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We investigate the nonlinear dynamics of microcantilevers. We demonstrate mechanical stiffening
of the frequency response at large amplitudes, originating from the geometric nonlinearity. At strong
driving the cantilever amplitude is bistable. We map the bistable regime as a function of drive
frequency and amplitude, and suggest several applications for the bistable microcantilever, of which
a mechanical memory is demonstrated. © 2010 American Institute of Physics.
�doi:10.1063/1.3511343�

Microcantilevers are widely applied as transducers in
sensitive instrumentation,1,2 with scanning probe microscopy
as a clear example. Typically, the cantilever is operated in the
linear regime, i.e., it is driven by a harmonic force at mod-
erate strength, and its response is modulated by the param-
eter to be measured. In clamped-clamped mechanical resona-
tors, additional applications have been proposed based on
nonlinear behavior. Nonlinearity in clamped-clamped reso-
nators is due to the extension of the beam, which results in
frequency pulling and bistability at strong driving, and can
be described by a Duffing equation.3 Applications which em-
ploy this bistability are, e.g., elementary mechanical comput-
ing functions.4,5 Since a cantilever beam is clamped only at
one side, it can have a nonzero displacement without extend-
ing. One would therefore not expect a Duffing-like behavior
for a cantilever beam. Nonlinear effects of a different origin
have been observed in scanning probe microscopy, due to
interactions between the cantilever and its environment. Tip-
sample interactions either weaken or stiffen the cantilever
response, depending on the strength of the softening Van der
Waals forces and electrostatic interactions and the hardening
short range interactions.6,7 Weakening also occurs when the
cantilever is driven by an electrostatic force.8 Besides non-
linear interactions with the environment, theoretical studies
predict intrinsic nonlinear behavior of cantilever beams,8–11

of which indications have been reported.11,12

In this paper, we report a detailed experimental analysis
on the nonlinear mechanics of microcantilevers. It is shown
that a hardening geometric nonlinearity dominates over soft-
ening nonlinear inertia, which effectively leads to a stiffening
frequency response for the fundamental mode. At large am-
plitudes, the mechanical stiffening results in frequency pull-
ing and ultimately in intrinsic bistability of the cantilever. We
study the bistability in detail by measuring the cantilever
response as a function of the frequency and amplitude, and
compare the experimental observations with theory. A good
agreement is found. We suggest several applications for the
bistable cantilever, and as an example we demonstrate that
bit operations can be implemented in the bistable cantilever.

Experiments are performed on thin cantilevers with a
rectangular cross section, w�h, fabricated from low-
pressure chemical vapor deposited silicon nitride using elec-
tron beam lithography and an isotropic reactive ion etching

release process. Figure 1�a� shows a scanning electron mi-
crograph of a fabricated cantilever. The cantilever is
mounted on a piezoactuator and placed in a vacuum chamber
at a pressure of ~10−4 mbar. At this pressure, the cantilever
operates in the intrinsic damping regime. An optical deflec-
tion technique is deployed to detect the displacement of the
driven cantilever, and the frequency response is measured
using a network analyzer, see Fig. 1�b�.

Figure 1�c� shows frequency response lines for a weakly
and strongly driven cantilever with length L=40 �m and
w�h=8 �m�200 nm. For weak driving the response fits
a damped driven harmonic oscillator, with f0=94.35 kHz
and Q�3000. Figure 1�c� also shows the response when
driven at increasing strength: the resonance peak shifts to a
higher value and the response becomes bistable. It resembles
the response of a clamped-clamped beam driven in the non-
linear regime. A more detailed measurement is presented in
Figs. 2�a� and 2�b�. Here the magnitude of the resonator re-
sponse, �A�, is depicted �color scale� as a function of the drive
frequency and strength. The frequency is swept forward �i.e.,
from a low to a high frequency, FW� and backward �BW�,
and after each frequency response measurement the drive
strength is increased. Parameters which result in a hysteretic
�HY� response are visualized by subtracting forward and
backward traces, as shown in Fig. 2�c�.

The theory of nonlinear oscillations of a cantilever beam
has been developed in Ref. 9. Using the extended Hamilton
principle the equation of motion for the displacement ũ is
derived

a�Electronic mail: w.j.venstra@tudelft.nl.

|A|

FIG. 1. �Color online� �a� Scanning electron micrograph of a silicon nitride
cantilever; �b� experimental setup; �c� response lines for several drive volt-
ages �forward frequency sweeps�. A damped driven harmonic oscillator fit is
shown for the weakly driven cantilever. The line at f =94.5 represents a
response line along the �decreasing� drive strength axis. The arrows indicate
the switching direction.
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The dots and primes denote differentiation to time t̃ and
the arc length s of the cantilever, respectively, and D is the
bending rigidity, � the density, and �̃ is the damping
parameter. The piezoactuator generates a displacement

U=d33V cos��̃t�, where V is the drive voltage and d33 the
piezoelectric coefficient. The resulting force on the cantilever

equals F̃= Ü�wh=−�̃2�whd33V cos��̃t�. Equation �1� is
transformed to a dimensionless form by substituting u= ũ /h,
x=s /L, l=d33V /h, �=��L4 / �D��, and �= �h /L�2. The time t̃

and drive frequency �̃ are scaled using �=L2�wh /D.
Applying the Galerkin procedure8,13 for the first mode
�u=a�t�	�x�� gives:

ä + 
2a + �ȧ + 40.44�a3 + 4.60��aȧ2 + a2ä� =

− 0.78l�2 cos��t� . �2�

Here, a is the normalized coordinate, and 
 the dimension-
less resonance frequency; for the first mode 
=3.52. The
cubic term in a represents the hardening geometric nonlin-
earity, and the fifth term represents nonlinear inertia which
softens the frequency response.8 The values 40.44, 4.60, and
0.78 are obtained by integrating the linear mode shapes,
	�x�.14 Equation �2� can be solved using the method of aver-

aging or the method of multiple scales10 and the amplitude,
A, can be implicitly written as

A =
l�2

6.57�15.16�A2 − 
� + 
2�1 – 1.15�A2��2 + 1.64�2
2
.

