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Introduction

Throughout my master’s program at TU Delft, I developed a strong interest in operations optimization,
particularly in airline planning and cargo operations. The courses I did in these fields allowed me to
work on complex real-world problems and provided rewarding opportunities to apply optimization
techniques in complex and challenging settings. This interest was further strengthened during the
course on maintenance modeling and analysis, where I was introduced to the potential of data-driven
methods within aerospace maintenance. Motivated by the desire to combine these areas in my thesis,
I started searching for a graduation project that would offer such an interdisciplinary challenge.

The independent component maintenance provider, as a historically significant name in aerospace,
immediately stood out to me. After discussions with several people within the company, the idea
emerged to develop an optimization approach for the scheduling of component maintenance, repair, and
overhaul (CMRO) shops. These environments do not have standard, plug-and-play planning solutions
due to their operational complexity, making them an ideal setting for applying tailored optimization
approaches.

What makes this project particularly relevant is the integration of physical operational processes
with data-driven modeling. Bridging this gap required close collaboration with shop-floor leads to
ensure that key features of the maintenance environment were accurately represented and that proposed
solutions were practically feasible. Regular discussions with operational staff and management helped
validate both the model structure and its outcomes, enhancing the practical applicability of the work.
While the job shop problem has been studied extensively in the literature, environments involving
human technicians rather than only machines remain underexplored. This human-centric aspect of the
workshop setting contributed to the scientific and practical relevance of the project.

This thesis report consists of two parts and is structured as follows: Part I presents the scientific
paper, which includes the problem statement, the methodology applied, the outcomes of the conducted
experiments, and the resulting conclusions. Part IT contains the supporting literature review, including
a state-of-the-art analysis of relevant research, the identification of the research gap, and the research
plan formulated at the start of the thesis.
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Dynamic Scheduling Optimization for Component Maintenance,
Repair, and Overhaul Shops

Thijs Roolvink,*
Delft University of Technology, Delft, The Netherlands

Abstract

Effective scheduling is challenging in Component Maintenance, Repair, and Overhaul (CMRO) operations
due to the complexity of dynamically allocating resources across multiple jobs with varying priorities and
technical constraints. Current industry practices typically rely on static, manual scheduling, resulting in
suboptimal resource allocation and insufficient adaptability to operational disruptions. Most existing stud-
ies approach specific job shop problems by incorporating individual features, such as job prioritization or
resource constraints, without considering the combined operational complexities of CMRO shops. Therefore,
this research presents a scheduling model using the Flexible Job Shop Scheduling Problem (FJSSP), tailored
to dynamic CMRO environments. The model uses Mixed Integer Linear Programming (MILP) to simul-
taneously schedule technicians and machines while accounting for specialized skill requirements, resource
constraints, and job prioritization. The approach balances multiple objectives, including tardiness and earli-
ness, to enhance shop performance metrics such as Turnaround Time (TAT) and On Time Delivery (OTD)
rates. Outcomes from a case study applied to real-world data from CMRO shops demonstrate significant
operational improvements, achieving a reduction in TAT of up to 34% and an improvement in OTD by
approximately 23% relative to historical shop performance. Furthermore, the model incorporates schedule
robustness measures, minimizing deviations from planned schedules, despite operational uncertainties. Ad-
ditionally, comparative analysis with a traditional heuristic dispatching rule model confirms the superior
performance of the proposed optimization framework. This framework can be broadly applied to improve
scheduling efficiency and stability in CMRO shops and similar workshop environments.

1 Introduction

Component Maintenance, Repair, and Overhaul (CMRO) shops play an important role in ensuring the reliability
and availability of aircraft by performing maintenance on various aviation components. These shops handle
thousands of parts annually, varying from navigation instruments to power generation systems, using highly
trained and experienced technicians for specific inspection, repair, and testing tasks. Efficient scheduling in
these environments is important for maximizing resource utilization and maintaining service-level agreements
to improve customer satisfaction, minimize operational costs, and reduce turnaround times. In current CMRO
environments, scheduling processes rely on simple prioritization models and manual decision-making. The
allocation of operations to technicians is mainly done by the expertise and judgment of the shop lead, rather
than relying on a scheduling algorithm. While this is effective to some extent, this approach lacks the flexibility
to adapt to dynamic operational changes. Additionally, this inefficient scheduling can lead to increased Work-
In-Progress (WIP), delays in important repairs, and higher labor costs, making scheduling optimization an
important topic in CMRO operations.

Recent advancements in scheduling optimization demonstrate the potential impact of integrating data-driven
methods. For instance, new scheduling model tools have been shown to improve Overall Equipment Effective-
ness (OEE) by over 3%, reduce planning-related labor hours by more than 50%, and improve sustainability
and customer satisfaction (Kumar and He, 2023). Such results emphasize the importance of transitioning from
manual, experience-based scheduling to automated, optimization-driven systems. There are many other ex-
amples in the aviation industry where efficient scheduling has significantly reduced maintenance efforts and
improved utilization. For example, an earlier study on aircraft heavy maintenance check scheduling introduced
a genetic algorithm-based approach that reduced the total number of heavy maintenance checks by 7%. Ad-
ditionally, it increased aircraft utilization by 4.4%, potentially leading to significant annual maintenance cost
savings (van der Weide et al., 2022). These improvements show the potential of advanced scheduling techniques
in aviation maintenance operations.

Recent literature on job shop scheduling highlights advancements in exact methods, dispatching rules, and
metaheuristics for solving complex scheduling problems. Mixed Integer Linear Programming (MILP) remains
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commonly used, providing optimal solutions with flexibility to model detailed operational constraints. Several
studies have explored the integration of job priorities, skilled technician constraints, robust optimization, and
dynamic rescheduling separately, but few address these aspects together. Specifically within CMRO shops
and similar maintenance or production settings, current models generally overlook the dual-resource allocation
challenges, sequence-dependent setup times, technician assignment constraints, and rescheduling requirements
together. This research addresses this gap by proposing a general framework that incorporates all of these key
components and can be easily tailored to CMRO environments. To evaluate the proposed model properly, a
case study was performed in collaboration with an independent component maintenance provider, where the
scheduling framework was tested using real-world data from multiple CMRO shop environments.

Accordingly, this paper proposes a scheduling model developed for job shop environments commonly found
in CMRO operations. The model intends to autonomously plan maintenance tasks, addressing several crucial
aspects common in such environments. First, it should incorporate all relevant operational constraints to
generate optimal schedules for these complex settings. Second, it should be designed to remain effective and
robust in environments with dynamic disruptions such as job arrivals, operation delays, and the insertion
of additional tasks. Another important consideration is the integration of multiple performance objectives,
specifically tardiness and earliness, to optimally balance Turnaround Time (TAT) and On-Time Delivery (OTD).

This paper is structured as follows. Section 2 describes the problem by outlining current scheduling chal-
lenges, operational constraints, and shop-specific characteristics within the CMRO environment. Section 3
reviews the relevant literature, focusing on the research gap this paper is trying to address. The case study
context, shop instances, and key performance indicators are introduced in Section 4. The methodological ap-
proach, including the exact MILP-based model, dynamic rescheduling mechanism, and robustness strategies, is
presented in Section 5. Section 6 explains the simulation setup used to evaluate the scheduling models. The
results, including model validation, performance, and comparative evaluations, are described and analyzed in
Section 7. Section 8 discusses the operational implications of the findings. Finally, Section 9 presents the
conclusions drawn from this study and outlines possible directions for future research.

2 Problem Definition

This section defines the scheduling problem in CMRO shops by describing current planning inefficiencies in
Section 2.1. Next, Section 2.2 outlines routing characteristics and operational aspects of the Hydraulics &
Pneumatics (H&P) and Power Generation shops. Thereafter, Section 2.3 summarizes general operational re-
quirements that impact scheduling complexity. Finally, Section 2.4 presents the expected future scheduling
model, designed to respond dynamically to disruptions.

2.1 Current Challenges and Inefficiencies

Currently, scheduling processes in many CMRO shops are primarily static and rule-based, relying heavily
on manual decision-making. Production leaders decide the allocation of Work Orders (WOs) based on their
experience, with almost no use of assignment tools or models (Avelino et al., 2016). While technician capacity
is partially scheduled at the beginning of the week, the remaining capacity is handled reactively throughout
the week, often leading to inefficiencies and delays. The causes of the current, sub-optimal way of scheduling
include:

e Limited Flexibility: The current system struggles to adjust to dynamic changes such as unforeseen delays,
urgent job arrivals, and variations in processing times.

e Suboptimal Resource Allocation: Technician skills and equipment capabilities are not fully taken into
account, leading to lower utilization and potentially lower service levels.

e Inefficient Prioritization: The prioritization of WOs is based on a basic points-based approach, incor-
porating customer importance and priority levels. However, this approach does not utilize an advanced
framework to dynamically schedule on these parameters.

e Semi-Manual Decision-Making: Decision-making relies on a combination of a simple prioritization model
and manual decision-making, without using advanced, data-driven methods to improve and optimize the
scheduling of maintenance operations. This approach does not consider the influence of current decisions
on the allocation of future operations.

2.2 Shop-Specific Environments and Routing Characteristics

The two types of CMRO shops this research focuses on each have unique characteristics and constraints, which
complicate the scheduling process and need customization in the scheduling model. Sections 2.2.1 and 2.2.2
describe the processes in H&P and Power Generation or Integrated Drive Generator (IDG) shops, respectively.



2.2.1 Hydraulics and Pneumatics Shop

Within the CMRO environment, the H&P shop specializes in hydraulic and pneumatic components, operating
through two workgroups. An overview of the typical routing steps in the H&P shop is shown in Figure 1. When
a new WO arrives, it first receives the status Ready for Evaluation (RFE). Upon assignment to a technician,
the status changes to Unit in Evaluation (UIE). During this phase, an initial inspection is performed to assess
the condition of the unit and determine the complexity of the repair. Based on this evaluation, a quotation
is prepared and sent to the customer. If the customer approves the quote, the WO status changes to Ready
to Build (RTB), and subsequently to In Progress (IP) once a technician starts working on the WO. After
completion of all required tasks and a final inspection, the unit is ready to be shipped. While some WOs may
follow alternative routing paths due to specific component requirements, most follow this general process.

Quote
approval

I Complete phase

Quote phase

Final
Inspection

Inspection/
Disassembly

Final Test

Waiting for Waiting for
parts/ parts/
outsourcing outsourcing

Unit in In Progress
Ready for Evaluation Ready to (IP) Ready
evaluation (RFE) (UIE) build (RTB)

Figure 1: Routing steps and WO statuses for H&P shop.

The current way of scheduling in the H&P shop starts with the list of workable WOs, which are prioritized
by the simple points-based model. This list is used by the production leads to assign technicians to the most
important jobs, based on their knowledge of the individual technician skills. Based on their indication of the
processing times, they choose the number of WOs to be handled by each technician. The technicians each get
an overview of the WOs assigned to them on their overview screen.

2.2.2 Power Generation Shop

The Power Generation or Integrated Drive Generator (IDG) shop presents the most complex workflow, with a
significantly larger number of routing steps, as shown in Figure 2. In this process, the quote approval point,
which separates the quote and completion phases, occurs after the disassembly or inspection step. Furthermore,
the number of operations requiring the use of the bench test machines is considerably higher than in the H&P
shop, with some WOs passing through the final bench test multiple times depending on the test outcome.

: 1 e N e N\ Test
Incoming Incoming Disassembly Lapping/ Assembly/ Final successful Final Final
Inspection || Bench Test /Inspection Honing Repair Bench Test Assembly Inspection
1 : \. J \. J

Only if possible if
not causing more
damage

) )
)] Waiting for | _ _ _ _ Trouble-
1 parts 1 shooting
I \ J | \. J
K
: : Test ]
I v failed v

Figure 2: Routing steps for the Power Generation shop.

In Figure 3, an overview of the current way of scheduling for the power generation shop is given. Similar to
the other shops, the WOs are ordered based on priority, but separately for each routing step. WOs are moved
sequentially through the steps, with job assignments handled by the production leader. The jobs in each step
are represented as placeholders, indicating the WOs currently in progress at that stage. With this approach,
WOs are tracked and progressed correctly, creating a clear overview of where specific jobs are in the process.
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score e Jobi e Jobi
| I
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Figure 3: Current scheduling process for the Power Generation shop.

Several practical constraints and preferences further complicate the scheduling environment in the Power Gen-
eration shop. First, specialized rework operations, such as lapping and honing, may occur at different stages,
sometimes during the quotation phase, and sometimes during the repair phase. A specialized technician ideally
performs these operations, or when not available, another capable, right-skilled technician can step in if neces-
sary. Notably, one technician can operate two of these machines together, increasing capacity but additionally
creating further complexity in incorporating resource allocation rules in the model.

For the testing phase, failure of the final test requires that the WO must be re-inserted into the system and
assigned additional routing steps, including a new test operation, to complete the repair. This reintroduction of
tasks increases the variability in job flow. Furthermore, a small buffer before the final due date is preferred to
avoid tasks finishing exactly at the deadline. Frequent updates to the schedule should be made at least multiple
times per day to help process dynamic changes, such as unforeseen delays or urgent customer requests, while
ensuring that once a job operation has been initiated, it is carried through to completion without interruption.

2.3 General Operational Aspects

Several common operational aspects impact shop performance and scheduling complexity. The final inspection
step, which represents the last routing step in the workflow, must be performed exclusively by certified tech-
nicians, whose limited availability introduces additional bottlenecks in scheduling. Additionally, uncertainties
in testing outcomes and processing durations complicate scheduling further, as the standard durations serve as
rough indicators rather than precise estimates.

Technicians have a degree of flexibility and can operate across multiple work centers, but their allocation must
respect capacity constraints. Furthermore, it is standard practice that, whenever feasible, the technician who
initiates work on a particular routing step of a WO should continue handling subsequent steps. Additionally,
technicians are required to perform all remaining operations of a WO back-to-back, since a WO cannot be
reassigned to another technician before it is completed, except for specific cases such as test operations or
final inspections. Related to resource efficiency, WOs requiring similar testing can benefit from being batched,
improving the utilization and processing time on machines because no setup time is needed.

Customer prioritization further provides scheduling challenges, as high-priority customers require expedited
processing, yet the current scheduling system lacks the reactivity necessary to adapt to these varying demands
effectively. Furthermore, technician skills introduce another layer of scheduling complexity since specific tasks
or parts often need unique technician capabilities, thus constraining flexibility in workforce allocation.

Additionally, shops communicate expected shipping dates for finalized work orders to customers, making
reliable scheduling crucial. While certain unforeseen circumstances, such as delays due to parts availability,
can occasionally impact reliability, maintaining accurate and dependable shipping date predictions remains
an important aspect of the overall scheduling strategy. Improving scheduling accuracy enhances customer
satisfaction by managing expectations effectively and ensuring clarity in communication.

