
 
 

Delft University of Technology

On the use of machine learning models for prediction of compressive strength of concrete
Influence of dimensionality reduction on the model performance
Wan, Zhi; Xu, Yading; Šavija, Branko

DOI
10.3390/ma14040713
Publication date
2021
Document Version
Final published version
Published in
Materials

Citation (APA)
Wan, Z., Xu, Y., & Šavija, B. (2021). On the use of machine learning models for prediction of compressive
strength of concrete: Influence of dimensionality reduction on the model performance. Materials, 14(4), 1-
23. Article 713. https://doi.org/10.3390/ma14040713

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3390/ma14040713
https://doi.org/10.3390/ma14040713


materials

Article

On the Use of Machine Learning Models for Prediction of
Compressive Strength of Concrete: Influence of Dimensionality
Reduction on the Model Performance

Zhi Wan *, Yading Xu and Branko Šavija

����������
�������

Citation: Wan, Z.; Xu, Y.; Šavija, B.

On the Use of Machine Learning

Models for Prediction of Compressive

Strength of Concrete: Influence of

Dimensionality Reduction on the

Model Performance. Materials 2021,

14, 713. https://doi.org/10.3390/

ma14040713

Academic Editor: Łukasz Sadowski

Received: 12 January 2021

Accepted: 29 January 2021

Published: 3 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628CN Delft, The Netherlands;
Y.Xu-5@tudelft.nl (Y.X.); B.Savija@tudelft.nl (B.Š.)
* Correspondence: Z.Wan-1@tudelft.nl; Tel.: +31-616447088

Abstract: Compressive strength is the most significant metric to evaluate the mechanical properties of
concrete. Machine Learning (ML) methods have shown promising results for predicting compressive
strength of concrete. However, at present, no in-depth studies have been devoted to the influence
of dimensionality reduction on the performance of different ML models for this application. In this
work, four representative ML models, i.e., Linear Regression (LR), Support Vector Regression (SVR),
Extreme Gradient Boosting (XGBoost), and Artificial Neural Network (ANN), are trained and used
to predict the compressive strength of concrete based on its mixture composition and curing age. For
each ML model, three kinds of features are used as input: the eight original features, six Principal
Component Analysis (PCA)-selected features, and six manually selected features. The performance
as well as the training speed of those four ML models with three different kinds of features is assessed
and compared. Based on the obtained results, it is possible to make a relatively accurate prediction
of concrete compressive strength using SVR, XGBoost, and ANN with an R-square of over 0.9.
When using different features, the highest R-square of the test set occurs in the XGBoost model with
manually selected features as inputs (R-square = 0.9339). The prediction accuracy of the SVR model
with manually selected features (R-square = 0.9080) or PCA-selected features (R-square = 0.9134)
is better than the model with original features (R-square = 0.9003) without dramatic running time
change, indicating that dimensionality reduction has a positive influence on SVR model. For XGBoost,
the model with PCA-selected features shows poorer performance (R-square = 0.8787) than XGBoost
model with original features or manually selected features. A possible reason for this is that the
PCA-selected features are not as distinguishable as the manually selected features in this study. In
addition, the running time of XGBoost model with PCA-selected features is longer than XGBoost
model with original features or manually selected features. In other words, dimensionality reduction
by PCA seems to have an adverse effect both on the performance and the running time of XGBoost
model. Dimensionality reduction has an adverse effect on the performance of LR model and ANN
model because the R-squares on test set of those two models with manually selected features or
PCA-selected features are lower than models with original features. Although the running time of
ANN is much longer than the other three ML models (less than 1s) in three scenarios, dimensionality
reduction has an obviously positive influence on running time without losing much prediction
accuracy for ANN model.

Keywords: machine learning models; dimensionality reduction; Principal Component Analysis;
compressive strength prediction

1. Introduction

Concrete is the most widely used construction material in the world. Among its prop-
erties, compressive strength is significant to evaluate its general construction properties for
two reasons: first, it is the specification metric most commonly used in engineering practice
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(e.g., in codes such as Eurocode 2 (EC2) [1] and Chinese code for design of concrete struc-
tures (GB50010) [2], and second, other engineering properties (such as Young’s modulus
and tensile strength, for example) can be correlated to compressive strength of concrete.
Therefore, it is of great importance to make a precise prediction of compressive strength.
However, concrete compressive strength is influenced by many factors such as mixture
components (water/cement, aggregate, superplasticizers, etc.), curing environment as well
as curing age [3–6]. In practical terms, it would be very beneficial to be able to accurately
predict the compressive strength of concrete based on the abovementioned parameters.

At present, measuring the compressive strength of concrete in the lab is crucial for
its practical application. However, this is often time-consuming and significant resources
are utilized for mixture optimization. In addition, lowering the environmental footprint of
concrete production has led to partially/completely replacing cement with supplementary
cementitious materials (e.g., fly ash, blast furnace slag, and others [7,8]), further expanding
the design space for concrete mix design. Besides, to meet some special requirements
of practical engineering nowadays, an increasing number of innovative concrete types
(e.g., strain hardening cementitious composites (SHCC), ultra-high performance concrete
(UHPC), and self-healing concrete (SHC)) are being developed and need to be investigated
in the lab [9–11], which makes the prediction of concrete compressive strength based on
mixtures increasingly important.

