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A Novel Framework for Identifying Driving
Heterogeneity Through Action Patterns

Xue Yao , Graduate Student Member, IEEE, Simeon C. Calvert , and Serge P. Hoogendoorn

Abstract— Identifying driving heterogeneity plays an impor-
tant role in improving traffic safety and efficiency. This paper
proposes a novel framework to identify driving heterogeneity
from the underlying characteristics of driving behaviour. The
framework includes three processes: Action phase extraction,
Action pattern calibration, and Action pattern classification. The
concepts of Action phase and Action patterns are proposed to
decipher and interpret driving behaviours. Action phases are
extracted by rule-based segmentation methods and Action pat-
terns are calibrated based on an unsupervised learning approach.
The extraction and calibration processes provide a rigorous
labelling approach for the attention-based LSTM Action pat-
tern classification process. Evaluation of the framework on a
large-scale naturalistic driving dataset reveals six distinct Action
patterns. The implementation of the attention mechanism to
LSTM models significantly enhanced both the accuracy and
time efficiency of Action pattern identification. The proposed
framework offers benefits in detecting and reducing variability in
driving behaviour through ITS applications such as user-based
traffic management, personalised Advanced Driver Assistance
Systems (ADAS), and advanced autonomous vehicles (AV) design,
thereby enhancing road safety and traffic efficiency.

Index Terms— Driving behaviour analysis, driving heterogene-
ity, driving pattern classification, attention-based LSTMs.

I. INTRODUCTION

DRIVING behaviour varies from one driver to another,
even the same driver can behave differently under iden-

tical traffic conditions depending on their current state [1]. This
variability in driving behaviour is termed driving heterogene-
ity. There is strong evidence that driving heterogeneity leads
to an increase in traffic accidents and exacerbation of traffic
congestion [2], [3]. For instance, inconsistent acceleration
and braking patterns of drivers are major contributors to
rear-end collisions [4]. Additionally, aggressive drivers may
adopt a more moderate driving style when constrained by
less aggressive drivers in front of them, which can decrease
overall traffic efficiency [5]. To enhance the stability of traffic
flow and improve safety, future autonomous vehicle (AV)
control systems must account for the diverse driving styles of
surrounding human-driven vehicles [6], [7]. Thus, a thorough
understanding and identification of driving heterogeneity are
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crucial for reducing its adverse effects and improving traffic
safety and efficiency.

Driving heterogeneity has been studied in the literature
from various perspectives, including inter- vs. intra-driver
heterogeneity, long-term vs. short-term variability, and global
vs. situational patterns [8]. Long-term individual tracking in
naturalistic driving data is often unavailable due to privacy
concerns and resource constraints. Consequently, much of
the driving behaviour analysis has focused on short trajec-
tory segments, which have proven effective in identifying
variations in driving characteristics [9]. Key behavioural char-
acteristics, such as acceleration profiles [10] and car-following
patterns [11], can be observed within short time windows,
and when analysed systematically across large datasets, they
reveal stable trends in driving heterogeneity. These short-term
driving variations reflect immediate and context-dependent
driver responses and are widely used in driving hetero-
geneity identification such as driving style recognition [12],
risk level evaluation [13], and driving skill characterisation
[14].

Machine Learning (ML) methods can model complex
numerical relationships with accurate results [13], making
them widely used in (transportation) research. Recently, the
increased availability of naturalistic driving data has boosted
using Machine Learning (ML) methods to identify driv-
ing heterogeneity. Unsupervised learning techniques such as
K-means and fuzzy C-means (FCM) are commonly used to
cluster driver behaviours into distinct groups, with driving
styles inferred from statistical analyses of the clusters [12].
While this approach allows for direct extraction of behavioural
patterns from raw data, it often lacks interpretability, and
the discovered clusters may not always correspond to realis-
tic or meaningful driving behaviours. Conversely, supervised
learning methods train models to learn the relationship
between input features and output labels, enabling them to
classify or predict driving behaviours in new, unlabelled
data. Various supervised learning classifiers, such as Support
Vector Machine (SVM), k-Nearest Neighbors (KNN), Long
Short-Term Memory Networks (LSTM) and Convolutional
Neural Network(CNN)-based neural network models, have
been employed to recognise driving styles, driving skills,
and risk levels [12], [13], [14]. Supervised learning mod-
els typically require labelled training data, which is often
obtained through expert knowledge or a combination of
other techniques. For example, some studies use rule-based
strategies, where physical driving variables, such as large
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brake or accelerator pedal inputs, are used to infer aggres-
sive driving styles [11]. Other studies utilise unsupervised
learning techniques alongside statistical analysis to cate-
gorise drivers for assigning labels. For example, Deng et al.
[15] categorised 30 participants into cautious, moderate, and
aggressive driving styles using principal component analysis
(PCA) and K-means clustering, creating labelled datasets
for subsequent classification model training. With properly
labelled data, supervised learning models have demonstrated
remarkable accuracy in driving heterogeneity identification.
SVM models, for instance, have achieved up to 95% accu-
racy in distinguishing driving patterns and identifying risky
drivers [13], [16]. Similarly, deep learning models, such as
LSTMs and CNNs, have been developed for driver behaviour
classification, achieving recognition accuracies as high
as 99% [17].

