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Abstract

This project aims to develop and validate the Heston-Hull-White model on Vari-
able Annuities. Such a stochastic modelling assumption is crucial in pricing and
hedging the long term exotic options. We calibrate the Equity and FX Heston-
Hull-White model in the corresponding markets. A novel numerical integration
option pricing method-COS method significantly improve this calibration pro-
cess. From the conditioned calibration, large amounts of scenarios of 6 stock
indices and 3 exchange rates are generated based on this hybrid model using
Monte Carlo simulations. Finally we compare the Heston-Hull-White model
with the Black Scholes model in the scenario-based valuation of the Guaranteed
Minimum Withdrawal Benefits to see the impact of the stochastic model.
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Chapter 1

Introduction

A variable annuity (VA) is a contract between an insurer and a policy holder, un-
der which the insurer agrees to make periodic payments or a lump-sum amount
at contract maturity to the policy holder in return for a fee. The fee is necessary
to cover operational costs as well as the cost of the guarantee that is embed-
ded in a VA contract. When purchasing a VA, a customer gives the insurer
an amount that is invested in mutual funds. The value of the investment in
mutual funds, called the account value (AV), will vary in time and depends on
market factors as well as fees deducted from the AV to finance the guarantee.
This is a special feature of VAs: the fee for the option is not paid upfront but
periodically deducted from the AV. Furthermore, the guarantee comes in several
flavors, generically called Guaranteed Minimum Benefits (GMxB). GMxB’s in-
clude the Guaranteed Minimum Death Benefit (GMDB), Guaranteed Minimum
Income Benefit (GMIB), Guaranteed Minimum Accumulation Benefit (GMAB)
and Guaranteed Minimum Withdrawal Benefit (GMWB). The pricing and risk
management of GMxB’s is challenging due to the exotic payoffs, the insur-
ance risks such as mortality or longevity risk, and the fact that the pricing of
GMxB’s is similar to pricing complex options on a basket of funds (bond and
equity funds) with tenors often exceeding 10 years which exposes GMxB’s to
multi-asset risks.

In the Black-Scholes valuation framework, which some insurers still use for
the pricing of variable annuities, the underlying assets in the basket are as-
sumed to satisfy geometric Brownian motion with deterministic interest rate
and deterministic volatility. Even though the Black-Scholes model suffices for
simple vanilla options with short terms to maturity, we expect that accounting
for stochastic volatility and stochastic interest rates will improve the pricing
and hedging of GMxB’s. Incorporating stochastic interest rates and stochas-
tic volatility in pricing and hedging is also more in line with market practice
and the observed characteristics of volatility and interest rates. In order to
price and hedge with stochastic volatility and interest rates we will apply the
combined Heston stochastic volatility and Hull-White stochastic interest rate
model. The choice for the Heston-Hull-White model is motivated by the fact
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that the characteristic function of this model, which is an essential component
of all Fourier-based calibration, can be approximated relatively easily. This will
lead to better parameter estimation, i.e. better calibration process. Besides,
the combined model may be sufficient to capture the interest rate risk and the
equity risk. Once calibrated, the GMxB’s can be priced in a straightforward
manner by Monte Carlo simulation. Hence, the project can be sub-divided into
roughly two parts: calibration and pricing.

For pricing purposes brute force Monte Carlo (MC) methods will be em-
ployed. This is inevitable due to the complex features of GMxB’s. However,
using Monte Carlo for calibration will be too computationally expensive and
other (semi-analytical) methods must be sought. One semi-analytical and often
used calibration technique is the Fast Fourier Transform (FFT), first introduced
by Carr & Madan. In this project, however, we will apply the novel Fourier-
based method-COS pricing method of Fang & Oosterlee. It has been proved
in several papers that the COS-method is even more efficient than the FFT
approach.

This thesis is structured as follows: Chapter 2 gives a general introduction
into VAs and the payoffs of several GMxB’s. In Chapter 3 we will give details
on how to use the COS method for option pricing and apply it to the Heston
model. Next, in Chapters 4 and 5 the combined Heston-Hull-White model for
Equity and FX is discussed. Also, an approximate form of the characteristic
function for the combined model is given. The approximation is used in Chapter
6 for the calibration process of the Heston-Hull-White model. Chapter 7 looks
at multi-asset Monte Carlo pricing and investigates the impact of the Heston-
Hull-White model on the valuation Guaranteed Minimum Withdrawal Benefits.
Chapter 8 summarizes the findings of this thesis in a conclusion.



Chapter 2

Variable Annuities

2.1 Introduction

A Variable Annuity (VA) is an investment / insurance product which offers
insurance against a possible downturn of the financial market. The insurer
agrees to pay a periodic payment to the clients, immediately in the beginning,
or at some future date. Due to their advantages in retirement planning, and
tax benefits, VAs have proved to be popular insurance products recently as a
combination of equity based derivatives and insurance. After getting significant
market shares in the US and Japan, the VAs are now starting to show some
success in some European markets, too. Additionally, the current financial
crisis has increased the clients’ interest in investment guarantees, as provided
by VAs. So, these contracts represent good possibilities for investors and the
crisis made the business model even more convincing.

VAs are very similar to long-maturity exotic financial derivatives, as the
guarantees are based on a basket of underlyings (equity, bond and funds). For
VAs, however, this guarantee is separate from the underlying investments. There
are some other notable differences to basket options. A VA policy combines, for
example, financial and insurance risk like surrender, longevity and mortality.
For pricing and hedging of VAs, the financial markets as well as the client
behavior have to be taken into account.

The best established and most common VA product is by far the Guaranteed
Minimum Benefits product. It is typically referred to as GMAB (Accumulation),
GMDB (Death), GMWB (Withdrawal) and GMIB (Income). They can provide
an additional guaranteed minimum performance level of the underlying, so that
also policy-holder and mortality risk need to be considered. Risk management
practitioners are thus exposed to multiple sources of risks, some of which are
mitigated by the product structuring while others are addressed using a hedging
strategy.
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2.2 Risk Exposure

VA products can be viewed as unit-linked products with a guarantee and the
risk management process is complex. The VA hedging objective is to offset the
guarantee variation with a similar hedge variation. More specifically, for any
movement of the capital markets, the change of value of the portfolio should co-
incide with the change of value of the guarantees. The valuation of the guarantee
is therefore key during the hedging process. In the case of Guaranteed Mini-
mum Benefits products, the multiple embedded risks have a significant impact
on pricing. The major sources of risk include actuarial and financial risk.

The actuarial risk (insurance risk) contains mortality, lapse and surrender
risk. Variable Annuities have a death benefit. If the clients die before the insurer
has started making payments, the beneficiary is guaranteed to receive a specified
amount — typically at least the amount of purchase payments. Consequently,
the survival probability has to be added in order to determine the payoff of the
product. More advanced mortality stochastic modeling is also needed for these
insurance linked products. Compared to the mortality risk, policy-holder risk
such as lapse and withdrawal, is difficult to capture and quantify. In the US
market, the GMWB product is very popular currently. The GMWB gives the
holder the option to withdraw guaranteed periodic amounts up to the value of
the initial capital. Better analysis of this policy-holder behavior needs a powerful
statistical approach and an appropriate approximation of the correlation with
the financial market.

In this project, we are mainly interested in the financial risk, which can be
managed by proper hedging instruments in the derivatives market. The main
financial risks are as follows:

eDelta risk: VA guarantees are similar to selling basket put options. This
risk can be hedged at a reasonable price by a put option through the process of
Delta hedging. The purpose of Delta hedging is to set the Delta of a portfolio to
zero, resulting in the portfolio’s value being relatively insensitive to changes in
the value of the underlying security. This hedging technique requires frequent
updating to capture the convexity of the hedged position.

eVolatility risk: The real shape of the equity volatility surface is hard to
incorporate, especially for long term financial products, such as VAs. Variance
swaps can be used to hedge the risk.

eBasis risk: A VA is not intended to take risk embedded in fund returns.
Therefore, fund returns need to be hedged ideally by instruments which perfectly
replicate the payoff of the funds. Although most of the return can be hedged,
there are still residuals which are not replicable by the market indices. This
basis risk cannot be hedged.
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eInterest risk: This refers to the effect of changes in the prevailing market
rate of interest on bond values. This risk can be approximated by a measure
called duration. Currently, the interest rate swap is commonly used to hedge
the interest risk.

eOther risks: There are some other risks such as credit risk, FX risk and
correlation risk. Some can also be perfectly hedged by the strong hedging in-
struments. Due to the existence of all these risks from the financial market, the
modeling of the variable annuity becomes more complicated.

2.3 The GMXB Payoft

The Guaranteed Minimum Benefits are specific kinds of VAs with embedded
guarantees offered in the policies. These benefits include both death benefits
and living benefits. The first type of product is called the Guaranteed Minimum
Death Benefit (GMDB), which offers a guaranteed amount when the policy-
holder passes away. Another class, which is typically referred to as a Guaran-
teed Minimum Living Benefit (GMLB), distinguishes three main products. The
Guaranteed Minimum Withdrawal Benefit (GMWB), introduced in the previ-
ous section, is one of the products providing living benefits. The most basic
GMLB product is the Guaranteed Minimum Accumulation Benefit (GMAB). It
is similar to the GMDB except that it offers benefits when the policy-holder is
alive at some specific date. The last type of this class is called the Guaranteed
Minimum Income Benefit (GMIB). It only guarantees when the account value
is annuitized at time 7.

Here, we consider a standard situation and present the payoff of these guar-
antee minimum benefits policies.

oeGMDB: The death benefit is paid at the death of the policy-holder. The
payoff corresponds to the underlying account plus an embedded put option.
Therefore, the price of a GMDB at the death time should be

GMDB, = P(0,7)E¥[(max(H — S;,0) 4+ S;)|Fo), (2.3.1)

where 7 is the stochastic death time, P(0,7) is the zero coupon bound price
S, is the account value and H is the guarantee, which, for example, is equal to
Sped7, with g the roll-up rate. The present value of the GMDB is given by the
expectations under 7:

GMDB = EX[GMDB, |t =t] = /T f()P(0,T)E®[(max(H —S;, 0)+S;)| Foldt.
0

(2.3.2)
Here, f(t) is the instantaneous death rate.
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eGMAB: The customer of the GMAB is entitled to receive at least the in-
vested notional at maturity. The payoff will be max(St, Sp). So, the price will
be

GMAB = P(0,T)E%[max(St, So)|Fo] = P(0,T)E%max(Sy — St,0)|Fo] + So.

(2.3.3)
This is nothing but the sum of a basic put option on an account value .S; with
strike Sy and the notional. Here, we simply assume that the customer is alive
at maturity. In practice, it is conditional on the fact that the policy-holder is
alive at time 7.

eGMIB: The GMIB also offers living benefits. At maturity, the policy-holder
can choose, as usual, to obtain the account value (without guarantee) or to
annuitize the account value at current market conditions (also without any
guarantee). However, the GMIB option offers an additional choice: A policy-
holder may annuitize some guaranteed amount at annuitization rates a. The
payoff is similar to a GMAB:

GMIB = P(0,T)E%max(amax(Sr,Sy), St)|Fo]
= max(l, %){P(QT)EQ[max(SO — S7,0)|Fo] + So}. (2.3.4)

We remark that it would also be a standard put option without the term /.

eGMWB: A GMWB is more complex than the other three contracts. It is
a put option attached to an equity-like insurance product. If the account value
is higher than the withdrawal amount, there is no liability under the GMWB.
However, if the account value reaches zero, the GMWDB guarantees all remaining
periodic payments. This is similar to a basic put option but with a random
exercise time. Milevsky and Salisbury [MS06] propose a pricing formulation
of the GMWB with both static and dynamic withdrawals under a constant
interest rate. They analyze the fair proportional fees that should be charged on
the provision of the guarantee. More specifically, the dynamics of the asset S;
underlying GMWB policy would be:

dS; = rSydt + 05, dB2. (2.3.5)

The sub-account value should incorporate two additional features: Proportional
insurance fees ¢ and withdrawals. Therefore, the dynamics of the sub-account
value of the GMWB W, would be in the following form:

AW, = (r — q)W,dt — Gdt + oW, dBZ, (2.3.6)

where G is the guaranteed withdrawal amount, usually paid annually. If W;
reaches zero, it will remain zero to maturity time. Consequently, the payoff
of the GMWRB is a collection of residual sub-account values at maturity and
guaranteed withdrawals, i.e. the value of the GMWB is:

T
GMW B = P(0,T)E%[Wr|Fo] + / P(0,t)Gdt. (2.3.7)
0
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2.4 Valuation framework

The pricing of VA policies in general is similar to the pricing of basket options.
Currently in industrial practice, an underlying asset in the basket is assumed
to satisfy geometric Brownian motion with a deterministic interest rate and a
deterministic volatility. For some VA guarantees, those are path-dependent, it
is not possible to find a closed-form solution for the fair value. Therefore, Monte
Carlo methods are widely used for the valuation of these products.

Blamont and Sagoo [BS09] have given a numerical approach for the pricing
of GMWBs. The Monte Carlo method is used there to generate the expected
residual sub-account at maturity (a call option with strike zero). The advantage
of the Monte Carlo method is that many variables can be considered to be
stochastic. The parameters can, in principle, be calibrated from the market and
the payoff can be computed according to the product features.

Recently, more involved stochastic models, different from the Black-Scholes
model, are proposed to account for stochastic volatility and stochastic interest
rate in the real market. However, there is a trade-off between more complex
models and goodness of calibration. The more complicated the model gets, the
more parameters have to be calibrated, and the more unstable a calibration may
become. How to choose an appropriate model is crucial for pricing and hedging
of VA policies. In this project, we aim to find a comprehensive model which
can be calibrated relatively easily and, at the same time, is able to produce
a satisfactory fit to the market for long term. Although such models cannot
substitute the capital market experience, they may give a better mathematical
insight in the market’s behavior. More details will be explained in the chapters
to follow.



Chapter 3

COS pricing method

We will consider hybrid stochastic models in this MSc thesis, like the Hes-
ton Hull-White model. For such hybrid models highly efficient computational
techniques are needed for efficient calibration. Numerical integration based on
Fourier transform methods represent such efficient procedures. These techniques
can be further sub-divided into different types based on the Fourier method em-
ployed. For example, the Carr-Madan Fast-Fourier transform method is a popu-
lar numerical integration procedure, used by several investment banks. Fang and
Oosterlee [FOO08] have proposed a novel method, which is called the COS pricing
method. This method can also be used to value plain vanilla and some exotic
options. The COS method has been proved to be superior to some other Fourier
methods. In this MSc project we will use the COS method to value VA products
under hybrid stochastic models. We will focus on the Heston Hull-White model,
because its characteristic function can be approximated accurately.

3.1 Recovery of the density function via Cosine
Expansion

First we will show the main idea of the COS method, i.e. how to use the Fourier
cosine series expansion to approximate an integral. Details can be found in Fang
and Oosterlee [FOO08].

For functions supported on interval [0, 7], the cosine expansion reads

FO) =" Ay cos(kb). (3.1.1)

Here A, = 2 [7 f(0) cos(k0)df, and 3" indicates that the first term in the
summation is weighted by one-half. If we transform variables as follows:

T—a b—a
T, X =
b—a '’

0 = 0+ a, (3.1.2)

™

14
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the Fourier cosine expansion of any functions supported on a different finite
interval, say [a,b] € R, can be obtained

flz) = ,;O Ay cos(kwi : Z) (3.1.3)
with .
A= E . / () cos(kw”lj::)dx. (3.1.4)

A sufficient wide interval [a,b] can in some instances be used to accurately
approximate an infinite integration range, i.e.

b
1 (w) == / e f(z)dx ~ /Reim”f(x)d:r = p(w). (3.1.5)
So, we have:
Ay = %Re{qﬁl(bkjra) . exp(—ibkiﬁa)}. (3.1.6)

If we now define

2
b—a

Ckar

Fio= -2 Re(o(; ) -exp(~i

)} (3.1.7)

—a
and use the approximation Ay = F}, to obtain the series expansion of f(z) on
[a, b]:

fi(z) = i "Fy cos(lmrgg —a

k=0

) (3.1.8)

—a

A further approximation can be made by truncating the series summation

N—-1
h@) =Y 'R cos(/mz:;’) (3.1.9)
k=0

Formula (3.1.9) gives a highly accurate approximation for function f(x) € R for
an appropriate value of the number of cosine terms, N. Here, we approximate
the probability density function which is used in the pricing formula. For some
models, this density function is not available in closed-form and a possible tech-
nique to approximate it is by formula (3.1.9), since the characteristic function
is often known analytically, or can be computed easily. This is the essence of
the COS method.

