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a b s t r a c t

The notion of reproducing kernel Hilbert space (RKHS) has emerged in system identification during
the past decade. In the resulting framework, the impulse response estimation problem is formulated
as a regularized optimization defined on an infinite-dimensional RKHS consisting of stable impulse
responses. The consequent estimation problem is well-defined under the central assumption that the
convolution operators restricted to the RKHS are continuous linear functionals. Moreover, according to
this assumption, the representer theorem hold, and therefore, the impulse response can be estimated
by solving a finite-dimensional program. Thus, the continuity feature plays a significant role in kernel-
based system identification. We show that this central assumption is guaranteed to be satisfied in
considerably general situations, namely when the input signal is bounded, the kernel is an integrable
function, and in the case of continuous-time dynamics, continuous. Furthermore, the strong convexity
of the optimization problem and the continuity property of the convolution operators imply that the
kernel-based system identification admits a unique solution. Consequently, it follows that kernel-based
system identification is a well-defined approach.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

System identification, the theory of generating suitable ab-
tract representations for dynamical systems based on measure-
ent data, is a well-established research field (Zadeh, 1956).
ue to the importance of mathematical models in various areas
f science and technology, system identification is an active re-
earch area with numerous developed methodologies (Ahmadi &
l Khadir, 2020; Khosravi & Smith, 2021a, 2021d; Ljung, 1999,
010; Schoukens & Ljung, 2019). On the other hand, the concept
f reproducing kernel Hilbert space (RKHS), initially introduced
n Aronszajn (1950), has emerged in statistics, signal processing
nd numerical analysis (Berlinet & Thomas-Agnan, 2011; Cucker
Smale, 2002a; Kailath, 1971; Parzen, 1959, 1961; Wahba, 1990),
nd provided a solid foundation for estimation and interpola-
ion problems. The inherent features of RKHSs, such as their
undamental relation to the positive semi-definite kernels and
he Gaussian process (Kanagawa, Hennig, Sejdinovic, & Sriperum-
udur, 2018; Kimeldorf & Wahba, 1970; Lukić & Beder, 2001),

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Gianluigi
Pillonetto under the direction of Editor Alessandro Chiuso.

∗ Corresponding author.
E-mail addresses: mohammad.khosravi@tudelft.nl (M. Khosravi),

smith@control.ee.ethz.ch (R.S. Smith).
ttps://doi.org/10.1016/j.automatica.2022.110728
005-1098/© 2022 The Authors. Published by Elsevier Ltd. This is an open access a
c-nd/4.0/).
led to establishing various methodologies and opened numerous
avenues of research in statistical learning theory (Cucker & Smale,
2002b).

In the seminal work of Pillonetto and De Nicolao (2010), the
kernel-based identification methods are introduced by bringing
the theory of RKHSs to the area of linear system identification,
which led to a paradigm shift in the field (Ljung, Chen, & Mu,
2020). The kernel-based method unifies the identification theory
of continuous-time systems and discrete-time systems, described
either with a finite or an infinite impulse response, by formulating
the identification problem as a regularized regression defined
on a RKHS of stable systems, where the regularization term
is specified based on the norm of employed RKHS (Pillonetto,
Dinuzzo, Chen, De Nicolao, & Ljung, 2014). The resulting for-
mulation addresses issues of model order selection, robustness,
and bias–variance trade-off (Chiuso & Pillonetto, 2019; Khos-
ravi & Smith, 2021e; Pillonetto et al., 2014). The cornerstone
of a RKHS is the associated kernel function, which highlights
the necessity of designing suitable kernels for system identifi-
cation (Dinuzzo, 2015). The most frequently used kernels in the
literature are tuned/correlated (TC), diagonal/correlated (DC), sta-
ble spline (SS), and their generalizations (Andersen & Chen, 2020;
Chen, 2018a; Zorzi, 2021). Other forms of kernels and regular-
ization matrices have been proposed, inspired by machine learn-
ing, system theory, harmonic analysis of stochastic processes,
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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nd filter design methods (Chen, Andersen, Ljung, Chiuso, & Pil-
onetto, 2014; Marconato, Schoukens, & Schoukens, 2016; Zorzi
Chiuso, 2018). While in the classical identification methods,

he complexity of models is described by the orders of system,
hich are integer variables determined based on metrics such
s Akaike information criterion (Ljung, 1999), the model com-
lexity in kernel-based approach is specified and regulated by
he hyperparameters characterizing the kernel and the regular-
zation weight, which are continuous variables to be tuned (Ljung
t al., 2020). The estimation of hyperparameters can be per-
ormed using powerful and robust methods such as empirical
ayes, Stein unbiased risk estimator, and cross-validation (Mu,
hen, & Ljung, 2018a, 2018b, 2021; Pillonetto & Chiuso, 2015).
oreover, the kernel-based scheme allows the incorporation of
arious forms of side-information in the identification problem
y designing appropriate kernel functions or imposing suitable
onstraints to the regression problem. The forms of this side-
nformation, studied to date, include stability, relative degree,
moothness of the impulse response, resonant frequencies, ex-
ernal positivity, oscillatory behaviors, steady-state gain, internal
ositivity, exponential decay of the impulse response, structural
roperties, internal low-complexity, frequency domain features,
nd the presence of fast and slow poles (Chen, 2018b; Chen,
hlsson, & Ljung, 2012; Darwish, Pillonetto, & Tóth, 2018; Everitt,
ottegal, & Hjalmarsson, 2018; Fujimoto, Maruta, & Sugie, 2017;
ujimoto & Sugie, 2018; Khosravi, Iannelli, Yin, Parsi and Smith,
020; Khosravi & Smith, 2019, 2021b, 2021c, 2021f; Khosravi, Yin,
annelli, Parsi and Smith, 2020; Marconato et al., 2016; Pillonetto,
hen, Chiuso, Nicolao, & Ljung, 2016; Prando, Chiuso, & Pillonetto,
017; Risuleo, Bottegal, & Hjalmarsson, 2017; Risuleo, Lindsten,
Hjalmarsson, 2019; Zheng & Ohta, 2021). While kernel-based

ystem identification has enjoyed considerable progress in the
ast decade, it is still a thriving area of research with state-of-the-
rt results and recent studies (Bisiacco & Pillonetto, 2020a, 2020b;
illonetto, Chiuso, & De Nicolao, 2019; Pillonetto & Scampicchio,
021; Scandella, Mazzoleni, Formentin, & Previdi, 2020, 2021).
or example, the mathematical foundation of stable RKHSs is
evisited in Bisiacco and Pillonetto (2020b), the sample com-
lexity and the minimax properties of kernel-based methods
re discussed in Pillonetto and Scampicchio (2021), and a long-
tanding question on the absolute summability of stable kernels
s addressed in Bisiacco and Pillonetto (2020a).

The above-mentioned advantages of kernel-based methods
tand on the assumption that the formulated regression problem
s well-defined, i.e., the corresponding regularized optimization
roblem admits at least one solution. The base of this assump-
ion is the continuity of convolution operators when they are
estricted to the stable RKHSs (Dinuzzo, 2015; Pillonetto et al.,
014). Accordingly, one may ask about the conditions under
hich the continuity property holds. This paper shows that this
entral assumption is satisfied in certain but highly general situ-
tions, namely when the input signal is bounded, the kernel is an
ntegrable function, and in the case of continuous-time dynam-
cs, continuous. As a result, kernel-based system identification
dmits a unique solution according to the continuity of convo-
ution operators and the strong convexity of the optimization
roblem, which also implies that the kernel-based approach is
ell-defined.

