
IEEE SIGNAL PROCESSING LETTERS, VOL. 16, NO. 10, OCTOBER 2009 885

On Optimal Multichannel Mean-Squared Error
Estimators for Speech Enhancement

Richard C. Hendriks, Richard Heusdens, Ulrik Kjems, and Jesper Jensen

Abstract—In this letter we present discrete Fourier transform
(DFT) domain minimum mean-squared error (MMSE) estimators
for multichannel noise reduction. The estimators are derived
assuming that the clean speech magnitude DFT coefficients are
generalized-Gamma distributed. We show that for Gaussian
distributed noise DFT coefficients, the optimal filtering approach
consists of a concatenation of a minimum variance distortion-
less response (MVDR) beamformer followed by well-known
single-channel MMSE estimators. The multichannel Wiener filter
follows as a special case of the presented MSE estimators and is
in general suboptimal. For non-Gaussian distributed noise DFT
coefficients the resulting spatial filter is in general nonlinear with
respect to the noisy microphone signals and cannot be decomposed
into an MVDR beamformer and a post-filter.

Index Terms—MMSE, multichannel, noise reduction.

I. INTRODUCTION

A COMMON way to make speech processing applications
robust against environmental noise, i.e., increase speech

quality, intelligibility and listening comfort, is to equip these
applications with a noise reduction algorithm. Dependent on
the specific application, noise reduction can be applied by
exploiting single-channel techniques, e.g., [1]–[3], or multi-
channel techniques, e.g., [4], [5]. Multichannel methods allow
for spatial filtering and therefore they tend to obtain superior
quality over single-channel noise reduction methods.

Bayesian estimators [6], e.g., minimum mean-squared
error (MMSE) estimators, have played an important role for
single-channel methods, e.g., [1], [2], [7]–[9], as well as multi-
channel methods, e.g., [10]–[12]. A well-known multichannel
estimator is the multichannel Wiener filter (MWF), e.g., [10],
[13]. Often, the MWF is claimed to be mean-squared error
(MSE) optimal, e.g., [11], [14], [15]. However, as the MWF
can be derived using only second order moments of the signals
involved, one would expect that the MWF is only truly MSE
optimal for signals whose higher-order (beyond second) cumu-
lants are zero, e.g., when both speech and noise are assumed to
be Gaussian distributed. As histograms have demonstrated, the
distribution of speech in time-domain and various transform
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domains is not Gaussian, but rather super-Gaussian, e.g., [2],
[8], [16], it seems plausible that the MWF is suboptimal, and
performance would be improved by multichannel estimators
derived under such non-Gaussian distributions.

In this letter we consider discrete Fourier transform (DFT)
domain multichannel MSE estimators for speech enhancement
under general distributional assumptions. We show that under
certain realistic assumptions on the distribution of the noise
DFT coefficients, that the MMSE estimator decomposes into
a concatenation of a linear spatial filter and a, generally non-
linear, single-channel filter. More specifically, in this general
case, the optimal filtering approach consists of a minimum vari-
ance distortionless response (MVDR) beamformer followed by
a single-channel spectral enhancement scheme from a class of
well-established MMSE estimators. The fact that the optimal
filtering strategy involves two well-known estimators makes it
straightforward to gauge the possible performance gain of the
optimal strategy over the MWF.

Moreover, we show that when the noise DFT coefficients are
modelled using more general distributional models, this decom-
position does in general not hold anymore; the resulting spatial
filter becomes nonlinear with respect to the noisy microphone
signals.

II. NOTATION AND BASIC ASSUMPTIONS

We assume that each of the noisy microphone signals is
windowed and transformed to the DFT domain, leading to noisy
DFT coefficients , where is the mi-
crophone number, the frequency-bin index and the time-
frame index. Let and denote clean speech and
noise DFT coefficients, respectively. The DFT coefficients are
assumed to be random variables, indicated by upper case letters.
Their corresponding realizations are indicated by lower case let-
ters. Furthermore, bold faced letters indicate the use of matrices.
We assume that the speech and noise DFT coefficients are inde-
pendent and additive i.e.,

(1)

We assume the coefficients to be independent across time and
frequency, which allows us to neglect time- and frequency-in-
dices for ease of notation. For the complex speech DFT coef-
ficients , a polar representation will be used for mathemat-
ical convenience, i.e., , where and are
the magnitude and phase of , respectively. We assume that
there is a single target speaker whose acoustic path to the
microphones is modelled by the frequency dependent propaga-
tion vector ; consequently, the clean speech DFT co-
efficients observed at each microphone are
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given by , where is the clean speech DFT
at the target speaker location. Let be a vector con-
taining the noisy microphone DFT coefficients, i.e.,

. Similarly we define as the vector con-
sisting of the noise DFT coefficients at the microphones, such
that

(2)

Further, let be the noise correlation matrix defined
as , with the statistical expectation operator.

