbrock function is introduced through equation (3.4). The 
uncertainty is introduced to mimic geological uncertainty.  

 2 2 2
1 2 1 2 1 2 1( , ) = 100( ) sin( )(1 ) .J u u c u u c u  (3.4) 

The two constants c1 and c2 are drawn from a Gaussian distribution, where the standard 
deviation reflects the magnitude of the uncertainty introduced. This provides us a fast 
and accurate way to test the various ‘robust’ EnOpt gradient formulations to better 
understand these formulations.  The value for c1 mainly affects the steepness of the 
objective space, while c2 rotates the space. Fig. 3.3 and Fig. 3.4 show five realizations 
each for cases which are representative of low and high uncertainty scenarios. This was 
done to investigate the impact of uncertainty on the gradient estimate.  

 
Fig. 3.3: Contour plot of five realizations of the Rosenbrock function given by equation 
(3.4) for a case mimicking a low degree of uncertainty. 

 
Fig. 3.4: Contour plot of five realizations of the Rosenbrock function given by equation 
(3.4) for a case mimicking a higher degree of uncertainty. 

Chen (2008) first proposed the idea of the 1:1 ratio explained in the theory section to 
estimate a ‘robust’ gradient. The mathematical reasoning for the applicability of this 
1:1 ratio provided by Chen (2008) is only applicable if we have very large ensembles 
for both the models and consequently the controls. In reality, however, we usually 
work with 100 models and in our experiments the original 1:1 formulation in many 
instances indeed produces results of insufficient quality. The poor results were 
reasoned to be the lack of a good quality gradient. Fig. 3.5 illustrates the effect of using 
the 1:1 ratio for an increasing ensemble size of model realizations and, consequently, 
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also control realizations. We observe, in line with the theory, that the mean angle 
significantly reduces for an increasing ensemble size. However, even for an ensemble 
size of 1000 we do not satisfy our null hypothesis when using the original formulation 
(blue curve). On the other hand the modified formulation based on equations (2.22) 
and (2.23) (red curve) which still retains the computational attractiveness of the 
original formulation performs significantly better. We observe that for an ensemble 
size of 1000 we have a mean angle of approximately 4 degrees and we have satisfied 
out null hypothesis and achieved the 95% confidence interval.  

 
Fig. 3.5: Comparison of the trend in the mean angle over the 50 spatial points with 
increasing ensemble sizes for the original form (blue) and modified form (red) using the 
computationally attractive 1:1 ratio. 

These results are based on the case representing the highest uncertainty in the models. 
In our reservoir optimization problem we usually use an ensemble size of 100 models 
to capture the uncertainty. For that size, the original formulation achieves a mean angle 
of 40 degrees while the modified formulation achieves a mean angle of 7 degrees. We 
recommend therefore that, when using the 1:1 ratio for robust optimization, the 
modified formulation based on equations (2.22) and (2.23) be applied.  

3.3.2.1 Effect of Higher Ratios 

The results in Fig. 3.5 were for the case representative of the highest model 
uncertainty using the 1:1 ratio. Some previous studies, e.g. Raniolo et al. (2013) and Li 
et al. (2013), did not achieve results of practical value with the 1:1 ratio and suggested 
the use of higher ratios (1:20 etc.) to find better gradient estimates. We investigate here 
the impact of varying the ratio between model and control perturbations on the quality 
of the gradient estimate. The results are obtained with the HPG formulation using a 
perturbation size equal to 0.01. Fig. 3.6 consists of two plots, Fig. 3.6(a) which is the 
mean angle plotted against the ensemble size of model realization with the curves 
representing the ratio used for the gradient estimate with the original formulation, and 
Fig. 3.6(b) which displays the results using the modified formulation (note the 
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difference in the vertical scale). In both plots we observe that an increased ratio gives 
better gradient estimates for the different ensemble sizes of model realizations. Once 
again, the modified formulation outperforms the original formulation also for larger 
ratios. Thus in general better gradient estimates can be achieved while using higher 
ratios. While it is better to use higher ratios, the computational costs of using these 
ratios must also be accounted for, especially for large-scale high-dimensional 
problems.  

 

.     

Fig. 3.6: (a). Illustrates the effect of using higher ratios on the gradient quality when 
using the original formulation with the HPG formulation. (b) Illustrates the effect when 
using the modified formulation with the HPG formulation. Note the different vertical 
scales. 

3.3.2.2 Effect of Uncertainty 

The effect of uncertainty is investigated in conjunction with the ratios needed to 
satisfy the null hypothesis and achieve the desired confidence interval. Fig. 3.7 is an 
illustration of the impact that uncertainty has on the quality of the gradient estimate. 
Fig. 3.7(a) (left-side plot) depicts the results for the highest uncertainty case while Fig. 
3.7(b) (right-side plot) depicts results for the lowest uncertainty scenario for both the 
original and modified formulations. In both plots we observe, in accordance with all 
the results thus far, that the modified formulation results in significantly better 
gradients than the original formulation. Also the modified formulation gradient 
estimate is less sensitive to the effect of uncertainty. The ensemble size of model 
realizations was kept constant at 100 for this exercise and a perturbation size of 0.01 
was used. We also observe that for the original formulation using a larger perturbation 
size resulted in better mean angles, whereas for the modified formulation the gradient 
estimate improved for smaller perturbation sizes. We observe that, depending on the 
degree of uncertainty, the original formulation would need a ratio of 1:20 or 1:50 i.e. 
2000 or 5000 function evaluations to find a mean angle less than 10 degrees. If the 
mean angle is less than 10 degrees it does not guarantee that we have achieved the 
necessary confidence interval.  
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Fig. 3.7: (a) shows the effect of a high degree of uncertainty on the mean angle for 
increasing ratios with the HPG formulation. (b) Illustrates the results for the lowest 
uncertainty case. For both these plots an ensemble of 100 model realizations is used. 
The angles for the high uncertainty case are higher than the low uncertainty case. (Note 
the different vertical scales). 

3.3.2.3 Hypothesis Test Results 

Fig. 3.8 illustrates the ratio necessary to satisfy the null hypothesis used in this 
paper and achieve the desired 95% confidence interval for the different gradient 
formulations and the different ensemble sizes of model realizations. We observe that 
for a smaller ensemble size of model realizations, e.g. 10, we need significantly higher 
ratios (1:1100) when using the original formulation while for the same ensemble size, 
we would require a ratio of 1:10 with the modified formulation. We also observe that 
the required ratio decreases with an increase in the ensemble size of model realizations. 
All these results are for the highest uncertainty scenario. For the lowest uncertainty 
scenario we would require lower ratios: 1:800 with the original formulation for an 
ensemble size of 10 model realizations, and a 1:5 ratio for the modified formulation.  

 
Fig. 3.8: Hypothesis testing results using the traditional methodology for the original 
(blue) and modified (red) form using the highest uncertainty case with the HPG 
formulation. A lower ratio is needed for higher ensemble sizes of model realizations to 
satisfy the hypothesis and achieve the desired confidence interval. 
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3.3.2.4 Mean of Individual Gradients (MIG)  

The results presented in Fig. 3.6- Fig. 3.8, which are obtained using the HPG 
formulation, illustrate that for small ensemble sizes we would require ratios as high as 
1:1100 to satisfy the hypothesis and achieve the desired confidence interval. For a two-
dimensional control problem these results are completely counter-intuitive. Thus we 
test the MIG formulation to estimate a ‘robust’ gradient when using a ratio other than 
1:1. This approach was followed by Van Essen et al. (2009) albeit using the adjoint 
formulation and also by Raniolo et al. (2013) using EnOpt gradients. Since we are 
dealing with a two dimensional problem we should need 3 function evaluations to 
estimate a gradient, for a sufficiently small perturbation size, as illustrated in Fig. 3.2. 
Using the MIG formulation we observe in Fig. 3.9(a) that for a perturbation size equal 
to 0.01 we would at best need a ratio of 1:5 to estimate a mean angle less than 10 
degrees. Increasing the ratio will improve the gradient estimate, and the difference 
between the original and modified formulation is minor at best. These results are a 
marked improvement in terms of the ratio needed compared to the results with the 
HPG formulation. The results are based on the highest uncertainty case while the same 
trend is observed for the low uncertainty case.  

  
Fig. 3.9: (a) Illustration of the mean angle for increasing ensemble sizes and ratios. We 
observe a significant reduction in the ratio required even for small ensemble sizes 
compared to Fig. 3.8 for the highest uncertainty case. (b) Hypothesis testing results 
using the traditional methodology for different perturbation sizes ( ) and ratios. Lower  
values would require significantly smaller ratio compared to the HPG formulation. 

The effect of perturbation size estimates from the MIG formulation is shown in Fig. 
3.9(b).  We observe, ‘akin’ to the deterministic case, that a decreasing perturbation size 
results in an increase in the quality of the gradient estimated. For a sufficiently small 
perturbation size (  = 0.001) a ratio of 1:3 is sufficient to satisfy our null hypothesis 
and achieve the 95% confidence interval even for small ensemble sizes of model 
realizations. We observe that for an increasing perturbation size the ratio increases, 
although, it is significantly lower than the ratio required when using the HPG 
formulation. In summary, for this case using the MIG formulation gives much better 
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angles for smaller ratios especially when working with small ensembles of model 
realizations.  

3.4 3D Reservoir Model: “Egg Model” 

The ‘Egg Model’, first introduced by Van Essen et al. (2009), is a channelized 
reservoir with seven vertical layers. Fig. 3.10 is an illustration of the permeability field 
of a single model realization with the locations of the eight (mainly peripheral) 
injection wells (blue) and four production wells (red) completed in all the layers. The 
model represents a channelized depositional system in the form of discrete 
permeability fields modeled with 60 × 60 × 7 = 25.200 grid cells of which 18.553 cells 
are active. A detailed description of a standardized version of this Egg Model along 
with reservoir and fluid properties is given in Jansen et al. (2013). No capillary 
pressures are included and the reservoir rock is assumed to be incompressible. The 
bottom hole pressures of the producers are constrained between 385 and 400 bar, while 
the injectors are rate-controlled between 1 and 79.5 m3/day. The initial reservoir 
pressure is at 400 bars. Production of the field is simulated for a period of 3600 days or 
slightly less than 10 years. There are 40 control time steps of 90 days, thus using 
injection rates as controls we have of 40x8 = 320 controls, i.e. a 320 dimensional 
problem. The objective function used in this work is NPV given by equation (2.1). We 
have used an oil price ro = 126 $/m3, rwp = 19 $/m3 and rwi = 6 $/m3 and a discount rate 
b = 0%, i.e. undiscounted NPV.  

We use a commercial fully implicit black oil simulator (Eclipse, 2011) for the 
reservoir simulations to estimate the (robust) EnOpt gradient of J with respect to the 
controls u. An in-house simulator is used to calculate the adjoint gradient, see 
Kraaijevanger et al. (2007) for details. The in-house reservoir simulator is used to 
compute the adjoint-based optimization results while Eclipse (2011) is used to 
calculate the EnOpt gradient, thus there is no coupling between the different 
simulators.  The model has been benchmarked, i.e. almost identical results in terms of 
phase rates in the producers, for the different simulators used, details of which can be 
found in Jansen et al. (2013).  
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Fig. 3.10: Permeability field of egg model displaying the position of the injectors (blue) 
and producers (red)  

3.4.1 Deterministic case 

The methodology presented above is first tested on a single realization of the Egg 
Model and thus we are dealing with a deterministic case. When working with a 320-
control problem it is, of course, impossible to visualize the objective function space. 
Randomly creating points to evaluate our methodology is also risky since we will not 
be sure that our points have covered all features of the objective function space, due to 
the ‘emptiness’ of a 320-dimensional space. Thus, in order to obtain ‘relevant’ points 
which capture the nature of the objective function space we perform an adjoint- based 
optimization from two different initial strategies. Fig. 3.11 shows the optimization 
process for 40 iterations for an initial strategy of constant rates equal to 79.5 m3/day. 
Thus we have 40 points to test the methodology, i.e., instead of using a large number 
of randomly distributed control points, as was done for the Rosenbrock function, we 
now test the gradient quality for 40 points along a pre-defined control trajectory. Fig. 
3.11 also shows two dashed regions, a steep region, indicated with a red ellipse, in 
which there exists significant scope for optimization, and a relatively flatter region, 
indicated with the black ellipse, which is indicative of a peak, ridge or plateau in the 
objective function space. While using the same hypothesis, we investigate the two 
regions separately, because different parameters are required to achieve the necessary 
confidence intervals. The two regions are defined arbitrarily based on visual inspection 
.  
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Fig. 3.11: Illustration of the optimization process (blue curve) using adjoint gradients. 
The curve is divided into two parts, a red ellipse (indicative of the steeper region of the 
curve) and a black ellipse (indicative of the flatter region of the curve) 

3.4.1.1 The Steep Region 

Fig. 3.12 displays the results for the points encapsulated by the red ellipse in Fig. 
3.11. It depicts the decrease in the mean angle for an increasing ensemble size with a 
constant perturbation size, = 0.01. The results are the mean of 5 experiments with 
different random seeds. The left subplot of Fig. 3.12 illustrates the mean angle of the 
different points in the red ellipse. We observe that we need an ensemble size of 
approximately 150 to satisfy the null hypothesis. We also observe that increasing the 
ensemble size leads to higher-quality gradients. Thus for a 320-dimensional problem 
with approximately 150 samples we can estimate a high-quality gradient. We also 
tested (results not shown) that for increasing perturbation sizes the quality of the 
gradient estimate decreases, while for smaller perturbation sizes we also obtain inferior 
gradient estimates, most likely due to numerical round-off errors. E.g., with  = 0.1 
(i.e. 10 times larger), and  =0.0001, (i.e. 100 times smaller), we would need 400 and 
300 samples respectively to satisfy the null hypothesis and achieve the desired 
confidence interval. To obtain these results we have used a time-correlated covariance 
matrix with a correlation length equal to 20 which was arbitrarily chosen. There is no 
method to determine this value a-priori. A correlation length of 20 means that a control 
is correlated over 20 control time steps. For the steeper region a correlation length of 
20 performs almost equally well as a correlation of 10, thus in the steeper region the 
impact of correlation length is not significant.    

The results presented in Fig. 3.12(a) are obtained with equation (2.14) and the 
modified formulation suggested by Do and Reynolds (2013) [equations (2.17) and 
(2.18)]. This performs better than using equation (2.14) with the original formulation  
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[equations (2.5) and (2.6)]. Irrespective of the gradient formulation used, an increasing 
ensemble size leads to higher-quality gradients and the modified and original 
formulation gradients converge for larger ensemble sizes. Fig. 3.12(b) shows the effect 
of smoothing on the different gradient estimates. We observe that smoothing of the 
gradient, i.e. pre-multiplication of the gradient by the covariance matrix, has a 
marginally negative impact on the gradient quality for this set of points when using  = 
0.01. We also observe that single smoothing of the straight gradient obtained from 
equation (2.14), i.e. equation (2.15), performs better than using the smoothed gradient 
given by equation (2.11). We also note that a double smoothing of the straight gradient, 
i.e. equation (2.16), gives better results for smaller ensemble sizes and inferior results 
for larger ensemble sizes. Pre-multiplication of the gradient given by the cross-
covariance vector, i.e. equation (2.12), achieves better results than those obtained with 
equation (2.11).  

    
Fig. 3.12: (a) illustrates the performance of the two different formulations used to 
estimate the ‘straight gradient’ g given by equation (2.14), while (b) displays the effect of 
using different versions of the ‘smoothed’ gradient and their relative behavior. 

3.4.1.2 The Flatter Region 

The general trend in the results observed for the steeper region is also observed for 
the flatter region. However, estimating the straight gradient which gives good estimates 
for the steeper region does not achieve good gradients in the flatter part. Smoothing of 
the gradients, on the other hand, achieves much-higher-quality gradients in this flatter 
region, in both regions the modified formulation of Do and Reynolds (2013) performs 
best. A major difference in gradient estimation for the flatter region is the sensitivity of 
the gradient estimate quality to the choice of the correlation length used. Although we 
do not achieve the 95% confidence interval for this region we observe that we need 
smaller perturbation sizes,  = 0.001, and correlation lengths varying from 8 to 12 
control time steps in conjunction with an ensemble size equal to 300 to satisfy the 
hypothesis at most of the points. This shows that correlation length and the covariance 
matrix have more impact in the flatter region. It is virtually impossible to know a-priori 
the correct correlation length, and the lengths used here were obtained through an 
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exhaustive trial and error approach. Similar to the results for the steeper region, we 
observe that a smoothed gradient given by equation (2.15) achieves a better angle 
compared to directly estimating a smoothed gradient using equation (2.11). Fig. 3.13 
shows the quality of the different smoothed gradient formulations. When using 
equation (2.11), then a further single smoothing, i.e. equation (2.13), which is akin to a 
double smoothing of equation (2.14), i.e. equation (2.16), achieves better quality 
gradients for all ensemble sizes. Irrespective of the different gradient estimates used, 
the gradient quality improves with an increase in ensemble size. We also observe that 
for this region with ensemble sizes higher than 300 we do not observe a significant 
improvement in gradient quality. The angles obtained are never greater than 90 
degrees, i.e. within the first quadrant with respect to the adjoint gradient, irrepespective 
of the ensemble size used. This is particularly important, because it implies that even 
for smaller ensemble sizes we are able to approximate, in general, a roughly ‘correct’ 
up-hill direction.  

 
Fig. 3.13: Comparison of the effect of smoothing and different gradient estimates for the 
flatter region (black ellipse) of Fig. 3.11. 

3.4.1.3 Effect of Gradient Quality on Optimization 

In order to quantify the impact of gradient quality on the optimization process and 
to justify the choice of 10 degrees as a definition of the null hypothesis we have 
performed a set of optimization experiments with varying degrees of gradient quality. 
The methodology used to quantify the impact of gradient quality using approximate 
gradient with varying angle errors is as follows 

1. Compute the adjoint gradient using the in-house reservoir simulator at each 
optimization iteration.  

2. Stochastically perturb the adjoint gradient with a chosen perturbation size to 
mimic a desired angle away from the adjoint gradient. 
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3. Check if the perturbed gradient lies between a 1 degree +/- range from the 
desired angle. If not either increase or decrease perturbation size used to find the 
desired angle.  

4. Use the perturbed gradient in the optimization loop. 
5. Repeat for different angle errors to mimic either high or low quality gradient 

estimates i.e. varying the angles during the optimization.  
 
Fig. 3.14 is an illustration of the impact of using different quality angles during the 

optimization process. For the comparison the number of iterations is fixed to 40. We 
observe that for an angle of 10 degrees throughout the optimization process we obtain 
very similar values of the objective function for the final optimized solution compared 
to the optimum achieved with the adjoint method though initially the optimization path 
is marginally inferior. For angles greater than 30 degrees we observe that though the 
optimization has not yet converged, for the same number of iterations we achieve an 
inferior objective function solution. For the results in this sub-section adjoint based 
gradients computed from the in-house reservoir simulator, for details see Kraaijevanger 
et al. (2007), has been used.  

 
Fig. 3.14: Illustration of the impact of the use of inferior quality gradients during the 
optimization process.  

3.4.2 Egg Model with Uncertainty 

The main purpose of this study is to quantify the quality of the ‘robust’ ensemble 
gradient and determine the optimal ratio required to estimate a high-quality gradient for 
a realistic reservoir test case. Thus, to test our methodology we use an ensemble of 100 
equi-probable geological models, six of which, obtained from Van Essen et al. (2009) 
are displayed in Fig. 3.15. The uncertainty is captured through the different 
permeability fields and the different directions and orientations of the channels, see 
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Jansen et al. (2013) for details. The hypothesis tests are performed to estimate a 
‘robust’ ensemble gradient using all hundred realizations of this model. The controls 
and the fluid model as well as the other properties are exactly the same as for the 
deterministic case. To generate the points to test our methodology, the same approach 
is used as described above. That is, we first perform robust optimization using the 
adjoint method as described in Van Essen et al. (2009), and then assess the quality of 
the gradient along this control trajectory. The result of the robust optimization is 
displayed in Fig. 3.16. The optimization was limited to 25 iterations due to the 
computational complexity involved. Again, for the analysis, we divide the optimization 
process into two regions using the same reasoning as explained above.  

 
Fig. 3.15: Six randomly chosen realizations displaying the uncertainty in the geological 
models obtained from Van Essen et al (2009); see Jansen et al. (2013) for details about 
the models 

 
Fig. 3.16: Illustration of the expected objective function value over 100 realizations with 
the robust optimization process (blue curve) using adjoint gradients. The curve is 
divided into two parts, a red ellipse (indicative of the steeper region of the curve) and a 
black ellipse (indicative of the flatter region of the curve). 

3.4.2.1 The Steep Region  

Following the analysis provided for the deterministic case we first consider the 
steeper part of the optimization curve encapsulated by the red ellipse as shown in Fig. 
3.16. We have eight points (control strategies) which lie in this region for which the 
original and modified formulation using the computationally attractive 1:1 ratio have 
been compared. We observe that for all the eight points we are able to satisfy our null 
hypothesis, i.e. the angle is less than 10 degrees, when using the modified robust 
formulation [based on equations (2.22) and (2.23)]. However if we use the 1:1 ratio 
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with the original formulation [based equations (2.19) and (2.20)] we never satisfy our 
hypothesis at any of the points. With the original formulation we observe angles 
between 80 and 90 degrees for all the points when using equation (2.14). (As for the 
deterministic case, all results are the mean of 5 experiments with different random 
seeds.) If we use the ‘smoothed’ versions of  the gradient as given by equations (2.11), 
(2.13), (2.15) and (2.16), we observe much better angles as shown in Fig. 3.17, though 
the hypothesis is still not satisfied. Thus smoothing of the gradient leads to better 
estimates of the ensemble gradient, and we observe a similar trend as for the 
deterministic case in that the smoothed version of equation (2.14), i.e. equation (2.15), 
achieves better results than equation (2.11). We also observe that using a relatively 
larger perturbation size (  = 1) for this region leads to the best results. These results 
highlight the advantage of using the modified formulation with the 1:1 ratio because 
the maximum contribution (largest increase in objective function) is from within this 
region so achieving good angles at acceptable computational costs is more important 
for this region. Though the 1:1 ratio satisfies our hypothesis, using higher ratios leads 
to higher-quality gradients for both gradient formulations with the HPG formulation as 
depicted in Fig. 3.17. 

 
Fig. 3.17: Illustrates the difference in gradient quality between the original and modified 
formulations for varying ratios of controls per model realization using the HPG ratio 
formulation. 

For the Rosenbrock function we observed significant differences in gradient quality 
when using the HPG and MIG ratio formulations. For this case we observe a similar 
trend in the results. Fig. 3.18 consists of two plots which show the difference in 
gradient quality for the two ratio formulations. Fig. 3.18(a) depicts the results obtained 
when using the original formulation, where, similar to the Rosenbrock results, we 
always achieve significantly better gradient estimates with the MIG formulation. We 
also observe, as expected, that as the ratio increases the gradient quality improves. Fig. 
3.18(b) depicts the results when using the modified formulation. The results indicate 
that the modified formulation is less sensitive to the different ratio formulations, 
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although the MIG formulation still performs better. Irrespective of the ratio 
formulation the modified form, satisfies the hypothesis at all the points, even for the 
1:1 ratio.  

    
Fig. 3.18: (a) Difference in gradient quality for the two ratio formulations (HPG and MIG) 
for the original gradient formulation while (b) highlights the gradient quality when using 
the modified gradient formulation. Note the different vertical scales 

3.4.2.2 The Flatter Region 

The 1:1 ratio with the modified formulation [based on equations (2.22) and (2.23)] 
leads to very high quality gradient estimates for the steeper part of the optimization 
curve. However, for the flatter part, though still better than the original formulation 
[based on equations (2.19) and (2.20)], the gradient quality is not as high. An increase 
in the ratios significantly improves the gradient quality as shown in Fig. 3.19. We also 
observe, slightly different to our previous observations that the different versions of the 
‘smoothed’ gradient, given by equations (2.11), (2.13), (2.15) and (2.16), give very 
similar results for both the modified and original formulations. Similar to the 
deterministic case we use a smaller perturbation size (  = 0.01) and a correlation 
length that varies between 8 and 17. It requires a substantial number of simulations to 
perform an extensive search for the ‘correct’ correlation length which has a strong 
impact on the gradient quality.  

