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SHORT SUMMARY

This study investigates the potential of path-based incentives to mitigate congestion and reduce
emissions in urban transport networks using a multi-objective optimisation problem with a
budget limit. A column generation-based solution technique is developed that finds a new path
between each origin-destination pair at each iteration, and stops when the objective value does
not change more than a threshold at two consecutive iterations. Three different scenarios are
defined based on the objective function: minimising total travel time (T'TT), total emissions
(TE), and integrated minimisation of both. Numerical results in the Sioux Falls network
show that TTT and TE are conflicting objectives under our modeling assumptions: improving
one worsens the other. Nonetheless, the integrated scenario demonstrates the capacity to
harmonize both objectives, thereby achieving a reduction in both TTT and TE.

Keywords: Incentive scheme; Traffic assignment; System optimum; Traffic management.

1 INTRODUCTION

Providing drivers with sensible route advice is considered a successful traffic management tool,
with the potential to reduce congestion (Kaysi, 1993; Fu, 2001; Cheng et al., 2020; Menelaou
et al., 2021) and, thereby, improve network efficiency and sustainability (Sunio & Schmdcker,
2017; Andersson et al., 2018), although it may increase individual travel cost (distance and/or
time) for some users (van Essen et al., 2016). This implies that some drivers may need to follow
routes longer than desirable for the benefit of the community, translating to system optimum
(SO) condition, which is in contrast to user equilibrium (UE) aiming at achieving the highest
individual benefits (Mahmassani & Peeta, 1993). Thus, a stimulus, e.g., road pricing or incentive,
is needed to encourage such changes in drivers’ behaviour. Recently, incentivising schemes for
voluntary participation (Ettema et al., 2010; Leblanc & Walker, 2013; Sun et al., 2020; Cohen-
Blankshtain et al., 2022) have gained more popularity due to public dissatisfaction (May et al.,
2010) and inequitable welfare distribution across the population (Levinson, 2010; Vosough et al.,
2022) resulted from road pricing.

Bie & van Arem (2009) investigated the impact of applying path incentives to designated safe
routes on traffic network performance. Their numerical results indicated that, depending on the
incentive program setup, the incentive scheme can be beneficial or not. Mei et al. (2017) designed
a personalized incentive framework generated by processing travel information through a decision
tree and evolutionary game theory to adjust the mode and route choices of travellers while taking
into account a balance between multiple goals. Xiong et al. (2020) employed personalized mon-
etary incentives to adjust the departure time and route choice of travellers to minimize energy
consumption. They observed that by offering an incentive 27% of travellers would change their
routes while 20% would change their departure time, and the system can achieve 8.7% energy
saving. Finally, Ghafelebashi et al. (2023) proposed a path-based personalised incentive chosen



from a predetermined set to minimise total travel time (TTT) under various budget limits and
user participation levels of the incentive scheme. They showed that the value of saved time was
usually larger than the cost of offering incentives, however, for large budget limits the value of
saved time might be smaller than the amount spent on incentives.

Recently, Luan et al. (2023) conducted a comparison between link- and path-based incentives
to analyse their potential to reduce TTT, by formulating single-level optimisation problems to
compare the two types of incentives under budget limits and various participation levels of drivers.
Their numerical examples in two transportation networks showed that in most cases path-based
incentives outperformed link-based incentives.

Traditionally, an SO condition prioritises the minimisation of TTT; however, with the recent
growth in population and urbanisation, air pollution has emerged as a significant challenge in cities
that needs to be addressed. However, TTT and total emissions (TE) are conflicting objectives;
minimising one leads to an increase in the other. Hence, jointly optimising them requires special
attention to provide a balance between TTT and TE. In this work, we bridge this fundamental
gap as follows:

1. We introduce an optimisation problem aimed at maximising the efficiency of the network, i.e.,
jointly minimising TTT and TE, under path-based incentive schemes within the constraints
of a limited budget; and

2. we propose an innovative solution algorithm capable of solving path-based incentive optimi-
sation problems efficiently in medium-sized transportation networks.

2 METHODOLOGY

In this section, we formulate the path-based problem as a single-level optimisation problem to
determine the optimal incentive schemes under budget limitations.

2.1 Path-based incentive optimisation problems

We represent a transportation network by a graph (V, A), where V' is the set of nodes and A C VxV
is the set of links. Let W C V x V be the set of OD pairs, and let the travel demand, g¢,,, be
described by the fixed number of vehicles travelling between w € W.! Table 1 defines all the
parameters and variables used in the proposed formulation.