. Notation and preliminaries

The set of natural numbers, the set of non-negative integers,
he set of real numbers, the set of non-negative real numbers, and
he n-dimensional Euclidean space are denoted by N, Z+, R, R+,
and Rn, respectively. Throughout the paper, T denotes either Z+

or R , and T is defined as the set of scalars t where t ∈ T or
+ ± w

2

−t ∈ T. Furthermore, we consider the measurable space (T, FT),
where FT is the Borel subsets of R+ when T = R+, and FT is the
power set of Z+ when T = Z+. Accordingly, T × T is equipped
with the product σ -algebra FT ⊗ FT. Also, R is endowed with
the Borel σ -algebra. The identity matrix/operator and the zero
vector are denoted by I and 0, respectively. Given measurable
space X , we denote by RX as the space of measurable functions
v : X → R. The element v ∈ RX is shown entry-wise as
v = (vx)x∈X , or v = (v(x))x∈X . Depending on the context of
discussion, L ∞ refers either to ℓ∞(Z) or L∞(R). Similarly, L 1

is either ℓ1(Z+) or L1(R+). For p ∈ {1, ∞}, the norm in L p is
denoted by ∥ · ∥p. With respect to each u = (us)s∈T±

∈ L ∞

and t ∈ T±, the linear operator Lt : L 1
→ R is defined as

Lt (g) :=
∑

s∈Z+
gsut−s, when T = Z+, and Lt (g) :=

∫
R+

gsut−sds,
when T = R+. Given sets X and Y , where Y ⊆ X , the indicator
function 1Y : X → {0, 1} is defined as 1Y (x) = 1, when x ∈ Y ,
and 1Y (x) = 0, otherwise. We say f : R+ → R is a simple
function, if there exist real numbers a1, . . . , an ∈ R and intervals
I1, . . . , In ⊂ R+, such that f (x) =

∑n
j=1 aj1Ij (x), for any x ∈ R+.

3. Kernel-based system identification

Consider a stable LTI system S characterized by an impulse
response g(S)

:= (g (S)
t )t∈T ∈ RT, where T is Z+ or R+ respectively

for the case that the system is discrete-time or continuous-time.
Suppose the system S is actuated by a signal u ∈ L ∞, and
the resulting output signal is measured with measurement noise
at nD time instants t1, . . . , tnD . Let the measured output of the
system at time instant ti, and the corresponding measurement
uncertainty, be denoted by yti and wti , respectively. Due to the
definition of operators {Lt |t ∈ T±}, we know that

yti = Lti (g
(S)) + wti , i = 1, . . . , nD . (1)

Therefore, we are provided with a set of input–output mea-
surement data denoted by D . Accordingly, the impulse response
identification problem is formalized as estimating g(S), the im-
pulse response of stable system S , based on the measurement
data. In the kernel-based identification framework, this problem
is formulated as an impulse response estimation in a reproducing
kernel Hilbert space (RKHS) endowed with a stable kernel. To
introduce the main result of this paper, we need to discuss this
paradigm briefly.

Definition 1 (Berlinet & Thomas-Agnan, 2011). Consider symmet-
ric function k : T × T → R, that is assumed to be continuous if
T = R+. We say k is a Mercer kernel when we have
n∑

i=1

n∑
j=1

aik(ti, tj)aj ≥ 0, (2)

for all n ∈ N, t1, . . . , tn ∈ T, and a1, . . . , an ∈ R. Furthermore,
with respect to each τ ∈ T, the section of kernel k at τ is the
function kτ : T → R defined as kτ (·) = k(τ , ·).

Remark 1. When the continuity assumption in Definition 1 is
relaxed, k is referred to as a positive-definite kernel, or simply,
a kernel.1 Accordingly, the Mercer kernels are positive-definite
kernels, which are continuous when T = R+. One should note
that the mentioned continuity feature plays a significant role in
the main result of this paper presented in Section 4.

1 In the literature, kernels are commonly assumed to be positive-definite
ithout being explicitly mentioned.
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heorem 1 (Berlinet & Thomas-Agnan, 2011). With respect to each
ositive-definite kernel k : T × T → R, a unique Hilbert space

Hk ⊆ RT endowed with inner product ⟨·, ·⟩Hk
exists such that, for

each t ∈ T, one has
(i) kt ∈ Hk, and
(ii) ⟨g,kt⟩Hk

= gt , for all g = (gs)s∈T ∈ Hk.
In this case, we say Hk is the RKHS with kernel k. Moreover, the

second feature is called the reproducing property.

Due to Theorem 1, one can see that each RKHS is uniquely
characterized by the corresponding Mercer kernel. Since the to-
be-estimated impulse response is known to be stable in the
bounded-input–bounded-output (BIBO) sense, the employed ker-
nel k is required to guarantee that Hk ⊆ L 1. The sufficient
and necessary condition for this property is established by the
following theorem.

Theorem 2 (Carmeli, De Vito, & Toigo, 2006; Chen & Pillonetto,
2018). Consider the positive-definite measurable kernel k : T×T →

and the corresponding RKHS Hk. Then, Hk ⊆ L 1 if and only if,
for any u = (us)s∈T ∈ L ∞, one has∑
∈Z+

⏐⏐⏐⏐ ∑
s∈Z+

usk(t, s)
⏐⏐⏐⏐ < ∞, (3)

when T = Z+, and,∫
R+

⏐⏐⏐⏐ ∫
R+

usk(t, s)ds
⏐⏐⏐⏐dt < ∞, (4)

when T = R+. When this property holds, kernel k is called stable
and Hk is said to be a stable RKHS.

Given the stable kernel k and the measurement data, the
kernel-based impulse response estimation problem is formulated as

min
g∈Hk

nD∑
i=1

(Lti (g) − yi)2 + λ∥g∥2
Hk

, (5)

where λ > 0 is the regularization weight. Based on the same ar-
guments as in Wahba (1990, Theorem 1.3.1), one can describe the
solution of (5) in terms of the sections of the kernel at t1, . . . , tnD .
To this end, we need vector y defined as y =

[
yt1 , . . . , ytnD

]T
∈

nD , and the output kernel matrix O ∈ RnD×nD formed from the
nput signal and defined entry-wise as

O](i,j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
R+

∫
R+

k(s, t)uti−sutj−t dsdt, if T+ = R+,∑
t∈Z+

∑
s∈Z+

k(s, t)uti−sutj−t , if T+ = Z+,

for each i, j = 1, . . . , nD .

Theorem 3 (Representer Theorem for System Identification, Pil-
lonetto et al. (2014)). Let Lti : Hk → R be a continuous linear
operator, for each i = 1, . . . , nD . Then, the minimizer of (5) is
g⋆

= (g⋆
t )t∈T ∈ Hk defined as

g⋆
t =

nD∑
i=1

c⋆
i Lti (kt ), ∀t ∈ T, (6)

where the vector c⋆
=

[
c⋆
1, . . . , c

⋆
nD

]T
∈ RnD is

c⋆
=

(
O + λInD

)−1y, (7)

and, I denotes identity matrix of dimension n .
nD D

3

The main assumption in Theorem 3 is the continuity of convo-
lution operators Lt1 , . . . , LtnD

, which depends mainly on the input
signal u and kernel k. Accordingly, a natural question one may ask
is under what conditions are the convolution operators continuous.
Indeed, one should note that in Theorem 3, the convolution
operators are restricted to Hk ⊆ L 1, and consequently, the
continuity of Lt : L 1

→ R does not imply that the restricted
operator Lt : Hk → R is continuous as well. We address this
continuity concern in the next section.

4. Continuity of convolution operators

The main result of this section is based on the notion of
integrable kernels introduced below.

Definition 2 (Pillonetto et al., 2014). The positive-definite mea-
surable kernel k : T × T → R is said to be integrable if∫
R+

∫
R+

|k(s, t)|dsdt < ∞, (8)

when T = R+, or, if∑
s∈Z+

∑
t∈Z+

|k(s, t)| < ∞, (9)

when T = Z+.

The integrable kernels are the largest known interesting sub-
class of stable kernels in the context of kernel-based impulse
response identification (Bisiacco & Pillonetto, 2020a, 2020b). To
present the main theorem of this paper, we need to introduce
additional lemmas. Before further proceeding, we first recall
that Mercer kernels are positive-definite, and in the case of
continuous-time dynamics, they are continuous.