2.4 Future Scheduling

Figure 4 shows the schematic representation of the future scheduling model, illustrating its key elements for
practical application in CMRO environments. The model uses the required parameters, including job priorities,
process durations, and due dates, to generate an initial optimized schedule. The rescheduling step is triggered
automatically in response to any dynamic, disruptive events, including delays in ongoing operations, unexpected
job arrivals, or the insertion of additional routing steps due to failed test operations. This feature ensures that
the model can optimize schedules in reaction to real-time operational changes, enhancing overall performance
and efficiency.

An important requirement for the effectiveness of this dynamic scheduling approach is a practical compu-
tational time. Due to the frequent need to re-run the model throughout the operational period, especially
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Figure 4: Overview of the future desired scheduling model for the CMRO shops.

following unforeseen disruptions, a practical computational time limit must be set to balance scheduling quality
and optimality. This limit ensures timely updates and manageable model execution times, ensuring a realistic
integration of the scheduling model in real-world CMRO shops.

3 Literature Review

This section reviews the literature relevant to scheduling optimization in complex operational environments
such as CMRO shops. It discusses various solution methodologies in Section 3.1, including exact and heuristic
approaches. Section 3.2 analyzes the incorporation of job priorities and technician skill constraints in scheduling
models. Next, decomposition strategies to manage computational time are addressed in Section 3.3, followed
by a review of rescheduling policies and robust scheduling methods in dynamic environments in Section 3.4.
Finally, Section 3.5 identifies the research gap this thesis aims to address.

Scheduling problems are generally classified based on their machine environments, job characteristics, and
optimization objectives (Pinedo, 2016). These frameworks provide structure for understanding the nature of
scheduling problems and selecting the right solution approach based on their constraints, operational flows, and
environmental features. The most widely studied classification is the Job Shop Scheduling Problem (JSSP),
which involves multiple jobs that each follow a specific sequence of operations across machines, and is known
to be nondeterministic polynomial-time hard (NP-hard) (Xiong et al., 2022). A variant of this problem is the
Flexible Job Shop Scheduling Problem (FJSSP), which incorporates routing flexibility, meaning each operation
of a job can be allocated to one of several alternative machines (Ozgﬁven et al., 2010). With this routing
flexibility, the problem is well-suited to apply in complex operational environments such as CMRO shops.

3.1 Solution Methods

The JSSP has been extensively studied, and many solution methods have been developed over the years.
One of the earliest and most straightforward methods is Johnson’s algorithm, introduced by (Johnson, 1954),
which provides an optimal solution for two-machine flow shop problems. The FJSSP is solved using various
solution methodologies, including exact methods, dispatching rules, mathematical programming, and meta-
heuristics. Dispatching rules are one of the most common methods for solving scheduling problems, often
used due to their simplicity and computational efficiency. These rules prioritize jobs dynamically and are
rule-based, making them useful in environments requiring real-time decision-making. Common examples are
First-In-First-Out (FIFO), Most Work Remaining (MWR), and Earliest Due Date (EDD) (Meilanitasari and
Shin, 2021). Despite their effectiveness, dispatching rules focus on locally optimized decisions and often fail to
find a global optimum for the objective, potentially leading to suboptimal overall performance (Zahmani et al.,
2021). MILP, one of the most-used solution methods for FJSSP, provides an exact optimization framework
by formulating the scheduling problem using linear equations and inequalities, incorporating continuous and
integer variables to represent scheduling decisions (Dauzére-Péres et al., 2024; Hillier and Lieberman, 2015). In
job shop scheduling, MILP models try to optimize objectives such as minimizing makespan, total earliness, or
weighted tardiness (Gonzéalez-Neira et al., 2017). The strengths of MILP models are their ability to find the
most optimal solutions, their flexibility with easy adaptation and implementation of various constraints and
objectives, and their precision in accurately modeling complex scheduling scenarios (Wang et al., 2025), but it
can require significant computational effort (Karam et al., 2017). Metaheuristics, including Genetic Algorithms
(GA) (Yu et al.,, 2018), Ant Colony Optimization (ACO) (Qin et al., 2018), and Large Neighborhood Search
(LNS) (Fathollahi-Fard et al., 2024), offer alternatives, achieving near-optimal solutions more rapidly. Recent
advancements introduce reinforcement learning techniques, leveraging Markov Decision Processes and Deep
Reinforcement Learning (DRL) to manage stochastic and dynamic conditions effectively (Tassel et al., 2021;
Yan et al., 2022). An overview of earlier work related to the JSSP in similar environments, applying these



solution methods, is provided in Table 1. As shown in this table, MILP is a commonly applied solution method
for job shop scheduling problems, followed by metaheuristic approaches such as GA and ACO.

3.2 Job Priorities and Technician Skills

Including job priorities in scheduling models ensures that schedules consider strategic business objectives and
customer importance. Hashimoto et al. (2011) introduced priority-based scheduling in the Technicians and
Interventions Scheduling Problem (TIST), where priorities are assigned to interventions, and their objective
function is designed to minimize the weighted completion time of interventions based on their priority levels.
Additionally, Hsieh et al. (2024) proposes a method that minimizes Total Weighted Tardiness (TWT) by as-
signing weights to jobs based on factors such as customer importance, order profitability, and due dates. By
incorporating these weights into the scheduling objective, the method ensures that high-priority jobs, such as
urgent customer orders, are scheduled earlier, reducing overall tardiness.

The assignment of skilled technicians, necessary in CMRO environments, requires the use of qualification
constraints. Ciro et al. (2015) and Damm et al. (2024) illustrate approaches to multi-skilled technician assign-
ment, highlighting the need for binary skill parameters and adaptive assignment strategies. Additionally, the
model proposed by Annear et al. (2023) dynamically assigns resources to maximize productivity while main-
taining flexibility to adapt to changing and uncertain demands, possibly applicable in dynamic settings such as
CMRO shops. Moreover, Aribowo et al. (2020) provides a way of integrating dedicated technicians, the concept
that once a technician starts on the first operation on a given job, that technician must perform all subsequent
operations on that job, aligning with specific constraints of CMRO shops.

3.3 Decomposition

Most solution methods for job shop scheduling, particularly exact approaches such as MILP, require significant
computational time to compute optimal solutions when applied to large problem instances, as shown in earlier
research summarized in Table 1. For example, Tighazoui et al. (2021) reports that solving an instance with 39
jobs can require several hours of computation time. This computational time can be a limiting factor in dynamic
and complex environments, where quick rescheduling is useful. To address this, decomposition methods, such as
time-based and machine-based decomposition techniques, manage computational complexity by breaking down
large-scale problems into manageable subproblems (Pinedo, 2016). In particular, the rolling horizon approach
has proven effective in dynamic environments, iteratively re-optimizing schedules within smaller time intervals

(Ikli, 2022).

3.4 Rescheduling Policies and Robust Scheduling

In dynamic environments, schedules need to adapt to real-time updates such as new job arrivals and unexpected
delays. It is often necessary to reschedule future events based on this new information, which significantly im-
pacts the original scheduling decisions. Gomes et al. (2013) demonstrated this through an approach where the
insertion of new jobs requires updating the initial schedule, affecting the sequencing and timing of subsequent
operations. Predictive-reactive strategies represent the predominant rescheduling method in dynamic environ-
ments, where an initial schedule is adjusted after disruptions (Ouelhadj and Petrovic, 2009; Gomes et al., 2013).
Rescheduling policies vary from periodic, event-driven to hybrid approaches, each offering different levels of re-
sponsiveness and stability. Kianpour et al. (2021) argues for hybrid policies combining periodic and event-driven
methods, providing a balanced solution adaptable to CMRO shop environments.

Robust scheduling methodologies further improve reliability by incorporating buffer times and minimizing
worst-case deviations, as demonstrated by Jamili (2016) and Fathollahi-Fard et al. (2024), significantly reducing
the impact of processing uncertainties and disruptions. Other robust scheduling strategies, such as those
proposed by Rahmani and Heydari (2014) and Xiong et al. (2013), focus on maintaining schedule stability
during rescheduling by minimizing deviations from the initial schedule. Applying such methods in the CMRO
environment can enhance operational reliability despite unforeseen disruptions.

3.5 Research Gap

Table 1 provides an overview of relevant literature on the JSSP in environments with similar properties to
CMRO shops. The table compares the objective functions, solution methods, and the extent to which each
work addresses elements relevant to CMRO environments. Among these studies, the approaches by Tighazoui
et al. (2021) and Tliba et al. (2022) are the most promising for application in a CMRO shop. Tighazoui et al.
(2021) introduces a predictive-reactive model that balances efficiency and stability, while Tliba et al. (2022)
proposes an MILP model with job insertion for dynamic rescheduling. However, neither addresses all properties
found in CMRO environments.
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Johnson (1954) Johnson’s Makespan Low
Rahmani and Heydari (2014) MILP Makespan X X Low
Xiong et al. (2013) GA Makespan X Low
Gomes et al. (2013) MILP Earliness/Tardiness X Medium
Jamili (2016) MILP/PSOP Makespan X X Medium
Qin et al. (2018) ACO Makespan X X  Medium
Aribowo et al. (2020) MILP Makespan X Medium
Kianpour et al. (2021) MILP Earliness/Tardiness X Medium
Tassel et al. (2021) RLP Makespan Medium
Tighazoui et al. (2021) MILP Weight. waiting time | X X X High
Tliba et al. (2022) MILP Makespan X X High
Melchiors et al. (2024) DR Weighted tardiness | X X Low
Damm et al. (2024) GA Multi-objective X X High
Fathollahi-Fard et al. (2024) LNS Cost X X High

& Computational time classifications: Low (< 3 minutes), Medium (3-30 minutes), High (> 30 minutes).
b PSO: Particle Swarm Optimization; RL: Reinforcement Learning.

Table 1: Overview of the relevant literature applying the JSSP.

From Table 1, it can be observed that most existing approaches focus on one or two properties needed for the
scheduling model applicable in CMRO environments. This emphasizes the need to combine multiple scheduling
elements, such as job prioritization, skilled technician constraints, robust optimization, and dynamic reschedul-
ing policies, to address the complex environment of CMRO operations. Furthermore, while CMRO environ-
ments present a good example of the combination of complex, dynamic, and uncertain conditions, most existing
research has not fully captured these shopfloor environments. Many state-of-the-art models address either de-
terministic and static industrial environments or use randomly generated instances. Additionally, the classic job
shop problem has not often been applied in a workshop floor environment where there is a need to allocate jobs
to both technicians and machines as separate, interdependent resources, introducing a dual-resource scheduling
challenge. Moreover, what differentiates the CMRO environment is the combination of operational complexities
such as sequence-dependent setup times, the incorporation of resource unavailability periods, and specialized
technician assignment constraints, among other factors, which are rarely addressed together in existing schedul-
ing literature. Overall, despite extensive research, an optimization framework simultaneously addressing all
these elements within CMRO environments remains unexplored, highlighting a significant research gap that
this paper aims to address.

4 Case Study

This section introduces the case study, where the proposed scheduling model is applied in two different CMRO
shop environments. Section 4.1 outlines the resource configurations and additional operational aspects of the
shops. Section 4.2 defines the performance metrics used for model evaluation, consistent with internal opera-
tional objectives. Lastly, Section 4.3 describes the dataset used in this study, with a focus on its completeness,
accuracy, and suitability for model validation.

The case study was performed with an independent component maintenance provider, a significant player in
aerospace maintenance, and a former aircraft manufacturer. The current manual scheduling approach in their
CMRO shops can result in suboptimal resource allocation, with only 80% of capacity scheduled at the start
of the week and the remaining 20% managed reactively throughout the week. This reactive scheduling, often
forced by unforeseen disruptions, can lead to increased task delays and inefficiencies because, in those cases,
proactively adjusting for dynamic changes is more complex (Khoshsirat and Mousavi, 2024). These current
scheduling practices show several challenges that increase the complexity of reaching the desired operational
efficiency, as outlined earlier in Section 2.1. The maintenance provider operates three CMRO shops, each
with specialized processes and unique characteristics. The H&P shop consists of two subgroups, one for each
component category. These subgroups operate within the same shop but handle separate work orders and rely
on different test benches. Secondly, the Avionics shop specializes in repairing and maintaining displays, control



units, and flight data systems. Lastly, the power generation shop works on parts related to the power generation
of aircraft, such as IDGs. Among the three CMRO shops at the maintenance provider, this study focuses on
the Hydraulics & Pneumatics (H&P) shop and the Power Generation shop, referred to as the IDG shop.

4.1 Shop Instances

In addition to the operational differences between shops with different part specializations, as discussed in
Section 2.2, the size of each shop also varies, which in turn affects the scale of the scheduling problem. Table 2
provides an overview of the available resources in each shop, including the number of technicians and test
benches.

Number of Number of Different types Total number of

Shop technicians test benches of test benches resources in FJSSP
Hydraulics 8 4 2 12
Pneumatics 10 8 4 18

IDG 16P 2 2 202

@ Includes two additional rework stations for honing and lapping operations.
b Excluding the test operators.

Table 2: Overview of the number of resources for each specific shop.

It is important to highlight that in the Pneumatics shop, certain test resources are rarely utilized. This limited
usage reduces the complexity associated with scheduling these resources, as they do not frequently create
limitations within scheduling. In contrast, the IDG shop shows different characteristics. Operations that need
to be handled on test benches in this environment often result in bottlenecks in scheduling, with the need to
allocate all jobs to only two test benches. Besides, a larger number of technicians need to be allocated to
operations, increasing the scheduling complexity. A clear assumption can be made when comparing the three
CMRO environments regarding resource intensity. The Hydraulics shop represents the smallest scale, followed
by the Pneumatics shop, with the IDG shop being the largest and most resource-constrained.

Another bottleneck related to technician specialization in the CMRO shops is the limited availability of
certified technicians authorized to perform final inspections. Each WO requires such an inspection before it can
be signed off as completed. In the H&P shops, only 2 technicians across the technician teams are certified to
conduct final inspections. Similarly, in the IDG shop, just 4 out of 16 technicians hold the required certification.
This small ratio of certified technicians creates a challenging bottleneck in the workflow, especially during peak
periods or when multiple inspections must be carried out simultaneously.

4.2 Key Performance Indicators

Management of the maintenance provider has identified OTD rate & TAT as the main indicators of CMRO shop
effectiveness. While current performance is being closely monitored, there is clear recognition that improvements
in these metrics are possible. Implementing advanced scheduling techniques is considered necessary to unlock
this potential and enhance overall operational efficiency.