Analytical and numerical models, commonly based on homogenization, are increas-
ingly being used to predict the mechanical properties (compressive/tensile strength, elas-
tic modulus) of concrete [12,13]. In such models, detailed information about the mi-
crostructure, spatial distribution, and mechanical properties of individual phases are
required [14,15]. In addition, many of these models are computationally expensive, which
prohibits their practical applicability. Recently, machine learning (ML) has emerged as a
promising way to predict the compressive strength of concrete with high accuracy [16–18].
Compared with traditional prediction methods, an advantage of machine learning is that
the prediction could be made without knowing the exact relationship between features and
compressive strength. Machine learning models have been used for predicting compres-
sive strength of concrete for a long time [19,20]. Different ML models, from simple linear
regression to newly developed ensemble methods, have been used to predict concrete
compressive strength based on given features. It is reasonable that every ML model has its
own advantages and disadvantages. It is of great importance to study the properties of
those ML models while predicting concrete compressive strength.

In previous studies, most of the times the learning procedure (hyperparameters
tuning) of ML models is not presented and analyzed in detail, making it difficult to
assess the validity of the models and replicate the findings. More importantly, most
previous studies do not address data preprocessing, a process which can have significant
impact on generalization performance of a supervised ML algorithm [21]. For example,
dimensionality reduction is crucial for many ML problems, especially for those with many
features [22]. However, the influence of dimensionality reduction on the performance of
different ML models for compressive strength prediction is currently not investigated.

In this work, we carry out an in-depth comparison between four representative ML
models. Among others, Linear Regression (LR) is a parametric regression model used to
determine the relation between target (output) and features (input) and it is the simplest
regression model [23]. Support Vector Regression (SVR) is a nonparametric ML model
which can deal with nonlinear regression problems using kernel function [24]. Extreme
Gradient Boosting (XGBoost) is a boosting algorithm based on decision tree [25], and
therefore it enables users to analyze the relative importance of features in prediction
response. Artificial Neural Network (ANN) is a biologically-inspired method to tackle
complex ML tasks with a large number of simple processing elements called neurons [26].
Instead of directly training the ML models with raw data, original features in the dataset
are herein first preprocessed with feature selection using mutual information regression
(MIR), feature extraction using Principal Component Analysis (PCA) to seek for possible
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dimensionality reduction. In addition, feature normalization is also carried out to accelerate
the training process. The four selected ML models have been trained and tested under
three scenarios:

1. Models with original features (i.e., without any feature reduction) to act as a baseline
for comparison.

2. Models with reduced dimensionality after PCA, trained and tested with PCA-
selected features.

3. Models with the equal number of manually selected features as that in scenario 2.

The performance as well as the training speed of those four ML models under these
three scenarios are compared. The influence of dimensionality reduction on the perfor-
mance of 4 ML models are drawn based on the obtained results.

2. Data Source and Theories of Machine Learning Models
2.1. Data Source

A set of reliable data is necessary in order to make a precise prediction and comparison
between the different ML models. Besides, considering that a small-sized dataset may
introduce serious overfitting when using some learning algorithms such as Artificial
Neural Network or XGBoost, the size of dataset should not be too small [27]. Therefore,
the compressive strength data collected by Yeh [19] with 1030 samples is adopted as our
subject. The statistical properties of the dataset are given in Table 1.

Table 1. Statistical properties of Yeh’s dataset [28].

Cement
(kg/m3)

Blast Furnace Slag
(kg/m3)

Fly Ash
(kg/m3)

Water
(kg/m3)

Superplasticizer
(kg/m3)

Coarse
Aggregate

(kg/m3)

Fine
Aggregate

(kg/m3)

Age
(day)

Compressive
Strength

(MPa)

Mean 281.168 73.896 54.188 181.567 6.205 972.919 773.580 45.662 35.818
Std 104.456 86.237 63.966 21.344 5.971 77.716 80.137 63.139 16.698
Min 102 0 0 121.8 0 801 594 1 2.33
Max 540 359.4 200.1 247 32.2 1145 992.6 365 82.6

Range 358 359.4 200.1 125.2 32.2 344 398.6 364 80.26

2.2. Introduction of the Utilized ML Models

Among the ML Models, there are four representative ML models: linear regression
(LR), support vector regression (SVR), extreme gradient boosting (XGBoost), and Artificial
Neural Network (ANN). In this paper, those ML models are selected to perform the
regression and comparison work. A brief introduction about those ML models is given in
this part.

2.2.1. Linear Regression (LR)

Linear regression is an old method to evaluate the correlation between two or more
features [29]. After deciding the relationship between features (input) and target (output),
the learning process will be run to minimize the loss function value (like Mean Squared
Error). The parameters that minimize the loss function are exactly the optimal parameters
for the regression. Due to its simplicity, the accuracy of this model is not high. The general
form of a multiple linear regression model is given in Equation (1) below [30]:

ŷ = a0 +
m

∑
j = 1

ajXj (1)

where ŷ is the predicted result, Xj are the features (input) of the dataset, and a0, a1, . . . , am
are the parameters to train.

In this study, this model is employed to fit multiple linear equations that relate the
compressive strength and the given features. According to previous research [31], the
relation between features and compressive strength is complex and nonlinear. Therefore,
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in order to improve the prediction accuracy of LR model, polynomial features are created
using original features with different polynomial degrees.

