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Preface

This thesis was written for the bachelor project of the study "Applied Mathematics" at the TU Delft. In this
thesis we consider the problem of finding extremal graphs with a threshold-k metric dimension m, that is:
for a set of sensors of size m that can measure up to a range of k, we will construct a graph that contains these
sensors and as many vertices as possible, such that every vertex is measured uniquely by this set of sensors.
This is an open problem, for as far as we know.

We will prove optimality of the constructions for up to k = 3 and arbitrary m and we shall also introduce
a construction that works for general k and m with an incomplete proof of optimality.

I very much wish to thank my supervisor Júlia Komyáthy for steering this project in such a way that I was
able to achieve these results and I would also like to thank Anurag Bishnoi for taking his time to be in the
thesis committee.

T. Datema
Delft, July 2022

iii



iv Preface

Abstract
In this thesis, we consider the threshold metric dimension problem of graphs, related to and motivated by
source detection.

We construct a graph G = (V ,E) for a given set of sensors of size m: {s1, s2, ..., sm} and a range k > 0. We
want that each node v ∈V has a unique combination of distances (dk (s1, v),dk (s2, v), ...,dk (sm , v)), where dk

is the distance function in a graph limited by the range k (the distance is denoted as being ∞ if the distance is
larger than k). Our aim in this thesis is to construct such a graph that is extremal in size, that is: the vertex set
V is as large as possible. We shall give such constructions with proof for optimality up to k = 3 and general m
and a different construction with incomplete proof for optimality for general k and m. For any construction
we will prove that each vertex is uniquely identified.

Furthermore, we will compare our results to another paper [6] with a similar conclusion about the ex-
tremal size of graphs with metric dimension m and a given diameter D .

Abstract for Layman
In this thesis we construct a network based on a given set of sensors that have a certain range. Dependent
on the amount of sensors we are given and the range of these sensors, we want to construct our network,
such that any possible source can be uniquely detected by the given set of sensors. That is: if each sensor
gives out a signal that tells us its distance to a source in the network, we want that the total combination of all
signals the sensors give, is unique for every possible source. This unique combination allows us to precisely
determine the location of the source in our network. The aim of this thesis is to construct such a network that
is as large as possible, in which we have succeeded.
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1
Introduction

1.1. Motivation and description of the problem
The source detection problem considers a network consisting of nodes connected by links, a graph in mathe-
matical terms, in which there is a source of some kind. This source can be many different things, for example
an infected person spreading a disease through the network, in which case the nodes in the network represent
a group of people and the links connecting them represent people who come into contact with one another.
Another interpretation could be a fire in a building as suggested in a paper by Slater [10], in which case the
nodes in the network represent the rooms of the building and the links in between the nodes represent rooms
that are connected to one another, see Figure 1.1 and Figure 1.2.

Figure 1.1: A possible floor plan of a building with four rooms, connected to each other by doors.

Figure 1.2: A graph representing the floor plan of Figure 1.1.

Now consider the example of a building with a fire as a source and suppose we want to be able to detect
such a fire in a building, that is: we want to be able to detect a source in such a network. To do this, we can
place smoke detectors in certain rooms. These give out a signal, one signal (say 0) if there is a fire in the room
the detector is placed in, a different signal (say 1) if there is a fire in a room adjacent to the room the detector

1



2 1. Introduction

is placed in, or no signal (say ∞) if there is no fire in the same room as the detector or in an adjacent room,
see Figure 1.3.

Figure 1.3: Four examples of different signals that a sensor (black) can send out when detecting (or not detecting as in the top left case)
a source (red). The red circle represents a source that is on the sensor itself.

We want to place these detectors in such a way that we get an unique combination of signals from all the
detectors, for each possible source (room with a fire), that way we can detect each possible fire: it does not
matter in which room the fire is, we can always deduce in which room the fire is according to the combination
of signals. An example of a graph that suffices this condition is given in figure

Figure 1.4: Example of a graph where all the non-sensor nodes (white) can be uniquely identified by the two sensors (black), each
non-sensor node has a double assigned to it with the signals the sensors would give if there was a source there. The node with (∞,1) for

example, would not be detected by sensor 1 if it were a source, but would be detected by sensor 2, with signal 1 as it has distance 1 to
sensor 2.

So in a more general case: for a certain network we want to assign certain nodes as detectors, such that
any possible source in the network has a unique signal according to the detectors, so that it can be found
uniquely.

The example above considers k = 1, that is: the range of the detectors (which we call k) has a distance
of 1. That means that the detectors can give out a signal for sources that have a distance of at most 1 to the
detector. We can also consider detectors that have a range of a larger distance, say k = 2 for example. In this
case the detector can give out 4 different signals: 0 if the source is in the same location as the detector, 1 if it is
adjacent to the detector, 2 if it has distance 2 to the detector or ∞ if it has distance 3 or higher to the detector.
By distance we mean the amount of links one has to cross from the source to the detector.

The value of k can also be infinity, that means that a detector can measure a source up to any distance. In
this case, we call the amount of sensors needed to uniquely determine each source, the “metric dimension”
of the given graph. Should we work with a limited range k (a threshold on the range), we call the amount of
sensors needed the “threshold-k metric dimension”.

We shall now give some more context to this problem, both in specific variations and in the historical
sense.
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1.2. Related problems and historical overview
The problem for optimally placing fire detectors and in a broader sense, source detection in a graph, was first
introduced by Slater [9] in 1975 and a year later independently by Harary and Melter [5], though the term
“dimension” of a graph has been used before in 1965 by Erdös [4] in a different, though related, context. In
[10], Slater called a set of detectors with range k = 1 that can identify any source a “Locating dominating
set", often also referred to as a “Locating dominating code" by other authors [2]. In general these locating
dominating codes do not necessarily need that k = 1, but they do need that every non-sensor vertex in the
graph is a neighbor to at least one sensor.

A closely related concept to this is the “r -Locating dominating code” introduced by Karpovsky [7], in
which case the sensors may have a larger range than 1, but they will only distinguish between whether a
source is within their range or not; they do give information about the distance to the source, merely if they
measure it or not.

Another related problem is the “Fault tolerant locating dominating set”, introduced by Slater [11]. This is
the same situation as in his problem of finding a locating dominating set in [9] where the sensors have range
1, except that for any source, at most one sensor may give out no signal (or ∞ in our notation) when it actually
should measure the source (thus being faulty).

In this thesis we shall discuss the truncated metric dimension of a graph, or “threshold-k metric dimen-
sion” as introduced by Tillquist [13], in Section 2.1 we shall formally define what this means. This thesis is
closely related to a paper about extremal tree graphs of threshold-k metric dimension, by Bartha [1]. The
research in this paper is what inspired this thesis.

One special variation that is of specific interest to us, is a paper dedicated to finding a graph with metric
dimension m, that is as large as possible while retaining a diameter not larger than D , posed by Hernando
et al. [6]. This problem is interesting to us, because its results turn out to be very similar to ours. We will
elaborate more on this in Section 4.2.1.

One of the reasons there has been so much research in this branch of graph theory and combinatorics, is
because it turns out to be quite difficult to find the metric dimension of an arbitrary graph, as we will explain
in the next subsection.

1.3. Algorithms for finding the metric dimension of a graph
For a general graph, a brute force search algorithm can be used to find a resolving set of sensors, this is very
computationally intensive and it turns out that this is a NP-complete problem [3].

However, for certain subsets of graphs, such as trees, wheels, d-dimensional grids etc... the metric dimen-
sion is known [12]. In [9], Slater also determined the metric dimension of trees: it is equal to the number of
leaves in the tree, minus the amount of vertices in the tree that have degree at least 3 and that have at least a
single path of degree two vertices that end in a leaf. For wheel graphs (graphs that form a cycle of nodes of a
certain length with one central node that is connected to all the nodes in the cycle) the metric dimension is
equal to ⌊ 2n+2

5 ⌋, for n > 6, where n is the length of the cycle. And for d-dimensional grids (graphs representing
a bounded, d-dimensional grid of nodes where nodes are connected if they differ by 1 at a single coordinate)
the metric dimension is d .

There also exist algorithms for finding the metric dimension of certain graphs, such as an algorithm to
find a threshold-1 resolving set for trees, as given by Slater [10]. Some reasons as to why it is interesting to
develop these algorithms are given in the next subsection.

1.4. Applications
An important application of these graphs is source detection. The two cases discussed in the motivation, the
spreading of a disease and placing smoke detectors, are cases of source detection. One particular example is
detecting the source of a covid infection, as given by Ódor [8]. In this paper, Ódor discusses how it is possible
to determine the source of the spread of a covid epidemic, even if there are asymptomatic patients. If we
know the social network of the patients, we only need a special subset of all patients to have symptoms (the
detecting set in the graph) to be able to guess where the source came from.

In short, this branch of mathematics can be applied to any discrete system in which there is a source of
some kind and in which this source ‘flows’ through a network of sorts, to finally be detected by sensors.

We could also imagine, for example, a gossip-network of people in which someone starts a rumour. As-
suming one knows who gossips with whom, the source of the rumour could be localised based on when
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certain people (the sensors) start spreading the rumour.
More applications other than source localization as described above are given in [12] by Tillquist et al.,

one example considers detecting network motifs. Motifs are subgraphs that appear in a graph with a higher
than expected frequency. Finding these subgraphs is a very computationally expensive task. It is possible,
however, to use algorithms to find subgraphs of a certain size. These algorithms then rely on resolving sets in
these graphs. More on this can be read in [12] in Chapter 7.2.



2
Mathematical Formulation and content of

thesis

2.1. Formulation of problem
Now a more formal description of the problem will be given. We consider a simple, undirected graph G =
(V ,E) and we shall refer to |G| = |V | as the size of a graph. On this graph, we first define a path Pu,v from
vertex u ∈ V to vertex v ∈ V as a collection of distinct vertices Pu,v = (v0, v1, ..., vl ), where v0 = u and vl = v
and (vi , vi+1) ∈ E for all 0 ≤ i ≤ l −1.

The length of a path is defined as the number of edges in that path (equal to the number of vertices in
the path minus 1). We define the distance d(u, v) as the length of the shortest possible path from u to v and
d(u,u) = 0 for u, v ∈ V . We also define dk (u, v) := min{d(u, v),k +1} as the distance bounded by the range k
of the detectors. If dk (u, v) = k +1, we may choose to write dk (u, v) =∞.