First, the OTD rate is calculated based on whether work orders meet their Promised Delivery Date (PDD).
The contractual agreement with customers determines the PDD and is a crucial metric for evaluating scheduling
reliability and customer satisfaction. Although the current OTD performance indicates room for improvement,
management has set ambitious targets to achieve consistently higher rates.

Second, the TAT metric captures the duration required to complete work orders, from initiation to delivery.
This metric varies notably between different shops, reflecting variations in workflow efficiency and operational
constraints. TAT can be analyzed at different stages, such as the time to prepare quotes or the time required
from customer approval to delivery. Reducing TAT is important, and each shop has targets to enhance efficiency.
For example, the target TAT for the incoming WOs quotes was set at a maximum of 7 days for the IDG shop.

Lastly, the Service Level agreements for all customer priority groups must be consistently met to ensure
operational reliability and customer trust. However, achieving high service levels for customers classified as
high-priority is especially important due to their significant impact on business performance and reputation.

4.3 Dataset

The maintenance provider offered the datasets used in this research, containing historical work order data from
the Hydraulics, Pneumatics, and IDG shops. This dataset was used for validating and evaluating the proposed
scheduling model. These sets contain comprehensive details such as WO status updates over time, routing steps
with both planned and actual hours, and technician availability.



The historical status updates for each WO include precise timestamps indicating when a part was in progress,
became available for processing, or was waiting for necessary components. These detailed status logs enable a
comparative analysis between currently used methods and the outcomes of the proposed model. Additionally,
these timestamps state the job availability at each scheduling instance, providing essential inputs for accurate
model simulations.

Data related to routing steps, representing specific operations for WOs, contains planned and actual time
durations. Due to incomplete logging, it was sometimes difficult to determine the exact start and end times
of technicians for each operation. In such cases, it was assumed that the technician started work from the
initial routing step when specific assignments were unclear. Furthermore, planned operation durations found in
the dataset are mostly accurate, though minor variations in reliability exist across different shops. Resource-
related data, containing technician-specific working hours per part number, certifications, and registered weekly
availability, showed high accuracy and consistency.

The dataset also includes detailed records on customer priority levels and promised delivery dates, which
are contractually established for each work order. These customer-related metrics are essential for evaluating
the scheduling performance in relation to service level agreements and operational efficiency targets. Overall,
the quality of the dataset provided by the maintenance provider ensures that it is well-suited for testing and
evaluation of the scheduling model proposed in this study.

5 Methodology

This section presents the methodological approach for this research. Section 5.1 defines the operational assump-
tions used to model the CMRO environment. Section 5.2 presents the exact scheduling approach, including
the formulation of the MILP model and rescheduling strategies. Section 5.3 introduces the dispatching rule
heuristic used as a performance benchmark.

5.1 Assumptions

To identify the most appropriate scheduling approach for the CMRO shops, the following operational assump-
tions about the environment were made:

e Each job has a predefined, unique, initial routing sequence.
e Processing times are estimated using standard hours, but actual durations may deviate due to uncertainty.

e Incremental job release is assumed; some jobs are available at the beginning of the scheduling horizon,
while others arrive dynamically over time.

e Technician operations refer to tasks performed solely by a technician or by a technician in combination
with a test machine. These operations must be performed by qualified, right-skilled technicians, respecting
availability, shift schedules, and absences. Test operations can only be processed on eligible machines.

e All routing steps for a job must be executed by a single technician, with exceptions for test and rework
operations in the IDG shop.

e Re-entrant flows are allowed, enabling a job to revisit machines at different stages.

e Sequence-dependent setup times are considered for test operations. A setup time of 30 minutes can be
assumed.

e Operations are non-preemptive, except when technician unavailability is combined with operational delays.
e Test machines process only one job at a time and are assumed to be fully reliable.
e Buffer space between resources is assumed to be unlimited.

e Jobs have static due dates and different priority weights.

5.2 Exact Approach

This subsection describes the exact solution method used for scheduling in CMRO shops. First, the Branch
and Bound and its improved form, the Branch and Cut algorithm, are described in Section 5.2.1. Next,
preliminary model calibration and the evaluation of objective functions are explained in Section 5.2.2. The
model implementation for the H&P shop is described in Section 5.2.3, followed by the rescheduling strategy in
Section 5.2.4. Section 5.2.5 introduces the adapted MILP model for the IDG shop, followed by the dynamic
resolving strategy in Section 5.2.6. Computational time analyses are discussed in Section 5.2.7, and strategies
for decomposition and robustness are explained in Sections 5.2.8 and 5.2.9, respectively.



5.2.1 Branch and Bound Algorithm

The Branch and Bound (B&B) algorithm provides an effective and exact approach for solving the NP-hard
problem known as the FJSSP, formulated as an MILP (Pinedo, 2016). This methodology integrates branching
and bounding techniques within a tree-structured search process, enhancing computational efficiency.

The process begins with a relaxation of integrality constraints, creating a Linear Programming (LP) problem
whose solution provides an initial bound (Pinedo, 2016). If the LP relaxation generates a fractional solution,
branching divides the feasible region by selecting a fractional-valued decision variable and creating two subprob-
lems: one restricting the variable below its integer floor, and the other above its integer ceiling. This recurring
branching forms a search tree structure (Hillier and Lieberman, 2015).

In the bounding step, the LP relaxation at each node provides an optimal bound. Suppose this relaxation
yields an infeasible solution or an objective value inferior to the best-known integer solution, the incumbent.
In that case, the corresponding branch is fathomed, thereby efficiently eliminating non-promising regions of
the solution space. When an LP relaxation solution is integer-feasible, it is recorded as a potential incumbent
solution, updating the global bound accordingly (Hillier and Lieberman, 2015).

A more efficient variant of the B&B method is the Branch and Cut (B&C) approach. This extends the B&B
with a cutting step, enhancing the bounding process by introducing additional valid inequalities, introduced
as cutting planes, to tighten the LP relaxations. These cuts remove fractional solutions while retaining all
feasible integer solutions. Cutting planes significantly strengthen the model formulation, thus reducing the
overall search tree size (Mitchell, 2002), and generally causing improved performance relative to the exclusive
use of branch-and-bound.

Figure 5 illustrates a simplified example of the B&B process, clearly demonstrating the branching decisions
and bound-based fathoming. In this figure, node 1 solves the LP relaxation of the problem, generating a
fractional solution, after which branching on variable x creates two child subproblems. Node 1 is fathomed
because its LP bound is worse than the incumbent. Node 2 yields another fractional solution, so branching on
y continues. Node 2a produces an integer feasible solution, the green node, and becomes the new incumbent,
while Node 2b is infeasible. The blue nodes represent active subproblems solved by LP relaxations, the green
node is the optimal integer solution found, and the gray nodes have been fathomed.

Node 0:
LP relaxation

(fractional sol.)

z < a z>a+1
Node 1: Node 2:
Branch z < a Branch x > a+1
fathomed by bound (fractional sol.)

y<b y>b+1

Node 2a: Node 2b:
Branch y < b Branch y > b+ 1

incumbent sol. infeasible

Figure 5: Illustration of a B&B search tree for a maximization MILP.

By integrating techniques available in modern MILP solvers, including branching techniques, specialized cutting-
plane generation, and preprocessing routines, B&C methods efficiently navigate the extensive search space.
Preprocessing procedures simplify the MILP model by eliminating redundant constraints and fixing variable
bounds before search initiation. Moreover, solver-generated cuts tailored to scheduling-specific constraints, such
as precedence and resource allocation constraints, provide tighter relaxations and result in exploring fewer nodes
(Stecco et al., 2008).

In practice, the B&C algorithm ensures the optimality of the final schedule or accurately quantifies solution
quality if prematurely terminated, offering bounds on optimality gaps. Therefore, this approach effectively
balances computational efficiency with solution accuracy, making it well-suited for solving the customized JSSP
for the CMRO shops. In the remainder of this paper, this algorithm is referred to as the B&B approach for
consistency, as it is based on the underlying B&B framework.

5.2.2 Preliminary Model Calibration

Preliminary calibration of the proposed flexible job shop scheduling model was conducted using generated
test data instances. These test instances were generated to closely resemble the actual characteristics of real-
world CMRO shop data, enabling initial calibration. Specifically, the test data was used to evaluate model
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assumptions, modifications, and features across multiple scenarios with varying sizes and customized numbers
of operations per job.

Objective choice

Multiple potential scheduling objectives were considered to ensure practical relevance and optimal performance.
These included simultaneous minimization of tardiness and maximization of earliness (Equation (1)), joint
minimization of tardiness and earliness (Equation (2)), and exclusive minimization of tardiness without consid-
eration of earliness (Equation (3)). Additionally, input from consultations with shop leadership was considered
to maintain alignment with operational objectives.

min Z wi(aT; — BE;) (1) min Z w;(aT; + BE;)  (2) min Z w;T; (3)
ieJ ieJ ieJ
In these formulations, J represents the set of jobs that need to be scheduled, with each job ¢ € J assigned a
priority weight w;. The variable T; represents the tardiness of job 4, defined as the time by which its completion
exceeds the assigned due date, while F; indicates the earliness, or how far in advance a job is completed before
its due date. The parameters « and (3 are coefficients used to emphasize the relative importance of tardiness
and earliness, respectively.

Parameters

To evaluate model performance effectively, different parameters in the objective influencing the defined KPIs,
TAT, and OTD, were given varying values. Given the operational context of the CMRO environment, multiple
generated instances were input into the model to validate the performance under different parameter config-
urations. An essential part of this calibration phase involved optimizing the relative weighting of tardiness
compared to earliness in the objective function. The weight parameters for tardiness and earliness are shown
as o and 8 in Equation (1), respectively. While the minimization of tardiness was the primary focus, the maxi-
mization of earliness was also of significant importance. Completing jobs ahead of their due dates is preferable,
particularly for assignments associated with high-priority customers.

5.2.3 H&P Shop

There exist many JSSP variants in the literature, each designed for different operational complexities and
constraints. In this study, the FJSSP is selected as the foundational framework, primarily due to the variability
in routing paths observed across similar jobs during different phases of maintenance processes. The flexibility
in assigning operations to multiple alternative resources aligns well with the dynamic routing requirements
fundamental to CMRO environments. Expanding upon the foundational framework of the FJSSP, specific
features have been added or excluded to accurately reflect the characteristics and operational constraints of the
CMRO shops. These decisions are driven by the analysis of the CMRO shop operations provided in Section 2.

Adjustments Traditional FJSSP

Traditional formulations of the FJSSP have predominantly focused on machines as the primary used resources,
reflecting the manufacturing nature of many scheduling environments. In contrast, CMRO operations introduce
a broader and more complex set of resource dependencies. In the CMRO context, operations are mostly carried
out by human technicians, specialized machine operators, or with the use of specialized test benches, and can
require the simultaneous use of one or two of these resource types.

A significant example is found in the scheduling of test operations within the H&P shop. These operations
must be jointly assigned to a human technician and a specialized test machine. Consequently, the scheduling
model must ensure that both resources, the human technician and machine, are available simultaneously, an
extension beyond the standard FJSSP framework, which traditionally assumes one-to-one mappings between
operations and resources. The consideration of technicians and test machines introduces an additional layer of
complexity essential to reflect real-world CMRO shop environments. In addition to the multi-resource alloca-
tions, the proposed model introduces modified precedence constraints tailored to the operational logic of the
shops.

Mathematical Model

The scheduling model developed for the H&P shops is formulated as an MILP model, specifically designed as
a variant of the FJSSP. The foundation for this model was inspired by the dedicated technician scheduling
approach proposed in Aribowo et al. (2020).

Table 3 presents an overview of all sets, indices, and parameters used in the mathematical formulation. The
set 7T; o, representing the qualified technicians for operation (4, 0), was constructed based on historical technician
assignments. Technicians with at least 25 hours of experience on the part number handled in job 7 were included,
in agreement with shop management. For final inspection operations, this set only includes certified technicians
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qualified to perform the inspection tasks. The processing time of each operation, p; ,, corresponds to the initial
planned number of hours, as derived from the provided shop data. Additionally, an overview of the decision
variables used to allocate technicians and test machines, sequence operations, manage technician breaks, and
calculate operation timings is given in Table 3.

Symbol Description
Sets and Indices
J Jobs (indexed by 7), including dummy job 0
(@] All operations (indexed by o)
Otech Technician-only operations
Optest Test operations requiring test machines
Ofinal inspection  Pypa) ingpection operations
O; Operations for job %
T Technicians
M Test machines
Tio Qualified technicians for operation (i,0)
M, Compatible machines for test operation (i,0)
B, Break intervals for technician ¢
Parameters
Dio Processing time of operation (¢, 0)
D; Due date of job @
w; Priority weight for job i
a, B,y Objective coefficients
sty Setup time when switching from job i to j on a test machine
bstart, Dend Starting and end time of break b
l; Index of final operation for job 4
M Large big-M constant for linearization

Decision Variables
X;°e{0,1} 1 if technician ¢ is assigned to operation (7, 0); 0 otherwise
XEodk € {0,1} 1 if test operation (i,0) immediately precedes (j, k) on machine m; 0 otherwise
Yti’o’j’k € {0,1} 1 if operation (i, 0) precedes (j, k) on technician t; 0 otherwise
Wti’o’b € {0,1} 1 if operation (4,0) finishes before break b of technician ¢; 0 otherwise

Sio €LY Start time of operation (i,0)
Cio€Z" Completion time of operation (4, 0)
T, € Z* Tardiness of job i

E; ezt Earliness of job ¢

Table 3: Nomenclature for scheduling model components.

Using only the weighted tardiness and earliness objective results in the scheduling model prioritizing exclusively
the final operation of each job. This approach, however, may result in scheduling inefficiencies, as earlier
operations could start sooner but do not, since the optimization model solely targets the tardiness or earliness
of the final operation. To handle this issue, the model introduces an additional, less weighted, objective,
formulated in Equation 4, which minimizes the total completion time of all operations.

This adjustment stimulates the earlier starting and completion of inter-
mediate operations whenever feasible. Additionally, it enhances scheduling Z Z C.
robustness, as starting operations early can buffer against potential delays e
and optimizes technician utilization by ensuring that resources can start
directly on their next operation when available.

An illustrative example of this scenario is presented in Figure 6, where each operation is labeled as (i, 7).
Without the additional objective, as shown in Figure 6(a), operations 2,1; 2,2; and 4,1 could start earlier
but remain delayed due to the optimization focus solely on the tardiness or earliness of the final operation.
In contrast, Figure 6(b) demonstrates the result of incorporating the operation-based completion objective,
where the schedule effectively advances these operations, illustrating the improvement in scheduling efficiency
by ensuring the earliest feasible start times for each operation.