Lemma 4. Let T = R+ and k be an integrable Mercer kernel.
Consider τ and τ such that 0 ≤ τ < τ ≤ ∞. Then,

∫
[τ ,τ ]

k(·, t)dt is
a well-defined function and belongs to Hk for which we have ∫

[τ ,τ ]

k(·, t)dt
2

Hk

=

∫ τ

τ

∫ τ

τ

k(s, t)dsdt. (10)

oreover, for each g = (gt )t∈R+
∈ Hk, the following holds∫

[τ ,τ ]

gtdt =

⟨∫
[τ ,τ ]

k(·, t)dt, g
⟩
Hk

. (11)

roof. See Appendix A.1. □

From this Lemma, we have the following corollary.

Corollary 5. Let T = R+ and k be an integrable Mercer kernel.
Consider τ 1, τ 2, τ 2 and τ 2 such that 0 ≤ τ 1 < τ 1 ≤ ∞ and

≤ τ 2 < τ 2 ≤ ∞. Then, we have⟨ ∫
[τ1,τ1]

k(·, t)dt,
∫

[τ2,τ2]

k(·, s)ds
⟩
Hk

=

∫
[τ1,τ1]×[τ2,τ2]

k(t, s)dsdt

=

∫ τ1

τ1

∫ τ2

τ2

k(t, s)dsdt

=

∫ τ2

τ2

∫ τ1

τ1

k(t, s)dtds.

(12)

Proof. See Appendix A.2. □
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The next lemma is the discrete-time version of Lemma 4.

Lemma 6. Let T = Z+ and kernel k be integrable. Consider
τ , τ ∈ Z+ such that 0 ≤ τ ≤ τ ≤ ∞. Then,

∑
τ≤t≤τ k(·, t) is a

well-defined function and belongs to Hk for which we have ∑
τ≤t≤τ

k(·, t)
2

Hk

=

∑
τ≤s,t≤τ

k(s, t). (13)

Moreover, for each g = (gt )t∈Z+
∈ Hk, the following holds∑

τ≤t≤τ

gt =

⟨ ∑
τ≤t≤τ

k(·, t)dt, g
⟩
Hk

. (14)

Proof. See Appendix A.3. □

Based on Definitions 1, 2, Lemma 4, and Corollary 5, we can
present the main theorem of this paper.

Theorem 7 (Continuity of Convolution Operators). Let k be an
integrable Mercer kernel. Then, for any u ∈ L ∞ and τ ∈ T, the
operator Lτ is continuous (bounded). Moreover, there exists ϕ(u)

τ =

(ϕ(u)
τ ,t )t∈T ∈ Hk such that Lτ (g) = ⟨ϕ(u)

τ , g⟩, for any g ∈ Hk.
Furthermore, for any t ∈ T, we have

ϕ
(u)
τ ,t = Lτ (kt ) =

⎧⎪⎪⎨⎪⎪⎩
∫
R+

k(t, s)uτ−sds, if T = R+,∑
s∈Z+

k(t, s)uτ−s, if T = Z+.
(15)

Proof. We discuss the proof for the cases of T = R+ and T = Z+.
Case I: Let T = R+ and define v = (vs)s∈R+

such that vs = uτ−s,
for any s ∈ R+. Accordingly, we have

Lτ (g) =

∫
R+

vsgsds, (16)

for each g = (gs)s∈R+
. Note that v ∈ L ∞, and hence, in L ∞, there

exists a sequence of step functions v(n) := (v(n)
s )s∈R+

, n = 1, 2, . . .,
such that ∥v(n)∥∞ ≤ ∥v∥∞, for each n ∈ N, and, limn→∞ v

(n)
s = vs,

for almost all s ∈ R+ (Stein & Shakarchi, 2009). For each n ∈ N,
due to the definition of step functions, we know that there exists
Mn ∈ N, intervals J(n)i ⊆ R+, i = 1, . . . ,Mn, and a(n)i ∈ R,
i = 1, . . . ,Mn, such that

v(n)
s =

Mn∑
i=1

a(n)i 1J(n)i
(s), ∀s ∈ R+. (17)

For each n ∈ N, define fn = (fn,t )t∈R+
as

fn :=

∫
R+

v(n)
s k(·, s)ds

=

∫
R+

Mn∑
i=1

a(n)i 1J(n)i
(s)k(·, s)ds,

(18)

which is well-defined and belongs to Hk according to Lemma 4.
Accordingly, due to (17), for each g = (gs)s∈R+

∈ Hk, we have∫
R+

gsv(n)
s ds =

Mn∑
i=1

a(n)i

∫
J(n)i

gsds

=

Mn∑
i=1

a(n)i

⟨∫
J(n)i

k(·, s)ds, g
⟩
Hk

=

⟨ Mn∑
a(n)i

∫
(n)
k(·, s)ds, g

⟩
H

i=1 Ji k

4

=

⟨∫
R+

Mn∑
i=1

a(n)i 1J(n)i
(s)k(·, s)ds, g

⟩
Hk

=

⟨∫
R+

v(n)
s k(·, s)ds, g

⟩
Hk

= ⟨fn, g⟩Hk
, (19)

where the second equality is due to Lemma 4. Let ε be an
arbitrary positive real scalar. Define l as

l :=
∫
R+×R+

vtk(t, s)vsdtds, (20)

and, for any n ∈ N, ln as

ln :=

∫
R+×R+

v
(n)
t k(t, s)vsdtds. (21)

For almost all s, t ∈ R+, we have

lim
n→∞

v
(n)
t k(t, s)vs = vtk(t, s)vs. (22)

Moreover, for any n ∈ N, we know that⏐⏐v(n)
t k(t, s)vs

⏐⏐ ≤ ∥v∥2
∞

|k(t, s)|. (23)

Since k is integrable, from the dominated convergence theorem,
we have

lim
n→∞

ln = lim
n→∞

∫
R+×R+

v
(n)
t k(t, s)vsdsdt

=

∫
R+×R+

lim
n→∞

v
(n)
t k(t, s)vsdsdt

=

∫
R+×R+

vtk(t, s)vsdsdt

= l.

(24)

Therefore, there exist Nε ∈ N such that |ln − l| ≤
1
8ε

2, for each
n ≥ Nε . Define ln,m as ln,m := ⟨fn, fm⟩Hk

, for each m, n ∈ N.
Accordingly, from (18), Corollary 5 and the linearity of integration
and inner product, it follows that

ln,m =

Mn∑
i=1

Mm∑
j=1

a(n)i a(m)
j

⟨∫
J(n)i

k(·, s)ds,
∫
J(m)
j

k(·, t)dt
⟩
Hk

=

Mn∑
i=1

Mm∑
j=1

a(n)i a(m)
j

∫
J(n)i

∫
J(m)
j

k(s, t)dsdt

=

∫
R+×R+

Mn∑
i=1

Mm∑
j=1

a(n)i a(m)
j 1J(n)i

(t)1J(m)
j

(s)k(s, t)dsdt.