3.2 General COS pricing method

Pricing European options by numerical integration techniques is via the risk-
neutral valuation formula:

v(z, to) = e " ECu(y, T)[a] = e_TAtAv(y7T)f(y|$)dy~ (3.2.1)
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Suppose we have determined values a and b to approximate (3.2.1) by

b
vy (z,t0) = eiTAt/ v(y, T) f(y|z)dy. (3.2.2)

Using (3.1.9) gives:

—a
vi(z,tg) =e " / Z Ag(x) cos lmrb a)dy, (3.2.3)
with
b v—a

A = s(kr=——)dy. 2.4
o) = g [ Sl costim =)y (324)

More specifically, we approximate by:

2 km . kam

Ag(x) =~ b—aRe{(b(b—a) .eXp(_Zb—a)}' (3.2.5)

By interchanging summation and integration, and inserting the definition,

2

b y—a
Vi = T a /a v(y, T) cos(km — )dy, (3.2.6)

we obtain

vi(x,to) = %(b —a)e At Z "Ag () V. (3.2.7)

The pricing formula approximation then reads:

vz, to) = e A Z 'Re {o(;— @) exp(— Zlmrb NV, (3.2.8)

which is the COS formula for general underlying processes. We will subsequently
show that the terms Vi can be obtained analytically for plain vanilla options,
and that many strike values can be handled simultaneously. In summary, the
essence of the COS method is to have an appropriate characteristic function
(Chf) in terms of the form (3.1.5) but the availability of a Chf strongly depends
on model assumptions.

3.3 Black-Scholes model

Denote the log-asset prices by
x:=1n(S/K)andy := In(St/K), (3.3.1)

with S; the underlying price at time ¢ and K the strike price.
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For the Black-Scholes model, we have

dSt = T'Stdt + O'Stth
1
—dIn(S;) = (r— 502)dt + adW; (3.3.2)
1 T
= InSr = InSo+(r— 502)T+0/ dW;
0
1
=y = z+(r— 50'2)T+(7WT-

Thus, y ~ N(z + (r — £0)T,0T) and its characteristic function reads

d(w) = exp{i(z + (r — %JQ)T)w - %J2Tw2}. (3.3.3)

The payoff for European options, in terms of the log-asset price, reads

1 f 11
v(y, T) = [aK(e¥ — 1)]T with a = { or a call (3.3.4)
—1 for a put.
The corresponding cosine series coefficients read, respectively,
2
Vool = 5o B 00, 8) = i (0, ), (3.3.5)
and 5
viPut = 72K (=xk(a,0) +(a,0)), (3.3.6)
where
(ed) = — 1 leos(hr It — cos(kn E= e
c, = m e — (KT €
Xk 1+ (bk_ia)Q h_ —
kmr . d—a, 4 km . c—a, .
ty 81n(k7rb_ e — = asm(kﬂrb_a)e 1,
and
in(kmd=2) —sin(km{=2)] k #0
Yr(e,d) = sinkmc=e) —sin(hmi=o)] K #0, (3.3.7)
d—c k=0.

Notice that for plain vanilla options Equations (3.3.5) and (3.3.6) are indepen-
dent of the model we use. Here, we have taken the Black-Scholes model, but we
could also use other models, such as the Heston model or the Heston-Hull-White
model.

3.4 Heston model

In the Heston model, the volatility, denoted by /v, is modeled by a stochastic
differential equation,

1
dr, = (r—gw)dt+/vdW, (3.4.1)
dve = k(U —v)dt + 1y dWa,
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where x; denotes the log-asset price variable and v; the variance of the asset
price process. The parameters x > 0,0 > 0 and 1 > 0 are called the speed of
mean reversion, the mean level of variance and the volatility of the volatility,
respectively. Furthermore, the Brownian motions W3, and W, are assumed to
be correlated with coefficient p.

For this model, the COS pricing equation simplifies, since

P(w; ,10) = Phes(w; v0)e™?, (3.4.2)
with vy the volatility of the underlying at the initial time and @pes(w;vn) =
o(w;0,v9). We find

N—-1
—r km ik E=a
v(z, tg,v9) = e AtRe{ E 'tphes(m;vo)e’k v=a Vi }, (3.4.3)
k=0

where the characteristic function of the log-asset price, @pes(w;vg), reads

. oA vy, 1— e~ Dot .
Phes(w; vo) = exp(iwrAt + ﬁ(w)(ﬂ —ipnw — D))
3 1—-G —DAt
. exp(%(At(ﬁ —ipnw — D) — 21n(%)))7 (3.4.4)
with

D = /(k—ipnw)? + (w2 + iw)n?, (3.4.5)

K —ipnw — D
G = ——mmm. 3.4.6
Kk —ipnw + D ( )

3.5 Numerical Results for Heston Model
3.5.1 COS Method versus Carr-Madan Method

In this subsection we carry out some numerical tests for the Heston model with
pricing formula (3.4.4) as well as with Carr & Madan’s FFT method. The
Fourier transform based option pricing method introduced by Carr and Madan
[CM99] is often used in the calibration of the Heston model. We aim to compare
the COS pricing method with the Carr-Madan method. We follow the tests
introduced by Fang and Oosterlee and choose similar parameters. In order to
ensure that the Feller condition is satisfied, we choose a larger mean reversion
parameter. For the reference value, we also use the Carr-Madan method with
N = 217 points and the prescribed truncated Fourier domain is [0,1200]. The
values are chosen as follows:

S = 100;r =0.07;T =1;q = 0; K = 100; Reference price = 11.1299...
5;v = 0.5751; 7 = 0.0398; v(0) = 0.0175; p = —0.5711.

K
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There is quite an extensive literature on option pricing based on the Heston
model. It is well-known that the price of a European call option is given by

_ _enk e Ooe—iuk P(u —i(n+1)) v
O=F e [ (3:5.1)

where F is the Forward price that can be obtained by F = Se("=97T [ is the
log-transform of the option strike and 7 is an arbitrary dampening parameter
which we choose as 0.75. The Carr-Madan method is based on application of
the Fast Fourier Transform for the above integral. The numerical results are as
follows:

’ Absolute error \ COS \ Carr—Madan‘

N=32 6.35E-01 1.37E-+06

N=64 7.50E-03 6.17E-+07
N—-128 7.52E-07 3.74E4-07
N=256 3.57E-09 1.63E+07
N=512 3.57E-09 8.79E+04
N=1024 3.57E-09 1.64E+02
N=2048 3.57E-09 5.63E-01
N=4096 3.57TE-09 1.07E-02
N=8192 3.57E-09 3.45E-06

N=16384 3.57TE-09 2.61E-13
N=32768 3.57E-09 3.82E-13

Time (seconds) COS Carr-Madan

N=32 1.09E-03 4.39E-03

N=64 1.31E-03 6.10E-03
N=128 1.83E-03 9.10E-03
N=256 2.80E-03 2.23E-02
N=512 4.87E-03 2.71E-02
N=1024 8.88E-03 6.53E-02
N=2048 1.72E-02 1.23E-01
N=4096 4.92E-02 1.40E-01
N—=8192 8.31E-02 2.74E-01

N=16384 9.12E-02 6.85E-01
N=32768 1.61E-01 2.08E+-00

Table 3.1: COS v.s. Carr-Madan

It is clear that even with a significantly smaller value of N the COS pricing
formula gives a better approximation than the plain Carr-Madan method. More
importantly for our applications, the COS method may significantly improve the
speed of calibration.
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3.5.2 COS versus quadl

We do not need to use the Fourier method in the pricing formula. A direct
numerical integration can also be used to compute the result of formula (3.5.1).
In practice, we can use Matlab to numerically evaluate the integral by using
the function quadl(fun,a,b). This function can approximate the integral of
function fun from a to b within an error of 107% | using the recursive adaptive
Lobatto quadrature. However, the integral of formula (3.5.1) has an infinite
upper bound, which has to be approximated. Experience tells us that 100 is
a sufficiently large value to approximate infinity. Here we choose the same
parameter values as in subsection 3.5.1 to see the impact of the upper bound of
the integral by using the Matlab function quadl for pricing a call option. The
reference value is 11.1299.

’ Upper Bound \ 1 \ 10 \ 100 \ 1000 \ 10000 ‘
Price error 6.6472 | 0.3183 | 3.1985E-9 | 3.7091E-9 | 4.6572E-9
Time (Seconds) | 0.1165 | 0.1172 0.1136 0.1235 0.1244

Table 3.2: Impact of Upper bound

As seen before, the COS method has the same scale of error as the direct
numerical integration but with significantly less computation time. In fact, the
COS pricing method has another advantage if we look at the number of strikes.
For practical use, as we will see in the chapters to follow, calibration is usually
performed based on several strikes per maturity. In the numerical test shown
above, when the number of strikes increases, the numerical integration method
can become quite time-consuming. Since the function quadl is used for the
integral of a single variable, many loops are needed for more than one strike.
On the other hand, no loop is needed for both Fourier methods (COS and FFT).
In order to confirm this issue, we can extend the above test to pricing options
at more than one strike, and use the maximum absolute error to observe the
final impact. The strikes chosen are K = 50, 55, 60, 65, ..., 145, 150.

] Method \ COS \ quadl ‘
| Time (seconds) | 0.0809 | 0.2599 |

Table 3.3: COS v.s. Numerical Integration

Table 3.3 gives the comparison of the use of the COS method with N =
2'%nd numerical integration with upper bound set equal to 100. Both methods
then result in an error of 1079, In terms of computation time, the COS pricing
method is strongly preferred. Since both FFT and the direct numerical integra-
tion methods are significantly better than a Monte Carlo method for calibrating
the Heston model, we can state that the COS method can save a large amount
of time, without sacrificing accuracy, when we calibrate the Heston model. We
will show in Chapter 4 this is also true for Heston-Hull-White model.



Chapter 4

Heston-Hull-White Model for
Equity

Grzelak and Oosterlee [GO09] have studied the Heston-Hull-White model, which
incorporates stochastic equity volatility and stochastic short rate. They ob-
tained a closed-form formula for the characteristic function for an approxima-
tion of the combined model. In this chapter we will discuss this hybrid model
and use the discounted ChF to price plain vanilla options by Fourier methods.

4.1 Combining two models

The full-scale Heston-Hull-White model is a combination of the Heston model
for equity with stochastic volatility and the Hull-White model for a stochastic
short rate process. Three factors are considered: the asset price S(t), the short
rate r(t) and the volatility v(¢). The dynamics of this model can be presented
as follows:

dS(t) = r()SH)dt + /oD)S(H)dWa(t), S(0) >0,
dr(t) = AO(t) — r())dt +  pdW(t ), r(0) > 0, (4.1.1)

dv(t) = k(T —v(t))dt + v/ v(t)dW,(t), ©(0) >0
where the correlations of the Brownian motions are given in the following way:
AWz dW, = pg pdt, dWodW,, = pg dt, dW,dW, = p, rdt.

The parameters here are from the two individual models: A,n and 6(¢) are Hull-
White parameters, where A > 0 is the speed of mean reversion of the short rate,
7 > 0 represents the volatility of the interest rate and () is the term-structure.
The variance process, which follows Cox-Ingersoll-Ross dynamics, includes the
other three parameters, in which £ > 0 is also the speed of mean reversion, i.e.
the speed of variance to its mean U, and v > 0 determines the volatility of the
volatility.

21
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System (4.1.1) does not fit in the class of affine diffusion processes (AD), as
in [DPS00], not even when we make the log transform of the asset price. We
cannot determine the characteristic function by standard procedures due to the
non-affine form. Hence, accurate approximations are needed.

4.2 Approximation of Heston-Hull-White Model
by an Affine Process

4.2.1 Model Reformulation

The full-scale HHW model is not affine because the symmetric instantaneous
covariance matrix reads:

; O(t)  papyO(t)  parny/u(t)
o(X()o(X®)" =1 * o) pwn,2/u(t) : (4.2.1)
n

* *

This matrix is of the affine form if we would set p, , and p, ,, to zero. However,
for some interest rate sensitive products, it is important to keep p, , non-zero.
In this section the following reformulated HHW model is considered:

dS(t)/S(t) = r(t)dt+ /o (t)dW,(t AW, (1) + A/ o) dW, (),  S(0) > 0,
(4.2.2)

with
{dr() A(B(t) = (1) dt + ndW() <0>>o (423

dv(t) = k(T —v(t))dt + v/ v(t)dW, (t (0) > 0.

Instead of a non-zero correlation between the asset price and interest rate, we
assume
AWodW, = 0, dWodW,, = pg dt, dW,dW, = 0. (4.24)

Grzelak and Oosterlee [GO09] have shown that (4.2.2) is equivalent to the
full-scale model by setting Q(t), A and pg.., as follows:

t) = purVo(t), ﬁ?:,u = Pi,u + pi,r’ A = pep = P (4.2.5)

The technique employed here is the Cholesky decomposition. The two sys-
tems (4.1.1) and (4.2.2) are presented in terms of their independent Brownian
motions, respectively, and the three parameters introduced are obtained by
matching the appropriate coefficients.

After the reformulation the Heston-Hull-White model is, of course, still not
affine. We need some approximations. Now we take a look at the symmetric
instantaneous covariance matrix for this reformulated model by log transforming
and exchanging the order of state variables, to X (t) = [r(t),v(t),log S(¢)]:

7”0 paemy/u(t)
Y =o(XW)e(X) = | * o) pz,v(w;(t) : (4.2.6)
* v(t
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It seems that only one term in this matrix is not of the affine term, 2(1 3) =

parM/v(t). By appropriate approximations of this term, 2(1’3), an affine HHW
model can be obtained. Grzelak and Oosterlee [GO09] discussed two approx-
imations in their paper: A deterministic approach (called the H1I-HW model)
and a stochastic approach (called the H2-HW model).

In the following section, we will present the HI-HW model and determine
the closed-form characteristic function of this model. As mentioned earlier, a
characteristic function is essential for Fourier methods, such as the COS method.

4.2.2 The H1-HW Model

In the HI-HW model term }_, ;) is replaced by its expectation: }: 5 =

pzrnE(y/v(t)) . By doing this, the Heston-Hull-White model turns into an
affine model, since the stochastic variable has been approximated by a determin-
istic quantity. The closed-form expression for the expectation and the variance
of y/v(t) can be found in [Du01]. Here, we only need its expectation:

1 F(wa)
E(V/v(t)) = /2c(t)e B2 " 27, (4.2.7)
2O
where
_ 4KD 4kv(0)e~rt
)= —*1—e"), d= —, \t) = ——"—— 4.2.
o) = g f1—e) d= T A0 = U (2s)

with I'(k) being the gamma function: T'(k) = [~ t*~te~"dt.

The analytical expression above is not sufficient to obtain the characteristic
function of the HI-HW model, as many computations need to be performed to
compute (4.2.7). A more efficient approximation is required.

One approximation mentioned in [GO09] is from the delta method, which
gives

E(\/v(b)) ~ \/ eOOE) = 1) +et)d + 5 s = AD) (4.2.9)

with the parameters from (4.2.8).