We define S ⊆ V as the set of vertices that function as sensors in G and we say that a sensor vertex s
measures another vertex v if dk (s, v) ≤ k. We also define:

Definition 1 (Threshold-k resolving set). We call S ⊆ V a “threshold-k resolving set" if for each v ∈ V and the
sensors s1, s2, ..., sn ∈ S, we have that dk (v, si ) ≤ k for at least one i ∈ {1,2, ...,n} (thus v is measured by at least
one sensor) and that the collection of distances dk (v, si ) for i ∈ {1,2, ...,n} is unique.

This means that for a threshold-k resolving set of sensors, the specific combinations of signals that all the
sensors send out are unique for every possible source in V . This ensures that we can uniquely deduce the
location of some source in V depending on the signals sent out by the sensors.

Now we define:

Definition 2 (Metric dimension). The smallest amount of sensors needed to uniquely detect any source in V
(that is: the smallest possible cardinality for S for it to be a threshold-k resolving set) is defined as the “threshold-
k metric dimension" of G and written as Tmdk (G).

2.2. Contribution of this thesis to the problem
The aim of this thesis is to find, for given values k and m, a graph G(k,m) that has a threshold-k resolving set
of vertices {s1, s2, ..., sm} that is extremal in size. This is an open problem, for as far as we know.

To this end, multiple constructions will be discussed that suffice this condition, one for general k and
three for some specific values of k. For the general case, some proofs still need to be written out to show that
it is actually extremal in size.

2.3. Layout of thesis
Finally, the thesis is organised as follows:

In Section 3 we consider a specific set of constructions that create an extremal graph for general m and
for 1 ≤ k ≤ 3. We will introduce what conditions a graph must suffice in order to be extremal and we shall
give a construction and a proof for every value k for 1 ≤ k ≤ 3. We will also intrudoce the problem of sensors
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6 2. Mathematical Formulation and content of thesis

being too close together and how we will deal with that in the case of k = 3 and how we will still end up with
a extremal graph.

In Section 4 we shall consider a construction that will create a graph of threshold-k metric dimension m
for general k and m. We are still left to finalize the proof to show that these constructions are extremal, though
we are able to show that these graphs do indeed have threshold-k metric dimension m. We will also expand
on the problem posed in Section 3 where the sensors may be too close together for certain values of k.



3
Optimal constructions

The aim of this thesis is to construct, for as many values for k as possible and an arbitrary integer value m ≥ 1,
a graph G = (V ,E) that is as large as possible that contains a threshold-k resolving set S with cardinality
|S| = m. That is, we want to construct a graph with as many vertices as possible that contains m sensors and
furthermore satisfies the property that each vertex v ∈ V has a unique combination of distances to the m
sensors.

To check whether each vertex has a unique combination of distances to the m sensors, which are m dis-
tinct vertices labeled s1, s2, ..., sm , we assign a vector d (v) ∈Zm to each vertex v , called the distance vector d (v)

of v . In this vector d (v), the i -th value d (v)
i is defined to be the distance dk (v, si ) between the vertex v and the

i -th sensor si , where 1 ≤ i ≤ m, i ∈N. So:

d (v) =
(
d (v)

1 ,d (v)
2 , ...,d (v)

m

)
(3.1)

= (dk (v, s1),dk (v, s2), ...,dk (v, sm)) . (3.2)

An example of what distance vectors look like in a graph is given in Figure 3.1.

Figure 3.1: A graph with 3 sensors and 2 non-sensor vertices, where each non-sensor vertex has their distance vector next to it: a vector
containing the distances (d1,d2,d3) to sensors 1, 2 and 3.

Now given this notation, we want to construct a graph containing at least the m sensor vertices s1, s2, ..., sm ;
and then containing as many vertices vi as possible so that each d (vi ) is a distinct vector. In the next claim we
shall give an upper bound on the amount of vertices in a graph with m sensors with range k such that each
vertex is measured uniquely.

Claim 1. The number of possible vertices in a graph G with m sensors that form a threshold-k resolving set, is
at most (k +1)m +m −1.

Proof. Since only the sensors themselves can have distance 0 to any sensor (that is, themselves), the distances
dk (v, s) between any other non-sensor vertex v and a sensor vertex s, takes values in 1,2, ...,k + 1, by the
definition of dk (·, ·). Knowing this, we can establish a sharp bound for the amount of vertices we can fit in this
graph, namely: (k +1)m +m −1, since we have m sensors and then (k +1)m possibilities for the non-sensor
vertices, since they all must be assigned to a vector of length m containing k + 1 different values for each
element in the vector. Furthermore, we require that all vertices must be measured, so we do not allow the
distance vector (∞,∞, ...,∞), hence the ‘-1’.

7



8 3. Optimal constructions

If possible, for some integer value k ≥ 1, we would like to construct a graph containing (k +1)m +m −1
different vertices. This is only possible whenever k = 1 or k = 2, as we will soon see. We will now show
constructions for three different values of k.

3.1. Construction for an extremal graph with threshold-1 metric dimen-
sion

We start off with a construction for k = 1, so we will construct a graph G = (V ,E) with sensors s1, s2, ..., sm

where all the non-sensor vertices v ∈ V must be assigned to all possible vectors d (v) = (d (v)
1 ,d (v)

2 , ...,d (v)
m ),

where each d (v)
i takes values in {1,∞} (where ∞ means that the distance between a vertex and sensor is 2 or

larger).
So given the m sensors s1, s2, ..., sm , we want to construct a graph where each non-sensor vertex v has all

possible combinations of 1 and ∞ over all m sensors. We can construct this graph as follows:

Definition 3 (Construction of an extremal graph G1(m) for k = 1). First we define S = {1,2, ...,m}.
Now let G1(m) = (V ,E) be a graph where the vertex set V is given by:

V := {s1, s2, ..., sm}∪ ⋃
A⊆S
A ̸=;

{v A}. (3.3)

The edge set E is given by:
E := ⋃

A⊆S
A ̸=;

⋃
i∈A

{(v A , si )}. (3.4)

In words, this construction is as follows: First create the m sensors as m distinct vertices s1, s2, ..., sm , now
for every nonempty subset A ⊆ {1,2, ...,m} of the m sensor vertices, we add a vertex v A to the graph. For every
v A , we connect v A to precisely all sensors that are in A. That is: we connect them to all sensors in {si : i ∈ A}
and we do not connect them to {si : i ̸∈ A}. If m = 3 (so that S = {1,2,3}), for example, we connect v{1,3} to s1

and s3, but not to s2.
A construction for m = 3 is presented in Figure 3.2.

Figure 3.2: An extremal graph constructed as in Definition 3 with threshold-1 metric dimension 3. The sets below the blue vertices
denote the set A for which the blue vertex v A is created. Thus v A connects to all sensors si ∈ A.

Theorem 1. The construction as given for G1(m) in Definition 3 yields a graph with threshold-1 resolving set
{s1, s2, ..., sm} for every m ∈N. Furthermore, G1(m) is extremal in size, that is: for any graph G with threshold-1
metric dimension m, we have |G| ≤ |G1(m)|.
Proof. With this construction we obtain a graph, where no two sensors are connected to one another and no
two non-sensor vertices v A1 and v A2 , where A1, A2 ⊆ {1,2, ...,m}, A1 ̸= A2, are connected to one another (see
(3.4) in Definition 3). This means that all sensors have at least distance 2 to each other, and all non-sensor
vertices v A have at least distance 2 to all sensors that they are not directly connected to, and thus are not in
{s j : j ∈ A}.

Thus all sensors s j have distance vectors (∞,∞, ...,0, ...,∞) where the 0 is at position j , since they have
distance 0 to themselves and a distance of 2 or larger (thus ∞) to the other sensors. Any non-sensor vertex v A

corresponding to A ⊆ {1,2, ...,m} has a distance vector which has value 1 for any position j ∈ A, since they are
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directly connected to {s j : j ∈ A}, and value ∞ for any position j ̸∈ A, since they have distance 2 or larger to
the sensors in {s j : j ̸∈ A}.

Now each vertex has its own unique distance vector and we can construct any distance vector d (v) ∈
{1,∞}m , since for every distance vector d (v) in {1,∞} we can create a set A that suffices { j ∈ A} for all positions
j that have value 1 in d (v). So, after accounting for the m sensors and excluding the vertex not measured by
any sensor, we have obtained the sharp bound of (k +1)m +m −1 = 2m +m −1 for k = 1, so that we indeed
obtain extremality.

3.2. Construction for an extremal graph with threshold-2 metric dimen-
sion

Now for k = 2 the construction requires some more steps, though it is similar in nature. This time we want
to create vertices, such that they all uniquely correspond to all vectors d (v) ∈ {1,2,∞}m . The construction is
given as follows:

Definition 4 (Construction of an extremal graph G2(m) for k = 2). First we define: S = {1,2, ...,m}.
Now let G2(m) = (V ,E) be a graph where the vertex set V is given by:

V := {s1, s2, ..., sm}∪ ⋃
A⊆S
A ̸=;

[
{v A}∪ ⋃

B⊂A
{v A,B }

]
. (3.5)

The edge set E is given by:

E := ⋃
A⊆S
A ̸=;

[(⋃
i∈A

{(v A , si )}

)
∪ ⋃

B⊂A

(
{(v A , v A,B )}∪ ⋃

j∈B
{(v A,B , s j )}

)]
. (3.6)

And B is allowed to be the empty set in this definition.

In words, this construction works as follows: First we create all the sensors s1, s2, ..., sm as our starting
vertices. Then, as is the case with k = 1, we create all nonempty subsets A ⊆ {1,2, ...,m} and again for each
subset A, we add a vertex v A to the graph and connect it to each sensor {si : i ∈ A} and not to {si : i ̸∈ A}. After
having created all possible subsets A, we create further subsets for every A; we create all possible, strictly
smaller, subsets B ⊂ A ⊆ {1,2, ...,m}. And now for each subset B ⊂ A ⊆ {1,2, ...,m}, we create a vertex v A,B and
connect it to v A and then we also connect v A,B to each sensor {si : i ∈ B} (and again, not to {si : i ̸∈ B}).