2.2.2. Support Vector Regression (SVR)

Support vector machine (SVM) is a powerful and versatile method to deal with
the linear/nonlinear classification, regression, and even outlier detection [26]. SVM is
a typical kernel method in machine learning. In particular, SVM classifier is aimed to
separate different classes with the widest possible street (large margin) between the classes.
The linear SVM classifier model predicts the class of a new instance x by computing the
decision function WT ·x + b = w1x1 + w2x2 + . . . + wnxn + b. Based on the decision
function, prediction is made as Equation (2):

ŷ =

{
0, WT ·x + b < 0
1, WT ·x + b ≥ 0

(2)

The soft margin linear SVM classifier objective is given in Equation (3):

min
W,b,ζ

1
2

WT ·W + C
m

∑
i = 1

ζ(i) (3)

Subject to t(i)
(

WT ·x(i) + b
)
≥ 1− ζ(i) and ζ(i) ≥ 0 for i = 1, 2, . . . , m, where W is the

weight vector, ζ(i) is a slack variable to measure how much the i-th instance is allowed to
violate the margin, and C is a hyperparameter that allows to define the trade-off between
two conflicting objectives: making the slack variables as small as possible to reduce the
margin violations, or making 1

2 WT ·W as small as possible to increase the margin.
Support Vector Regression (SVR) is a subset of SVM for regression purposes. Instead

of trying to fit the largest possible street between two classes (SVM classifier), SVR tries
to fit as many instances as possible on the street while limiting margin violations [32].
Except for linear regression, this algorithm is capable to tackle nonlinear regression by
a kernelized SVR. Among the kernels, the Gaussian Radial Basis function (RBF) kernel
(Equation (4)) is widely used for its capacity of mapping the original features into infinite
dimensionality [28].

K(a, b) = exp
(
−γ||a− b||2

)
(4)

Hyperparameter γ defines how much influence a single training example has and the
default value in scikit learn is the reciprocal of the number of features in the dataset [33].

2.2.3. Extreme Gradient Boosting (XGBoost)

Compared with an individual predictor, the model which aggregates the predictions
of a group of predictors will often get better predictions. A group of predictors is called
an ensemble and this technique is called ensemble learning [25]. There are three different
kinds of methods to form an ensemble method, i.e., bagging, boosting, and stacking. For
example, Random Forest (RF) is an ensemble of decision trees, generally trained via the
bagging method. Unlike bagging, which trains predictors in parallel, boosting trains
predictors sequentially.

XGBoost is a scalable end-to-end tree boosting system developed by Chen et al. [34].
It tries to fit the new predictor to the residual errors made by the previous predictor under
the gradient boosting framework. The result is predicted using many additive functions as
Equation (5) [35]:

yi = y0
i + η

M

∑
k = 1

fk(Xi) (5)
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where yi is the predicted result based on features Xi, y0
i is the initial guess (often the mean

of the measured values in the training set), and η is the learning rate that helps to improve
smoothly the model while adding new trees and avoid overfitting.

The estimation fk of the additional k-th estimators is as Equation (6).

yi
k = yi

(k−1) + η fk (6)

where yi
k is the k-th predicted result and fk is defined by the leaves weights.

To learn the functions used in model above, the following regularized objective
(Equation (7)) is minimized [35],

L(φ) = ∑
i

l(ŷi, yi) + ∑
k

Ω( fk) (7)

where Ω( f ) = γT + 1
2 λ||w||2.

Here, l is a differentiable convex loss function that measures the difference between
the prediction ŷi and the target yi. The second term Ω penalizes the complexity of the
model and it acts as an additional regularization term helps to avoid overfitting.

In addition, as XGBoost is based on decision trees and single decision trees are highly
interpretable, XGBoost enables users to learn the relative importance or contribution of
individual input variables in predicting the response [36]. According to Breimen et al. [37],
I2
l (T) could be used as a measure of relevance for each predictor variable xl and is shown

in (Equation (8)), in which J is the number of nodes in the tree

I2
l (T) =

J−1

∑
t = 1

î2t I(v(t) = l) (8)

The importance measure is generalized to XGBoost by averaged over the trees and is
shown in Equation (9), in which M is the number of the trees

I2
l =

1
M

M

∑
m = 1

I2
l (Tm) (9)

In Scikit-learn, the feature importance is represented with an F score: A higher F score
means that the feature contributes relatively more in predicting the response.

2.2.4. Artificial Neural Network (ANN)

Artificial Neural Network (ANN) is a powerful algorithm processing data by simu-
lating the functioning of the biologic neurons [38]. Researchers have carried out a lot of
studies on ANN since the 1960s. During the past decades, due to the development of big
data and computer power, Deep Learning (DL) has rapidly developed to tackle large and
highly complex machine learning tasks [33].

ANN uses linking functions to correlate features with targets. There are two pro-
cesses for ANN: forward propagation and backward propagation. During the forward
propagation process, the artificial neuron sums the weighted inputs from the neurons in
the previous layer (or input) and then uses activation functions (such as ReLu function,
sigmoid function, tanh function, or others) to carry out nonlinear operation [39]. After
obtaining the predicted target, the gap between predicted target and actual target is used
to improve the weights in each layer, using backward propagation. In the backward propa-
gation process, optimization algorithms such as stochastic gradient descent (SGD), Root
Mean square prop (RMSprop), and Adaptive moment estimation (Adam) are employed to
improve the weight matrix (W) and bias matrix (b). The two processes continue until the
predicted values are close enough to the actual ones (measured by loss function). A general
architecture of an ANN is shown in Figure 1 [40]. The calculation of neurons in the l-th
layer is as Equations (10)–(15).
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Figure 1. General structure of an Artificial Neural Network (ANN). 