This approximation is faster computed than (4.2.7), but it is still non-trivial.
When it comes to the standard ODE routines to determine a characteristic
function, E(y/v(t)) is always inside integrands to be computed. So, the form
(4.2.9) may cause difficulties during numerical integration, which is why we use
another approximation for F(\/v(t)) as:

E(\/v(t)) = a+be . (4.2.10)

The values a,b and ¢ can be approximated by:

a=1/7— g—z, b=+/v(0) —a, c=—In(b"*(A(1) — a)), (4.2.11)
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where A(t) is given by (4.2.9).

The attractive approximation given by (4.2.10) can significantly improve
the speed of calculating the characteristic function. As proved in [GO09], it is
a good approximation. Unfortunately, we can not use this approximation all
the time. This approximation is well-defined only when the Feller condition is
satisfied, which is © > 42 /2x. When the Feller condition is violated, we have to
use the exact formula (4.2.7).

With the final approximation (4.2.10), we have obtained the affine HI-HW
model. In the next section the standard methods from [DPS00] can be used
to obtain the discounted ChF of this model. The ChF forms the basis for
many Fourier option pricing methods. We will use this ChF to value Variable
Annuities.

4.3 Characteristic function for H1I-HW

With the affine form of Heston-Hull-White model (H1-HW) obtained, the dis-
counted characteristic function can be derived by the method mentioned in
[DPS00]. In order to simplify the problem we assume that the term-structure
for interest rate 6(t) is constant 6. Also, the Feller condition is assumed to be
satisfied. For situations without these two assumptions numerical integration
has to be used.

According to Duffie, Pan and Singleton [DPSO00], the discounted Chf is of
the following form:

ba1—smw (1, X (8),7) = exp(A(,7) + Blu, T)a(t) + Clu, 7)r(t) + D, 7u(t)),
(4.3.1)
with boundary conditions A(u,0) = 0, B(i,0) = iu, C(p,0) = 0 and D(u,0) =
0,and also 7:=T —t .
The following ordinary differential equations (ODEs), related to the HI-HW
model, will help us derive the ChF:

!

B'(r) =0, B(u,0) = ip,
C'(r)=—-1—-XC(7) + B(7) C(u,0) =0,
D'(r) = B(7)(B(7) = 1)/2+ (vpz,0B(1) — k)D(7) +¥*D*(7)/2  D(u,0) =0,
A'(1) = NC (1) + koD(1) + n*C?(1) /2 + np2 » E(/v(t))B(T)C(1)  A(11,0) = 0,
(4.3.2)
with all the parameters as shown before.
The solution is given by:
B(p, ) =i,
Clu,7) = (ip — DAL — e A7),
(o) = G = N1 =), W)
D(p,7) = m("ﬂ — Ypawip — D),

A(p,7) = NI (1) + kU5 (T) + %772]3(7) + npprLa(T).
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where D = \/('pr,vzlff — /9)2 — WQZN(ZM — ]_)7 g = % and the four in-

tegrals I1 (1), Io(7), I3(7), I4(7) can be solved analytically and semi-analytically:

1. 1, .
L(r) = X(z,u—l)(T—l—X(e A - 1)),

T . 2 1—ge_DlT
L(r) = —(k—3pewin—Di)— —In(—2 ),
2(7) 72(H VPa,wip — D1) 72 n( -

1
I(r) = ﬁ(z’—i—u)Q(S—&—e_”T—46_)‘7—2)\7'),

IL(r) = iu/OTE( v(T — 5))C(u, s)ds

= —i\(w—i—,uz)/OTE( (T —5))(1 — e )ds

Q

S ) [ (o b T @ - Ny
0

= G =T bar + L 1)
The two assumptions we mentioned are used in deriving A(u, 7). In par-
ticular, by taking the approximation of the last section E(y/v(T —s)) = a +
be=<(T=5)_i.e when the Feller condition is satisfied, we can obtain a closed-form
expression for I(7) .
Given the discounted ChF of the HI-HW model, in which we use the deter-
ministic approach to approximate the non-affine term, we are ready to proceed

with numerical experiments.

4.4 Numerical Result

In this section, we present some numerical results. The parameters we use are
as follows:

S(0) = 100,7(0) =6 = 0.07, A = 0.05,5 = 0.005, ps. = 0.2,
k= 15768,y =0.0571,7 = 0.0398,(0) = 0.0175, pg,, = —0.5711,

and the maturity is 7' =1 year and T = 10 years.

In Tables 4.1 and 4.2, we benchmark our approximation formula against the
full-scale HHW model using the Monte Carlo method with 10000 simulations.
We can see that the approximation error is small, especially for short maturities.
A more convincing proof can be found in Figure 4.4.1. As the COS method is
significantly faster than the Monte Carlo method, the use of the COS method for
the approximate H1-HW model is strongly recommended during the calibration
process.

(4.3.4)

ech(l o ef-r(/\fc))].
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Strike CcOS MC Price COS M C Vol

Price Price Error Vol Vol Error
50 53.3802 | 53.2918 | 0.0884 0.6581 0.6524 0.0058
55 48.7188 | 48.6306 | 0.0881 0.6053 0.6002 0.0051
60 44.0595 | 43.9715 | 0.0879 0.5549 0.5504 0.0045
65 39.4077 | 39.3205 | 0.0873 0.5068 0.5028 0.0040
70 34.7775 | 34.6918 | 0.0857 0.4609 0.4573 0.0036
75 30.1981 | 30.1134 | 0.0847 0.4175 0.4143 0.0032
80 25.7204 | 25.6351 | 0.0853 0.3774 0.3745 0.0029
85 21.4190 | 21.3309 | 0.0881 0.3415 0.3388 0.0027
90 17.3863 | 17.2966 | 0.0897 0.3106 0.3081 0.0025
95 13.7190 | 13.6280 | 0.0910 0.2848 0.2824 0.0024
100 10.5001 | 10.4121 | 0.0880 0.2640 0.2617 0.0022
105 7.7827 7.6983 0.0844 0.2473 0.2452 0.0021
110 5.5809 5.5070 0.0740 0.2341 0.2322 0.0019
115 3.8703 3.8080 0.0623 0.2236 0.2219 0.0018
120 2.5958 2.5471 0.0487 0.2152 0.2136 0.0016
125 1.6846 1.6505 0.0341 0.2083 0.2069 0.0014
130 1.0587 1.0355 0.0232 0.2026 0.2014 0.0012
135 0.6450 0.6289 0.0161 0.1978 0.1967 0.0011
140 0.3813 0.3715 0.0099 0.1937 0.1927 0.0010
145 0.2191 0.2133 0.0058 0.1902 0.1893 0.0008
150 0.1225 0.1201 0.0024 0.1871 0.1866 0.0005

Table 4.1: HI-HW v.s. the full-scale HHW model, 1 year.
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Strike CcOS MC Price COS M C Vol

Price Price Error Vol Vol Error
50 75.2837 | 75.0646 | 0.2191 0.5762 0.5723 0.0040
55 72.8956 | 72.6748 | 0.2208 0.5603 0.5566 0.0037
60 70.5405 | 70.3175 | 0.2230 0.5456 0.5421 0.0035
65 68.2222 | 67.9982 | 0.2241 0.5320 0.5288 0.0032
70 65.9459 | 65.7207 | 0.2252 0.5194 0.5164 0.0031
75 63.7143 | 63.4882 | 0.2261 0.5078 0.5049 0.0029
80 61.5303 | 61.3038 | 0.2266 0.4969 0.4942 0.0028
85 59.3969 | 59.1701 | 0.2268 0.4868 0.4842 0.0026
90 57.3157 | 57.0894 | 0.2264 0.4773 0.4748 0.0025
95 55.2881 | 55.0617 | 0.2264 0.4685 0.4661 0.0024
100 53.3159 | 53.0901 | 0.2258 0.4602 0.4579 0.0023
105 51.4001 | 51.1745 0.2256 0.4524 0.4502 0.0023
110 49.5397 | 49.3135 | 0.2262 0.4451 0.4429 0.0022
115 47.7361 | 47.5089 | 0.2273 0.4382 0.4361 0.0021
120 45.9896 | 45.7617 | 0.2278 0.4317 0.4296 0.0021
125 44.2992 | 44.0700 | 0.2292 0.4256 0.4236 0.0021
130 42.6632 | 42.4320 | 0.2312 0.4199 0.4178 0.0020
135 41.0849 | 40.8490 | 0.2360 0.4144 0.4124 0.0020
140 39.5580 | 39.3208 | 0.2372 0.4092 0.4072 0.0020
145 38.0851 | 37.8465 | 0.2385 0.4043 0.4023 0.0020
150 36.6641 | 36.4242 | 0.2399 0.3997 0.3977 0.0020

Table 4.2: HI-HW v.s. the full-scale HHW model, 10 years.
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Figure 4.4.1: Equity-COS v.s. Monte Carlo

4.5 Heston-Hull-White Model under the Forward
Measure

In this section, we want to move to the forward measure which would be pre-
ferred for our model and payoffs. We will also find an expression for the approxi-
mate characteristic function of the Heston-Hull-White model under the forward
measure. Reducing the pricing complexity is one of the great advantages of the
forward measure approach.

4.5.1 Forward HHW full-scale model

The H1-HW model is under the spot measure, which is generated by the money
market account M (t). The Euro money market account is a security that is
worth 1 Euro at time zero and earns the risk-free rate r» at time ¢. The spot
measure is consistent with the risk neutral valuation result we presented before.
However, for the valuation of bond options, interest rate caps and swap options,
the forward measure is preferred. The numéraire of the forward measure is the
zero-coupon bond, P(t,T) -the price at time ¢ that pays 1 Euro at maturity
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time T. Under the forward measure, the forward asset price is defined as:

S(t)

) = 5o 75 (4.5.1)

Here we refer to [BG09] to obtain the full-scale HHW model under the forward
measure.

First of all, the zero-coupon bond is analytically expressed as follows based
on the Hull-White model:

P(t,T) = exp[A.(t,T) — B,(t, T)r(t)], (4.5.2)
where
AT) = () BT -
772 —2X\t 2
ﬁ(1 — e MB.(t,T)?), (4.5.3)
1— e—)\(T—t)
Byt T) = ————, (4.5.4)

and f(0,t) is the forward rate, A and n are Hull-White parameters. The dy-
namics for the zero-coupon bond under the spot measure Q are

dP(t,T)/P(t,T) = r(t)dt — nB,(t, T)dW,(t). (4.5.5)

We can use this to derive the dynamics of the forward price by applying Ito’s
lemma to (4.5.1):

dF(t) = (> B2(t, T)+ps,/v(t)n B, (t, T)F(t)dt++/v(t)F(t)dWs(t)+nB.(t, T)F (t)dW,(t).
(4.5.6)
Under the T-forward measure the forward asset price F'(t) is a martingale, i.e.
the coefficients of the drift should be zero. An appropriate transform of the
Brownian motions can achieve this.
Under the forward measure QT, the SDE system is given by:

= VWO F(£)dWE (t) + 0B, (t,T)F (t)dW? (®), (4.5.7)
06— o it /S B

Taking the log-transform of the forward price by () = In F(¢), we can get the
forward full-scale HHW model with only two processes in the SDE system.

da(t) = —5(v(t )+ 2ps,m/ V()N By (t T) + 0By (t, T))dt + /(v()dW§ (1)
dv(t) = k(T — v(t))dt + v/v(t)dWTI (t
(4.5.8)
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4.5.2 Approximation of the Forward Characteristic Func-
tion

We also wish to use the deterministic approximation from the HI-HW model
to obtain the closed form of the Chf of system (4.5.8). According to Benhamou
and Gauthier [BG09], the characteristic function is of the following form:

Ororwaralt, X(0),7) = exp(A(,7) + B, w(t) + ipa(t)),  (45.9)
where

1—e~ D1

A(p, 1) = 67I5(1) — (i + p)V (1) = I(f),
B(p.1) = 57y (F = Vpawin — D1),

with Dy = \/(ypuipt — #)2 = P2ip(ip— 1), g = g=bebofl I(r) in (4.3.4),

and

o2 1, 3
V(T) = F(T‘er A _ﬁe 2>\_ﬁ)’ (4510)
T
1) = pseuli+un [ VolIB s T)ds. (45.11)

Here we also assume that p,, = 0.
There is only one stochastic term in the characteristic function, i.e. in I(f).
We also use the same technique in [GO09] as we substitute /v(t) by its expec-

tation E(4/v(t)) . Details can be found in subsection (4.2.2). Thus:

pari /x| EGRT=9)(1 - e )ds

psri(i+ pwn/A- / (a+be=T=9))(1 — e **)ds
0

Q

1(f)

Q

) b, _ _ _
psritli+ pn/A- [2(e7 — e~ T) ar + 2™ — 1) +

c— A

67CT(1 _

677()\70))}.



Chapter 5

Foreign Exchange Model of
Heston and Hull-White

In the previous chapter, we gave a detailed discussion on how to use the Heston-
Hull-White model in the equity market. Now we move to the foreign exchange
(FX) market - a worldwide decentralized over-the-counter financial market for
the trading of currencies. A foreign currency is analogous to a stock paying a
known dividend yield, which is the foreign risk-free rate of interest r; .The value
of interest paid in a currency depends on the value of the FX. For a domestic
investor, this value of interest can be regarded as an income equal to 7y of
the value of the foreign currency per time period. To sum up, it is an asset
that provides a yield of 7y per period. We define Sy as the spot FX price and
Fy as the forward price with maturity 7' . If we make the assumptions that
the domestic risk-free interest rate r4 and the foreign interest rate r; are both
constant, then the well-known interest rate parity relationship is

Fy = Sgelra=r)T, (5.0.1)

5.1 Valuation of FX options: The Garman-Kohlhagen
model

A foreign exchange (FX) option is a foreign currency derivative, where the owner
has the right but not the obligation to exchange money denominated in one
currency into another currency at a pre-agreed exchange rate on a specified date.
Due to the existence of FX exposure in a VA product, better understanding
of this FX options is required. Garman and Kohlhagen [GK83| extended the
Black-Scholes model to cope with the presence of two interest rates (one for
each currency). It is a standard model to price simple FX options. By replacing
the dividend yield g by ry in the Black-Scholes formula on stocks paying known
dividend yields, the domestic currency value of a call option into the foreign
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currency is
c=Sypexp(—rfT)N(di) — K exp(—rqT)N(d2). (5.1.1)

The value of the put option is

p = K exp(—rqT)N(—ds) — Soexp(—rfT)N(—d1), (5.1.2)

where
i In(So/K) + (;j/%rf + 02/2)T, (5.13)
dy = dy—oVT. (5.1.4)

K is the strike price and o is the volatility of FX. N(+) is the cumulative density
function of the normal distribution.

5.2 FX model with stochastic interest rate and
volatility

The Garman-Kohlhagen model is a basic extension of the Black-Scholes model,
which should not be used for pricing and hedging long-term FX contracts. Hence
the construction of multi-currency models with stochastic volatility and stochas-
tic interest rates (both domestic and foreign) is required. In this section we want
to extend the framework of the last chapter of the HHW model. The difference
between the application in two markets is the existence of two kinds of stochas-
tic interest rates in one currency. Here we assume that both interest rates are
driven by the Hull-White one factor model:

dra(t) = Aa(0a(t) = ra(t))dt + nad Wi (t), (5.2.1)
dr(t) = Ap(0p(t) = rp(t))dt +nsdWE(t),

where rq(t) and r¢(t) are domestic and foreign interest rates. The dynamics
(5.2.1) and (5.2.2) are mean-reverting processes from Hull and White, in which
the two Brownian motions W2(t) and W%(t) are under different measures: the
Q-domestic spot risk-neutral measure and the Z-foreign spot risk-neutral mea-
sure. Now we wish to define the hybrid FX Heston-Hull-White model with all
Brownian motions under the same measure. The process of the FX spot price
FX(t) can be easily obtained under the Q measure:

AFX(t)/FX(t) = (ra(t) — r;(t))dt + /o (t)dW 25 (1), (5.2.3)

which is just by substituting the constant parameters into time-dependent ones
in the Garman-Kohlhagen model. The variance process o(t) is also derived by
the Heston model, which is also under the Q measure.