If m = 3, for example, we would connect v{1,3},{1} to v{1,3} and to its sensors s1 and s3.
We give a full example for m = 2 in Figure 3.3

Figure 3.3: An extremal graph constructed as in Definition 4 with threshold-2 metric dimension 2. The sets next to the blue vertices
denote the set A for which the blue vertex v A is created. The sets next to the red vertices denote the sets A,B for which the red vertex

v A,B is created.

We also give a python generated graph for k = 2 and m = 3 in Figure 3.4, with a code similar to that of
Appendix A.

Theorem 2. The construction as given for G2(m) in Definition 4 yields a graph with threshold-2 resolving set
{s1, s2, ..., sm} for every m ∈N Furthermore, G2(m) is extremal in size, that is: for any graph G with threshold-2
metric dimension m, we have |G| ≤ |G2(m)|.

Before we begin with the proof, we first introduce the notation N (v) of the set of vertices directly con-
nected to a vertex v in a graph G = (V ,E):

N (v) = {u ∈V : (u, v) ∈ E }. (3.7)
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Figure 3.4: An extremal graph constructed as in Definition 4 with threshold-2 metric dimension 3. The sets next to the blue vertices
denote the set A for which the blue vertex v A is created. The sets next to the red vertices denote the sets A,B for which the red vertex

v A,B is created.

Proof. From (3.6) in Definition 4 it follows that the vertices v A for A ⊆ {1,2, ...,m}, A ̸= ; have the following
neighbors:

N (v A) = {si : i ∈ A}∪ {v A,B : B ⊂ A}. (3.8)

For v A,B where B ⊂ A we see that:
N (v A,B ) = {si : i ∈ B}∪ {v A}. (3.9)

And for si where i ∈ {1,2, ...,m} we see that:

N (si ) = {v A : i ∈ A}∪ {v A,B : i ∈ B}. (3.10)

The vertices v A .
From (3.8) it follows that every vertex v A created for a nonempty subset A ⊆ {1,2, ...,m} has distance 1 to all
sensors {si : i ∈ A}, since they are directly connected to those sensors. These are the shortest paths possible
from v A to {si : i ∈ A}, so they have distance 1 to the sensors {si : i ∈ A}.

Furthermore, we see that v A is only connected to sensors si where i ∈ A and v A,B where B ⊂ A. Since the
sensors are not connected to any other sensors and v A,B is not connected to any sensor si where i ̸∈ A (since
B ⊂ A and they are thus only connected to sensors that v A is connected to), we see that v A has no paths of
length 1 or 2 to sensors {si : i ̸∈ A}. Thus they have only paths of length 3 or more to the sensors {si : i ̸∈ A} and
are thus not measured by those sensors and denoted as having distance ∞ to them.
From this we can conclude that the vertices v A have distance vectors with value 1 on positions j ∈ A and value
∞ on positions j ̸∈ A. For example, if m = 5: v{1,2,4} has distance vector (1,1,∞,1,∞).

The vertices v A,B .
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Now for the vertices v A,B for B ⊂ A ⊆ {1,2, ...,m}. In (3.9) we see that these vertices v A,B are only directly con-
nected to v A and the sensors {si : i ∈ B}. So we directly see that they have distance 1 to the sensors {si : i ∈ B}.
They furthermore have distance 2 to the sensors that are in {si : i ∈ A \ B}, since these vertices are not directly
connected to v A,B , but they are connected to v A , to which v A,B is connected, thus a path Pv A,B ,si = (v A,B , v A , si )
of length 2 exists from v A,B to any si where i ∈ A \ B .

And finally, they have distance 3 or larger (thus written as ∞) to all sensors in {si : i ̸∈ A}, since they are
only connected to v A or directly to a subset of the sensors that v A is connected to, and the sensors v A,B are
directly connected to, are not directly connected to any other sensors.

Thus we summarize that v A,B has distance 1 to the sensors in {si : i ∈ B}, distance 2 to the sensors in
{si : i ∈ A \ B} and distance ∞ to the sensors in {si : i ̸∈ A}. So they have distance vectors with 1 on positions
j ∈ B , 2 on positions j ∈ A \ B and ∞ on positions j ̸∈ A. For example, if m = 5: v{1,2,4},{1,4} has corresponding
distance vector (1,2,∞,1,∞). And because B is a proper subset of A, we will always have at least a single value
of 2 in a distance vector of v A,B .

Conclusion.
Now we see that every vertex v corresponds to a unique distance vector d (v) ∈ {1,2,∞}m and furthermore,
each distance vector d (v) ∈ {1,2,∞}m can be constructed: Any vertex whose distance vector contains only 1’s
and ∞’s can be constructed by all possible subsets A ⊆ {1,2, ...,m} and any vertex whose vector contains at
least one 2, can be constructed with all possible subsets B ⊂ A ⊆ {1,2, ...,m} of all possible subsets A.

Thus we conclude that this construction yields all possible distance vectors d (v) ∈ {1,2,∞}m and thus we
attain the (k+1)m+m = 3m+m−1 bound when we include the m sensors and exclude the vertex not measured
by any sensor with this construction, so that we obtain extremality.

3.3. Construction for an extremal graph with threshold-3 metric dimen-
sion

Now it turns out that it is impossible to attain the (k +1)m +m bound for k = 3 when m ≥ 2, this is due to the
following:

Suppose we construct a graph that contains the vertices that correspond to all distance vectors d (v) ∈
{1,2,3,∞}m and suppose that m = 2 (the same argument holds for m > 2), then we must have vertices, say
v(1,1) and v(1,∞), corresponding to distance vectors (1,1) and (1,∞) present in the graph. This however means
that v(1,1) must be directly connected to both sensors s1 and s2 (since that is the only way to have distance 1
to both sensors) and since v(1,∞) must be directly connected to sensor s1 (since that is the only way to have
distance 1 to sensor s1), there exists a path v(1,∞), s1, v(1,1), s2 from v(1,∞) to s2 of length 3. And this means that
v(1,∞) will be measured by s2, since k = 3 and thus v(1,∞) will actually have distance vector (1,3) instead of
(1,∞) as we wanted. This is a contradiction and thus it turns out we can not construct vertices such that all
distance vectors d (v) ∈ {1,2,3,∞}m are accounted for simultaneously.

Hence, not all possible vectors can be realised in one graph G and so we must some subset of distance
vectors to construct a graph with metric dimension 3. The choice of the vertices we exclude is inspired by the
example above: we shall only allow vertices that will not cause sensors to measure ‘through’ other sensors.
That is: we will not allow paths between sensors of length k − 1 = 2, since if these paths exist, we obtain
problems as above. We shall later prove that this restriction will lead to an extremal construction in the case
of k = 3.

To formalize this restriction, we introduce the Min2sum(v) value of a vertex v , which works as follows:

Definition 5 (Min2sum(v)). Consider G = (V ,E), v ∈V and let k > 0. We take the distance vector of v as d (v) =(
d (v)

1 ,d (v)
2 , ...,d (v)

m

)
. We introduce the reordered distance vector r (v) =

(
r (v)

1 ,r (v)
2 , ...,r (v)

m

)
, where

(
r (v)

1 ,r (v)
2 , ...,r (v)

m

)
is a permutation of

(
d (v)

1 ,d (v)
2 , ...,d (v)

m

)
such that r (v)

1 ≤ r (v)
2 ≤ ... ≤ r (v)

m , we then finally define:

Min2sum(v) = r (v)
1 + r (v)

2 , (3.11)

on vertices v ∈V and:
Min2sum(d (v)) = r (v)

1 + r (v)
2 , (3.12)

on vectors in {k +1}m .
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So Min2sum(v) is the sum of the lowest two elements of the distance vector of v . And with this notation,
we shall only allow vertices that have:

Min2sum(v) ≥ k. (3.13)

So in this case of k = 3, we will allow all vertices v with distance vectors d (v) ∈ {1,2,3,∞}m that have no more
than one element equal to 1. So for example with m = 5: the distance vector (1,2,3,∞,2) is allowed, but
(1,2,1,∞,2) is not allowed.

In what follows we will show that a graph containing only the vertices v satisfying Min2sum(v) ≥ k is the
best possible construction for extremality and we will give a construction of a graph that contains all possible
vertices satisfying this condition, thus being an extremal graph for k = 3. Before we give the theorem, we will
calculate the amount of different vertices such a construction should have:

We have vectors with m digits and we can freely construct vectors consisting solely of the elements 2,3,∞,
so that leaves us with 3m possibilities to start with. Now we consider the vectors that contain a 1, since we can
have at most a single 1 in any vector we know that its position is unique in the vector, so we have m choices to
place this 1. Now we can fill in the other m−1 free places in this vector, with again 2,3,∞ as possible elements,
so that makes m ·3m−1 possible vectors containing a 1. This means that if we do not allow sensors to measure
through other sensors, we can have at most 3m +m ·3m−1 non-sensor vertices, so this way we can construct a
graph of at most 3m +m ·3m−1 +m −1 vertices after adding the sensors and subtracting the vertex that is not
measured by any sensor.

We shall now present a theorem that states how only allowing vertices that suffice (3.13) will lead to an
extremal graph with threshold-3 metric dimension m.

Theorem 3. Let G∗ be a graph with threshold-3 metric metric dimension m > 0 and let G∗ be extremal in
size (that is, there exists no other graph G with threshold-3 metric dimension m so that |G| > |G∗|). Then
|G∗| ≤ 3m +m ·3m−1 +m −1.

We shall present a rough proof for Theorem 3, due to time constraints it has not been written down as
properly as possible, but the argument still holds. This is also because in Section 4 we discuss a proof (though
incomplete) for extremality of a graph with threshold-k metric dimension m for general k and m.

Proof. Suppose we wish to construct a graph G with m sensors that form a threshold-3 resolving set, with as
many vertices as possible and with this in mind suppose we have to choose between adding a vertex v with
a distance vector d (v) that has the value 1 on positions j ∈ J ⊆ {1,2, ...,m} and arbitrary values x j ̸= 1 on the
remaining positions j ∈ X = {1,2, ...,m} \ J .

Adding this vertex means that we can freely add any vertex that has any combination of values for x j ̸= 1
for j ∈ X , but we can not add any vertices that have both at least a single value ∞ in a position j ∈ J and at
least a single value 1 in any other position i ∈ J , i ̸= j and then having any combination of values for x j ̸= 1 for
j ∈ X .