 
Fig. 3.19: Illustrates the difference in gradient quality between the original and modified 
formulations for varying ratios of controls per model realization using the HPG 
formulation. 
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Similar to the results shown above for the steeper region, the different ratio 
formulations show a similar trend for the points in flatter region. Fig. 3.20 consists of 
two plots which show the difference in gradient quality for the different ratio 
formulations. Fig. 3.20(a) depicts the results obtained when using the original 
formulation and Fig. 3.20(b) depicts the results when using the modified formulation. 
We observe that the same trend in the results exists, although on the flatter part of the 
curve we have satisfied our hypothesis for only a few points for this robust case. We 
could argue that for the robust case and, considering our problem dimension, the 
difference between 10 and 20 degrees is marginal. Thus if we were to have a 
hypothesis which had an allowable error margin of 20 degrees then, with the MIG ratio 
formulation and both the original or modified gradient formulation, we would satisfy 
our hypothesis at most of the points for a ratio of 1:50, i.e. we would need to apply 50 
control samples per geological realization to estimate a ‘good’ gradient. This would 
imply that, to estimate a gradient at one point within the optimization process we 
would need to perform 5000 reservoir simulations since the ensemble size is 100. This 
is computationally challenging and therefore, since the increase in objective function 
value for the flatter region is less than 1% we suggest the use of the modified 
formulation with a 1:1 ratio.  

    
Fig. 3.20: (a) shows the difference in gradient quality for the two ratio formulations (HPG 
and MIG) for the original gradient formulation while (b) highlights the results when 
using the modified gradient formulation. 

3.4.2.3 Angle Effect on Optimization 

Fig. 3.21 is a comparison of the performance of a robust optimization process 
between the ‘adjoint-based’ formulation (red line) , the modified EnOpt formulation 
(blue dashed line) and the original EnOpt formulation (black line), both using the 
single smoothed 1:1 ratio which is computationally efficient.  This provides a 
quantitative analysis for the results presented above along with a justification for the 
use of better quality gradients during an optimization experiment. We observe that in 
the ‘steeper’ region we are able to effectively “track” the path of the adjoint gradient 
with the modified formulation which is accordance with the gradient quality achieved 
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while for the original formulation although we increase the objective function we get 
inferior results compared to the adjoint method. In the flatter region we observe, in 
accordance with the gradient quality results, we get a marginally inferior solution in 
terms of NPV with the modified formulation compared to the adjoint method thus 
highlighting the impact of inferior gradient quality. As the gradient quality in the 
steeper region is high this benefits the final optimized achieved NPV with the modified 
formulation compared to the original formulation.  

   
Fig. 3.21: Comparison of the effect of gradient quality on the optimization process for 
three different robust gradient formulations. In the steeper region the modified EnOpt 
formulation computes very good quality gradients while in the flatter region the gradient 
quality decreases. 

3.5 Conclusions 

 For the relatively simple Rosenbrock function we need an ensemble size 
equal to 900, 5 or 3 to satisfy the null hypothesis and achieve the desired 
confidence interval depending on the perturbation size used (  = 0.1, 

 = 0.01 and  = 0.001 respectively) to generate the ensemble of controls.  
 Including uncertainty within the Rosenbrock function we find that the 

modified formulation [based on equations (2.22) and (2.23)] with the 
computationally attractive 1:1 ratio outperforms the original formulation 
[based equations (2.19) and (2.20)], irrespective of the degree of uncertainty. 
However the degree of uncertainty does play a role in the quality of the 
gradient estimate. Higher-quality gradients can be obtained with an 
increasing ensemble size of model realizations i.e. using higher ratios.  

 When working with higher ratios significantly better results are obtained 
through the use of the ‘Mean of Individual Gradients’ (MIG) formulation 
compared to the HPG formulation. This result is not surprising as this would 
be expected from the central limit theorem. Additionally the ratios required 
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are smaller; for the Rosenbrock case, depending on the perturbation size, a 
ratio of 1:3 is sufficient to satisfy the hypothesis and meet the desired 
confidence interval using the MIG formulation. 

 The analysis for the “Egg Model” case was divided into two regions: 1) a 
‘steeper’ region, where with higher perturbation size (  = 0.01) and lower 
ensemble sizes (150 samples) the hypothesis was satisfied at all points, and 
2) a ‘flatter’ region where a smaller perturbation size (   = 0.001) and a 
higher ensemble size (300 samples) were needed.  

 In the flatter region, in addition to the perturbation size, a correlated 
covariance is needed where the choice of correlation length has a significant 
impact on the gradient quality. Through a trial and error procedure we 
observe that correlation lengths between 8 and 13 give the best results and 
lead to satisfying the hypothesis at most points. 

 For the robust “Egg Model” case, we observe a similar trend in the results as 
for the uncertain Rosenbrock function. The modified formulation using the 
1:1 ratio achieves significantly better results compared to the original 
formulation at any point along the optimization curve 

 In the flatter part of the optimization curve the modified formulation with 
the 1:1 ratio, although performing better than the original formulation, never 
satisfies the hypothesis. Using higher ratios in the flatter region is necessary 
to achieve a good quality gradient. However, in the steeper part, the 
hypothesis is satisfied for all the points.  

 As the results have shown, the developed methodology can, in theory, be 
used to quantify the ensemble size required to achieve a high-quality 
gradient. However, all the angles obtained in this work are always less than 
90 degrees which suggests that with ensemble methods, irrespective of the 
ensemble size (in our case), we estimate the ‘correct’ uphill direction.  

 Use of a gradient of inferior quality in an optimization experiment strongly 
influences the final achievable NPV for a finite number of optimization 
iterations.  

 We recommend to use, out of the 30 potential robust gradient formulations 
identified in our paper, the single ‘smoothed’ modified formulation, i.e. 
equation (2.15) based on equations (2.22) and (2.23), using the 1:1 ratio for 
recovery optimization under uncertainty. In an optimization context, it is 
vital to use good quality 
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ENOPT WITH COVARIANCE MATRIX ADAPTATION   

 

 
Current implementations of EnOpt, a rapidly emerging method for model-based 

optimization, use a Gaussian ensemble of control perturbations with a constant 
covariance matrix, and thus a constant perturbation size, during the entire optimization 
process. The Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) is a 
gradient-free optimization method developed in the ‘machine learning’ community, 
which also uses an ensemble of controls, but with a covariance matrix that is 
continually updated during the optimization process. It has shown to be an efficient 
method for several difficult but small-dimensional optimization problems and has 
recently been applied in the petroleum industry for well location and production 
optimization. In this study we investigate the scope to improve the computational 
efficiency of EnOpt through the use of covariance matrix adaptation (CMA-EnOpt). 3 
The resulting method is applied to the water flooding optimization of a small multi-
layer test model and a modified version of the Brugge benchmark model. The controls 
used are inflow control valve settings at pre-defined time intervals for injectors and 
producers with undiscounted net present value as the objective function. We compare 
EnOpt and CMA-EnOpt starting from identical covariance matrices. For the small 
model we achieve only slightly higher (0.7%-1.8%) objective function values and 
modest speed-ups with CMA-EnOpt compared to EnOpt. Significantly higher 
objective function values (10%) are obtained for the modified Brugge model. The 

                                                           
3 This chapter is taken from: Fonseca, R.M, Leeuwenburgh O., Van den Hof, P.M.J. and Jansen, J.D., (2015): 
Improving the Ensemble Optimization Method through Covariance Matrix Adaptation (CMA-EnOpt), SPE Journal 
20(1).  
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possibility to adapt the covariance matrix, and thus the perturbation size, during the 
optimization allows for the use of relatively large perturbations initially, for fast 
exploration of the control space, and small perturbations later-on, for more precise 
gradients near the optimum. Moreover, the results demonstrate that a major benefit of 
CMA-EnOpt is its robustness with respect to the initial choice of the covariance 
matrix. A poor choice of the initial matrix can be detrimental to EnOpt, whereas the 
CMA-EnOpt performance is near-independent of the initial choice and produces higher 
objective function values at no additional computational cost. 

4.1 Introduction 

Derivative-free methods such as genetic algorithms or evolutionary strategies 
developed and widely used in the ‘machine learning’ community can be viewed as an 
alternative to approximate gradient techniques such as EnOpt. Such derivative-free 
methods are being used with increasing frequency for model-based optimization of oil 
recovery. One of the more popular derivative free methods used for petroleum 
engineering applications is the Covariance Matrix Adapted-Evolutionary Strategy 
(CMA-ES), which was developed by Hansen and co-workers (Hansen and Ostermeier 
1996, 2001, Hansen 2006). CMA-ES has recently been used for well placement 
optimization by Ding (2008) and Bouzarkouna et al. (2011), in a flooding optimization 
problem by Schulze-Riegert et al. (2011), and for a smart well optimization problem by 
Pajonk et al. (2011) amongst others. 

CMA-ES aims to ‘learn’ about the objective function search space to adaptively 
update the covariance matrix used to generate the ensemble of controls. Current 
implementations of EnOpt use a user defined constant covariance matrix to generate 
the ensemble of controls. It is impossible for a user to have a-priori knowledge about 
the optimal covariance to be used. Additionally as illustrated in chapter 3 different 
regions in the objective function space require covariance matrices with different 
structures and properties to achieve high quality gradient estimates. Thus in this 
chapter we propose a hybrid scheme, Covariance Matrix Adapted EnOpt (CMA-
EnOpt), which combines the explicit use of the gradient information (EnOpt) with the 
continuous adaptation of the covariance matrix (CMA). The CMA algorithm leads to 
an improved sampling mechanism which uses “local” knowledge of the nature of the 
objective function search space. In this chapter we will first provide an introduction to 
CMA-EnOpt, followed by its application to a small synthetic 3D reservoir model and a 
modified version of the Brugge benchmark model. A comparison of the results to those 
obtained with EnOpt will illustrate the advantages of CMA-EnOpt for relatively large-
scale model-based production optimization. 
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4.2 Update rules 

The approximate gradient g  from equation (2.14) can be used in any gradient-based 
optimization algorithm. In this thesis we have used a simple steepest ascent scheme 
according to 

 1u u g , (4.1) 

where the superscript  is the iteration counter, and  is a step length in the direction of 
the gradient. Note that, to ensure dimensional consistency,  must have dimensions, 
and its value will therefore be dependent on the units system applied. If u and g both 
contain elements with different dimensions (e.g. when the elements of u are pressures 
and rates) an additional scaling of the gradient elements may be required. Following 
Oliviera and Reynolds (2014), we scaled the gradient by its infinity norm and then, for 
each iteration, used an initial step size  = 0.1. Thereafter, we allowed for a maximum 
of three back-tracking steps, each time reducing the step size with a factor of one half. 
In more sophisticated optimization algorithms an improved update direction (i.e. one 
different from g) is determined by employing optimization methods that make use of 
the second derivatives of J with respect to u, i.e. of the Hessian matrix, or, more 
commonly, of approximations to the Hessian. In particular, so called quasi-Newton 
methods use gradient information of subsequent iterates to construct an approximate 
Hessian H . The corresponding update rule then becomes 

 
11u u H g , (4.2) 

where the definition of H  depends on the particular type of quasi-Newton method 
applied; see e.g. Nocedal and Wright (2006) or Luenberger and Ye (2010) for further 
details. Unlike equation (4.1), equation (4.2) is dimensionally consistent if  is taken 
dimensionless, because H-1 acts as a natural scaling matrix for the gradient vector g. 
Note that, as usual, in an actual implementation computing the inverse is avoided, and 
a system of equations is solved instead. The gradient is the direction of a tangent 
(hyper) plane in a point touching the objective function, while the Hessian gives 
curvature information in that point, i.e. it defines a convex quadratic function. The 
basic idea underlying the various quasi-Newton methods is that the curvature 
information contained in the approximate Hessian is gradually increased by subsequent 
inclusion of gradient information from previous iterations. Although we do not use a 
quasi-Newton algorithm in the optimization examples in our study, the concept of 
using information from subsequent iterates to improve the estimate of the curvature of 
the objective function is an important aspect of CMA-ES, and thus also of CMA-
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EnOpt. Moreover, we note that the use of the preconditioners uuC  and C  in equations 
(2.15) and (2.16) seem to play a similar role as the preconditioner H-1 in equation (4.2). 
However, uuC  and C , unlike H-1, do not restore dimensional consistency. 

4.3 Covariance Matrix Adaptation 

CMA-ES is a stochastic iterative optimization method in which the covariance matrix 
is updated at every iteration such that its largest principal direction, i.e. the eigenvector 
corresponding to its largest eigenvalue, is (approximately) re-aligned in the direction of 
the maximal increase of the objective function. CMA-ES uses two types of updates for 
the covariance matrix as briefly explained below. For a detailed overview we refer to 
Hansen (2011). 

4.3.1 Rank-  Update  

The motivation behind a rank-  update is to use information obtained within one 
single iteration (i.e. one ensemble of random control vectors {u1, u2, …, uM}  and their 
corresponding objective function values {J1, J2, …, JM}  through selecting the ‘best’  
members (i.e. those corresponding to the  highest objective function values) out of the 
M ensemble members: 

 1
1 2

11 ,   T
uu uuc cC C UU U u u u u u u , (4.3) 

where 0 < c  < 1 is a learning rate, and where the control vectors u1, u2, …, uM have 
been ranked such that for their corresponding objective function values it holds that 

1 2 1 .MJ J J J J  Equation (4.3) is called a rank-  update because the 
matrix product TUU  is, at most, of rank . Note that we use the distribution mean u  
instead of the ensemble mean u . It can be shown that for  = M and 1c , 1

uuC  
would be an unbiased estimator of the distribution covariance 1C (Hansen 2006). 
However, because we typically choose   < M , the entries of the covariance matrix 
will be selectively influenced by the ensemble members corresponding to the  highest 
objective function values. The choice of the learning rate c  turns out to be crucial to 
the success of the optimization as will be demonstrated later. Hansen (2011) discusses 
strategies to determine optimal values for c  (and the learning rate c1 introduced below) 
based on the dimension of the problem. However their test cases are of a relatively 
small dimension, whereas production optimization problems typically have hundreds 
to thousands of control variables. The choice of  is up to the user; in this study we 
used 4.M  
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4.3.2 Rank-One Update 

In equation (4.3) the covariance matrix update is determined using the best 
objective function values within one single iteration. It is also possible to update the 
covariance matrix by using information from previous  iterates, in a similar fashion as 
updating the Hessian in quasi-Newton methods. (For remarks about the relationship 
between the Hessian and the covariance matrix, see Hansen (2011).) The expression 
for such an update, derived in Hansen (2006), is given by 

 1 1 1
1 1(1 ) ,

T

uu uuc cC C p p  (4.4) 

where c1 is again a learning rate and p is the ‘evolution path’, which is a function of 
iterates u in earlier steps. Roughly speaking, p is obtained as a summation of previous 
iterates emphasizing the most recent iterates while gradually ‘forgetting’ the earlier 
ones. For the exact definition of p, see Hansen (2006). Because the outer product of 
two vectors results in a matrix of rank one, equation (4.4) is referred to as a ‘rank-one 
update’. The rank-one update has been shown to be particularly powerful when using 
small ensemble sizes with CMA-ES (Hansen, 2006).  

4.3.3 Combined Rank Update 

Combining equations (4.3) and (4.4) one obtains the update rule 

 1 1 1
1 1

rank-one  update
rank-   update

11 .
TT

uu uuc c c cC C UU p p  (4.5) 

Equation (4.5) utilizes information within one iteration as well as information from 
previous iterations. Hansen (2011) suggests that the former is more important when 
using a larger ensemble and that the latter is more important when using smaller 
ensembles. Several variations to equation (4.5) have been proposed; see e.g. Ros and 
Hansen (2008) and Arnold and Hansen (2010) wherein the off-diagonal elements are 
set to zero and only the diagonal elements i.e. the variances of the covariance matrix 
are updated:  

 1 1 1
, 1 , 1

rank-one  update
rank-   update

11 , 1, , .
TT

uu ii uu ii ii ii i iC c c C c U U c p p i M  (4.6) 

4.4 Covariance Matrix Adapted-EnOpt (CMA-EnOpt) Algorithm 

In EnOpt a constant distribution covariance matrix C  is used which, for 
uncorrelated controls of the same type, is typically chosen as a diagonal covariance 
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matrix with equal diagonal elements 2. Often, a time correlation is imposed on the 
controls resulting in a block-diagonal matrix with each block corresponding to the 
control time steps of a single well or inflow control valve (ICV). The value of the 
standard deviation  can have a strong influence on the quality of the approximate 
gradient and therefore on the performance of the optimization algorithm. However, 
there is no well-defined method to choose this value. (The same is true for the choice 
of the time correlation length.) Thus, we propose to use the covariance adaption 
strategy described above to gradually improve the distribution covariance matrix in 
EnOpt, leading to the following algorithm for CMA-EnOpt.  

1. Set 0 . Choose an initial control vector 0u  and evaluate the corresponding 
objective function value. 

2. Generate an ensemble of randomly perturbed controls around 0u  from an 
initial, user defined, diagonal covariance matrix 2C I  or block-diagonal 
covariance matrix C . 

3. Run a reservoir simulation for every member of the perturbed control ensemble 
and calculate the corresponding objective function values using equation (2.1). 

4. Compute the EnOpt gradient g  using equation (2.14). 

5. If the optimization stopping criterion, or the maximum allowed number of 
iterations is achieved , stop. Else, set 1.  

6. Determine a step size  and compute an updated control vector 1u  using 
equation (4.1) and the corresponding objective function value. 

7. Compute the updated covariance matrix 1
uuC  using either equation (4.5) or 

equation (4.6) 

8. Regenerate an ensemble of randomly perturbed controls around 1u  from the 
updated covariance matrix 1

uuC . 

9. Go to step 3. 

4.5 Results: 5-Spot Synthetic Reservoir Model  

Advances in technology have led to an increase in the application of ICVs to 
regulate flow rates and maintain pressure in the reservoir. We consider a control 
problem where ICV settings of injection and production wells in a 3D synthetic 
reservoir model, taken from JOA 2007, are manipulated to optimize waterflooding 
over the producing life of the reservoir. The model, illustrated in Fig. 4.1(a), consists 
of 25 × 32 × 5 = 4000 grid blocks. The approximate size of each grid block is 
110 × 90 × 20 m, so that the reservoir volume is 2.5 × 3.5 × 0.1 km3. The geological 
structure consists of uplifted blocks, separated by faults. The reservoir is produced 
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using an inverted five-spot well pattern, i.e. four producers at the corners of the grid 
with an injector in the center. The reservoir is divided into five layers with different 
horizontal permeabilities. Fig. 4.1(b) is the top view of the transmissibility multipliers 
used for this model, the white cells are grid blocks which are inactive. We observe that 
there is a sealing fault on the North-Western side of the block, close to producer 1. 
Table 4.1 lists the reservoir and fluid properties of the model. A Corey model with 
exponents equal to 2 for both oil and water is used for the relative permeabilities where 
the connate water saturation is 0.2, the residual oil saturation is 0.3 and the end point 
relative permeabilities to oil and water are 0.8 and 0.4 respectively. Capillary pressure 
effects are not included. 

TABLE 4.1: RESERVOIR AND FLUID PROPERTIES  
Property Values Units 

Porosity 0.2 -- 

Permeability (layer 1 – layer 5) 100-300-50-600-100 mD 

Reservoir pressure @ 1950 m 200 bar 

Density of oil 800 kg/m3 

Density of water 1000 kg/m3 

Temperature 77 °C 

Oil compressibility @ 200 bar 4e-5 1/bar 

Water compressibility @ 200 bar 4e-5 1/bar 

Rock compressibility 0 1/bar 

Viscosity of oil @ 1 bar 2 cP 

Viscosity of water @ 1 bar 0.5 cP 

The wells penetrate all five layers with one ICV in each layer. The producing life of 
the reservoir is divided into 15 optimization control steps with each of one year (365 
days) in duration and there are 25 controls per control step which results in a total of 
15 × 25 = 375 controls to be optimized. Water is injected at a constant pressure of 300 
bars and the production wells are operated at a minimum pressure of 15 bar. We used 
an oil price ro = 130 $/m3, water production costs rwp = 25 $/ m3, and water injection 
costs rwi = 6 $/m3. Well index multipliers were used to model the ICVs in the simulator 
with bounds of 1×10-4 and 1. For the simulation of the model we used a commercial 
fully implicit finite difference black oil simulator (Eclipse, 2011). 
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Fig. 4.1: (a) Five-spot reservoir model. The colors indicate the initial oil saturation. (b) 
Transmissibility multiplier values for the model. One fault has a zero transmissibility 
(blue) thus is sealing.  

4.5.1 Comparison between EnOpt and CMA-EnOpt 

We performed several comparisons between EnOpt and CMA-EnOpt to optimize the 
ICV settings with the aim to maximize NPV as defined in equation (2.1). The starting 
point for the optimization was an initial control vector having values equal to 1. Thus 
all the ICVs were fully open as a starting strategy. The initial value of , for use in a 
diagonal covariance matrix, was chosen equal to 0.1 and we used a fixed ensemble size 
of 50 samples. Random control values outside the range [1×10-4 , 1] were simply reset 
to their bounds. We first compare the results using only a diagonal update for the 
covariance matrix; see equation (4.6). The optimization was allowed to run for 50 
iterations which usually resulted in a near-horizontal (i.e. nearly converged) objective 
function graph for the EnOpt method; see Fig. 4.2. When using approximate gradients 
and inexact line search techniques, it is very well possible that the  curves do not 
always increase monotonically. We have chosen to allow for this to happen. Although 
monotonicity could be enforced, this would induce a higher computational cost and an 
increased risk of becoming trapped in a local optimum. We used various settings of the 
initial distribution covariance matrix (i.e. of the standard deviation ) to generate the 
initial ensemble, leading to different optimization results, see Fig. 4.2. The best EnOpt 
run resulted in an objective function value of 9.1×109 $ while the CMA-EnOpt run for 
the same initial covariance distribution achieved a slightly higher value of 9.15×109 $, 
i.e. 0.7% higher. An illustration of the corresponding ICV settings for one of the wells 
is presented in Fig. 4.3, which shows the differences in the control strategies between 
EnOpt (blue line) and CMA-EnOpt (red line). The major difference is in the nature of 
the controls: CMA-EnOpt obtains controls that switch almost completely between the 
upper and lower bounds. We note that such (near-) bang-bang controls are, in some 
optimization problems, the optimal solutions, and are often easier to implement in 
practice. As shown by Zandvliet et al. (2007) a locally optimal solution of an optimal 
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control problem in which the system equations and the integral term in the objective 
function are both linear in the controls, and that has only simple bound constraints or 
linear constraints on the controls, is necessarily a bang-bang solution (possibly in 
combination with singular arcs, i.e. areas where the solution is not bang-bang).  The 
full analysis of necessary and sufficient conditions for bang-bang control would require 
rewriting the optimization problem in terms of an optimal switching time with the aid 
of an adjoint solution, which we therefore did not pursue for this example. We refer to 
Zandvliet et al. (2007) for detailed information on the conditions for bang-bang 
control. 

 
Fig. 4.2: Comparison of optimization performance for different initial covariance 
matrices. 

 
Fig. 4.3: Optimal control settings for ICV 4 as computed by EnOpt (blue) and CMA-
EnOpt (red) with initial  = 0.1 for both cases 

4.5.2 Improved Robustness 

Exact gradient-based methods (in combination with an exact line search) are inherently 
local methods because they always result in uphill directions, unless forced to take 
steps in other directions to scout for other optima. Most gradient-free methods have 
been shown to possess more global search characteristics. In the EnOpt method the 
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initial distribution covariance matrix may be chosen to mimic the desired behaviour: 
large variances results in a more global search strategy and small variances a more 
local one. We tested EnOpt and CMA-EnOpt with different initial starting values for 
the standard deviation . Fig. 4.2 illustrates that the choice of the initial covariance 
matrix has a significant impact on the performance of EnOpt, because the matrix 
remains constant throughout the optimization. When using  = 1 for EnOpt (green 
line), the algorithm achieves poor results, probably because the sampling takes place in 
a too large area which leads to poor approximations of the gradient. For  = 0.1 (blue 
line) and  = 0.01 (light blue line) better results are achieved. For CMA-EnOpt (red 
and black lines) the initial starting covariance matrices have relatively little impact on 
the final objective function values and both runs achieve better results than EnOpt. 
When starting with  = 1, CMA-EnOpt achieves a slightly higher objective function 
value than when starting with  = 0.1. However if the algorithm is continued for more 
iterations we observe (not shown here) that both the curves (red and black) achieve 
very similar objective function values. For this example, we therefore find that CMA-
EnOpt performs better than EnOpt with an optimized distribution covariance matrix, 
and much better than EnOpt with a poor initial guess for the covariance. The main 
benefit of CMA-EnOpt therefore appears to be its robustness with respect to initial 
choices of the covariance matrix. 