Now let’s change the underlying measure from the foreign-spot to the domestic-
spot measure. According to [Shr04], the following prices should be martingales
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under the domestic-spot measure. (x1(t) is the foreign money account in a local
currency and x(¢) is the foreign zero-coupon bond in a local currency.)

alt): = FX(t)gZ(g, (5.2.4)
) = FX(t)PB;(§>7 (5.2.5)

where B(t) and By(t) are domestic and foreign saving accounts and Py (¢, T) is
the foreign zero coupon bond price. According to Hull and White, the dynamics
of the zero-coupon bond are

APy (t,T) /P (£, T) = ry(t)dt + Zf( e T _ 1)awE (). (5.2.6)
Applying the Ito’s rule to the processes x1(t) and x2(t), we get
da(t) = Vo®)xa(t)dWgx(t)
daalt) = VoxaOdWx(®)+ 3T - AW +
pFX,f%(e_)‘f(T_t) —1)\/o(t)xa(t)dt, (5.2.7)

where prx ¢ is the correlation coefficient in deX(t)dW%(t) = prx,rdt. Now
we change the measure in the following way to make sure thaty;(t) and x2(t)
are martingales under the domestic spot measure:

AW (t) = dW(t) — prx.p\/o(t)dt. (5.2.8)

To sum up, the full-scale FX-HHW model under the domestic risk-neutral
measure, Q reads

AFX(t)/FX (t) = (ra(t) — r;(t))dt + /o (£)dWZ, (t), FX(O) >0,
do(t) = k(T — o(t))dt + v\/o dWQ o(0) >
dra(t) = Aa(0a(t) —ra(t))dt + ﬂddW?( ), ra(0) >

(
dri(t) = (Ap(05(t) = 75 (t) = npprx.p\/o(E)dt + npdWE(t), 77(0) >
(5.2.9)

The parameters come from the Heston part and the Hull-White part, which are
the same as we defined for the full-scale HHW model for equity. Unlike the
equity HHW model, there are four SDEs in system (5.2.9), which is therefore
more difficult to calibrate. Some assumptions have to be made to simplify the
system. First of all, we assume the correlation matrix between the Brownian
motions is as follows:

1 PFX,c PFX,d PFX,f
S = dw@w ()T = | PrYe b Ped Por gy (5.2.10)
PFX,d  Pod 1 Pd,

PFX,f  Po.f Pd,f 1
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where W () = [W2y (£), WE(t), W2(t), WE(1)]7.

This full-scale FX-HHW model is not affine for the same reasons as discussed
in the previous chapter. In order to get an accurate approximation for the char-
acteristic function of this model, we again assume that the correlation between
interest rate and volatility is zero, i.e.p5.q = po,r =0 .

5.3 Forward Domestic Measure

System (5.2.9) is still too complex for the calibration process. An appropriate
approximation should be performed so that we can reduce the dimension of the
system. For this reason we move to the forward domestic measure. The measure
change procedure can be done similarly as in section (4.5.1). More specifically,
we choose as the numéraire the domestic zero-coupon bond P,(¢,T), whose
dynamics can be easily obtained by the Hull-White model. According to (5.1.1)
the forward FX price is given by

Ps(t,T)

FXForward t)= FX(t
(1) = FX() B

(5.3.1)

It has been discussed earlier that the forward FX price F X ward(t) should be
a martingale under the domestic forward measure Q”. If we use Ito’s lemma to
determine the dynamics of FXTorward(t)  we will see that

FX(t)
Pa(t, T)

Pf (t, T)
Py(t,T)

dPs(t,T) — FX(t) %dpd(t, T)

dFxFerward(q)  — dFX(t) +
—&—FX(t)%(de(t, 7))* + %(dFX(t)de(t, T))
—%(de(t,T)dFX(t)) - mdpd(w)dpf(w).

We insert the dynamics of the FX spot price FX(t) (5.2.3) and the SDEs for
the zero-coupon bond prices, both domestic and foreign:

ny, - —t
dPs(t,T)/Py(t,T) = (rs(t) - pF&fji(ﬁ MEZD 1) /o (1))dt
+ U (AT _1)aw (1)
Af
— Nd (—xa(T—t) Q
dPy(t, T)/FPa(t,T) = ra(t) + (e — 1AW (t).
d
For convenience, we define B,4(t,T) = /\id(exp(f)\d(T —t) —1), Byy(t,T) =
%(exp(f)\f(T —t)) —1). Then, we finally get
dFXForward(t)
FX Forward(g). = naBra(MaBra — prx,a\/ o(t) — pa,ynyBry)dt

+/o(t)dW 3y (t) = naBradW 2 (t) + ng BrrdW(t).
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Now, the appropriate Brownian motions under the T- forward measure dW 1y (t), dWZ (t)
and dW (t), dW[(t) can be determined. More details of this transformation

can be found in [GO10]. Here we just refer the lemma 2.2 in the paper [GO10]

which presents the derivation of the full-scale FX-HHW model under the forward
measure

Forward

df)){(mwd s = o) dWix (t) — naBradW, (t) + 1y By pdW{ (1),

do(t) = k(G — o(t))dt + v/ (t)dWE(t)

dra(t) = (Aa(0a(t) — ra(t)) + 03 Bra)dt + ndde (1),

dry(t) = (Ap(05(t) = r5(t)) = npprx.p7/o(t) + 14y pa, s Bra)dt + npdWF (t).

(5.3.2)

Note that here we still assume p, 4 = po,f = 0. Even though there are still four
SDEs in this new system, the first two dynamics are sufficient to approximate

the forward characteristic function, as will be explained in the next section in
detail.

5.4 Forward characteristic function

For the full-scale FX system above, an approximation of the characteristic func-
tion is obtained by using the techniques as in section (4.3). From (5.3.2), we
see that there is no drift term for the first SDE of the forward FX price, which
means that we have already reduced the complexity significantly.

First, we take the log-transform of the FX¥°rward(¢) The dynamics of this
term 27 (t) := In(FXFerward(t)) are

dzT(t): = ((po,aaBra — pu,ntBr) Vo (t) + pa,pnans BraBry
1 1
- 5(7733% +03iBY) — 50@))‘” + Vo (t)dWpx (t) — naBradW{ (t)
+ 0y BrpdWH (1),

with the variance process

do(t) = k(T — o(t))dt + /o (t)dWr(t)

Before we use the standard approach in [DPS00], we approximate the non-
affine term as in the previous chapter. That is, we replace the square root of
the variance by its expectation:

E(/o(t)) = /2¢(t) —W)/Qiki F((Z;C) (5.4.1)
k=0 2
where
(0= 32?1, a= 7 oy = O (542
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As Grzelak and Oosterlee mentioned in [GO09], another approximation for
E(y/o(t)) may be helpful, i.e.

E(\/o(t) = a+be . (5.4.3)

The values a,b and ¢ can be approximated by:

a=1/7— 7 ~ b= 1/0(0) —a, c= —In(5" (A1) — a)), (5.4.4)

where A(t) is given by (4.2.9). The details have been presented in section (4.2).
After this preparation step, the corresponding forward characteristic func-

tion ¢ (u, X (t),7) = exp(A(u, 7)+B (i, 7)aT (t)+C (11, 7)o (t)), where 7 := T —t

can be analytically derived by solving the following ODEs with respect to 7:

B'(r) = 0,
C'(r) = —kC(1)+ (B*(1) = B(1))/2+ pr.oyB(r)C(7) +7*C*(7) /2,
Al(r) = “50( ) = ((pz,anaBrd — pa, 1 Br)\/ o (t) + pa, gnang BraBrs

2(ndB’ o+ B2))(B(r) = B(7).

As we already solved this type of ODEs in section (4.3), we need not repeat the
derivation and we just show the result:

_e— D17

Clp, ) = W(H — Ypa,oip — D1),
A(p, ) = 6511 (1) + (1?4 ip) I(7).

: : - —YPz,oip—D
where Dy = /(ype0ip — K) = V2ip(ipn — 1), 9 = ;5= lomt and

T 2 1-— ge_DlT
L(r) = —(k—=9pzwip—D1) — — In(————),
(1) 72( ) 2 ( 1y
IL(r) = / {(pz,anaBra = pa, s Brg)\V/ o () + pa,nans BraBry
0

1
—5(77?1de + n?BEf)}d&

The closed-form solution for A(u, 7) is available similarly to section (4.3), which
involves the integration for the expectation of the square root of the variance.
Now, we are ready to price European options with this analytic expression of
the forward characteristic function. The pricing method we will use is again the
COS method.

5.5 Numerical Experiment

In this section, we mimic the situation of chapter 4 when comparing the COS
method with the Monte Carlo method for the Heston-Hull-White model. As we
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have already shown, the expression of the forward characteristic function of the
FX-HHW model can be obtained semi-analytically. Then we can use a set-up
from [Pit04] to start the experiment. The original experiment is organized as
follows: we first pick up the appropriate parameters for the Heston part and for
the Hull-White part independently

Heston k=005, ~7=03,7=0.1,prx,=—-04,0(0)=0.1,
Hull-White Ag=0.01 ,ng =0.007, Ay = 0.05,n; = 0.012.

Then, we choose the zero-coupon bond prices from both the domestic and
foreign markets that can be used to get the forward FX price for a certain
maturity by Py(0,T) = exp(—0.02T), P;(0,T) = exp(—0.05T"). Next, the corre-
lation matrix is determined for which is it assured that it is symmetric positive
definite.

1 PFX,c PFX.d PFX,f 1 —-04 -0.15 —0.15
PFX,o 1 Po,d Po,f _ —-0.4 1 0 0
PFX,d  Pod 1 Pd. —-0.15 0 1 0.25
PFEX,f  Po,f Pd,f 1 —0.15 0 0.25 1

Here we use a different matrix than [Pit04] because we use the assumption that
the correlation between the interest rate and the FX volatility is equal to zero.
The spot FX price is set to 1.35. The strikes have to be chosen conveniently to
coincide with the FX market data. We will explain this in the following chapter.
Here we use the strikes set as follows:

K(T) = FXForward()exp(0.1vT9),
§ = {-25,-2,-15,-1,-05,0,05,1,1.5,2,2.5}.

To simplify, we compare two maturities 7' =1 and T = 10.

We use the COS pricing method with N = 50000 to calculate the FX call
option price and corresponding implied volatility based on the forward FX-HHW
characteristic function. We compare them with the full-scale model simulation
by a Monte Carlo method with 10000 simulations and 1000 time steps.
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Figure 5.5.1: FX-COS v.s. Monte Carlo

The approximate forward FX-HHW model explained above seems a good
approximation of the full-scale FX-HHW model, as can be seen from the above
figures. Even with a long maturity, like 10 years, the distance between two
resulting implied volatilities is small. Based on these two experiments we pre-
sume that the approximation can be used for pricing and hedging FX related
contracts. This kind of characteristic function is most-of-all needed during the
calibration process in the next chapter.



Chapter 6

Calibration of the HHW
model

Calibration implies finding appropriate values for the open parameters in the
pricing model, so that model prices for traded instruments match market prices
as good as possible. Due to the complexity of the Heston-Hull-White model,
several parameters need to be fitted to equity and FX data simultaneously. This
is clearly an optimization problem in which the distance between market and
theoretical prices should be minimized.

As we pointed out, the HHW model is a combination of the Heston and Hull-
White models. There is a large body of work on the calibration of pure Heston
models and pure Hull-White models. In this chapter, we will first give a review
of the calibration approach of these two popular models. Then a realistic method
based on two steps is proposed to calibrate the Heston-Hull-White model. The
pricing formulas for plain vanilla options have been given in Chapters 4 & 5.

6.1 Equity and FX market

A mentioned, a Variable Annuity is similar to a long-maturity basket put option.
There are domestic stock indices as well as foreign stock indices in a VA basket.
In the Heston-Hull-White world, each interest rate and volatility is assumed to
be stochastic. Hence, the pricing of VAs benefits from the application of the
HHW model to both the equity and the FX markets. A volatility smile can
be observed in both markets as option markets for both equity and FX are
liquid. The realized volatility of an asset is a measure of how the asset price
fluctuated over a specific period of time. It is also called "historical volatility",
because it reflects the past. The "implied volatility" - a volatility that can
be extracted from the prices of liquid traded instruments, is representative for
what the market is implying in terms of volatility for future dates. Volatility
smile is the phrase used to describe how the implied volatility of options varies
with the strike price. A smile means that out-of-the-money puts and out-of-

39
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the-money calls both have higher implied volatilities than the at-the-money
options. In the financial industry traders deal with implied volatility data every
day. This volatility is the result of extracting the option price by the Black-
Scholes formula. We can usually observe an implied volatility surface directly
from the two markets. An implied volatility surface is a 3-D plot that combines
the volatility smile and the term-structure into a consolidated view of all options
for an underlier. Here, "surface" means the implied volatility for all strikes and
all maturities. The purpose of calibration is to fit this surface as closely as
possible.

In the equity markets, when implied volatility is plotted against the strike
price, the resulting graph is typically downward sloping. Usually, we use the
term ’volatility skew’ for equity options referring to the downward sloping plot.
For FX options, we prefer to use ’volatility smile’ to describe the situation in
which the graph turns up at either end. A stock market index is composed of a
basket of stocks and provides a way to measure a specific sector’s performance.
They can give an overall idea about the whole economy. These indices are
the most regularly quoted and are composed of large-cap stocks of a specific
stock exchange, such as the American S&P 500, the British FTSE 100 and
the EuroStoxx 50 (SX5E). Let’s take the SX5E as an example example, we can
easily see the skew of the implied volatility. As we can see from Figure 6.1.1, the
strike is always chosen around the spot price of the index at a certain time and
the maturity can vary from 1 week to 10 years. The implied volatility surface
of SX5E is especially skewed for short maturities which are usually hard to fit
with Heston-type models.
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Figure 6.1.1: SX5E implied volatility surface

Unlike the equity market in which the implied volatility is function of strike
and maturity, the FX implied volatility is quoted by Delta and maturity as
shown in Table 6.1. Delta is the first derivative of the option price with respect
to the underlying FX spot rate. As seen in section 5.1, the fair value of a call
FX vanilla option in the Black-Scholes model is calculated as follows:

¢ = Spexp(—rT)N(d1) — K exp(—rqT)N(da2),

where

b W(So/K) + (ra— s +0*/AT
1 = a\/T )

d2 = dl—U\/T.

The Delta can be mathematically obtained as:

A = % =wexp(—r¢T)N(wdy), (6.1.1)
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where w = 1 for a call type and w = —1 for a put. Delta represents the
amount of base currency units, expressed as a percentage of the notional, that
is equivalent to the position in the option. If a trader wants to be hedged against
the movements of the underlying FX rate, he has to trade in the market a spot
contract with equal amount and opposite sign to this Delta.

The definition of Delta may help us understand the structure of the FX
option market in a better way. The first type of Delta is the ATM straddle,
which means the sum of a call and a put struck at the at-the-money level.
Different types of these quotes exist in the market. ATM spot means that the
strike of the option is equal to the FX spot rate and ATM forward indicates
that this strike is set equal to the forward price of the underlying pair for the
same expiry of the option. The last kind is the so-called "0-Delta-STDL",
where the strike is chosen so that the call and the put have the same Delta
but with different signs. This one is most often used in the FX option market
for at-the-money implied volatility (obtained from inverting the Black-Scholes
formula when Delta is equal to 50). Adjustment to this value is undertaken by
incorporating the values of Risk Reversal (RR) and Vega-Weighted Butterfly
(VWB). The RR is a structure set up when one buys a call and sells a put
both featured with the same level of Delta. On the other hand, the VWB is
the structure referring to buy a call and a put and sell an ATM STDL with the
same Delta level. The percentages 25% and 10% are usually available in the
markets, which stand for two Delta levels. We can get the value of Delta quoted
implied volatility for different levels, based on the following:

o(@DCall) = o(ATM)+05%0(xDRR)+ o(xDVWB),
o(xD Put) = o(ATM)—-0.5%x0(xDRR)+ o(xDVWB),

where x means 25 or 10. As we can see from Table 6.1, five quotes for each
maturity exist in the market. We can also see the shape of smile from Figure
6.1.2. However, it is not a conventional plot since the implied volatility is
presented against the Delta and not versus the strike. The implied strike can
be recovered from the Black-Scholes formula when we calculate the Delta. If we
invert Formula (6.1.1), the strike is calculated as follows:

K = Sgexp|(rqg — r4)T] - exp{—wo VTN Y| Al exp(r;T)] + 0.50°T7}.