Labelling approaches often assign fixed driving profiles to
drivers by analysing the mean or distribution of variables in
driving trajectories. This type of global trajectory analysis may
overlook granular behaviour changes in time, such as specific
acceleration changes at short time intervals, consequently
missing the full spectrum of driving behaviour [18]. This
highlights a necessity for a refined labelling process that
uncovers the fundamental characteristics of driving behaviour.
Moreover, omitting the temporal dynamics inherent in driving
behaviour oversimplifies driving heterogeneity identification
tasks, raising concerns about the performance of current super-
vised models. This underscores the need for advanced models
that can handle complex driving data, improving both accuracy
and computational efficiency. Attention mechanisms have been
successfully used in neural networks to handle complicated
classification tasks such as text classification [19] and network
traffic classification [20]. This approach offers a promising
solution to deal with driving heterogeneity tasks in complex
time-series driving data, though its effectiveness in this context
remains to be explored.

This paper proposes a novel framework to identify driving
heterogeneity by analysing the underlying characteristics of
driving behaviour. The paper’s contributions are threefold:
(i) Introduce the concepts of Action phase and Action pat-
tern to decode and interpret driving behaviour, providing a
new lens for understanding driving behaviour in a human-
comprehensible manner; (ii) propose a novel framework to
systematically identify driving heterogeneity, encompassing
the processes of Action phase extraction, Action pattern cali-
bration, and Action pattern classification; and (iii) implement
an attention mechanism on LSTM models, which significantly
improves the Action pattern classification accuracy and time
efficiency.

The remainder of this paper is structured as follows.
Section II outlines the methodology of the proposed frame-
work and preliminary experimental settings. Section III and IV
introduce the methodology and results of Action phase extrac-
tion and Action pattern calibration, respectively. V presents
methodology and results of Action pattern classification.
The main findings and limitations with future directions are
discussed in Section VI, and conclusions are presented in
Section VII.

II. METHODOLOGY

This section introduces the overall framework and briefly
presents data and experimental setup. The flow diagram of
the proposed framework (referred to as the action framework
hereafter) is illustrated in Figure 1, and the definitions of
the key concepts are summarised in Table I. In the proposed
action framework, Action phase extraction initially deciphers
driving trajectories into “primitives” with semantic meanings.
Following this, Action patterns are calibrated by categoris-
ing Action phases and analysing driving characteristics. The
outputs of Action pattern classification aid in the labelling
process for the subsequent Action pattern classification, where
several supervised learning algorithms equipped with attention
mechanisms are utilised.

A. Action Phase Extraction

Action phases are defined as driving trajectory segments
with distinct physical meanings, serving as “primitives” that
capture underlying driving characteristics [21]. In literature,
“action points” refer to specific moments of acceleration
changes [10]. The proposed Action phases in this study offer a
more comprehensive representation of driving characteristics
by incorporating multiple variables, capturing the complexity
of driving behaviours that single-variable analyses might
overlook.

Action phases are extracted by identifying action trends of
variables involved in driving behaviour analysis. An action
trend refers to a distinct change within a driving variable
(e.g., speed), characterised as “Increasing (I)”, “Decreasing
(D)”, or “Stable in a high value (H)” or “Stable in a low
value (L)”. It should be noted that these action trends are
chosen by choice and can also be selected in a different
way. Action phases represent driving trajectory segments with
multiple driving variables, where each univariate exhibits a
single action trend. Driving variables considered in this study
include velocity (v), acceleration (a), time headway (T ), and
speed difference (1v). Both action trends and Action phases
are identified and extracted using rule-based segmentation
methods [21]. All Action phases extracted from a given dataset
constitute the Action phase Library under that traffic condition.
Detailed methodology and results of Action phase extraction
are presented in Section III.

B. Action Pattern Calibration

When multiple driving variables are considered, the number
of Action phase categories increases rapidly as more vari-
ables are included. This can lead to minor differences in
observed driving behaviour among different Action phases and
complicate the interpretation of driving behaviour. To address
this, we propose the concept of Action pattern that represents
group-specific driving characteristics. Therefore, the second
step of the action framework consolidates similar Action
phases into a small number of Action patterns using unsu-
pervised learning techniques.

Two clustering techniques, agglomerative clustering
dynamic tree cut (AC-DTC) and X-means, are employed in
this step to facilitate optimal results. Each cluster represents a
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Fig. 1. The flow diagram of the proposed action framework.

TABLE I
BRIEF INTRODUCTION OF CONCEPTS

distinct Action pattern, with the characteristics of each pattern
obtained through statistical analysis of the Action phase data
within the cluster. It is assumed that greater dissimilarity of a
driving variable among clusters indicates higher importance in
distinguishing Action patterns. Consequently, driving variable
importance is determined. Detailed methodology and results
of Action pattern calibration are presented in Section IV.

C. Action Pattern Classification

The third step of the action framework involves training
models to classify Action patterns with high accuracy and
time efficiency. Driving trajectories are first labelled as Action
patterns using the rule-based method that considers driving
variable importance. Then a bidirectional Long Short-Term
Memory network integrated with an attention mechanism
(ABi-LSTM) is applied for the Action pattern classification
task, handling multi-variable varied-length data. Baseline mod-
els, including basic LSTM, bidirectional LSTM (Bi-LSTM),
and attention LSTM (ALSTM), are also employed for the
same classification task to evaluate the effectiveness of the
ABi-LSTM model in training accuracy and time efficiency.
Detailed methodology and results of Action pattern classifica-
tion are presented in Section V.