The single-level optimisation problem with a budget limit, B, is formulated as follows:

min Z(f,y) (1)
s.t.

Yper, [y = qu Yw € W (2)
ZaeA(Sgta - Z/p — Uy >0 Vp € Py,,weW (3)
(zaeAégta_yp_uw)fZZ]:O VZJEPUH’IUEW (4)
YwewXper, oy’ < B (5)
Loq = EweWEpePw(sgfg) Ya € A (6)
ta = ta(xa) Ya € A (7)
fyuz=0 (8)

The objective function, Z, minimises transportation externalities, e.g., TTT and/or TE wrt. path
flows and incentives, f and y. Constraint (2) guarantees that vehicles reach their destinations,
Constraints (3) and (4) are the complementarity constraints ensuring Wardrop’s first principle with
generalised travel cost that is defined as the path travel time minus path incentive (X,e408t, —
y?), Constraint (5) imposes the budget limitation, Constraint (6) maps path flows to link flows,
Constraint (7) is the link cost function, defined as a general nonlinear function of the link flow z,
and Constraint (8) ensures non-negativity.

1We acknowledge the potential risk of induced car demand associated with incentive schemes. In our proposed
method, we do not offer high incentives that could generate revenue for drivers, i.e., negative generalised travel cost.
This restraint is guaranteed by Constraint (3). By refraining from assigning high incentives, we can assume that
the attraction of travellers from other modes to car trips is prevented, leading to inelastic demand, qy,.



Table 1: Notation for variables and parameters

Symbol | Definition
A Set of links
\% Set of nodes
w Set of all OD pairs
Quw Travel demand between OD pair w € W
P, Set of all paths between OD pair w € W
ta Travel time on link ¢ € A
g Vehicle flows on link a € A
b Vehicle flows on path p € P, between pair w € W
yP Incentive on path p € P, between pair w € W
B Total budget available for the path-based incentive
Uy Minimum travel time between OD pair w € W
or Link-path incident matrix
@ Weight of travel time in the objective function

2.2  Solution algorithm

In simple networks, where the number of paths is limited, the incentivised UE problem with a
budget limit can be solved directly as a one-time optimization by enumerating all paths. In the case
of a large-scale transportation network, the direct approach is not useful since it is computationally
expeunsive to enumerate all the paths of the network (Niroumand et al., 2023). Therefore, a column
generation approach is developed to generate new paths as required while the algorithm proceeds.

The following column generation method considers each path as a column, adds new columns
at each iteration, and stops when the minimum iteration number, IV, is reached and the relative
difference of the objective value in two consecutive iterations falls below a predefined small value e.
The steps of the proposed column generation algorithm are as follows:

1. Initialisation:

(a) Define values for N and e.

(b) For each OD pair w € W, set P, = ().

(c) Setn=1,y=0, f=0, x° =x(f), and t° = t(x°).
2. Shortest path: for each OD pair w € W,

(a) Find the shortest path p such that p ¢ P, and

(b) set P, = P, Up.

3. User equilibrium: solve the optimisation problem, and find traffic flows f, and correspond-
ing incentive values y.

4. Updating: set x” = x(f) and t" = t(x").
5. Stopping criteria:

= _ |EaeA(mgtg)—zaeA(zgiltgilﬂ
(a) Calculate € = A .

(b) If e < e and n > N stop, otherwise set n =n + 1 and go to step 2.

Note that we generate a new path that does not belong to the current active path set at each
iteration of the column generation process to prevent getting trapped around a local optimum.
However, such a path cannot be found by solving a standard shortest path problem. We, therefore,
solve the mixed integer linear problem shown in equations (9)—(13) to find the shortest path between
each OD pair while imposing a high penalty for choosing a path between OD pair w € W that
already exists in the current active path set.



Aw = mﬁin Yaea(Bata) + Epeﬁw (Mp?) 9)

s.t.