This we gain a single class of vertices that have arbitrary values for x j ̸= 1, j ∈ X , but we lose the ability to
add 2n −1−1, where n = |J |, classes of vertices, that have arbitrary values for x j ̸= 1, j ∈ X , since there are 2n

possibilities to choose between 1 and ∞ on n locations in the vector, but we do not count the vector that only
has the value 1 on all positions j ∈ J (since that is the vector we gain) and we do not count the vector that only
has the value ∞ on all positions j ∈ J (since we need at least one value to be 1).

This way we end up with not being able to have 2n −2 classes of vertices in our construction, while only
gaining a single class of the same size of vertices, by adding a vertex v whose distance vector d (v) constains
more than a single value 1. Since every class of vertices whose vectors contain more than a single 1, uniquely
corresponds to 2n −2 classes of vertices, and since 2n −2 ≥ 1 for n ≥ 2, we conclude that adding vertices v
such that Min2sum(v) < 3 can not lead to an extremal construction for a graph with a threshold-3 resolving
set, if we can find a construction that only contains vertices v wuch that Min2sum(v) ≥ 3.

This means that if we can find a graph with a threshold-3 resolving set of size m that contains all vertices
{vd : d ∈ {1,2,3,∞},Min2sum(d) ≥ 3}, it must be extremal in size.

Now we will show that there does indeed exists a construction that attains this bound for k = 3 and arbi-
trary many sensors m and suffices the condition that Min2sum(v) ≥ 3 for all v . This construction is similar to
the construction for k = 2, though with some modifications to include the Min2sum(v) ≥ 3 limitation.
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Definition 6 (Construction of an extremal graph G3(m) for k = 3). First we define: S = {1,2, ...,m}.
Now let G3(m) = (V ,E) be a graph where the vertex set V is given as:

V = {s1, s2, ..., sm}∪ ⋃
A⊆S
A ̸=;

[
{v A}∪

(⋃
i∈A

{v A,i }

)
∪ ⋃

B⊂A

(
{v A,B }∪ ⋃

i∈B
{v A,B ,i }

)]
.

The edge set E is given as:

E = ⋃
A⊆S
A ̸=;

[(⋃
i∈A

{(v A , v A,i ), (v A,i , si )}

)
∪ ⋃

B⊂A

(
{(v A , v A,B )}

∪ ⋃
i∈B

[
{(v A,B , v A,B ,i ), (v A,B ,i , si )}∪ ⋃

j∈A\B
{(v A,B ,i , v A,{ j }, j )}

])]
.

In words, this construction is as follows: Again we first create the sensor vertices s1, s2, ..., sm . Then, as
with the other cases, we start off with creating all possible nonempty subsets A ⊆ {1,2, ...,m} of the sensor
numbers. For each A ⊆ {1,2, ...,m} we create a vertex v A . Though instead of connecting it directly to the
sensors {si : i ∈ A} as we did in the other cases, we add a connecting vertex v A,i inbetween v A and the sensor
si , so we connect this vertex v A,i to v A and to si , for each i ∈ A. So for example, if m = 5 we connect v{1,2,4}

to v{1,2,4},1, v{1,2,4},2 and to v{1,2,4},4 and we connect v{1,2,4},1 to s1, we connect v{1,2,4},2 to s2 and we connect
v{1,2,4},4 to s4.

Now for every set A as above, we again create its strictly smaller subsets B ⊂ A and for each B , we create
a vertex v A,B . As before, we connect this vertex v A,B to v A , however we again do not connect v A,B directly to
the sensors {si : i ∈ A}. As with the vertices v A , we add connecting vertices v A,B ,i which we connect to v A,B

and to si for every j ∈ B .
Now for the final step: for each subset A ⊆ {1,2, ...,m} we identify its subsets B ⊂ A that have size |B | = 1.

These subsets B of size 1 have only one element j in them, so B = { j }. Thus they have connecting vertex
v A,{ j }, j between them and s j . Now for each A we consider all its subsets B ⊂ A and for each B we take all its
connecting vertices v A,B ,i for i ∈ B . Now for each j ∈ A \ B , we connect the vertex v A,{ j }, j to all vertices v A,B ,i

for i ∈ B . We do this for every B ⊂ A, for every A.
For example, if m = 5 and we have A = {1,2,4,5} and B = {1,4}, we connect v{1,2,4,5},{1,4},1 to v{1,2,4,5},{2},2

and to v{1,2,4,5},{5},5 and we connect v{1,2,4,5},{1,4},1 to v{1,2,4,5},{2},2 and to v{1,2,4,5},{5},5. An example of this whole
conscruction for m = 2 is given in Figure 3.5.

Figure 3.5: An extremal graph constructed as in Definition 6 with threshold-3 metric dimension 2. The sets next to the blue vertices
denote the set A for which the blue vertex v A is created. The vertices v A are given in blue, the vertices v A,B are in red, and the

connecting vertices are white.

An example of this whole contscruction for m = 3 generated by the code in Appendix A is given in Figure
3.6.

Now we are left to show that we can indeed construct every distance vector uniquely according to the
rules described earlier. To do this, we show that each vertex we created for this graph, has its own distinct
distance vector pattern.

Theorem 4. The construction as given for G3(m) in Definition 6 yields a graph with threshold-3 resolving set
{s1, s2, ..., sm} for every m ∈N. Furthermore, G3(m) is extremal in size, that is: for any graph G with threshold-3
metric dimension m, we have |G| ≤ |G3(m)|.
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Figure 3.6: An extremal graph constructed almost the same as in Definition 6 (some edges can be left out) with threshold-3 metric
dimension 3. The sets next to the blue vertices denote the set A for which the blue vertex v A is created. The sets next to the red vertices
denote the sets A,B for which the red vertex v A,B is created. The sets and elements next to the yellow connecting vertices denote what

sets A and B they are connected to.

Proof. For simplicity, we first consider the construction without the edges:⋃
A⊆S
A ̸=;

⋃
B⊂A

⋃
i∈B

⋃
j∈A\B

{(v A,B ,i , v A,{ j }, j )}.

That is, we do not yet consider the edges that are added in the final step: the edges between the connecting
edges of v A,B ,i and the connecting edges v A,{ j }, j where j ∈ A \ B . We will consider these edges later on in this
proof.

1.1: The vertices v A .
First we calculate the distance vectors of the vertices v A for A ⊂ {1,2, ...,m}, due to the connecting vertices v A,i

between v A and si for i ∈ A, these vertices no longer have a direct connection to the sensors {si : i ∈ A} and so
no longer distance to these sensors. They instead have distance 2 to these sensors, through the connecting
vertices.

They furthermore have distance ∞ to the sensors {si : i ̸∈ A}, this is because the vertices are only con-
nected to the sensors {si : i ∈ A} through their connecting vertices and through the vertices v A,B , that are
connected to the same sensors, again through connecting vertices. The only paths between v A and {si : i ̸∈ A}
are through the sensors, and since the shortest paths between the sensors are through the vertices v A or v A,B

connecting multiple sensors through connecting vertices, we see that the shortest paths between the sensors
are of at least length 3, and thus v A can not be measured by a sensor in si : i ̸∈ A.

We thus see that the vertices v A have distance vectors with value 2 on the positions j ∈ A and value ∞ on
the positions j ̸∈ A.

1.2: The vertices v A,B .
These vertices are not directly connected to any sensors {si : i ∈ {1,2, ...,m}}, they do have distance 2 to the
sensors {si : i ∈ B} through the connecting vertices v A,B ,i , i ∈ B . They furthermore have paths of length 3 to
the sensors that are in {si : i ∈ A\B} through v A and v A,i for i ∈ A\B . Since the vertices v A,B are only connected
to v A and v A,B ,i for i ∈ B , none of which are themselves connected to any sensors in {si : i ∈ A \ B}, we can see
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that these paths of lenght 3 are the shortest paths to the sensors {si : i ∈ A \B}. We can also determine that the
vertices v A,B have length ∞ to the sensors {si : i ̸∈ A}, since the only paths possible to sensors in {si : ̸∈ A} are
again through the sensors {si : i ∈ A} and since we already determined the distance between the sensors to be
at least 3, we can see that v A,B will not be measured by sensors in {si : i ̸∈ A}.

We thus see that the distance vectors of v A,B have value 2 on the positions j ∈ B , distance 3 on the posi-
tions j ∈ A \B and distance ∞ on the positions j ̸∈ A. And again, since B is a proper subset of A, we must have
at least one value to be distance 3.

1.3: The vertices v A,i .
These vertices are directly connected to the sensor si , so they have distance 1 to sensor si . Since this is the
only sensor they are directly connected to, the Min2sum(v A,i ) ≥ 3 condition is satisfied.

In all, these vertices v A,B ,i are only connected to the sensor si , and to v A , to the only other sensors they can
have connections with, must be the sensors that measure v A , since the paths between the sensors themselves
are of length at least 3.

Now since v A has distance 2 to the sensors that measure it, we can conclude that v A,i has distance 3 to
the sensors {s j : j ∈ A}, except for the sensor si , since that sensor is connected directly to v A,i .

And so we see that the distance vector of v A,i has value 1 on position i , value 3 on positions j ∈ A, j ̸= i
and value ∞ on positions j ̸∈ A.

1.4: The vertices v A,B ,i .
These vertices are directly connected to the sensor si , so they have distance 1 to the sensor si . The only other
connection they have is to v A,B , which has distance 2 to all sensors {s j : j ∈ B} and distance 3 or ∞ to any
other sensors. So the only sensors that will measure v A,B ,i through v A,B are the sensors that have distance 2
to v A,B , which will measure v A,B ,i with distance 3. So v A,B ,i has distance 3 to all sensors {s j : j ∈ B}.

From now on, we do include the edges:⋃
A⊆S
A ̸=;

⋃
B⊂A

⋃
i∈B

⋃
j∈A\B

{(v A,B ,i , v A,{ j }, j )}.

This means, that for every B ⊂ A, we connect all {v A,B ,i : i ∈ B} to all {v A,{ j }, j : j ∈ A \ B}, so we connect the
connecting vertices of every B ⊂ A to the connecting vertices of the subsets containing only the element j ,
for every j that is in A but not in B .