4.5.3 Learning Rates  

CMA-EnOpt contains several parameters that require user-defined values, in particular 
the learning rates c  and c1. Fig. 4.4 illustrates that if we choose the learning rates too 
low, the advantage of CMA-EnOpt over EnOpt is negligible, if any. Higher learning 
rates are seen to achieve significantly better results. Here, a high learning rate (fast 
learning) corresponds to a 75-25% update rule with c  = 0.20 and c1 = 0.05. In this case 
(c  + c1) × 100% = 25% new information is incorporated into the covariance matrix 
every iteration. A low learning rate (slow learning) corresponds to a 99.5-0.5% update 
rule with c  = 0.004 and c1 = 0.001, in which case (c  + c1) × 100% = 0.05% new 
information is incorporated These results were obtained when we only updated the 
diagonal elements of the covariance matrix. Hansen (2011) reports, for CMA-ES, that 
if the full covariance matrix is updated, high learning rates can have a detrimental 
impact on the optimization because they may lead to covariance matrix degeneration, 
i.e. to a situation where the elements of the covariance matrix become so small that 
sampling takes place in a too small area.   
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Fig. 4.4: Impact of optimization method and learning rates: EnOpt (blue curve), CMA-
EnOpt with low learning rates (0.5%, black curve) and high learning rates (25%, red 
curve). 

Fig. 4.5 illustrates estimated standard deviations  for two control variables (i.e. the 
square root of the corresponding diagonal values of the distribution covariance matrix) 
for different learning rates. We observe from Fig. 4.5 that different control variables 
have different optimal standard deviations at each iteration. The CMA-EnOpt 
algorithm generally results in a gradual decrease of the standard deviation of a control 
when approaching the optimum. For control nr. 19 in Fig. 4.5 the magnitude of the 
corresponding gradient is an order higher than that of control nr. 299, indicating that 
either control nr. 19 is still much further from the optimum than control nr. 299, or that 
the objective function has a much higher curvature in the direction of control nr. 19. 
We note that of the 375 controls, only five controls have standard deviations like 
control 19, i.e. standard deviations higher than the initial standard deviation, with 
control 19 being the highest, while the remaining 370 controls have much lower 
standard deviations. The low learning rates, based on the recommendations for small-
size problems as described in Hansen (2011) and Hansen (2006), lead to negligible 
changes in the standard deviation (black line, overlapped by the blue line in Fig. 4.5). 
In this case CMA-EnOpt behaves just like EnOpt with a fixed standard deviation (blue 
line) for all controls. Thus, learning rates have a significant impact on the performance 
of the optimization algorithm; if chosen too conservatively, the advantage of CMA-
EnOpt over EnOpt will be negligible.  
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Fig. 4.5: Standard deviations for two control variables for different optimization methods 
and learning rates:, CMA-EnOpt (high learning rates: red and green curves), CMA-EnOpt 
(low learning rates: black curve) and EnOpt (blue curve, nearly overlapping the black 
curve). 

4.5.4 Correlations and Block-Diagonal Update 

Imposing correlations over control times (effectively imposing smoothness on the 
control solution) may lead to an improved efficiency of the EnOpt algorithm when 
using many control time steps; see e.g. Chen et al. (2009), Leeuwenburgh et al. (2010), 
and Oliveira and Reynolds (2014). The CMA-EnOpt results presented thus far were 
obtained with a diagonal update of uuC , using equation (4.6), without imposing 
smoothness on the controls. Fig. 4.6 illustrates the impact of introducing non-zero 
correlations on the control perturbations over time using the spherical correlation 
function as defined in Zhao et al. (2013) where the correlation length is set equal to the 
total number of control time steps. This results in the red curve i.e. a diagonal CMA-
EnOpt update with an additional correlation (smoothing). The black curve represents 
the case without correlation. Although, in this case, the impact of imposing a 
correlation over time only marginally increases the objective function value, the red 
curve is nearly always above the black curve which suggests an improved 
computational efficiency. 
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Fig. 4.6: Impact of imposing time correlations on the optimization process. 

To obtain those results an arbitrary correlation length was chosen. The correlation 
length can have a significant impact on the results in different problems but 
unfortunately there is no pre-defined way of knowing the ideal correlation length, as 
shown in Oliveira and Reynolds (2014). The efficiency of using such a correlation 
function in conjunction with the diagonal update based CMA-EnOpt algorithm raises 
the question as to whether it is possible to estimate the optimal correlation between the 
controls using the CMA-EnOpt method. In order to investigate this we introduce a 
block-diagonal update of uuC  for the CMA-EnOpt method, using equation (4.5) where 
also off-diagonal covariance updates are allowed, but only for cross-covariances 
between controls belonging to the same ICV. Thus instead of using an artificial or pre-
defined correlation function and length to impose smoothness on the controls, we allow 
the CMA-EnOpt algorithm to estimate the optimal cross-correlation between the 
controls, i.e. each ICV is associated with its own 15x15 covariance matrix (where 15 is 
the total number of control time steps), starting from a diagonal covariance matrix. The 
blue curve in Fig. 4.6 represents this ‘block-diagonal’ update, which performs better 
than both the diagonal update (black curve) and the diagonal update with smoothing 
(red curve). As a comparison, we also introduced time-correlations (smoothing) in 
EnOpt with the aid of a (constant) block-diagonal covariance matrix C . Using 
different correlation lengths (green and yellow lines), we achieve higher objective 
function solutions in the earlier iterations but solutions with lower objective function 
values at the final iteration compared to CMA-EnOpt. Also in Fig. 4.4 EnOpt seems to 
perform better early-on in the optimization, which suggests to use EnOpt early-on and 
only switch to CMA EnOpt later during an optimization run. However, it is unknown 
in advance what is the correct point during the optimization to switch between the two 
methods, and we did not pursue this possibility. Finally, we checked the influence of 
regularization by (double) pre-multiplication of the gradient g with C  (constant, for 
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EnOpt) or with uuC  (updated after every iteration, for CMA-EnOpt) similar to the 
premultiplication in equations (2.15) and (2.16). Table 4.3 depicts the results, and it 
follows that, for this particular example, regularization generally does not have a 
positive effect and, in nearly all cases, results in somewhat lower objective function 
values. 

 
Table 4.2: Effect of Regularization . All results are expressed in $. 
Gradient 
formulation 
for EnOpt 

Gradient 
formulation 
for CMA-
EnOpt 

EnOpt: 
Block-
diagonal, 
5 time-step 
correlation 

EnOpt: 
Block-
diagonal, 
15 time-step 
correlation 

CMA-
EnOpt 
Block-
diagonal 

CMA-
EnOpt 
Diagonal, 
5-time step 
correlation 

CMA-
EnOpt 
Diagonal, 
15 time-
step 
correlation 

g g 9.102e9 9.073e9 9.175e9 9.165e9 9.14e9 
Cg  uuC g  9.103e9 9.035e9 9.001e9 9.132e9 9.05e9 
CCg  uu uuC C g  9.088e9 9.018e9 8.983e9 9.112e9 8.925e9 

4.5.5 Full Matrix Update 

In the theory section we discussed the similarity between CMA-EnOpt and quasi-
Newton methods, with the adapted covariance matrix being approximately similar to 
the inverse of the Hessian matrix. So far, however, we did not use the full covariance 
matrix for two reasons. 

 Bouzarkouna et al. (2011) and Ros and Hansen (2008) show that for certain 
types of objective functions, like NPV, which can be decomposed into a sum 
of the individual NPVs from each well, an uncorrelated (diagonal) 
covariance matrix achieves better solutions in comparison to using a full 
covariance matrix.  

 Because the updated covariance matrix is used to sample a new ensemble of 
controls for a gradient estimate of the next iteration, either an Eigen or 
Cholesky decomposition of the covariance matrix is needed to generate the 
ensemble of controls, which can be computationally demanding especially in 
problems of a high dimension. 

In view of these points we, so far, used diagonal or block-diagonal updates. This 
approach is supported by the results shown in Fig. 4.7 which compares the various 
covariance matrix update types available with CMA-EnOpt for this model.  
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Fig. 4.7: Comparison of the impact of different matrix updates. 

We observe that with the full matrix update (black curve) the achieved solutions are 
inferior to those resulting from the diagonal update (blue curve), which we believe is a 
result of the introduction of ’unnecessary‘ correlations between controls that should be, 
logically, uncorrelated (e.g. wells on opposite corners of the five-spot pattern). The 
block-diagonal update (red curve) of the covariance matrix achieves the best results. 
There are a number of advantages associated with the use of a block-diagonal update in 
this example:  

 the obtained objective function values are higher than for other update types, 

 the solutions are somewhat smoother, as shown in Fig. 4.8, 

 there is no need to define a correlation length, and 

 the computational burden of decomposing a large matrix is avoided. 

In addition, some of the rotational aspects of the covariance matrix are retained, which 
is known to be especially useful when dealing with objective function search spaces 
that contain ridges, in which case the elongated sampling area may align itself with a 
ridge. 

 
Fig. 4.8: Optimal control settings for ICV 4 corresponding to different CMA-EnOpt 
update types. 
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4.5.6 Comparison of Update types 

In the CMA-EnOpt equations written above there are two different sources of 
information used for the matrix update, namely rank one and rank μ updates. While the 
literature on CMA-ES suggests that the former is more important in smaller ensembles 
and the latter in larger ensembles, we investigated which update is more useful for our 
case. Fig. 4.9 illustrates the effect of the different matrix update types, and shows that 
for our problem the rank μ update (blue curve) performs significantly better than the 
rank one update (green curve), in terms of objective function value and computational 
efficiency. In fact, for this model and learning rates the rank one update has a 
detrimental effect on the optimization as can be seen in the combined rank update 
(black curve), the result of which lies between the different rank updates. We note that 
further testing is required to obtain full insight into the relationships between various 
aspects of the CMA-EnOpt algorithm, such as optimal learning rates and update 
strategies. 

  
Fig. 4.9: Comparison of the impact of different rank updates. Rank 1 update: c  = 0 and 
c1 = 0.05. Rank  update: c  = 0.20 and c1 = 0. Combined update: c  = 0.20 and c1 = 0.05. 

4.5.7 Comparison with CMA-ES 

The motivation for CMA-EnOpt was derived from the CMA-ES algorithm given in 
Hansen (2006). Therefore, an obvious next step would be the comparion of EnOpt and 
CMA-EnOpt with CMA-ES, i.e. with the evolutionary strategy that formed the basis 
for the covariance matrix adaptation strategy in CMA-EnOpt. Initial comparisons, 
illustrated in Fig. 4.10, indicate that the CMA-ES results are inferior to those of the 
two EnOpt varieties. CMA-ES achieves results which are approximately 2.5% lower 
than CMA-EnOpt for the diagonal update and 1.4% lower for the full matrix update, 
while also EnOpt achieves better results than CMA-ES for the same computational 
burden, i.e. 50 optimization iterations. Therefore, explicitly utilizing (approximate) 
gradient information seems to pay off for this problem (Note: tuning parameters such 

5 10 15 20 25 30 35 40 45 50
8.2

8.4

8.6

8.8

9

9.2 x 10
9

Iterations

U
nd

is
co

un
te

d 
N

PV
 (U

SD
)

 

 

Rank 1 Update

Rank  Update

Combined Rank Update



4. ENOPT WITH COVARIANCE MATRIX ADAPTATION   

 

65 
 

as ensemble size, initial covariance matrix, learning rates etc. are exactly the same for 
all the results in Fig. 4.10.). However, further numerical comparisons are required to 
evaluate the strength and weaknesses of the three methods.  

 
Fig. 4.10: Performance comparison of CMA-ES with CMA-EnOpt on the five-spot model 
with a full matrix update (red, purple) and a diagonal matrix update (blue, green). 

4.5.8 Effect of Different Random Number Sequences 

The results shown in this paper are based on single runs starting from the same initial 
random number seed. A comparison of stochastic methods requires multiple sets of 
comparisons with different random number sequences. Chen and Oliver (2012) have 
shown that sizeable variability in the results for different random seeds exists for cases 
where smaller ensembles are used to estimate the gradient. When they use a larger 
ensemble size, which is still smaller than the size used in our paper, the variability is 
reduced. We have run our experiments with five different random seeds, the results of 
which are displayed in Fig. 4.11. We observe the trends to be similar to the earlier 
results in our paper (i.e., CMA-EnOpt always outperforms EnOpt). Additionally there 
is a marginal reduction in variability when using CMA-EnOpt, but we may need more 
runs to conclude definitively in this regard. Note: the scale of the y-axis in Fig. 4.11. 
The range of NPV values which defines the variability is rather small, so even for 
EnOpt the variability is not very large, which is in accordance with the results shown 
in Chen and Oliver (2012).  
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Fig. 4.11: Box plot to illustrate the effect of different random seeds on the stochastic 
ensemble optimization method. Note the scale of the y-axis which implies that the NPV 
values are quite close. Red lines: median. Whiskers (black): maximum and minimum 
values. Box edges (blue): 25 and 75 percentiles.   

4.6 Modified Brugge Model 

To test our results on a more complex and challenging reservoir model we selected 
a modified version of the Brugge benchmark model (Peters et al. 2010, 2013). The 
model, shown in Fig. 4.12, consists of 60,048 grid blocks. It represents a segment of an 
anticlinal structure with one major fault. The reservoir is produced using a peripheral 
well pattern, i.e. 10 injectors on the down-flank of the structure and 20 producers 
towards the top of the structure. The reservoir is divided into nine layers with varying 
permeabilities and porosities. All rock and fluid properties were chosen identical to 
those in the original Brugge model (Peters et al. 2010, 2013). However, the oil-water 
contact has been lowered to 1780 m (compared to an original contact depth of 1678 m), 
thus increasing the STOIIP of the model, while the corresponding well locations are 
also adjusted as shown in Fig. 4.12. We consider a control problem where ICV settings 
of injection and production wells are manipulated to optimize waterflooding over the 
producing life of the reservoir which is set to 20 years, or 7200 days.  

 
Fig. 4.12: Modified Brugge reservoir model. The colors indicate the initial water 
saturation. 

The wells penetrate all nine layers with 3 ICVs in every well (except where bottom 
ICVs would be placed in the water leg) resulting in a total of 87 controls per time step. 
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The producing life of the reservoir is divided into 20 time intervals of one year (360 
days) each, which results in a total of 1740 controls to be optimized. Water is injected 
at a constant rate of 3000 m3/day and the production wells are operated at a maximum 
liquid rate of 1200 m3/day. The bottom hole pressure limits were 190 bar for injectors 
and 40 bar for producers. All wells are assumed to be operational from the start of field 
production. We used an oil price ro = 140 $/m3, a water production cost rwp = 30 $/m3, 
and a water injection cost rwi = 10 $/m3. The discount rate b was set to 0. Well index 
multipliers were used to model the ICVs in the simulator with bounds of 1×10-4 and 
one. The starting point for the optimization was an initial control vector having values 
equal to one. The initial value of  was equal to 0.1 and we used a fixed ensemble 
size of 50 samples. Perturbed control values outside the range 
[1×10-4, 1] were simply reset to their bounds. We used a commercial fully implicit 
finite difference black oil simulator (Eclipse 2011). 

4.6.1 Results  

Because this model is significantly more complex and larger than the small model 
discussed before, we chose to perform only a limited number of optimization 
experiments. Fig. 4.13 shows a comparison between EnOpt (black curve), CMA-
EnOpt with only diagonal updates (blue curve) and CMA-EnOpt with block diagonal 
updates (red curve). The optimization was run for 50 iterations, i.e. 2500 reservoir 
simulations. User-defined parameters and initial strategies were the same for all 
algorithms. Although neither of the CMA-EnOpt methods had converged yet to an 
optimum after 50 iterations, CMA-EnOpt with block diagonal updates clearly 
outperformed EnOpt, with an increase of 10.5% in objective function value for the 
same number of reservoir simulations.  

 
Fig. 4.13: Comparison of different methods for the modified Brugge model. 

The results shown in Fig. 4.13 confirm the results obtained from the simple five-spot 
model. The increased robustness to the choice of the initial covariance matrix is seen to 

5 10 15 20 25 30 35 40 45 50
3

3.5

4

4.5

5

5.5 x 10
9

Iterations

U
nd

is
co

un
te

d 
N

PV
 (U

SD
)

 

 

EnOpt

CMA-EnOpt: Block-Diagonal Update

CMA-EnOpt: Diagonal Update



4. ENOPT WITH COVARIANCE MATRIX ADAPTATION   

 

68 
 

similarly apply for this case. In addition we observe that the relative increase in 
objective function value for the complex Brugge model is significantly higher than for 
the simple five-spot model.  

4.6.2 Robustness to the Initial Covariance Matrix 

The choice of a good covariance matrix in EnOpt is a matter of trial and error, 
which for the modified Brugge case requires a significant computational effort. The 
main idea of CMA-EnOpt is to avoid the trial and error procedure and still achieve 
results of practical importance. We re-ran the simulations for the modified Brugge 
example for two additional initial choices of the covariance matrix, the results of which 
are summarized in Table 4.2. We observe that, irrespective of the initial choice of the 
covariance matrix, the trend in the results (i.e. CMA-EnOpt performing better than 
EnOpt) is similar to those in Fig. 4.13. We also observe that the initial choice of the 
covariance matrix still plays a role in the optimization, but that we achieve better 
results for CMA-EnOpt. The EnOpt (block-diagonal) result is from an experiment with 
a constant covariance matrix with a correlation length of five time steps for the 
correlation function described in Zhao et al. (2013). Varying the correlation length may 
lead to superior or inferior results, which is not known a-priori and hence would 
require trial and error experiments. This has not been pursued since the experiments are 
computationally expensive.  For the three different choices of the initial covariance 
matrix using block-diagonal covariance matrices (i.e. time-correlated covariance 
matrices) CMA-EnOpt has done better than EnOpt for two choices of covariance 
matrices while for the other choice, it is marginally inferior. Note: due to the 
significant computational effort required for this model the effect of different random 
seeds on the results has not been tested. The stopping criteria for the experiments was 
the maximum number of iterations, in this case 40 iterations.  

 
Table 4.3: The effect of different choices of the initial covariance matrix on the optimization for 
different methods. All results are expressed as objective function value in $.
Initial Sigma EnOpt CMA-EnOpt 

(diagonal) 
EnOpt 

(block-diagonal) 
CMA-EnOpt 

(block-diagonal) 
1 4.58e9 4.97e9 5.33e9 5.42e9 

0.1 4.6e9 4.63e9 5.26e9 5.23e9 
0.01 4.49e9 4.45e9 4.87e9 5.32e9 

4.6.3 Update Comparison 

In the simple five-spot example the rank-μ update for CMA-EnOpt with a block-
diagonal update scheme performed best. We performed a similar experiment on the 
more complex modified Brugge case and observed different results as illustrated in 
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Fig. 4.14. For this model the rank one (green line) update performs better than the rank 
μ (blue line) update while after 40 iterations the combined rank (black line) update 
performs best. Note that the rank μ update has a higher weight (0.20) than the rank one 
update (0.05) similar to the values used in the previous example. 

 
Fig. 4.14: Comparison of the rank updates for the modified Brugge model. 

Thus for the Brugge model the combined rank update (black line in Fig. 4.14) 
eventually achieves the highest objective function value while the rank μ-only update 
achieves the worst solution for this case. More experience is needed to arrive at general 
recommendations on which type of update is most suited for a particular case. 

4.7 Conclusions  

 A comparison between CMA-EnOpt and EnOpt for a simple five-spot model 
showed consistently (somewhat) higher objective function values and 
modest speed-ups for CMA-EnOpt, depending on the choice of user-defined 
parameters in both algorithms. 

 The major benefit of CMA-EnOpt is its robustness with respect to the initial 
choice of the covariance matrix. A poor choice of the initial matrix can be 
detrimental to EnOpt, whereas the CMA-EnOpt performance is near-
independent of the initial choice. 

 Learning rates are crucial for the success of CMA-EnOpt. For both the 
simple five-spot model and the modified Brugge model, a 75%-25% update 
rule proved to be successful.  

 For the simple five-spot model, the methods that explicitly use gradient 
information (EnOpt and CMA-EnOpt), performed better than the method 
that doesn’t do so (CMA-ES). (Not tested for the modified Brugge model).  

 A comparison between CMA-EnOpt and EnOpt for the modified Brugge 
model revealed slightly lower to significantly higher (-1% - +9%) objective 
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function values depending on choice of user-defined parameters in both 
algorithms. 

 Updating a block-diagonal (i.e. time-correlated) covariance matrix leads to 
significant improvements in the results as well as in the efficiency of the 
algorithm, compared to using a prescribed correlation (smoothing) and 
compared to updating either diagonal elements only, or updating the full 
matrix.  

 The different rank updates play different roles in the success of the 
optimization; for the simple five-spot model the rank μ update performed 
much better than the rank one update, with a combined rank update ending 
up in-between. For the complex Brugge model, however, the rank  update 
performed worst, while the combined-rank update performed best. Further 
experience is needed to arrive at general recommendations. 

 Robustness to the choice of the initial covariance matrix, and higher 
objective function values are the main advantages of CMA-EnOpt over 
EnOpt.  
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  5
 
HIERARCHICAL BI-OBJECTIVE OPTIMIZATION  

 

 
Van Essen et al. (2011) proposed two hierarchical multi-objective methods to 

include short-term targets in life-cycle production optimization. However the work by 
Van Essen et al. (2011) had two limitations: 1) the adjoint formulation is used to obtain 
gradient information, requiring simulator source code access and an extensive 
implementation effort, and 2) one of the two proposed methods relies on the Hessian 
matrix which is obtained by a computationally expensive method. In order to overcome 
the first of these limitations, we used ensemble-based optimization (EnOpt). EnOpt 
does not require source code access and is relatively easy to implement. To address the 
second limitation, we used the Broyden-Flecther-Goldfarb-Shanno (BFGS) algorithm 
to obtain an approximation of the Hessian matrix. We performed experiments in which 
a water flood was optimized in a geologically realistic multi-layer sector model. The 
controls  were inflow control valve settings at pre-defined time intervals. Undiscounted 
Net Present Value (NPV) and highly discounted NPV were the long-term and short-
term objective functions used. We obtained an increase of approximately 14% in the 
secondary objective for a decrease of only 0.2-0.5% in the primary objective. We also 
applied the same techniques to perform hierarchical optimization under geological 
uncertainty. The chapter demonstrates that ensemble-based hierarchical bi-objective 
optimization with and without geological uncertainty can achieve results of practical 
value in a computationally efficient manner. 4 

                                                           
4 Based on Fonseca, R.M., Leeuwenburgh, O., Van den Hof, P.M.J. and Jansen, J.D. 2014. Ensemble based 
Hierarchical Multi-Objective Production Optimization of Smart Wells. Computational Geosciences 18(3-4).   
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5.1 Introduction 

Operational decisions in reality are generally based on short-term objectives of a 
project in terms of operational criteria, production contracts etc., and strategies to 
optimize such objectives are often in conflict with optimal long-term strategies. Jansen 
et al. (2009) observed that significantly different optimized long-term water flooding 
strategies result in nearly equal values of the objective function, defined as net present 
value (NPV). They concluded that the life cycle optimization problem is ill-posed and 
contains redundant degrees of freedom (DOFs). Thus, there exist multiple solutions to 
the optimization problem, and different initial starting points may lead to different 
solutions in an optimal subset of the decision variable space. Oliver et al. (2008) 
illustrated a similar problem for optimization problems that appear in computer-
assisted history matching which are well known to be very ill-posed. The presence of 
redundant DOFs formed the basis of the multi-objective optimization approach of Van 
Essen et al. (2011). They suggested a hierarchical optimization scheme to include 
secondary objectives into the life cycle optimization using the adjoint formulation. 
They observed a significant increase in short-term objectives with minimal change to 
the primary objective function, similar results were obtained by Chen et al. (2012) and 
Suwartadi et al. (2012). In this chapter we investigate the applicability of the EnOpt 
method instead of the adjoint method for multi-objective optimization. We also 
propose a modification of the hierarchical optimization scheme which improves the 
computational efficiency of the algorithm. This chapter provides a practical and 
relatively easy to implement alternative to adjoint based multi-objective optimization 
for cases with and without geological uncertainty being incorporated into the 
optimization framework.  