Forward propagation: 

ℤ[𝑙]  =  𝑊[𝑙]𝐴[𝑙−1] + 𝑏[𝑙] (10) 

𝐴[𝑙]  =  𝑔[𝑙](ℤ[𝑙]) (11) 

Backward propagation: 

𝑑ℤ[𝑙]  =  𝑑𝐴[𝑙] ∗ 𝑔[𝑙]′(ℤ[𝑙]) (12) 

𝑑𝑊[𝑙]  =  
1

𝑚
𝑑ℤ[𝑙] ∗ 𝐴[𝑙−1]𝑇 (13) 

𝑑𝑏[𝑙]  =  
1

𝑚
∑ 𝑑ℤ[𝑙]𝑚

𝑖 = 1  (axis = 1) (14) 

𝑑𝐴[𝑙−1]  =  𝑊[𝑙]𝑇 ∗ 𝑑ℤ[𝑙] (15) 

where 𝑊[𝑙], 𝑏[𝑙] are the weight matrix and bias matrix of layer l; ℤ[𝑙] is the weighted sum 

matrix of layer l; 𝐴[𝑙] is the activation of units in layer l; 𝐴[𝑙]  =  [𝑎1
[𝑙], 𝑎2

[𝑙] ⋯ , 𝑎𝑘
[𝑙]], 𝑔[𝑙](𝑥) 

is the activation function of layer l; 𝑑ℤ[𝑙], 𝑑𝑊[𝑙], 𝑑𝑏[𝑙] are the derivative of the weighted 

sum matrix ℤ[𝑙], weight matrix 𝑊[𝑙], bias matrix 𝑏[𝑙] in layer l, respectively; and 𝑑𝐴[𝑙−1] 

is the derivative of activation of units in layer l − 1. 

3. Prediction Process with Different ML Models 

3.1. Data Preprocessing 

Before feeding the dataset into the ML models, it is necessary to preprocess the data 

to accelerate the learning process [21]. As the dataset we use is relatively complete and 

clean, we only perform feature selection, feature extraction and feature normalization se-

quentially. 

3.1.1. Feature Selection and Extraction 

In Machine Learning applications, identifying the most characterizing features is cru-

cial to minimize the cost function. In this work, mutual information regression (MIR) [41] 

is first employed to detect the dependency of the original features. In MIR, the mutual 

Figure 1. General structure of an Artificial Neural Network (ANN).

Forward propagation:
Z[l] = W [l]A[l−1] + b[l] (10)

A[l] = g[l](Z[l]) (11)

Backward propagation:

dZ[l] = dA[l] ∗ g[l]
′
(Z[l]) (12)

dW [l] =
1
m

dZ[l] ∗ A[l−1]T (13)

db[l] =
1
m ∑m

i = 1 dZ[l] (axis = 1) (14)

dA[l−1] = W [l]T∗ dZ[l] (15)

where W [l], b[l] are the weight matrix and bias matrix of layer l; Z[l] is the weighted sum
matrix of layer l; A[l] is the activation of units in layer l; A[l] =

[
a[l]1 , a[l]2 · · · , a[l]k

]
, g[l](x) is

the activation function of layer l; dZ[l], dW [l], db[l] are the derivative of the weighted sum
matrix Z[l], weight matrix W [l], bias matrix b[l] in layer l, respectively; and dA[l−1] is the
derivative of activation of units in layer l − 1.

3. Prediction Process with Different ML Models
3.1. Data Preprocessing

Before feeding the dataset into the ML models, it is necessary to preprocess the
data to accelerate the learning process [21]. As the dataset we use is relatively complete
and clean, we only perform feature selection, feature extraction and feature normaliza-
tion sequentially.

3.1.1. Feature Selection and Extraction

In Machine Learning applications, identifying the most characterizing features is cru-
cial to minimize the cost function. In this work, mutual information regression (MIR) [41]
is first employed to detect the dependency of the original features. In MIR, the mutual in-
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formation of two given variables is defined in terms of their probabilistic density functions
p(x), p(y), and p(x,y) (Equation (16))

I(x, y) =
x

p(x, y)log
p(x, y)

p(x)P(y)
dxdy (16)

The selected features xi are required to have the largest mutual information. In terms
of sequential search, the m best individual features are often selected as the m features.

After analysis with mutual information in scikit-learn, the number of selected features
is still 8, which is the same with the number of original features. In other words, none of the
original features could be directly abandoned without losing much information. It is likely
that the prediction models will have good prediction results if all the original features are
retained in this study.

Considering that it is not suitable to reduce dimensionality by directly abandoning
original features, Principal Component Analysis (PCA) is employed to extract the original
features. In PCA, the features are extracted by projecting the original vector to a lower
dimensional latent space and find a new set of coordinates to define the original vectors. In
Scikit-learn, singular value decomposition (SVD) (Equations (17) and (18)) is utilized using
the Numpy package [42] to perform the Principal Component Analysis [43],

x̃ = x− x_mean (17)

x̃ = UΣVT (18)

where x_mean is the mean values of x, ΣTΣ matrix contains the eigenvalues that determine
the variance explained in each principal component, while the VT matrix contains the
principal components in order of decreasing variance explained.

