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Abstract: This paper explores the use of reset control in systems subjected to wide-band
disturbances. Such excitation may result in too rare or excessive resetting, leading to deteriorated
performance. Moreover, the commonly used Describing Function (DF) approximation for the
frequency-domain design of reset systems does not sufficiently represent the reset element’s
behavior under such conditions as it is defined for sinusoidal excitation. To address this, we
present a design approach based on analyzing the power spectral densities (PSD) of the signals
in the system and using the Best Linear Approximations (BLA) of reset elements. In the first
step, the dominant components in the PSD of the reset triggering signal are related to the
frequency domain properties of the reset element. To benefit from resetting, it should lead to an
increase in phase margins near the cross-over frequency. This is the case where the components
at the cross-over frequency dominate the reset triggering signal. To ensure this, the use of
a bandpass shaping filter is proposed. In the second step, the BLA of the reset element is
used to represent its response to the signal with a specific PSD in the frequency domain. This
information is used to tune both the reset element and the shaping filter to achieve the desired
performance and minimize loss of gain at low frequencies. Closed-loop simulations show the
method’s feasibility in achieving the desired behavior of the reset element, leading to improved
resonance peak damping in the example studied.

Copyright © 2025 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

Reset control systems are emerging as an augmentation for
linear control, making it possible to overcome the inherent
limitations related to the waterbed effect and the Bode
gain-phase relationship, which has been shown in multiple
studies, especially in the field of precision motion control.
Depending on the controller design, an improved transient
response, steady-state tracking of reference signals, or
disturbance rejection can be achieved (Caporale et al.
(2024)).

The benefits of the reset action can be clearly presented
using the Describing Function (DF) approximation, such
as the reduction of the phase lag of the integrator by 52°
(Guo et al. (2009)). This advantage is clearly visible in
the “Constant-in-Gain, Lead-in-Phase” (CgLp) element
introduced by Saikumar et al. (2019), which, based on
DF analysis, can provide phase lead while maintaining
constant gain at a selected range of frequencies. This
property can be used to increase the phase margins of
control systems, leading to performance improvements.

Reset control systems can be designed using loop shaping
in a procedure analogous to the design of commonly

* This work was supported by the NWO HTSM Applied and
Technical Science Program under project MetaMech with number
17976.

employed PID controllers (Saikumar et al. (2021)), making
them suitable for wide adoption in the industry. The
most popular frequency domain design methods for reset
systems are based on sinusoidal input describing functions
(Nuij et al. (2006)). However, since the reset systems are
non-linear and the superposition principle does not apply,
these methods cannot capture the system’s behavior in
the presence of wide-frequency band disturbances. Such
disturbances may originate from the system’s surroundings
(e.g., floor vibrations) resulting from noisy signals used
for control or parasitic dynamics in the system. Wide-
band excitation may lead to too rare or excessive resetting.
In both cases, the behavior of the reset control system is
different from that expected based on DF, and its benefits
are not observed. This poses a challenge in the design of
reset systems for many real-life applications.

This paper presents an approach to the design of reset con-
trol systems for applications with wideband excitations.
First, the PSD or a reset triggering signal is analyzed, and
the dominant frequencies are related to the reset action.
The behavior of the reset element in the presence of a
signal with a specific PSD is represented in the frequency
domain using the Best Linear Approximation (BLA). To
ensure that the response of the reset element and the
response of a closed-loop reset system follow the predic-
tions of the DF, a method to tune the shaping filters is

2405-8963 Copyright © 2025 The Authors. This is an open access article under the CC BY-NC-ND license.
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proposed. The validity of the approach is illustrated with
simulations.

The structure of the paper is as follows. In Section 2, the
preliminaries of the reset control and the BLA are given.
Section 3 presents the design of a linear and reset controller
for active vibration isolation in an example introducing the
problem. The analysis of the PSD of the reset triggering
signal is provided in Section 4. The open-loop behavior of
a FORE subjected to wideband noise is studied in Section
5. The results of closed-loop simulations are presented in
Section 6. Lastly, the conclusions of this paper are given
in Section 7.

2. PRELIMINARIES

This section presents the studied class of reset systems and
their commonly used frequency-domain approximations.
Moreover, we present the Best Linear Approximations of
non-linear systems, which will be used as a new design tool
for rest control systems.