(4)

€T 0€0;
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Test Machine 1 | 1,2 | 2,3 | 3,2 | Test Machine 1 | 1,2 | 2,3 | 3,2 |

Technician 2 1,1 3,1 | 1,3 | 1,4 | Technician 2 1,1 3,1 | 1,3 | 1,4 |
Technician 1 2,1 2,2 4,1 2,4 Technician 1| 2,1 | 2.2 | 4,1 | | 2,4 |
( ___________
5 10 15 20 5 10 15 20
Time Time
(a) Without the extra objective (b) With the extra objective

Figure 6: Ilustrative example of scheduling outcomes using the extra objective.

The objective function in Equation (5) minimizes a combination of weighted tardiness, weighted earliness,
and the completion times of all operations. Hence, the model aims to achieve a minimization of tardiness
while concurrently maximizing earliness. By adjusting coeflicients «, S, and +, the model balances on-time
performance, early finishing, and overall schedule efficiency. In this study, the value of v is fixed at 0.1,
representing a small fraction of the total weight relative to @ and 3, as minimizing completion times is not a
primary objective. This objective is subject to the constraints outlined in Equations (6)—(23).

min Z wi(aT; — BE;) + Z Z Cio (5)

ieJ i€J 0€0;

The model addresses technician and machine assignment without relying on a traditional predefined skill matrix,
wherein individual constraints ensure the feasibility of each resource-operation pair. Instead, a more efficient
approach is employed by explicitly defining, for each operation, a specific set of possible technicians and, for
test operations, a predefined set of suitable machines. This approach was adapted from the method proposed
by Perroux et al. (2024). This direct specification of resource sets significantly reduces the computational com-
plexity by limiting the number of constraints and decision variables, reducing the search space. Consequently,
the model only includes decision variables and allocation constraints relevant to qualified resources, thereby
preventing unnecessary assignment variables for resources lacking the required skills or qualifications to be
allocated to an operation.

Equations (6)—(10) allocate human and machine resources. Specifically, Equation (6) ensures exactly one
qualified technician performs each operation, and Equation (7) ensures that every test operation is scheduled
exactly once, allocated to one of the feasible test machines. The constraint in Equation (8) forces test operations
to have at most one immediate predecessor, while Equation (9) ensures the dummy job serves as the initial
predecessor on every machine. Moreover, Equation (10) restricts precedences to apply only when two test
operations share the same machine.

Y X[°=1 VieJ, 0€0; (6)

teTi o

>y > XpIR =1 VY(i,0) € O (7)

JET keOtst meM; oNM; i

>y S XpPR <1 V(> 1Lk) e O (8)

iET 0€0test mEM,; 6NM; i

o> Xpth <1 Yme M (9)

€T o€Otest
Z Z X:Txlo,jyk S Z Z ijr,Lk,i,o V(] 2 17k) c OtESt,m e M (10)
ieJ ocOtest ieJ Oeogesc

Another significant adaptation from the traditional FJSSP introduced in this research is the dedicated technician
constraint. Unlike standard models where technician assignments can vary between operations, the CMRO
environment necessitates that once a technician initiates the first operation on a given job, the same technician
must continue performing all subsequent operations on that part. This ensures that technicians are leveraging
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familiarity with specific job details. This requirement is explicitly integrated into the scheduling model, as
introduced by Aribowo et al. (2020). It is referred to as the dedicated technician principle, enforcing the
assignment of the same technician across all applicable operations of a single job. However, certain operations are
deliberately excluded from this dedicated technician constraint due to their specialized nature. Specifically, the
final inspection step does not fall under this constraint, as it must be performed exclusively by certified inspectors
rather than general technicians. Equation (11) ensures that every job enforces the dedicated technician principle,
ensuring all technician operations for a job must be performed by the same individual.

Xti,o _ Xti.,o/ Vi € j, V0,0’ c Olpech \ Ofmal inspcction7 Vi e 7;70 N 7;70/ (11)

Moreover, the scheduling model introduces additional considerations for consecutive operation handling. Once
a technician starts work on a specific operation, they are required to perform all subsequent operations for that
job consecutively, back-to-back. However, test and final inspection operations are excluded from this back-
to-back scheduling requirement. These exclusions prevent operational bottlenecks inherent to these specific
steps, as queuing often occurs due to the limited availability of these resources. Requiring technicians to
wait during these bottlenecks would significantly reduce technician availability and efficiency. Consequently,
this application is captured within the precedence constraints of the shop scheduling models. First of all, the
constraint Equation (12) ties each operation’s completion time to its start time plus its processing duration. For
technician-only operations, Equation (13) enforces the back-to-back scheduling, except for the final inspection
step, which is covered by Equation (14).

Ci,o > Si,o +pi7o Vi € ja (OfS Ol (12)
Si,o _ Ci,o—l i (Z, o Z 1) c Otech \ Oﬁnal inspection (13)
Si,o > Ci7071 V(i,O > 1) c Oﬁnal inspection (14)

Sequence-dependent setup times refer to the additional preparation time required on machines when switching
operations from one job to another when part numbers differ. Within this scheduling framework, sequence-
dependent setup times are particularly relevant for test machine operations. Consequently, they have been
incorporated within the overlap constraints for test machine resources.

Furthermore, the H&P shop model requires allocation of test operations separately to both test machines
and technicians, necessitating the simultaneous allocation of setup times to these two distinct resources. Ad-
dressing this requirement, the present model integrates sequence-dependent setup times within both overlap
and precedence constraints, using a customized implementation of the methodologies described by Mousakhani
(2013). To correctly allocate sequence-dependent setup times to both test machines and technicians, it is crucial
to determine which job immediately precedes the current one on a given test machine. This led to the introduc-
tion of the immediate predecessor variable for test operations, indicated by X%J:¥. This variable determines
the part processed directly before the current operation on the same machine, allowing the model to check
whether a part change occurs. If the part number differs, the setup time is assigned not only to the machine but
also to the technician performing the test. If, instead, the same precedence variables used for technician-only
operations, Y;”%’ ’k, were applied, which indicate all operations preceding a given operation on a resource, it
would not be possible to identify which exact job is processed immediately before the current test operation on
the test machine. As a result, the model would be unable to determine the preceding part number, and the
overlap constraints for technicians would not be able to assess whether a setup is required.

Equation (15) ensures that if a test operation follows its preceding operations directly, its start time is
shifted by the appropriate setup duration. Furthermore, Equations (16)—(17) prevent overlapping allocation to
the same technician by different operations. Using a big-M formulation, if operation (,0) precedes (j, k) on
the same technician, (j, k) cannot start until (7,0) completes, including an optional setup time to prepare the
test machine. The setup time is determined with the use of the immediate predecessor variable for test machine
operations. Similarly, Equation (18) restricts test operations on the same machine from overlapping, ensuring
each test machine handles at most one test operation at a time.

Sio>Cio1+ Y, Y Yo st XpoTh W0 > 1) € Ot (15)
JjeET k)EO;eSt mEMi,Uﬂijk
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i k.h, W0 ik i,0,5,k
Sik>Ciot Y. Y > stp X507 = M3 — X0 — XV =Y, )
heJ zeOff“ meMp, NM; i

VieJ,o0€0, je€Jd, kcOj, teTioNTjk (16)
SioZCit Y D0 D st Xt = M(3— X[ - XPP— (11— v
h€T z€Otest mEMp .NMi o
VieJ, 0€0; j€T, k€O, t€TioNTjk (17)
Sik>Cio+ > stigXptPboM{1- > XpeiE | VieJ, 0€ 01, jeJ, keOt
meM; oNM; i meM; oNM; i
(18)

The model incorporates technician unavailability constraints to manage operational disruptions caused by sched-
uled days off or other non-working shifts. For instance, if technicians work a four-day shift schedule, the fifth
day is defined as an unavailability or break period. Technician availability is represented through predefined
break intervals indicating periods of unavailability. To handle these intervals, additional constraints and decision
variables have been introduced, determining whether operations should be scheduled fully before or after such
breaks, preventing operations from intersecting. This constraint is derived from the approach used for schedul-
ing maintenance activities on machines as described by Perroux et al. (2023), explicitly chosen to minimize its
impact on model complexity while ensuring operational feasibility.

The constraints related to unavailability intervals are given in Equations (19)—(20). In particular, (19) makes
sure that if an operation is allocated to a technician with a break period, it must fully finish before the break
of the technician starts. Equation (20) similarly ensures that an operation does not begin until after the break
ends, preventing any partial overlap with break periods.

Cio < bstart + M(2 — X° + WY (b, bsgart) € B, t € Tr0, i € T, 0 € 0P (19)

Sio > bend — M(1 = X[ =W/ V(b bena) € B, t € Trp, i € T, 0€ O (20)

Lastly, Equations (21)—(23) define how earliness and tardiness are calculated relative to the due date of the job.
Specifically, Equation (21) determines the earliness or tardiness of all jobs by comparing the completion time
of its final operation to its predetermined due date, whilst Equation (22) ensures these earliness and tardiness
metrics remain nonnegative. Additionally, (23) ensures start and completion times are nonnegative.

T, —E;=Ciy, —D; VieJ (21)
T;,,E; >0 VieJ (22)
Si,0:Cio >0 Vie J, o€ O (23)

To accurately linearize overlap and unavailability constraints within this scheduling model, the value of the
big-M parameter must be carefully determined. An excessively large big-M can unnecessarily enlarge the
feasible solution space, negatively impacting solver performance, while a too small value may exclude feasible
solutions, resulting in an infeasible model. To achieve the right balance, the parameter is computed based on
estimating the maximum cumulative processing time assigned to any single resource. This estimation considers
every technician and test machine individually, summing the expected processing times for all operations that
can potentially be assigned to the resource, with the processing time of each operation divided by the number of
feasible resource assignments available. The expected maximum workload across all resources is then identified.
This maximum workload is compared to the maximum end time of the technicians’ unavailability periods,
presumably at the end of the time horizon. Then M will be defined either as the maximum calculated workload
or as the end of the planning horizon, whichever is greater, ensuring an optimal selected M.
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5.2.4 Rescheduling Approach: H&P Shop

As mentioned earlier, schedules and operations in CMRO shop environments are subjected to dynamic events,
with jobs potentially experiencing delays or arriving at unpredictable times. To maintain operational feasibility
and optimize technician and machine utilization throughout the week, the proposed model includes a reschedul-
ing mechanism designed for the H&P shop. This mechanism is partly derived from prior work on dynamic
scheduling under uncertainty (Fuladi and Kim, 2024; Wang et al., 2017), where reoptimization has been shown
to improve responsiveness and overall performance in various environments. This mechanism is triggered in
response to two primary types of dynamic events: the arrival of new jobs and updates to the processing times
of existing operations. Both events necessitate reconsideration of the current schedule to ensure continued
optimized schedules.

When rescheduling is required at a given time ¢, referred to as the current time ¢, the model classifies all
operations based on their reference to the rescheduling point. Operations completed before ¢, or currently in
progress at t, maintain their original start times to keep feasibility. The end times for this group can either
remain fixed or be extended if actual processing times exceed the initially planned durations. This group of
operations is fixed in the model and excluded from re-optimization. The remaining operations, including newly
introduced jobs and jobs initially scheduled to start after ¢, are rescheduled within the updated optimization
model. Additionally, the algorithm provides an initial solution, based on the prior allocations of future operations
in the previous schedule, to the resolving B&B model, enhancing efficiency by guiding the search toward feasible,
high-quality solutions.

An exception to the fixing of variables of in-progress operations occurs when the extended processing time
of an ongoing operation results in a conflict with the unavailability interval of a technician. In such cases,
the operation is split into two sub-operations: one representing the remaining duration up to the start of the
technician’s unavailability, and another capturing the remaining processing time to be allocated differently.
This splitting mechanism ensures that schedules remain feasible and respect human availability constraints
while minimizing disruption to the ongoing task.
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Figure 7: Overview of the proposed rescheduling approach for the dynamic FJSSP.

The rescheduling procedure proposed in this study is visualized in Figure 7. This diagram illustrates the steps
to dynamically adjust the scheduling solution when operational changes occur. At each rescheduling moment,
referred to as the cut, operations are classified as completed, ongoing, or not started based on their status relative
to the current time. Subsequently, operations in the past are locked to maintain stability, new jobs are inserted,
and updated processing times are considered to resolve the scheduling problem. Moreover, the extended version
of the rescheduling algorithm for the H&P shop is outlined in Appendix A. This hybrid approach balances
schedule stability with the need for dynamic responsiveness, keeping past allocations while optimizing the path
forward under updated operational conditions.

5.2.5 IDG Shop

This section discusses the MILP model tailored specifically for the IDG shop. While partially similar to the
previously described model for the H&P shop, the IDG shop model incorporates several substantial differences.

First, test operations within the IDG shop are exclusively assigned to test stations operated by special-
ized personnel. This differs from the H&P shop model, where test operations must be allocated jointly to
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test machines and technicians. Therefore, the immediate predecessor decision variable has been excluded, as
sequence-dependent setup times apply solely to the test machine and its specialized operator, allowing techni-
cians to undertake other jobs concurrently. Additionally, the IDG shop features two specialized rework stations
for specific rework operations, namely honing and lapping, staffed by a specialized operator. These rework
operators perform exclusively rework-related tasks.

Although the sets and parameters utilized in the IDG model closely resemble those of the H&P shop, except
for the additional sets mentioned in Table 4, modifications have been made to the decision variables. Specifically,
identical decision variables are introduced for each resource type: technicians, rework stations, and test stations,
the latter two including their specialized operators, which are not regular technicians modeled as resources. An
overview of the decision variables used in the IDG shop model is given in Table 5.

Symbol Description

Qrework Rework operations that require handling on a rework
station
Rio Compatible resources for operation (i, 0)

Table 4: Additional sets for the IDG shop MILP model.

Symbol Description

Xbo e {0,1} 1 if resource r performs operation (i, 0); 0 otherwise
Yiedk € {0,1} 1 if operation (i,0) precedes (j, k) on resource 7; 0 otherwise
Wit € {0,1} 1 if operation (4, 0) finishes before break b on resource r; 0 otherwise

Sio€LT Start time of operation (%, 0)
Cio€Z* Completion time of operation (i, 0)
T, eZ* Tardiness of job i

E, eZ* Earliness of job i

Table 5: Decision variables for the IDG shop model using a resource-based notation.