Table 6.2 gives the strike level, when we choose the spot price of GBPEUR as
1.1986.
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Figure 6.1.2: GBPEUR implied volatility (%)

[ GBP versus EUR | 10D_CALL | 25D_CALL | ATM [ 25D_PUT | 10D_PUT |

1W 11.083 10.536 10.205 10.479 10.948
1M 11.063 10.548 10.260 10.533 11.008
2M 11.463 10.826 10.528 10.889 11.543
3M 12.000 11.206 10.885 11.344 12.200
6M 12.643 11.680 11.394 11.995 13.113
9IM 13.019 11.973 11.670 12.308 13.531
1Y 13.313 12.206 11.886 12.579 13.848
18M 13.424 12.428 12.124 12.838 14.136
2Y 13.423 12.478 12.24 12.948 14.183
3Y 13.623 12.783 12.453 13.038 14.253
4Y 13.895 13.061 12.732 13.299 14.570
oY 14.285 13.465 13.159 13.695 15.000
Y 14.710 13.954 13.715 14.144 15.382
10Y 15.003 14.302 14.005 14.465 15.673

Table 6.1: Implied volatility (%)
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[ GBPEUR | 10D_CALL | 25D_CALL [ ATM [ 25D_PUT | 10D_PUT |

1w 1.2226 1.2106 1.1987 1.1870 1.1756
1M 1.2495 1.2242 1.1993 1.1750 1.1515
2M 1.2744 1.2364 1.2000 1.1648 1.1300
3M 1.2973 1.2472 1.2008 1.1561 1.1111
6M 1.3505 1.2725 1.2031 1.1376 1.0703
IM 1.3954 1.2937 1.2055 1.1245 1.0409
1Y 1.4363 1.3127 1.2078 1.1136 1.0165
18M 1.5013 1.3443 1.2109 1.0968 0.9789
2Y 1.5572 1.3707 1.2136 1.0851 0.9519
3Y 1.6602 1.4169 1.2126 1.0680 0.9091
4Y 1.7550 1.4536 1.2045 1.0555 0.8723
5Y 1.8509 1.4870 1.1901 1.0478 0.8407
7Y 1.9964 1.5190 1.1325 1.0458 0.7976
10Y 2.1303 1.5001 0.9870 1.0743 0.7623

Table 6.2: Strike

In this MSc project, we will use the implied volatility surfaces of SX5E(EUR),
SP500(USD), AEX(EUR), FTSE(GBP), IBEX(EUR) and TOPIX(JPY) index
options. In this case, we should use the three currencies from the FX market:
USDEUR, GBPEUR and JPYEUR.

6.2 Hull-White calibration

The generalized Hull-White one-factor model has the following form for the
short interest rate:

dr(t) = (0(t) — a(t)r(t))dt + o (t)dW,(t), (6.2.1)

where a(t) is the mean reversion speed, o(t) is the volatility and 6(t) is used
to replicate the current term-structure. In this project, we use the classical
Hull-White model, where the mean reversion speed and volatility are positive
constants. Hence the dynamics for this interest rate are as presented in chapter
4.

dr(t) = XO(t) — r(t))dt + ndW,.(t).

Note that 6(t) = M(t). The formula for short rate r(t) is
¢
r(t) = r(s)e*/\(tfs) +/ g(u)e*“t*“)du +77/e*)‘(t*“)dWT(u) (6.2.2)

Then we can also get the analytic formulas for A,(¢,T) and B,(¢,T) that we
used in section 4.5.1:

P(t,T) = exp|A,(t,T) — B,(t,T)r(t)], (6.2.3)
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where P(t,T) is the zero-coupon bond and

ALT) = (PG B TI0.) -
772 —2Xt 2
K(l — e M B.(t,T)%) (6.2.4)
1— e—)\(T—t)

B.(t,T) = —— —. (6.2.5)

A
Now, the analytic formula for A, (¢, T) reads:

InA,.(t,T) = ”;/T B2(u, T)du — /T 0(uw) By (u, T)du. (6.2.6)

6.2.1 Fitting the term-structure

Here, we explain how to use the analytic formulas to calibrate the Hull-White
model. For calibration purposes, the analytic formula is important to fit to
market implied values highly efficiently. Let’s first have a look at the current
term-structure 6(¢). In the Hull-White model the current instaneous forward

rates f(0,7) can be analytically obtained, since f(0,T) = _9mPO.T) gy,

oT
d d
f(O’T) = aT{BT(OvT)T(O)} - 87 In Ar(OaT)
= r(0) e - 277;(1—6-”)2%—” /OTQ(u)e’\“du. (6.2.7)

The term-structure can be fitted, if we invert the formula (6.2.7)

0 U Y
= 5O +Af(0,8) + 55 (1 — ™) (6.2.8)

o(t)
In practice, 0(t) is fitted on a daily basis. The term-structure parameter of the
short interest rate is essential for a Monte Carlo simulation process under the
spot measure. In Figure 6.2.1, we use the Euro zero rates (interest rates of the
zero coupon bond prices) data from August 2nd, 2010 to compute the instaneous
forward rates f(0,7). Then we use (6.2.7) to get the daily term-structure of
Euro interest rate.
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EUR IR 10 year daily term structure Aug-02, 2010
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Figure 6.2.1: 10 year daily term-structure for Euro swap rate

6.2.2 Calibration by swaptions

A swap contract is a financial derivative, where counter-parties exchange cash-
flows based on the return of reference indices. One type of contract is called
the interest rate swap: it is the exchange of a fixed rate loan by a floating rate
loan. The plain vanilla interest rate swap is the most popular swap in the over-
the-counter market. A swaption is also a financial derivative. It can be seen
as an option on a swap. It grants the owner the right, but not the obligation,
to enter into the underlying swap. In the Hull-White case, we focus here on
the interest rate swap only. In Brigo and Mercurio ’s book, we can find the
analytic formula for this swaption price, based on the Hull-White one-factor
model. Let’s first take a look at a European option on zero coupon bonds. The
payoff for a European put option with maturity 7;_; on the T;-maturity zero
coupon bond should be as follows: (with X being the strike)

max(X — P(T;-1,73),0)
Hence, the price of this option at time ¢ reads:
Ty
ZBP(t,Ty_1,T;, X) = EQeJi " 7()ds . max(X — P(T}_y, T}), 0)| ).

German, EI Karoui and Rochet have given an analytic expression for this put
option, based on the Hull-White one-factor model:

ZBP(t,Ti_1,T;, X) = XP(t,T,_1)N(—h + 0,) — P(t, T,)N(~h),  (6.2.9)



CHAPTER 6. CALIBRATION OF THE HHW MODEL 47

where
1 — e 2MTi-1-1)
op = n\/”\Br(TilyTi>7
h = Lhrlip(t’Ti) +U—P.

op P(t,Ti_l)X 2

We still use the A,y and B,.(¢,T) as in the Hull-White model.

We consider an interest rate swap contract where the tenor is 7,,, = {To, ..., Trn }
and the nominal value is N, the fixed rate K is paid and a floating rate (LI-
BOR) is received. We also refer to the book by Brigo and Mercurio. By defining
¢ =7;K for i =1,2...,m —1 and ¢, = (1 + 7., K) the value at time T of the
interest rate swap is N(1 — Y., ¢;P(Ty,T;)). Since the payer swaption is an
option on a payer swap, and we assume the option expires at time T, the payoff
of this swaption reads N -max(1—1-3"", ¢,P(Tp,T;),0), Now we can get the
swaption price from the earlier result:

Swaption(t, 7, N, X) = N Y _ ¢;ZBP(t, Ty, T;, P(Tb, T;)).- (6.2.10)
i=1

This is the analytic formula, which can be applied within the calibration of
the Hull-White model. More precisely, the mean-reversion parameter and the
interest volatility can be obtained in a stable way, due to the existence of the
swaption price in the market. Alternatively, we can calibrate via caplets, for
which there is also an analytic formula.

In practice, the Hull-White parameters can be calibrated on a monthly basis
based on either swaptions or caplets. Now, we take a look at swaption price
data from the European market. These benchmark prices can be used to fit the
Hull-White mean reversion and interest volatility parameters. The results are
shown in Table 6.3.
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| Date | mean reversion (%) | IR vol (%) |

2010-01 2.45 0.85
2010-02 2.13 0.82
2010-03 1.96 0.80
2010-04 1.73 0.83
2010-05 1.70 0.86
2010-06 1.89 0.86
2010-07 1.93 0.82
2010-08 1.93 0.88
2010-09 2.19 0.91
2010-10 2.24 0.91
2010-11 2.12 0.99
2010-12 3.01 0.98

Table 6.3: EUR IR Hull-White monthly calibration results

EUR IR Hull-\White raonthly calibration 2010
35 T T T

MEan reversion
— IR vol

251 5

Pararmeter (%)
(g}
1

Figure 6.2.2: HW parameters v.s. time

Summarizing, the term-structure can be fitted from the instantaneous for-
ward rate and the other two parameters can be calibrated from swaptions prices.
The only parameter left for the pure Black-Scholes Hull-White model is the cor-
relation between the interest rate and the stock. In reality, historical data is
frequently used to calibrate this correlation. In this MSc project, for the six
stock indices and four short rates in the Variable Annuities, we prefer to use
the historical correlation between the 10-year swap rate (EUR, USD, GBP, and
JPY) and each stock index to estimate. These can used for long maturities.
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6.3 Heston calibration

The pure Heston model is well-known for its ability to capture the implied
volatility smile in equity (or FX) and its tractability. As discussed in Chapter
3, the characteristic function for the Heston model reads

(wjvp) =e (iwrﬁtﬁ—@(ﬂ)(m—i w — D))
Phes(W; Vg ) = €XP 772 1—G6_DAt 1

KD 1 — Ge DAt

. exp(?(At(n —ipnw — D) — 21n( e ))), (6.3.1)
with
D = (k—ipnw)?+ (W2 +iw)n?, (6.3.2)
_ Kk—ipnw—D
G = D (6.3.3)

Many scholars did fine research on how to calibrate the Heston model. The
most common technique to calibrate the Heston model is by means of the Fast
Fourier Transform (FFT) or the direct numerical integration. As we have seen,
the COS pricing method is faster than the other methods. The COS formula
for a plain vanilla option is

N-1
k . a
vz, tg) = e "5t ,;) 'Re{qﬁhes(ﬁ;x) ~exp(—zk7rm)}vk

where V} is the pay-off coefficient for call or put options, see section 3.2 for their
expressions.

Here, we should choose an appropriate calibration norm and method. The
choice has a significant impact on the final result and on the speed of calibration
as well. More importantly, the norm and method for calibrating the pure Heston
model can be regarded as benchmark when we proceed to the calibration of the
Heston-Hull-White model.

The most popular technique is to minimize the error between model and
market prices, and evaluate the parameters in one bounded set by solving the
following:

min » w {CMN(K; T;) — CMorkel (K Ty Vo, (6.3.4)

where CMedel(K; T;) and CMaerket(K; T;) are the ith option prices from the
model and market, respectively, with strike K; and maturity 7;. Parameter w;
represents the weight of each option among the total N options. Norm is the
specific norm that we can use to minimize the value. The most common norms
are the quadratic norm and the relative norm:

quadraticnorm : min \/Zil{CNOdel(Ki,Ti) — CMarket (K, T;)}2
Model (- m.\_Marke o
min ZN |C; (K, Ti)—C| (KT

relative norm : i1 CRTarket (1, T5) .
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There is a trade-off between these two norms since a quadratic norm assigns
more weight to long-maturity options and In-The-Money options. On the other
hand, by using the relative norm we favor short-term and extremely skewed
options. As Bin Chen [Bin07] already showed this in his MSc research, the
Heston model has some problems when fitting skews to short maturities. That
is why here we still use the quadratic norm but not an equally weighted version.
We want to give weight to the At-The-Money options, so that we will choose
the Black-Scholes vegas as the weights. i.e. w; = g—g = SVT exp(—qT)N'(dy).

Choosing an accurate calibration method (with an appropriate optimization
technique) is crucial, since calibration may take a long time. Even though we
can significantly reduce the pricing time by the COS pricing formula, time is
also needed to choose the appropriate parameters. For this reason, many of the
complex models have limited power as several parameters need to be evaluated.
For the pure Heston model, there are basically five parameters to be fitted:
mean reversion k , long term variance ¥, volatility of variance v, correlation
between stock and variance p and initial variance v(0).

Generally, there are two kinds of optimization schemes: global and local
optimizers. Within the local algorithms, one has to choose a good initial value
for the parameters. The algorithm then determines the optimal direction and
may end up with good quality local minimization result. So it is essential to
find a good initial guess. Global algorithms, on the other hand, aim to search
everywhere in the constrained set determining the direction randomly. It is
obvious that even though global schemes can find a better result than local
schemes, they will cost much more time. In practice, we should perform the
calibration by using the two different schemes. The aim is to use fewer time than
global calibration and perhaps somewhat more time than the local calibration.
In the financial industry, we may use global calibration at the very beginning
(of a month) and then use this result as the starting point for local calibrate
during the whole month.

In this project, we use Matlab as our computing software since it is strong
in mathematical calculations and easy to use. As the local algorithm, we will
use the Matlab function fminsearch’. This function uses the Nelder-Mead Sim-
plex search method. For the global algorithms we will use adaptive simulated
annealing. Simulation Annealing is a probability-based, non-linear, stochastic
optimizer. Adaptive Simulated Annealing (ASA) is similar to this but more
powerful. Ingber has already shown that ASA is a global optimizer and this
optimizer can be implemented in Matlab by downloading the function asamin,
written by S. Sakata. For the calibration part, we will use these two functions
in Matlab to calibrate indices and currencies based on the two models. We will
first give the results for the Heston model and then show the outcome of the
Heston-Hull-White model in the next section.

6.3.1 Equity Heston Calibration

For equity index options, we use here the SX5E as an example. The dividend
rate can be deduced from the forward price of the SX5E. The calibration results
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of Heston model (daily basis) are shown in Table 6.4. This calibration is based
on the whole volatility surface with strikes between 60% and 200% of the spot
index value. The maturities vary from 0.5 years to 10 years. The five variance-
related parameters are stable throughout the month. Another important issue to
notice is that the mean reversion level and the volatility-of-volatility parameter
move in the same direction. This is easy to understand since it takes a long time
for the initial variance to reach the long time variance, either when the mean
reversion is high or when the vol-of-vol parameter is high.