2.1 Reset systems

The state-space representation of the reset element is
ir(t) = Arxy(t) + Brur(t), p(t) # 0,
R: Sz (t7) = Az, (1), pt)=0, (1)
yr(t) = Crap(t) + Dy (),
where z, € R"" is the state of R, z,.(t7) = 2} = Elir(%r x(t+

€) is the value of the state after reset, u,, € R™ is the input
of R, y. € R™ is the output of R andA,, B,, A,, C,, D,
are constant matrices of appropriate dimensions.

The base linear system (BLS) Ry is an LTI system with
a state-space realization

(AT7B’I"aCTaDT)) (2)
and describes the dynamics of R in the absence of reset.
The reset is triggered by a signal p(t). The linear reset law
z} = A,x,(t) describes the state change that occurs in
the reset instants tx, k = 1,2,..., that is, when the reset
condition p = 0 is satisfied.

A specific type of reset element that is of concern in
the paper is the First Order Reset Element (FORE),
represented by (1) with

Ap=~w,, Br=w, C.=1, D,=0, Ap =7
where w, denotes the corner frequency of the element and

€ [-1,1]. In the manipulations of the transfer function,
B!

the elements can be represented by Wlﬁ" where the
arrow indicates the resetting action.

2.2 Describing function representation

The Higher-Order Sinusoidal Input Describing Function
(HOSIDF) Nuij et al. (2006) is a quasi-linearization of a
nonlinear element that considers its steady-state response
to a sinusoidal excitation. The non-linear element is con-
sidered as a virtual harmonic generator, and HOSIDF of
nth order is defined

an (w)ed¥n(a0,w)

Ha(jw) = ——— 3)

where a,, and ¢,, denote the nth component of the Fourier
series expansion of the steady-state output of the element
for a sinusoidal input.

The first-order HOSIDF (DF) of an open-loop reset el-
ement has been derived in Guo et al. (2009), and the
higher-order components were presented in Saikumar et al.
(2021). In Dastjerdi et al. (2023), the HOSIDF for a closed-
loop system with a reset controller was introduced, and the
calculations necessary for the HOSIDF analysis of reset
systems were implemented in the form of a user-friendly
Matlab toolbox.

2.8 CqglLp

Constant-in-Gain, Lead-in-Phase (CgLp) introduced by
Saikumar et al. (2019) consists of a reset lag element in
series with a linear lead filter. In the FORE-based version

~
1 $/wWra+1

= 5 D = = 5 4

stor +1 () sfwr+1 (4)

where the corner frequency of the lead filters w,o =

awy,a € R is adjusted to account for a shift in corner
frequency of the lag filter due to resetting action.

The phase lead in the frequency range (w,,wy) is obtained
using the reduced phase lag of the reset lag element (when
the first harmonic of HOSIDF is considered) combined
with a corresponding lead element. Ideally, the gain of
the reset lag element should be canceled out by the gain
of the corresponding linear lead element, which creates a
constant gain behavior.

2.4 Best linear approximation of a non-linear system

The Best Linear Approximation (BLA) is based on the
idea that a nonlinear system can be represented by a
combination of an LTI model and non-linear disturbance,
both of which depend on the power spectrum of the input
signal. The BLA can be obtained nonparametrically by
performing classical frequency response function (FRF)
measurements

Syu(Jwi)

k), )
Suu(]wk)

where Sy, (jwy) is the cross-power spectrum between the
output y and the input w of the system, and Sy, (jwk)
is the auto-power spectrum of the input (Pintelon and
Schoukens (2012)). The BLA can also be measured in
closed-loop systems (Pintelon et al. (2020)), including
noise and disturbance signals.

Gpra(jwi) =

3. PROBLEM DESCRIPTION

This section presents the problem under study, including
the control structure used and the challenges related
to implementing reset control in systems with wideband
disturbances.

3.1 Plant
Consider a vibration isolation system presented in Fig. 1,

consisting of a mass to be isolated with position z2 on a
shaking base with z;. In this work, we focus on reducing
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the influence of the base vibration i, (with a PSD specified
in Spanjer and Hakvoort (2022)) on the acceleration Zo of
the isolated mass using a feedback controller.