Therefore, due to the definition of v(n) and v(m), we have

ln,m = ⟨fn, fm⟩Hk
=

∫
R+×R+

v(n)
s k(s, t)v(m)

t dsdt. (25)

Accordingly, since ∥v(n)∥∞, ∥v(m)
∥∞ ≤ ∥v∥∞, one can see that

|ln,m − ln| =

⏐⏐⏐⏐ ∫
R+×R+

v
(n)
t

[
k(t, s)(v(m)

s − vs)
]
dtds

⏐⏐⏐⏐
≤ ∥v∥∞

∫
R+×R+

⏐⏐⏐k(t, s)(v(m)
s − vs)

⏐⏐⏐dtds. (26)

From ∥v(n)∥∞, ∥v(m)
∥∞ ≤ ∥v∥∞, we have

|k(t, s)(v(m)
s − vs)| ≤ 2∥v∥∞|k(t, s)|. (27)

Moreover, for almost all s ∈ R+, we know that

lim |k(t, s)(v(m)
− vs)| = 0. (28)
m→∞
s
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ince k is integrable, from the dominated convergence theorem,
t follows that

lim
→∞

∫
R+×R+

|k(t, s)(v(m)
s − vs)|dsdt = 0. (29)

Therefore, due to (26), there exists Mε such that, for any m ≥ Mε ,
we have |ln,m − ln| ≤

1
8ε

2. Accordingly, from triangle inequality,
we have |lm,n − l| ≤

1
4ε

2, for any m, n ≥ Kε := max{Mε,Nε}.
Subsequently, it follows that

∥ fn − fm ∥
2

= ⟨fn, fn⟩Hk
− 2⟨fn, fm⟩Hk

+ ⟨fm, fm⟩Hk

= ln,n − 2ln,m + lm,m

≤ (l +
1
4
ε2) − 2(l −

1
4
ε2) + (l +

1
4
ε2) = ε2.

(30)

ence, for any m, n ≥ Kε , we have ∥fn − fm∥Hk
≤ ε. Therefore,

fn}∞n=1 is a Cauchy sequence in Hk, and there exists f = (fs)s∈R+
∈

Hk such that limn→∞ fn = f. Accordingly, due to the reproducing
property, for any t ∈ R+, we have

lim
n→∞

fn,t = lim
n→∞

⟨kt , fn⟩Hk
= ⟨kt , f⟩Hk

= ft . (31)

For any n ∈ N and for almost all s, t ∈ R+, we have⏐⏐⏐k(t, s)v(n)
s

⏐⏐⏐ ≤ ∥v∥∞|k(t, s)|, (32)

and

lim
n→∞

k(t, s)v(n)
s = k(t, s)vs. (33)

ccordingly, since k is integrable, from the dominated conver-
ence theorem, (18) and (31), it follows that

t = lim
n→∞

∫
R+

k(t, s)v(n)
s ds

=

∫
R+

lim
n→∞

k(t, s)v(n)
s ds =

∫
R+

k(t, s)vsds,
(34)

i.e., we have

f =

∫
R+

k(·, s)vsds. (35)

For almost all s ∈ R+, we know that limn→∞ gsv
(n)
s = gsvs.

Moreover, one has that |gsv
(n)
s | ≤ ∥v∥∞|gs|, for each n ∈ N. Since

g = (gs)s∈R+
∈ Hk and each element of Hk is integrable, due to

the dominated convergence theorem, (19) and limn→∞ fn = f, we
have∫
R+

gsvsds = lim
n→∞

∫
R+

gsv(n)
s ds

= lim
n→∞

⟨fn, g⟩Hk
= ⟨f, g⟩Hk

.

(36)

Let ϕ(u)
τ = (ϕ(u)

τ ,t )t∈R+
be defined such that for any t ∈ R+, we have

ϕ
(u)
τ ,t =

∫
R+

k(t, s)uτ−sds, (37)

i.e., ϕ(u)
τ =

∫
R+

k(·, s)uτ−sds. Due to (34) and the fact that vs =

uτ−s, for s ∈ R+, we know that ϕ(u)
τ = f ∈ Hk. Accordingly, from

(36), we have

Lτ (g) =

∫
R+

gsuτ−sds

=

⟨∫
R+

k(·, s)uτ−sds, g
⟩
Hk

= ⟨ϕ(u)
τ , g⟩Hk

,

(38)

which implies that Lτ is a continuous (bounded) operator on Hk.
This concludes the proof for the case of T = R .
+

5

Case II: Let T = Z+ and, similarly to the previous case, define
v = (vs)s∈Z+

as vs = uτ−s, for any s ∈ Z+. One can easily
see that ∥v∥∞ = ∥u∥∞. For any g = (gs)s∈Z+

∈ Hk, we know
that

∑
s∈Z+

|gs| < ∞, which implies that Lτ (g) =
∑

s∈Z+
gsvs is

absolutely convergent due to ∥v∥∞ = ∥u∥∞ < ∞. Let ε be an
arbitrary positive real scalar. Since k is summable, there exists
Nε ∈ N such that∑
s,t≥Nε+1

|k(t, s)| ≤
1

∥v∥2
∞

ε2. (39)

For any n ∈ N, let fn = (fn,t )t∈Z+
be defined as fn =

∑n
s=0 k(·, s)vs.

One can see that fn ∈ Hk. Let n,m ∈ N such that n,m ≥ Nε .
Without loss of generality, assume n ≥ m. Due to the reproducing
property, we have

∥fn − fm∥
2
Hk

=

 m∑
s=n+1

k(·, s)vs

2

Hk

=

m∑
s,t≥n+1

k(s, t)vsvt

≤ ∥v∥2
∞

∑
s,t≥Nε+1

|k(s, t)|

≤ ε2,

(40)

.e., ∥fn − fm∥Hk
≤ ε. Therefore {fn}∞n=1 is a Cauchy sequence in

k, and there exists f = (ft )t∈Z+
such that limn→∞ fn = f. Note

hat, we have

t = ⟨kt , f⟩Hk
= lim

n→∞
⟨kt , fn⟩Hk

= lim
n→∞

fn,t , (41)

or any t ∈ Z+. Accordingly, from the reproducing property, one
an see that

t = lim
n→∞

⟨
kt ,

n∑
s=0

k(·, s)vs

⟩
Hk

= lim
n→∞

n∑
s=0

k(t, s)vs

=

∞∑
s=0

k(t, s)vs,

(42)

here the last equality is due to
∑

∞

s=0 |k(t, s)vs| < ∞, for any
∈ Z+. Hence, we have f =

∑
∞

s=0 k(·, s)vs. For any g = (gs)s∈Z+
∈

k, we know that
∑

s∈Z+
|gs| ≤ ∞, which implies that Lτ (g) =

s∈Z+
gsvs is absolutely convergent due to ∥v∥∞ = ∥u∥∞ < ∞.

herefore, one can see that∑
∈Z+

gsvs = lim
n→∞

n∑
s=0

vs⟨ks, g⟩Hk

= lim
n→∞

⟨ n∑
s=0

k(·, s)vs, g
⟩
Hk

= lim
n→∞

⟨fn, g⟩Hk

= ⟨f, g⟩Hk
.

(43)

et ϕ(u)
τ = (ϕ(u)

τ ,t )t∈Z+
be defined as

ϕ
(u)
τ ,t = ft =

∑
s∈Z+

k(t, s)vs, (44)

or any t ∈ Z+. Accordingly, we have

τ (g) =

∑
s∈Z+

gsvs = ⟨ϕ(u)
τ , g⟩Hk

=

⟨∑
s∈Z+

k(·, s)vs, g
⟩
Hk

,

or any g ∈ H . This concludes the proof. □
k
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emark 2. For the case of T = R+, note that the assumption on
continuity of kernel k is required for the result presented in The-
orem 7. This can be verified by inspecting the proof of Lemma 4
provided in Appendix A.1, which is the base of Theorem 7.

From Theorem 7, we have the following corollary.

Corollary 8. Let k be an integrable Mercer kernel and u ∈ L ∞.
Then, the kernel-based impulse response estimation problem (5)
admits a unique solution introduced in (6).