5.2 Life Cycle Optimization 

Life cycle optimization of hydrocarbon recovery requires at least one decision 
variable as well as a model that provides relatively accurate long-term predictions. The 
most widely implemented secondary recovery mechanism in the petroleum industry is 
water flooding. Water flooding is our choice of recovery mechanism for the following 
reasons.  

 There are many decision variables involved in a water flooding strategy. 
 The process is well understood and can be modeled accurately over long 

time intervals. 
Recent improvements in technology have led to an increase in the application of 
downhole chokes or inflow control valves to regulate flow rates and maintain pressure 
in the reservoir. Smart wells, i.e. wells with Inflow Control Valves (ICVs), are 
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important tools to increase oil recovery and delay water production in multi-zone 
reservoirs. ICVs can also be used to manipulate the stream lines in a single 
heterogeneous reservoir thus sweeping the reservoir more efficiently (Jansen, 2011). 
Thus it is important to find the optimum value for the settings of the ICVs so as to 
maximize their potential. In order to improve economic life cycle performance 
dynamic optimization has to be performed over the producing life of the reservoir due 
to the slowly changing nature of the saturation distribution. We consider a control 
problem where ICV settings can be manipulated to achieve the best possible objective 
function.  

5.3 Hierarchical Bi-objective Optimization 

The process of optimizing systematically and simultaneously a collection of 
objective functions is called multi-objective optimization. There are various methods 
of multi-objective optimization such as the weighted sum method, Pareto optimality, 
goal programming etc. Van Essen et al. (2011) introduced a hierarchical optimization 
scheme to solve the multi-objective production optimization problem. They argued that 
the weighted sum method (in which each objective function is assigned a weight 
factor) suffers from an arbitrariness in choosing the weight factors and therefore 
preferred a hierarchical method (in which the second objective is optimized while 
keeping the optimized value of the first objective (almost) fixed). They proposed two 
hierarchical methods in combination with the adjoint formulation, which are explained 
below. We have, in this work, used those hierarchical methods to investigate their 
applicability in combination with the EnOpt method. . 

5.3.1 Null-space based optimization 

Van Essen et al. (2011) introduced a hierarchical optimization scheme to achieve 
multi-objective production optimization, which prioritizes the objective functions. The 
optimization of the secondary objective function J2 is constrained by a maximum 
allowable change in the primary objective function. Thus the primary objective 
function J1 will remain close to its optimal value. A general formulation for 
hierarchical optimization is as follows 
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where u is the control vector or input vector (ICV settings), x is the state vector (grid 
block pressures and saturations), f is a vector-valued function that represents the 
system equations, x0 is the state vector representing the initial state of the reservoir, the 
subscript k indicates discrete times and K is the total number of time steps. The vector 
of inequality constraints c concerns production system capacity limitations or 
operational constraints. The parameter 0  has an appropriately small value 
compared to 1J . Solving the above equations requires the knowledge of 1J  which is 
the optimized value of J1 obtained from the primary objective optimization. Thus the 
hierarchical optimization constrains the optimization of the secondary objective with 
respect to the primary objective function. The ordering of the different objective 
functions is not unique, thus secondary objectives can be implemented as primary 
objectives and vice versa. This hierarchical scheme is attractive when there is a 
presence of redundant degrees of freedom in the primary objective function. To exploit 
these degrees of freedom we require the Hessian of the primary objective function. 
Some concepts detailing the need for this Hessian and methods to exploit the redundant 
degrees of freedom are explained in the appendix. 

5.3.1.1 Approximate Hessian  

Van Essen et al. (2011) proposed the use of a finite difference scheme in 
combination with the adjoint formulation to approximate the second order derivatives 
of the objective function. Without the adjoint formulation, to estimate a finite 
difference based Hessian we require n×(n+1) function evaluations where n is the 
number of controls. Thus this method is computationally infeasible for realistic 
reservoir models and large numbers of controls, due to the high number of function 
evaluations needed. To alleviate this short-coming we propose to use the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm which approximates and updates the 
Hessian during the optimization of the primary objective function. This leads to a 
significant reduction in overall computational costs incurred during optimization of the 
secondary objective function. We note that Dehdari and Oliver (2012) use the BFGS 
Hessian in the context of constrained production optimization (as an alternative to 
steepest ascent), while we use the Hessian only to get information about the null space 
of the primary objective.  

5.3.1.2 BFGS algorithm 

From an initial guess u0 and an approximate Hessian matrix, H0 the following steps are 
repeated until u converges: 

 Calculate the gradient g at u  and update the set 1u u g .  
 Set 1s u u . 
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 Compute 1y g g . 
 Compute the updated Hessian as 

[ ( ) ] / [( ) ] [( ) ] / [( ) ]T T T TH H y y y s s H s H s H s  

J(u) denotes the objective function to be minimized. Practically, H0 can be initialized 
with H0 = I, so that the first step will be equivalent to a gradient descent, but further 
steps are more and more refined by H , the approximation to the Hessian. Note that 
because we typically take fewer iteration steps than there are DOFs, the BFGS 
approach will only lead to an approximate Hessian. 

5.3.2 Null-space-based optimization algorithm 

The algorithm is a modification of the algorithm proposed by Van Essen et al. 
(2011). The modification is the implementation of the BFGS algorithm to approximate 
the Hessian matrix.  

 Find an optimal strategy u* for the primary objective function J1 and set u = u* 
with n = 0 as a starting point for the secondary optimization problem where n is 
the iteration index.  

 Use the approximated Hessian H at u* and perform a singular value 
decomposition to obtain the orthonormal basis B for the null-space of H. 

 Form the projection operator P according to 

 .TP = BB  

 Find the gradient s for the secondary objective function J2.  
 Project this improving direction s onto the orthonormal basis B to obtain the 

projected direction d, such that d is an improving direction for J2 and does not 
affect J1. Thus d is  

 .d = Ps  

 Update the control vector u using the projected direction d in the steepest-
ascent method. 

 1n n n nu u d  

              where  is an appropriately small step size.  
 Update H using the BFGS algorithm for the new set of controls.  
 Perform steps 2 to 6 until  convergence of J2 
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The EnOpt algorithm has been used to approximate the gradient of the secondary 
objective function s. Further details on the algorithm sketched above are provided in 
the appendix. Note that an infinitesimally small update of J2, projected on the null-
space of J1, would result in no change in the value of J1 (by definition). However, 
because we use an approximate Hessian, and because we take finite updates of J2, 
small changes in the value of J1 may occur. 

5.3.3 Switching algorithm 

The null-space based hierarchical algorithm presented above is computationally 
cumbersome and not feasible for realistic reservoir models having a large number of 
input parameters when implemented using a finite difference based Hessian. To 
overcome this short-coming, Van Essen et al. (2011) presented a practical alternative 
method to the null-space based hierarchical algorithm with the use of a  switching 
function according to 

 1 1 2 2 ,switchJ J J  (5.2) 

where 1  and 2  are switching functions for J1 and J2 that take on values of 1 and 0 or 
vice versa: 

 

*
1 1

1 1 *
1 1

*
1 1

2 1 *
1 1

1   if ,
( )

0  if ,

0   if ,
( )

1   if .

J J
J

J J

J J
J

J J

 (5.3) 

Here is the threshold value as defined in the inequality constraint in equation (5.1) 
and J1* is the value of the primary objective at the optimal solution achieved during 
life cycle optimization. The (transposed) gradient of Jswitch with respect to the input 
parameters is then given by 

 1 2
1 1 2 1

n n n
n nswitchdJ dJ dJJ J

d d du u u
. (5.4) 

The use of a balanced objective function in the optimization will give improving 
directions for either J1 or J2, thus switching between feasible and infeasible solutions. 
However, the convergence towards an optimal solution may be rather slow due to the 
switching between the different solutions. In order to improve convergence speed Van 
Essen et al. (2010) suggested the following adaptation in which gradients of the 
secondary objective function are projected onto the null space of the optimal primary 
objective function: 
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1

1 1 1 1 .
T TdJ dJ dJ dJ

d d d d
P

u u u u
 (5.5) 

In the neighborhood of the optimum, the complement of the gradient with respect to 
the primary objective function can be used as a first-order approximation to the null 
space of the Hessian of this function. Thus the improved direction for the secondary 
objective is given by 

 2 ,
TdJ

d
a I - P

u
 (5.6) 

Hence the alternative switching search direction d for solving the hierarchical problem 
is 

 1 2
1 1 1 2 1

T Tn n
n n

n
dJ dJJ J
d d

d I - P
u u

. (5.7) 

The EnOpt method is used to approximate the gradients for both the primary and the 
secondary objective functions. The two hierarchical methods presented above are 
tested on a geologically realistic sector model explained below. 

5.4 Results : Bi-Objective (nominal) Optimization 

In this section we use the 5-spot synthetic reservoir model described in section 4.5 
for the experiments. An optimal life-cycle strategy of ICV settings for the individual 
layers is obtained by optimizing the NPV as described in equation (2.1), with ro = 130 
$/m3, rwp = 25 $/m3, rwi = 6 $/m3. The discount rate b was set to 0. Fig. 5.1 is an 
illustration of the optimization with undiscounted NPV as the objective function, 
which is equivalent to cumulative cash flow over the producing life of the reservoir. 
The optimal solution u* was obtained using an ensemble size of 50. Well productivity 
index (PI) multipliers are used to model ICVs in the simulator with bounds of 10 4 and 
1. The starting point for the optimization is an initial control vector having values equal 
to 1. Thus all the ICVs are open as a starting strategy. The optimization was allowed to 
run for 80 iterations although there was no significant improvement in objective 
function value after 65 iterations as indicated in Fig. 5.1. The optimized value of the 
objective function is 8.902×109 $. Additional iterations were performed to allow the 
BFGS algorithm to estimate a Hessian matrix that is as close to the true Hessian at the 
optimum as possible.  
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Fig. 5.1: Life cycle optimization with undiscounted NPV as the objective function. 

5.4.1 Objective functions 

We use undiscounted NPV as the primary objective function. However every 
project also aspires to recover the initial investments as soon as possible. In an ideal 
case we would like to additionally meet such short-term economic objectives while 
still maintaining the life cycle objectives. Thus we choose a secondary objective 
function which highlights the importance of maximizing short-term production. The 
secondary objective function has the same cost structure as the primary objective 
function but with a very high discount rate b of 25%. 

5.4.2 Unconstrained optimization 

First, the secondary objective function J2 is optimized without being constrained by 
the primary objective function J1. This case serves as a comparison to the hierarchical 
structure explained in the theory. The optimization was performed with an ensemble 
size of 75 members and was allowed to run for 65 iterations. The results are illustrated 
in Fig. 5.2. The starting point of the optimization is the optimal solution achieved 
during optimization of the primary objective. A decrease of 1.65 % is seen in the 
primary objective function to achieve an increase of 14.2% in the secondary objective 
function. Note that we did not optimize  J2 until convergence. However, the increase of 
J2 with 14.2 % is, by design, just equal to the increase obtained with the hierarchical 
optimizations discussed below.  
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Fig. 5.2: Illustration of an unconstrained optimization of secondary objective (red) 
starting from the optimal strategy u* obtained from life cycle optimization. 

5.4.3 Null-space based optimization 

Fig. 5.3 illustrates the optimization of the secondary objective function within the 
null space of the primary objective function. Since, typically, none of the singular 
values of the Hessian are  exactly equal to zero, a cut-off criterion must be defined to 
estimate the null space of the Hessian matrix. We have used a cut-off criterion of i 

/ 1< 2×10 9, where i are the singular values of the Hessian matrix, with the values 
arranged from largest to smallest. The resulting null space consists of 187 vectors and 
its dimension remains almost constant throughout the optimization. The value of the 
secondary objective function at the optimum of the primary objective is 
3.35×109 $,which is the starting point for the null-space based optimization. We 
achieve a value of 3.823×109 $ after completing the null-space based optimization 
equivalent to a 14.2% increase in the secondary objective function at the price of a 
0.52% decrease in the primary objective function. This decrease is much smaller than 
that obtained with the unconstrained optimization approach and clearly illustrates the 
advantage of using the hierarchical multi-objective optimization approach. Another 
illustration of the impact of the null-space-based optimization is provided in Fig. 5.4 
which shows a comparison of the cumulative cash flow over time resulting from the 
optimal life-cycle strategy (green), the strategy resulting from null-space-based 
optimization (red) and from unconstrained optimization of the secondary objective 
(blue). A considerable increase in the short to medium term cumulative cash flow can 
be observed in the results of the null-space-based hierarchical optimization compared 
to those of the life-cycle optimization. 
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Fig. 5.3: Comparison of the primary (blue) and secondary (red) objective functions 
obtained by the null-space based optimization algorithm 

The multi-objective optimization is seen to be useful to increase cash flow in the initial 
stages of the project whilst maintaining the life cycle goals. The unconstrained 
optimization, as expected, has the best cumulative cash flow in the early years of the 
economic life. However, as shown in the inset figure, compromises are made to the 
life-cycle target. The inset plot in Fig. 5.4 also shows that the null-space based 
optimization achieves a solution which performs better in the long-term compared to 
the unconstrained optimization. 

 
Fig. 5.4: Comparison of cumulative cash flows over time for the different optimization 
strategies: life-cycle optimized strategy (green), null-space based optimized strategy 
(red) and unconstrained secondary optimized strategy (blue). 
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The mathematical formulation of the switching algorithm described in the theory 
requires the definition of a criterion . The criterion used is  = 0.003 J*, i.e. we allow a 
maximum decrease of 0.3 % in the primary objective function value. An ensemble size 
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minimal. The results are shown in Fig. 5.5. The algorithm achieves an increase of 
14.17% in the secondary objective for a corresponding 0.21% decrease in the primary 
objective. The switching algorithm thus performs very well when applied to this 
model. Since the performance is dependent on parameters such as ensemble size used 
for gradient evaluation, step length, and line search parameters, fine-tuning of these 
parameters may lead to further improved performance of the switching algorithm.  

 
Fig. 5.5: Switching optimization showing a 14.2% increase in secondary objective 
function (red, left) for a corresponding 0.2% decrease in the primary objective (blue, 
right). 

Similar to Fig. 5.4 for the null-space based optimization, Fig. 5.6 compares the 
cumulative cash flow over time for the switching algorithm with the unconstrained and 
life-cycle only optimization results. It is observed that after 500 days the cumulative 
cash flow with life cycle optimization is approximately 1×109 $. However the control 
strategy obtained with switching optimization achieves a cash flow of 1.5×109 $. This 
increase of 0.5×109 $ over 500 days will enable the project to achieve the break-even 
point faster. Similar to the results obtained in Van Essen et al. (2011) and the results 
shown above, the NPV at the end time of the unconstrained optimization (blue curve) 
is decreased by 1.6%. In comparison, the NPV obtained by the switching algorithm 
(red curve)  decreases by only 0.2%. Finally, in Fig. 5.7 the set of controls obtained by 
the optimization using the switching algorithm (red) is compared to the optimal set of 
controls obtained after life cycle optimization (black). The control sets are fairly 
different, so it can be concluded that rather different control sets may achieve very 
similar results for the primary optimization while drastically improving the secondary 
optimization.  
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Fig. 5.6: Comparison of cumulative cash flow over time for the switching (red), 
unconstrained (blue) and optimal life-cycle (green) strategies. 

 
Fig. 5.7: Comparison of the control strategy for the switching algorithm (red) with the 
control strategy obtained during life cycle optimization (black), for the individual ICVs. 

5.4.5 Computational aspects 

In our example we use an ensemble size of 100 members. The primary objective 
function J1 was maximized in 80 iterations, which therefore would require at least (100 
+ 1) × 80 = 8080 forward simulations. The use of back-tracking when the value of J1 
did not increase during a specific iteration increased the actual number of forward 
simulations to 8127. For the optimization of the secondary objective J2 we used 75 
ensemble members and 55 iterations for the null-space method, corresponding to a 
theoretical minimum number of (75 + 1) × 55 = 4180 forward simulations, while we 
actually used 4215 simulations because of back-tracking. For the switching method we 
only used 35 iterations, corresponding to (75 + 1) × 35 = 2660 (theoretical minimum) 
and 2698 (actual ) forward simulations.   
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5.4.6 Discussion 

The results for the model used here show that the switching method achieves better 
results compared to the null-space-based method in that the same improvement in 
secondary objective was obtained with fewer iterations and with a smaller decrease in 
the primary objective. It is not possible at this point, however, to draw any definitive 
general conclusion regarding the comparative performance of these methods for more 
complex models. The choice for the different objective functions may have a large 
impact and significantly affect the scope for multi-objective optimization. The Hessian 
approximation with the BFGS algorithm has shown to achieve good results for this 
case but may perform differently in an another case. The cut-off criterion used to 
define the dimension of the null space, as discussed in section 5.4.3, was chosen 
through trial and error in this work. However this criterion was found to be very 
important for the success of the null-space optimization (not shown). Another 
parameter that influences the results is , i.e. the maximum allowed decrease in the 
primary objective. Note that here we used  only for the switching method, but that it 
could also be used for the null-space method. 

5.4.7 Reactive control 

For the given oil price of 130 $/bbl and water production costs of 25 $/bbl, the 
economic feasibility threshold will be achieved at a water cut (WCT) of 83%. Thus a 
reactive control strategy can be defined with a well shut-off limit of 83% WCT. In such 
a reactive strategy, the wells are initially operated with all the ICVs fully open and 
whenever the  WCT limit is reached in a well it is shut-in. As expected the reactive 
control strategy has a much lower NPV at the end of the life of the reservoir. Fig. 5.8 is 
a comparison of the cumulative cash flow for the reactive control strategy to the life-
cycle and the switching based optimized strategies. The strategy obtained with the 
switching method (red) achieves an improved short-term performance compared to 
optimized life-cycle strategy (green line), but it is not as good as the reactive control 
strategy (blue), which gives the best short-term performance. Thus the two multi-
objective optimization methods presented improve the short-term/secondary objectives 
but do not truly recover the best possible short-term/secondary objectives as obtained 
with the reactive strategy.( Note that the unconstrained optimization of J2 also leads to 
short-term results worse than those obtained by the reactive strategy, which is probably 
because we did not iterate to convergence, and/or because we were heading towards a 
local optimum different from the optimum found in the reactive strategy. However, 
Fig. 5.8 does confirm the advantage of optimal life-cycle strategies in comparison to a 
reactive control based operational strategy when long-term objectives are important. 
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Fig. 5.8: Comparison of the cash flow over time for the switching (red), reactive control 
(blue) and optimal life-cycle (green) strategies. 

5.5 Results: Bi-Objective Optimization under Uncertainty 

In this section we use the Egg model and the accompanying ensemble of equi-probable 
permeability realizations described in section 3.4 to test the applicability of EnOpt for 
bi-objective optimization incorporating geological uncertainty.  5 

5.5.1 Life-cycle optimization 

Water injection rates are the controls to be optimized with a maximum allowable 
injection rate per well fixed at 60 m3/day and a minimum rate of 0 m3/day. The 
producers are operated at a minimum bottom hole pressure of 385 bars without rate 
constraints. The producing life of the reservoir is divided into 40 optimization time 
intervals of 90 days each, and the control vector u has therefore N = 8 × 40 = 320 
elements. An optimal life-cycle strategy of injection rates for the individual wells is 
obtained by optimizing the NPV as described in equation (2.1), with ro = 126 $/m3, rwp 

= 19 $/m3, and rwi = 5 $/m3. The discount rate b is set to 0. The initial strategy (starting 
point) of the life-cycle optimization is a control vector with maximum injection flow 
rates at all control times. Fig. 5.9 illustrates the optimization process where the blue 
lines represent the evolution of the objective function values for the 100 different 
geological realizations during the iterations while the red line is the expected value of 
the ensemble. The optimized expected objective function value is approximately 42.4 
million $. Due to a lack of significant change in the objective function value the 
optimization process was terminated after approximately 70 iterations. 

                                                           
5 Taken from Fonseca R.M., Stordal, A.S., Leeuwenburgh, O., Van den Hof, P.M.J. and Jansen, J.D. 2014. Robust 
ensemble-based multi-objective optimization. Proc.in  ECMOR XIV. 
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 Fig. 5.9: Objective function values during the optimization procedure for the original 
robust EnOpt formulation. Red: average value of the ensemble. Blue: individual 
ensemble members.  

5.5.2 Hierarchical switching optimization 

The hierarchical switching optimization method is used to achieve multi-objective 
optimization under uncertainty as illustrated in Fig. 5.10. We observe a mean increase 
of approximately 15.2% in the secondary objective function (highly discounted NPV) 
compared to a marginal allowable mean decrease of 0.5% in the primary objective 
function. The switching optimization begins from the optimized solution achieved by 
the modified robust gradient formulation for life-cycle optimization. The modified 
formulation, i.e. equations (2.22) and (2.23) in combination with (2.14), is used for the 
hierarchical optimization. The results illustrates the use of ensemble-based multi-
objective optimization under geological uncertainty to achieve results of practical 
importance. Note: we have terminated the optimization for the secondary objective 
function after 100 iterations which translates to 10,000 reservoir simulations for the 
gradient estimate and 10,107 simulations for evaluation of the updated control set, i.e. 
a total of 20,107 reservoir simulations.  

 
Fig. 5.10: Illustration of hierarchical switching optimization of the secondary objective 
function (red) and the corresponding decrease in the primary objective function (blue) 
starting from the optimized solution achieved with the modified robust formulation. 
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Fig. 5.11 depicts a comparison of the mean cumulative cash flow over time for the 
optimized solutions achieved by the switching algorithm (blue), life-cycle optimization 
(green) and reactive control (red). It is observed that after 500 days the cumulative cash 
flow with life cycle optimization is approximately 10.3 million $ compared to the 
control strategy obtained with switching optimization which achieves a cash flow of 
15.7 million $. This 52% increase of 5 million $ over 500 days will enable the project 
to achieve the break-even point faster. Similar to the results obtained in Fonseca et al. 
(2014) the reactive control strategy gives the best short-term performance while the 
switching algorithm, although inferior to reactive control, leads to an improved short-
term performance compared to the optimized life-cycle strategy.  

 
Fig. 5.11: Comparison of the mean cash flow over time for the entire ensemble of 
geological realization for the different optimization strategies. 

5.6 Conclusions 

 Compromises made to short-term targets during life cycle optimization can 
be partly corrected for with an ensemble-based hierarchical multi-objective 
optimization method. 

 The EnOpt method is a good alternative to achieve practical results when the 
adjoint formulation is not available for hierarchical multi-objective 
optimization.  

 In our numerical simulation examples, two hierarchical multi-objective 
methods showed a 14.2% improvement in the secondary objective function 
(NPV @ 25% discount rate) approximately constrained to the primary 
objective function (NPV @ 0% discount rate). The results obtained with the 
null-space-based optimization algorithm are similar to those resulting from 
the switching algorithm, although for the case investigated here, the 
switching algorithm was found to be computationally somewhat more 
efficient.  
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 The BFGS algorithm, used to estimate the Hessian for the null-space 
method, is computationally attractive compared to a finite difference method 
especially when dealing with large control sets, and led to good results for 
the case reported here.  

 Hierarchical multi-objective optimization of ICV settings shows significant 
scope for improvement in short to medium term goals approximately 
constrained to life cycle targets. 
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  6
 
PARETO FRONTS FOR BI-OBJECTIVE OPTIMIZATION  

 

 
Conflicting objectives are frequently encountered in most real-world problems. 