In this work, PCA is performed to detect the possible dimensionality reduction by
analyzing the cumulative explained variance. When the cumulative explained variance
approaches 1, it means that an increasing amount of information in the dataset is retained.
All information in the dataset is retained when the cumulative explained variance equals
to 1.

Based on the obtained results from PCA, the explained variance ratio of each selected
component is shown in Table 2. The relation between cumulative explained variance and
the number of components after dimensionality reduction is shown in Figure 2.

Table 2. Result of Principal Component Analysis (PCA).

Component Component
1

Component
2

Component
3

Component
4

Component
5

Component
6

Component
7

Component
8

Explained variance ratio 3.2577 × 10−1 2.4887 × 10−1 1.8480 × 10−1 1.0766 × 10−1 1.0095 × 10−1 2.9845 × 10−2 1.8180 × 10−3 2.8770 × 10−4

Cumulative explained variance 0.32577 0.57464 0.75944 0.86710 0.96805 0.997895 0.999713 1.00000

From Figure 2, it is noted that the cumulative explained variance is lower than 1.0
when the number of components is less than 8, indicating that the 8 features are more or less
related with each other. The results from PCA are in good agreement with that of the result
of MIR. However, when the number of components is reduced to 6 by PCA, the original
information is well reserved (cumulative explained variance is 0.997895). Considering
that the total number of components is not too large, models using the 8 original features,
6 PCA-selected features, and 6 manually selected features are used as the input for the ML
models in this study.
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Figure 2. Cumulative explained variance ratio with respect to number of dimensions (PCA).

3.1.2. Feature Normalization

Another common preprocessing method in ML is feature normalization, which could
also accelerate the learning process. From Table 1, it can be seen that the ranges of features
are quite different: for example, mixtures contain on average 6 kg/m3 of superplasticizer,
but more than 970 kg/m3 of coarse aggregate. It is known that ML models, which are
smooth functions of the inputs, are affected by the scale of the input [44]. Therefore,
feature normalization, where the mean values and the variances of each feature are 0 and 1,
respectively (Equation (19)), is adopted to deal with the dataset.

x′ =
x− x

σ
(19)

where x and σ are the mean and the standard deviation of feature x, respectively.

3.2. Prediction Process with Original Features

To avoid data leakage, the original dataset is first split with a split of 70–30% between
the training and test sets, i.e., trainset (size = 721) and test set (size = 309). Among others,
the training set is used to train the ML models while the test set is used to verify the
performance of ML models (generalization ability). As the compressive strength prediction
is a regression task, coefficient of determination (R-square) is selected as a metric to
evaluate the accuracy of ML models. In addition, considering that the gap of root mean
squares error (RMSE) or mean absolute error (MAE) between different ML models is
not as distinguishable as mean squared error (MSE), MSE is also employed to analyze
the performance of 4 ML models with 3 different kinds of features. The mathematical
formulations of R-square and MSE are given in Equations (20) and (21) [40]:

R2(y , y′
)
= 1− ∑ (yi − yi

′)2

∑ (yi − y)2 (20)

MSE =
1
n

i = n

∑
i = 1

∣∣y− y′
∣∣2 (21)

where yi and yi
′ are the actual and predicted values of the i-th sample, and y is the mean

value of compressive strength.
Linear Regression, Support Vector Regression, and Extreme Gradient Boosting are

implemented under the framework of scikit-learn [33]. The ANN model is implemented
under the framework of Keras [45]. Since there is no need to know the relation between fea-
tures and targets in advance (except in the LR model), the learning process mainly focuses
on tuning hyperparameters and obtaining the optimal parameters for each ML model.
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3.2.1. Linear Regression (LR)

In linear regression, the selection of the regression hypothesis is crucial. Except for
the linear combination of 8 original features, different polynomial features are also created
to look for the optimal performance of LR model on the test set. However, according to
Equation (22), the number of polynomial features dramatically increases with the polyno-
mial degree. When polynomial degree is 5, the number of polynomial features is 1286,
which is even larger than the data size (1030), and the model will be severely overfitting.
Therefore, polynomial regressions with degree varying from 1 to 4 are performed:

N =
(n + d)!

d!n!
− 1 (22)

where N and n are the number of new features and original features, respectively, and d is
the polynomial degree.

The prediction process is simple because no hyperparameters are tuned in this work.
The result of polynomial regression with different degrees is shown in Table 3.

Table 3. Result of LR model with different polynomial features.