First we will show that the addition of these new edges does not change the distance vectors of the ver-
tices we discussed earlier on in this proof. We note first that the distance between the sensors still remains
at least 3, since these edges are only between the connecting vertices of any v A,B . So they only create a path
from a sensor, say sa , to a connecting vertex v A,B ,a , to the connecting vertex of a set B that only contains one
element, say v A,{b},b , and then finally to the sensor sb . This path is a path of length 3, and since paths like
these are the only paths created by these new edges, we can conclude that the distance between the sensors
remains at least 3, so any argument that relied on the distance of the sensors being at least 3 still holds.

2.1: The vertices v A .
Now since these new edges are only between connecting vertices of sensors that are in the same set A ⊆
{1,2, ...,m}, we can also see that the distance vectors of v A remain the same, since they still only connect to
the sensors in {si : i ∈ A}.

2.2: The vertices v A,B .
The new edges do form new paths from v A,B to sensors in {s j : j ∈ A \ B}, since they make connections be-
tween the connecting vertices of v A,B and the connecting vertices v A,{ j }, j where j ∈ A \ B . These paths are
of length 3, however and since we already had that v A,B has a distance of 3 to the sensors {s j : j ∈ A \ B}, the
distance 3 does not change.

2.3: The vertices v A,i .
The vertices v A,i have only connections to the sensor si and to v A , and since the distance to any connecting
vertex v A,B , j is 3 (through v A and v A,B , the only path possible through v A), nothing changes for v A,i .

2.4: The vertices v A,B ,i .
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Now for v A,B ,i , their distance of 1 to si remains. For each A we now make two distinctions: the subsets B ⊂ A
with multiple elements, and the ‘singular’ subsets of { j } ⊂ A containing only j .
First we consider the subsets B with multiple elements. The connecting vertices v A,B ,i are now connected
to all connecting vertices v A,{ j }, j , where j is in A but not in B , this means that there now exists a path from
v A,B ,i to all {s j : j ∈ A \ B} of length 2, namely v A,B ,i , v A,{ j }, j , s j , this means that all v A,B ,i have distance 2 to the
sensors {s j : j ∈ A \ B}, at least when B contains multiple elements.

v A,B ,i also retains it’s distance of 3 to {s j : j ∈ B , j ̸= i }, since we do not add an edge between v A,B ,i and
v A,{ j }, j if j ∈ B , as per the definition of the construction. So for B containing multiple elements, v A,B ,i has
distance 1 to si , distance 2 to {s j : j ∈ A \ B}, distance 3 to {s j : j ∈ B , j ̸= i } and distance ∞ to {s j : ̸∈ A} (since
the only possible paths to sensors {s j : j ̸∈ A} are still through the sensors {s j : j ∈ A} themselves).

Now for B = { j }, the case when B consists of only a single element j . Not only do we connect this vertex
v A,{ j }, j to all v A,B ,i that have j ∈ A \ B , we also connect it to all v A,{k},k where k ∈ A \ { j }. In both cases do
these connections add paths of length 2 from v A,{ j }, j to sensors {si : i ∈ A \ { j }}. So we get distance 2 to all
sensors {si : i ∈ A\{ j }}. So these vertices v A,{ j }, j also have distance 1 to s j , distance 2 to {si : i ∈ A\B} and again
distance ∞ to {si : i ̸∈ A} (since {si : i ∈ B , i ̸= j } is empty we need not consider these cases).

We thus conclude that v A,B ,i has a distance vector with 1 on position i , 2 on positions j ∈ A \ B}, 3 on
positions j ∈ B , j ̸= i and ∞ on positions j ̸∈ A.

Conclusion.
We now finally summarize that for A ⊆ {1,2, ...,m}, A ̸= ;, we have that v A has distance vector with 2 on po-
sitions j ∈ A and ∞ on positions j ̸∈ A, these are all distance vectors containing all permutations of only at
least a single 2 and any amount of value ∞.

For B ⊂ A we have that v A,B has a distance vector with 2 on positions j ∈ B , 3 on positions j ∈ A \ B and
∞ on positions j ̸∈ A, these are all the distance vectors containing all permutations of only at least a single 3
and any amount of values 2 and ∞.

For i ∈ {1,2, ...,m} we have that v A,i has a distance vector with 1 on position i , 3 on positions j ∈ A, j ̸= i
and ∞ on positions j ̸∈ A, these are all the distance vectors containing all the permutations of precisely a
single value 1, and any amount of values 3 and ∞.

For i ∈ {1,2, ...,m} we have that v A,B ,i has a distance vector with 1 on position i , 2 on positions j ∈ A \ B ,
3 on positions j ∈ B , j ̸= i and ∞ on positions j ̸∈ A, these are all the distance vectors containing all the
permutations of precisely a single value 1, at least a single value 2 and any amount of values 3 and ∞.

From this we see that we uniquely represent all possible distance vectors, whose vertices v suffice the
Min2sum(v A,B ,i ) ≥ 3 condition. We have thus constructed a graph that has {s1, s2, ..., sm} as a threshold-3
resolving set of size m and is extremal in size.



4
Extremal construction for general k and m

The three constructions given in Section 3 are designed to create an extremal graph of metric dimension 1,2
and 3 respectively. Though they do indeed yield extremal graphs, they only work for k = 1,2 or 3.

To this end, we want to find a construction that generalizes for all k > 0, such a construction has been
found and will be discussed in this section. First we shall introduce a general notion on what makes such a
construction extremal.

4.1. Extremality of a graph with threshold-k metric dimension m
Before we state the main theorem of this section, we shall introduce the concept of overflow, denoted as f .
If sensors are sufficiently close to each other, it may occur that one sensor can measure ‘through’ another
sensor. What we mean by this is the following: Suppose sensors si and s j have range k and distance k − f to
each other, then if f > 0, we get an overflow, in the sense that sensor s j can measure vertices that are within
range f from sensor si , and vice versa. Lemma 1 will elaborate on this.

For now we shall state the main theorem of this section:

Theorem 5. For given values m and k, an upper bound for a graph with threshold-k metric dimension m is
given by the cardinality of the set of vectors

{
d ∈ {k +1}m : Min2sum

(
d

)≥ k − f (k),max
(
d

)−min
(
d

)≤ k − f (k)
}
.

Where f (k) can either be f (k) =
⌊

k−2
3

⌋
or f (k) =

⌊
k−1

3

⌋
.

We shall now present a series of lemmas and corollaries to make this theorem assumable, due to time
constraints, the proof of Theorem 5 will remain partially incomplete. We will also make use of Lemma 3.2 of
the paper by Hernando [6] as a part of our proof.

Lemma 1. Let G = (V ,E) be a graph with threshold-k metric dimension m and threshold-k resolving set
{s1, s2, ..., sm}. Suppose that v ∈ V and that Min2sum(v) = k − f , where f ∈ N, f ≥ 0. By the definition of

Min2sum, there exist elements d (v)
i and d (v)

j in the distance vector d (v) ∈ {k+1}m of v, such that d (v)
i +d ( j )

j = k− f .

Then for all w ∈V that have distance vector d (w) ∈ {k +1}m we have:

max
(
d (w)

i ,d (w)
j

)
−min

(
d (w)

i ,d (w)
j

)
≤ k − f . (4.1)

Proof. Let G = (V ,E) be a graph with threshold-k metric dimension m with sensor set S = {s1, s2, ..., sm} and
suppose that v ∈V and that Min2sum(v) = k − f , where f ∈N, f ≥ 0.

Now per the definition of Min2sum, there exist elements d (v)
i and d (v)

j in the distance vector d (v) ∈ {k+1}m

of v , such that d (v)
i +d ( j )

j = k − f and thus we have sensors si , s j ∈ S so that d(si , v)+d(s j , v) = k − f . This

means that the distance d(si , s j ) between si and s j is at most k − f , since there exists a path from si to v of
length d(si , v) and a path from v to s j of length d(s j , v). Combining the two paths yields a path of length
d(si , v)+d(s j , v) = k − f .

This means that any vertex w ∈V that has distance d(si , w) = ri ≤ f to sensor si , also has a distance of at
most ri +k− f to sensor s j , since there exists a path from w to si of length ri and a path from si to s j of length
k− f , combining these paths yields a path of length ri +k− f , and since ri ≤ f , we have that ri +k− f ≤ k and
thus w is measured by s j .

17
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Thus we have shown that if we have that if d(si , w) ≤ f , we get that d(s j , w) ≤ d(si , w)+k − f , or:

d(s j , w)−d(si , w) ≤ k − f , (4.2)

and by symmetry of the previous argument we also get:

d(si , w)−d(s j , w) ≤ k − f . (4.3)

This yields the system: {
d(s j , w)−d(si , w) ≤ k − f

d(si , w)−d(s j , w) ≤ k − f
. (4.4)

This means that the difference between d(si , w) and d(s j , w) may be no more than k − f , which indeed im-
plies:

max
(
d (w)

i ,d (w)
j

)
−min

(
d (w)

i ,d (w)
j

)
≤ k − f ,

as required.

We can generalize this over all pairs i , j within a distance vector:

Corollary 1. Let G = (V ,E) be a graph with threshold-k metric dimension m and threshold-k resolving set
{s1, s2, ..., sm}. If for all pairs (i , j ) ∈ (m

2

)
there exists at least one v = vi , j ∈ V so that Min2sum(v) = d (v)

i +d (v)
j =

k − f , then for all w ∈G:

max
(
d (w)

1 ,d (w)
2 , ...,d (w)

m

)
−min

(
d (w)

1 ,d (w)
2 , ...,d (w)

m

)
≤ k − f . (4.5)

Or equivalently:
max

(
d (w))−min

(
d (w))≤ k − f . (4.6)

Proof. We can apply Lemma 1 pairwise to every (i , j ) ∈ (m
2

)
to obtain:

max
(
d (w)

i ,d (w)
j

)
−min

(
d (w)

i ,d (w)
j

)
≤ k − f , (4.7)

for every (i , j ) ∈ (m
2

)
.

Since max
(
d (w)) and min

(
d (w)) must suffice (4.7) for the exact pair (i , j ) that contains the maximum and

minimum of d (w), we immediately obtain that indeed:

max
(
d (w))−min

(
d (w))≤ k − f ,

as required.