The objective function for the IDG model, shown in Equation (24), is identical to that of the H&P shop model
and is subject to the constraints defined in Equations (25)—(38).

min Z wi(aT; — BE;) + v Z Z Cio (24)

ieJ i€J 0€0;

In contrast to the H&P model, the dedicated technician constraint in the IDG shop model is further relaxed,
not only for the final inspection steps but also for test and rework operations. These operations are carried out
by specialized machine operators, separate from the general technician workforce. Equation (25) ensures each
operation is performed by exactly one qualified technician, rework station, or test machine with an operator.
Moreover, Equation (26) enforces the dedicated-technician principle.

Y Xio=1 VieJ, 0€0; (25)
TE€ER,0
Xp0 = X3 Vi€ J, Yo,o € O\ O™ MR yr € T N1 T, (26)

The precedence relationships are identical to the form used in the H&P shop model, with the addition that
rework operations are also excluded from back-to-back technician scheduling. Equation (27) sets each completion
time at least its start time plus the processing duration. For technician-only operations, Equation (28) enforces
the back-to-back scheduling, ensuring the next operation of the same job begins exactly when its predecessor
completes. By contrast, excluded operations must respect Equation (29), allowing a test, rework, or final
inspection to start no earlier than completion of its preceding operation, but not necessarily immediately after.

Ci,o > Si,o +pi,o Vi € \7, o€ Oz (27)
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Si o= Ci,ofl V(Z, 0> 1) c Otech \ Oﬁnal inspection (28)

)

S’L,o > Oi,o—l v (27 0> 1) c Otest U Orework U Oﬁnal inspection (29)

Unlike the H&P shop, the IDG shop model treats test machine operators and test machines as a single unified
resource. Therefore, setup times apply to both the operator and the machine, modeled as one resource, simul-
taneously, without requiring separate allocation to individual technicians. Hence, the allocation and overlap
constraints for test and technician operations have been unified and identical in the IDG model, except that
sequence-dependent setup times can be assigned to operations on test machines. Accordingly, the no-overlap
constraints (30)—(31) prevent two technician-only and rework operations from being allocated on the same tech-
nician or rework station, whereas Equations (32)—(33) do the same for test operations sharing a test machine,
including any required setup times by adding st; ;.

Sik > Cio— M(3— X0 — XIF —yhodk)
VieJ, 0€ OFPUO™ je T, ke 0¥ U™ re R, NR;y (30)

Sio > Cjp = M(3 = X737 = XJF — (1 - y,podk))
Vi€ J, 0€ Ot UORk e 7, ke Ot Uk e R, N Ry (31)

Sik > Cio+styj — M(3— X020 — XIF —yhodk)
VieJ, 0€ O, jeJ, ke Of, re M;,NMjy (32)

Sio > Cjp +sty; — M(3— X2 — XIF — (1 -y 00k))
VieJ, 0€ 0, jeJ, ke OF" re MioN M (33)

Technician breaks are handled by constraints described in Equations (34) and (35), ensuring that an operation
allocated to a technician either finishes before a scheduled break or starts after that break concludes. Finally,
Equations (36)—(38) define how tardiness and earliness of each job are computed relative to its due date, while
also enforcing non-negativity on all relevant timing variables. These constraints remain unchanged compared
to the H&P model.

Cio < bstars + M (2 — X520 + WY V(b bspart) € B, 7€ Tio, i € J, 0 € OFH (34)
Si 0> bend — M(1 — X120 — WY VY(b,bena) €B, 7€ Tio, i €J, 0€ OF® (35)
T,—E; =Ci;, —D; VieJ (36)

T, E; >0 VieJ (37)

Si0:Cio>0 YieJ, 0€0; (38)
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5.2.6 Rescheduling Approach: IDG Shop

The rescheduling model proposed for the IDG shop closely resembles the algorithm previously described in
Section 5.2.4. Although adjustments are implemented to align with the unique decision variables of the IDG
shop MILP model, the fundamental approach remains consistent. Specifically, decision variables are fixed up to
the current scheduling time, and after the current time, the schedule is re-optimized based on new information.

In the case of the H&P shop, the rescheduling mechanism was activated by two types of dynamic events:
the arrival of new jobs and updates in processing times. Due to the high occurrence of test failures in the IDG
shop, affecting approximately one-third of all scheduled jobs, a third dynamic event is incorporated into the
rescheduling framework: the occurrence of a failed bench test. Upon encountering a test failure, the scheduling
model introduces additional operations into the schedule. These include corrective repair actions, potential
honing or lapping operations, and any other required routing steps, followed by a subsequent test operation
to achieve a successful outcome. An illustrative example demonstrating the scheduling adjustments made in
response to such a failed test event is presented in Figure 8.

: 1,2 T
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Time Time
(a) Schedule before failed test (b) Schedule after failed test

Figure 8: Illustrative example of additional routing steps inserted after a failed test in operation (1,2), with
the Gantt chart shown before (a) and after (b) the test failure.

5.2.7 Computational Analysis

For practical implementation within CMRO shops, computational resources and time constraints make it in-
feasible to let the B&B algorithm run indefinitely until reaching full optimality. Consequently, determining a
suitable computational time limit is crucial. To address this challenge, analyses were conducted for each shop
to select appropriate time limits for both the initial scheduling model and subsequent rescheduling models. The
analysis involves performing multiple model simulations by incrementally increasing the computational time
limit and evaluating the corresponding changes in the final objective value. Additionally, operational feasibility
and shop leadership input were considered for this analysis.

The results of these experiments can be visualized through convergence graphs, plotting the objective func-
tion values as a function of computational time. These graphs can demonstrate trends where substantial
improvements in the objective value were initially observed, followed by a noticeable decrease in the improve-
ment of the objective value beyond a specific computational threshold. This indicates a significant reduction in
marginal gains despite constant computational effort. Based on this observed pattern, the initial time limit for
the model was selected. This selection criterion effectively balances computational efficiency and solution qual-
ity, maximizing performance while minimizing resource usage. Additionally, extended analyses with increased
time limits were performed to evaluate the difference in optimality, further verifying the choice of the selected
time limit.

5.2.8 Time-based Decomposition

A time-based decomposition technique was implemented to address the computational complexity of solving
large-scale FJSSP for CMRO environments within the Pneumatics and IDG shops. This approach reduces
computational demands by removing future-scheduled jobs that fall outside a predefined scheduling window
during initial planning phases, reintroducing them toward the end of the scheduling horizon. Consequently,
solver efficiency is significantly improved due to the reduced solution space at each step with a smaller set of
jobs, while trying to minimize the overall optimality of the final schedule (Ikli, 2022).

Initially, the scheduling model considers all available jobs at the start of the weekly simulation. Once an
initial schedule is generated using the B&B algorithm, jobs whose earliest scheduled operation start times
exceed a certain planning window threshold from the current time are temporarily excluded. This process
reduces the number of constraints and decision variables within the mathematical model, thereby reducing the
computational effort.
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Throughout the simulation period, the model operates under a rolling-horizon framework, earlier explained
in Section 6.2, periodically re-solving the scheduling problem in case of dynamic events such as job arrivals or
deviations in job processing times. Each re-optimization applies the decomposition principle by examining job
start times and selectively removing future-scheduled jobs outside the defined scheduling window.

At the end of the scheduling horizon, all previously removed jobs are reintroduced to ensure their inclusion
in the schedule for the next scheduling horizon. Original job timings and operation sequences stored at their
removal are restored, and a final optimization is conducted to produce an operationally feasible schedule for
future time horizons. This ensures effective performance comparison with the base model in terms of objective
value.

The performance of the time-based decomposition approach will be evaluated by testing different scheduling
window lengths, a method also used in Stevenson et al. (2019). This approach is particularly relevant for larger-
sized instances, which corresponds with the Pneumatics and IDG shops, which could have more computational
challenges due to the larger number of jobs and resources involved compared to the Hydraulics shop. When
demonstrating improved solver performance without negatively impacting solution quality, this decomposition
approach could be expected to offer a more effective solution for managing complex and large-sized instances
in scheduling scenarios within the CMRO environments.

5.2.9 Robust Scheduling

Given the operational importance of reliable schedules within CMRO environments, robustness and stability
in schedules are essential. The maintenance provider prioritizes the commitment to dependable and accurate
shipping dates to customers. Therefore, if a job is initially scheduled for completion on a specific date, the
scheduling model must strive to maintain this original completion time, despite unforeseen disruptions. Con-
sequently, a robust scheduling approach was proposed to improve schedule stability, reducing the impacts of
dynamic events and uncertainties on promised completion times.

In alignment with the proactive-reactive framework described by Rahmani and Heydari (2014), a two-step
scheduling methodology is used to ensure robustness and stability in the event of unexpected job arrivals and
extended processing times of ongoing operations. Initially, a regular schedule is generated using the previously
mentioned exact B&B approach, described in Section 5.2.3. Thereafter, a reactive rescheduling model is used
to react to schedule disruptions. To increase stability to the re-optimized schedule, an additional objective is
introduced in this reactive phase, explicitly used to minimize the deviation in job completion times relative to
the initial schedule.

To incorporate robustness into the rescheduling phase, the deviation in completion times between the initial
and updated schedules is quantified through an additional decision variable, representing the change in comple-
tion time for each job. This deviation is mathematically defined by Equations (39) and (40), as these constraints
are included in the rescheduling model for handling disruptions.

A; > Crpw — oiitiel e g (39)
A; > Cinitiel — omew i e F (40)

In these equations, the completion times for the final operation of job 7 in both the initial and revised schedules
are provided as inputs, respectively.

The objective function of the rescheduling model was expanded to incorporate this stability-oriented term.
The revised objective function is defined in Equation 41.

minz wi(aT; — BE;) + Z Z Ci +¢ Z A (41)

€T €T 0€0; ieJ

In Equation (41), the first two terms correspond to the original weighted objective defined in Equation (5),
addressing tardiness and earliness. The third term minimizes total completion time to improve schedule quality.
The additional robustness term, weighted by (, explicitly seeks to minimize deviations from the initial schedule,
enhancing stability.

The robustness weight ¢ is set equal to the value of the initial scheduling objective to ensure balanced
consideration between maintaining schedule stability and optimizing the primary scheduling objectives. This
choice ensures that robustness is neither disproportionately favored nor neglected, allowing the rescheduling
process to adaptively balance optimality and stability based on the initial schedule performance.

This robustness approach, inspired by the methodology proposed by Rahmani and Heydari (2014), has been
shown to mitigate disruptions and provide stable, reliable scheduling outcomes. This integrated methodology
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ensures robust performance under real-world uncertainties encountered in CMRO environments by quantifying
and actively minimizing completion time deviations.

5.3 Approximate Approach

To establish a comparative benchmark for the performance evaluation of the proposed exact scheduling model,
an approximate heuristic approach using dispatching rules was developed and implemented. Dispatching rules
are commonly used heuristic methods for solving job shop scheduling problems, mainly because of their simple
logic and capacity to generate fast, effective solutions in dynamic settings (Zeitriag and Figueira, 2023).

The dispatching rule heuristic constructs the job shop schedule incrementally. At any given moment, once
a machine completes its ongoing task, it selects the next operation from a set of queued operations based on a
calculated priority index. This index determines the sequence in which operations are dispatched, ensuring local,
immediate decision-making without requiring extensive computational resources or global optimization. Such
dispatching rules, particularly dynamic variants, are advantageous for real-time adaptability to disturbances
and evolving shop floor conditions.

After evaluating multiple dispatching alternatives, the Weighted Modified Due Date (WMDD) rule, derived
from prior research by Kanet and Li (2004) and Melchiors et al. (2024), was selected. This dynamic rule
provides the most promising results for combined tardiness and earliness objectives by incorporating the due
date D;, priority weight w;, and current time ¢ into its priority index calculation, as shown in Equation (42).
The simulation procedure used to test the performance of the WMDD rule heuristic in a CMRO shop setting
is explained in Section 6.3.

D; -1

W;

WMDD; =

(42)

6 Experimental Setup

This section describes the experimental framework used to assess the performance of the proposed scheduling
model. Section 6.1 introduces the experimental instances, defining the generated test data and real-world
datasets. Section 6.2 outlines the discrete-event simulation procedure used to simulate weekly operations and
evaluate the implementation of the model for the case study. Section 6.3 describes the implementation of a
dispatching rule-based heuristic used for benchmarking. The performance evaluation metrics are outlined in
Section 6.4, and Section 6.5 describes the software and computational resources used.

6.1 Experimental Instances

To evaluate the performance of the scheduling model, two types of instances were used: generated datasets
and realistic shop-floor data. The generated datasets, described in Section 6.1.1, were created to replicate key
characteristics of CMRO shop data while performing preliminary and controlled experiments. The realistic
instances, described in Section 6.1.2, were obtained from actual, historical, operational data provided by the
maintenance provider to benchmark model performance under real-world conditions.

6.1.1 Generated Instances

To test, calibrate, and validate the proposed scheduling model, particularly during the initial development stages,
shop-floor datasets were generated. These datasets were created to reflect the key characteristics observed in
the analyzed instances of CMRO environments.

Each job within the dataset consists of a randomly determined number of operations, ranging from three to
five. One of these operations was specified as a test operation, requiring processing on test machines. A randomly
assigned list of feasible resources was generated for every job, representing the machines or technicians capable
of performing that task. Additionally, each operation was assigned a randomly generated processing time, based
on predefined intervals. A setup time was also included for test operations, within a fixed range, to simulate
the realistic preparation required for such tasks compared to processing times. Generated due dates were scaled
in proportion to the number of jobs and available resources, assuring that the generated instances presented a
realistic and challenging level of scheduling complexity. This approach allowed for controlled experimentation
with the model under conditions representative of real-world CMRO operations.
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6.1.2 Realistic Instances

To test and benchmark the proposed model, realistic data Hydraulics shop
from the shops, provided by the maintenance provider, was .. . .
. . Initial Arriving
used to ensure correct implementation and measure perfor- Week Start date . .
jobs jobs
mance.

In order to validate the performance of the scheduling 1 9/2/2024 40 31
model under realistic and demanding conditions, historical 2 9/9/2024 32 28
shop-floor data were analyzed. The historical job records 3 12/9/2024 42 41
were collected from datasets provided by the Enterprise Re- 4 12/16,/2024 43 36
source Planning (ERP) system of the shops, while addi- 5 1/13/2025 45 45

tional data, such as technician unavailability periods, was
obtained from the internal systems of the company. For
each CMRO shop, all weekly instances from the past six Week Start date Initial Arriving
months were explored based on the number of jobs avail- Jjobs Jjobs

Pneumatics shop

fzble at the beginning of each week, the rate of jobs arr.iv— 1 9/9/2024 56 46

ing throughout the. week, an(.i the total nur.nber of rf)utmg 2 9/30/2024 71 31

steps associated with those jobs. From this analysis, the 3 12/9/2024 592 46

most challenging weeks were identified for each shop. These 4 1/13/2025 64 35

weeks serve as representative high-load scenarios to test the

ability of the model to generate feasible and optimal sched- IDG shop

ules under conditions of high complexity. Initial Arriving

Table 6 provides an overview of the selected weeks, list- Week Start date jobs jobs

ing the number of jobs initially available on Monday and

the jobs arriving during the week for each shop. Due to the 1 9/16/2024 20 55

relatively smaller problem sizes and lower computational 2 9/23/2024 90 27
3 10/14/2024 73 23

load associated with the Hydraulics shop, five representa-
tive weeks were selected for this environment. In contrast,
only three weeks were selected for the IDG shop, where the
larger job instances and more resources experience more
extensive challenges in terms of computation time.