D. Data and Experimental Set Up

The Lyft-5 open dataset contains large-scale real-world
human driving data with detailed kinematic features, making
it well-suited for identifying and analysing distinct character-
istics in human driving behaviour. Thus, we utilise the Lyft
level-5 as the primary dataset for evaluating the proposed

framework in this study. This dataset includes 29k+ HV-
following-AV (HV-AV) pairs and 42k+ HV-following-HV
(HV-HV) pairs with a total driving distance of 150k+ km
in similar environments [22]. We exclude driving trajectories
with a speed of v = 0m/s to eliminate stopping and restarting
behaviour. Additionally, only drivers with trajectories lasting
more than 20 seconds were selected to ensure an adequate
data volume for analysing longitudinal driving behaviours.
A Kalman filter is employed to detect outliers and missing
values of driving trajectory data. While larger sizes of data
can improve robustness in capturing behavioural variability,
they also introduce computational challenges. To balance
behavioural detail and computational efficiency, we select
3000 HV-HV pairs for Action phase extraction and another set
of 3000 HV-HV pairs for Action pattern classification. All the
extracted Action phases are used as input for calibrating Action
patterns and analysing driving variable importance. In the
Action pattern classification task, car-following trajectories are
first labelled as Action patterns according to driving variable
importance. These labelled Action patterns serve as input for
LSTM-based classification models. Detailed experiments are
presented in the following sections.

III. ACTION PHASE EXTRACTION

This section details the methodology for Action phase
extraction, followed by the presentation of experiments and
results.

A. Definition Description

A driving trajectory has distinct states, as illustrated by
the example of the velocity (v) of an arbitrary vehicle in
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Fig. 2. Visualisation of action trends: An example of velocity.

Figure 2. Some periods exhibit upward trends, some display
downward trends, and others fluctuate in a small range which
can be considered a stable trend. In this study, we refer to
these characteristics of a driving trajectory as action trends,
distinguished by turning points. Specifically, we classify action
trends into “Increasing (I)”, “Decreasing (D)”, or “Stable (S)”.
The “Stable” trend is further categorised as “Stable in a high
value (H)” and “Stable in a lower value (L)”. Thus, the action
trend space can be represented as S = {I, D, H, L}. For exam-
ple, the velocity trajectory shown in Figure 2 can be expressed
as Sv = {D, L , I, D, L}. Any variables considered in driving
behaviour analysis have a corresponding action trend space,
thus extending the univariate analysis to multivariate analysis.
Note that it is possible to define action trends differently, either
based on other variables or other characteristics.

Driving variables often exhibit correlated changes. For
instance, Makridis et al. [9] indicated a non-linear relationship
between speed and longitudinal acceleration. Action trends
can dissociate temporal changes of different variables. For
example, an action trend of velocity with “Increasing” might
coincide with various acceleration trends of “Increasing”,
“Decreasing”, “Stable”, or a combination of them. This desyn-
chronisation enables action trends to address the correlation
problem and capture the characteristics of individual variables
independently. Action phases are extracted by identifying
multi-variable driving trajectory segments where each univari-
ate with a single action trend.

B. The Procedure of Action Phase Extraction

Driving trajectory data is represented as x1, x2, . . . , xt ,
where xt denotes a driving variable at the t-th frame. The set of
driving variables is denoted as ϒ = {υ1, υ2, . . . , υm}, which
are velocity, acceleration, time headway, and speed difference
in this study. For a given variable υm , set of turning points is
represented as Pm = (xm

1 , ym
1 ), . . . , (xm

n , ym
n ). The procedure

Action phases extraction is illustrated in Figure 3. After data
preprocessing, driving trajectory data are fed into a univariate
segmentation algorithm (Algorithm 1). This algorithm assigns
an action trend lm

n to each driving segment for variable υm in
the n-th segment, where n = 1, 2, . . . , N . Consequently, the
action trends of multi-variable driving segments at time frame
t are denoted as St = {l1, l2, . . . , lm

}, highlighting the unique
driving characteristics at that moment.

Next, trajectories with assigned action trends are fed into
another rule-based segmentation algorithm (Algorithm 2)
for multivariate segmentation. The outputs of this segmen-
tation process are Action phases, represented as Sn′ =

{A1, A2, . . . , Am
}, where n′ signifies the n′- th Action phase,

Algorithm 1 Univariate Segmentation
1: Data preparation:
2: for each variable υ in ϒ do
3: Identify turning points (T P) of ϒ

4: Calculate 1y and 1x between neighbouring T Ps
5: end for
6: Threshold setting:
7: Define thresholds θ1 and θ2 for 1y
8: Set threshold γ for 1x
9: Initial categorisation:

10: for each segment between turning points in each variable
do

11: if 1y > θ1 then
12: Label segment as Increasing (I)
13: else if 1y < θ2 then
14: Label segment as Decreasing (D)
15: else
16: Label segment as Stable (S)
17: end if
18: end for
19: Merging segments:
20: for each segment labelled S do
21: if 1x of segment < γ and 1x of both neighbouring

segments > γ then
22: Merge segment with its neighbouring segment
23: end if
24: end for
25: Stable refinement:
26: for each segment labelled S do
27: Calculate mean of variable values in segment
28: if mean > δ then
29: Refine label to High (H)
30: else
31: Refine label to Low (L)
32: end if
33: end for
34: return action trends for each variable in ϒ

n′
∈ N ′. Here, N ′ is the total number of Action phases iden-

tified from an individual driving trajectory. All the extracted
Action phases collectively form the Action phase Library under
a specific traffic flow. Details of the univariate and multivariate
segmentation processes are provided in Algorithm 1 and 2,
respectively. The parameters for both rule-based segmentation
algorithms are determined based on uniform criteria that
represent collective driving behaviour within the given traffic
condition.
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Fig. 3. The procedure of Action phase extraction.