’ date(Aug) \ mean reversion \ vol of variance \ long-run variance \ correlation \ initial variance ‘

2 Aug 0,3814 0,5168 0,1799 20,9216 0,0648
3-Aug 0,7109 0,9079 0,1602 -0,8074 0,0753
4L Aug 0,6708 0,8737 0,1617 70,8064 0,0729
5-Aug 0,6930 0,0017 0,1597 -0,8159 0,0758
6-Aug 0,3437 0,5539 0,1037 70,8709 0,0729
9-Aug 0,6713 0,8904 0,1478 -0,7939 0,0812
10-Aug 0,7761 0,8529 0,1439 70,8199 0,0843
11-Aug 0,6886 0,8543 0,1509 -0,8115 0,0088
12-Aug 0,8642 0,8053 0,1301 70,8450 0,1020
13-Aug 0,7896 0,6170 0,1302 -0,9048 0,042
16-Aug 0,472 0,6898 0,1326 20,9207 0,0969
17-Aug 0,8695 0,8173 0,1470 -0,8571 0,0021
18 Aug 0,7915 0,8613 0,1598 10,8422 0,0915
19-Aug 0,8679 0,8261 0,1529 70,8680 0,1008
20-Aug 0,8787 0,8193 0,1520 -0,8637 0,1048
23-Aug 0,8763 0,8144 0,1526 20,8605 0,0967
24-Aug 0,8862 0,6340 0,1408 -0,9458 0,0989
25-Aug 0,8817 0,8180 0,1545 70,8651 0,1109
26-Aug 0,8861 0,7855 0,1517 -0,8726 0,1063
27-Aug 0,8800 0,7034 0,1454 70,8935 0,0972
30-Aug 0,8841 0,7854 0,1514 -0,8665 0,1024
31-Aug 0,8634 0,6011 0,1499 70,9214 0,0077

Table 6.4: SX5E Heston monthly calibration
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Figure 6.3.1: SX5E Heston monthly calibration

6.3.2 FX Heston Calibration

The calibration of the FX Heston model is almost the same as the equity case ex-
cept that the dividend rate is now the foreign interest rate. Take the GBPEUR,
for example, we will use the implied volatility data in Table 6.1. The correspond-
ing strikes can be found in Table 6.2. The results should make the error as small
as possible. We give the results from the ASA global minimization methods in
Table 6.5. It is clear that the Heston model can fit the market better for long
maturities. Now we move to the next part on calibrating Heston-Hull-White
and we can compare the two results together and examine the impact.
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y T\Delta | 10D_CALL | 25D_CALL | ATM | 25D_PUT | 10D_PUT |
0.5Y-Impv (%) 12.6430 11.6800 11.3940 | 11.9950 13.1130
0.5Y-HesImpv (%) 12.1103 11.5972 11.5362 | 12.0107 12.8314
Error -0.0053 -0.0008 0.0014 0.0002 -0.0028
0.75Y-Impv(%) 13.0191 11.9730 11.6700 | 12.3080 13.5310
0.75Y-HesImpv (%) 12.4317 11.7271 11.5894 | 12.1663 13.1903
Error -0.0059 -0.0025 -0.0008 -0.0014 -0.0034
1Y-Impv(%) 13.3130 12.2060 11.8860 | 12.5790 13.8480
1Y-HesImpv (%) 12.7104 11.8677 11.6706 | 12.3114 13.4753
Error -0.0060 -0.0034 -0.0022 -0.0027 -0.0037
1.5Y-Impv(%) 13.4240 12.4280 12.1240 | 12.8381 14.1361
1.5Y-HesImpv (%) 13.1067 12.1370 11.8748 | 12.5628 13.8765
Error -0.0032 -0.0029 -0.0025 -0.0028 -0.0026
2Y-Impv(%) 13.4230 12.4779 12.2400 | 12.9480 14.1830
2Y-HesImpv(%) 13.3961 12.3776 12.0972 | 12.7798 14.1416
Error -0.0003 -0.0010 -0.0014 -0.0017 -0.0004
3Y-Impv (%) 13.6230 12.7830 12.4530 | 13.0379 14.2530
3Y-HesImpv (%) 13.8555 12.8062 12.5259 | 13.1401 14.5077
Error 0.0023 0.0002 0.0007 0.0010 0.0025
4Y-Tmpv(%) 13.8950 13.0610 12.7320 | 13.2990 14.5700
4Y-HesImpv(%) 14.1993 13.1499 12.9038 | 13.4328 14.7868
Error 0.0030 0.0009 0.0017 0.0013 0.0022
5Y-Impv(%) 14.2850 13.4649 13.1590 | 13.6950 15.0000
5Y-HesImpv (%) 14.4817 13.4350 13.2304 | 13.6668 14.9986
Error 0.0020 -0.0003 0.0007 -0.0003 0.0000
7Y-Impv (%) 14.7100 13.9540 13.7150 | 14.1440 15.3820
7Y-HesImpv (%) 14.8148 13.8377 13.7759 | 13.9896 15.2028
Error 0.0010 -0.0012 0.0006 -0.0015 -0.0018
10Y-Impv (%) 15.0030 14.3019 14.0050 | 14.4650 15.6730
10Y-HesImpv (%) 15.0359 14.2102 14.4648 | 14.2873 15.2920
Error 0.0003 -0.0009 0.0046 -0.0018 -0.0038

Table 6.5: GBPEUR Heston fitting result

6.4 Two steps of calibrating Heston-Hull-White

The calibration based on the pure Heston model and the Black-Scholes-Hull-
White model have been independently introduced in the previous section. Now,
we are fully prepared to calibrate the complete Heston-Hull-White model. Sev-
eral options regarding computational methods exist. The first one is the direct
method due to the semi-analytic pricing formula obtained based on the equity
and FX Heston-Hull-White model. However, the direct market approach will
take a long time and may give unstable results, since there are in total 10 pa-
rameters for the equity part and 16 parameters for the exchange rate part. This
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method is therefore not practical for a financial institution. An alternative is to
first calibrate all parameters independently for each model without the correla-
tions with interest rate. After that we calibrate the correlation corr(EQ,IR)
and corr(FX,IR) by using the semi-analytic formula. (the approximation is
based on the assumption that corr(IR,Vol) = 0.) The obvious advantage of
doing this is to save computation time. If the calibrated correlation coincides
with the market, this method of calibration will be acceptable. In reality, how-
ever, this does not happen all the time. Another implicit disadvantage is from
the following formula (for equities only):

2 2 2
Ototal = OrQ T OIR T 2PEQ,IROEQOIR,

which means that the volatility of interest rate, in the case of positive correlation
between equity and interest, rate will reduce the parameters from the Heston
part. (in the pure Heston model, it is obvious that o2, , = 0%).

In this project, we will use this technique to calibrate the Heston-Hull-White
model: The calibration of the interest rate part is based on the swaption data
by the Hull-White formula as introduced in section 6.2. Then, we include these
results into our semi-analytic formula for pricing plain vanilla call and put op-
tions to calibrate the parameters from the Heston part. The second step is very
similar as the calibration method of the pure Heston model in section 6.3, which
may give us a good comparison. As we discussed earlier, the forward measure
is used to reduce the complexity. Some results are as follows:

| global | \ \ |
mean reversion | vol of variance long-run
variance
Heston 0.3814 0.5167 0.1798
HHW 0.6251 0.7191 0.1423
correlation initial variance SSE
Heston -0.9215 0.0648 0.4081
HHW -0.8679 0.0752 0.1525
local
mean reversion | vol of variance long-run
variance
Heston 0.3814 0.5167 0.1798
HHW 0.3751 0.5139 0.1599
correlation initial variance SSE
Heston -0.9215 0.0648 0.4081
HHW -0.924 0.0694 0.1593

Table 6.6: HHW v.s. Heston

In this Table 6.6, we calibrated the SX5E to the same surface for both
models. The global minimization methodology shows that the HHW model is
better than the pure Heston model. (SSE stands for Sum of Square Errors. It
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is is smaller for HHW.) We carried out another test to compare the two models.
The initial value is crucial for the local minimization method in the calibration
process. The Heston results are used as the starting points for the calibration
of the HHW, which proves that the long-run variance is strongly reduced with
other parameters changing little. Even though the local minimized results are
not always ideal answers, as can be seen from the SSE, it it strongly advocated
when the calibration is too time-consuming.

6.4.1 Equity-HHW Calibration

Here the calibration is based on the global method for the SX5E on a daily
basis. Figure 6.4.1 gives the calibration results from August 23rd, 2010. It can
be seen that both models work well when fitting the implied volatility smile.
The monthly calibration results of the HHW model in August 2010 is shown
in Table 6.7. Some characteristics can be observed when comparing with Table
6.4. Both calibrations have the same features connecting the mean reversion
and the vol-of-vol parameter. Moreover, it can be seen again that the long-term
variance is reduced by a certain amount for the HHW model.
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o7

’ Date \ mean reversion \ vol of variance \ long-run variance

correlation | initial variance

2-Aug 0.3690 0.5153 0.1635 -0.9059 0.0691
3-Aug 0.4986 0.6100 0.1509 -0.8853 0.0712
4-Aug 0.7274 0.8303 0.1422 -0.8447 0.0754
5-Aug 0.3202 0.4902 0.1762 -0.9448 0.0677
6-Aug 0.4169 0.5677 0.1601 -0.8926 0.0772
9-Aug 0.2350 0.4345 0.1796 -0.9298 0.0690
10-Aug 0.7966 0.8512 0.1291 -0.8102 0.0898
11-Aug 0.7394 0.8012 0.1312 -0.8448 0.1020
12-Aug 0.8642 0.8123 0.1189 -0.8418 0.1092
13-Aug 0.7886 0.6109 0.1178 -0.9114 0.0999
16-Aug 0.9469 0.7006 0.1216 -0.9192 0.1047
17-Aug 0.8734 0.8199 0.1328 -0.8421 0.0989
18-Aug 0.8071 0.8554 0.1430 -0.8272 0.0975
19-Aug 0.8739 0.8310 0.1385 -0.8557 0.1083
20-Aug 0.8778 0.8226 0.1386 -0.8601 0.1129
23-Aug 0.9040 0.7733 0.1334 -0.8493 0.1013
24-Aug 0.8844 0.6377 0.1282 -0.9450 0.1065
25-Aug 0.7149 0.5413 0.1302 -0.9284 0.1039
26-Aug 0.6828 0.5604 0.1358 -0.9466 0.1037
27-Aug 0.8770 0.7113 0.1332 -0.8932 0.1057
30-Aug 0.8759 0.6554 0.1288 -0.8886 0.1030
31-Aug 0.7656 0.5563 0.1303 -0.9345 0.0981

Table 6.7: SX5E HHW monthly calibration

6.4.2 FX-HHW Calibration

We also perform the calibration based on the GBPEUR volatility surface data
shown before. Here, the global minimization is also used. The results shown in
Table 6.8 show that the fitting results are not better than the Heston model.
The assumption of zero correlation between interest rate and the FX volatility is
probably not acceptable. However the calibration error is still relatively small.
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y T\Delta | 10D_CALL | 25D_CALL | ATM | 25D_PUT | 10D_PUT |
0.5Y-Impv(%) 12.6430 11.6800 11.3940 | 11.9950 13.1130
0.5Y-HHWImpv (%) 10.5711 10.4385 10.4477 | 10.5938 10.8748
Error -0.0207 -0.0124 -0.0095 -0.0140 -0.0224
0.75Y-Impv(%) 13.0191 11.9730 11.6700 | 12.3080 13.5310
0.75Y-HHWTImpv(%) 11.1750 11.0157 11.0214 | 11.1820 11.5010
Error -0.0184 -0.0096 -0.0065 -0.0113 -0.0203
1Y-Impv(%) 13.3130 12.2060 11.8860 | 12.5790 13.8480
1Y-HHEWTmpv(%) 11.6680 11.4947 11.4994 | 11.6670 12.0055
Error -0.0165 -0.0071 -0.0039 -0.0091 -0.0184
1.5Y-Tmpv(%) 13.4240 12.4280 12.1240 | 12.8381 14.1361
1.5Y-HHWImpv(%) 12.4035 12.2316 12.2390 | 12.4075 12.7556
Error -0.0102 -0.0020 0.0011 -0.0043 -0.0138
2Y-Impv (%) 13.4230 12.4779 12.2400 | 12.9480 14.1830
2Y-HHWImpv (%) 12.9190 12.7570 12.7697 | 12.9327 13.2728
Error -0.0050 0.0028 0.0053 -0.0002 -0.0091
3Y-Impv (%) 13.6230 12.7830 12.4530 | 13.0379 14.2530
3Y-HHWImpv(%) 13.5594 13.4120 13.4345 | 13.5805 13.9026
Error -0.0006 0.0063 0.0098 0.0054 -0.0035
4Y-Impv (%) 13.8950 13.0610 12.7320 | 13.2990 14.5700
4Y-HHWImpv(%) 13.8868 13.7492 13.7822 | 13.9103 14.2234
Error -0.0001 0.0069 0.0105 0.0061 -0.0035
5Y-Impv (%) 14.2850 13.4649 13.1590 | 13.6950 15.0000
5Y-HHWImpv(%) 14.0406 13.9074 13.9511 14.0594 14.3677
Error -0.0024 0.0044 0.0079 0.0036 -0.0063
7Y-Impv (%) 14.7100 13.9540 13.7150 | 14.1440 15.3820
7Y-HHWImpv(%) 14.0623 13.9438 14.0167 | 14.0728 14.3625
Error -0.0065 -0.0001 0.0030 -0.0007 -0.0102
10Y-Tmpv (%) 15.0030 14.3019 14.0050 | 14.4650 15.6730
10Y-HHWImpv (%) 14.0824 13.4732 13.8199 | 14.0014 14.0549
Error -0.0092 -0.0083 -0.0019 -0.0046 -0.0162

Table 6.8: GBPEUR HHW fitting result

Calibration can give us insight into the model that we will use for pricing
and hedging. In fact, it is difficult to say which model can fit the market better
or which model is more realistic in the market. Calibration alone is not the
standard to judge a model. We will see this in the next chapter when we aim
to price long-term options.



Chapter 7

Multi-Asset Monte Carlo
Pricing

From the calibration in the previous chapter, stable values for parameters for
both the equity and FX Heston-Hull-White models have been obtained. The
next step is the pricing of the Variable Annuities. As we already pointed out
in Chapter 2, valuation should be based on Monte Carlo simulation since it is
difficult to get a pricing formula for basket options. However, a basic Monte
Carlo Euler scheme without any variance reduction technique may give rise to
a significant bias. To make the result more accurate, we prefer to use other
techniques and schemes. The structure of this chapter is as follows: Section 7.1
explains the antithetic sampling technique as well as the Milstein scheme. We
will find that these two techniques can significantly improve the final result. For
the Heston model, the Feller condition is crucial for pricing options. Section 7.2
discusses the pricing of the simple basket put options with one domestic stock
and one foreign stock. We will compare the Heston-Hull-White model and the
pure Heston model to observe the impact of a stochastic interest rate for long
maturities. We will use the calibration results from the previous chapter to
generate all the scenarios for six indices and three currencies for ten years in
section 7.3. In section 7.4, some results for the GMWB prices based under
Heston-Hull-White model and the basic Black-Scholes model are shown to see
the impact on the final reserves.

7.1 Monte Carlo test for single asset

Monte Carlo simulation is a powerful pricing tool in the area of quantitative
finance. It is a way of solving stochastic problems by evaluating many scenarios
numerically and by calculating statistical properties. In quantitative finance, it
is used to simulate the future behavior of assets. It can be used to determine
the value of financial derivatives by exploiting the theoretical relation between
option values and the expected payoff under a risk-neutral random walk. In

99
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the risk-neutral world, the fair value of an option is the present value of the
expected payoff under the risk-neutral measure. With the Black-Scholes model
for example, the dynamics of one market variable follows the process:

dS =rSdt + oSdW,

where dW is a Wiener process, r is the risk-neutral interest rate and o is the
volatility. To simulate the path of S for maturity 7', we can then subdivide T’
into M intervals, where At = T/M. Then we have

S(t 4 At) = S(t) + rS(t) At + o S(t)EVAL,

where £ is a random sample from a standard normal distribution. This equation
can be used to generate future prices of S- i.e. S(T') by using large numbers
of paths. The value can be obtained and the derivatives be governed by a
nonstandard payoff at time 7. Monte Carlo methods have an essential advantage
that if the payoff depends on the path. Nonetheless, it is computationally time-
consuming to achieve a reasonable accuracy. This is the reason why we propose
the use of variance reduction techniques.