Proof. From Theorem 7, it follows that the objective in (5) is
function J : Hk → R defined as

J (g) =

nD∑
i=1

(
⟨ϕ

(u)
ti , g⟩

Hk

− yti
)2

+ λ∥g∥2
Hk

, (45)

for any g ∈ Hk. This implies that J is a quadratic continuous
function. Since λ > 0, we know that J is strongly convex, and
subsequently, coercive. Accordingly, from J (0) = ∥y∥2, it follows
that J is a proper continuous strongly convex function. There-
fore, due to Peypouquet (2015, Theorem 2.19), we know that
ming∈Hk

J (g) has a unique solution, which implies the existence
and uniqueness for the solution of (5). The proof concludes from
(15) and Wahba (1990, Theorem 1.3.1). □

Remark 3. From Corollary 8, one can see that the presented
result on the existence and uniqueness of the solution for the
kernel-based impulse response estimation problem (5) depends
only on the input signal and the kernel. The impact of other
factors like measurement noise is on the exactness and statistical
behavior of this solution.

5. Conclusion

The kernel-based system identification method stands on the
central assumption that the convolution operators restricted to
the chosen RKHS are continuous linear functionals. Current re-
search work in the literature assumes, implicitly or explicitly, that
this continuity property holds without elaborating the required
conditions. In this work, we have addressed this long-standing
question by specifying these conditions: the integrability of the
kernel function and the boundedness of the input signal. For the
case of continuous-time dynamics, we additionally need the con-
tinuity of the kernel. Furthermore, owing to the strong convexity
of the optimization problem and the resulted continuity feature
of the convolution operators, we have shown that the kernel-
based approach is well-defined by guaranteeing the existence
and uniqueness properties for the solution of the identification
problem.

Appendix

A.1. Proof of Lemma 4

First we show the claims when τ < ∞, and then, extend the
result to the general case.

Let ∆τ be defined as ∆τ = τ − τ . For each n ∈ N, define
n and ∆n respectively as Nn := 2n and ∆n := 2−n∆τ . Also, let
unction fn := (fn,s)s∈R+

∈ Hk be defined as

n,s = ∆n

Nn∑
i=1

k(t (n)i , s), ∀s ∈ R+, (A.1)

here t (n)i := τ + (i− 1)∆n = τ + (i− 1)2−n∆τ , for i = 1, . . . , 2n.
Let ε be an arbitrary positive real scalar. Since k is continuous, we
6

know that it is uniformly continuous on compact region [τ , τ ] ×

[τ , τ ]. Therefore, there exists positive real scalar δ such that for
any (s1, t1), (s2, t2) ∈ [τ , τ ]×[τ , τ ] where |s1 − s2|+|t1 − t2| ≤ δ,
e have

k(s1, t1) − k(s2, t2)| ≤
1
4

ε2

∆τ 2 . (A.2)

Let δε be the largest scalar in (0, 1) with such property and define
Nε as the smallest integer such that

Nε ≥ max(− log2(
δε

∆τ
), 0) + 1. (A.3)

Consider arbitrary integers n and m such that n,m ≥ Nε . From
he reproducing property of the kernel, one can see that

fn, fm⟩Hk
=

⟨
∆n

Nn∑
i=1

k(t (n)i , ·), ∆m

Nm∑
j=1

k(t (m)
j , ·)

⟩
Hk

= ∆n∆m

Nn∑
i=1

Nm∑
j=1

k(t (n)i , t (m)
j ).

(A.4)

Define I(n,m)
i,j as region [t (n)i , t (n)i + ∆n) × [t (m)

j , t (m)
j + ∆m), for

i = 1, . . . , 2n and j = 1, . . . , 2m. Also, let I be the value defined
as

I :=

∫
[τ ,τ ]×[τ ,τ ]

k(s, t)dsdt. (A.5)

Note that I is a well-defined integral due to integrability of k.
rom (A.4) and the triangle inequality, we have

⟨fn,fm⟩Hk
− I|

=

⏐⏐⏐⏐ Nn∑
i=1

Nm∑
j=1

∫
I(n,m)
i,j

k(t (n)i , t (m)
j ) − k(s, t)dsdt

⏐⏐⏐⏐
≤

Nn∑
i=1

Nm∑
j=1

∫
I(n,m)
i,j

⏐⏐k(t (n)i , t (m)
j ) − k(s, t)

⏐⏐dsdt
≤

Nn∑
i=1

Nm∑
j=1

1
4

ε2

∆τ 2 ∆n∆m

=
1
4
ε2,

(A.6)

where the inequality is due to (A.2). Subsequently, one can see
that

I −
1
4
ε2

≤ ⟨fn, fm⟩Hk
≤ I +

1
4
ε2. (A.7)

From (A.7), it follows that

∥fn − fm∥
2
Hk

= ⟨fn, fn⟩Hk
− 2⟨fn, fm⟩Hk

+ ⟨fm, fm⟩Hk

≤ (I +
1
4
ε2) − 2(I −

1
4
ε2) + (I +

1
4
ε2)

= ε2,

and, hence, we have ∥fn − fm∥Hk
≤ ε. Therefore, {fn}∞n=1 is a

Cauchy sequence in Hk, and there exists f = (fs)s∈R+
∈ Hk

such that limn→∞ ∥fn − f∥Hk
= 0. For any s ∈ R+, due to

the Cauchy–Schwarz inequality and the reproducing property, we
have

|fn,s − fs| = |⟨ks, fn − f⟩Hk
|

1 (A.8)

≤ k(s, s) 2 ∥fn − f∥Hk

,
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hich implies that limn→∞ fn,s = fs. On the other hand, from
(A.2), one can see that⏐⏐⏐⏐fn,s −

∫
[τ ,τ ]

k(s, t)dt
⏐⏐⏐⏐ =

⏐⏐⏐⏐∆n

Nn∑
i=1

k(t (n)i , s) −

∫ τ

τ

k(s, t)dt
⏐⏐⏐⏐

=

⏐⏐⏐⏐ Nn∑
i=1

∫
I(n)i

k(t (n)i , s) − k(s, t)dt
⏐⏐⏐⏐

≤

Nn∑
i=1

∫
I(n)i

⏐⏐k(t (n)i , s) − k(s, t)
⏐⏐dt

≤

Nn∑
i=1

1
4

ε2

∆τ 2 ∆n

=
1
4

ε2

∆τ
,

(A.9)

here, for i = 1, . . . ,Nn, interval I
(n)
i is defined as [t (n)i , t (n)i +∆n).

ccordingly, we have

s = lim
n→∞

fn,s =

∫
[τ ,τ ]

k(s, t)dt, (A.10)

which says that f =
∫

[τ ,τ ]
k(·, t)dt ∈ Hk. Moreover, from

limn→∞ fn = f, we know that

∥f∥2
Hk

= lim
n→∞

∥fn∥2
Hk

= lim
n→∞

⟨fn, fn⟩Hk
.

(A.11)

Therefore, from (A.7) and the definition of f and I , it follows that ∫
[τ ,τ ]

k(·, t)dt
2

Hk

= lim
n→∞

⟨fn, fn⟩Hk

=

∫
[τ ,τ ]×[τ ,τ ]

k(s, t)dsdt.
(A.12)

Note that, for any s such that t + s ∈ R+, due to the reproducing
property of the kernel, we have

∥kt+s − kt∥
2
Hk

= k(t + s, t + s)
− k(t, t + s) − k(t + s, t) + k(t, t),

(A.13)

which implies that lims→0 ∥kt+s − kt∥Hk
= 0 due to continuity

of the kernel. Meanwhile, for each g = (gt )t∈R+
∈ Hk, from the

Cauchy-Schwartz inequality and the reproducing property, one
has

|gt+s − gt | = |⟨kt+s − kt , g⟩Hk
|

≤ ∥kt+s − kt∥Hk
∥g∥Hk

.
(A.14)

Accordingly, we have lims→0 |gt+s − gt | = 0, which says that
g = (gt )t∈R+

is a continuous function of t . Hence, the integral
of g on the interval [τ , τ ] exists, and we have

[τ ,τ ]

gtdt = lim
n→∞

2n∑
i=1

g
(
τ + (i − 1)2−n∆τ

)
2−n∆τ

= lim
n→∞

Nn∑
i=1

g(t (n)i )∆n

= lim
n→∞

⟨fn, g⟩Hk
,

(A.15)

here the last equality is due the definition of fn in (A.1) and the
eproducing property. Therefore, from lim f = f, one can see
n→∞ n g

7

hat

[τ ,τ ]

gtdt = lim
n→∞

⟨fn, g⟩Hk

= ⟨f, g⟩Hk

=

⟨∫
[τ ,τ ]

k(·, t)dt, g
⟩
Hk

.