When dealing with conflicting objectives, decision makers prefer to obtain a range of 
possible optimal solutions from which to choose. In theory, methods exists which can 
produce a range of possible solutions, some of which are “Pareto Optimal”. The 
application of these methods to solve bi-objective production optimization problems is 
increasing. Liu and Reynolds (2015) used the Normal Boundary Intersection (NBI) 
method to find points on the boundary of the objective function space by solving a 
series of constrained optimization problems using adjoint gradients. In this work, we 
investigate the applicability of using approximate ensemble gradients to solve a 
constrained optimization problem to generate a range of solutions. We compare the 
performance of this method to a traditional weighted sum technique for bi-objective 
water flooding optimization of two different synthetic reservoir models. The two 
objectives used in this work are, undiscounted (0%) net present value (NPV), 
representing long-term targets and highly discounted (25%) NPV, representing short-
term operational targets. The controls are inflow control valve (ICV) settings over time 
for one model and water injection rate controls for the other. The effect of different 
starting points and the computational efficiency of the constrained optimization 
method are also investigated.6 

                                                           
6 Taken from Fonseca, R.M., Reynolds, A.C. and Jansen, J.D. 2015. Generation of a Pareto front for bi-objective 
water flooding Optimization using approximate ensemble gradients. Submitted to Computational Geosciences 
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6.1 Introduction 

A majority of studies and applications of life-cycle water flooding optimization 
using a model-based approach have focused on a single objective optimization with 
emphasis being placed on the theoretical understanding and practical application of the 
optimization methodology. Life-cycle optimization essentially aims to find a strategy 
which optimizes long-term reservoir management targets, but life-cycle optimization is 
often at the expense of operationally significant short-term targets. Thus, there is a 
need to solve a bi-objective problem to obtain a strategy which accounts for the two 
objectives as the long-term perspective is usually in conflict with the short-term 
targets, which are decided by operational constraints, contractual obligations etc. Van 
Essen et al. (2011), introduced a hierarchical optimization framework to solve such a 
multi-objective optimization problem which provides a single optimal strategy that 
incorporates multiple objectives. However, decision makers usually prefer to have 
multiple strategies to choose from, especially when dealing with conflicting objectives. 
Isebor and  Durlofsky (2014) applied an evolutionary algorithm to generate points 
along a “Pareto” front for a bi-objective water flooding problem. A major drawback of 
this approach was the computational effort required to obtain the points on a Pareto 
front. Also they did not compare the front generated with any other method used to 
generate Pareto fronts to check if the front obtained was Pareto optimal. Liu and 
Reynolds (2014) applied the normal boundary intersection method (NBI) first 
introduced in Das and Dennis (1998) to a bi-objective water flooding problem with and 
without geological uncertainty. Liu and Reynolds (2014) showed that the NBI method 
is computationally more efficient than the method of Isebor and Durlofsky (2014) and 
produces better solutions than the traditional weighted sum method. The NBI method 
involves solving a series of constrained optimization sub-problems. In Liu and 
Reynolds (2014), these constrained optimization problems were solved using an 
augmented Lagrangian method using an adjoint formulation to compute the gradients. 
Recently many studies have used EnOpt for life-cycle production optimization 
problems. Fonseca et al. (2014) applied EnOpt to solve a bi-objective optimization 
problem using the hierarchical structure proposed by Van Essen et al. (2011). 
Additionally there has been an increase in the number of applications of different 
evolutionary algorithms to solve either a bi-objective production optimization problem, 
Isebor and Durlofsky (2014) etc. or for history matching applications as detailed in Liu 
and Reynolds (2014).  

In this chapter we investigate the applicability of an approximate gradient 
technique, EnOpt to generate points along a “Pareto” front within acceptable 
computational effort. A secondary objective is the application of an approximate 



6. PARETO FRONTS FOR BI-OBJECTIVE OPTIMIZATION   

 

91 
 

gradient technique to solve constrained optimization problems using the augmented 
Lagrangian method.  

6.2 Theory  

This section investigates the applicability of the use of approximate ensemble 
gradients to calculate points on a Pareto front for bi-objective production optimization 
problems. In this chapter we also use an economic objective function, a generalized 
formulation of which is given by (2.1). In this chapter the two objective functions are: 

1. Undiscounted NPV, i.e. b = 0.0   (0%)  in equation (2.1), representing long-
term objectives  

2. Highly discounted NPV, b = 0.25 (25%) in equation (2.1), representing short-
term objectives 

6.2.1 Update Rules 

In this chapter we have used the steepest ascent scheme given by equation (4.1) to find 
an updated set of controls. The gradient is scaled by its infinity norm and we have 
chosen a step length to be 10% of the difference between the maximum and minimum 
values of the controls. We allowed for a maximum of five back-tracking steps, each 
time reducing the step size with a factor of one half if the objective function J 
decreases from one iteration to the next. If after the five back-tracking steps we still do 
not find an increase in J we accept the current control strategy and continue with the 
optimization until a convergence criteria, for e.g., maximum number of optimization 
iterations or total number of reservoir simulations is satisfied. 

6.3 Multi-Objective Optimization 

Most real world problems have multiple objectives that need to be satisfied. Usually 
these objectives are in conflict with each other, i.e. one must accept decreases in one 
objective to achieve increases in another objective. The process of optimizing 
systematically and simultaneously a collection of objective functions is called multi-
objective optimization. In theory, there exist many methods to solve a multi-objective 
problem and recently there has been an increased focus on finding methods to solve 
multi-objective problems in the reservoir simulation community. These objectives are 
usually defined as long-term (life-cycle) objectives from a reservoir engineering 
viewpoint and short-term objectives from a production engineering/operational 
constraints viewpoint. Van Essen et al. (2011) showed that these two objectives may be 
in conflict with each other and suggested the use of a hierarchical framework for multi-
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objective optimization. An alternative to hierarchical bi-objective optimization (in 
which the primary objective is considered more important than the secondary 
objective), is regular bi-objective optimization in which there is no predefined 
preference for one of the objectives. Isebor and Durlofsky (2014), and Liu and 
Reynolds (2014) have introduced methodologies to generate the ‘Pareto front’ i.e. a 
range of possible solutions for a decision maker for a regular bi-objective reservoir 
optimization problem. Isebor and Durlofsky (2014) presented their methodology using 
a hybrid evolutionary algorithm, PSO-MADS and reported results which were obtained 
with a significant computational effort. Liu and Reynolds (2014) presented a method 
using adjoint gradients which was shown to be computationally much more efficient. 
We have, in this work, used the methods introduced in Liu and Reynolds (2014) to 
investigate their applicability in combination with the EnOpt method. 

 A point in general is defined as Pareto optimal if at that point the value of one 
objective function cannot be increased unless the value of a second objective function 
is decreased or in other words a control set is Pareto optimal if there does not exist any 
other control set which achieves better objective function solutions. Liu and Reynolds 
(2014) provide details of the commonly used theoretical definitions to determine 
whether points are non-dominated i.e. Pareto optimal and lie on a Pareto front.  

6.4 Weighted Sum Method 

The life-cycle waterflooding problem is inherently a long-term optimization 
problem as shown in, Van Essen et al. (2011) and short-term goals are sacrificed to 
achieve the optimal long-term targets. A traditional technique to balance two 
conflicting objectives is the weighted sum method, see Marler and  Arora (2004) which 
aims to optimize a weighted objective function that combines both objectives in a 
single function, according to   

 1 1 2 2 ,wsJ w J w J  (6.1) 

where Jws is the weighted sum objective function constructed from the long-term and 
short-term objective functions J1 and J2 with w1 and w2 as weighting factors. Liu and 
Reynolds (2014) among others showed that the biggest drawback of this method in 
finding solutions on a Pareto curve is that the solutions tend to be concentrated on one 
part of the curve, i.e., the solutions generated are not evenly distributed along the 
Pareto front. Another disadvantage is that the weighted sum method cannot obtain 
points on the concave part of the Pareto front, see, for example, Figure 1 in Liu and 
Reynolds (2014).   
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6.5 Adjusted Weighted Sum Method 

To overcome the difficulties of the weighted sum method, Liu and  Reynolds (2014) 
proposed an adjusted weighted sum formulation where the weights w1 and w2 are now 
replaced by equations (6.2) and (6.3) 

 

1
* *

1 1 1 2
1

1 2
* * * *

1 1 1 2 2 2 2 1

( ) ( ) ,

( ) ( ) ( ) ( )

w
J Jw w w

J J J J

u u

u u u u

 (6.2) 

 2 11 ,w w  (6.3) 

and equation (6.1) is replaced by 

 1 1 2 2.wsJ w J w J  (6.4) 

Note that w1 =1 implies 1 1w  and 1wsJ J  so maximizing wsJ with 1 1w  
corresponds to maximizing J1. Similarly, w1 =0 implies 1 0w  and in this case 
maximizing wsJ  corresponds to maximizing J2 . Liu and Reynolds (2014) found that 
choosing decreasing w1 from 1 to 0.1 in increments of 0.1, computing the 
corresponding values of 1w and 2w  and maximizing wsJ  for each of these 1w , 2w values 
tended to result in points that were well distributed along the Pareto front when 
maximizing wsJ and equation (6.1)with the same set of w1 values did not generate a 
well-distributed Pareto front.  

6.6 Normal Boundary Intersection (NBI) Method  

In order to overcome the disadvantages of the weighted sum method, Das and 
Dennis (1998) proposed a technique, the Normal Boundary Intersection (NBI) method, 
to find points on the boundary of a feasible set starting from points along the “utopia 
line” (a line in the objective function space which is connected by the optimum 
solutions for the individual objective functions) by optimizing the magnitude of a unit 
normal to the utopia line in the objective function space. A detailed description of the 
Normal boundary Intersection method can be found in Das and Dennis (1998) and, for 
petroleum engineering applications, in Liu and Reynolds (2014).  The NBI method is 
motivated by the fact that the Pareto front must coincide with a part of the boundary of 
the feasible region. The disadvantage of NBI is that boundary points may or may not 
be Pareto optimal, i.e., may or may not lie on the Pareto front. However once optimal 
design vectors *

1u , ….., *
nu  are generated it is easy to check if each point is non-

dominated by any other, which must be the case if (J1( *
nu ),J2( *

nu )) is a point on the 
Pareto front, see definitions in Liu and Reynolds (2014, 2015). The following is a brief 
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description of the method as described in Liu and  Reynolds (2014) for bi-objective 
water flooding optimization problems. For the two objective functions denoted by J1 
and J2 the NBI procedure is repeated for different points along the utopia line. The 
general formulation for NBI is given by  

 
,

1 2 1 2 1 2

max   ,

. .    ( , ) ( ) 0;
( , ) , 0, 0, 1.

t

T

t

s t t t
u

e u n j u  (6.5) 

 

where 
* *

1 1 1 2
1 2* *

2 1 2 2

( ) ( )
 and ( ) [ ( ), ( )]

( ) ( )
TJ J

J J
J J

u u
j u u u

u u
 (6.6) 

and where *
1u and *

2u are the optimal strategies obtained for the individual optimizations 
of J1 and J2. The line segment which connects *

1( )j u and *
2( )j u in the objective space as 

* *
1 1 1 2[ ( )  ( )][   ]Tj u j u  is defined as the utopia line. To solve the equality 

constrained optimization problem as described in equation (16), Liu and Reynolds 
(2014) used the augmented Lagrangian method. While there exists several techniques 
to solve constrained optimization problems, we too have applied the augmented 
Lagrangian method as the main purpose of this work is to investigate the applicability 
and ability of approximate gradient techniques like EnOpt to generate solutions along a 
Pareto front. A by-product of this work is the demonstration of the applicability of an 
approximate gradient technique to solve constrained optimization problems. The 
augmented Lagrangian method (Nocedal and  Wright, 2006) used to solve the different 
NBI sub-problems is based on the augmented Lagrangian function which is defined by 

 
1( , , , ) ,

2
T T

nbiJ t tu e e e  (6.7) 

where e is defined in equation (6.5), is a vector of Lagrange multipliers and  the 
penalty parameter. The constraint violation is given by / 2.T

cv e e  Liu and 
Reynolds (2014), since they were using adjoint gradients, calculated the gradient of the 
Lagrangian function with respect to u in terms of the gradients of objective functions J1 
and J2 with respect to u. In this work, since we use approximate ensemble gradients, 
we calculate the gradient of the Lagrangian function directly using equation (2.14). The 
following is a brief algorithmic description of the NBI method as implemented in our 
case.  
Calculate the initial optimization parameters: , n, u, t, e(u), , where u = 1*

*
1u + 

2*
*
2u  and t, following Liu and Reynolds (2014), is initialized as  
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 ( ( ) ) .
T

Tt n J u
n n

  

The initial penalty parameter is then given by (0.1 )T te e  and the Lagrange 
multipliers by e . Note that we scale each constraint e by its own absolute value. 

 While cv> 0.01 (outer loop) 
 Until stopping criteria is satisfied (inner loop) 
 Maximize the Lagrangian function given by equation (6.7) until convergence 

is achieved. Note: , are constant within the inner loop and can only 
change in the outer loop. Gradients are approximated using equation (2.14) 
in conjunction with equations (2.17) and (2.18). 
End Inner Loop. 

 Check criteria to update  and  using the formula given in Liu and  
Reynolds (2014) 

 Repeat until convergence of outer loop.  

6.6.1 Tracking the Pareto front using NBI  

The NBI method as implemented by Liu and  Reynolds (2014) choses as a starting 
point a combination of the optimal control sets *

1u and *
2u depending on the weight 

factors chosen. Due to the non-linearity of the problem these initial points usually have 
objective function values that do not lie exactly on the utopia line. The NBI problem 
does not necessarily require the starting points to be on or close to the utopia line, so 
we propose to generate points on the Pareto front by starting from a point on the front 
which has already been obtained with different values of 1 and 2. This is akin to 
“tracking” a front. In the results section, we discuss the advantages/disadvantages of 
using this method of generating solutions on a front.   

6.6.2 Hierarchical Switching Method 

We will compare the results obtained from the hierarchical switching optimization, 
described in Chapter 5 to the other methods presented above. The advantage of using a 
hierarchical switching method is that a user can decide the maximum allowable 
decrease in the primary objective value which is practically impossible to know when 
using the weighted sum method. However, with this hierarchical method, only a single 
control set is generated which may or may not be Pareto optimal since no other 
information is available for comparison. 
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6.7 Results : 5-Spot Reservoir Model  

In this section, for the numerical experiments, we use the synthetic 5-spot reservoir 
model described in section 4.5. In this work, as in Liu and Reynolds (2014), the 
normal vector n is obtained by setting the second component of n to 1 and solving the 
following equation 

 * *
1 2[ ( ) ( )] 0Tn j u j u  (6.8) 

In equation (6.8), *
1( )j u =[9.1060x109 ; 3.3522x109]T and *

2( )j u = [8.7086 x109, 
4.4759x109]T . The solution of this equation gives n = [2.822 ; 1] T; which is the same 
for all the different starting points used in this work. The optimization is not dependent 
on the choice of n. Solving multiple NBI sub-problems for different choices of weight 
combinations, we obtain the solutions shown in Fig. 6.1. The black circles are obtained 
for starting points based on the first step of the NBI algorithm presented previously. 
The objective of this initialization is to obtain a starting point on or close to the utopia 
line. Due to the non-linearity of the problem the objective function values achieved for 
this initial guess were never on the utopia line, but always slightly above the line. 
Using the solutions already obtained we also test the applicability of finding solutions 
which satisfy the constraints starting from points (control sets) that have previously 
satisfied the constraints. This is akin to “tracking” points along a front. The red circles 
in Fig. 6.1 are the points achieved when the tracking process begins from 1 = 0.1 
(point A in Fig. 6.1). We observe that for most of the weight combinations, the 
tracking procedure achieve solutions which dominate the solutions represented by the 
black circles. Since there is no preference to choose from which end the tracking 
begins, we also began the tracking from 1 = 0.9 (point B in Fig. 6.1), to obtain the 
solutions shown by blue circles in Fig. 6.1. We observe that in this case, the tracking 
procedure achieves solutions that dominate the solutions from the other two 
initialization procedures for all the points. Additionally this tracking procedure is 
computationally more efficient as is discussed later. Thus, different initial guesses for a 
given value of  1 can have a significant impact on the solutions achieved with the bi-
objective optimization algorithm. Besides the different starting points, all other 
algorithmic details are exactly the same for the three different sets of points generated. 
The gradients are estimated with an ensemble size equal to 30 ( for computational 
purposes)  with a perturbation size equal to 0.001. 
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Fig. 6.1: Boundary points (blue stars) achieved using the NBI method which could 
constitute a Pareto front 

Table 6.1 provides the objective function values for 11 different optimum points 
(black circles) along a boundary front. We observe that for the 1 = 0.4 case, we obtain 
a 0.8% decrease in the primary, long-term objective function from its optimal value 
(9.1060x109 $) and an approximately 22% increase in the secondary, short-term 
objective function. For the solution obtained with initial guesses based on front 
tracking procedure for 1 = 0.1 we observe a 0.8% decrease in the primary objective to 
achieve a 33% increase in the secondary objective. There is only a 5% difference in the 
primary objective function values between the optimal strategies for the two objective 
functions J1 and J2 i.e. the first and last points in Table 6.1. Thus, for the objective 
functions chosen in this study, we do not expect to observe major increases in primary 
(long-term) objective for minor decreases in the secondary (short-term) objective, 
indicating that there may exist fewer redundant degrees of freedom in the short-term 
objective function.  
Table 6.1: Objective function values of the black circles in Fig. 6.1.   

1 2 Long-Term Objective (x109) $ Short-Term Objective(x109) $ 
1 0 9.1060 3.3522 

0.9 0.1 9.0952 3.4757 
0.8 0.2 9.0749 3.5938 
0.7 0.3 9.0619 3.7161 
0.6 0.4 9.0472 3.8363 
0.5 0.5 9.0414 3.9645 
0.4 0.6 9.0266 4.0854 
0.3 0.7 9.0174 4.2075 
0.2 0.8 9.0123 4.3293 
0.1 0.9 8.9750 4.4430 

0.08 0.92 8.8760 4.4336 
0.02 0.98 8.7609 4.4692 

0 1 8.7086 4.4759 
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Independent of the method used to generate the initial guess of a given 1, the 
approximate Pareto front generated with NBI (Fig. 6.1) shows that one can obtain a 
sharp increase in the secondary objective function for a very minimal decrease in the 
primary objective. Fig. 6.2 is a plot of the optimization path for 1 = 0.05 starting  1 = 
0.1 (point A in Fig. 6.1) solution as the initial guess. We observe a flat line i.e. a very 
minimal increase in the secondary objective function value for a relatively larger 
decrease in the primary objective function. The increase in the long-term objective is 
approximately 4% for a 0.05% decrease in the short-term objective. Thus it seems for 
this case that the Pareto front consists of two branches; a near horizontal one  near the 
optimal secondary objective and a near vertical one near the optimal primary objective.  

 
Fig. 6.2: Optimization path obtained by tracking the front using NBI for 1 = 0.05 starting 
from 1 = 0.1. Black and blue rectangles indicate the start and end points of the 
optimization respectively.  

 
Fig. 6.3: (a) Illustration of the evolution of the Lagrangian function and (b) constraint 
violation at all the iterations  

Fig. 6.3(a) is an illustration of the evolution of the Lagrangian function through the 
iteration process. The sharp drop in the value of the Lagrangian function corresponds 
to an update (decrease) of the penalty parameter  in the augmented Lagrangian 
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method. In most of the cases we observe that we generally perform 5 outer loop 
iterations in which we update the penalty parameter for 3 iterations and in the other 
two iterations we update the vector of Lagrange multipliers  for the remaining two 
iterations. Fig. 6.3(b), right-side plot shows the constraint violation throughout the 
optimization process. Note that the constraint violation must be less than the given 
tolerance specified in the optimization algorithm to obtain convergence for the outer 
loop of the augmented Lagrangian algorithm. When the inner loop converges and the 
constraint violation is sufficiently small the algorithm converges. Thus it is possible 
that there are multiple points at which the constraint violation is satisfied, however 
there is only one point at which both the inner and outer loop’s stopping criteria are 
satisfied.   

6.7.1 Control Comparison 

 
Fig. 6.4: Comparison of the controls (ICV settings) for layer 4 (highest permeability) for 
producer 2 over time for the optimal life-cycle strategy (blue) and the optimal NBI 
strategy (red) for 1 = 0.1 using the front tracking procedure 

Fig. 6.4 is a comparison of the optimal control set for two different strategies for the 
highest permeability layer in producer 2. The blue line is the life-cycle strategy i.e. the 
end point of the utopia line while the red line is the NBI strategy (blue circles in Fig. 
6.1) obtained for weight combinations of 1 = 0.1 and 2 = 0.9 i.e. the strategy that 
achieved a 33% increase in the short-term objective for a 0.8% decrease in the long-
term objective. From Fig. 6.4 we observe that significantly different strategies can be 
achieved by performing bi-objective optimization. For the red curve, the ICV setting is 
almost fully open for the first 10 years with lower setting values towards the end of the 
producing time period, which is in line with the emphasis on increasing the short-term 
increase in NPV. For the optimal life-cycle strategy, the same ICV is almost closed for 
four or the first five years and then is fully open through most of the remaining 
producing life, in order to virtually maintain the goal of life-cycle optimization. The 
optimized control settings for other valves is similar to the trend shown in Fig. 6.4. Fig. 
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6.5 shows the saturation distribution in layer 4 after 4 years of production for the 
different optimal strategies whose controls are compared in Fig. 6.4. We see that the 
optimal life-cycle strategy, being less aggressive, sweeps a much smaller area with less 
water being injected, while the optimal NBI strategy i.e. the one for 1 = 0.1 using the 
front tracking procedure, is more aggressive,  i.e more water is injected and more oil is 
displaced and produced.  
 

                
Fig. 6.5: Saturation distribution in layer 4 after 4 years of the production for a) (left), 
optimal life-cycle strategy and b) (right), optimal NBI strategy for the controls shown in 
Fig. 6.4. 

6.7.2 Comparison of Weighted Sum Techniques 

Liu and Reynolds (2014) showed cases where the adjusted weighted sum method 
produces a significantly better spread of solutions compared to the traditional weighted 
sum technique. Table 6.2 and Table 6.3 provides the solutions for the various weight 
combinations used where we observe, as reported in Liu and  Reynolds (2014), that the 
adjusted weighted sum technique provides a better spread of solutions, and in 
particular gives a better representation of the front near the optimal long-term NPV 
which is the most important part of the front.  
Table 6.2 : Solutions for different weight combination using the weighted sum method 

w1 w2 Long-Term Objective (x109) $ Short-Term Objective (x109) $ 
1 0 9.1060 3.3522 

0.9 0.1 9.0851 3.6872 
0.8 0.2 9.0419 3.9719 
0.7 0.3 8.9720 4.1763 
0.6 0.4 8.9156 4.3591 
0.5 0.5 8.8696 4.4106 
0.4 0.6 8.7873 4.4313 
0.3 0.7 8.7538 4.4476 
0.2 0.8 8.7403 4.4448 
0.1 0.9 8.7243 4.4492 
0 1 8.7086 4.4759 
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Fig. 6.6 provides a visual comparison of the solutions obtained with the two different 
methods. Note: The stopping criterion used to achieve this set of points is exactly the 
same as the stopping criterion used for the inner loop in the augmented Lagrangian-
based NBI method albeit the objective functions are different.  

 
Fig. 6.6: Comparison of the spread in points along the Pareto front for the two variants 
of the weighted sum method. 

Table 6.3: Solutions for different weight combination using the adjusted weighted sum 
method 

w1 w2 Long-Term Objective (x109) $ Short-Term Objective (x109) $ 
1 0 9.1060 3.3522 

0.9 0.1 9.1020 3.4502 
0.8 0.2 9.0918 3.5996 
0.7 0.3 9.0758 3.7522 
0.6 0.4 9.0433 3.9326 
0.5 0.5 8.9927 4.1400 
0.4 0.6 8.9515 4.2268 
0.3 0.7 8.8956 4.3905 
0.2 0.8 8.8040 4.4384 
0.1 0.9 8.7454 4.4423 
0 1 8.7086 4.4759 

6.7.3 Comparison of Weighted Sum and  NBI 

Fig. 6.7 is a comparison of the solutions achieved from the adjusted weighted sum 
method and the best results achieved with the NBI method. The results here are very 
interesting, for w1= 0.9 the solutions obtained with either method do not dominate each 
other while for w1= 0.8 and w1= 0.7 we observe that the adjusted weighted sum method 
achieved solutions which slightly dominate the solutions obtained with NBI, however 
for the other weight combinations the solutions obtained with NBI dominate. It is 
difficult to know why this behavior is observed and could be either case dependent or 
gradient quality dependent. However, Liu and Reynolds (2015) also find that the NBI 
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method generally gives a better representation of the front than is obtained with the 
weighted sum method. Fig. 6.8 is a comparison of the optimization path for the 
different methods with the weight combination, w1 = 0.7 and w2 = 0.3. The original 
NBI and the weighted sum have the same starting point however they have very 
different paths. The adjusting of the weights in the adjusted weighted sum method 
leads to a significantly different starting point for the optimization. All the optimization 
results shown here are influenced not only by the gradient quality, but for the NBI 
method, also by the choices of the initial penalty parameter  and Lagrange multipliers 

. Using a larger ensemble size for the gradient estimate (Fonseca et al. 2015) could 
lead to smoother optimization paths to solve the individual sub-problems and possibly 
better solution points, however for computational reasons this has not been 
investigated.  