�3�

This equation is solved self-consistently to obtain the reso-
nator amplitude, which is normalized by the drive strength l
to obtain the frequency response. Using the experimentally
obtained linear resonance frequency, Q-factor and the dimen-
sions as input parameters, the frequency responses are calcu-
lated as a function of the drive strength. Figures 2�d� and 2�e�
show the simulated stable solutions, which correspond to the
resonator response to a forward and backward frequency
sweep. The model captures the observed behavior well,
where the piezoelectric coupling parameter is the only free
parameter. Both the calculations and the experiments indi-
cate that the geometric nonlinearity dominates over the iner-
tial nonlinearity. Analyzing Eq. �3� in detail shows that the
nonlinearity depends on the mode shape, 	�x�, and the
squared aspect ratio, �. For the fundamental mode, the intrin-
sic nonlinearity in cantilevers always leads to stiffening of
the frequency response. In contrast, the calculation shows
that the same nonlinearity results in a weakening effect for
higher modes.15

The intrinsic mechanical bistability allows cantilever
applications similar to the ones implemented in clamped-
clamped resonators. As an example, we demonstrate me-
chanical bit operations in a cantilever with dimensions
L�w�h=30 �m�8 �m�150 nm, with a linear reso-
nance frequency f0=193.49 kHz and Q�5800 in vacuum.
For this cantilever, a measurement of the hysteretic regime is
shown in Fig. 3�a�.16 Bit operations can be performed by

FIG. 2. �Color online� Frequency pulling and bistability in a cantilever,
measurement �left� and calculation by solving Eq. �3� �right�. The color
scale represents the magnitude of the frequency response, �A�. The drive
frequency is swept from a low to a high value ��a� and �d�� and vice versa
��b� and �e��. Panels �c� and �f� show the bistable regime, obtained by sub-
tracting the forward from the backward response. As the piezoelectric cou-
pling parameter is not known, the y-axis in the calculations has been scaled
to match the experimental values.

FIG. 3. �Color online� �a� Hysteretic regime for a 30 �m�8 �m
�150 nm cantilever. �b� Drive strength sweep at fixed frequency, and indi-
cation of the modulation to implement the bit. �c� Mechanical memory in a
bistable cantilever beam: drive strength �lower panel� and cantilever re-
sponse �upper panel�.
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modulating the drive frequency or the drive strength—or a
combination thereof—across the hysteretic regime, a scheme
that was also deployed to implement nanomechanical
memory in clamped-clamped beams.4,5 The principle is indi-
cated by the arrows in Fig. 3�a�. The drive strength is modu-
lated by varying the voltage on the piezo at a fixed fre-
quency, as shown in Fig. 3�b�. A backward sweep in the drive
strength follows the high-amplitude state, similar to a for-
ward sweep in drive frequency. This intuitively becomes
clear in Fig. 1�c�, where the transition from a high to a low
amplitude occurs during a backward sweep in the drive
strength, as is indicated by the red line along the fixed fre-
quency at f =94.5 kHz. During a forward sweep in the drive
strength the resonator follows the low-amplitude stable
branch, as with a backward sweep in frequency.

To implement the bit, the cantilever is driven in the
bistable regime at f =193.50 kHz and Vpiezo=10 mV. To set
and reset the cantilever bit, the drive voltage is modulated by
2 mV around the operating point, as indicated by the arrows
in Fig. 3�b�. Starting at low amplitude, “0” in Fig. 3�c�, a
high-amplitude “1” is written by temporary increasing the
drive voltage to 12 mV. The cantilever switches to a high
vibrational amplitude and remains in this state after the drive
voltage is set back to the operating point. Next, the drive
strength is lowered to 8 mV which resets the cantilever to a
low amplitude oscillation, corresponding to “0.”

Bistability of cantilever beams can be used for various
purposes besides the mechanical memory application de-
scribed here. For example, the hysteretic frequency response
facilitates the readout of cantilever arrays in dissipative en-
vironments by employing the scheme described earlier.17

Bistability may also open the way to use a cantilever as its
own bifurcation amplifier18–21 in for example scanning probe
microscopy, thereby enhancing the sensitivity to external
stimuli. Finally, we note that despite scaling with the aspect
ratio squared, �, the bistable regime is also accessible for
single-clamped nanoscale resonators such as carbon
nanotubes.22

In conclusion, we investigated the nonlinear oscillations
of microcantilever beams. Mechanical stiffening is observed
which results in frequency pulling and bistability. The ex-
periments are in excellent agreement with calculated nonlin-
ear response. Several applications for the bistable cantilever

are suggested, of which a mechanical memory is demon-
strated.
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