Algorithm 2 Multivariate Segmentation
1: Identify turning points across all variables in ϒ

2: Segment multivariate driving trajectories using these turn-
ing points

3: Discard short segments:
4: for each multivariate segment do
5: if segment length < τ then
6: Discard segment
7: end if
8: end for
9: Extract Action phases:

10: for each driver do
11: Extract Action phases based on the refined and seg-

mented data
12: Add Action phases to Action phase Library
13: end for
14: return Action phase Library

TABLE II
PARAMETER SETTINGS OF ALGORITHM 1

C. Parameter Settings

The parameters of rule-based segmentation algorithms are
determined based on empirical knowledge from existing liter-
ature, as summarised in Table II. Specifically, the threshold
γ in Algorithm 1 and τ in Algorithm 2 are both set to
1 second to ensure that the extracted driving trajectory seg-
ments exceed the typical human reaction time, effectively
capturing meaningful driving phases while preventing exces-
sive fragmentation. This selection is supported by studies
indicating that driver reaction times typically range between
0.7 and 1.5 seconds under various driving conditions [23].
Additionally, the thresholds for “stable high/low” in key
driving variables, such as speed, time headway, and speed
difference, are set based on typical traffic flow conditions
in non-congested environments. The acceleration thresholds
are derived from driver perception studies [24], ensuring that
the segmentation process reflects the acceleration forces that
drivers commonly experience and respond to in real-world
driving.

TABLE III
FREQUENCY OF Action Name IN EACH DRIVING VARIABLE

D. Results of Action Phase Extraction

A total of 18800 Action phases with 255 different action
trend combinations are extracted, constituting an Action phase
Library of the selected 3000 drivers in Lyft-5 dataset. This
Action phase Library serves as input data for the subse-
quent Action pattern calibration. Specifically, the extracted
Action phases vary in duration, ranging from a minimum of
1.1 seconds to a maximum of 13.4 seconds, with an average
length of 2.48 seconds. The most frequently observed Action
phases are “(H, L, L, L)”, (H, L, H, L)”, and “(H, H,
L, L)”, reflecting common driving characteristics across the
dataset.

The frequency of identified action trends for each driving
variable is presented in Table III. Notably, the most dominant
action trends are ‘H’ and ‘L’, suggesting that vehicles pre-
dominantly maintain steady car-following behaviour under the
given traffic condition. To further demonstrate the variability
in driver responses under similar stimuli, we illustrate Action
phases of several drivers experiencing comparable driving
conditions in Figure 4. Specifically, Figure 4(c) shows that
these drivers have a time headway with a “Low” trend,
indicating that they receive similar stimuli from their pre-
ceding vehicles. However, despite this commonality, their
driving actions exhibit significant differences. As shown in
Figure 4(a)-(b), some drivers accelerate (e.g., drivers repre-
sented in purple, blue, and grey), while others decelerate (e.g.,
the driver represented in red and green). These variations
highlight the heterogeneity in driving behaviour, which may
be influenced by factors such as individual driving styles,
risk perception, and latent decision-making tendencies. This
finding underscores the importance of considering multiple
driving variables when understanding and identifying driving
heterogeneity.

IV. ACTION PATTERN CALIBRATION

This section presents the methodology and results of Action
pattern calibration.
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Fig. 4. The differences in actions trends with similar stimuli.

A. Clustering Techniques

Clustering approaches are generally divided into two distinct
categories [25]: hierarchical clustering and partitioning cluster-
ing. We employ both techniques to cluster Action phases, aim-
ing to achieve optimal results for Action pattern calibration.

Agglomerative clustering (AC) is a hierarchical clustering
technique that initiates with individual data points as singleton
clusters and recursively merges them based on similarity [26].
This method constructs a dendrogram to explore different
granularity levels of clustering. Such flexibility in adjust-
ing cluster boundaries is particularly beneficial for Action
phases data, where the number of clusters is unknown. The
dynamic tree cut (DTC) method further refines the hierarchical
clustering process by analysing the dendrogram’s structure
to make context-sensitive decisions on cluster division. The
hierarchical nature of AC-DTC effectively captures the tem-
poral dependencies and variations within Action phases data,
facilitating accurate clustering of similar Action phases while
reflecting subtle differences. In agglomerative clustering with
dynamic tree cut (AC-DTC), the distance among clusters
is determined using linkage methods, which represent the
hierarchical tree structure by specifying how distances between
clusters are calculated [27].

X-means is a partitioning clustering technique that extends
the K-means algorithm by introducing a mechanism to auto-
matically determine the optimal number of clusters (k) [28].
It starts with a lower bound for k and iteratively adjusts it,
aiming to find an optimal number of clusters by balancing
model complexity and fit based on specific criteria. This
method maintains a level of scalability and computational
efficiency similar to K-means while eliminating the need for
pre-defined cluster numbers.