Degree Dimensionality of New Features
R-Square

Training Set Test Set

1 8 0.6133 0.6162
2 44 0.8114 0.7916
3 164 0.9269 0.8914
4 494 0.9834 −596.344

From Table 3, it is noted that when polynomial degree increases from 1 to 3, R-squares
of both training set and test set increase. However, when the polynomial degree continues
increasing to 4, the R-square of training set increases while the R-square of the test set
sharply decreases. A negative R-square indicates that the predicted result from ML model
is even poorer than directly using the mean value of the test set as the predicted values
for all samples in test set, indicating the model is severely overfitting. In other words, the
performance of LR model with 496 features on the test set is the worst among those LR
models. Therefore, R-square of model with 164 features (polynomial degree = 3) on the test
set is the highest with a value of 0.8914 and the accuracy is shown in Figure 3.
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From Figure 3, the performance of LR model with polynomial degree of 3 is remarkable
in both training set and test set. However, LR model only works with positive integer
polynomial features, which significantly restricts its further improvement on prediction
accuracy. For example, LR model is not able to map water/cement ratio as a polynomial
feature because cement is a feature with a polynomial degree of −1 in water/cement ratio
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when using the original features as inputs. However, the water/cement ratio is of great
importance when predicting concrete compressive strength. To tackle this issue, other ML
models are tested.

3.2.2. Support Vector Regression (SVR)

Similar to the LR model, a linear SVR or kernelized SVR with polynomial kernel is not
sufficient to make a better prediction. As mentioned in Section 2.2.2, Gaussian Radial basis
function (RBF) kernel is able to map the original features into infinite dimensionality [46].

In this work, two hyperparameters, i.e., C and gamma (γ), are tuned. Among others,
C is a hyperparameter controlling the balance between keeping the street as large as possible
and limiting the margin violations: a smaller C leads to a wider street but more margin
violation and vice versa. In other words, C acts as the regularization hyperparameter.
Similarly, the kernel-related hyperparameter γ represents the effect of single sample on
the hyperplane: The larger gamma is, the closer other examples must be to be affected and
vice versa. Therefore, selecting proper value of C and γ is of great importance [47].

In order to roughly determine the search range, the possible optimal range of C and γ

is first searched separately and the results are shown in Figure 4.
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From Figure 4, it is noted that when C equals to 1000 or γ equals to 0.1, the R-square
of test set is greatest, respectively. Based on the obtained results, a grid search (C: change
from 300 to 3000 with an increment of 100; γ: change from 0.01 to 1 with increment of 0.01)
is carried out to look for the optimal combination of hyperparameters C and γ contributing
to the relatively best performance of the model on test set. The R-squares of model in
training set and test set under different hyperparameters C and γ are shown in Figure 5.
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From the obtained result, it can be concluded that when C and γ are 1300 and 0.32,
respectively, the model has the best performance on the test set with an R-square value of
0.9006 and the accuracy is shown in Figure 6. It is obvious that the accuracy is higher than
that of the best performing LR model (R-square = 0.8914).
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3.2.3. Extreme Gradient Boosting (XGBoost)

Although the performance of SVR model is better than the LR model, the prediction
accuracy still has large space for improvement. Therefore, XGBoost, an ensemble method,
is utilized to perform the regression. Before carrying out the prediction with XGBoost,
we first import XGB model from the XGBoost package [48]. AS XGBoost is a scalable
machine learning system for tree boosting, a lot of hyperparameters can be tuned. In this
work, we only tune two hyperparameters: n_estimators and learning rate (shrinkage). The
hyperparameter n_estimators represents the number of the base estimators and learning
rate scales the contribution of each tree. The reason for choosing those two hyperparam-
eters is that they have a relatively large influence on the state of the model compared to
other hyperparameters.

Similar to the SVR model, grid search is employed to look for the optimal n_estimators
and shrinkage. First, the possible optimal range of n_estimators and learning rate are
identified separately and the results are shown in Figure 7.
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Figure 7. R-square of XGBoost under different hyperparameters: (a) different n_estimators; and (b) different learning rate.

From the obtained result, when n_estimators equals 70 or learning rate equals 0.17,
the R-square of the test set is greatest. Therefore, grid search (n_estimators: change from 50
to 200 with an increment of 1; learning rate: change from 0.01 to 0.5 with an increment of
0.005) is carried out to look for the optimal combination. The R-squares of XGBoost model
in training set and test set under different hyperparameters are shown in Figure 8.
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From the obtained result, when n_estimators and learning_rate are 64 and 0.365,
respectively, the model has the best performance on the test set with an R-square of 0.9309
and the accuracy is shown in Figure 9.
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In addition, due to the white box property of XGBoost model, the base estimator could
be drawn, which enables users to look into the regression process. For example, the first
base estimator is shown in Figure 10.

Based on the results of all base estimators, the overall feature importance could also
be obtained and the result is shown in Figure 11.

From Figure 11, it is noted that Age (f7) and cement content (f0) have the largest
influence on the compressive strength, which is in accordance with the expectations. On
the other hand, in this study, fly ash content (f2) has the least influence on the compressive
strength compared to other features, which agrees with the result of Figure 10 where fly
ash (f2) is not used for the regression. However, the result of XGBoost is influenced by
many factors (random state, features, etc.), so the obtained feature importance only gives
us an indication.
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3.2.4. Artificial Neural Network (ANN)

Last, ANN is adopted to predict the compressive strength. ANN is implemented
using Keras [39] with Tensorflow backend. The batch size and the number of epochs are
set to 100 and 1000, respectively. ReLu function is employed as the activation function; the
Adam optimizer is used to improve the weights during the backpropagation process.