(A.16)

ow, we consider the case where τ = ∞. For each integer n ≥ τ ,
let hn = (hn,s)s∈R+

be function hn =
∫

[τ ,n] k(·, t)dt which is well-
defined and belongs to Hk. Let ε be an arbitrary positive real
scalar. Since k is absolutely integrable, we know that

lim
τ→∞

∫
∞

τ

∫
∞

τ

|k(s, t)|dsdt = 0. (A.17)

et τε ≥ τ be the smallest positive real scalar such that∫
∞

τε

∫
∞

τε

|k(s, t)|dsdt ≤ ε2, (A.18)

nd n,m ∈ N be arbitrary indices such that n,m ≥ τε . Without
loss of generality, assume n ≥ m. Then, due to the discussion
above and the triangle inequality, we have

∥ hn − hm ∥
2
Hk

=

 ∫ n

m
k(·, t)dt

2

Hk

=

∫ n

m

∫ n

m
k(s, t)dsdt

≤

∫ n

m

∫ n

m
|k(s, t)|dsdt

≤

∫
∞

τε

∫
∞

τε

|k(s, t)|dsdt.

(A.19)

Accordingly, from (A.18), we know that ∥hn −hm∥Hk
≤ ε, which

mplies that {hn}n∈N,n≥τ is a Cauchy sequence in Hk. Therefore,
there exists h = (hs)s∈R+

∈ Hk such that limn→∞ hn = h. Based
n an argument similar to (A.8), one can show that limn→∞ hn,s =

s, for any s ∈ R+. Since k(s, ·) ∈ Hk and the elements of Hk are
ntegrable, due to the dominated convergence theorem, we have

s = lim
n→∞

∫ n

τ

k(s, t)dt

= lim
n→∞

∫
∞

τ

k(s, t)1[τ ,n](t)dt

=

∫
∞

τ

k(s, t)dt.

(A.20)

n other words, one has h =
∫

∞

τ
k(·, t)dt . Hence, from

limn→∞ hn = h and the above discussion, we have ∫
∞

τ

k(·, t)dt
2

Hk

= lim
n→∞

∥hn∥
2
Hk

= lim
n→∞

∫ n

τ

∫ n

τ

k(s, t)dsdt

= lim
n→∞

∫
∞

τ

∫
∞

τ

k(s, t)1[τ ,n]2 (s, t)dsdt

=

∫
∞

τ

∫
∞

τ

k(s, t)dsdt,

(A.21)

here the last equality is according to the dominated conver-
ence theorem. Let g = (g ) be an arbitrary element of H .
t t∈R+ k
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ased on same arguments as before, one can see that∫
∞

τ

k(·, t)dt,g
⟩
Hk

= lim
n→∞

⟨hn, g⟩Hk

= lim
n→∞

⟨∫ n

τ

k(·, t)dt, g
⟩
Hk

= lim
n→∞

∫ n

τ

gtdt

= lim
n→∞

∫
∞

τ

gt1[τ ,n](t)dt

=

∫
∞

τ

gtdt,

(A.22)

here the last equality is due to the dominated convergence
heorem and the fact that g is integrable. □

.2. Proof of Corollary 5

In (11), set τ , τ , and g respectively to τ 1, τ 1, g =
∫

[τ2,τ2]

k(·, s)ds. Accordingly, we have we⟨ ∫ τ1

τ1

k(·, t)dt,
∫ τ2

τ2

k(·, s)ds
⟩
Hk

=

∫ τ1

τ1

∫ τ2

τ2

k(t, s)dsdt.

(A.23)

In this equation, since the kernel is integrable, the right-hand side
is well-defined. Moreover, due to the Fubini theorem (Stein &
Shakarchi, 2009), it equals to the other integrals in (12). □

A.3. Proof of Lemma 6

We know that k(·, t) ∈ Hk, for each t = τ , . . . , τ . If τ

is finite, one can see that
∑

τ≤t≤τ k(·, t) belongs to Hk, hence,

t is well-defined. Moreover, using the definition of norm and
he reproducing property, one can show (13). Similarly, (14) is
oncluded from the reproducing property. Now, we consider the
ase τ = ∞. For n ≥ τ , we define fn ∈ Hk as fn = (fn,s)s∈Z+

:=∑
τ≤t≤n k(·, t). Let ε be an arbitrary positive real scalar, and Nε be

the smallest non-negative integer such that
∑

s,t≥Nε
|k(s, t)| ≤ ε.

Note that since k is integrable, there exist such Nε for any positive
ε. Now, let n,m ∈ N such that n,m ≥ Nε and without loss of
generality, we assume n ≥ m. Based on the previous case, we
know that

∥fn − fm∥
2
Hk

=

 n∑
t=m+1

k(·, t)
2

Hk

=

∑
m+1≤s,t≤n

k(s, t)

≤

∑
Nε≤s,t

|k(s, t)| ≤ ε2.

(A.24)

Accordingly, we have ∥fn− fm∥Hk
≤ ε, which implies that {fn}n≥τ

is a Cauchy sequence and hence convergent. Let f = (fs)s∈Z+

enote the limit of this sequence. For any s ∈ Z+, we know that

fs − fn,s| = |⟨f − fn,ks⟩Hk
| ≤ k(s, s)

1
2 ∥f − fn∥Hk

, (A.25)

nd consequently, we have limn→∞ fn,s = fs. Subsequently, since
k(s, ·) is absolutely integrable, it follows that

fs = lim
n→∞

∑
k(s, t) =

∑
k(s, t), (A.26)
τ≤t≤n τ≤t

8

i.e., f =
∑

τ≤t k(·, t). Moreover, we have∑
τ≤t

k(·, t)
2

Hk

= lim
n→∞

∥fn∥2
Hk

= lim
n→∞

∑
τ≤s,t≤n

k(s, t) =

∑
τ≤s,t

k(s, t),
(A.27)

here the last equality is due to the dominated convergence
heorem and being k integrable. For any g = (gt )t∈Z+

∈ Hk, we
now that g is integrable, i.e.,

∑
t∈Z+

|gt | < ∞. Therefore, from
imn→∞ fn = f, we have

τ≤t

gt = lim
n→∞

∑
τ≤t≤n

gt

= lim
n→∞

⟨ ∑
τ≤t≤n

k(·, t), g
⟩
Hk

= lim
n→∞

⟨fn, g⟩Hk

= ⟨f, g⟩Hk

=

⟨∑
τ≤t

k(·, t), g
⟩
Hk

.

(A.28)

his concludes the proof. □

References

Ahmadi, Amir Ali, & El Khadir, Bachir (2020). Learning dynamical systems with
side information (short version). Proceedings of Machine Learning Research,
120, 718–727.

Andersen, Martin S., & Chen, Tianshi (2020). Smoothing splines and rank
structured matrices: Revisiting the spline kernel. SIAM Journal on Matrix
Analysis and Applications, 41(2), 389–412.

Aronszajn, Nachman (1950). Theory of reproducing kernels. Transactions of the
American Mathematical Society, 68(3), 337–404.

Berlinet, Alain, & Thomas-Agnan, Christine (2011). Reproducing kernel Hilbert
spaces in probability and statistics. Springer Science & Business Media.

Bisiacco, Mauro, & Pillonetto, Gianluigi (2020a). Kernel absolute summability is
sufficient but not necessary for RKHS stability. SIAM Journal on Control and
Optimization, 58(4), 2006–2022.

Bisiacco, Mauro, & Pillonetto, Gianluigi (2020b). On the mathematical
foundations of stable RKHSs. Automatica, 118, Article 109038.