Evaluation indicators provide quantitative measures to guide
the clustering process and validate clustering results. Three
commonly used indicators, including Silhouette Score (SS),
Calinski-Harabasz Index (CHI), and Davies-Bouldin Index
(DBI), are employed for both AC-DTC and X-means cluster-
ing in this study. Specifically, the best value of SS is 1 and the
worst value is -1. A higher CHI score indicates that clusters are
well-separated and dense within clusters. DBI values closer to
0 represent better clustering performance [29].

B. Experiments and Results of Calibration

1) Data Preparation: Action phases are composed of mul-
tiple driving variables, each with varying durations. The

Fig. 5. Statistics of PC1’s cumulative contributions.

Resampling and Downsampling Method (RDM) is employed
to standardise the length of Action phases for clustering
analysis. Specifically, Action phases with lengths shorter than
a reference length (e.g., the median length of all Action phases)
are resampled using Fast Fourier Transform (FFT) and Inverse
Fourier Transform (IFFT) [30]. Conversely, Action phases
exceeding the reference length are downsampled through
isometric extraction. To mitigate issues such as the curse
of dimensionality and computational burden, Principal Com-
ponent Analysis (PCA) is utilised to reduce the complexity
of Action phase data. It consolidates variables into principal
components that capture the most significant features. Results
in Figure 5 reveal that for 96.08% of Action phases, the
first principal component (PC1) accounted for over 95% of
cumulative contributions, as highlighted by the red dotted
line. Consequently, PC1s are selected as input for clustering
algorithms.

2) Clustering Analysis: Clustering analysis employs both
AC-DTC and X-means, with each having ablation studies to
facilitate optimal clustering results. Four linkage functions,
including “Weighted”, “Average”, “Complete”, and “Ward”,
are employed for AC-DTC clustering. The cluster number k
for X-means ranged from 4 to 7. The results are presented in
Table IV. For both clustering techniques, the best-performing
settings for each evaluation indicator are highlighted in bold.
Note that the “Ward” linkage function, which minimises
the variance within clusters to create more homogeneous
groups, demonstrated superior performance by identifying
six distinct categories of Action phases. X-means cluster-
ing with k = 6 exhibits superior performance across all
k values.
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Fig. 6. Statistics of action trends in each cluster. (*After calibration, Clusters 1 to 6 are labelled with the following patterns: “Slow down”, “Speed up”,
“Hold speed”, “Follow behind”, “Fall behind”, and “Catch up”.)

TABLE IV
RESULTS OF AGGLOMERATIVE AND X-MEANS CLUSTERING

Figure 6 provides statistics on action trends within each
cluster. Each block represents a specific action trend of a vari-
able, with numbers indicating the percentage of each action
trend within the six clusters. Darker colours represent higher
proportions. For instance, action trend “D” for variable v is
prevalent in Cluster 3 and relatively rare in other clusters, see
Figure 6a. Notably, clustering results of both techniques show
a high degree of similarity in the distribution of action trends
for each variable within each cluster, (see numbers in brackets
in Figure 6. These consistencies justify the six identified
categories of Action phases. Given the superior performance
of X-means clustering over AC-DTC, subsequent analyses of
cluster characteristics are based on X-means results.

3) Recognition of Action Patterns and Variable Importance:
The six categories of Action phases correspond to six dis-
tinct Action patterns, recognised by characteristics of action
trends within their respective clusters. Higher percentages of
action trends indicate greater importance in reflecting driving
characteristics and interpreting driving behaviours. As such,
in Figure 6b, Cluster 1 is dominated by the action trends ‘D’
and ‘L’ for velocity (v) and time headway (T ), respectively,
indicating a “Slow down” pattern where velocity decreases
and time headway remains low. Cluster 2 is characterised by
increasing velocity and speed difference, suggesting a “Speed
up” pattern. Cluster 3 shows a “Holding speed” pattern with
velocity (v) maintaining a high value (H) and acceleration

(a) remaining low (L). Clusters 4 and 5 both highlight the
primary variables of velocity (v) and time headway (T ), with
Cluster 4 maintaining constant time headway (L) and Cluster
5 showing increasing time headway (I), indicating a “Follow
behind” pattern and a “Fall behind” pattern, respectively.
Cluster 6 is characterised by a decreasing time headway and
consistently low velocity, indicating a “Catch up” pattern
where the following vehicle is closing in their leading vehicle.
These six Action patterns are detailed in Table V.

The importance of a driving variable in distinguishing
Action patterns is indicated by its dissimilarity across the six
clusters. This is quantified using Kullback–Leibler (KL) diver-
gence, denoted as DK L(P||Q), which measures the deviation
between two probability distributions P and Q [31]. In this
study, action trends are quantified using the slope of a given
variable: a positive slope indicates an increasing trend, while
a negative slope implies a decreasing trend, and sequences of
gentle slopes indicate a stable trend. Considering the diverse
manifestations of identical action trends (e.g., linear increase,
convex/concave progression, or slight fluctuations), a “sliding
window” method to detect local trends within specific inter-
vals. This approach ensures overall action trend representation
by averaging trends across these windows.