 
Fig. 6.7: Comparison of the points achieved from the adjusted weighted sum method 
and the NBI-based tracking method. 

 
Fig. 6.8: Comparison of the optimization paths for the different methods described 
above. The green diamonds are the end points i.e. optimum solutions obtained by each 
of the methods.  
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Fig. 6.9 is an illustration of the total number of simulations taken for each of the 
methods including the two initial optimization runs to obtain the utopia line. The 
original NBI method was computationally most expensive with approx. 28000 total 
simulations while for the NBI tracking method about half the number of simulations 
required for the original NBI method were needed to achieve better solutions. Both the 
weighted sum variants were computationally much more efficient similar to the results 
shown in Liu and  Reynolds (2014).   

 
Fig. 6.9 : Comparison of the total number of simulations taken to generate the Pareto 
curve for the different methods. 

6.7.4 Hierarchical Switching Optimization Method 

The switching method optimizes the objectives alternatingly, while staying within a 
maximum allowable decrease  in the primary objective. The choice of is user 
dependent. Thus, the user has to a-priori decide the maximum allowable acceptable 
decrease in  the optimal  primary objective function value. Fig. 6.10 plots the 
optimization path where a maximum decrease of 0.3% in the primary objective is 
allowed (red curve). We see that we achieve approximately a 10% increase in the 
secondary objective. The values obtained are similar to using a weight combination of 
w1 = 0.7 and w2 = 0.3 for either the NBI method or the adjusted weighted sum method. 
However the solution is a non-dominated point when compared to all solutions 
obtained with the NBI and adjusted weighted sum methods. If the optimization is 
repeated for a 1% allowable decrease in the primary objective we observe that we 
achieve a 20 % increase in the secondary objective function (black dotted curve). This 
solution however is dominated by the solutions from the other two methods. The 
hierarchical method only provides a single strategy which may or not be Pareto 
optimal. A tracking procedure like implemented for the NBI method could be used 
with this method to generate a front. Alternatively we can use the primary objective 
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function as a constraint while optimizing a secondary objective, i.e., a lexicographic 
approach; for details see Liu and  Reynolds (2015).  

 
Fig. 6.10: Paths obtained from hierarchical switching optimization for different 
maximum allowable decreases in the primary objective function.   

6.8 Results : Egg Model   

In this section we use the egg model detailed in section 3.4. In this example we 
optimize controls in terms of injection rates for a relatively larger model. The normal 
vector n is obtained, similar to the example reported above, by setting the second 
component of n to 1 and solving equation (6.8) which gives n = [1.6329 ; 1]T. Where

*
1( )j u = [4.7035x107, 2.3004x107]T and *

2( )j u = [4.0269 x107, 3.4053x107]T . For 
different linearly varying combinations of  we solve multiple NBI sub-problems to 
find solutions of the two objective functions, as shown in Fig. 6.11, which satisfy the 
stopping criteria of the augmented Lagrangian function and the constraint violation. 
The black circles are obtained for starting points which aim to start on the utopia line. 
Again due to the non-linearity of the problem, the objective function values of the 
starting points were never on the utopia line. The spread in the points found using NBI 
was more continuous compared to the solutions achieved in the previous example. 
Again instead of solving the sub-problems from a starting point close to or on the 
utopia line we aim to “track” points along a front. The blue circles in Fig. 6.11are the 
points achieved when the tracking process begins from 1 = 0. The results illustrated in 
Fig. 6.11 seem to suggest that there exists different fronts in the objective function 
space. We observe that till 1 = 0.7 the points seem to lie on a line with a certain slope 
for both the original NBI method  as well as the NBI tracking method. From 1 = 0.6 
onwards the points seem to align themselves along a line with a completely different 
slope for both the methods. The points obtained with NBI tracking seems to always 
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find solutions that dominate the solutions obtained by the original NBI method. Thus, 
similar to the previous example different starting points of the optimization have 
significant impact on the solutions achieved. Besides the different starting points, all 
other algorithmic details are exactly the same for the three different sets of points 
generated. The gradients are estimated with an ensemble size equal to 30 ( for 
computational purposes)  with a perturbation size equal to 0.01.  

 
Fig. 6.11: Boundary points (blue circles) achieved using the NBI method with tracking 
which could constitute a (local) Pareto front.  

With only a 0.7% decrease in the primary, long-term objective function, we have found 
a solution which achieves an approximately 19% increase in the secondary, short-term 
objective function for the black open circles i.e. the original NBI method for 1=0.7. 
For the same weight combination the NBI tracking method finds a solution for which a 
0.3% decrease in the long-term objective leads to a 20% increase in short-term gains. 
Additionally, for the red circles, i.e. NBI with tracking, we observe that for a 1.3% 
decrease in the primary objective, we can achieve an even more significant increase of 
38% in the secondary objective, i.e. short-term gains. This last result corresponds to the 

1=0.4 solution.  
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Fig. 6.12: Comparison of solutions achieved by the adjusted weighted sum method (red 
diamonds) and the NBI tracking method (blue circles) 

The results from the previous example illustrated that the adjusted weighted sum 
method produced a much better spread in solution points compared to the weighted 
sum method. Thus for this example we compare the NBI solutions with solutions from 
the adjusted weighted sum technique. We observe, as shown in Fig. 6.12, that the 
solutions achieved by the NBI tracking method dominate the solutions from the 
adjusted weighted sum method (red diamonds). The solutions from the original NBI 
method also dominate the solutions from the adjusted weighted sum method. A 
comparison of the plot of remaining oil saturation for the top layer after 3 years of 
production illustrates the difference in the strategies; see Fig. 6.13. The optimal long-
term strategy is less aggressive as significantly less area is swept by injected water 
while the NBI tracking solution for 1 = 0.4, i.e. a 38% increase in short-term gains for 
a 1.3% decrease in long-term gains, is a more aggressive strategy as larger areas of the 
reservoir have been swept.  

 
Fig. 6.13: Comparison of oil saturation distributions for the top layer after 3 years of 
production for a) optimal long-term solution (left side) and b) NBI tracking solution for 

1 = 0.4 (right side) 
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The control strategies which resulted in the saturation plots shown in Fig. 6.13 are 
illustrated in Fig. 6.14. The control settings have only been displayed for the first 3 
years to highlight the differences between the strategies corresponding to the saturation 
plots shown above. We observe that the optimal NBI strategy injects much more water 
compared to the optimal long-term strategy. A similar trend in the control strategies is 
seen in the other wells.  

 
Fig. 6.14: Comparison of injection rate controls for injector 7 (top) and injector 8 
(bottom) for the first 3 years of production resulting from the different strategies, life-
cycle strategy (red line) and NBI strategy (blue line) 

Fig. 6.15 is a comparison of the computational efficiency of the different methods. The 
original NBI method requires the highest computational effort similar to the results 
reported for the previous example. We needed about 21,000 simulations to achieve the 
11 points for the original NBI method while we needed approximately 14,000 
simulations when using the NBI to track the boundary front. The adjusted weighted 
sum method required less than 8,000 simulations to find the 11 points thus it is 
computationally most efficient though the solutions achieved are far from Pareto 
optimal compared to the solutions achieved by the NBI method.  

6.8.1 Discussion 

The differences between the results of the adjusted weighted sum and the traditional 
weighted sum method for this example are far from significant because the adjustment 
of the weights does not lead to very different weight combinations, i.e., scaling of the 
problem is not as important for this problem as it was for the 5 spot ICV problem and 
the problems investigated in Liu and Reynolds (2014). For this example, the difference 
between the optimal primary long-term objective function values is 14% which is 
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much higher than in the previous example and 48% for the short-term objective 
function values. 

 
Fig. 6.15: Comparison of the computational effort required to achieve solutions using 
the different methods.  

6.9 Conclusions 

 Approximate gradient techniques like EnOpt can be used to generate 
solutions which may lie on a pareto front for a bi-objective optimization 
problem within acceptable computational effort.  

 Tracking the Pareto front using NBI is a computationally more efficient 
method and produces better solutions for the decision maker to choose from 
compared to the original NBI form. Different starting point have a 
significant impact on the optimal solutions achieved. 

 The adjusted weighted sum produces a more even distribution of solutions 
and is marginally computationally more efficient compared to the traditional 
weighted sum technique for this case.  

 For some weight combinations the NBI method produces solutions which 
dominate solutions obtained by the weighted sum variants and vice versa.  

 A hierarchical switching method provides a single solution which satisfies 
the maximum allowable decrease in objective function value however the 
solution is always dominated by the solutions obtained by the other methods.  
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ROBUST BI-OBJECTIVE OPTIMIZATION OF ON-OFF 

INFLOW CONTROL DEVICES: A REALISTIC MODEL  

 

 
In this chapter we consider robust ensemble-based (EnOpt) multi-objective 

production optimization of on-off inflow control devices (ICDs) for a sector model 
inspired from a real-field case7. The use of on-off valves as optimization variables 
leads to a discrete control problem. We propose a re-parameterization of such discrete 
controls in terms of switching times, i.e. we optimize the time at which a particular 
valve is either open or closed. This transforms the discrete control problem into a 
continuous control problem which can be efficiently handled with the EnOpt method. 
Additionally this leads to a significant reduction in the number of controls which is 
expected to be beneficial for gradient quality when using approximate gradients. We 
consider an ensemble of sector models where the uncertainty is described by different 
permeability, porosity, net-to-gross and initial water saturation fields. The controls are 
the ICD settings over time in the three horizontal injection wells, with approximately 
15 ICDs per well. Different optimized strategies resulting from different initial 
strategies were compared. We achieved a mean 4.2% increase in expected NPV at a 
10% discount rate compared to a traditional pressure maintenance strategy. Next, we 
perform a sequential bi-objective optimization, and achieved an increase of 9.2% in the 
secondary objective (25% discounted NPV to emphasize short-term production gains) 
for a minimal decrease of 1% in the primary objective (0% discounted NPV to 

                                                           
7 Taken from Fonseca, R.M., Leeuwenburgh, O., Della Rossa, E., Van den Hof, P.M.J. and Jansen, J.D. 2015. 
Ensemble based multi-objective optimization of on-off control devices under geological uncertainty. Under review 
at SPE Reservoir Engineering and Evaluation. 
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emphasize long-term recovery gains), as averaged over the 100 geological realizations. 
The workflow is repeated for alternative numbers of ICDs showing that having fewer 
control options lowers the expected value for this particular case. The results 
demonstrate that ensemble-based optimization workflows are able to produce 
improved robust recovery strategies for realistic field sector models against acceptable 
computational cost. 

7.1 Introduction 

In the recent past there has been an increased focus on the application of different 
model-based optimization techniques for optimal control to achieve improved reservoir 
management strategies. Most of these studies have used relatively simple models, 
while a limited number of studies such as Bailey et al. (2005), Sarma et al. (2008), 
Alhutali et al. (2009), Chaudhri et al. (2010), Forouzanfar et al. (2013), Van Essen et 
al. (2010) and Raniolo et al. (2013) amongst others have used realistic field scale or 
sector models. Most of the studies that use realistic real field models concerned single-
objective optimization on a single geological realization, with the exception of Alhutali 
et al. (2009) and Raniolo et al. (2013) who performed single-objective optimization 
using an ensemble of geological realizations.  

Chen et al. (2009) reported a successful application of  robust EnOpt using the 1:1 
ratio for the SPE Brugge benchmark case. Raniolo et al. (2013) and Li et al. (2012) 
have investigated the applicability of approximate gradient techniques for life-cycle 
robust water flooding optimization. Yang et al. (2011) applied the robust optimization 
principle to a Steam-Assisted Gravity Drainage (SAGD) application.   

Recently, Chen et al. (2012) presented a adjoint based robust multi-objective 
optimization scheme while Yasari et al. (2013), Pajonk et al. (2011), Schulze-Riegert et 
al. (2011) and Awotunde and Sibaweihi (2011) have investigated the applicability of 
robust multi-objective optimization using evolutionary algorithms for well control and 
well placement optimization with objectives varying from economic criteria to 
Voidage replacement ratio and cumulative production volumes.  

In this chapter we optimize the settings of on-off Inflow Control Devices [ICDs, 
sometimes also referred to as Inflow Control Valves (ICVs)] which have discrete 
settings, i.e. either 0 or 1. However, EnOpt, like other gradient-based techniques, 
cannot efficiently handle discrete control problems. Thus we use a re-parameterization 
of the controls into switching times as will be discussed in detail below. Using this 
technique, we investigate the applicability of an ensemble-based robust hierarchical 
multi-objective optimization framework to optimize an ensemble of sector models 
inspired from a real field case. The uncertainty in the ensemble of sector models is 
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characterized by differing permeability, porosity, net to gross and initial water 
saturation fields.  

7.2 Theory 

In this work we have chosen to use an approximate gradient method (EnOpt), detailed 
in chapter 2, for the optimization instead of a derivative-free technique because the 
computational costs for derivative free methods are usually higher. For our example, 
which incorporates geological uncertainty in the form of 100 realistic reservoir models, 
a derivative-free technique would be computationally extremely challenging. 
Additionally, in our limited experience, approximate gradient techniques usually have 
fewer tuning parameters compared to derivative-free methods. Most real world 
problems have multiple objectives that need to be satisfied. Usually these objectives 
are in conflict with each other, i.e. one must accept decreases in one objective to 
achieve increases in another objective. Thus for this field case inspired application we 
use the hierarchical switching method with EnOpt for the optimization, details on the 
implementation are provided in Chapter 5.  

7.3 Control Parameterization 

Recent advances in technology and the need for improved controllability of the oil 
recovery process have led to the use of inflow control devices (ICDs), also known as 
inflow control valves (ICVs). While there exists many variants of such devices, in our 
study we have used  ICDs that can be individually activated using electric line or 
coiled tubing through relatively simple rigless intervention techniques. This type of 
ICD is currently commercially available with up to 16 ICDs per well, and is used in  
field applications. In the present study we optimize the settings of these ICDs over the 
producing life of a field. ICDs can have settings which vary continuously between 0 
and 1 or could be restricted to settings of either 0 or 1, i.e. either fully open or fully 
closed. In our study the ICDs belong to the latter class, i.e. they have settings of either 
0 or 1. Thus the optimization problem is now discrete in nature. To solve such discrete 
problems, integer programming techniques are usually used; see e.g. Isebor et al. 
(2014). Gradient-based methods like EnOpt, which have been successfully applied to 
problems with continuous variables, are not suitable for discrete control problems. In 
order to use EnOpt to solve this particular optimization problem, a parameterization of 
the controls into continuous variables is necessary. Sudaryanto and Yortsos (2000) 
suggested the use of switching times as control variables for a production optimization 
exercise to study the behavior of bang-bang (i.e. on-off) controls. Zandvliet et al. 
(2007) investigated the theoretical aspects of bang-bang control problems and provided 
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a list of references from different engineering applications where switching times have 
been used as controls. However, they did not use switching times as the controls; rather 
they used continuous control variables in combination with a cut-off criterion to mimic 
the discrete controls. We have also investigated this approach; however we did not 
achieve solutions which were better than a switching times approach. Hasan and Foss 
(2013) recently used switching times as controls for adjoint-based water flooding 
optimization with the halving-time-interval method to update the controls, and Namdar 
Zanganeh (2014) used a switching approach to optimize a surfactant (foam) injection 
application. In this paper we use the switching-time-interval-based parameterization of 
the controls based on the Switching Time Optimization (STO) method provided in 
Sudaryanto and Yortsos (2000). While Sudaryanto and Yortsos (2000) use explicit 
times to define a switch, we use time intervals as controls. There exists two distinct 
advantages of using such a parameterization 

a) It transforms a discrete control problem into a continuous control problem 
which can be efficiently handled by EnOpt. 

b) It leads to a possibly significant reduction in the number of control variables. 
This could be particularly important when using stochastic approximate 
gradient-based techniques like EnOpt because the gradient quality may 
deteriorate for increasing numbers of optimization variables.  

For example, in this case, if we choose fixed control time steps of 1 year and use 48 
ICD settings to be optimized at each control time step, using amplitude-based controls 
for a 20-year period would result in a control vector u containing 48 x 20 = 960 
elements. In the switching times approach the user must pre-define the number of 
allowable switches during the simulation time for each ICD. In our case we use five 
switching times for each ICD over the producing life of the reservoir, thus leading to 
48 x 5 = 240 controls, i.e. a factor 4 reduction in the number of controls. Note that we 
work with time intervals to define the times at which a particular ICD must be either 
switched on or off depending on its previous setting. We do not explicitly find the time 
a control is switched; rather we find the interval after which a control setting can be 
changed. Also note that five switching times is a maximum limit and it is possible to 
achieve an optimized strategy with fewer switches. In case the final switching time 
interval exceeds the end producing time, the interval is simulated only until the end 
time. 

7.4 Results:  Field Case Inspired Application 

The reservoir model used in this study is a sector model inspired on a real field case. 
The reservoir formation is unconsolidated sandstone at approximately 4000 ft. depth 
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with a net thickness ranging from 30 to 45 ft. and is not significantly faulted. A total of 
50,000 active grid blocks are used in this sector model. Model dimensions cannot be 
disclosed for confidentiality reasons. The reservoir rock is of good quality with 
porosities ranging from 20-35 % and net-to-gross ratios of approximately 50-90%. The 
permeability distribution is not very heterogeneous with values ranging from 100-700 
mD, usually around 350 mD. Permeability modeling has been carried out following 
industry standard practices, based on facies and petro-physical modeling . 
Additionally, an integration of core data coming from some of the wells with 
computer-processed interpretation (CPI) logs has been incorporated. A porosity-
permeability correlation has been identified and grids have been populated using a 
standard geostatistical algorithm. Following this, well test data has been integrated and 
the initial ensemble of permeabilities have been conditioned to historical data to get an 
updated ensemble which is used in this study.The reservoir is operated using a line 
drive strategy with horizontal wells having lengths of 4000-10000 ft with ICDs 
installed in some of the injectors. The field has unconventional reservoir and fluid 
properties compared to other fields in the vicinity. In particular, the field temperature is 
lower and the oil is heavier and more viscous, compared to neighboring fields.  

 
Fig. 7.1: Permeability field for layer 14 of realization number 65 

Fig. 7.1 is an illustration of the permeability field of layer 14 from realization number 
65 out of an ensemble of 100 realizations. The sector model shown below is produced 
using a line drive strategy with 3 injectors and 3 producers. The injectors are equipped 
with ICDs which can be mechanically operated using a coiled tubing unit and can only 
be either ‘open’ or ‘closed’, i.e. have values of either 0 or 1. Injector 1 has 15 ICDs 
along its length while injectors 2 and 3 have 16 and 17 ICDs respectively. The settings 
of these ICDs are the control variables for this optimization study. The wells are 
modeled as multi-segment wells in a commercial fully-implicit finite difference black 
oil simulator (Eclipse, 2011). Because the ICDs cannot be modeled to be fully closed, 
i.e. 0, due to numerical limitations, in this exercise the valve settings have a minimum 
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value of 1e-4. To effectively capture the effect of geological uncertainty within the 
optimization framework we use a set of 100 different geological (sector) models. The 
realizations vary in terms of their permeability fields, porosity fields, varying net-to-
gross ratios and initial water saturations.  
The relative homogeneity in the permeability fields, coupled with the specific 
properties of the oil, suggest that for this model the scope for optimization lies in the 
reduction of the volumes of water injected and produced. Fig. 7.2 illustrates the oil 
saturation of layer 14 from realization 65 after 20 years of production. The field water 
cut for a 20-year horizon is approximately 89%, this increase in the volumes of water 
produced and injected makes the problem interesting for optimization. Hence we have 
chosen an optimization time horizon of 20 years.  

 
Fig. 7.2: Oil Saturation of layer 14 for realization 65 after a time of 20 years indicating a 
high water production. 

7.4.1 Life Cycle Optimization 

In this model the injectors and producers are operated on bottom hole pressure 
constraints while the ICD settings are allowed to vary over the producing life (20 
years) of the reservoir. Based on engineering judgment we allow for only five 
switching times per ICD throughout the 20 years, and because we have 48 ICDs per 
control time the control vector u has N = 5 × 48 = 240 elements. An optimal life-cycle 
strategy of ICD settings in the injection wells is obtained by optimizing NPV, as 
described in equation (2.1) with ro = 90 $/bbl, rwp = 8 $/bbl, and rwi = 5 $/bbl. The 
discount rate b is chosen to be either of 0 or 10%. The initial strategy (starting point) of 
the life-cycle optimization is a control vector with all switching time intervals equal to 
0; i.e. there are no switches allowed which implies that all the ICDs are fully open at 
all control times. Fig. 7.3 illustrates the optimization process where the blue lines 
represent the evolution of the objective function values for the 100 different geological 
realizations during the iterations while the red line is the expected value of the 
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ensemble. The optimized expected objective function value is approximately 695 
million $. Due to a lack of significant further change in the objective function value the 
optimization process was terminated after 30 iterations 

 
Fig. 7.3: Mean objective (undiscounted NPV) function value for the 20 year simulation 
time period. The red line is the mean value of the objective value while the blue lines are 
the objective function values for the individual ensemble members through the iteration 
process. 

We observe, for an undiscounted NPV, an approximately 12% increase in mean 
objective function value at the end of the optimization compared to the starting point of 
the optimization (i.e. compared to a ‘do-nothing’ strategy). While this result is 
encouraging, an analysis of the cumulative oil and water rates shows an approximately 
10% mean decrease in cumulative oil production for a corresponding 47.5% mean 
decrease in cumulative water injected and 70% mean decrease in cumulative water 
produced. While the volumes of water injected and produced have reduced 
significantly, this corresponds to a large decrease in cumulative oil production which 
may not be the most attractive strategy.  

7.4.2 Effect of Discount Factor 

In reality a discounted economic objective is traditionally used in the analysis of 
any project. Thus we also use discounted NPV as the objective function with a 10% 
discount factor. First, as in Fig. 7.3 we start the optimization from the “do-nothing” 
strategy, i.e. a strategy where all the ICDs are open throughout the life time of the field. 
Fig. 7.4(a) is an illustration of the optimization with 10% discounted objective 
function. A comparison of this result to a simulator-handled pressure maintenance 
strategy shows a 2.8% mean increase in NPV. The mean cumulative oil volumes 
obtained with this strategy are higher than with the pressure maintenance strategy. 
However, the volumes of water injected and produced are also higher. Since the 

5 10 15 20 25 30
5.8

6

6.2

6.4

6.6

6.8

7

7.2
x 108

Iteration

U
nd

is
co

un
te

d 
N

et
 P

re
se

nt
 V

al
ue

 (U
S

D
)

 

 



7. ROBUST BI-OBJECTIVE OPTIMIZATION OF ON-OFF INFLOW CONTROL DEVICES: A REALISTIC MODEL   

 

116 
 

starting point of the optimization is rather aggressive (in terms of water injection 
volumes) we find an optimized strategy which reflects the same behavior. This strategy 
is hereafter referred to as ‘Opt. Strategy 1’. 

   
Fig. 7.4: (a) 10% discounted NPV, optimization started from ‘do-nothing’ strategy. (b) 
10% discounted NPV, optimization started from end of Fig. 7.3, i.e. the optimized 
strategy. Notice the difference in the scale of the Y-axis between the two plots. 