7.1.1 Antithetic sampling

Antithetic sampling is a variance reduction technique. It is the easiest way of
saving time by reducing the variance. The principle behind this is the compu-
tation of two values for the derivatives in one simulation trial. This technique
uses the property that if £ ~ N(0,1), then —¢ ~ N(0,1). Suppose we obtain
the value of the derivative V7 in the usual way; the second value V5 is then cal-
culated by changing the sign of all random samples from the standard normal
distribution. Now, the sample value V is set to be the average of those two
simulated values.

1

The final value is the total average of all the V variables. Suppose we use N
simulations, and the standard deviation of each V' is given by o, then the stan-
dard error of the estimate is o/v/N. It is obvious that this error is significantly
smaller than the one we obtain by using 2/NV simulations.

We can analyze this technique for the Heston model for a single asset. The
reason why we choose the single Heston model is that this model is affine for
a single asset. Hence, the analytic European call and put option prices can
be obtained by the COS pricing method. For the Heston model we choose the
parameters as:

T = 1,r=0.0725=100,K = 100,
kK =5, ~v=05751,7=0.0398,v(0) = 0.0175, p = —0.5711.

The analytic put option price obtained by the COS method with parameter
N = 5000 (the number of Fourier cosine terms) is 4.3694. We implement the
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Monte Carlo simulation with 1000 time steps to determine the accuracy and
time spent with respect to the number of simulations

| Absolute Error | | N=10 | N=1000 | N—10000 |

Antithetic | 0.0802 | 0.0049 1.74E-04
Standard | 0.6870 | 0.0991 0.0066
Time(Seconds) N=10 | N=1000 | N=10000
Antithetic | 0.2428 | 1.7240 15.8500
Standard | 0.2310 | 1.5125 13.6527

Table 7.1: Convergence with antithetic sampling

Table 7.1 shows that the antithetic sampling technique converges faster than
the standard MC method.

7.1.2 Milstein scheme

In the Heston model, the basic Euler discretization of the variance process is as
follows::

v(t 4+ At) = v(t) 4+ k(T — v(t) At + 71/ v(H)EVAL,

where £ ~ N(0,1). This process may give however rise to a negative variance,
which does not make any sense in practice. Generally, the method is combined
with truncation in two ways. A negative variance is either set equal to zero or
the absolute value. Both ways will give rise to some bias in the final result after
a large number of simulations. However, another discretization method exists
which can be used to alleviate the negative variance problem to some extent.

The Milstein scheme provides an improved discretization method in terms of
convergence and handles the negativity problem. By deriving the higher order
derivatives in the Taylor expansion of v(t + At), we obtain

u(t + At) = v(t) + k(T — v(t) At +y/o(£)EVAL + i’yzAt(fz - 1),
which can be rewritten as
olt -+ At) = (v/olD) + L VAR)? + w(o — v(0) At - ifm.

This formula shows us that if we define v(t) = 0, and choose parameters that
satisfy kU — %72 > 0, we will have v(t+At) > 0. This will reduce the frequency of
occurrence of negative variances. It can be easily determined that the Milstein
and Euler discretizations are computationally equally expensive. In practice,
when the specific condition (kT — in > 0) is satisfied, experience has shown
us that the Milstein discretization performs better than the Euler scheme. In
order to make the Monte Carlo pricing engine more stable and less biased, we
prefer the use of the Milstein scheme.
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We employ the parameters from earlier experiments to see the impact of the
discretization method. The Monte Carlo test is based on 10000 simulations with
antithetic sampling to reduce the variance. The benchmark price is obtained by
the COS pricing method. As expected, the Milstein scheme gives smaller errors
compared to the Euler scheme.

’ Absolute Error \ M—64 \ M—=128 \ M=256 \ M=512 ‘

Euler 0.028 | 0.0124 | 0.0066 | 0.0048
Milstein 0.0189 | 0.0044 | 0.0023 | 0.0013
Time(Seconds) | M=64 | M=128 | M=256 | M=512
Euler 1.0223 | 2.0373 | 4.0643 | 8.1816
Milstein 1.0530 | 2.0778 4.1218 8.2321

Table 7.2: Milstein convergence

7.1.3 Feller condition for Milstein scheme

The condition for the Milstein scheme xT— %72 > () is very similar to the popular
Feller condition kv — %72 > 0 regarding the positivity of the variance process.
The Feller condition is crucial when simulating the variance process with long
maturities. The frequency of negative variance values can be significantly re-
duced when the Feller condition is satisfied. More specifically, according to the
implicit scheme proposed by Alfonsi (2005),

v(t+At) = o(t) + k(T — v(t) At + 3/ v(t)EVAL

= 0(t) + k(T — v(t + A)) At + 3/ 0(t + At)EVAL
—y(Vult + At) — \/u(1))EVAL + higher order term,

it can be found that

VUt + At) — y/vu(t)) = EVAL/2 + higher order term.

Further substitution gives the implicit discretization

v(t+ At = o(t) + k(T — vt + AL))AL + v/ o(t + At)EVAL
—&VAL)2.

Hence,

VAu(t) + At[(k0 — 0.592 )(1+/£At)+’y2£2]+’y§\ﬁ
Vult+At) = 5(1+ rASD)

If 26T > 72, we are guaranteed to have a real-valued root of the expression,
which implies that the variance process is positive at all times.

This Feller condition is critical for the parameters in the Heston model. In
practice, the condition can be violated. As a result, the Euler discretization may
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lead to a significant Monte Carlo bias. When we apply the Milstein discretiza-
tion, the situation improves and is less critical. It is easy to see the connection
between the two parameter sets:

{(k,0,7) € A|26T > 7*} S {(k,D,7) € A[4xD > *} C A,

where A represents the usual parameter sets. We therefore calibrate the Heston
model based on the larger constrained subset. For the calibration here, it is
essential to restrict the parameters so that the Feller condition is satisfied to
reduce the error of our Monte Carlo method. That’s another reason why we
employ the Milstein scheme especially for its relatively more moderate condition
4k > 2 compared to the Feller condition.

7.2 Basket put option

A basket option is an exotic option whose underlying is a weighted sum or
average of different assets. Here we study particularly the index options. As
introduced in Chapter 2, the Variable Annuity is similar to the European basket
put option. In the basic case, the payoff at maturity of the contract is the
maximum of the account value and the guaranteed level. If we choose the
guaranteed level to be constant, this contract is a basket put option since the
option payoff will be positive only when the account value is less than the
guaranteed level. The payoff at maturity reads

max(Guarante, Account) = max(G — Ar,0) + Ar,

where Ap = Zﬁi“lmber w;S;r is the Account value at maturity, S;7 is the ith
index value in the basket at T and w; represents the weight. And G is the
constant guarantee. According to the no arbitrage pricing theory, the fair value
of this put option is the discounted payoff with respect to the risk-free interest
rate. To make this somewhat more complicated, the index can be chosen glob-
ally. Since the guarantee is in a local currency, the foreign index in the domestic
currency becomes S;7FX;.

It can be shown from the calibrated results of the Heston model that this
model can fit the implied smile very well, especially for long maturities. How-
ever, a stochastic volatility model alone seems not enough for interest rate sen-
sitive products. The impact on the final reserves of a stochastic interest rate
can be found from simple testing based on two models: the pure Heston and the
Heston-Hull-White model. In this basket, we choose one domestic stock index
and one foreign stock index, which means that only one currency exists. In order
to compare the two models, we first choose the parameters for the Heston-Hull-
White model. Then, we will use the Hull-White formula to obtain the zero rate
of the zero-coupon bond, as the constant interest rate for the Heston model.

For the simulation with the Monte Carlo method, we usually have one system
with many Stochastic Differential Equations (SDEs) and these SDEs should be
consistent with the probability measure. In this project, the domestic spot risk



CHAPTER 7. MULTI-ASSET MONTE CARLO PRICING 64

neutral measure is preferred since the only transformation which then needs to
be done is with the dynamics of the foreign stock and its volatility. Generally,
the dynamics under each measure are as follows:

L1t = r(t)dt + \/va(B)AWG, (1)
dra(t) = Aa(0a(t) = ra(t))dt + ndW2 (t),
dvg(t) = ka(Da — va(t))dt +var/va(t) AW (t
TRt = (ra(t) = r(0))dt + WdeX
dopx(t) = kpx(Trx — orx(t))dt + VFXW ex
das
S0y () + \/desf
dry(t) = Ap(8(t) = r(D)dt +ndWVE (1),
07(0) = 5507 — vs (D) + /o, A

Here, S;, i, v;(i = d, f) indicate the domestic and foreign stock and its own
risk-neutral interest rate and the variance followed by the Heston-Hull-White
process. Q and Z are the risk-neutral spot measures for the individual stocks.
The currency part is also following the Heston-Hull-White dynamics, where F'X
is the spot price and oy is its variance. All the correlations are non-zero except
the ones between the interest rate and volatility. More details on this can be
found in Chapter 5.

Unlike our approach in Chapter 5, here we want to use the spot measure to
reduce the complexity. We will follow Grzelak and Oosterlee’s work to make a
uniform measure. We will focus on the domestic-spot risk neutral measure-Q.
With the closed-form dynamics of the foreign risk-free interest rate r; obtained
in Chapter 5, we will refer to the result from section 2.4 of [GO10] to get the
dynamics of the foreign stock and its variance as follows:

B = (v () — prx.s, /Or Oy/orx )+ /orDAWE (1),
dry(t) = (\p(05(t) = () = ngprx.r/o(1)) dt+77deQ()

dvg(t) = [k (UF = vf(t)) = psysprx,s, 78/ 0 O\ TR (B)]dE+ 75/ v (AW (

Now we can start the Monte Carlo simulation to obtain the following values for
simple basket put options with maturity T :

(7.2.1)

EQ[eXp(—/0 rq,ds) - max{G — wgSy(T) —wpSy(T)FX(T),0}].

In the world of Heston, the dynamics are almost the same except for the de-
terministic domestic and foreign risk-free interest rate. The pure Heston model
with the interest rate including the term-structure is sufficient to capture the
implied volatility smile for long maturities. This will shown in the section 6.3.
However, the structure of Variable Annuities indicates that the impact of a
stochastic interest rate can not be neglected. In order to check that, we propose
some numerical tests to compare the Heston-Hull-White and Heston models to
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see the impact. The parameters of both domestic stock and foreign stock are in

Table 7.3.
] \ IR Vol EQ
Domestic Stock | mean reversion | 0.05 kappa 5 sd 100
vol of IR 0.005 gamma 0.5751 | corr(sd,FX) | 0.4
corr(sd,rd) 20% mv 0.0398 | corr(sd,sf) | 0.1
rd(0) 0.01 v(0) 0.0175
term-structure | 0.01 | correlation | -0.5711
Foreign Stock | mean reversion | 0.02 kappa 5 sf 100
vol of IR 0.005 gamma 0.7 corr(sf,FX) | 0.3
corr(st,rf) 40% mv 0.08 corr(sf,sd) | 0.1
rf(0) 0.05 v(0) 0.02
term-structure | 0.05 | correlation -0.79
Exchange rate corr(rd,FX) 0.5 kappa 5 FX(0) 0.7
corr(rf, FX) 0.3 gamma 0.4
corr(rd,rf) 0.25 mv 0.01
v(0) 0.01
correlation | 0.211

Table 7.3: HHW parameters

The weights are chosen as: wqg = 0.5,wy = 0.5. In order to compare with pure
Heston model, the parameters from the interest rate can be used to compute the
zero rates, that can serve as the constant risk-free interest rate for the Heston

model.

In the Hull-White world, the zero-coupon bond price is:

where

B.(t,T) =

T T
AT =2 /t B2(s,T)ds — /t 9(s)B, (s, T)ds.

P(t,T) =exp[A.(t,T) — B.(t, T)r(¢)],

1— efA(Tft)

So, the instantaneous short rate at 7T is the log-transform of the zero-coupon
bond price divided by 7. It can be analytically obtained from the Hull-White
parameters, mean reversion, volatility of the IR and term-structure. The basket
put option price from the two models are shown in Table 7.4. It is obtained
by 50 Monte Carlo simulations with 10000 paths and 1000 time steps. We also
apply the technique of antithetic sampling and use the Milstein scheme to make
sure the Monte Carlo price is sufficiently accurate. When the maturity varies
from 5 years to 50 years, the absolute difference from two models grows, as
expected. The Heston-Hull-White price is higher because the total variance is
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a combination of two types of variance in the case of positive correlations which
we already showed in section 6.4.

2 2 2
Oiotal = OrQ t OIR T 2PEQ,IROEQOIR-

T | HHW | std dev | Heston [ std dev | HHW-Heston

5 | 15.0531 | 0.1964 | 13.6067 | 0.1932 1.4464
10 | 20.0155 | 0.253 | 18.2624 | 0.2196 1.7531
15 | 23.1994 | 0.2565 | 21.1493 | 0.2303 2.0501
20 | 25.461 | 0.3172 | 23.3356 | 0.2244 2.1254
25 | 274779 | 0.2581 | 25.0297 | 0.2648 2.4482
30 | 29.0263 | 0.3894 | 26.4792 | 0.2634 2.5471
35 | 30.2525 | 0.3596 | 27.6074 | 0.2469 2.6451
40 | 31.3738 | 0.4037 | 28.6135 | 0.2463 2.7603
45 | 32.35 0.3968 | 29.4096 | 0.2798 2.9404
50 | 33.1641 | 0.3999 | 30.1143 | 0.2147 3.0498

Table 7.4: Impact of stochastic interest rate

We also show the impact of incorporating the stochastic interest rate in
Figure 7.2.1.

Impact of Stochastic Interest Rate

— HHwW/
Heston

35

Basket put option price (%)

1 1 1 1 1
10 15 20 25 30 35 40 45 50
haturity

10 1 1 |
L2

Figure 7.2.1: Impact of stochastic interest rate

As we can see from the formula, the total variance is an increasing function
of interest rate volatility when the correlation between the interest rate and
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equity is positive. For some more about detail, we choose the weight in the
basket as follows wq = 1,wy = 0. This is to make sure that there is only one
index in the basket. In this case it is much easier to see the impact of the
interest volatility. In Figure 7.2.2, we can easily see the results of the increasing
interest volatility from 0% to 1%. Here, it is again proved that the impact of a
stochastic interest rate can not be neglected especially for long maturities. As a
result, for long-term options such as Variable Annuities, it is strongly preferred
to use a stochastic interest rate in combination with a stochastic volatility.

Impact of IR Yol
70 T T T T T T T T
IR val=1%
— IR wal=0.5%
Bl IR vol=0%

Price (%)

1
10 148 20 25 30 35 40 45 50

Maturity

Figure 7.2.2: Impact of IR volatility

7.3 Variable Annuity scenario generation

For the use of risk management, millions of scenarios need to be simulated to
evaluate some statistical properties for particular assets’ behavior. It can be
seen that the dimension of the system (7.2.1) for two assets is 8, and the pricing
accuracy will strongly depend on the power of the numerical method and the
computer. In this project, our aim is to generate the scenarios for six stock
indices in their own currencies.

Consider the situation when the local currency is the Euro. Three of the
stock indices are Euro indices. The other three are foreign indices which means
that we need to simulate three currencies in total. A basic model like the
Black-Scholes model with term-structure will significantly improve the speed
of scenario generation. In fact, this model is still most frequently used when
pricing Variable Annuities in the insurance sector. Now that we introduced the
Heston-Hull-White model in our project, we need to quantify the impact on the
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final reserves when changing from the Black-Scholes to the Heston-Hull-White
model. Before that, another interesting topic arising is to determine an accurate
correlation matrix.