4.1.1. Extremality and optimal f
This corollary gives us a way to determine what possible combinations can fit in a graph with threshold-k
metric dimension m. There is one assumption that we make here that we shall not prove. This assumption is
that an extremal combination of vertices that suffice the condition in Lemma 1 has a form of symmetry to it,
that is: that the condition of Lemma 1 must apply pairwise to all sensors in such a graph for the same amount
of overflow f , thus making the distance between all sensors equal.

Assuming that the amount of overflow should be the same between all pairs of sensors, finding an ex-
tremal graph of threshold-k metric dimension m corresponds with finding the value f such that the amount
different distance vectors d such that the cardinality of the set{
d ∈ {k +1}m : Min2sum(d) ≥ k − f ,max(d)−min(d) ≤ k − f

}
is maximal.

We can calculate this optimal f for m = 2 and general k > 0, but first we shall introduce some notation.
We let Am,k ( f ) be the set of all vectors d ∈ {k +1}m that suffice the equations:{

Min2sum(d) ≥ k − f

max(d)−min(d) ≤ k − f
. (4.8)

We shall also let Am,k ( f ) be the cardinality |Am,k ( f )|. We give the optimal value that we will calculate in the
form of a claim:
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Claim 2. The value f for which the value A2,k ( f ) is optimal for arbitrary k, is given as: f =
⌊

k−2
3

⌋
or f =

⌊
k−1

3

⌋
.

We shall prove this by means of determining the difference A2,k ( f )− A2,k ( f −1), that is, we determine if
increasing the value of f yields a positive or negative difference of allowed vectors. To this end, we calculate
the amount of vectors that we gain by increasing f , thus the size of A2,k ( f )\A2,k ( f −1). And we calculate the
amount of vectors that we lose by increasing f , thus the size of A2,k ( f −1)\A2,k ( f ). We then finally determine:
A2,k ( f )− A2,k ( f −1) = |A2,k ( f ) \A2,k ( f −1)|− |A2,k ( f −1) \A2,k ( f )|.
Proof. Suppose we have overflow f −1, where f is some integer. Then we allow all distance vectors d ∈ {k+1}2

that suffice Min2sum(d) ≥ k − f and max(d)−min(d) ≤ k − f , that is: all vectors (d1,d2) where d1 and d2 take
values in {1,2, ...,k+1} and they all must have that d1+d2 ≥ k−( f −1) = k− f +1 and max(d1,d2)−min(d1,d2) ≤
k − ( f −1) = k − f +1.

Now suppose we increase the overflow by 1, that is: we now have overflow f instead of f − 1, we can
consider the distance vectors that we gain and lose by this change.

First the vectors we gain: we now have that d1 +d2 ≥ k − f instead of d1 +d2 ≥ k − f +1, so we gain all
vectors with d1 +d2 = k − f , since both d1 and d2 are larger than 0, we obtain k − f − 1 different pairs that
suffice. Now since these d1 and d2 can differ at most k − f −2 (for example if d1 = 1 and d2 = k − f −1 so that
d1 +d2 = k − f ), we always have that max(d1,d2)−min(d1,d2) ≤ k − f .

Now the vectors we lose: we now have that max(d1,d2) − min(d1,d2) ≤ k − f instead of max(d1,d2) −
min(d1,d2) ≤ k − f + 1, this means we lose the vectors that suffice max(d1,d2)−min(d1,d2) = k − f , these
vectors either have d1 > d2 or d2 > d1 (since vectors with d1 = d2 will never break this condition). Let us
consider the case d1 > d2, then we must count the combinations d1 and d2 such that d1−d2 = k− f . Since we
must have, per formulation of the problem, that d1 ≤ k and d2 ≥ 1, we count from d1 = k and d2 = f so that
k − f = k − f to d1 = k − f +1 and d2 = 1, so that k − f +1−1 = k − f . These are f different combinations. Now
since the case d2 > d1 is symmetrical, we end up with 2 · f different vectors that we lose.

To conclude: if we increase the overflow from f −1 to f , we gain k − f −1 vectors and we lose 2 f vectors,
thus increasing our overflow to f is only a net gain if: k − f − 1 > 2 f ⇒ 3 f < k − 1 or at least not a loss if
k− f −1 ≥ 2 f ⇒ 3 f ≤ k−1, so we want to find the maximum f such that still 3 f < k−1 or 3 f ≤ k−1 (if we don’t

increasing the overflow when it does not change the total amount of vectors). The functions f (k) =
⌊

k−2
3

⌋
and

f (k) =
⌊

k−1
3

⌋
suffice these cases, respectively.

Now from a numerical analysis in python, it turns out that the optimal value for f is independent from the
amount of sensors m, we do not prove this, but in the last week of research we did find a paper that confirms
this [6]. In this paper, a proof of this is given in Lemma 3.2, though with different notation.

4.2. The construction
We define our construction as follows:

Definition 7 (Construction of an extremal graph G(k,m) for general k). First we define S = {1,2, ...,m}.
Now let G(k,m) = (V ,E) be a graph where the vertex set V is given by:

V :={s1, s2, ..., sm}∪ {vd : d ∈ {k +1}m ,Min2sum(d) ≥ k − f (k),max(d)+ f (k) ≤ min(d)+k}. (4.9)

Where f (k) is defined as f (k) =
⌊

k−2
3

⌋
.

The edge set E is given by:

E :=

 ⋃
i∈V

⋃
j∈V

||d (i )−d ( j )||∞=1

{(i , j )}

∪ ⋃
vd∈V
di=1

{(vd , si )}. (4.10)

In words, this construction first creates a set of as many different distance vectors we believe can exist
together in a graph with threshold-k metric dimension m. This selection is based on the results of Corollary
1 as discussed in Section 4.1.1.

We have determined that the maximum amount of different distance vectors we can attain for the vertices
in a graph is when, for given k and m, we consider precisely all the distance vectors:

{d ∈ {k +1}m : Min2sum(d) ≥ k − f (k),max(d)+ f (k) ≤ min(d)+k}
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Where f (k) can be either f (k) =
⌊

k−1
3

⌋
or f (k) =

⌊
k−2

3

⌋
. Both versions of f (k) lead to an equal, extremal

amount of different possible distance vectors for k and m, though for consistency, we shall define: f (k) =⌊
k−2

3

⌋
.

Now we create an m-dimensional grid in which we place the vertices as if their distance vectores were the
coordinates. We then connect all the vertices if their distance vectors have distance 1 to one another in the
infinity metric, in other words: we connect vertices u and v if and only if: the individual coordinates of their
distance vectors d (u) and d (v) have difference at most 1 and the distance vectors d (u) and d (v) are not equal
to each other.

For example, if we have k = 3 and m = 3: we would connect (2,2,2) and (2,3,3), but not (2,2,2) and (2,4,4).
An example of such a graph with k = 3 and m = 2 (withouth the diagonal edges in the ‘internal’ vertices)

is given in Figure 4.1 Another example for k = 5 and m = 2 is given in Figure 4.2. Note how we now allow

Figure 4.1: A graph with threshold-3 metric dimension 2 as constructed with Definition 7, so with k = 3 and m = 2. We did not include
the diagonal edges on the ‘internal’ vertices.

distance vectors (1,3),(2,2) and (3,1) and not (1,6) and (6,1).
As stated before, this construction can be interpreted as an m-dimensional grid, or an m-dimensional

hypercube with some ‘parts’ missing.

We shall now show that this construction yields a graph that has {s1, s2, ..., sm} as a threshold-k resolving sub-
set.

Theorem 6. The graph G(k,m) as defined in Definition 7 has a threshold-k resolving set {s1, s2, ..., sm} of size
m.

Proof. To show this, we have to show that each vertex vd created for a distance vector d , does indeed have
that distance vector, that is: for every element di ∈ d , we have to show that d(si , v) = di .

Now let G = (V ,E) be a graph as constructed in Definition 7 with given k and m, let f be some integer such
that f < k and let vd ∈V and consider some element di ∈ d , we are to show that d(vd , si ) = di

Now if di = 1, we have per Definition 7, that vd is connected to si and so d(vd , si ) = 1, as required.
Now suppose di ≥ 2, we need to show that d(vd , si ) = di , to this end, we need to show that there exists a

path from si to vd of length di , and that no shorter path exists.

Existence of a path
First we show that there exists a path from si to vd of length di . Since vd ∈ V , we know that d suffices both
Min2sum(d) ≥ k − f and max(d)−min(d) ≤ k − f . If we write Min2sum = min(d)+min2(d), where min2(d)
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Figure 4.2: A graph with threshold-5 metric dimension 2 as constructed with Definition 7, so with k = 5 and m = 2. We did not include
the diagonal edges on the ‘internal’ vertices.

represents the second lowest element in d , which is possibly equal to min(d), we can rephrase this as:{
min2(d)+min(d) ≥ k − f

max(d)−min(d) ≤ k − f
. (4.11)

Now we wish to find a neighbor vd ′ of vd that has the property that d ′
i = di −1. Since we also must have that

||d −d ′||∞ = 1, all elements other than the i -th element may also differ by at most 1. We also must have that
vd ′ ∈V , so that d ′ must suffice both equations from System 4.11:{

min2(d ′)+min(d ′) ≥ k − f

max(d ′)−min(d ′) ≤ k − f
. (4.12)

Case 1: di > min2(d )
First consider the case that di > min2(d), then surely d ′

i = di −1 ≥ min2(d) ≥ min(d), so that d ′
i ≥ min2(d), this

means that if we take d ′ such that d ′
j = d j for j ∈ {1,2, ...,m}, j ̸= i and d ′

i = di −1, we will find that min(d ′) =
min(d) (since d ′

i is the only element that changes and it can’t become smaller than min(d)) and max(d ′) ≤
max(d) (since the only change of the vector consists of lowering an element) and min2(d ′) = min2(d) (again,
since d ′

i is the only element that changes and it can’t become smaller than min2(d).
So since min2(d ′) = min2(d), min(d ′) = min(d) and min2(d)+min(d) ≥ k − f , we get that:

min2(d ′)+min(d ′) ≥ k − f .

As required.
In the same way, since max(d ′) ≤ max(d), min(d ′) = min(d) and max(d) ≤ k − f +min(d) we find:

max(d ′)−min(d ′) ≤ k − f .

As required.
And since the only element in d ′ that differs from d is d ′

i , and it differs by only one, we suffice

||d −d ′||∞ = 1.