Similar to XGBoost, many hyperparameters could be tuned for ANN. In this work,
hyperparameters related to neural network architecture are tuned first. Considering that
the size of dataset is small, a 2-layer neural network is built and the numbers of neurons
in each layer are tuned. The R-squares of model in training set and test set with different
neuron numbers are shown in Figure 12.
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From the obtained result, it can be concluded that when the neuron numbers of layer
1 and 2 are both 512, the model has the best performance on the test set with an R-square
of 0.9324. After determining the number of the neurons in each layer, learning rate is also
roughly tuned (selected values: 0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3) and the
result is shown in Figure 13.

From Figure 13, it is noted that when the learning rate is 0.003, the model has the best
performance on the test set with an R-square of 0.9331, which is higher than the default
learning rate. The accuracy of ANN with the tuned hyperparameters is shown in Figure 14.
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3.3. Prediction Process with Manually Selected Features and PCA-Reduced Features

In Machine Learning, some problems may involve many features for each training
instance. The large number of features not only makes training extremely slow, but it
also makes harder to find a good solution. Dimensionality reduction is a good way to
tackle this problem. In this paper, although the number of features is not large (i.e., 8), the
performance of ML models with different number of features is investigated. On the one
hand, the influence of reduced dimensionality on the accuracy could be compared with the
model with the original features. On the other hand, the effectiveness of PCA in selecting
the features and its influence on the four ML models are also studied.

Based on the result of PCA (see Section 3.1.1), when keeping the first six components
of PCA-selected features, the cumulative explained variance is 0.9979, indicating that
those features could well represent the original data without losing much information.
Therefore, six PCA-selected features are used as the input to do the prediction. The relation
between PCA-selected features and original features is obtained using SVD and shown in
Equation (23).



component1
component2
componnet 3
component4
componnet 5
component6



T

=



cement
BlastFurnaceSlag

FlyAsh
Water

Superplasticizer
CoaseAggregate
FineAggregate

Age



T

0.906 −0.033 −0.155 0.008 −0.151 0.307
−0.263 −0.786 −0.073 0.199 −0.107 0.453
−0.239 0.303 0.052 −0.687 −0.178 0.512
0.006 −0.076 0.041 −0.076 0.098 −0.482
−0.001 0.005 −0.024 −0.021 −0.023 0.104
−0.009 0.275 0.761 0.480 −0.076 0.271
−0.210 0.451 −0.611 0.485 0.133 0.257
−0.098 −0.070 0.119 −0.127 0.949 0.234


(23)
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In addition, six manually selected features are also used as input to compare with
the other two scenarios. According to the previous studies [49], water to binder (W/B,
Binder = cement+ fly ash+ blast furnace slag), fly ash to binder (FA/B), Blast Furnace slag
to binder (BFS/B), superplasticizer to binder (SB), and sand ratio (SR) contribute to the
compressive strength. Therefore, W/B, FA/B, BFS/B, SB, SR, and Age are chosen as the
input to predict the compressive strength.

The prediction process with six PCA-selected features and six manually selected
features is exactly the same as Section 3.2, so here only the results are shown. The results
of 4 ML models with PCA-selected features and manually selected features are shown in
Tables 4 and 5, respectively.

Table 4. Prediction results with 6 PCA-selected features.

ML Model
R-Square MSE Hyperparameters

Trainset Testset Trainset Testset

LR 0.8803 0.8496 32.3600 44.9011 Polynomial Degree = 3

SVR 0.9563 0.9134 11.8244 25.8550
C = 550
γ = 0.23

XGBoost 0.9916 0.8787 2.3397 33.8782
n_estimators = 190
learning_rate = 0.07

ANN 0.9602 0.9160 13.2096 26.4843
#neuron = 128 (layer1)

#neuron = 128 (layer2)
learning_rate = 0.0003

Table 5. Prediction results with 6 manually selected features.

ML Model
R-Square MSE Hyperparameters

Trainset Testset Trainset Testset

LR 0.8803 0.8496 32.3600 44.9011 Polynomial Degree = 4

SVR 0.9563 0.9134 11.8244 25.8550
C = 2000
γ = 0.27

XGBoost 0.9916 0.8787 2.3397 33.8782
n_estimators = 140
learning_rate = 0.23

ANN 0.9602 0.9160 13.2096 26.4843
#neuron = 512 (layer1)

#neuron = 512 (layer2)
learning_rate = 0.1

4. Prediction Process with different ML Models
4.1. Performance on Training Set and Test Set

After obtaining the prediction results from 4 ML models with three different features,
a comprehensive comparison is made. First, the R-square and MSE of the training set and
test set are investigated. The results are shown in Figures 15 and 16.

From Figure 15, it is noted that the R-square of LR model on test set in all scenarios is
less than 0.9, which is poorer than the other three ML models. For training set, except for
the LR model, the R-squares with original features are the highest for each ML model. The
reason why R-square of LR model with selected features is higher is that the polynomial
degree of this model is 4, which is larger than the model with original features (i.e., 3).
Among the ML models, XGBoost has the most admirable performance with R-square of
over 0.99. The results are in good agreement with the trend of MSE in Figure 16a since a
higher R-square corresponds to a smaller MSE.
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Figure 15. R-square of different ML models with different features: (a) training set and (b) test set.

Figure 16. MSE of different ML models with different features: (a) training set and (b) test set.