Results of the KL divergence analyses are illustrated in
Figure 7. Significant variance is observed for time headway
(T ) and velocity (v) across clusters, underscoring their greater
variable importance compared to acceleration (a) and speed
difference (1v). This aligns with real-world driving observa-
tions, where time headway and velocity are more perceptible
and influential in driving behaviour. Recognised Action pat-
terns and variable importance provide robust references for
labelling driving trajectories in supervised learning driving
behaviour analyses, which is then utilised for subsequent
Action pattern classification.

V. ACTION PATTERN CLASSIFICATION

In this section, we first introduce the methodology for
Action pattern classification, followed by a presentation of
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TABLE V
RESULTS OF Action Pattern RECOGNITION (ACCORDING TO X-MEANS CLUSTERING)

Fig. 7. KL divergence of four driving variables.

the experiments and results, which include driving trajectory
labelling, experimental settings, and results.

A. Attention-Based Bidirectional LSTM Model

In this paper, we apply a bidirectional Long Short-Term
Memory network integrated with an attention mechanism
(ABi-LSTM) for Action pattern classification. The architecture
of this model, illustrated in Figure 8, comprises the following
four layers:

• Embedding Layer: This initial layer transforms each
Action phase from the input sequence into a compact vec-
tor form, facilitating the capture of relationships between
different Action phases.

• Bi-LSTM Layer: The vectorised sequence is then pro-
cessed by a Bi-LSTM layer which captures contextual
information from the entire sequence by analysing
embedding data in both forward and backward directions.

• Attention Layer: An attention layer then computes context
vectors by assigning attention weights to Bi-LSTM’s
hidden states. This mechanism allows the model to focus
on the most relevant parts of the input sequence when
classifying Action phases, particularly beneficial for han-
dling highly complex sequences.

• Dense Classification Layer: The resulting context vectors
are finally processed through one or more dense layers,
culminating in a softmax output layer to classify Action
patterns into multiple categories.

B. Experimental Settings

1) Driving Trajectory Labelling: As mentioned in
Section II-D, 3000 HV-HV pairs are selected from the Lyft-5
dataset for the Action pattern classification task. Car-following
trajectories are labelled as various Action pattern sequences
according to the criteria presented in Table VI. The labelling
criteria are based on the importance of driving variables and

TABLE VI
RULE-BASED Action Pattern LABELLING

action trends. Specifically, time headway (T ) is the most
critical variable, thus prioritised in the labelling process.
Driving segments with an increasing trend in T increasing (I)
indicates the ego vehicle is distancing from its leading vehicle,
labelled as a “Fall behind” pattern. Conversely, a decreasing
trend in T is labelled as a “Catch up” pattern. When T is
constant, the focus shifts to velocity (v). An increasing trend
in v is labelled as a “Speed up” pattern, while a decreasing
trend in (v) is labelled as a “Slow down” pattern. Driving
segments where both velocity and acceleration show minimal
changes are labelled as a “Hold speed” pattern. Otherwise,
they are labelled as a “Follow behind” pattern. Examples of
the labelling results are shown in Figure 9. This labelling
approach ensures that all drivers’ trajectories are categorised
into distinct Action patterns, prepared for the subsequent
classification task.

2) Model Training Experimental Settings: To address the
variability in Action pattern data lengths, Action pattern
sequences are reshaped to a consistent length for neural net-
work batch processing. Traditional length reshaping methods
such as truncation or padding can distort the original Action
pattern data, either by omitting critical data or introducing
irrelevant zeroes. Therefore, we employ the PackedSequence
technique in PyTorch to manage variable-length sequences
effectively [32]. This technique sorts sequences by length and
converts them into a PackedSequence object while retaining
metadata that indicates each sequence’s boundaries, allowing
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Fig. 8. ABi-LSTM model architecture.

Fig. 9. Examples of labelled driving trajectories.

the ABi-LSTM model to process sequences according to their
actual lengths without data distortion.

Each variable in Action pattern data is independently
normalised within a [0, 1] range before being fed to the ABi-
LSTM model. The input dimension of the ABi-LSTM model is
set as 4, corresponding to the four driving variables considered
in this study. Both the batch size and the model’s hidden size
are set to 64, and the dropout rate is 0.6. Additionally, we use
k-fold cross-validation with the k set to 10 to ensure con-
sistent model performance across different subsets of driving
trajectory data. The Adam optimizer, known for its efficiency
in handling sparse gradients and noisy data, is employed for
model training, enhancing the ABi-LSTM model’s adaptability
to diverse data distributions. Ablation studies are conducted
to optimise model performance in Action pattern classifica-
tion, exploring LSTM hidden layers of 64, 128, and 256,
and neural network layers ranging from 2 to 5. Learning
rates vary from 0.00001 to 0.0001, increasing incrementally
by 0.00002.

Benchmark models are utilised to assess the effectiveness
of the bi-directional technique and the attention mechanism
in Action pattern classification, including simple LSTM,
bi-directional LSTM (Bi-LSTM), and attention-based LSTM
(ALSTM). All hyperparameters are maintained consistent
across the models to ensure a fair evaluation.

3) Performance Evaluation Metrics: The models for Action
pattern classification in the experiment are evaluated using
four evaluation metrics: accuracy, F1-score, precision, and

recall. These parameters are defined as follows.