Table 6: Weekly overview of initial and arriving
jobs in the Hydraulics, Pneumatics, and IDG
shops.

6.2 Simulation: MILP model

To evaluate the practical value of the dynamic FJSSP framework, discrete-event simulations over single working
weeks were conducted for the H&P and IDG shops. The experimental simulation is set up to resemble how
production control schedules and handles events on the shop floor.

Initial Week Planning

At the beginning of the simulated week, a complete job schedule is generated using the proposed B&B algorithm.
This schedule includes all jobs available for planning at the start of the week, defined as those with the status
RFE or RTB on Monday morning. The initial optimization is given a generous time limit, imitating the real-
world setting where production control can run the algorithm to generate the schedule for the upcoming week
over the weekend. The availability of technicians for the upcoming week is incorporated into the model, allowing
the optimization to allocate resources effectively and take days off or other shift patterns into account.

Incorporation of Dynamic Job Arrivals

Alongside the jobs available at the beginning of the week, a second list is constructed, containing jobs that
will become RTB or RFE throughout the simulation horizon. These job arrivals are pre-registered from histo-
rical data, and their release times during the week are modeled to reflect actual arrival behavior in the shop.
This separation of jobs into initially available and dynamically arriving categories reproduces the operational
uncertainty faced by real-world shop planning.

Execution of Simulation
Once the initial weekly schedule is computed, the simulation begins and proceeds in discrete time steps of 15
minutes. At each simulation step, the algorithm checks for two types of dynamic events: (1) the arrival of
new jobs at their scheduled release time and (2) deviations in processing times of operations that complete at
that time. If either of these events occurs, a rescheduling action is triggered. The model then re-optimizes the
remainder of the schedule to update the most current schedule state, as described in Section 5.2.4.

This discrete rolling-horizon structure allows the simulation to reflect real-time decision-making and dis-
ruption handling on the shop floor by the proposed model. It ensures that the scheduling model needs to be
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adaptive, continuously responding to updated information and maintaining a feasible and efficient allocation
of tasks to resources. The entire simulation process is described in Algorithm 1, which outlines the logic for
integrating dynamic job arrivals and processing time deviations into the weekly scheduling cycle. The input
parameters include the initial and arriving set of jobs, technician and machine data, and a simulation horizon
of 40 working hours. The result is a complete, dynamically updated schedule for the selected week, providing
insight into the operational performance of the proposed scheduling approach.

Algorithm 1 Weekly simulation of the H&P shop.

1: Input: initial jobs present at t=0; upcoming jobs with arrival times;
technicians, machines; horizon H of 40 hours and time step At of 15 minutes

active jobs < initial jobs
current time < 0
schedule < solve B&B model with (active jobs, current time)
while current time < H do

current time < current time + time step At

rescheduling needed < false

// Check for arriving jobs
8:  for each job j in upcoming jobs do

9: if arrival _time; = current _time then
10: active jobs < active jobs U {j}

11: rescheduling needed < true

12: end if

13:  end for
// Detect processing time overruns
14:  for each operation o that finishes at current time in schedule do

15: if actual duration(o) > planned duration(o) then
16: planned duration(o) < actual duration(o)

17: rescheduling needed < true

18: end if

19:  end for
// Re-optimise if dynamic events occured
20:  if rescheduling needed then
21: schedule + use rescheduling B&B model with updates (schedule, active jobs, current time)
22:  end if
23: end while
24: Output: final schedule of the selected week

IDG Shop Simulation

The weekly simulation procedure implemented for the IDG shop follows the same structure as that of the H&P
shop described in Algorithm 1. However, one key extension is introduced to better reflect the operational
challenges observed in the IDG environment. In addition to the two dynamic event triggers used in the H&P
simulation, new job arrivals and deviations in processing times, a third event type is incorporated, the occurrence
of failed bench tests, as explained earlier in Section 5.2.6.

To take this into account in the simulation, the initial job data is preprocessed by removing all operations
that occurred after a failed test in the historical operations, except for the final assembly and inspection.
Moreover, an indication is set for the corresponding first test operation to indicate the failure of the test.
During simulation, the outcome of each completed bench test operation is checked for possible failure. If a test
is unsuccessful, the simulation algorithm inserts a predefined set of follow-up operations into the job routing.
This mechanism is repeated for each test operation.

6.3 Simulation: Dispatching Rule Algorithm

The developed simulation to assess the performance of the dispatching heuristic under realistic operational dy-
namics in the H&P shop also implements a discrete-event scheduling procedure. The simulation runs iteratively
in discrete time steps of 15 minutes, continuously updating the scheduling environment as jobs arrive, operations
complete, or unexpected events such as overruns occur.

Initially, similar to the simulation explained in Section 6.2, a list of all jobs is computed, differentiating
those that can be scheduled at the start of the simulation and those arriving later throughout the simulation.
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The status of availability for each technician and machine is tracked, noting the subsequent times they become
available and managing the intervals of unavailability. Jobs marked as dedicated are constrained to specific
technicians throughout their operations, with exceptions made only for final inspections.

At each discrete timestep, the simulation executes the following algorithmic steps sequentially. First, in case
of job arrivals, those are made available for scheduling and dispatching. After completing current operations
for technicians and machines, the algorithm checks the actual hours compared to the planned hours for pos-
sible delayed operations. If differences occur, the processing and completion time of operations are adjusted
accordingly, potentially triggering rescheduling of operations to avoid overlap with scheduled technician breaks.

When a technician becomes available, the algorithm considers potential operations based on the WMDD
dispatching rule, explained in Section 5.3. Priority calculation occurs dynamically, considering due date, current
time, and the priority weight of each operation. Operations are scheduled by selecting the highest-priority task
that meets feasibility constraints, including technician compatibility, machine availability, and no intersection
with break intervals.

Furthermore, the scheduling algorithm implements forced back-to-back chaining for sequential operations
that require the same technician, as the operational constraints of the shop necessitate this. Operations that en-
counter technician unavailability intervals mid-process, due to an unexpected extended processing time, are split
into two sub-operations, ensuring adherence with availability constraints and minimal operational disruption.
The second operation can be separately allocated in a later stage.

The algorithm iteratively updates the job schedule, accounting for all dynamic adjustments and ensuring no
overlaps between operations on shared resources or during technician breaks. Upon completing the simulation
horizon, the resulting schedule is evaluated against several KPIs, including total tardiness, total earliness, and
an aggregate objective function reflecting weighted tardiness and earliness, similar to the objective used in
the exact approach. Furthermore, the performance of the model in processing jobs with varying priorities is
evaluated.

Figure 9 illustrates the complete algorithm flow of the dispatching rule implementation used in the simulation
framework. The block diagram outlines how the model progresses through time in discrete steps, repeatedly
checking resource availability and dynamically allocating operations based on the WMDD priority rule.
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A 4
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Yes . No End simulation.
Time t<
" . Compute model
Time horizon H
performance
Check for each N
resource r: ° Move to next
available at time ¢ > discrete time step
(t+4
Yes
Check if
completing
operations has Yes Allocate operation
next operation of > to resource r <
the same job that starting at time ¢
needs back-to-
back scheduling
No
?onstmct ok Remove job
15t @irelerel m from prioritized |«
WMDD priority | PTio <
job list
score, only for J  Setof jobs
arrived jobs
%/ No No No Set of
T .
technicians
/ \ Try to Operation can If test operation; u Set of test
dispatch the be allocated on Operation does operation can be machines
Yes - No upcoming resource r: Yes not intersect allocated to Yes .
Check if list is P 5 o q - t  Current time
——— operation of certified and with upcoming technician and
the highest- dedicated technician machine r  Resource
priority job technicians break resource . X
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Figure 9: Block diagram of the proposed dispatching rule algorithm for the dynamic FJSSP.

This detailed simulation procedure reproduces operational practices in CMRO environments, providing a realis-
tic benchmark to validate the effectiveness and performance of the exact scheduling model developed within this
research. Moreover, this method may offer an alternative solution approach that requires less computational
time compared to the exact model.
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6.4 Performance Evaluation Metrics

Several key KPIs were defined to evaluate the effectiveness and practical applicability of the scheduling models
developed in this study. These KPIs support in evaluation of schedule quality, operational efficiency, and
comparison with real-world performance metrics. The performance indicators considered in the evaluation of
schedules are described in this section.

The TAT is defined as the total elapsed time between job arrival and quotation or completion, compensated
for periods of awaiting quote approval or awaiting parts, calculated with Equation (43). In this equation, C; ,
represents the completion time of the final operation of job i, A; denotes the arrival time of job 7 in the shop,
and T, is the total time that the job was unworkable.

TAT; = Cyy, — A; — Tl (43)

To indicate the difference in the proposed model performance compared to real-world shop performance, the
relative decrease in TAT is calculated with Equation (44).

TATreal world — TATproposed model
TATreal world

TATimprovement [%] = x 100 (44)

Next, the OTD rate is defined in Equation (45), which measures the percentage of jobs completed on or before
their due date. Here, D; is the due date of job i, C;;, is the completion time of job i, and |J| represents the
total number of jobs.

{i € J: Ciy, < Di

OTD [%] = F X100 (45)

The formula used for defining the OTD% improvement is given in Equation (46).

OTDimprovement [%] = OTDproposed model — OTDreal world (46)

The mean start time after arrival assesses scheduling responsiveness by taking the average duration between job
arrivals and the allocation of their first operation, described in Equation 47. In this equation, S; 1 represents
the start time of the first operation of job i, and A; denotes the arrival time in the scheduling simulation, or
the time when the job becomes workable, which can occur at the start or during the scheduling horizon.

1
Mean Start Time after Arrival = 7 Z(SM —4;) (47)
=
The mean waiting time, defined in Equation (48), indicates the operational efficiency by summarizing the idle
durations jobs experience between arrival and processing. Here, p; , represents the processing time of operation
o of job 3.

Mean Waiting Time = |7g17| Z ((Czl —A;) — Z pi,o> (48)
ieJ 0€0;

Additional performance metrics, such as total tardiness, earliness, mean completion time after arrival, and

absolute improvement of the TAT compared to the real-world shop performance, were also included to provide

extensive insights into schedule effectiveness. With these metrics, a comparison and validation against actual

historical shop performance can be performed, measuring if the use of the developed scheduling model results

in operational improvements in the CMRO environment explored in this case study.

6.5 Testing Set-up: Software and Hardware

All models and algorithms introduced in this study were developed in Python version 3.9.2, using both Jupyter
Notebooks and Visual Studio Code as the primary development environments. Data processing and numerical
operations were conducted with libraries such as NumPy, pandas, math, and datetime. For clear visualization
of outcomes, both Plotly and Matplotlib were used to generate interactive and static figures, respectively.
The MILP models were solved using the commercial Gurobi Optimizer, version 12.0.1. All computations were
performed within a secure container environment provided by the maintenance provider, which allowed access
to extended computational resources, with a maximum computation power of 2.8 GHz CPU and 27.6 GB of
RAM. The data from the maintenance provider was retrieved from SQL databases connected with their ERP
system and additional internal APIs, ensuring integration with operational systems.

25



7 Results

This section presents the results of the proposed scheduling model. Section 7.1 introduces the preliminary
model calibration using generated data, where different objective functions and parameter settings are tested and
validated. Section 7.2 presents the results of the case study based on historical real-world data, evaluating model
performance across the three shops, with additional outcomes on robustness, decomposition, and computational
efficiency.

7.1 Preliminary Model Calibration

The preliminary model calibration phase involved tuning and validating the scheduling model parameters to
ensure optimal performance before testing with real-world CMRO shop data. This phase, described in Sec-
tions 7.1.1 and 7.1.2, verified the suitability of selected objective functions and parameter configurations, sup-
porting decisions on model adjustments and practical implementation.

7.1.1 Objective Validation

The objective function used in the scheduling model was selected in collaboration with the management of the
maintenance provider. However, to validate this selection and ensure the optimality of the chosen objective, an
analysis was conducted using the generated CMRO shop instances explained in Section 6.1.1. The objective
functions previously introduced in Section 5.2.2 were evaluated through simulation experiments. These objec-
tives include the minimization of tardiness combined with the maximization of earliness as represented earlier
by Equation (1), simultaneous minimization of both tardiness and earliness described by Equation (2), and the
sole minimization of tardiness as outlined in Equation (3).

A set of 100 simulation runs was performed, each comprising 25 jobs, 8 technicians, and 4 test benches,
to assess the performance differences among the three objectives. The jobs were assigned to five different
priority groups, where group 5 represents the highest priority with the highest assigned weight, and group 1
represents the lowest. Table 7 summarizes the resulting comparative outcomes for each objective. These results
indicate that the initially proposed objective, referred to as objective 1, consistently resulted in improved OTD
percentages compared to objectives 2 and 3. Furthermore, objective 1 resulted in a significantly lower average
TAT compared to the other two objectives, specifically for high-priority job groups. Conversely, the objectives
minimizing or ignoring earliness, objectives 2 and 3, led to comparatively lower mean TATs for higher-priority
jobs. When comparing the performance using objective 3 against objective 1, the TAT and OTD percentages
for lower-priority jobs are more favorable than those for high-priority jobs. These observations emphasize the
crucial role of maximizing earliness in improving service levels for high-priority customers, a major consideration
within CMRO environments.

Priority Objective 1 Objective 2 Objective 3
Group OTD% TAT OTD% TAT OTD% TAT
1 51.29 70.77 56.83 93.27 63.71 65.81
2 64.78 58.97 66.30 92.60 70.58 66.19
3 64.27 48.80 62.80 89.21 66.83 62.99
4 66.00 43.33 65.82 90.10 67.06 64.19
5 67.03 40.15 65.66 90.44 67.84 63.33
All 62.69 52.35 63.21 91.02 67.01 64.43

Table 7: Performance comparison for the mean TAT and OTD across three objectives by priority level.