Thus we conclude that there exists a neighbor d ′ of d that has d ′
i = di −1 for di > min2(d).
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Case 2: di = min2(d ) and di > min(d )
Now we consider what happens when di = min2(d) and di > min(d). Now d ′

i = di − 1 ≥ min(d) and also
d ′

i = di −1 < min2(d). This means that if we take d ′ such that d ′
j = d j for j ∈ {1,2, ...,m}, j ̸= i and d ′

i = di −1, as

we did earlier, we get that min(d ′) = min(d) and min2(d ′) < min2(d) and we might not suffice the condition
min2(d ′)+min(d ′) ≥ k − f since min2(d ′) has been lowered by 1. To circumvent this, we identify the unique
l ∈ {1,2, ...,m} so that dl = min(d). We know that this l is unique, since we assumed that min(d) < min2(d) in
this case (di = min2(d) and di > min(d)).

After we find the l so that dl = min(d) and if min2(d ′)+min(d ′) < k − f we raise this value dl by 1 (thus
taking d ′

l = d j +1), so that min(d) increases by 1 to compensate for the decreasing of min2(d) by 1 and thus
sufficing

min2(d ′)+min(d ′) ≥ k − f .

So if we now take d ′ such that d ′
j = d j for j ∈ {1,2, ...,m}, j ̸= i and d ′

i = di −1 and we change d ′
l to: d ′

l = dl +1

for dl = min(d) if otherwise min2(d ′)+min(d ′) < k − f , we get indeed

min2(d ′)+min(d ′) ≥ k − f ,

as required.
Since the maximum did not increase (since we only increased the minimum of d which was unique and

we lowered the value di ), we have max(d ′) ≤ max(d). This in combination with the fact that min(d ′) = min(d)
and max(d)−min(d) ≤ k − f . we obtain:

max(d ′)−min(d ′) ≤ k − f ,

as required.
And since again we only changed elements by value 1, we also suffice

||d −d ′||∞ = 1.

Thus we conclude that there exists a neighbor d ′ of d that has d ′
i = di −1 for di = min2(d) and di > min(d).

Case 3: di ≤ min2(d ) and di = min(d )
Now we finally look at the case that di ≤ min2(d) and di = min(d). Now the lowest two values in d are
di = min(d) and secondly min2(d), which may or may not be equal to min(d). If we decrease di by one,
d ′

i = di −1 will still be the lowest value and min2(d ′) = min2(d) the second lowest.
By setting d ′

i = di −1, two things may happen: since min(d) decreases, it could happen that min2(d ′)+
min(d ′) ≥ k − f no longer holds, this is the case when min2(d)+min(d) = k − f . It could also happen that
max(d ′)−min(d ′) ≤ k − f no longer holds, this is the case when max(d)−min(d) = k − f . We consider these
possible cases.

Case 3.1: min2(d )+min(d ) = k − f and max(d )−min(d ) < k − f
Now if min2(d) = k − f −min(d) and max(d) < k − f +min(d), we can increase the values of all dl , for which
dl = min2(d). We then take d ′ such that d ′

j = d j for j ∈ {1,2, ...,m}, j ̸= i and d ′
i = di −1 and we change all d ′

l

to: d ′
l = dl +1 for all dl = min2(d). Then through a very similar argument as in the case of di = min2(d) and

di > min(d), we get that min2(d ′)+min(d ′) ≥ k − f as we require.
Now to show that max(d ′) − min(d ′) ≤ k − f , even if we increase the second lowest values. Since the

only values we increase are all dl such that dl = min2(d) and we increase them by 1, it may happen that
max(d ′) = max(d)+1, this is only the case if we have that min2(d) = max(d), because then we increase some
value(s) dl that have dl = min2(d), and then d ′

l = dl +1 becomes the new maximum.
Thus to summarize our situation, we have: max(d) = min2(d), min2(d ′) = max(d ′) = min2(d)+1 = max(d)+

1, min(d ′) = min(d)−1 and we have the system:{
min(d)+min2(d) = k − f

max(d)−min(d) < k − f
. (4.13)

We wish to show that max(d ′)−min(d ′) ≤ k− f , or equivalently: that assuming that max(d ′)−min(d ′) > k− f
will lead to a contradiction.
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Thus we write: max(d ′)−min(d ′) = max(d)−min(d)+ 2 = min2(d)−min(d)+ 2. Now if we make the
assumption that max(d ′)−min(d ′) > k− f , we get that min2(d)−min(d)+2 > k− f = min(d)+min2(d), thus:
min2(d)−min(d)+2 > min(d)+min2(d) which implies that 2−min(d) > min(d), so that 2 > 2min(d) which
would mean that min(d) < 1, however, we assumed that di = min(d) and we assumend that di ≥ 2, so this is
a contradiction and thus we have that max(d ′)−min(d ′) ≤ k − f as required.

If we don’t have that min2(d) = max(d), we will have that max(d ′) = max(d) and thus we will have that:
max(d ′)−min(d ′) = max(d)−min(d)+1 and since max(d)−min(d) < k− f , we have that max(d)−min(d)+1 ≤
k − f and so indeed max(d ′)−min(d ′) ≤ k − f .

Case 3.2: min2(d )+min(d ) > k − f and max(d )−min(d ) = k − f
If we now have that min2(d)+min(d) > k − f and max(d)−min(d) = k − f , we can lower the values of all
dl for which dl = maxd . We can then take d ′ such that d ′

j = d j for j ∈ {1,2, ...,m}, j ̸= i and d ′
i = di − 1

and we change all d ′
l to: d ′

l = dl − 1 for all dl = max(d). Again through similar arguments as in the case of
di = min2(d) and di > min(d), we get that max(d ′)−min(d ′) ≤ k − f . This time we wish to show that we also
suffice min(d ′)+min2(d ′) ≥ k − f , even if we lower the maximum values. Now since the only values we de-
crease are all dl such that dl = max(d), it may happen that we get that min2(d ′) = min2(d)−1. Similarly as in
Case 3.1, this is only the case if max(d) = min2(d).

Now we summarize that: min2(d) = max(d), min2(d ′) = max(d ′) = min2(d)− 1 = max(d)− 1, min(d ′) =
min(d)−1 and we have the system: {

min(d)+min2(d) > k − f

max(d)−min(d) = k − f
. (4.14)

Now we want to show that min(d ′)+min2(d ′) ≥ k− f or equivalently: that assuming that min(d ′)+min2(d ′) <
k − f will lead to a contradiction.

Thus we write: min(d ′)+min2(d ′) = min(d)+min2(d)− 2 = min(d)+max(d)− 2. If we now make the
assumption that min(d ′)+min2(d ′ < k − f , we get that min(d)+max(d)−2 < k − f = max(d)−min(d) which
would imply that min(d)+max(d)−2 < max(d)−min(d) and so min(d)−2 <−min(d) thus again that 2min(d) <
2, which is indeed a contradiction since we assumed that min(d) = di ≥ 2.

Now if we do not have that max(d) = min2(d), we will have that min2(d ′) = min2(d) so we find: min(d ′)+
min2(d ′) = min(d)+min2(d)−1 and since we assumed that min(d)+min2(d) > k − f , we know that min(d)+
min2(d)−1 ≥ k − f , as required.

Case 3.3: min2(d )+min(d ) = k − f and max(d )−min(d ) = k − f
We now finally consider the case that both min2(d)+min(d) = k − f and max(d)−min(d) = k − f , so that we
both have to increase the second lowest value min2(d) and lower the maximum value max(d) of d to attain
the equations from (4.12).

We thus create d ′ as follows: we let d ′
j = d j for j ∈ {1,2, ...,m}, j ̸= i and then we replace all d ′

l to dl +1 for

all dl = min2(d) and we replace all d ′
p to dp −1 for all dp = max(d). If we do this, then by similar arguments

as in Case 3.1, we should attain (4.12). This is, however, assuming that we don’t lower the maximum past the
second minimum and vice versa. Since we increase the second minimum and decrease the maximum, we
want that they have at least distance 2 between each other, so that in the worst case they become equal after
increasing and decreasing them.

Since we have the following system:{
min(d)+min2(d) = k − f

max(d)−min(d) = k − f
. (4.15)

From this we see that min(d)+min2(d) = k− f = max(d)−min(d) so that min(d)+min2(d) = k− f = max(d)−
min(d), this yields that max(d)−min2(d) = 2min(d) and since we assumed that min(d) = di ≥ 2, we see that:
max(d)−min2(d) ≥ 4.

This means that we have sufficient distance between max(d) and min2(d) and we will thus indeed suffice
(4.12), since there is no possibility of the maximum decreasing below the second minimum and vice versa.
Furthermore, since we again only change elements by at most 1, we attain

||d −d ′||∞ = 1,
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as required.
Thus we conclude that if di ≤ min2(d) and di = min(d), we take d ′ such that d ′

j = d j for j ∈ {1,2, ...,m}, j ̸= i

and d ′
i = di −1 and we change all d ′

l to: d ′
l = dl +1 for all dl = min2(d) if min2(d) = k − f −min(d) and we

change all d ′
p to: d ′

p = dp −1 for all dp = max(d) if max(d) = k − f +min(d).

Thus we have shown that for di ∈ d for an arbitrary vertext vd ∈ V , there exists a neighboring vertext vd ′ ∈ V
that has d ′

i = di − 1. We can thus apply this procedure iteratively to obtain a path of length di − 1 from vd

to a vertex vd∗ ∈ V that has d∗
i = 1. This vertex is a neighbor of si , per definition, thus we can add the edge

between vd∗ and si to obtain a path from vd to si of length di , as we wanted to show.

No shorter path exists
Now we wish to show that there exists no shorter path from vd to si than di . We consider two types of paths:
a path that merely passes through non-sensor vertices vd and a path that takes a ‘shortcut’ through a sensor
s j .

Case 1: a path through non-sensor vertices
Since all non-sensor vertices are only neighbors if and only if their distance is 1 in the infinity metric (and
thus if their elements differ at most 1), we can see that a path that does not pass through any sensors from
vertext vd1 to vd2 , where d1i and d2i differ by some value r , any path between d1 and d2 has at least length r ,
since the path must travel through all values between d1i and d2i to be valid.