III. OPTIMAL MULTICHANNEL MSE ESTIMATORS

The estimator of , say , that minimizes the MSE
is given by [6], where is introduced
to allow for MSE estimation of functions of the random
variable , like . Using Bayes rule, and the fact that
the speech phase is uniformly distributed and independent of
the speech magnitude [9], we obtain

(3)

A. Assuming Complex-Gaussian Noise DFT Coefficients

The distribution is determined by the distribution of
the vector of noise DFT coefficients. For noise sources with
a relatively short time-span of dependency [17], it is realistic to
model as a multivariate complex-Gaussian distribution,
i.e.,

(4)

with the determinant of . This assumption was experimen-
tally verified by Lotter in [8] for the one-dimensional case of

and easily extends to the multivariate case.
1) Complex-DFT Multichannel MMSE Estimator: Substitu-

tion of (4) into (3), setting to and using [18, Eq.
3.937.2] to compute the integral over , we obtain

(5)

with

(6)

and where denotes the phase of , and

(7)
where is the modified Bessel function of the first kind
and order . We recognize (6) as the MVDR beamformer ap-
plied on the noisy observation . From (5)–(7) we can draw sev-
eral conclusions. First, (5) is a function of , only through the
function . This is due to the assumption that the noise DFT

vector has a multivariate complex-Gaussian distribution. Sec-
ondly, from (5)–(7) we identify that the optimal estimator con-
sists of a concatenation of two processing steps; an MVDR
beamformer applied to (6), followed by post-processing of
the MVDR beamformer output in (7). Thirdly, observing
that is real, it follows that the function is
real. Therefore, we can conclude from (5) that the phase of the
MMSE estimator equals the phase of the MVDR beamformer
output and its magnitude is determined by .

To specify the post-processing applied in (7) to , we must
specify . As in [9] we assume that the magnitude is
generalized-Gamma distributed, i.e.,

(8)

where is the Gamma function and where we set
from which it follows [9] that , with .
Let denote the confluent hypergeometric function [18]. Sub-
stitution of (8) into (5) and subsequently using [18, Eqs. 6.643.
2,9.220.2] then leads to

(9)

with

(10)

Equation (9) can be recognized as the multichannel extension
of the single-channel MMSE estimator presented in [19]. The
noisy input in (9) is the MVDR beamformer output . The
noise in the MVDR beamformer output remains Gaussian,
since is assumed to be complex-Gaussian distributed and
the MVDR beamformer is linear and deterministic. From (9)
we can conclude that the MWF is suboptimal in general. An
exception is the case in which , i.e., the complex speech
DFT coefficients are assumed to have a complex-Gaussian
distribution, for which (9) reduces to the MWF solution. Since
it is well known that the distribution of speech DFT coefficients
tends to be super-Gaussian, see e.g., [2], [8], other choices for

that have a better match with actual speech data will lead to
a solution that is closer to the optimal estimator.

Experimental Validation: To experimentally validate the sub-
optimality of the MWF we conduct an experiment where the
performance of the multichannel MMSE estimator in (9) is com-
pared to the MWF and the single-channel MMSE estimator pre-
sented in [19] that is derived under exactly the same distribu-
tional assumptions as the estimator in (9). The comparison is
performed in terms of the quantity that the MMSE estimators
optimize for, i.e., mean-squared error (MSE), estimated as

(11)

where and denote the total number of frequency bins and
time-frames, respectively. We consider a dual-microphone end-
fire array setup with microphone distance of 1 cm. The target

Authorized licensed use limited to: TU Delft Library. Downloaded on July 06,2010 at 12:02:28 UTC from IEEE Xplore.  Restrictions apply. 



HENDRIKS et al.: ON OPTIMAL MULTICHANNEL MSE ESTIMATORS 887

Fig. 1. Performance in terms of MSE (dB) for speech degraded by two white-
noise point sources positioned at 40 and 140 degrees at an SNR of (a) 5 dB (b)
15 dB.