For finance institutioner’s use, correlation must be accurate but also the
matrix should obey certain properties. More precisely, the correlation matrix
should be Symmetric-Positive-Definite (SPD). However, in reality the correla-
tions among all the factors are determined from historical data, which cannot
guarantee that the final resulting matrix is SPD. In this project, we use a simple
technique to deal with this topic. The general idea is to replace a potential nega-
tive eigenvalue from the original correlation matrix by a small positive value and
then to recover the matrix by a simple transformation. The correlation matrix
is organized as follows: the correlations between indices, currencies and inter-
est rates are computed by using the historical data. The correlation between
interest rate and volatility is set to zero. The only correlations needed from the
calibration are the ones between the indices and their volatilities and the ones
between currencies and their volatilities. After that, we make a transformation
to make it SPD. Some historical correlation results on November 30th, 2010 are
shown in the appendix.

In order to satisfy the Milstein Feller condition, the scenarios are generated
with one extra constrain. The calibration results on November 30th, 2010 are
shown in Table (7.5) and (7.6).

|

\ mean reversion \ vol of vol \ long variance \ correlation \ initial variance ‘

SX5E 0.5403 0.3478 0.1026 -0.9996 0.0922
SP500 1.8119 0.2298 0.0607 -0.9882 0.0569
AEX 1.4772 0.5026 0.0855 -0.9619 0.0624
FTSE 1.0611 0.4400 0.0912 -0.9490 0.0659
IBEX 0.6196 0.4158 0.1394 -0.8919 0.1110
TOPIX 1.9369 0.6686 0.0744 -0.8255 0.0545
GBPEUR 0.0964 0.0278 0.0559 -0.1135 0.0136
JPYEUR 0.1056 0.2388 0.1735 -0.4636 0.0294
USDEUR 0.3319 0.0985 0.0077 0.2940 0.0294
Table 7.5: Calibration of variance
] | vol [ mean reversion |
EURSWAP | 0.99% 2.12%
GBPSWAP | 1.03% 4.90%
JPYSWAP | 0.59% 0.01%
USDSWAP | 1.25% 3.42%

Table 7.6: Calibration of interest rate

With all the inputs ready, the scenarios can be generated by the Monte
Carlo simulations for 10 years with 10000 paths and monthly time steps. These
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scenarios are crucial for pricing the GMxB products discussed in Chapter 2.

Scenarios
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7.4 Valuation of GMWB

Figure 7.3.1: Scenarios

69

Scenarios are key to pricing and hedging Guaranteed Minimum Benefits prod-

ucts.

Here we focus on pricing GMWBs.

The GMWB promises a periodic
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payment (coupon) - regardless of the performance of the underlying policy. The
investor can participate in market gains, but still has a guaranteed cash flow
in the case of market losses. Even if the policy-holder’s account value drops to
zero as the annuitant makes withdrawals during the pay-out phase, the annui-
tant will be able to continue making withdrawals for the duration of the specified
period or until the total amount of withdrawals adds up to a specified maximum
lifetime amount. The GMWB is often used for retirement income protection.
In 2007, 43% of all variable annuities sold in the US included a GMWB type
option (including a lifetime benefit). As mentioned, this type of option is sim-
ilar to a basket put option with long maturities but has notable differences in
the combination of financial risk and insurance risk. A policy-holder’s behavior
may dramatically affect the cost of GMWBs in the real world.

Tables 7.7 & 7.8 provide a simple numerical example of the payoff for a
GMWSRB rider, assuming a particular sequence of yearly investment returns for
a typical Variable Annuity policy. Suppose the investor pays 100 Euros to an
insurance company, which is invested in a risky asset. The contract will run
for 10 years and the guaranteed withdrawal rate is 10 Euros per year. This is
to make sure that the investor can at least have all the initial investment back
at the end of the contract. The example assumes scenarios of good and bad
returns of the market independently. It can be seen if the market does very well
for these 10 years, the total withdrawal amount can go up to 455.3781 Euros.
Even when the market goes down, the GMWB promises at least 100 Euros to
the investor.

| Year [ Return (%) | Balance | Withdrawal |

1 27.02 127.0200 10
2 19.48 139.8155 10
3 64.08 213.0013 10
4 5.42 214.0039 10
5 8.79 221.9359 10
6 11.02 235.2912 10
7 34.14 302.2056 10
8 -22.42 226.6931 10
9 24.66 270.1297 10
10 40.46 365.3781 10

Table 7.7: GMWB of good returns
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| Year | Return (%) | Balance | Withdrawal |

1 -5.68 94.3200 10
2 -14.51 72.0852 10
3 -35.48 40.0574 10
4 32.32 39.7719 10
5 -1.44 29.3432 10
6 -22.52 14.9871 10
7 15.48 5.7591 10
8 -31.07 0 10
9 -17.47 0 10
10 -1.14 0 10

Table 7.8: GMWB protection of bad returns

The example shows us the protection effect of a GMWB. Typically, the
GMWRB carries an annual fee of 40-60 basis points as a percentage of the sub-
account value. In this case, the withdrawal rate is 10% annually as a fixed
percentage of the premium. This is called the static withdrawal policy. In a
more complicated construction, the policy-holder can withdraw at a stochastic
rate usually not greater than 7%. Other important issues arise due to the
policy-holder’s behavior, which may include death and lapse risk. These kinds
of external features need to be incorporated in the valuation process of GMWBs,
which will make the price cheaper.

The valuation of a GMWB is based on non-arbitrage pricing with an initial
amount of money invested in a basket of assets. As described in Chapter 2, the
dynamics of the asset without any underlying GMWB protection would be:

dS, = rSdt + 0S,dBR.

The sub-account values should incorporate two additional effects, the propor-
tional insurance fees ¢ and withdrawal rate G. Therefore, the sub-account value
of a GMWB would be in the following form.

AW, = (r — q)Wydt — Gdt + oW, dBE.

If W, ever reaches zero, it will remain zero to the maturity time. Consequently,
the payoff of a GMWB is a collection of residual sub-account values at maturity
and guaranteed withdrawals, i.e. the value of the GMWB reads:

T
GMW B = inforce x {P(0, T)EX[Wr|Fo] + / P(0,t)Gdt}.
0

The in force is the combination rate of survival and lapse.

In this case, one basket of underlying assets is focused upon. The scenarios of
all the assets in the basket are generated based on the stochastic model as shown
before with multi-asset Monte Carlo simulations. The returns of the account
value are simulated by the stochastic scenarios. We make the assumption that
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the annual fair fee is 50 basis points, which is deducted from the account value
at the end of each year. For comparison purposes, we assume that the annual
withdrawal rate is constant at 5%. The fair value of the embedded GMWB
put option is calculated based on a maturity of T' years, varying here from 5
to 20. In order to take the insurance risk into account, we will use some data
of a life table in a particular area and the historical lapse rate. The impact
of the stochastic model can be determined when comparing it with the basic
Black-Scholes model. The Black-Scholes model performs well under particular
assumptions.

We explore the pricing behavior of the GMWB with respect to two models.
The result presented in Table 7.10 is the GMWB options value versus time.
Suppose the age of the clients is 40 and the scenarios are based on a basket
with two assets, the SX5E and FTSE. This choice is to make sure that the
correlation between the European interest rate and the assets of the basket
(SX5FE + GBPEUR % FTSE) is positive. Under this assumption, the Heston-
Hull-White gives a higher price than Black-Scholes model. We also compare the
two corresponding prices graphically in Figure 7.4.1. It is shown in this figure
that the impact of stochastic models can be significant when the maturities of
the contract increase from 5 to 20 years.

] T \ Black-Scholes \ Heston-Hull-White ‘

5 0.0011 0.0387
6 0.0122 0.1060
7 0.0814 0.2551
8 0.2023 0.4921
9 0.4943 0.9067
10 0.9471 1.4055
11 1.5512 2.0765
12 2.2544 2.8359
13 3.2107 3.7238
14 4.1250 4.5461
15 5.2274 5.7371
16 6.3965 6.8187
17 7.6463 8.0800
18 8.8430 9.2782
19 9.9618 10.4493
20 11.1124 11.7096

Table 7.9: GMWB option price
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Impact of Stochastic scenarios

——— HHW
——BS

Year

Figure 7.4.1: Impact of stochastic scenarios

This example is to show the impact of the use of a stochastic model under the
assumption of a constant annual withdrawal rate of 5% for all the maturities.
The GMWB option price increases with time, as expected. As seen in this plot,
the use of the Black-Scholes model, which can not reproduce the overall volatility
of the Heston model, will tend to under-price the contract, especially for longer
maturities. This observation strongly motivates us to use Heston-Hull-White
model for the modeling framework. Although these remarks are based on a
GMWRB product, they are expected to be valid for other GMxB products.



Chapter 8

Conclusion

In this thesis, we have studied the valuation of Variable Annuities based on the
combined Heston and Hull-White model. This stochastic hybrid model has a
significant impact on the embedded option price of a VA. For long-term options,
such as VAs, the assumptions of stochastic volatility and interest rate are more
in line with the market practice and can better capture the interest rate and
equity risk. The key to realizing the application of Heston-Hull-White models
for Variable Annuities is the power of the COS pricing method in calibration.
It is one of the state-of-the-art numerical integration methods based on the
Fourier technique, discussed in Chapter 3. The characteristic function of an
affine model, such as the Black-Scholes or Heston model is analytically obtained,
and subsequently used for pricing European options. We performed some tests
to compare the COS pricing method with an FFT-based method and direct
numerical integration. These two methods have already proved in the literature
to be much better than Monte Carlo simulation for calibration. In terms of
time consumed and accurate pricing, the COS method is strongly preferred.
Additionally, the COS pricing method is easy to implement.

For a basket put option containing domestic stock and foreign stock, stochas-
tic modeling refers to equity and FX, respectively. There is a notable difference
between the equity-HHW model and the FX-HHW model. For the exchange
rate, both domestic and foreign stochastic interest rates are considered, which
means that the dimension of the FX-HHW hybrid model is four. We gave a
full discussion in Chapters 4 and 5 about how to determine the characteristic
function in approximate version of the two models. The same techniques are
applied however for the two models. We used the expectation of the volatility
as an approximation of a stochastic term to make both models affine. For affine
models, the standard techniques can be employed to get the final expressions for
the characteristic functions. The quality of the approximations can be observed
from the numerical examples in Chapters 4 and 5. We presented the Monte
Carlo price based on full-scale models as the benchmark price for the approx-
imate hybrid model prices obtained by the COS method. This way we tested
our approximate characteristic function to see the impact of the approximations
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made. The tables and figures confirm that this approximation can give us highly
satisfactory answers. Since the COS method is much less time-consuming, the
approximate affine hybrid models for equity and FX can be implemented within
the calibration process.

Calibration is involved, especially for more complex models, such as the
Heston and Hull-White model. Even though many scholars propose new cali-
bration methods, this process may still take substantial time. It is even more
difficult when we wish to have stable parameters for a certain period of time.
The market implied approach strongly depends on analytic or semi-analytical
pricing formulas. However, we have derived those in Chapter 4 and 5. We tried
to fit the implied volatility smile for both equity and FX, as is observed in the
market. The Heston and Heston-Hull-White models perform fine when fitting
this smile, as confirmed by the calibration results in Chapter 6. It is hard to say
which is model is better when fitting data. As long as the calibration can make
the distance between the theoretical model and real market data as small as
possible, a model can be regarded as robust. Nevertheless, the main motivation
to use the Hull-White one-factor short rate process is the long maturity of VA
contracts. The Hull-White model can be calibrated independently by using the
interest rate curve and swaption data. Its calibrated results are stable and rea-
sonable as shown in Chapter 6. After this robust calibration, the parameters for
both models have been obtained. With the parameters fixed, we have started
the multi-asset Monte Carlo engine to price the real VA contracts.

The Monte Carlo simulation costs a significant amount of CPU time and the
variance can be an increasing function of the maturity. Variance reduction tech-
niques, such as antithetic sampling, have been discussed in section 1 of Chapter
7. By changing the sign of random samples, we can reduce the variance signifi-
cantly with the same number of simulations. The numerical results also show us
that the Milstein scheme will improve the convergence compared to the Euler
scheme. We paid particular attention to the Feller condition for the variance
process, and we proposed a specifically tailored calibration method to reduce the
calibration error and, at the same time, to satisfy the Milstein Feller condition.
We saw some preliminary pricing results for basket put option in section 2 of
chapter 7. The financial portfolio was composed of one domestic stock and one
foreign stock. The impact of a stochastic interest rate for long maturities was
clearly observed during the numerical test, comparing the pure Heston and the
Heston-Hull-White models. Last but not least, we generated all the scenarios for
Variable Annuities composed of 6 stock indices and 3 currencies on November
30th, 2010. Then we performed a final comparison between the Heston-Hull-
White and Black-Scholes models during the valuation of Guaranteed Minimum
Withdrawal Benefits. The reason for choosing a GMWB contract is because
this option is somewhat different from the basic basket put option, for which we
already shown that the impact of stochastic models can not be neglected. The
last tables and figures of this thesis convinced us to use the hybrid stochastic
model for long-term exotic options.
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Future research

The performance of Monte Carlo can be improved when the Feller condition is
not satisfied. In this thesis, we use the results from the conditioned calibration
to give a guarantee that the variance process never reach negative. The further
investigation should aim to deal with the situation of normal calibration process
and improved Monte Carlo simulations. One of the possible solutions is to apply
the discretization schemes other than Euler and Milstein during the Monte Carlo
method.

The problem of how to specify a correlation matrix occurs in several impor-
tant areas of finance and of risk management. To make this matrix symmetric-
positive-definite without big bias from the original correlation data, better meth-
ods are still needed. Another interesting topic about the future work is the ap-
plication of GPU (graphic processing unit) in the process of scenario generation,
which is usually computational time-consuming in practice. GPU is a special-
ized circuit designed to rapidly manipulate and alter memory in certain ways.
It can provide additional assistance for the combined system of calibration and
scenario generation.



Appendix: market data

| [ SX5E | SP500 | AEX | FTSE | IBEX | TOPIX | GBPEUR | USDEUR | JPYEUR

SX5E 1.00 0.82 0.94 0.90 0.91 0.46 0.06 -0.36 -0.59
SP500 0.82 1.00 0.80 0.84 0.73 0.37 -0.02 -0.42 -0.57
AEX 0.94 0.80 1.00 0.91 0.82 0.49 0.11 -0.30 -0.55
FTSE 0.90 0.84 0.91 1.00 0.80 0.41 -0.07 -0.34 -0.55
IBEX 0.91 0.73 0.82 0.80 1.00 0.45 0.00 -0.41 -0.56
TOPIX 0.46 0.37 0.49 0.41 0.45 1.00 0.01 -0.22 -0.41
GBPEUR | 0.06 -0.02 | 0.11 | -0.07 0.00 0.01 1.00 0.30 0.00
USDEUR | -0.36 | -0.42 | -0.30 | -0.34 | -0.41 -0.22 0.30 1.00 0.65
JPYEUR | -0.59 | -0.57 | -0.55 | -0.55 | -0.56 -0.41 0.00 0.65 1.00

Table 1: Correlation between Equities and FX

| [ SX5E | SP500 | AEX | FTSE | IBEX | TOPIX | GBPEUR | USDEUR | JPYEUR |

EURSWAP | 0.41 0.31 0.38 0.31 0.38 0.32 0.10 -0.23 -0.50
GBPSWAP | 0.35 0.31 0.38 0.25 0.32 0.31 0.36 -0.14 -0.49
JPYSWAP | 0.33 0.26 0.33 0.29 0.29 0.40 0.17 -0.01 -0.26
USDSWAP | 0.32 0.19 0.32 0.24 0.24 0.18 0.31 0.14 -0.34

Table 2: Correlations between Equities, FX and Interest Rates

y | EURSWAP | GBPSWAP [ JPYSWAP | USDSWAP |

EURSWAP 1.00 0.77 0.52 0.61
GBPSWAP 0.77 1.00 0.47 0.64
JPYSWAP 0.52 0.47 1.00 0.5
USDSWAP 0.61 0.64 0.5 1.00

Table 3: Correlation between Interest Rates
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