Accuracy =
T P + T N

T P + F P + T N + F N
(1)

Precision =
T P

T P + F P
(2)

Recall =
T P

T P + F N
(3)

F1-score =
2 × (Precision × Recall)

Precision + Recall
(4)

where True Positives (T P) represent the number of correctly
classified positive instances, and True Negatives (T N ) denote
the number of correctly classified negative instances. False
Negatives (F N ) refer to the number of positive instances
incorrectly classified as negative, and False Positives (F P)
signify the number of negative instances incorrectly classified
as positive.

C. Results and Discussions

Results of ablation studies on the ABi-LSTM model are
illustrated in Figure 10. The highest accuracy for both training
and testing is achieved at a learning rate of 0.00006 and
with three layers, as depicted in Figure 10a and Figure 10b,
respectively. The training and testing process with a learning
rate of 0.00006 and three layers is illustrated in Figure 11a,
with corresponding numerical results shown in Table VII. The
training accuracy (see solid red line in Figure 11a) increases
rapidly during the first 30 epochs, reaching an accuracy around
89%, then stabilises with small increases and finally converges
at 200 epochs with an accuracy of 95.68%. This indicates
effective learning of the training data by the model. The testing
accuracy (see dashed pink line) follows a similar trend as the
training process and converges with an accuracy of 94.33%,
suggesting the model’s good generalisation to unseen data.
Both the training loss (solid blue line) and testing loss (dashed
cyan line) decrease sharply in the initial 30 epochs and then
stabilise at a low value of around 0.3, demonstrating effective
error minimisation on both training and testing data. The
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Fig. 10. Parameter tuning with various learning rates and number of layers.

Fig. 11. Performance of LSTM models and Attention-LSTM methods.

TABLE VII
PERFORMANCE COMPARISON OF DIFFERENT MODELS FOR Action Pattern CLASSIFICATION

difference in training and testing loss is around 0.02, indicating
that the ABi-LSTM model learns the characteristics of Action
pattern data without overfitting.

The training and testing results of baseline models are
shown in Figure 11 and Table VII. In Figure 11b, the training
and testing accuracies of the Bi-LSTM model steadily increase
at the first 50 epochs with an accuracy of around 65%, then

increase more slowly, finally converging at 600 epochs with
accuracies of 89.88% and 88.97%, respectively. The training
loss and testing loss decrease and converge at 0.47 and 0.52,
respectively, which are higher than the ABi-LSTM model.
The ALSTM model shows rapid increases in training and
testing accuracy during the first 15 epochs, reaching around an
accuracy of 77%, see Figure 11c. Then the accuracies increase

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



YAO et al.: NOVEL FRAMEWORK FOR IDENTIFYING DRIVING HETEROGENEITY THROUGH ACTION PATTERNS 11

slowly and the ALSTM model finally converges at around
200 epochs with training and testing accuracies of 92.41% and
88.51%, respectively. However, the noticeable gap between
the training and testing process suggests overfitting, indicating
Bi-LSTM models’ inferior performance in the Action pattern
classification task. The LSTM model shown in Figure 11d
gradually improves training and testing accuracy and finally
converges at 700 epochs with accuracies of 86.45% and
83.23%, respectively.

Overall, the ABi-LSTM model achieves the highest accu-
racy in fewer epochs compared to baseline models, with
optimal results of precision (89.39%), recall (87.83%), and
F1-score (88.60%), illustrating its remarkable effectiveness in
classifying Action patterns. Additionally, models incorporating
the attention mechanism (ABi-LSTM and ALSTM) consis-
tently outperform their non-attention counterparts (Bi-LSTM
and LSTM). These findings demonstrate the advantages of
the attention mechanism in better generalisation by focusing
on highly relevant features, thus enhancing classification pre-
cision and computational efficiency. The robust performance
of Action pattern classification highlights the effectiveness of
the proposed action framework in analysing complex driving
behaviours and identifying driving heterogeneity in a compre-
hensive way.

VI. DISCUSSION

In this section, we summarise the main findings of this study
and discuss the limitations along with directions for future
research.

A. Main Findings

1) Action Phase: The concept of Action phase offers a new
perspective to decode and interpret the intrinsic characteristics
of driving behaviours. The established Action phase Library
serves as a comprehensive database that encompasses a wide
range of driving characteristics within a traffic flow, allowing
for more detailed and structured analyses of driving behaviour.

2) Action Pattern: Distinct Action patterns can be identified
from Action phases data, representing various group-specific
driving characteristics. Six Action patterns are delineated in
this study, interpreted as “Speed up”, “Slow down”, “Hold
speed”, “Catch up”, “Fall behind”, and “Follow behind”. Each
pattern represents a unique aspect of driver stimuli-response
during driving, highlighting the heterogeneous nature of driv-
ing behaviour. This categorisation provides a granular view of
driving trajectories, facilitating a more nuanced understanding
and interpretation of driving heterogeneity, which can be ben-
eficial for real-world applications such as traffic management
and personalised ADAS.

3) Driving Variable Importance: Time headway (T ) and
velocity (v) exhibit higher importance than acceleration (a)
and speed difference (1v) in distinguishing Action patterns,
underscoring their critical roles in reflecting driving charac-
teristics. This aligns with realistic driving observations where
time headway and velocity are more perceptible and influential
in driving behaviour. Understanding the importance of driving
variables can enhance driving behaviour analysis, such as

improving the labelling process in supervised learning tasks
by prioritising more influential variables.