To connect vd to si , we first need to connect vd to some vd∗ that has d∗
i = 1, since these are the only

vertices that are connected directly to si . Now since the difference between di and 1 is di −1, any path from
vd to vd∗ has length at least di −1 and thus any path from vd to si must have length at least di .

Case 2: a path through a sensor
Suppose we want to connect vd to si and we take a path through s j and then only through non-sensor ver-
tices. We know that the sensors have distance k − f between them, so we merely need to show that the
distance from vd to s j is at least di − (k − f ), so we need that d j ≥ di − (k − f ), or equialently: di −d j ≤ k − f .
This is precisely the condition that max(d)−min(d) ≤ k − f , since that condition implies that two elements
have at least a difference of k − f .

Thus we see that a path from vd to si trough s j must have distance at least di . Should we try to take a
path that goes trough multiple sensors, we can repeat this above argument to still obtain that the distance is
at least di .

Conslusion
Thus we have shown that every vertex vd has a path of length di to si and the shortest path possible is of
length di , so that d(vd , si ) = di , so that all vertices have the intended distance vector. Since all these vertices
are created for different distance vectors, we know that all the distance vectors are unique of all these vertices
and so we conclude that G(k,m) has a threshold-k resolving set {s1, s2, ..., sm} of size m.

4.2.1. Connection to different research
The paper [6] we reffered to in (amongst other sections) Section 4.1.1, considers a very similar problem. In
this paper they give a construction for an extremal graph with a metric dimension m, though instead of a
threshold-k metric dimension m, they consider the metric dimension m of a graph with diameter D .

The construction given in [6] is given in Figure 4.3.
This construction looks exactly the same as the construction given in Definition 7, we shall explain as to

why this is.
Having the condition that the graph with a resolving set {s1, s2, ..., sm} has a diameter of D essentially

means that the graph has a threshold-D −1 resolving set {s1, s2, ..., sm}, since the distance a vertex has to any
given sensor is at most D and thus the sensors measure up to D −1, plus an additional distance D , that cor-
responds with the ∞ distance in our problem.

Now since the graph G(k,m) we constructed in Definition 7 actually has a diameter of k+1 and is designed
to be extremal in size, we can explain why Definition 7 is seemingly equivalent to the construction given in
[6].

This means that if we manage to finalise our proof of extremality in the future, we can show that the
extremal graph with metric dimension m and diameter D is actually also an extremal graph with threshold-
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Figure 4.3: Extremal graphs with various diameters D and metric dimension 2, as given in [6].

k +1 metric dimension m.
We do note, that we found out about this paper in the last week of our research on extremal graphs with

threshold-k metric dimension m, this is after we defined our construction in Definition 7.





5
Conclusion

In this thesis we considered a variation of the metric dimension problem, where each sensor vertex only
measures up to radius k. The minimum amount of sensors needed to indentify each vertex uniquely by their
measured distances to the sensors is called the threshold-k metric dimension of the graph.

We considered the question of extremality, that is: for a given range k and a number of sensors m, we
aimed to find the maximal size of a graph that has threshold-k metric dimension m. For as far as we know,
this is an open problem in general.

We managed to give two constructions for k = 1 and k = 2 that have 2m +m −1 and 3m +m −1 vertices,
respectively. For k = 3 we gave a construction that had to consider the sensors measuring through each other,
and constructed our graphs accordingly by including the condition that Min2sum(v) ≥ 3 for all vertices v .
With this we gave a construction with 3m +m ·3m−1+m−1 vertices. For these three cases, we also gave proofs
of extremality. In the case of k = 3 we also proved why we need the condition that the lowest two coordinates
of a distance vector should add up to a value greater than 2 to obtain an extremal graph.

Finally, we found a construction that constructs a graph with threshold-k metric dimension m for general
k and m. We gave arguments that this construction is extremal, but due to time constraints, the proofs are
incomplete. We did argue that patterns created by calculations on the computer and intuition seem to sug-
gest that it is indeed optimal. We also compared these results to the construction of an extremal graph in a
different paper [6] with a differently formulated problem, but with seemingly the same solution.

Future work that we would like to do on this subject would be to finalize the proof for general k and m. On
a longer timescale it would be interesting to find extremal graphs for different variations, such as discussed
in Section 1.2 for example. Based on applicability, fault tolereant versions would be attractive to consider.

Another optimizing problem could be to minimize the amount of edges needed for an extremal graph
with threshold-k metric dimension m, or to construct extremal graphs G with a certain girth(G) ≥ g . It would
be interesting to show how the extremal size of such a graph might converge to the extremal size of a tree
graph with threshold-k metric dimension, as described in [1], if we let g →∞.
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A
Python code for creating a graph with

threshold-3 metric dimension m

The following is python code for creating a graph very similar to G3(m) as defined in definition 3, though with
some small modifications to lessen the amount of edges needed between the connecting vertices.

import networkx as nx

import matplotlib.pyplot as plt

import itertools as it

from pyvis.network import Network

m = 4 #number of sensors

G = nx.Graph() #initializing graph

slist = list(range(1,m+1))

lablist = []

color_map = []

for i in slist:

lablist.append(str(i))

color_map.append('gray')

for i in lablist: #adding the sensor vertices

G.add_node(i,color='black')

for L in range(1, len(slist)+1):

for A in it.combinations(slist, L): #creating all vertices vA

G.add_node(str(A),color='blue')

color_map.append('blue')

for i in A: #creating and connecting the vertices vAi between vA and si

v = str(A)+','+str(i)

G.add_node(v,color='yellow')

color_map.append('yellow')

G.add_edge(v,str(i))

G.add_edge(v,str(A))

for LB in range(0,len(A)):

for B in it.combinations(A,LB): #creating all vertices vAB and connecting them

b = str(A)+','+str(B)

G.add_node(b,color='red')

color_map.append('red')

G.add_edge(str(A),b)

for i in B: #creating and connecting the vertices vABi between vAB and si

v = str(A)+','+str(B)+','+str(i)

G.add_node(v,color='yellow') #Bc
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30 A. Python code for creating a graph with threshold-3 metric dimension m

color_map.append('yellow')

G.add_edge(b,v)

G.add_edge(v,str(i))

if len(B)>1 or len(A)<3: #connecting the vertices vABi amongst each other

for i in B:

v = str(A)+','+str(B)+','+str(i)

for j in A:

if not(j in B):

v2 = str(A)+',('+str(j)+',),'+str(j)

G.add_edge(v,v2)

print('afstanden meten')

coords = []

for i in G.nodes: #check the distances of al vertices to the sensors and check if each

distance is unique

dis = []

for j in slist:

dis.append(0)

d=nx.shortest_path_length(G,str(j),i)

if d>3:

d=4

dis[j-1]=d

print(dis)

if dis in coords:

print('dubbel')

coords.append(dis)

print('plot maken') #visualization

nx.draw(G,node_color=color_map, with_labels=True)

plt.show()

nt = Network('700px', '1400px')

nt.from_nx(G)

nt.show('constructie2_'+str(m)+'.html')



B
Python code for creating a graph with

threshold-k metric dimension m

The following is python code for creating a graph very similar to G(k,m) as defined in definition 7, though
with some small modifications to lessen the amount of edges needed between the vertices.

import networkx as nx

import matplotlib.pyplot as plt

from pyvis.network import Network

def min2(cor,k): #gives the sum of the lowest 2 elements of a vector

min1 = k+1

min2 = k+1

for i in cor:

if i < min1:

min2 = min1

min1 = i

elif i < min2:

min2 = i

return min1,min2

k = 5 #range of the sensors

m = 3 #amount of sensors

f = 0 #optimal amount of overflow to be determined

for i in range(0,k):

if 3*i >= k-1:

print('beste f is '+str(i-1))

f = i-1

break

G = nx.Graph() #initialize graph

for i in range(1,m+1): #adding in the sensors

G.add_node(str(i),color='black')

v = m*[1]

end = m*[k+1]

for t in range(0,(k+1)**m+2): #iterates over all possible distance vectors
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32 B. Python code for creating a graph with threshold-k metric dimension m

new = v.copy() #the next vector to be created

if new == end: #stop if at last vector, this one wont be added in the graph

break

j = 0

for j in range(0,m):

if new[j]<k+1:

new[j]+=1

for r in range(0,j):

new[r]=1

break

min2s = min2(v,k)

mini = min(v)

maxi = max(v)

if sum(min2s) >= k-f and (maxi+f <= mini+k): #check if v is an allowed

distance vector

G.add_node(str(v))

for i in range(0,m):

if v[i] == 1: #connect it to sensor si if 1 at coordinate i

G.add_edge(str(i+1),str(v))

else: #connect it to the vertex next to it

v2 = v.copy()

v2[i] -= 1

minc = 0

maxc = 0

if sum(min2(v2,k)) >= k-f: #check if it suffices both conditions

minc = 1

if max(v2)+f <= min(v2)+k:

maxc = 1

if minc + maxc == 2: #if both conditions are satisfied it will be

added and connected

G.add_node(str(v2))

G.add_edge(str(v),str(v2))

else:

if minc == 0: #fixing the min2sum condition

v2[i]+=1

min1 = v2[i]

for j in range(0,m):

if j!=i:

if min1 + v2[j] == k-f:

v2[j] += 1

v2[i]-=1

if max(v2)+f <= min(v2)+k: #connect it if it suffices the

max-min condition

G.add_node(str(v2))

G.add_edge(str(v),str(v2))

if maxc == 0: #fixing the max-min condition

maxel = max(v2)

for j in range(0,m):

if v2[j] == maxel:

v2[j] -= 1

G.add_node(str(v2))

G.add_edge(str(v),str(v2))

v = new

coords = [] #checking if the vertices have correct distance vectors



33

print('afstanden testen...')

if True:

for i in G.nodes:

dis = []

for j in range(1,m+1):

dis.append(0)

d=nx.shortest_path_length(G,str(j),i)

if d>k:

d=k+1

dis[j-1]=d

#print(str(i)+' heeft vector '+str(dis))

if str(i) != str(dis):

print('fout: node '+str(i)+' heeft vector '+str(dis))

if dis in coords:

print('dubbel')

coords.append(dis)

print(str(len(G.nodes))+' nodes')

if True: #plotting the graph

if m < 3 and False:

nx.draw_planar(G, with_labels = True)

else:

nx.draw(G, with_labels=True)

plt.show()
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