Following this result we perform an optimization experiment from a different initial 
strategy, i.e. a different point in the control space. The initial strategy is the optimized 
strategy from the undiscounted life-cycle result, shown in Fig. 7.3. We observe that 
starting from a different initial strategy has led us to a solution with a higher NPV, see 
Fig. 7.4(b), compared to Fig. 7.4(a). In addition, compared to the pressure maintenance 
strategy, this optimized strategy (see Fig. 7.4(b)) hereafter referred to as ‘Opt. Strategy 
2’, achieves a mean increase of 4.2%. Thus the optimization is fairly sensitive to the 
initial starting point of the optimization. Opt. Strategy 2 starts from a significantly less 
aggressive strategy (in terms of volumes of water injected) compared to Opt. Strategy 1 
and thus achieves a lower mean cumulative oil production but also injects much lower 
volumes of water. However, irrespective of the starting point, the optimized strategy 
always achieves better solutions in terms of NPV compared to the simulator-handled 
pressure maintenance strategy.  If we perform an optimization exercise while requiring 
the simulator to enforce pressure maintenance we observe that the optimization is not 
successful, because of interference of the simulator-handled control with the 
optimization, as can be seen in Fig. 7.5.  
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Fig. 7.5: 10% discounted NPV with pressure maintenance handled by the simulator 
which has a negative impact on the optimization procedure. 

 
Table 7.1 – COMPARISON OF DIFFERENT OPTIMIZATION STRATEGIES. 

Property Pressure Maintenance Opt. Strategy 1 Opt. Strategy 2 

NPV@ 10% 3.8363e8 3.9432e8 (+2.8%) 3.9971e8 (+4.2%) 

Cum. Oil (STB) 1.3712e5 1.4130e5 (+3.0%) 1.3604e5 (-0.8%) 

Cum. Water Prod (STB) 3.2245e5 3.3985e5 (+5.4%) 2.8454e5 (-13%) 

Cum Water Inj. (STB) 4.6053e5 4.8332e5 (+5.0%) 4.2054e5 (-9.5%) 

Table 7.1 highlights the key differences between the two different optimized strategies 
when using a discounted objective function. We observe that while Opt. Strategy 2 
achieves a higher NPV compared to Opt. Strategy 1, the amount of cumulative oil 
produced is marginally lower than with the simulator-handled pressure maintenance. 
However, there is a significant reduction in cumulative volumes of water needed for 
injection as well as water produced. On the other hand, Opt. Strategy 1 achieves not 
only a higher NPV but also a 3% mean increase in cumulative oil produced at the cost 
of a higher cumulative water injection volume and thus a higher volume of water 
produced. The difference for the two strategies stems from the different initial starting 
points. While it is difficult to conclude in favour of either strategy, decision makers 
now have a choice based on their objectives. 

7.4.3 Reactive Control 

The economic water cut based on the economic parameters used to calculate the 
objective function is 91%, while the current average water cut is 89%. Thus we have 
not yet reached a reactive control strategy. (The reactive control strategy corresponds 
to the ‘do-nothing’ strategy, the NPV of which is the starting point of the 
optimization.) Thus, in general, for an undiscounted NPV the optimized strategy has an 
approximately 12% gain over the reactive strategy.  
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7.4.4 Optimized Control Strategy 

Fig. 7.6 is an illustration of the comparison between an optimized strategy (red) of 
16 ICDs installed in injector 2 with the reactive strategy. Recall that we defined a 
maximum of five allowable switches for each ICD throughout the 20-year optimization 
horizon. We observe that for the optimized strategy, for most cases, the ICDs do not 
need 5 switches; rather the optimized strategy consists of mainly one or two switches 
per ICD. Many life-cycle optimization studies have obtained optimal control sets that 
are non-smooth in nature, i.e. they display frequent adjustments to the control settings 
which is practically undesirable and probably not feasible to implement. However an 
optimized strategy as illustrated in Fig. 7.6 would be more appealing to implement as 
an operational strategy due to its smooth behavior. The settings for the ICDs in 
injectors 1 and 3 also showed very similar behavior to that observed in Fig. 7.6. 

 
Fig. 7.6: Comparison of the optimized control strategy 2 (red) for injector 2 over the 20 
year horizon to a do-nothing/reactive strategy (blue). In most cases the ICDs make one 
or two switches over the 20 year period. 

7.4.5 Comparison of Different Gradient Formulations 

Many alternative formulations to the standard robust ensemble gradient estimate have 
been proposed. Due to the computational complexity of the model, based on the 
findings of Fonseca et al. (2014, 2015) we investigate the application of the three 
robust gradient formulations discussed in the theory section.  Fig. 7.7 depicts the 
optimization process obtained by applying the different formulations. We observe that 
the original formulation (1:1 ratio) achieves a solution superior to the traditional 
pressure maintenance, “do-nothing” strategy; however, the “selected model 
formulation” (blue curve) leads to a solution which achieves an expected value 5% 
higher than the original formulation (green curve). Note: There is always ambiguity 
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with respect to how the models used in this approach are chosen and what impact a 
different set of chosen models would have on the optimization. The modified robust 
gradient formulation (red curve) achieves the highest expected objective function value 
which is approximately 5.5% higher than the value for the original formulation and 
0.5% higher compared to the selected models formulation. The modified gradient 
formulation, like the original formulation, uses the entire ensemble of geological 
realizations, i.e. it accounts for all the uncertainty available to estimate the robust 
gradient, unlike the selected models approach.  

 
Fig. 7.7: Comparison of the optimization performance for different gradient formulations 

7.4.6 Reduction in Number of ICDs 

Since ICDs are expensive to install and operate, reducing the number of ICDs could 
be economically beneficial. However, the impact of having fewer ICDs could result in 
a reduction in controllability. The grouping of the ICDs is primarily based on the 
geological perspective and well path design. Van Essen et al. (2010) showed that a 
grouping of ICDs based on dynamic results instead of a geology-based grouping may 
lead to better results in terms of the objective function value. The well path design used 
in the present study is undulating. Compared to the example in Van Essen et al. (2010), 
in which the horizontal wells are completely horizontal, we expect that dynamic 
grouping will not lead to improved results. The dynamic grouping methodology 
proposed in Van Essen et al. (2010) is based on a visualization of the optimized control 
strategy. Visual inspection of the optimal control set illustrated Fig. 7.6 does not 
suggest any apparent dynamic grouping possibilities. Fig. 7.8 is a comparison of the 
optimization procedure with a significant (approximately a factor four) reduction (blue 
curve) in the number of ICDs based on geological insight compared to the base case 
(red curve). We observe that having fewer ICDs results in a loss of controllability and 
thus an optimized strategy with a lower NPV. The difference in the objective function 
values between the two cases is approximately 3%, where the cost reduction due to a 
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reduced number of ICDs has not been taken into account. We do not have data about 
the actual costs (installation) of a single ICD. Based on discussions with field 
specialists the total costs saved as a result of installation of  fewer ICDs used for this 
case is estimated, on the higher side, to be two orders of magnitude lower than the 
values of NPV shown in Fig. 7.8. Thus, for this example, the costs saved by the 
installation of fewer ICDs does not offset the gain in NPV achieved by using a higher 
number of ICDs.  

 
Fig. 7.8: Comparison of the impact of the use of a reduced number of ICDs based on 
geology and well path designs. A reduced set of ICDs (blue) results in reduced 
controllability and thus a lower NPV. 

7.4.7 Hierarchical Switching Optimization 

The hierarchical (bi-objective) switching optimization method is used to achieve 
multi-objective optimization under uncertainty as illustrated in Fig. 7.9. Following Van 
Essen et al. (2011), the primary objective is undiscounted NPV, displayed in Fig. 7.9, 
while the secondary objective is a highly (25%) discounted NPV to account for the 
short term gains. We observe a mean increase of approximately 9.2% in the secondary 
objective function compared to a maximum allowed mean decrease   of 1% in the 
primary objective function. The switching optimization begins from the optimized 
solution achieved by the modified robust gradient formulation for life-cycle 
optimization. The modified formulation is also used for this hierarchical optimization. 
Additionally, the mean increase in cumulative oil produced over 20 years is marginally 
(2%) higher due to a higher (4.5%) increase in cumulative water injected compared to 
the solution achieved for life-cycle optimization. This confirms the general trend 
observed for this sector model, i.e., higher volumes of water injected will result in 
higher volumes of oil produced. The results illustrate the capacity of ensemble-based 
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multi-objective optimization under geological uncertainty to achieve results of 
practical importance. 
Note: we have terminated the optimization for the secondary objective function after 
15 iterations which translates to 1,500 reservoir simulations for the gradient estimate 
and 2,100 simulations for evaluation of the updated control set, i.e. a total of 3,600 
reservoir simulations. While the total number of simulations is not high, due to the 
complex nature of the models, a forward simulation takes roughly 15 minutes. Thus, to 
obtain these results in a sequential manner would take roughly 37 days. An inherent 
advantage of EnOpt is that the gradient can be estimated using distributed computing, 
as has been done for the present study. The speed-up achieved in this case, using 25 
cores, is roughly a factor 9, i.e. the robust hierarchical optimization was performed in 
approximately 4 days. 

 
Fig. 7.9: Multi-objective optimization with an initial strategy based on life-cycle 0% 
discounted NPV, showing a mean 9.2% increase in the secondary objective function 
(25% discounted NPV) for a 1% mean decrease in primary objective function. 

Fig. 7.10 depicts a comparison of the mean cumulative cash flow over time for the 
optimized solutions achieved by the switching algorithm (blue), life-cycle optimization 
(green) and reactive control (red). It is observed that after 2000 days the cumulative 
cash flow of the multi-objective optimization (blue curve) is approximately 12% higher 
compared to the life-cycle optimization (green curve) which will enable the project to 
achieve the break-even point faster, while the ultimate NPV of the two strategies is 
nearly equal. Similar to the results obtained in Fonseca et al. (2014), the ‘do-
nothing’/reactive control strategy gives the best short-term performance at a price of 
the worst long-term performance.  
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Fig. 7.10: Comparison of the mean cash flow over time for the entire ensemble of 
geological realization for the different optimization strategies. 

7.4.8 Discussion 

We have not considered the commonly used weighted-sum method in this work 
because it is impossible to know a-priori which weight combination will give the 
desired results. The advantage of the hierarchical approach is that the user decides the 
maximum allowable decrease in the primary objective. This feature is not known a-
priori when using the weighted-sum method. We would need to perform a trial and 
error set of experiments which would be computationally demanding.  

Also, we did not use a full Pareto curve approach in which a large number of 
weighted-sum simulations is performed with different weight combinations. 
Generating such a full Pareto curve would provide a decision maker a range of possible 
solutions to choose from. However, computing the full Pareto curve is computationally 
much more intensive and is outside the computational limits of this study. The choice 
of  = 1% in our hierarchical switching approach is simply a choice; a user is free to 
decide his own choice depending on how much a user values the long-term targets. We 
do not claim that this is the correct choice, because, as with any multi-objective 
approach, especially those that aim to generate a Pareto front, the idea is to obtain a 
range of possible solutions to choose from. No single solution is necessarily the correct 
one. Van Essen et al. (2011), who first introduced the hierarchical switching method, 
have included an illustration of the principle and working of this hierarchical switching 
method. Due to the large drop in oil prices in 2015, we repeated the optimization for a 
much lower oil price of 50 $/bbl while keeping the water costs the same. Fig 7.11 
depicts the results. Compared to Fig. 7.3 we now increase the objective function value 
much more (approximately 35% against approximately 12% in Fig. 7.3) which 
illustrates that at lower oil prices the effect of reducing water production and injection 
becomes more important. 
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Fig 7.11: Mean increase in objective function value over the ensemble of realizations for 
a 50$/bbl oil price  

7.5 Conclusions 

 An ensemble-based robust multi-objective optimization workflow tested on 
a sector model inspired from a real field case shows results of practical value 
against acceptable computational cost.  

 Parameterization of ‘on-off’ type controls using a switching time interval 
method is efficient when working with stochastic gradient techniques, such 
as EnOpt. 

 The hierarchical switching algorithm leads to an approximately 9% mean 
increase in the secondary objective function (short-term targets) against a 
mean decrease of 1% in the primary objective function (life-cycle targets) 

 The modified formulation based on the 1:1 ensemble ratio is not only 
computationally attractive but also uses the entire ensemble of geological 
realizations i.e. captures all the uncertainty available. 

 The optimized strategy obtained with the modified formulation achieved a 
4.5% increase in the expected objection function value over the strategy 
obtained by the original formulation and a 3.5% increase over a reactive 
control strategy. The main scope of optimization for this example lies in the 
reduction of the volumes of water injected and produced.  

 A reduction in the number of ICDs results in a loss of controllability and 
thus lower objective function values. However, it may still be a better 
strategy if the cost of the ICDs is incorporated into the objective function. 

 The optimization is sensitive to the initial starting point. Two different 
optimized strategies have been provided for the decision maker to choose 
from.  
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  8
 
CONCLUSIONS & FUTURE PERSPECTIVES  

 

8.1 Conclusions  

In this chapter we first provide general conclusions from this thesis and outline 
future perspectives of the applicability of EnOpt for model-based oil recovery 
optimization. In this thesis we have proposed a modified gradient formulation for 
ensemble optimization under geological uncertainty. We have shown that this modified 
gradient formulation is theoretically more ‘robust’ compared to the original 
formulation proposed by Chen (2008). This formulation performs significantly better 
than the original formulation and in terms of accuracy, potentially comparable to the 
adjoint method in an optimization context. We have shown that ensemble size may 
have a big impact on gradient quality depending on the region within the objective 
function space. We have also investigated the impact of gradient quality on an 
optimization experiment and illustrated the need to achieve high quality gradients for 
different cases. In this thesis we have also proposed an improvement to the gradient 
quality through an iterative updating of the covariance matrix used to generate the 
ensemble of controls. The CMA-EnOpt algorithm highlights the benefit of ‘learning’ 
about the objective function search space during the optimization. We have also 
investigated the applicability of using EnOpt to solve bi-objective optimization 
problems using a hierarchical structure for problems that take into account geological 
uncertainty. We have also illustrated the applicability of EnOpt to generate a Pareto 
front by solving a constrained optimization problem. Finally we have used some of the 
proposed modifications in EnOpt to achieve bi-objective optimization applied to an 
ensemble of realistic reservoir sector models inspired from a real field case. We have 
used the inherent parallelization possible to enhance the computational efficiency of 
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the method when using large scale models. Thus we show that ensemble based 
optimization workflows can be used to produce reservoir management strategies of 
significant practical value. The following sub-sections contain chapter specific 
conclusions.  

Effect of Ensemble Size on Gradient Quality 

 For the relatively simple Rosenbrock function we need an ensemble size 
equal to 900, 5 or 3 to satisfy the null hypothesis and achieve the desired 
confidence interval depending on the perturbation size used (  = 0.1, 

 = 0.01 and  = 0.001 respectively) to generate the ensemble of controls.  
 Including uncertainty within the Rosenbrock function we find that the 

modified formulation [based on equations (2.22) and (2.23)] with the 
computationally attractive 1:1 ratio outperforms the original formulation 
[based equations (2.19) and (2.20)], irrespective of the degree of uncertainty. 
However the degree of uncertainty does play a role in the quality of the 
gradient estimate. Higher-quality gradients can be obtained with an 
increasing ensemble size of model realizations i.e. using higher ratios.  

 When working with higher ratios significantly better results are obtained 
through the use of the ‘Mean of Individual Gradients’ (MIG) formulation 
compared to the HPG formulation. This result is not surprising as this would 
be expected from the central limit theorem. Additionally the ratios required 
are smaller; for the Rosenbrock case, depending on the perturbation size, a 
ratio of 1:3 is sufficient to satisfy the hypothesis and meet the desired 
confidence interval using the MIG formulation. 

 The analysis for the “Egg Model” case was divided into two regions: 1) a 
‘steeper’ region, where with higher perturbation size (  = 0.01) and lower 
ensemble sizes (150 samples) the hypothesis was satisfied at all points, and 
2) a ‘flatter’ region where a smaller perturbation size (   = 0.001) and a 
higher ensemble size (300 samples) were needed.  

 In the flatter region, in addition to the perturbation size, a correlated 
covariance is needed where the choice of correlation length has a significant 
impact on the gradient quality. Through a trial and error procedure we 
observe that correlation lengths between 8 and 13 give the best results and 
lead to satisfying the hypothesis at most points. 

 For the robust “Egg Model” case, we observe a similar trend in the results as 
for the uncertain Rosenbrock function. The modified formulation using the 
1:1 ratio achieves significantly better results compared to the original 
formulation at any point along the optimization curve 
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 In the flatter part of the optimization curve the modified formulation with 
the 1:1 ratio, although performing better than the original formulation, never 
satisfies the hypothesis. Using higher ratios in the flatter region is necessary 
to achieve a good quality gradient. However, in the steeper part, the 
hypothesis is satisfied for all the points.  

 As the results have shown, the developed methodology can, in theory, be 
used to quantify the ensemble size required to achieve a high-quality 
gradient. However, all the angles obtained in this work are always less than 
90 degrees which suggests that with ensemble methods, irrespective of the 
ensemble size (in our case), we estimate the ‘correct’ uphill direction.  

 Use of a gradient of inferior quality in an optimization experiment strongly 
influences the final achievable NPV for a finite number of optimization 
iterations.  

 We recommend to use, out of the 30 potential robust gradient formulations 
identified in our paper, the single ‘smoothed’ modified formulation, i.e. 
equation (2.15) based on equations (2.22) and (2.23), using the 1:1 ratio for 
recovery optimization under uncertainty. In an optimization context, it is 
vital to use good quality 

EnOpt with Covariance Matrix Adaptation 

 A comparison between CMA-EnOpt and EnOpt for a simple five-spot model 
showed consistently (somewhat) higher objective function values and 
modest speed-ups for CMA-EnOpt, depending on the choice of user-defined 
parameters in both algorithms. 

 The major benefit of CMA-EnOpt is its robustness with respect to the initial 
choice of the covariance matrix. A poor choice of the initial matrix can be 
detrimental to EnOpt, whereas the CMA-EnOpt performance is near-
independent of the initial choice. 

 Learning rates are crucial for the success of CMA-EnOpt. For both the 
simple five-spot model and the modified Brugge model, a 75%-25% update 
rule proved to be successful.  

 For the simple five-spot model, the methods that explicitly use gradient 
information (EnOpt and CMA-EnOpt), performed better than the method 
that doesn’t do so (CMA-ES). (Not tested for the modified Brugge model).  

 A comparison between CMA-EnOpt and EnOpt for the modified Brugge 
model revealed slightly lower to significantly higher (-1% - +9%) objective 
function values depending on choice of user-defined parameters in both 
algorithms. 
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 Updating a block-diagonal (i.e. time-correlated) covariance matrix leads to 
significant improvements in the results as well as in the efficiency of the 
algorithm, compared to using a prescribed correlation (smoothing) and 
compared to updating either diagonal elements only, or updating the full 
matrix.  

 The different rank updates play different roles in the success of the 
optimization; for the simple five-spot model the rank μ update performed 
much better than the rank one update, with a combined rank update ending 
up in-between. For the complex Brugge model, however, the rank  update 
performed worst, while the combined-rank update performed best. Further 
experience is needed to arrive at general recommendations. 

 Robustness to the choice of the initial covariance matrix, and higher 
objective function values are the main advantages of CMA-EnOpt over 
EnOpt.  

Hierarchical Bi-Objective Optimization 

 Compromises made to short-term targets during life cycle optimization can 
be partly corrected for with an ensemble-based hierarchical multi-objective 
optimization method. 

 The EnOpt method is a good alternative to achieve practical results when the 
adjoint formulation is not available for hierarchical multi-objective 
optimization.  

 In our numerical simulation examples, two hierarchical multi-objective 
methods showed a 14.2% improvement in the secondary objective function 
(NPV @ 25% discount rate) approximately constrained to the primary 
objective function (NPV @ 0% discount rate). The results obtained with the 
null-space-based optimization algorithm are similar to those resulting from 
the switching algorithm, although for the case investigated here, the 
switching algorithm was found to be computationally somewhat more 
efficient.  

 The BFGS algorithm, used to estimate the Hessian for the null-space 
method, is computationally attractive compared to a finite difference method 
especially when dealing with large control sets, and led to good results for 
the case reported here.  

 Hierarchical multi-objective optimization of ICV settings shows significant 
scope for improvement in short to medium term goals approximately 
constrained to life cycle targets. 
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Pareto Fronts for Bi-Objective Optimization 

 Approximate gradient techniques like EnOpt can be used to generate 
solutions which may lie on a pareto front for a bi-objective optimization 
problem within acceptable computational effort.  

 Tracking the Pareto front using NBI is a computationally more efficient 
method and produces better solutions for the decision maker to choose from 
compared to the original NBI form. Different starting point have a 
significant impact on the optimal solutions achieved. 

 The adjusted weighted sum produces a more even distribution of solutions 
and is marginally computationally more efficient compared to the traditional 
weighted sum technique for this case.  

 For some weight combinations the NBI method produces solutions which 
dominate solutions obtained by the weighted sum variants and vice versa.  

 A hierarchical switching method provides a single solution which satisfies 
the maximum allowable decrease in objective function value however the 
solution is always dominated by the solutions obtained by the other methods. 

Robust Bi-Objective Optimization on On/Off Inflow Control Devices :  

 An ensemble-based robust multi-objective optimization workflow tested on 
a sector model inspired from a real field case shows results of practical value 
against acceptable computational cost.  

 Parameterization of ‘on-off’ type controls using a switching time interval 
method is efficient when working with stochastic gradient techniques, such 
as EnOpt. 

 The hierarchical switching algorithm leads to an approximately 9% mean 
increase in the secondary objective function (short-term targets) against a 
mean decrease of 1% in the primary objective function (life-cycle targets) 

 The modified formulation based on the 1:1 ensemble ratio is not only 
computationally attractive but also uses the entire ensemble of geological 
realizations i.e. captures all the uncertainty available. 

 The optimized strategy obtained with the modified formulation achieved a 
4.5% increase in the expected objection function value over the strategy 
obtained by the original formulation and a 3.5% increase over a reactive 
control strategy. The main scope of optimization for this example lies in the 
reduction of the volumes of water injected and produced.  

 A reduction in the number of ICDs results in a loss of controllability and 
thus lower objective function values. However, it may still be a better 
strategy if the cost of the ICDs is incorporated into the objective function. 
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 The optimization is sensitive to the initial starting point. Two different 
optimized strategies have been provided for the decision maker to choose 
from.  

8.2 Future Perspectives  

In this thesis we have investigated a few important topics with respect to the 
theoretical understanding and applicability of EnOpt, however there exists further 
scope for research. The remainder of this chapter delves into some perspectives that 
could constitute topics of future research directions which focus on approximate 
gradient techniques such as EnOpt.  

Algorithm for Adaptive Ensemble Size and CMA-EnOpt 

The results from Chapter 3 illustrate that different ensemble sizes as well covariance 
matrices are required to obtain a certain desired gradient quality at different regions 
and points in the objective function space. Chapter 4 highlights the effectiveness in 
terms of objective function value of iteratively adapting the covariance matrix 
throughout the optimization. However,  there does not exist a technique to iteratively 
adapt the ensemble size used in the gradient estimate. Investigation into the possibility 
of an adaptive scheme for the ensemble size and its effect on optimization results will 
be of significant interest. In addition to achieving high quality gradients throughout the 
optimization process such an adaptive algorithm will also make the method less 
dependent on user choices of these parameters, thus more ‘robust’ in applicability.  A 
coupling of such an adaptive ensemble size algorithm with the CMA algorithm could 
probably lead to even more ‘robust’ algorithm. In the CMA algorithm a choice needs 
to be made for the number of ‘successful’ directions to be used in the matrix update, 
the effect of an adaptive ensemble size would be one of a few sub-topics which need to 
be investigated.  

Further investigations into Gradient Quality  

The results from Chapter 4 imply that the estimated gradient quality is improved 
using CMA-EnOpt compared to standard EnOpt. Thus it would be interesting to 
investigate if the gradient as a result of CMA-EnOpt is actually a better quality 
gradient. In chapter 3 we have investigated the impact of ensemble size on gradient 
quality for a 320 dimensional problem. Additionally, the impact of the problem 
dimension therefore needs to be investigated in terms of ensemble size. An increase in 
the problem dimension i.e., number of controls, means that the gradient equation that 
needs to be solved becomes more underdetermined for a fixed ensemble size. To the 
best of our knowledge the impact of problem dimension has never been investigated 
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for EnOpt and similar type of methods. Thus to provide general recommendations on 
ensemble sizes the impact of problem dimension needs to be investigated.  