Saea | 8 = Ba |21 p" Vp € Py, (10)
41 if v is the origin node

YaeAstart(a)=vBa — XacAend(a)=vBa = § —1 if v is the destination node YoeV (11)
0 otherwise

Ba €{0,1} Yac A (12)

o’ €{0,1} Vpe P, (13)

Where S, is a binary variable that equals 1 if link a is on the shortest path and 0 otherwise.
Similarly, pP is a binary variable that takes the value of 1 if path p is selected as the shortest path
that already belongs to the current active path set P, and 0 otherwise. The objective function (9)
selects a set of links with the least travel time while penalizing choosing one of the current active
paths with a big coefficient, M. Constraint (10) ensures that the variable pP takes the value of 1 if
and only if all constituting links of path p € P, exist in the shortest path found by the optimization
model. Constraint (11) makes sure that the solution of the model is a path. Note that start(a)
and end(a) indicate the starting and end nodes of link a.

Constraint (10) is nonlinear due to the presence of absolute value functions. A linearised version
can be used to reduce its complexity. We linearise absolute value functions by introducing non-
negative variables (n?)* and (n?)~ and binary variable ¢f. We first set the argument of each
absolute value function equal to the subtraction of the two non-negative variables as shown in the
following equation.

0 — Ba = ("75)+ —(me)” VpeE P, acA (14)

Then, the following constraints ensure that one of the non-negative variables, (n2)* and (n?)~,
take the value of zero using the big-M method.

()" < Mgy Vpe Py, acA (15)
(mg)” < M(1—¢%) VpeP,, acA (16)

Therefore, the output of the absolute value function becomes equal to the summation of the
two non-negative variables.

Constraint (10) is finally linearised by replacing the absolute value functions with the summa-
tion of their associated non-negative values as follows.

Yaca ((775)+ + (775)7) >1—pf Vp € P, (17)

Therefore, the linearised shortest path problem optimises the cost function (9), subject to
constraints (14)—(17) and (11)—(13). Note that the column generation-based approach in principle
can lead to the optimal solution if it iterates long enough to enumerate all the paths of the network.
However, it can be stopped when the improvement in two consecutive iterations falls below a certain
threshold resulting in a balance between computation time and solution quality.

3 NUMERICAL EXPERIMENT

The well-known Sioux Falls (SF) network, shown in Figure 1, is employed to show the ability of
the proposed approach to reduce TTT and TE using incentive schemes. As link cost function (7),
we employ the volume-delay BPR function (HCM, 2000)

ta(za) = t° <1 +0.15 (g)j , (18)

where ¥ is the free flow travel time in link a and ¢, its capacity in vehicles per time unit. The
details of the links and OD matrix are sourced from He et al. (2014). This network consists of 24
nodes, 76 links, and 552 OD pairs. We employ the proposed column generation method to solve



Figure 1: Sioux Falls network

the proposed optimisation problem for this network. It is worth noting that incentives and budgets
are considered in the same unit as travel time, which is in minutes.

We assume emissions are proxied by CO2, and the CO2 rate per vehicle kilometre travelled in
link a is computed according to Dimitriou et al. (2009)

E, = 72.73 4 33.98 x 10%/s, + 23.26 x 107352, (19)

where s, is the average speed of link a in kmn/hr and E, is in g/veh-km. This function used in
macroscopic problems, has a U-shaped dependence on vehicle speed with respective minima at
42 km /hr.

3.1 Total travel time and total emission minimisation

We initially define two scenarios for testing the optimisation problem, considering two objective
functions: TTT minimisation and TE minimisation. Under the TTT minimisation scenario, we
minimise the total travel time, represented as Z = ) . ,(zats), and under TE minimisation
scenario, we minimise the total emissions of the network, represented as Z = }_ (7. Fala),
where [, is the length of link @ (in km). TTT and TE under the two scenarios with various budget
limits are shown in Figure 2. It can be seen that targeting only TTT leads to an increase in
total CO2 emitted in the network. On the contrary, targeting only TE brings about increased
TTT. This is due to the fact that the minimum CO2 occurs when the average speed on a link
is 42 km/h while for minimising TTT, the higher the average speed the better. Figure 3 illustrates
how an incentive scheme changes the average speed to direct the traffic flow from UE toward SO
by redistributing the traffic subject to the budget limit. According to this figure, targeting TTT
minimisation smooths vehicle statistics and increases the average speed in most of the links but
not necessarily in the direction of reducing emissions. For instance, the average speeds on links
between nodes 11 and 14, and 21 and 24 have increased while the emissions fall in a higher range.
However, in the case of targeting CO2 minimisation, the changes in the average speeds occurred