The dynamics of the plant are captured by the transmis-
sibility
.'152(8) 1
Pi(s) = = = , 6
() Bils) S+ +1 (6)

and compliance

Za(s) s?/k
Pus) = Pm = (7)
d(s) o7+ 2ij +1
with w, = 104 Hz denoting the resonance frequency,

stiffness & = 2.39 - 10" N-m/s, damping ratio of the plant
Cp = 0.0022. In the design of the feedback system, a delay
7 = 0.7 ms should also be included.

The control loop comprises the reset element R and the
LTT control block Cf,. The behavior of the system can also
be influenced by placing a linear shaping filter Csp(s) on
the reset triggering signal p (Karbasizadeh et al. (2020a)).
The influence of the measurement noise n and direct
disturbance forces F,; are considered negligible in the
analysis of the system.

3.2 LTI Controller design

To dampen the resonance peak of the plant, the Linear
Time-Invariant (LTI) controller employs Direct Velocity
Feedback (DVF)(Balas (1979)). Since acceleration is mea-
sured as an output of the plant, the DVF has a transfer
function X
v
Cole) = (%)
and its parameters are presented in Tab. 1. Such a con-
troller results in a triangular loop gain C,(s)P.(s) pre-
sented in Fig. 2a with crossover frequencies w.1 and we 2,
at which |C\(we,2)Pe(we,2)| = 1. These crossover frequen-
cies and the corresponding phase margins are key to the
stability and performance of the system. The maximum
gain of the controller K, resulting in 30° phase margin at
the second crossover frequency is selected. The achievable
gain is limited by the phase loss due to the time-delay in
the system.

Table 1. Parameters of the controllers, where
the BLS also functions as the linear part of the
reset controller.

| Ko | wy [Hz] | wepo [Hz] | PM [°]
LTI | 7.2-10% | 5 248 30
BLS | 1-10° 5 313 12

Fig. 1. Closed-loop diagram of a reset control system for
AVC
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Fig. 2. (a) Open-loop with the different controllers. An
optimal shape is a triangular shape centered at the
resonance frequency. Second crossover frequency w 2
is indicated with the vertical line, for both the LTI
and BLS controller. (b) Transmissibility from z; to
2o of the system with no AVC and with different
strategies implemented, showing the improvement in
disturbance rejection performance. The BLA high-
lights the deteriorated performance under wideband
noise conditions.

3.8 Reset Controller design

Increasing the controller gain while maintaining the de-
sired phase margins would lead to a stronger reduction of
the system’s transmissibility without sacrificing stability.
A CgLp element is introduced into the control structure
to make this possible. In this example, the liner controller
with an increased gain has a phase margin at w. 2 of only
12°, indicated with Base Linear System (BLS) in Fig. 2a.
The CgLp element provides an additional 18° of phase lead
(analyzed with DF), resulting in the same combined value
as in the LTT system.

The desired amount of phase provided by the CgLp
element can be achieved with different combinations of
parameter values. In this first example, the element was
constructed with w, = 150 Hz, wy = 10 kHz, o = 1.62
and v = 0. Referring to the control structure in Fig. 1,
non-linear element R is equal to the FORE part of CgLp
and

Csr(s) =1, CL(s) = Cy(s)D(s),

where C, consists of the lead part of the CgLp (4) and the
DVF (8). The parameters of the controller are presented
in Tab. 1 under BLS.
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Fig. 3. PSD of floor disturbance profile a; and PSD of
the reset triggering signal p in closed-loop simulation
for different widths @ of the BPF. The dotted line
denotes the closed-loop resonance frequency, w; =
343Hz.

3.4 Problem identification

The closed-loop transmissibility between #; and %5 of the
system is presented in Fig. 2b. The DF approximation of
the reset system suggests a stronger disturbance rejection
than in the LTT case without creating an excessive reso-
nance peak close to w, 2. However, when a time simulation
of the rest system is performed, the resulting BLA shows
a significant resonance peak. This suggests that the reset
system is not effective. The DF-based analysis of a reset
element assumes a single sinusoidal excitation and cannot
capture the behavior of a reset system excited by a signal
with an arbitrary power spectrum. This is due to the
fact that the superposition principle does not apply. In
the remainder of the paper, we show a design strategy to
achieve the desired performance.