Carmeli, Claudio, De Vito, Ernesto, & Toigo, Alessandro (2006). Vector valued re-
producing kernel Hilbert spaces of integrable functions and Mercer theorem.
Analysis and Applications, 4(4), 377–408.

Chen, Tianshi (2018a). Continuous-time DC kernel – a stable generalized
first-order spline kernel. IEEE Transactions on Automatic Control, 63(12),
4442–4447.

Chen, Tianshi (2018b). On kernel design for regularized LTI system identification.
Automatica, 90, 109–122.

Chen, Tianshi, Andersen, Martin S., Ljung, Lennart, Chiuso, Alessandro, &
Pillonetto, Gianluigi (2014). System identification via sparse multiple kernel-
based regularization using sequential convex optimization techniques. IEEE
Transactions on Automatic Control, 59(11), 2933–2945.

hen, Tianshi, Ohlsson, Henrik, & Ljung, Lennart (2012). On the estimation
of transfer functions, regularizations and Gaussian processes – Revisited.
Automatica, 48(8), 1525–1535.

Chen, Tianshi, & Pillonetto, Gianluigi (2018). On the stability of reproducing
kernel Hilbert spaces of discrete-time impulse responses. Automatica, 95,
529–533.

hiuso, A., & Pillonetto, G. (2019). System identification: A machine learning
perspective. Annual Review of Control, Robotics, and Autonomous Systems, 2,
281–304.

ucker, Felipe, & Smale, Steve (2002a). Best choices for regularization pa-
rameters in learning theory: On the bias-variance problem. Foundations of
Computational Mathematics, 2(4), 413–428.

ucker, Felipe, & Smale, Steve (2002b). On the mathematical foundations of
learning. American Mathematical Society, 39(1), 1–49.

arwish, Mohamed Abdelmonim Hassan, Pillonetto, Gianluigi, & Tóth, Roland
(2018). The quest for the right kernel in Bayesian impulse response
identification: The use of OBFs. Automatica, 87, 318–329.

inuzzo, Francesco (2015). Kernels for linear time invariant system identifica-
tion. SIAM Journal on Control and Optimization, 53(5), 3299–3317.

veritt, Niklas, Bottegal, Giulio, & Hjalmarsson, Håkan (2018). An empirical Bayes
approach to identification of modules in dynamic networks. Automatica, 91,
144–151.

http://refhub.elsevier.com/S0005-1098(22)00594-5/sb1
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb1
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb1
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb1
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb1
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb2
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb2
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb2
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb2
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb2
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb3
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb3
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb3
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb4
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb4
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb4
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb5
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb5
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb5
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb5
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb5
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb6
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb6
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb6
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb7
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb7
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb7
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb7
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb7
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb8
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb8
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb8
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb8
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb8
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb9
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb9
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb9
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb10
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb10
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb10
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb10
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb10
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb10
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb10
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb11
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb11
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb11
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb11
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb11
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb12
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb12
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb12
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb12
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb12
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb13
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb13
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb13
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb13
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb13
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb14
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb14
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb14
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb14
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb14
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb15
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb15
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb15
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb16
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb16
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb16
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb16
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb16
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb17
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb17
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb17
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb18
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb18
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb18
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb18
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb18


M. Khosravi and R.S. Smith Automatica 148 (2023) 110728

F

R

R

Z

Z

M
o
g
P
J
l
o
t

ujimoto, Yusuke, Maruta, Ichiro, & Sugie, Toshiharu (2017). Extension of first-
order stable spline kernel to encode relative degree. IFAC-PapersOnLine, 50(1),
14016–14021.

Fujimoto, Yusuke, & Sugie, Toshiharu (2018). Kernel-based impulse response
estimation with a priori knowledge on the DC gain. IEEE Control Systems
Letters, 2(4), 713–718.

Kailath, Thomas (1971). RKHS approach to detection and estimation problems–
I: Deterministic signals in Gaussian noise. IEEE Transactions on Information
Theory, 17(5), 530–549.

Kanagawa, Motonobu, Hennig, Philipp, Sejdinovic, Dino, & Sriperum-
budur, Bharath K. (2018). Gaussian processes and kernel methods: A
review on connections and equivalences. arXiv preprint arXiv:1807.02582.

Khosravi, Mohammad, Iannelli, Andrea, Yin, Mingzhou, Parsi, Anilkumar, &
Smith, Roy S. (2020). Regularized system identification: A hierarchical
Bayesian approach. IFAC-PapersOnLine, 53(2), 406–411, IFAC World Congress
2020.

Khosravi, Mohammad, & Smith, Roy S. (2019). Kernel-based identification of
positive systems. In Conference on Decision and Control (pp. 1740–1745).

Khosravi, Mohammad, & Smith, Roy S. (2021a). Convex nonparametric formu-
lation for identification of gradient flows. IEEE Control Systems Letters, 5(3),
1097–1102.

Khosravi, Mohammad, & Smith, Roy S. (2021b). Kernel-based identification with
frequency domain side-information. arXiv preprint arXiv:2111.00410.

Khosravi, Mohammad, & Smith, Roy S. (2021c). Kernel-based impulse response
identification with side-information on steady-state gain. arXiv preprint
arXiv:2111.00409.

Khosravi, Mohammad, & Smith, Roy S. (2021d). Nonlinear system identification
with prior knowledge on the region of attraction. IEEE Control Systems Letters,
5(3), 1091–1096.

Khosravi, Mohammad, & Smith, Roy S. (2021e). On robustness of kernel-based
regularized system identification. IFAC-PapersOnLine, 54(7), 749–754, IFAC
Symposium on System Identification.

Khosravi, Mohammad, & Smith, Roy S. (2021f). Regularized identification with
internal positivity side-information. arXiv preprint arXiv:2111.00407.

Khosravi, Mohammad, Yin, Mingzhou, Iannelli, Andrea, Parsi, Anilkumar, &
Smith, Roy S. (2020). Low-complexity identification by sparse hyperparam-
eter estimation. IFAC-PapersOnLine, 53(2), 412–417, IFAC World Congress
2020.

Kimeldorf, George S., & Wahba, Grace (1970). A correspondence between
Bayesian estimation on stochastic processes and smoothing by splines. The
Annals of Mathematical Statistics, 41(2), 495–502.

Ljung, Lennart (1999). System identification: Theory for the user. Prentice Hall.
Ljung, Lennart (2010). Perspectives on system identification. Annual Reviews in

Control, 34(1), 1–12.
Ljung, Lennart, Chen, Tianshi, & Mu, Biqiang (2020). A shift in paradigm for

system identification. International Journal of Control, 93(2), 173–180.
Lukić, Milan, & Beder, Jay (2001). Stochastic processes with sample paths in

reproducing kernel Hilbert spaces. Transactions of the American Mathematical
Society, 353(10), 3945–3969.

Marconato, Anna, Schoukens, Maarten, & Schoukens, Johan (2016). Filter-
based regularisation for impulse response modelling. IET Control Theory &
Applications, 11(2), 194–204.

Mu, Biqiang, Chen, Tianshi, & Ljung, Lennart (2018a). Asymptotic properties of
generalized cross validation estimators for regularized system identification.
IFAC-PapersOnLine, 51(15), 203–208.

Mu, Biqiang, Chen, Tianshi, & Ljung, Lennart (2018b). On asymptotic proper-
ties of hyperparameter estimators for kernel-based regularization methods.
Automatica, 94, 381–395.

Mu, Biqiang, Chen, Tianshi, & Ljung, Lennart (2021). On the asymptotic opti-
mality of cross-validation based hyper-parameter estimators for regularized
least squares regression problems. arXiv preprint arXiv:2104.10471.

Parzen, Emanuel (1959). Statistical inference on time series by Hilbert space
methods, I: Technical Report No. 23, Department of Statistics, Stanford
University.