In addition, an analysis of the Gantt charts derived from simulation results identified another significant dis-
tinction among the objectives. For objectives 2 and 3, jobs delivered on schedule generally finished precisely at
the deadline due to either penalties or ignoring earliness. In contrast, objective 1 encouraged early completion
of tasks, with on-time jobs frequently completed significantly ahead of their due dates. To illustrate this ob-
servation, a detailed analysis of one representative simulation showed an average completion buffer of 15 time
units before the due date for objective 1. Objectives 2 and 3 exhibited smaller buffers, averaging 0 and 1.5 time
units, respectively. Given the operational principles of CMRO shops, which highlight early job completion as
essential for reliability and customer satisfaction, objective 1 is a much better fit for organizational priorities
and practical requirements. Indeed, management explicitly states that finishing exactly at the due date provides
insufficient operational flexibility, making earlier completion preferable. Moreover, the aggregated performance
across all priority groups indicates that objective 1 achieves a significantly better average TAT compared to the
other evaluated objectives. Consequently, based on these findings, the remainder of this project proceeded with
the use of objective 1, which balances the minimization of tardiness and the maximization of earliness.
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7.1.2 Parameter Calibration

In preparation for testing the scheduling model with real-world CMRO data, a series of test runs were performed
to determine an appropriate balance between the terms of tardiness and earliness in the objective function.
Specifically, different weightings of the tardiness penalty parameter «, with a fixed earliness reward g, were
tested to examine their effect on two key performance indicators: OTD% and TAT. Table 8 summarizes this
parameter sensitivity analysis. The model was executed for each parameter configuration using 100 different
instances, comparable in size and characteristics to the data described in Section 6.1.1.

The results indicate that the configuration o = 3, 8 = 1 achieved a comparatively high mean OTD%,
while on average having one of the lowest mean TAT across all tested values. This setting represents the most
practical trade-off between the two main KPIs and was considered the most appropriate configuration to assess
the performance of the model in a realistic CMRO context.

Furthermore, this parameter combination was selected based on consultation with CMRO shop stakeholders.
It reflects their preference for a balanced priority on minimizing tardiness and maximizing earliness. Within
CMRO operations, ensuring that high-priority jobs are delivered with a sufficient buffer before their due dates
and maintaining high TAT are essential to maintaining expected service levels and customer satisfaction. As
such, placing too much weight on reducing tardiness at the cost of early deliveries would conflict with operational
priorities.

Parameters Mean OTD [%] Mean TAT [t]

a=2 B=1 46.80 52.37
a=3, B=1 47.96 52.39
a=4, B=1 A7.76 52.50
a=5 =1 47.84 52.50
a=6, f=1 48.20 52.58
a=7 8=1 48.56 52.65

Table 8: Comparison of OTD% and TAT performance across different parameter configurations.

7.2 Case Study

The case study uses historical CMRO shop data for the validation of the model. Section 7.2.1 presents the
results for the H&P shops, followed by Section 7.2.2, which discusses the performance in the IDG shop. Re-
source utilization across all shops is analyzed in Section 7.2.3. Sections 7.2.6, 7.2.5, and 7.2.4 further evaluate
robustness, decomposition, and computational performance, respectively. Lastly, Section 7.2.7 compares the
exact model to a heuristic dispatching rule approach.

7.2.1 H&P Shop

To begin the real-world validation of the proposed scheduling model, the initial case studies were performed for
the H&P shops. These environments provided a first setting to test the model on actual operational data. The
purpose of this phase was to assess how well the model performed in replicating and improving the existing
schedules in terms of TAT, OTD, and job prioritization. The section is divided into two parts, which present
the performance outcomes for the Hydraulics and Pneumatics shops. Results include outcomes per priority
group and comparisons with historical real-world shop performance to quantify improvements achieved by the
model.

Hydraulics Shop
The scheduling model was first implemented for the Hydraulics shop,
where performance was analyzed across five historically complex weeks.

At the maintenance provider, customers are divided into six different Priority Weight
priority groups based on their contractual agreements, which serve group

as the basis for job prioritization in daily operations. To implement AAA 50

these shop-floor prioritization policies, a set of weightings for these A 30
priority groups was required. Several weighting configurations were B 20

tested, including one based on the existing, points-based, prioritiza- C 10

tion approach. The configuration that simulated model behavior most POOL 10
consistently with current scheduling practices was selected as the most SHOP 8

fitting configuration to test the model against real-world shop perfor-

mance. An overview of the priority groups and their assigned weights Table 9: Assigned weights per
is presented in Table 9. priority group in scheduling objective.
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Table 10 summarizes the performance of the model for the selected
weeks. The results indicate that jobs in higher priority categories are generally scheduled to start earlier after
arrival and achieve earlier completion times. Additionally, the observed mean idle time for high-priority groups
such as AAA and A confirms the ability of the model to prioritize these jobs effectively. One minor exception is
observed between the POOL and SHOP groups, likely due to the larger job volume in the POOL group rather
than inefficiencies in prioritization.

Additionally, the mean tardiness and earliness values across job classes reflect the influence of the assigned
priority weights. These values are normalized to adjust for due dates outside the scheduling horizon. In
particular, higher-priority groups show more significant levels of earliness, reflecting the focus of the model on
early completion for urgent jobs. The C and SHOP groups show relatively low mean tardiness, which may seem
unexpected given the lower priority weights. This is mainly because many jobs in these categories have due
dates set well beyond the scheduling horizon. As a result, only a small fraction of these jobs are classified as
tardy, reducing the average tardiness observed for these groups.

Priority No. of Mean idle Mean start Mean completion Mean Mean
groups jobs time [hrs]  time®[hrs] time® [hrs] tardiness®[hrs] earliness®[hrs]

AAA 80 5.97 5.32 10.56 2.15 32.19

A 51 6.17 5.65 10.64 5.13 28.45

B 120 11.01 10.23 17.45 5.09 25.19

C 11 11.23 11.32 14.41 0.14 26.66

POOL 79 17.58 15.91 22.40 8.15 18.80

SHOP 32 13.34 12.29 16.04 4.89 24.73

All 373 10.87 9.96 15.88 4.97 25.73

2 Mean times measured from the arrival time of the jobs.
b Mean tardiness and earliness are normalized for due dates that lie outside the scheduling horizon.

Table 10: Model performance per priority group for the Hydraulics shop.

Table 11 compares model-generated schedules and actual historical performance for the Hydraulics shop. The
model consistently achieved improvements in both TAT and OTD, particularly for high-priority job groups.
These improvements are mainly due to its ability to optimize resource allocation globally and react effectively
to dynamic conditions. For example, gains are driven by more efficient scheduling of critical operations compared
to existing practices. Specifically, final inspection tasks, which can only be executed by certified personnel, are
normally postponed until the end of the workweek. The model, in contrast, tends to allocate such operations
earlier in the week whenever feasible, as completing the final operation of a job earlier contributes significantly
to improving the objective function. In several cases, this adjustment alone reduces TAT by multiple days.

Moreover, it should be noted that certain real-world factors are not incorporated in the model, including
coffee break times, cleaning shifts, and other activities for which no data is available. Moreover, jobs already
in progress at the start of the scheduling horizon are not explicitly represented in the model due to data
limitations. Despite these constraints, the model can be expected to outperform real-world outcomes even when
such externalities are considered, given the significant improvement rates. The most noteworthy indicator of
performance improvement is the reduction in average TAT, as the impact on OTD is limited mainly by due
dates falling outside the simulated scheduling horizon. Additionally, the jobs that belong to the POOL priority
group do not improve as much as other groups. This is because, within this group, sometimes jobs are marked
as critical, in which they receive additional priority, which is not considered in the model simulations done in
this paper, as introducing too many different priority categories would have reduced the manageability and
overview of the scheduling logic for this case study.

Priority No. of Mean absolute TAT Mean relative TAT Mean historical Mean improved

groups jobs improvement [days]| improvement [%] OTD [%] OTD [%]
AAA 80 5.60 42.28 54.90 9.80
A 51 8.27 33.77 55.00 11.25
B 120 6.58 31.82 54.17 10.00
C 11 4.25 31.01 72.73 18.18
POOL 79 -0.01 -1.80 50.63 2.53
SHOP 32 6.50 16.72 56.25 0.00
All 373 5.13 25.89 54.42 8.04

Table 11: Comparison of model output with real-world Hydraulics shop performance.

Figure 10 shows an example of the Gantt chart generated based on a weekly simulation using historical data
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from the Hydraulics shop for a specific week. The chart confirms the successful implementation of key features,
such as technician break periods, as can be noticed for technician "EPO’, and sequence-dependent setup times,
as test operations assigned to both a test bench and a technician include the required setup time if the part
differs from the predecessor part handled on the test bench.
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Figure 10: Gantt chart outcome of the Hydraulics shop scheduling simulation using the MILP model for the
week of 9 September.

Pneumatics Shop
The model was thereafter implemented for the Pneumatics shop. Pri-
ority weights tailored to the operational performance of this shop were

selected through iterative testing of multiple configurations. The final Priority Weight
configuration used in the simulations is shown in Table 12. group

Performance results across four representative weeks are summa- AAA 100
rized in Table 13. The model again demonstrated effective prioriti- A 20
zation, with high-priority jobs being scheduled earlier and achieving B 10
lower completion times relative to lower-priority jobs. One significant C 5
deviation occurred in the AAA group, where performance was less POOL 1
favorable compared to the A group. This can be attributed to high SHOP 0.5
utilization pressure on a specific single high-flow pressure test bench,
which is a known bottleneck in the Pneumatics shop and is heavily Table 12: Assigned weights per

used by AAA jobs. The presence of this bottleneck limited the ability priority group in scheduling objective.
of the FJSS model to improve outcomes for this group despite its high

assigned weight. The normalized mean tardiness and earliness outcomes are as expected, minimizing tardiness
for higher priority jobs and maximizing earliness for higher priority jobs, except for the AAA group due to
operational bottlenecks.

Priority No. of Mean idle Mean start Mean completion Mean Mean
groups jobs time [hrs]  time®[hrs] time® [hrs] tardiness®[hrs] earliness®[hrs]
AAA 147 9.67 5.72 14.36 9.74 36.39
A 42 3.80 3.04 7.60 0.68 46.95
B 47 14.15 13.21 21.54 6.32 34.38
C 5 7.85 5.25 12.75 11.00 22.80
POOL 94 16.93 14.99 22.67 10.20 25.31
SHOP 50 23.83 22.38 27.59 19.05 7.48
All 385 13.17 10.76 18.23 9.46 31.15

2 Mean times measured from the arrival time of the jobs.
b Mean tardiness and earliness are normalized for due dates that lie outside the scheduling horizon.

Table 13: Model performance per priority group for the Pneumatics shop.

Table 14 shows again the realized improvements in scheduling performance based on the improvement of the
selected KPIs. Especially looking at the AAA group of jobs, the TAT is significantly improved because the
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model substantially increases the ability to handle the machine capacity problems for this group compared to
manual shop planning, and even realizes a slight average increase in OTD percentage. Additionally, each priority
group of jobs had decreased TATs compared to historical data, and the overall OTD percentage improved. As a
result of more efficient allocation of higher priority jobs, SHOP can be handled earlier in the schedules compared
to historical allocation times, which explains the significant improvement of absolute TAT.

Priority No. of Mean absolute TAT Mean relative TAT Mean historical Mean improved

groups jobs improvement [days]  improvement [%] OTD [%] OTD [%]
AAA 147 3.26 28.01 58.94 1.32
A 42 3.63 59.60 85.19 0.00
B 47 5.31 26.69 63.83 6.38
C 5 3.56 23.83 50.00 0.00
POOL 94 2.06 9.80 60.47 1.16
SHOP 50 21.88 33.35 17.31 0.00
All 385 5.68 27.49 57.87 1.52

Table 14: Comparison of model output with real-world Pneumatics shop performance.

7.2.2 IDG Shop

The third application of the proposed FJSS model was implemented within the IDG shop. For these simulations,
priority weights identical to those previously used in the Hydraulics shop were applied, as these were considered
most suited based on the performance in this operational environment. These priority weights are given in
Table 9.

The proposed model effectively handled the unique characteristics of the IDG shop. Especially, the single
allocation of test operations due to the independent test bench operators and the capability of dynamically
inserting additional operations following a failed test were successfully incorporated. This adaptability demon-
strates the ability of the proposed FJSS model to be adjusted to diverse dynamic operational constraints typical
for CMRO environments.

Table 15 summarizes the performance metric outcomes, derived from the three historical weekly simula-
tions for the IDG shop. The results again confirm the expected differentiation in job handling according to
priority levels. Specifically, jobs within the highest priority group, AAA, experienced the shortest start time
after becoming available, averaging approximately 3 hours from arrival to allocation. Contrarily, lower-priority
groups, such as A and B, had later start times after arrival, averaging roughly 11 and 19 hours, respectively.
Notably, the SHOP priority group showed relatively efficient scheduling, primarily due to their smaller number
of operations, shorter processing durations, and absence of test bench dependencies, which are identified as pri-
mary bottlenecks in the operational workflow. This effect is also reflected in the mean tardiness and earliness,
although the low mean tardiness can be attributed partly to the small number of tardy jobs for the SHOP
group, two in total.

Priority No. of Mean idle Mean start Mean completion Mean Mean
groups jobs time [hrs]  time®[hrs] time? [hrs] tardiness®[hrs] earliness®[hrs]

AAA 56 2.89 2.23 12.67 1.29 65.81

A 70 11.13 6.29 18.94 2.26 49.73

B 20 19.49 14.41 32.63 4.69 31.79

C 4 29.81 11.31 45.00 28.82 18.78

POOL 31 40.04 32.80 50.24 26.76 19.22

SHOP 115 10.83 9.63 12.53 0.46 51.77

All 296 13.30 10.21 19.82 5.40 47.51

2 Mean times measured from the arrival time of the jobs.
b Mean tardiness and earliness are normalized for due dates that lie outside the scheduling horizon.

Table 15: Model performance per priority group for the IDG shop.

Furthermore, Table 16 compares the simulation results obtained using the proposed model and the actual
historical performance of the IDG shop. The simulations indicated a substantial improvement in the performance
metrics of the shop, particularly in terms of TAT improvements across all priority groups. Specifically, jobs
in the SHOP and AAA priority categories showed impressive TAT improvements, with absolute reductions
averaging over seven and nearly six days, respectively. Overall, the application of the FJSS model led to an
average TAT improvement of approximately 34 percent, the highest overall TAT improvement compared to
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other shops. In addition, OTD rates displayed notable improvements, particularly for the A and SHOP groups,
supporting the effectiveness of the proposed scheduling approach.