410
e Min TTT Budget (% 1000)
409 —%3% , -
75 A Min TE Budget (x 1000)
408 « 70
T 407 e 13
S 406 ° 10
@) ® 5
O 405
404 20
403 5
402 = v
A 10 20 25
A 30 35
401 A
A
400
225 230 235 240
TTT (x10000 min)

Figure 2: TTT and TE under total travel time minimisation and total emissions minimisation
scenarios, with various budget limits

(a) UE condition when the budget is zero (b) Path-based incentive scheme with a budget (c) Path-based incentive scheme with a budget

of 30000 to reduce TTT of 30000 to reduce TE

Figure 3: The changes in link speeds before and after implementing an incentive scheme, where
dark green arrows represent 55 < s,, light green is 45 < s, < 55, orange illustrates 35 < s, < 45,
and red arrows are s, < 35 km/hr.

only to reduce the CO2 emissions, such as decreased average speed of links between nodes 11 and
12 compared to the base case scenario.

3.2 Integrated total travel time and total emission minimisation

As it is shown in Figure 2, TTT and TE are conflicting objectives; minimising one leads to an
increase in the other. Minimising the sum of TTT and TE without normalization and proper
weighting will result in the improvement of the dominant objective term while exacerbating the
other. Therefore, we normalize the two terms of the objective in such a manner that they attain
a value of zero under the UE flow pattern and a value of one under the SO flow pattern when
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Figure 4: Total travel time and total emissions with different objective weight values and a budget
limit of 20000

they are the sole objective of the minimisation. We define ¢UF, €50 TUE TS0 and a as the

TE under UE and SO flow patterns, TTT under UE and SO flow patterns, and the weight of the
objective function, respectively, to formulate the objective function of the integrated minimisation
as follows:

(20)

Z = min (a

. §UE - EaEA(E‘axala) TUE - ZaeA(mata))
f,y

¢UE _ ¢SO +(l-a) TUE _ TS0

We initially conduct a sensitivity analysis on the objective function weight, «, to find an appropriate
value that achieves a balance between TTT and TE. The optimisation problem (9)—(13) with the
objective cost (20) is solved under a budget limit of 20000, using objective weight values ranging
from zero to one at 0.25 increments. TTT and TE for each optimisation are summarized in Figure 4.
As the objective weight value increases, the optimal solution emphasizes emission minimisation,
resulting in lower emissions but longer TTT and vice versa. An objective weight value of 0.5
creates a balance between TTT and TE of the network. Therefore, we continue our analysis using
0.5 as the objective weight value.

Figure 5 depicts TTT and TE under different budget limits. Both TTT and TE decrease as
the budget limit increases from 0 to 10000. However, increasing the budget limit from 10000 to
35000 does not consistently improve both efficiency metrics; one metric needs to increase to see a
reduction in the other. This discrepancy arises from the conflicting nature of the two terms in the
objective function, whereby improving both beyond a certain threshold becomes unfeasible. Note
that the overall objective value of the optimization problem consistently decreases.

4 CONCLUSIONS

This study employs a path incentives scheme to shift the user equilibrium flow pattern towards
the system optimum, aiming to minimise TTT, TE, and the weighted sum of TTT and TE.
Wardrop’s first principle is applied to generalised travel cost, defined as travel time minus path
incentives. The problem is formulated as a nonlinear optimisation problem with complementarity
constraints. Due to the computational expense of generating all paths for a real-sized network,
an iterative column-generation-based solution technique is proposed. This technique generates a
new path between each origin-destination pair at each iteration. Results from the case study on
the Sioux Falls network indicate a conflict between TTT and TE. Therefore, joint optimisation
of the two objectives, with proper normalization and weighting, is required to achieve a balance
between TTT and TE reduction. Moreover, both TTT and TE show a decreasing trend up to a
budget limit of 10000. However, the optimization model has to compromise on one of the objective
terms to improve the other and achieve an overall better objective value beyond a budget limit of



231 404.2

\ ——TTT ——TE 4041

230.5

404
g
E o 4039
S 230 — 2
S 4038 =
= S
= 229.5 W 403.7 “
=
=

403.6

229
4035
228.5 403.4

0 5 10 15 20 25 30 35
Budget (x 1000)

Figure 5: Total travel time and emissions with different budget limits

10000. Additionally, the reduction in both objectives under the joint optimisation scenario may
not necessarily decrease with respect to increased budget limit.
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