4. PSD OF THE RESET TRIGGERING SIGNAL IN
CLOSED-LOOP

The sequence of reset instances for a system excited by
a multi-harmonic signal is not merely the sum of the
reset instances caused by each harmonic independently.
Figure 3 presents the Power Spectral Density (PSD) of
the reset triggering signal p in the closed-loop simulation,
along with the PSD of the floor excitation signal used.
In the case studied in the previous section (@ = 0), the
reset triggering signal contains a wide range of frequencies.
It is dominated by low-frequency components with a
smaller peak around the second crossover frequency. Such
a spectrum indicates a complicated reset sequence, as
multiple components with similar amplitudes and different
frequencies constitute the signal.

To benefit from the properties of the CgLp element, it
must provide a phase lead at a desired frequency, in this
case around w. 2. To ensure this, we propose to make a
single frequency dominant in the reset triggering signal by
adding a shaping filter

We

C =9
se(s) = 77 st w?’

S

9)

with |Csp(jwe| = 1 at the center frequency w.. The width
of the filter is determined by the value of @), with a larger
value resulting in a narrower filter.

Fig. 3 shows the effect of shaping p with different bandpass
filter (BPF) widths on S, in closed-loop. As the BPF
narrows, the target frequency w; becomes more dominant
in the reset triggering signal because the magnitude of the
low-frequency content becomes smaller. This should enable
benefiting from reset in the desired frequency range.

5. OPEN-LOOP BEHAVIOR OF A FORE IN THE
PRESENCE OF WIDEBAND DISTURBANCES

Before showing the actual BLA of a reset system with
wideband input signals, we present a time-domain illustra-
tion of a reset element’s behavior in Fig. 4. In the figure,
we study different cases of the response of a reset element
with a single sinusoidal input signal u, with frequency w,,, .
In each case, the resets are forced by a signal p with a
different frequency w,,.

The standard case, considered in the DF analysis, is
presented in Fig. 4b. The reset is triggered by p, which
has the same frequency as the input signal w,..

Excessive resetting is illustrated in Fig. 4a, where the
resetting frequency is much higher than the input signal
frequency. In such a case, the magnitudes of the FORE’s
response decrease, as there is not enough time for the
response to rise to the values obtained by the BLS of the
element. The extent of the magnitude decreases is related
to the corner frequency of the element, w,, in a similar
way to which it defines the speed of the step response for
linear systems.

When the resetting frequency is much lower than the input
frequency, the resetting action has a minor influence on the
system behavior, as illustrated in Fig. 4c. In such a case,
the response of the reset element should closely match that
of its BLS, and no advantage of the reset element will be
exhibited in the frequency domain.

The BLA captures the behavior of a reset element with
an input signal with a specific PSD in the frequency
domain. In Fig. 5, the BLA of FORE in an open-loop
with and without band-pass filters is presented. The FORE
parameters are w, = 380 Hz, « = 1.11, and v = 0.4.
The input signal u, of FORE is obtained from a closed-
loop simulation without a shaping filter. In an open-loop
simulation, the reset triggering signals pass through filters
of various widths @. In each case, the BLA is calculated
between the input and the output of the FORE. The BLA
is compared with the FORE DF, which has the same
parameters but without the shaping filer.

At low frequencies, the BLA for all filter widths exhibits
a smaller magnitude when compared to the DF. This be-
havior is related to excessive resetting, similar to the case
presented in Fig. 4a. Resets are triggered with high fre-
quency, related to the dominant components of p presented
in Fig. 3. When narrower band-pass filters are used, the
components of p near the closed-loop resonance frequency
w; become more dominant, and stronger gain loss at low
frequencies can be seen in the BLA.

The BLA of the reset system matches the DF only within
the frequency range close to the frequency of the reset
triggering signal. Fig. 5b highlights the BLA of FORE
near the closed-loop resonance frequency w;. Selecting a
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Fig. 4. Simplified time-domain illustration of the behavior of a reset system, when input frequency w,, and the reset
frequency w, are not necessarily the same. The input (black) is a single sine wave. a) Resetting too fast. Depending
on w, of FORE being closer to w,, the gain of the output is closer to its input. b) Standard situation for a Clegg
Integrator. Resets take place with the input frequency. c¢) Clegg Integrator with slow resetting.
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5. a) BLA between y, in open-loop for different BPF widths and w, in closed-loop without BPF, compared to

DF of FORE. b) presents the crossover region in detail. The closed-loop resonance frequency is indicated with the
dotted line, which is the desired frequency for matching. ¢) BLA of FORE in open-loop for different values of ~.
The corresponding value of w; is maximized to reduce gain loss.

band-pass filter with () = 0.5 results in the closest match
between the BLA and DF of the element at the target
frequency. The rigorous explanation for why this is the
case should be a subject of future study.