4) Attention-Based LSTMs: Incorporating the attention
mechanism significantly enhances the performance of LSTM
models in handling the complex Action pattern classi-
fication task with varied-length, multi-variable time-series
data. The ABi-LSTM model improves classification accuracy
by 1.39%-8.53% and reduces computational complexity by
66.67%-71.43% compared to baseline counterparts. This find-
ing underscores the effectiveness of advanced techniques in
improving accuracy, generalisation, and time efficiency for
deep learning models, making them increasingly applicable
for real-time driving behaviour analysis.

Overall, these findings highlight the advantages of the pro-
posed action framework in identifying driving heterogeneity:
i) the action framework offers a more precise, interpretable,
and efficient approach to analyse complex driving behaviours
and ii) provides actionable insights for its practical appli-
cations, such as enhancing traffic flow analysis, improving
vehicle automation systems, and advancing driving behaviour
modelling.

B. Limitations and Future Work

While the proposed action framework offers promising
advantages in understanding and identifying driving hetero-
geneity, it also has certain limitations that provide valuable
directions for future research. These are outlined below.

1) Threshold Sensitivity and Environmental Dependency:
Threshold settings are crucial for rule-based Action phase
extraction, as they influence how driving trajectory data is
segmented into meaningful pieces that accurately reflect driv-
ing characteristics. This makes the action framework sensitive
to threshold selection, where slight adjustments could signifi-
cantly impact the resulting Action phases and the subsequent
Action pattern calibration. These thresholds are currently
derived from expert insights within the literature. However,
their effectiveness may vary depending on road characteristics,
such as speed limits, roadway design, and traffic infrastructure,
which can influence speed and acceleration distributions.

To improve the framework’s adaptability across diverse
driving environments, future research could explore adaptive
thresholding techniques, where threshold values are dynam-
ically optimised based on dataset characteristics rather than
predefined fixed values. Additionally, conducting sensitivity
analyses across different roadway settings could help refine
threshold selection and ensure greater robustness in real-world
applications.

2) Selection and Interdependence of Driving Features:
Driving variables play an important role in the action frame-
work, as they influence the feature selection process and,
consequently, impact the overall identification results. In this
study, we utilise four variables (v, a, T , and 1v), which are
empirically known to be highly relevant to driving behaviour.
The proposed action trends treat these variables independently
by dissociating variable changes.

Given the correlations among driving variables, future
research should explore multivariate feature selection tech-
niques or dimensionality reduction methods to better capture
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the relationships between variables. Such improvements could
further refine the Action phase extraction and Action pattern
calibration processes, improving the framework’s ability to
distinguish nuanced variations in driving behaviour.

3) Generalisability Across Different Driving Contexts:
Driving behaviour is inherently influenced by both internal
(e.g., driver cognition, risk perception) and external (e.g.,
road conditions, traffic flow, infrastructure) factors. This study
evaluates the proposed action framework based on observed
driving variables, and its generalisability across different traffic
environments remains further consideration. One potential
factor to be considered is the presence of autonomous vehicles
(AVs) in the dataset. Interactions between human-driven vehi-
cles (HVs) and AVs may introduce behavioural adaptations
that differ from conventional HVs-only environments.

Future studies could investigate how HV-AV interactions
influence driving heterogeneity and whether the extracted
Action patterns remain consistent in AV-integrated traffic.
Additionally, testing the framework across datasets from
different geographical regions, where variations in driving cul-
ture, regulations, and infrastructure exist, can further validate
its robustness and applicability.

4) Practical Implications for Real-World Applications:
The proposed action framework systematically interprets driv-
ing behaviour and can promote implications for various
real-world applications. For instance, Advanced Driver Assis-
tance Systems (ADAS) and Adaptive Cruise Control (ACC)
could leverage the extracted driving patterns to predict driver
behaviour, leading to more adaptive and personalised automa-
tion features. Traffic management and control systems could
benefit from the framework’s ability to classify heterogeneous
driving behaviours, helping optimise traffic signal timing,
lane management, or speed harmonisation strategies. Safety
assessment models could incorporate Action patterns to anal-
yse driving risks, helping improve proactive measures for
accident prevention. Future research could further explore
how the action framework can be integrated into simulation
environments, vehicle automation algorithms, or traffic control
systems, ensuring its practical applicability in transportation
engineering and intelligent mobility solutions.

VII. CONCLUSION

Understanding the heterogeneous nature of driving
behaviour is crucial for traffic flow analysis and the design
of better road safety measures. Existing methods often lack
the granularity and precision required to capture subtle
heterogeneity in driving behaviour. This study proposes
a novel framework to systematically identify driving
heterogeneity by analysing underlying characteristics of
driving behaviour. The concept of Action phase is introduced
to decompose driving trajectories into “primitives” with
physical meanings. Then Action patterns are calibrated
by clustering Action phases based on group-specific
characteristics. The Action pattern calibration process
provides a rigorous labelling method for Action pattern
classification. Evaluation using a large-scale naturalistic
driving dataset demonstrates the framework’s effectiveness
in capturing driving characteristics and identifying driving

heterogeneity. The incorporation of an attention mechanism
enhances LSTM models’ performance in terms of both
accuracy and time efficiency. This framework improves
capturing subtle behavioural differences within and amongst
individual drivers, supporting advancements in personalised
driving assistance systems and user-based traffic management.
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