For robust optimization problems in this thesis we recommend the use of the 
modified EnOpt formulation with the 1:1 ratio for computational reasons. In our 
experiments, the ensemble size of geological realizations is 100 which is generally 
used. Thus another interesting sub-topic to investigate would be; “Does the 1:1 ratio 
still produce high quality gradients when the ensemble size of geological models is 
significantly smaller, e.g. less than 10 ?”. A secondary question would then be to 
investigate what would be the minimum ensemble size of geological realizations 
needed to use the 1:1 ratio with the modified formulation.  

An economic objective (NPV) over a significant time horizon (10-20years) is 
generally the objective function used for model based optimization studies. NPV is a 
single number obtained at a particular end time while the controls usually change 
through time. This leads to the question: “Can better quality gradient estimates be 
obtained if the gradient is estimated per control time step ? ” Thus instead of solving a 
single regression equation to estimate an “overall” gradient, multiple regression 
equations would need to be solved for each individual control time step. The final 
gradient to be used in the optimization would then be a concatenated gradient of the 
various gradients estimated per time step. This could be another factor to improve 
gradient quality and thus coupled with problem dimension this could form a future 
research direction into the understanding of approximate gradient techniques.  

Use of an adaptive simplex Hessian matrix to improve gradient quality 

All gradient based optimization exercises consists of two components. First, the 
gradient itself, either the adjoint gradient or an approximate gradient and second, an 
algorithm to choose a step in the direction of the gradient. In model based recovery 
optimization cases usually the steepest ascent method is used which only uses the 
gradient information. While the gradient contains information about the direction in 
which an objective function can be improved/increased it does not contain information 
about the local curvature of the objective function space which may be particularly 
important when working with approximate gradient techniques: In chapter 3 we have 
shown that in the flatter regions of the optimization space the gradient approximation is 
of inferior quality possibly because curvature information is not accounted for. In our 
problems it is not uncommon to postulate the presence of ridges in the objective 
function space which have ‘typical’ orientations. The curvature information or 
orientation of the ridges could possibly be accounted for through the use of the Hessian 
matrix. The Hessian is usually not available or estimating this matrix is 
computationally challenging. While there exists algorithms such as BFGS to iteratively 
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approximate the Hessian matrix, it requires many iterations before the approximate 
matrix is of sufficient quality to be used. Use of an inferior Hessian matrix within a 
Newton scheme may have a negative impact on the optimization. Thus it would be 
interesting to investigate the use of a quasi-Newton method for optimization with 
approximate gradients. Zhao et al. (2013) investigated the use of quadratic 
interpolation methods with EnOpt to account for the curvature in the optimization 
search space with limited success. The success of such a scheme will probably depend 
on the gradient quality as the iterative updating of the Hessian matrix uses gradient 
information. Conn et al. (2009) provide details of an algorithm which can be used to 
estimate a diagonal Hessian using the simplex method. The EnOpt formulation we 
employ is essentially the simplex method described in Conn et al. (2009). Therefore 
investigation into the use of such simplex Hessians within an optimization context 
would be interesting. This simplex Hessian would also need to be investigated in 
conjunction with gradient quality i.e. ensemble size and covariance matrices.  

CMA-EnOpt for Robust Optimization 

The CMA-EnOpt algorithm from Chapter 4 was shown to improve the robustness of 
EnOpt to the choice of the covariance matrix for deterministic optimization cases. 
When dealing with robust optimization problems it would be interesting to investigate 
the impact of using CMA-EnOpt. Currently CMA-EnOpt fails for robust optimization 
cases because the update of the covariance matrix uses a ranking scheme to choose the 
‘best’ directions to be used. When using the 1:1 ratio every perturbed control ensemble 
member is coupled with a different geological model and thus the ranking takes into 
account the geological effects instead of only the perturbations in the controls. This has 
a negative impact on the optimization. Investigation into finding a solution to this 
problem will help in the applicability of CMA-EnOpt for robust optimization to find 
optimal well controls or optimal well placement strategies but also for simultaneous 
optimization of well placement and well controls. In this case as well, a few sub-topics 
for research exists such as should we use a subset of geological models for the 
optimization, and if so, should we update a single covariance matrix for all the models 
or individual matrices for the individual models, etc..  

Use of CMA for multiscale control regularization 

Recently there has been an increased focus on multi-scale control regularization 
based on the reasoning that the optimal number of control variables is not known a-
priori. Various authors, Lien et al. (2008), Shuai et al. (2011) and Oliviera et al. (2014), 
have proposed different methods to iteratively find the optimum number of controls 
needed for the optimization. The methods are primarily based on refinement indicators 
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using gradient information and/or objective function information. In Chapter 4 we 
propose the CMA-EnOpt algorithm where the covariance matrix is adapted based on 
knowledge of the objective function space. Thus the use of the updated covariance 
matrix for multi-scale control regularization could be investigated as an alternative to 
the existing methods. The question that arises is “ Does the updated Covariance 
Matrix provide information to quantify the optimal number of controls to be used in the 
optimization ?”. In chapter 4 we show that during the update of the covariance matrix 
many of the controls have very small standard deviations and only a few retain larger 
standard deviation values. How this information could be used to refine or merge 
controls would be an interesting topic for research. The effect of such a scheme will 
enhance the applicability of EnOpt to a variety of problems. 

Applicability of reduced order modeling/multiscale methods with EnOpt.  

One of the major drawbacks of using any approximate gradient technique is the 
computational effort required to estimate the gradient. This is particularly challenging 
when working with realistic reservoir models of high dimension. Such models can 
sometimes take hours to days to complete a single forward simulation. Thus the use of 
approximate gradient methods which require multiple forward simulations to estimate 
a single gradient is challenging. On the other hand there has been a lot of research into 
the applicability of reduced-order models as a proxy to the high fidelity large scale 
models that approximately capture the relevant flow dynamics of the system. These 
reduced order models are fast to solve and thus computationally very attractive. Van 
Doren et al. (2005) used POD based reduced order models for production optimization 
using the adjoint formulation for the gradients while Cardoso and Durlofsky (2011) use 
TPWL for reduced order modeling with finite difference gradients. Thus it would be 
interesting to investigate the use of reduced-order models in conjunction with 
approximate gradient methods such as EnOpt for model based recovery optimization. 
This could potentially improve the computational efficiency of the method especially 
when working with large scale realistic reservoir model. While the computational 
benefit of such an approach is apparent, the gradient quality and optimization 
performance need to be investigated.  

EnOpt for optimization of complex physical process   

Most of the studies using EnOpt have focused on water flooding optimization. 
Raniolo et al. (2013) and Chen and Reynolds (2015) have applied EnOpt for polymer 
flooding and water alternating gas applications. They showed that significant scope 
exists to optimize such processes and EnOpt was able to achieve results of practical 
value. Namdar Zanganeh et al. (2014) investigated the applicability of an adjoint 
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gradient for optimization of a foam based EOR process. They observed small scale 
fluctuations in the objective function as a result of oscillations in time in the forward 
simulation caused by strong nonlinearities in the foam model. They suggest that similar 
behavior is expected for the simulation of other EOR techniques such as surfactant 
flooding and near-miscible flooding. These oscillations had a negative impact on the 
use of ‘local’ adjoint gradients. EnOpt on the other hand does not calculate the gradient 
at each simulation time step and thus the oscillations in the forward modelling process 
may not affect the ability to use a gradient based optimization algorithm to optimize 
foam EOR processes. Thus it would be very interesting to investigate the applicability 
of EnOpt for optimization of more complex physical problems such as different EOR 
processes especially for problems where the objective function is non-smooth. The 
effect of perturbation sizes for these types of problems will also need to be 
investigated. Additional smoothing formulations as proposed in Chen et al. (2009) 
could be an added advantage when using EnOpt for such problems.  

Detailed comparison with derivate free methods  

Approximate gradient techniques share many similarities with derivative free 
methods such as genetic algorithms, evolutionary strategies etc. In chapter 4 we have 
made a basic comparison between EnOpt and CMA-ES. Many derivative free methods, 
in addition to choosing an ensemble size and a covariance matrix for sampling require 
a user to a-priori choose variables such as learning rates, mutation coefficients etc. The 
choice of all these additional variables would naturally be case/problem dependent and 
a-priori knowledge of the values of these variables is impossible. Thus for a better 
understanding of CMA-EnOpt a sensitivity analysis on the number of variables such as 
learning rates etc., which need to be chosen will be interesting. While it is impossible 
to know a-priori which method will produce the best results, it would be interesting to 
make a detailed comparison between the advantages and dis-advantages between 
derivative free methods and approximate gradient techniques. This comparison would 
be very useful for robust optimization cases especially regarding the computational 
efficiency and optimized solutions achieved. These results could be used to investigate 
and propose new hybrid algorithms which combine the desired properties of the 
different methods.  

Effect of time stepping and convergence of forward simulation on quality of 
approximate gradient 

For any algorithm that is based on using a simulator as a black-box it is vital to 
understand the outputs from the black-box. Inaccurate outputs from the black-box will 
lead to inaccurate results. In any reservoir simulator convergence of the forward 
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simulation as well as the time stepping strategy used is vital to achieve accurate results. 
Volkov and Voskov (2013) showed the effect of different time stepping criteria on the 
quality of the adjoint gradient. When working with exact gradients for each time step 
this is even more important, however the impact of time stepping and convergence of 
the forward simulation on the accuracy of approximate gradients such as EnOpt could 
be considered as a topic for further research.  

Constraint Handling with EnOpt.  

In order to achieve results of practical value it is vital to include constraints for e.g., 
maximum oil production rate, maximum water injection rate etc., within the 
optimization. A few recent papers, Dehdari and Oliver (2012), Leeuwenburgh et al. 
(2015), etc., have addressed the use of EnOpt for constrained optimization problems. 
While there exists many methods to solve the constrained optimization problem it 
would be interesting to make a comparison of the performance of various constraint 
optimization techniques especially for EnOpt under geological uncertainty.  

 
This chapter provides a list of a few possible research directions regarding the 

applicability and use of approximate gradient techniques such as EnOpt. Other, more 
general research areas within the optimization context such as visualization of the 
objective function space or different algorithms for solving a multi-objective 
optimization problem etc. also warrant investigation.  
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APPENDIX8 
 

Degrees of Freedom  

When dealing with an optimization problem, there may exist multiple sets of control 
variables for which we achieve similar results. Those sets of different optimal control 
variables are an indication of the presence of redundant degrees of freedom (DOFs) in 
the system. This existence of multiple solutions suggests that, when the optimum of a 
primary objective function has been reached, not all DOFs of the control variable space 
are fixed. This implies that there may exist redundant DOFs in the optimization 
problem. This conclusion formed the basis for development of the multi-objective 
optimization algorithm in Van Essen et al. (2011). Van Essen et al. (2011) approximate 
a Hessian matrix to find these DOFs, which is an integral part of the null-space-based 
hierarchical optimization method. Henceforth we denote 2 ( )J *H u where H is the 
Hessian matrix, a matrix of second order derivatives of the objective function. 
Consider an objective function J and let u* be a control vector. If u is a vector (with 
same length as u*) of small perturbations then a Taylor expansion around the vector u* 
is given by  

 321
2

T TJ J J J O* * * *u u u u u u u u u  (A-1) 

If u* is a (local) optimum of J and u* is in the interior (i.e. not on the boundary) of the 
feasible domain for a constrained optimization then we can conclude that  

 J *u 0  (A-2) 

Substituting equation (A-2) into equation (A-1) we obtain  

 321
2

TJ J J O* * *u u u u u u u  (A-3) 

If we choose 2[ ( )]null J *u u  then 2 ( )J *u u 0 , and equation (A-3) reduces to  

                                                           
8 Taken from Fonseca, R.M., Leeuwenburgh, O., Van den Hof, P.M.J. and Jansen, J.D. 2014. Ensemble based 
Hierarchical Multi-Objective Production Optimization of Smart Wells. Computational Geosciences 18(3-4).   
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 3J J O u* *u u u  (A-4) 

Thus equation (A-4) implies that for a small perturbation 2[ ( )]null J *u u , the 
adjusted control vector ( )*u u  will have an objective function value very close to 
the objective function value J(u*) which is an optimal value. This means that we can 
make an update to the control vector that is in the null space of the primary objective 
function to improve the secondary objective function. This proves the need to find the 
Hessian matrix at the optimum of the primary objective function and the set of vectors 
that span its null space. A singular value decomposition is used to obtain the null space 
and orthonormal basis B used in the algorithm. 
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SYMBOLS AND NOTATION  
 

Notation 
 b = discount rate 
 c = learning rate 
 uJc  = ensemble cross-covariance vector 
 C  = constant distribution covariance matrix 
 uuC  = updated distribution covariance matrix 
 uuC  = ensemble covariance matrix 
 g  = gradient vector 
 g  = single-smoothed gradient vector  
 g  = double smoothed gradient vector with ensemble covariance matrix uuC  

 g  = double smoothed gradient vector with distribution covariance matrix C  

 g  = single smoothed gradient vector, using C  and a straight gradient vector 

 g  = double smoothed gradient vector, using C and a straight gradient vector 
  = iteration counter 
 H  = Hessian matrix 
 j  = vector of mean-shifted objective function values 
 J = objective function value 
 J  = mean objective function value 
 k = time step counter 
 K = total number of time steps 
 M = number of ensemble members 
 N = number of control variables 
 p = evolution path vector 
 q = flow rates 
 r = price per unit volume 
 t = time 
 u = vector of control variables 
 u  = ensemble mean 
 u  = distribution mean 
 U  = matrix of ensemble mean-shifted control vectors 
 U  = matrix of distribution mean-shifted control vectors 
 STB = stock tank barrels, a volume measure 

= step size 
= perturbation size 
= number of ‘best’ ensemble members 

 = maximum allowed decrease in primary objective function value 
= reference time for discounting 

Subscripts 
 o = oil                                 wp = produced water 
 w = water                            wi = injected water 
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SUMMARY  
 

Rapid industrialization combined with quest for higher standards of living 
especially in developing countries has fuelled an expeditious increase in worldwide 
energy demand. This energy demand is primarily met with energy from fossil fuels 
such as hydrocarbons located in the earth’s subsurface. Of the total estimated 
hydrocarbon volumes present, currently on average, approximately only 30% of the 
volumes have/are being produced. Thus primarily due to technological limitations and 
sometimes economical limitations we leave behind more hydrocarbons than we 
produce. Some of the technological limitations were born out of a lack of knowledge 
about the hydrocarbon reservoir being developed which led to sub-optimal reservoir 
management strategies being used to produce the hydrocarbons. To counter this, the 
concept of Closed Loop Reservoir Management was introduced by Jansen et al. (2005) 
who proposed changing reservoir management from the traditional batch-type reactive 
process to a near-continuous proactive procedure using computer assisted history 
matching and optimization methods. This thesis focusses on the theoretical 
understanding to improve the efficiency of a particular optimization method, Ensemble 
Optimization (EnOpt), for problems incorporating geological uncertainties.  

Chapter 2 provides an overview of the theory for Ensemble Optimization (EnOpt) 
as introduced by Chen et al. (2009). EnOpt uses a simulator, used to model the 
physical processes occurring in the subsurface, as a black box and thus does not require 
access to commercial simulator source code to use theoretically rigorous formal 
gradient based optimization techniques such as the adjoint method. A distinct 
advantage of EnOpt is the flexibility provided to different control types (rates, 
pressures, ICD settings, drilling order priorities, switching times) compared to the 
adjoint method. The stochastic nature of the method is a drawback due to the necessary 
use of a higher number of reservoir simulations needed to approximate the gradient 
compared to the adjoint method. Chen (2008) provided an argumentation which 
enabled EnOpt to be computationally as efficient compared to the adjoint for 
optimization problems under uncertainty. Chapter 2 provides theoretical insights and 
proof for a new modified gradient formulation for problems incorporating 
uncertainties. In this thesis we show that the new modified gradient formulation is not 
only theoretically more ‘robust’ compared to the original gradient formulation 
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proposed by Chen (2008) but also retains the same computational efficiency of the 
original formulation.  

Chapter 3 provides a numerical experimental analysis into the impact of ensemble 
size on the quality of the stochastic ensemble gradient. This chapter  investigates the 
impact of gradient quality on an optimization experiment and illustrates the importance  
to achieve high quality gradient estimates for different optimization problems. The 
results show that ensemble size has a big impact on gradient quality and behaves 
differently depending on the region within the objective function space. In this thesis 
we illustrate that the modified gradient formulation estimates a significantly better 
quality gradient compared to the original formulation and in terms of accuracy, is 
potentially comparable to the adjoint method in an optimization context.  

Chapter 4 investigates a second factor which influences the quality of an ensemble 
gradient, the covariance matrix. The covariance matrix is used to generate the 
perturbations used to estimate the gradient was kept constant throughout the 
optimization in the original EnOpt formulation. In this thesis we have proposed the 
iterative updating of the covariance matrix inspired from an evolutionary strategy, 
CMA-ES, which leads to an improvement in gradient quality. This new algorithm is 
called CMA-EnOpt which highlights the benefit of ‘learning’ about the objective 
function search space during the optimization. CMA-EnOpt improves the robustness of 
the optimization to the initial choice of the covariance matrix and has been shown to be 
useful on multiple synthetic test cases including the Brugge model.  

Chapter 5 delves into the applicability of EnOpt to solve bi-objective optimization 
problems using a hierarchical structure for problems with geological uncertainty to find 
a single optimal strategy which incorporates multiple objectives. There is no guarantee 
that there exists no other strategy better than this strategy. Thus a decision maker will 
require multiple strategies to make an informed decision. Chapter 6 illustrates the 
applicability of EnOpt to generate a Pareto front for bi-objective optimization using 
constrained optimization techniques. The results show that EnOpt was successfully 
able to generate a Pareto front within acceptable computational effort.  

Chapter 7 illustrates the applicability of EnOpt to achieve bi-objective optimization 
under geological uncertainty on an ensemble of realistic reservoir models based on a 
real field case. Some of the improvements proposed in this thesis were tested on this 
realistic model and an efficient parameterization of discrete ICD settings as controls to 
a continuous domain along with the flexibility of EnOpt to different control types was 
especially useful for this application.  

The results from this thesis illustrates that ensemble based optimization workflows 
can be used to produce highly computationally efficient ‘robust’ reservoir management 
strategies of significant practical value.  
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SAMENVATTING  
 

 
Snelle industrialisatie en een drang naar hogere levensstandaarden in ontwikkelende 

landen  veroorzaken een toename in de wereldwijde energievraag. Aan deze 
energievraag wordt primair voldaan met behulp van fossiele brandstoffen zoals 
koolwaterstoffen die in de ondergrond zijn opgeslagen. Als gevolg van technische-, en 
in sommige gevallen economische beperkingen wordt momenteel maar ongeveer 30% 
van het totaal aan aanwezige koolwaterstoffen geproduceerd. Dit lage percentage is het 
gevolg van een tekort aan kennis van de te ontwikkelen koolwaterstofreservoirs dat 
leidt tot een niet-optimale strategie om de olie- en gasreserves te produceren. Om dit 
tegen te gaan is het concept van ‘closed-loop reservoir management’ geïntroduceerd 
door Jansen et al. (2005), die voorstelden om het traditionele reactieve management 
van reservoirs, gebaseerd op afzonderlijke processen, te veranderen in een bijna 
continue proactieve procedure, gebruikmakend van door computers ondersteunde 
methoden voor het conditioneren van reservoir modellen aan historische metingen en 
voor optimalisatie. Dit proefschrift richt zich op het verbeteren van het theoretische 
begrip en de efficiëntie van een optimalisatie methode, ‘Ensemble Optimization 
(EnOpt)’, in problemen waarin geologische onzekerheid een rol speelt. 

Hoofdstuk 2 geeft een overzicht van de theorie voor Ensemble Optimization 
(EnOpt) zoals geïntroduceerd door Chen et al. (2009). EnOpt gebruikt een simulator 
om het fysische proces, zoals dat plaatsvindt in de ondergrond, te modelleren als een 
zogenaamde ‘black box’. Het vereist derhalve geen toegang tot commerciële 
simulatorcode om theoretisch rigoureuze, formele, op gradiënten gebaseerde 
optimalisatiemethoden te kunnen gebruiken, zoals de veelgebruikte ‘adjoint’ methode. 
Een onderscheidend voordeel van op stochastische gradiënten gebaseerde methoden 
ten opzichte van de adjoint methode is de flexibiliteit om verschillende soorten 
aansturingsvariabelen (debieten, drukken, ICD instellingen, prioriteiten van 
boorvolgorde, wisseltijden) te gebruiken. Het stochastische karakter van de methode is 
een nadeel vanwege het grote aantal simulaties dat vereist is om een gradiënt te 
benaderen ten opzichte van de adjoint methode. Hoofdstuk 2 levert theoretische 
inzichten en bewijs voor een nieuwe, aangepaste formulering voor de gradiënt bij 
problemen met onzekerheden. Dit proefschrift toont aan dat deze nieuwe formulering 
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niet alleen theoretisch robuuster is dan de oorspronkelijke formulering voor de 
gradiënt, voorgesteld door Chen (2008), maar ook efficiënter is in de berekening. 

Hoofdstuk 3 levert een numerieke analyse van de invloed van de ensemblegrootte 
op de kwaliteit van de stochastische ensemble gradiënt. Dit hoofdstuk onderzoekt de 
invloed van de kwaliteit van de gradiënt op een optimalisatie-experiment en illustreert 
het belang van het bereiken van schattingen van de gradiënt met een hoge kwaliteit 
voor verschillende optimalisatieproblemen. De resultaten laten zien dat 
ensemblegrootte een grote invloed heeft op de kwaliteit van de gradiënt, afhankelijk 
van de regio in de doelfunctieruimte. Dit proefschrift laat zien dat de aangepaste 
formulering voor de gradiënt een gradiënt schat met een significant betere kwaliteit dan 
de oorspronkelijke formulering. Het laat ook zien dat, in termen van nauwkeurigheid, 
de aangepaste formulering voor de gradiënt in potentie vergelijkbaar is met de adjoint 
methode in een optimalisatie context. 

Hoofdstuk 4 onderzoekt een tweede factor die de kwaliteit beïnvloed, namelijk de 
covariantiematrix. In de oorspronkelijke formulering van EnOpt wordt de 
covariantiematrix, die wordt gebruikt om de perturbaties te genereren, constant 
gehouden gedurende de optimalisatie. In deze dissertatie wordt een verbetering van de 
kwaliteit van de gradiënt voorgesteld door middel van een iteratieve aanpassing van de 
covariantiematrix, geïnspireerd door een evolutionaire strategie: CMA-ES. Het CMA-
EnOpt algoritme verbetert de robuustheid van de optimalisatie voor de beginkeuze van 
de covariantiematrix. Het nut daarvan wordt aangetoond in meerdere synthetische 
testgevallen, waaronder het Brugge model. 

Hoofdstuk 5 diept de toepasbaarheid uit van EnOpt voor het oplossen van 
problemen met tweevoudige doelfuncties, gebruikmakend van een hiërarchische 
structuur, in gevallen waar rekening wordt gehouden met geologische onzekerheid, om 
een enkele optimale strategie te vinden. In werkelijkheid heeft een beslissingsmaker 
meerdere strategieën nodig om een goed geïnformeerde beslissing te kunnen maken. 
Hoofdstuk 6 illustreert de toepasbaarheid van EnOpt om een Paretogrens te genereren 
voor optimalisatie van tweevoudige doelfuncties, gebruikmakend van beperkte 
optimalisatietechnieken. De resultaten laten zien dat EnOpt met succes een Paretogrens 
kan genereren met een acceptabele berekeningsinspanning. 

Hoofdstuk 7 schetst de toepassing van EnOpt op een ensemble van realistische 
reservoirsectormodellen, gebaseerd op een bestaand veld, met als doel het 
optimaliseren van twee doelfuncties in aanwezigheid van onzekerheid. Enkele van de 
in dit proefschrift voorgestelde verbeteringen zijn getest op dit realistische model. Een 
efficiënte parametrisering van discrete ICD instellingen intermen van continue 
aansturingsvariabelen tezamen met de flexibiliteit van EnOpt bij verschillende 
aansturingstypen was in het bijzonder bruikbaar bij deze toepassing. 
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De resultaten in dit proefschrift laten zien dat op ensembles gebaseerde 
werkprocessen voor optimalisatie gebruikt kunnen worden om strategieën voor 
reservoiraansturing te genereren die efficiënt zijn in termen van rekentijd, robuust in de 
aanwezigheid van onzekerheid en praktisch van significante waarde.  
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