speech source is positioned at zero degrees and degraded by
two white-noise point sources positioned at 40 and 140 degrees.
The noise correlation matrix for the multichannel MMSE es-
timator in (9) and the noise PSD for the single-channel MMSE
estimator in [19] are estimated using an ideal voice activity de-
tector and the propagation vector is assumed to be given. The
estimators are applied in the Fourier domain on a frame-by-
frame basis to time-frames of 32 ms taken with 50% overlap.
Evaluations are performed using a data-base consisting Danish
speech spoken by nine female and eight male speakers and sam-
pled with a sampling frequency of 8 kHz. In Fig. 1(a) and (b)
the performance in terms of MSE is given for SNRs of 5 dB
and 15 dB, respectively, as a function of the -parameter. The
MWF that appears as a special case of the in (9) presented es-
timator for , is indicated in Fig. 1 by the symbol . The
single-channel Wiener filter (SWF), a special case of the single-
channel MMSE estimators presented in [19], is indicated by the
symbol . Clearly, we see that that the MWF is suboptimal and
leads to a MSE that is in the order of 2 dB larger compared to
multichannel MMSE estimators derived under super-Gaussian
distributions with in the order of 0.1. The improvement of the
multichannel MMSE estimators over the single-channel MMSE
estimators under exactly the same distributional assumptions,
i.e., the same -parameter, is in this situation in the order of
2.5–3 dB, but will generally depend on the number, position and
characteristics of the noise sources and the geometry of the mi-
crophone setup.

2) Magnitude-DFT Multichannel MMSE Estimator: Be-
sides complex DFT estimators, magnitude-DFT estimators also
received a lot of attention for noise reduction, e.g., [1], [8].
Choosing in (3) and applying derivations along the
same line as is done to obtain (5), we obtain the multichannel
magnitude-DFT estimator , that is

(12)

with as defined in (10). Equation (12) is the multi-
channel extension of the single-channel MMSE estimator pre-
sented in [9]. In analogy with (9), the MMSE magnitude-DFT
estimator can be decomposed into an MVDR beamformer rep-
resented by and a post-filter that is well known from single-
channel MMSE estimation, e.g., [9]. The fact that the optimal
filtering approach consists of an MVDR beamformer followed
by a (potentially nonlinear) single-channel post-processor was
also observed by Balan [20], who derived explicit expressions
for the case of complex-Gaussian noise DFT coefficients and
complex-Gaussian speech DFT coefficients for

and .

B. Assuming Non-Gaussian Noise DFT Coefficients

The fact that the multichannel MMSE estimators can be de-
composed into a concatenation of an MVDR beamformer and
a single-channel post-processor holds as long as is assumed
to be multivariate complex-Gaussian distributed, but does not
hold in general. More specifically, we can generalize the results
in Section III-A by assuming that is distributed according to
a multivariate complex-Gaussian mixture, i.e.,

(13)

with the number of components and positive weighting
factors that satisfy . Furthermore, are
the variances of the individual components and satisfy

. Such a distribution is useful to model noise
DFT coefficients from sources with a rather long time-span of
dependency, e.g., babble- and fan-noise, for which histograms
of DFT coefficients deviate somewhat from Gaussianity [8].
Under these more general distributional assumptions, substitu-
tion of (8) and (13) into (3), setting and using [18,
Eqs. 3.937.2, 6.643.2, and 9.220.2] leads to

(14)
with

and

(15)

We see that under this non-Gaussian noise DFT assumption, the
multichannel MMSE estimator can not be decomposed into an
MVDR beamformer and a single-channel post-processor; the
spatial filter becomes nonlinear with respect to . In a similar
way, the magnitude estimator based on (8) and (13) is
obtained by setting in (3) to . This magnitude
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estimator can also not be decomposed into an MVDR beam-
former and a single-channel magnitude-DFT MMSE estimator
as a post-processor.

IV. CONCLUSION

In this letter we treated the MSE optimal multichannel
filtering problem. Specifically, we considered DFT-domain
multichannel estimators for speech enhancement. The esti-
mators are derived assuming that the speech magnitude-DFT
coefficients are generalized-Gamma distributed; this assump-
tion has been justified in several studies, e.g., [8], [9]. When the
noise DFT coefficients are complex-Gaussian distributed, we
can conclude that, independent of the distribution of the speech
magnitude-DFT coefficients, the optimal filtering strategy is
a concatenation of two well-known methods; a linear spatial
filter (MVDR) and a, generally nonlinear, single-channel filter
applied to the MVDR beamformer output, i.e., an intuitively
pleasing and straightforward concatenation of very well-known
techniques. Further, we can conclude that

• the MWF is generally suboptimal;
• the performance loss in using the MWF instead of the op-

timal filter is determined by the performance differences of
the single-channel post-processors; for speech signals this
gap is around 2 dB in terms of MSE [19];

• the MMSE estimator can be derived using the distribution
observed at the target source location, independent

of the acoustical situation (given that the assumed signal
model is valid). As a consequence, speech targets can be
modelled appropriately using super-Gaussian densities.

Furthermore, when noise DFT coefficients cannot be assumed
to be complex-Gaussian distributed, we can conclude that in
general

• the optimal spatial filter is nonlinear;
• it is not possible to decompose the estimator into an MVDR

beamformer and a single-channel post-processor.
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