At high frequencies, above the resonance frequency wy, the
response of the reset element is dominated by the higher
harmonics of the reset frequency, which are represented by
spikes in the BLA, which are not shown in the figure for
clarity. This is related to the higher-order harmonics of the
reset systems, and several strategies are available to reduce
this effect, presented by Karbasizadeh et al. (2020b,a) and
Karbasizadeh and HosseinNia (2022).

To minimize the loss of low-frequency gain, the maximum
possible value of w, should be selected, as suggested by
Fig. 4a. Fig. 5¢ compares the FORE BLA with different
combinations of w, and +, leading to the same phase lead
in the DF at w;. Selecting ~ closer to 0 leads to stronger
resets, and the same phase lead can be achieved with
a narrower CgLp. Although the differences are small, it
can be seen that with v = 0.4, the gain loss in the low-
frequency region is minimized. Explicitly explaining why
this combination of values leads to the best results should
be further studied.

The results presented above indicate the trade-off between
the phase provided by CgLp and the gain loss at lower fre-
quencies. For given -, the CgLp designed for a larger phase
lead at the target frequency should be wider, requiring
smaller w,.. Lower w, leads to larger gain loss, leading to
deterioration of system performance.

The CgLp for closed-loop simulations is designed with
only 5° phase lead, limiting gain loss and still providing
damping of the BLS resonance peak. The corresponding
corner frequency is w, = 380 Hz. The maximum possible
wy, limited by the Nyquist frequency, is selected such that
it has minimal influence on the phase lead at w;. For the
shaping filter, a bandpass filter with ¢ = 0.5 is selected as
it results in a close match between the BLA and the DF
at the frequency of interest, as indicated in Fig. 5b.

6. CLOSED-LOOP TRANSMISSIBILITY ANALYSIS

In Fig. 6, the transmissibility relationships from closed-
loop simulations with different controllers are compared
with the prediction based on DF. In the absence of a
shaping filter (Q = 0), the transmissibility BLA matches
the DF closely at low frequency. However, the resonance
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Fig. 6. Closed-loop transmissibility for different controller
designs. DF-based vs. BLA for no BPF and BPF with

Q=05

peak close to w; is higher than expected, which corresponds
to the lesser phase provided by the element (Fig. 5b).

Shaping the reset triggering signal with the tuned band-
pass filter (@ = 0.5) results in a stronger reduction of
the resonance peak and a close match to the prediction of
DF around the resonance peak. This is at the cost of an
increase in transmissibility at low frequency compared to
the DF, due to the magnitude loss of FORE in that range
of frequencies.

Both the magnitude loss and damping can be well ex-
plained using the BLA of the FORE from the open-loop
simulation. At the same time, an accurate prediction of
the closed-loop results, based on the open-loop BLA of
a reset element, remains challenging. Modifying the reset
element influences the PSD of the reset triggering signal.
Improved damping due to the better design of the reset
element will reduce the magnitude of the response in the
target frequency range, possibly increasing the influence of
the components in other frequencies on the reset sequence.
Moreover, due to the non-linearity, the dynamics of a
reset element is not fully captured by a BLA. However, in
the presented case, the use of open-loop BLA estimations
provided valuable information for designing an improved
system.

7. DISCUSSION AND CONCLUSIONS

This paper studied the use of reset systems in the pres-
ence of wide-band excitations. To benefit from the re-
set element, the components at the cross-over frequency
should dominate the reset triggering signal. To ensure
this, a band-pass shaping filter was implemented. Forcing
the resetting at a specific frequency has an influence on
other frequency ranges, which can be represented by a
BLA of a reset element. At lower frequencies, the gain
of the element decreases, which can be mitigated to some
extent by adjusting the parameters of the shaping filter
and the reset element. The resetting frequency’s harmonics
dominate the element’s response at higher frequencies.
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