As for test set, when using different features as inputs, the best performance occurs in
different models (Figure 15b). Particularly, for original features, the model with highest
R-square is ANN model (R-square = 0.9331); for PCA-selected features, the model with
highest R-square is ANN model (R-square = 0.9160); for manually selected features, the
model with highest R-square is XGBoost (R-square = 0.9339) and it is the best performance
of all models. For the SVR model, the prediction accuracy of the model with manually
selected features (R-square = 0.9080) or PCA-selected features (R-square = 0.9134) is better
than the model with original features (R-square = 0.9003). In other words, dimensionality
reduction has a positive influence on the prediction accuracy of SVR model.

Besides, it is worth mentioning that the R-square of XGBoost model with PCA-selected
features in test set is only 0.8787, which is significantly lower than the other two ML models
(0.9085 for ANN; 0.9134 for SVR), while still being higher than the LR model (R-square
= 0.8496). A possible reason for this is that XGBoost model is a decision tree-based ML
model. The prediction process of XGBoost is a white box and the features have a great
influence on the overall performance of the model. From Equation (23), it is noted that the
PCA-selected features do not address the influence of water to compressive strength as the
weights for water are very low. Particularly, the weights of water from component 1–6 are
0.006, −0.076, 0.041, −0.076, 0.098, and −0.482, respectively. Clearly, this does not make
sense because water is known to have great effect on compressive strength. Therefore,
the prediction accuracy of XGBoost model with PCA-selected features is not admirable.
In addition, according to feature analysis from Figure 11, the influence of fly ash is the
least important, while in PCA-selected features, the weights of fly ash are relatively high
(the weights of fly ash from component 1–6 are −0.239, 0.303, 0.052, −0.687, −0.178, and
0.512, respectively). In other words, the “important” features selected by PCA are not so
important for the XGBoost Model.
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On the other hand, it is inferred that distinguishable features are more likely to
contribute to a better regression results. In order to verify the above inference, the feature
importance of XGBoost model with PCA-selected features and manually selected features
is drawn and shown in Figure 17.
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selected features.

From Figure 17, it is obvious that the PCA-selected features are not as distinguishable
as the manually selected ones because the F scores of PCA-selected features are relatively
concentrated. Therefore, it is inferred that, although the six PCA-selected features retain
much of the original information, those features seem not to be as representative as the six
manually selected ones. As a consequence, the performance of XGBoost with PCA-selected
features is not as good as the one with manually-selected features. However, the prediction
accuracy may be further improved by tuning other hyperparameters for XGBoost, which
should be studied in the future.

4.2. Training Speed

Except for the performance of ML models in terms of prediction accuracy, another
important issue is the training speed. In practice, if the computing speed of a ML model
is fast, more time can be devoted to hyperparameter tuning to improve the performance
of the ML model. Generally, the computing speed is related to the algorithm itself and
the number of features. Considering that the running time of the same ML model may
largely vary in different time, the average running time, which is calculated as the average
running time of the ML model, ran 10 times. The running time of four ML models with
different features is shown in Figure 18.
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Based on the results from Figure 18, it is noted that the running time of ANN model
is the longest while that of LR model is the shortest. However, the running time of ANN
model with PCA-selected features (t = 12.78s) is much shorter than the model with original
features (t = 44.28s). Considering that the prediction accuracy gap between ANN models
with original features and PCA-selected features is not too large (0.017), it can be concluded
that dimensionality reduction has an obviously positive influence on running time without
losing much prediction accuracy for ANN model.

In addition, it is noted that the running time of XGBoost model with PCA-selected
features is even longer than XGBoost model with original model or manually selected
features. Therefore, in this study, dimensionality reduction by PCA has an adverse effect
both on the performance and the running time of XGBoost model.

5. Conclusions

In this work, the prediction of concrete compressive strength based on given features
is carried out with four representative ML models. In addition, the performances of those
ML models with different features are compared. Meanwhile, the training speed of the four
ML models is also investigated. Based on the presented results, the following conclusions
can be drawn:

1. Among the four ML models, linear regression has the poorest performance with an
R-square of less than 0.90, while the other 3 ML models have an R-square of over 0.90.
Therefore, it is possible to make an accurate prediction of the compressive strength
using some ML models such as Support Vector Regression (SVR), Extreme Gradient
Boosting (XGBoost), and Artificial Neural Network (ANN).

2. The highest R-square of test set of ML model with original features, PCA-selected
features and manually selected features are 0.9331 (ANN), 0.9160 (ANN), and 0.9339
(XGBoost) respectively. Therefore, the performance of XGBoost model with manually
selected features is the model with the best performance of all models.

3. The prediction accuracy of SVR model with manually selected features (R-square = 0.9080)
or PCA-selected features (R-square = 0.9134) is better than the model with original
features (R-square = 0.9003) without dramatic running time change, indicating that
dimensionality reduction has an admirable influence on SVR model.

4. Compared with the XGBoost model with original features and manually selected
features, the model with PCA-selected features has a relatively poorer performance
(R-square = 0.8787). The possible reason for this is inferred that the PCA-selected
features are not as distinguishable as the manually selected features in this study.

5. The running time of XGBoost model with PCA-selected features or manually selected
features is longer than XGBoost model with original features. In this work, dimen-
sionality reduction by PCA seems to have an adverse effect both on the performance
and the running time for XGBoost model.

6. Although the running time of ANN model is much longer than the other three models
(less than 1s) in 3 scenarios, dimensionality reduction has an obviously positive
influence on running time without losing much prediction accuracy for ANN model.
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