Parzen, Emanuel (1961). An approach to time series analysis. The Annals of
Mathematical Statistics, 951–989.

Peypouquet, Juan (2015). Convex optimization in normed spaces: Theory, methods
and examples. Springer.

Pillonetto, Gianluigi, Chen, Tianshi, Chiuso, Alessandro, Nicolao, Giuseppe De,
& Ljung, Lennart (2016). Regularized linear system identification using
atomic, nuclear and kernel-based norms: The role of the stability constraint.
Automatica, 69, 137–149.

Pillonetto, Gianluigi, & Chiuso, Alessandro (2015). Tuning complexity in regular-
ized kernel-based regression and linear system identification: The robustness
of the marginal likelihood estimator. Automatica, 58, 106–117.

Pillonetto, Gianluigi, Chiuso, Alessandro, & De Nicolao, Giuseppe (2019). Stable
spline identification of linear systems under missing data. Automatica, 108,
Article 108493.

Pillonetto, Gianluigi, & De Nicolao, Giuseppe (2010). A new kernel-based
approach for linear system identification. Automatica, 46(1), 81–93.
9

Pillonetto, Gianluigi, Dinuzzo, Francesco, Chen, Tianshi, De Nicolao, Giuseppe,
& Ljung, Lennart (2014). Kernel methods in system identification, machine
learning and function estimation: A survey. Automatica, 50(3), 657–682.

Pillonetto, Gianluigi, & Scampicchio, Anna (2021). Sample complexity and
minimax properties of exponentially stable regularized estimators. IEEE
Transactions on Automatic Control.

Prando, Giulia, Chiuso, Alessandro, & Pillonetto, Gianluigi (2017). Maximum
entropy vector kernels for MIMO system identification. Automatica, 79,
326–339.

isuleo, Riccardo Sven, Bottegal, Giulio, & Hjalmarsson, Håkan (2017). A non-
parametric kernel-based approach to Hammerstein system identification.
Automatica, 85, 234–247.

isuleo, Riccardo Sven, Lindsten, Fredrik, & Hjalmarsson, Håkan (2019). Bayesian
nonparametric identification of Wiener systems. Automatica, 108, Article
108480.

Scandella, Matteo, Mazzoleni, Mirko, Formentin, Simone, & Previdi, Fabio (2020).
A note on the numerical solutions of kernel-based learning problems. IEEE
Transactions on Automatic Control, 66(2), 940–947.

Scandella, Matteo, Mazzoleni, Mirko, Formentin, Simone, & Previdi, Fabio (2021).
Kernel-based identification of asymptotically stable continuous-time linear
dynamical systems. International Journal of Control, 1–14.

Schoukens, Johan, & Ljung, Lennart (2019). Nonlinear system identification: A
user-oriented road map. IEEE Control Systems Magazine, 39(6), 28–99.

Stein, Elias M., & Shakarchi, Rami (2009). Real analysis: Measure theory,
integration, and Hilbert spaces. Princeton University Press.

Wahba, Grace (1990). Spline models for observational data. SIAM.
Zadeh, L. (1956). On the identification problem. IRE Transactions on Circuit Theory,

3(4), 277–281.
Zheng, Man, & Ohta, Yoshito (2021). Bayesian positive system identification:

Truncated Gaussian prior and hyperparameter estimation. Systems & Control
Letters, 148, Article 104857.

orzi, Mattia (2021). A second-order generalization of TC and DC kernels. arXiv
preprint arXiv:2109.09562.

orzi, Mattia, & Chiuso, Alessandro (2018). The harmonic analysis of kernel
functions. Automatica, 94, 125–137.

Mohammad Khosravi is an assistant professor at Delft
Center for Systems and Control (DCSC), Delft University
of Technology. He received a B.Sc. in electrical engi-
neering and a B.Sc. in mathematical sciences from the
Sharif University of Technology, Tehran, Iran, in 2011.
He obtained a postgraduate diploma in mathematics
from ICTP, Trieste, Italy, in 2012. He was a research
assistant in the mathematical biology group at Institute
for Research in Fundamental Sciences, Iran, from 2012
to 2014. He received his MASc degree in electrical
and computer engineering from Concordia University,

ontreal, Canada, in 2016. He obtained his Ph.D. from the Swiss Federal Institute
f Technology (ETH), Zürich, in 2022. He has won several awards, including the
old medal of the National Mathematics Olympiad, the Outstanding Student
aper Award in CDC 2020, and the Outstanding Reviewer Award for IEEE
ournal of Control Systems Letters. His research interests involve data-driven and
earning-based methods in modeling, model reduction, optimization, and control
f dynamical systems and their applications in buildings, energy, industry, and
hermodynamic and power systems.

Roy S. Smith is a professor of Electrical Engineering at
the Swiss Federal Institute of Technology (ETH), Zürich.
Prior to joining ETH in 2011, he was on the faculty of
the University of California, Santa Barbara, from 1990
to 2010. His Ph.D. is from the California Institute of
Technology (1990) and his undergraduate degree is
from the University of Canterbury (1980) in his native
New Zealand. He has been a long-time consultant to
the NASA Jet Propulsion Laboratory and has industrial
experience in automotive control and power system
design. His research interests involve the modeling,

identification, and control of uncertain systems. Particular control application
domains of interest include chemical processes, flexible structure vibration,
spacecraft and vehicle formations, aerodynamic control of kites, automotive
engines, Mars aeromaneuvering entry design, building and energy hub control,
and thermoacoustic machines. He is a Fellow of the IEEE and the IFAC, an
Associate Fellow of the AIAA, and a member of SIAM.

http://refhub.elsevier.com/S0005-1098(22)00594-5/sb19
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb19
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb19
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb19
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb19
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb20
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb20
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb20
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb20
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb20
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb21
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb21
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb21
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb21
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb21
http://arxiv.org/abs/1807.02582
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb23
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb23
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb23
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb23
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb23
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb23
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb23
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb24
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb24
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb24
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb25
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb25
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb25
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb25
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb25
http://arxiv.org/abs/2111.00410
http://arxiv.org/abs/2111.00409
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb28
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb28
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb28
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb28
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb28
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb29
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb29
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb29
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb29
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb29
http://arxiv.org/abs/2111.00407
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb31
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb31
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb31
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb31
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb31
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb31
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb31
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb32
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb32
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb32
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb32
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb32
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb33
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb34
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb34
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb34
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb35
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb35
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb35
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb36
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb36
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb36
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb36
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb36
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb37
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb37
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb37
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb37
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb37
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb38
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb38
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb38
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb38
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb38
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb39
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb39
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb39
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb39
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb39
http://arxiv.org/abs/2104.10471
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb41
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb41
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb41
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb41
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb41
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb42
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb42
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb42
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb43
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb43
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb43
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb44
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb44
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb44
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb44
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb44
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb44
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb44
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb45
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb45
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb45
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb45
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb45
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb46
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb46
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb46
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb46
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb46
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb47
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb47
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb47
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb48
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb48
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb48
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb48
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb48
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb49
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb49
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb49
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb49
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb49
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb50
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb50
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb50
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb50
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb50
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb51
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb51
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb51
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb51
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb51
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb52
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb52
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb52
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb52
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb52
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb53
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb53
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb53
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb53
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb53
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb54
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb54
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb54
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb54
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb54
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb55
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb55
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb55
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb56
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb56
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb56
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb57
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb58
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb58
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb58
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb59
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb59
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb59
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb59
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb59
http://arxiv.org/abs/2109.09562
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb61
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb61
http://refhub.elsevier.com/S0005-1098(22)00594-5/sb61

	The existence and uniqueness of solutions for kernel-based system identification
	Introduction
	Notation and Preliminaries
	Kernel-Based System Identification
	Continuity of Convolution Operators
	Conclusion
	Appendix
	Proof of Lemma 4 
	Proof of Corollary 5 
	Proof of Lemma 6 

	References