Priority No. of Mean absolute TAT Mean relative TAT Mean historical Mean OTD
groups jobs improvement [days]| improvement [%] OTD [%] improvement [%]
AAA 56 5.78 37.68 85.71 1.79
A 70 5.26 30.53 77.14 10.00
B 20 4.41 12.23 70.00 5.00
C 4 4.68 24.84 75.00 25.00
POOL 31 3.05 13.55 67.74 0.00
SHOP 115 7.32 44.48 47.83 50.43
All 296 5.86 34.21 65.88 22.97

Table 16: Comparison of model output with real-world IDG shop performance.

7.2.3 Resource Utilization

To assess capacity pressure and indicate potential bottlenecks in the CMRO shops, average resource utilization
was evaluated for each resource type across the Hydraulics, Pneumatics, and IDG shops. Table 17 presents
the mean utilization percentages for technicians, test machines, and rework stations, computed from actual
allocated and available hours over the simulated historical weeks for each shop.

Shop Technician [%] Test Machines [%] Rework Stations [%]
Hydraulics 97.19 60.19 —
Pneumatics 98.00 23.17 —

IDG 94.73 97.40 72.50

Table 17: Mean resource utilization percentages by type across all shops.

The results indicate that technician resources are highly utilized in all shops, with values exceeding 94%, indicat-
ing that technician availability is a limiting factor in the scheduling process, which emphasizes the importance of
optimal allocation. In comparison, test machine utilization differs significantly across the evaluated shops. The
Pneumatics shop exhibits a low average test utilization of 23.17%, which could indicate that test resources are
not a limiting factor in terms of capacity in this environment. Contrarily, in the IDG shop, both technicians and
test machines are highly utilized, indicating tight capacity across both resource types. Test resource utilization
in the Hydraulics shop is at 60.19%, falling between the low levels observed in Pneumatics and the high levels
in the IDG shop. Technician allocation remains the primary challenge, as reflected by the consistently high
weekly utilization rates.

7.2.4 Computational Analysis

A computational analysis evaluated the impact of different time limits on solution quality for the initial schedule
and subsequent rescheduling steps. Historical weekly data instances were used to simulate and compare the
performance under various computational time constraints. Specifically, the Hydraulics and Pneumatics shops
were initially evaluated with a time limit of 30 minutes for generating the initial schedule and 3 minutes for each
subsequent rescheduling operation. This initial time limit was based on the convergence graph, indicating that
the objective value does not increase significantly after 30 minutes. The IDG shop required higher base limits
due to the increased size of its instances based on the number of jobs and resources. In each case, extended time
limits were tested to evaluate the extent to which additional computational effort improves the final objective
value.

Table 18 presents an overview of the tested computational time limits for each shop, together with the
corresponding mean improvements in the objective value and the MIP gaps indicated by the used MILP solver.
The MIP gap represents the relative difference between the best lower bound found by the solver and the final
objective value, where the lower bound is not necessarily optimal. The mean objective value improvements are
computed as the relative difference in the objective value between the model using the base time limits and
the model using extended time limits, comparing the objective at the start of the week (¢ = 0) with the final
objective at the end of the simulation (¢ = 40), following multiple rescheduling operations. These minimal gains
in objective value suggest that the original time limits might be appropriate and efficient when looking at the
trade-off between optimality and computational effort.
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Time Limit Mean Objective Mean

Shop (Initial / Rescheduling) Value Improvement [%] MIP Gap |[%]
Hydraulics 30 min / 3 min?® — 1.90%
Hydraulics 1 hr / 6 min 0.30% 1.84%
Hydraulics 3 hr / 9 min 0.38% 1.77%
Pneumatics 30 min / 3 min® — 1.43%
Pneumatics 1 hr / 6 min 0.58% 1.04%
Pneumatics 3 hr / 9 min 0.64% 1.10%
IDG 1 hr / 6 min® — 3.06%
IDG 3 hr / 9 min 0.70% 2.54%

* Baseline time limits.

Table 18: Impact of computational time limits on the objective value improvement and the MIP gap

In addition to the limited improvement in objective values, the reported MIP gaps in Table 18 remain relatively
small and indicate only slight reductions when increasing the time limits. Across the weekly simulations, the
number of triggered rescheduling moments generally ranged between 30 and 40 times per week, depending on
the number of new jobs, deviations in processing times, and failed tests.

7.2.5 Decomposition

The decomposition methodology described in Section 5.2.8 was applied to the large-scale instances of both the
Pneumatics and IDG shops. The aim was to evaluate whether the proposed decomposition approach could
effectively improve model performance, particularly for these larger-sized instances. To compare this approach
properly, the same computational time limit for the simulations was applied to both the baseline model and the
decomposition approach. This directly assesses how much the solution can improve under identical experimental
conditions.

Figure 11 presents the results obtained from applying the time-based decomposition approach to two selected
weeks with the highest number of starting jobs in the IDG shop, specifically the weeks of 23 September and 14
October. Figure 11(a) illustrates the number of jobs temporarily excluded from consideration due to their start
times falling outside the specified decomposition window. These jobs were subsequently reintroduced into the
schedule at a later stage. As expected, shorter window lengths increased the number of temporarily excluded
jobs. Smaller windows reduce the size of the scheduling problem by limiting the number of jobs considered at
each rescheduling step. While this reduction in complexity can potentially decrease computational effort, it also
introduces the risk of suboptimal job allocation decisions due to incomplete information.
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Figure 11: Time-based decomposition performance for the IDG shop using different window lengths

Figure 11(b) compares objective values obtained with varying window lengths relative to the baseline scenario
without decomposition to estimate the optimal balance between computational efficiency and scheduling quality.
In this figure, a positive difference in objective value indicates that the obtained objective, measured at the end
of the simulation, is higher than in the baseline scenario, meaning the result is relatively worse. Conversely,
a negative difference reflects a lower objective value and therefore an improvement over the baseline. The
results show that shorter windows substantially worsen the performance measured by the objective value.
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Contrarily, longer windows offer minor improvements over the baseline scenario, suggesting limited value of the
time-based decomposition method in this specific scheduling context. This can be attributed to the relatively
moderate workload in the shop, where few jobs are scheduled far enough into the future for decomposition
to significantly reduce complexity. As a result, longer windows do not significantly unburden the problem
or increase solution quality enough. Additionally, when using very short windows, jobs arriving early in the
week may be excluded prematurely, which can lead to suboptimal decisions as these jobs remain unconsidered
for the rest of the planning horizon. This limits the benefit of multiple window lengths, explaining the small
improvements observed in this case study.

A similar pattern was observed when the decomposition approach was applied to the Pneumatics shop. The
experiments generated comparable outcomes, suggesting that the benefits of the decomposition approach may
be marginal under the current conditions of these specific CMRO shop environments.

7.2.6 Robustness and Stability

To evaluate the robustness and stability measures implemented for the proposed scheduling approach, an analysis
was performed for both the Hydraulics and Pneumatics shops. The primary objective of implementing these
measures, which penalize deviations in job completion times during reactive rescheduling, was to deliver more
reliable completion estimates at the beginning of each scheduling week, thereby improving the accuracy of
communicated delivery dates.

The analysis started with the Hydraulics shop. When robustness measures were not applied, the base model
showed a mean deviation in job completion times of 6.31 hours between the initial schedule on Monday and the
final realized schedule at the end of the scheduling horizon. This Mean Completion Time Deviation (MCTD),
formulated in Equation (49), is defined as the average absolute difference between the initially scheduled and
finally realized completion time for the last operation of each job. Specifically, C;;, represents the initially
scheduled completion time of the final operation of job i, while @z denotes its realized completion time at the
end of the simulation. The MCTD decreased to 2.53 after incorporating robustness into the objective. The
reduction is explained by the fact that the robust model explicitly minimizes these deviations in completion
times during rescheduling. As a result, an improvement in schedule stability was observed. Specifically, the
proportion of jobs that failed to meet their initially promised shipping dates by the end of the week decreased
substantially from 15% in the base model to just 3% in the robust model. This confirms the effectiveness of
incorporating robustness in improving schedule reliability.

MCTD = —— 3 ‘Ci,li _ @,li) (49)

7%

However, introducing robustness had implications for job prioritization and flexibility within the scheduling
process. Figure 12 illustrates these trade-offs by comparing the robust model to the base model. Incorporating
robustness led to reduced flexibility in scheduling new arrivals. Mainly because the model explicitly minimizes
deviations in completion times for jobs already allocated in the schedule earlier in the week, which limits the
ability to reallocate these jobs to later time slots. As a result, the ability to reallocate scheduled jobs to
create space for newly arriving high-priority jobs is limited. Consequently, high-priority job performance was
affected, with increased mean completion times. Hence, lower-priority jobs experienced improvements in their
performance metrics, as they were less frequently postponed by high-priority tasks. Figure 12(b) indicates the
related decrease in TAT improvements for high-priority jobs, mainly noticeable in priority groups A and B.

Robust Model Robust Model

Total Total
m Base Model m Base Model

SHOP SHOP
POOL POOL
C C
B B
A A
AAA AAA

0 5 10 15 20 25 0 10 20 30 40 50

Time [hrs] Relative improvement [%]
(a) Mean completion time after arrival. (b) Mean TAT improvement

Figure 12: Hydraulics shop performance differences in: (a) mean completion time after arrival and (b) mean
TAT improvement of the robust model compared to the base model.
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The robustness approach was similarly implemented for the Pneumatics shop, generating comparable improve-
ments in scheduling reliability. Specifically, the percentage of missed promised delivery dates decreased from
8% in the base model to just 2% with the robust model. Comparable with the Hydraulics shop, performance
metrics for different priority groups were similarly affected. Figures 13(a) and 13(b) show that while robust-
ness enhanced scheduling reliability, it negatively impacted mean completion times and TAT improvements
for higher-priority jobs. Nevertheless, this trade-off resulted in more predictable and dependable schedules,
enhancing customer satisfaction by significantly reducing uncertainty in communicated delivery dates.

All Robust Model Robust Model
m Base Model m Base Model

SHOP
POOL
C
B
A
AAA

0 10 20 30 40 0 10 20 30 40 50 60

Time [hrs] Relative improvement [%]
(a) Mean completion time after arrival. (b) Mean TAT improvement

Figure 13: Pneumatics shop performance differences in: (a) mean completion time after arrival and (b) mean
TAT improvement of the robust model compared to the base model.

7.2.7 Dispatching Rule Algorithm

The effectiveness of the heuristic dispatching rule algorithm, specifically the WMDD rule described in Section
5.3, was assessed by comparing its performance against the exact scheduling approach previously presented.
Figure 14 presents the relative performance differences observed for each week in the Hydraulics and Pneumatics
shops. Positive differences indicate less favorable outcomes compared to the exact model, as higher values in
the used metrics, such as the objective value and number of tardy jobs, reflect reduced performance. Therefore,
results indicate a significantly reduced overall performance when employing the WMDD heuristic in comparison
to the exact approach, which is mainly noticeable in terms of the objective value and the number of tardy
jobs. Despite its lower performance, the heuristic approach functions correctly and respects all operational
constraints, including those related to technician availability, precedence relations, and setup times, as can be
verified in Figure 15(a), which presents a feasible weekly schedule generated for the Hydraulics shop.
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Objective Tardiness Earliness # Tardy Jobs Objective Tardiness Earliness # Tardy Jobs
Value Value

(a) Hydraulics shop. (b) Pneumatics shop.

Figure 14: Relative difference in performance of the DR approach to the exact approach for: the (a)
Hydraulics and (b) Pneumatics shop.

Although the total earliness was consistently better using the exact model, the differences in total tardiness
between the approximate and exact methods were comparatively smaller. This outcome is primarily due to the
prioritization logic of the WMDD rule, which first allocates jobs already overdue before scheduling jobs with
future due dates. An exceptional case was observed in the simulation for the week of 2 September, where total
tardiness slightly improved under the heuristic approach despite a significant degradation in overall objective
value measured. A detailed analysis for this specific week, presented in Table 19, indicated significant delayed
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starting times of high-priority jobs when using the heuristic method compared to the exact model. This is
also the main reason for the considerable difference in objective value. This week, many low-priority jobs were
already overdue, whereas many high-priority jobs still had remaining time before their due dates. The DR
method prioritizes tardy jobs before considering earliness and allocates resources to delayed low-priority jobs
before almost overdue high-priority ones, leading to a significant worsening of the objective value. In contrast,
the exact model incorporates a more balanced consideration of job priority and timing, as CMRO shops prefer.
This is visually confirmed in Figure 15, where high-priority jobs are scheduled earlier in the exact model’s Gantt
chart compared to the approximate approach. While this indicates that the heuristic may sometimes identify
locally promising outcomes in terms of specific objectives such as tardiness, it also highlights its limitations in
prioritizing important tasks, specifically high-priority jobs, within a globally optimized scheduling framework.

Priority Group Exact model Approximate model

AAA 5.65 12.91
A 5.50 21.88
B 10.90 15.11
C 13.80 26.05
SHOP 4.67 4.00
POOL 16.15 16.92

Table 19: Comparison of mean start times after job arrival between the exact and approximate model for each
priority group, for the week of 2 September in the Hydraulics shop.
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Figure 15: Gantt charts of the Hydraulics shop simulation using different methods for the week of 2 September.

Despite the lower performance metrics, the heuristic dispatching approach offers substantial advantages in
terms of computational efficiency. As indicated in Tables 20 and 21, the computation time needed to generate
a complete weekly schedule using the simulation remained below one second for the Hydraulics shop and only
a few seconds for the Pneumatics shop. Moreover, the low computational effort makes this method suitable for
dynamic environments where frequent rescheduling is required. The approach can easily incorporate updated
job information at each dispatching point, as shown in the simulation, where jobs became available upon arrival
in the shop and delays were handled by extending the completion times when needed. However, in such settings,
schedule predictability may be limited, as the dispatching list is continuously updated and the entire schedule
is reconstructed from the current time at each rescheduling step. As a result, the actual schedule can deviate
substantially from the initially generated plan. Therefore, this heuristic method presents a feasible alternative
for scenarios where computational resources are limited, while accepting reduced scheduling optimality and
predictability.

Week Run time [s] Total jobs

2-Sep 0.86 71 Week Run time [s] Total jobs
9-Sep 0.78 60 9-Sep 2.56 102
9-Dec 0.86 83 30-Sep 2.31 102
16-Dec 0.94 79 9-Dec 3.38 98
13-Jan 0.74 90 13-Jan 2.73 99
Table 20: Run time and total number of jobs per Table 21: Run time and total number of jobs per
weekly instance for the Hydraulics shop. weekly instance for the Pneumatics shop.
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8 Discussion

The performance of the model received highly positive feedback from the shop leads responsible for planning
at the maintenance provider. They valued the high frequency and granularity of schedule updates, finding the
rescheduling time suitable for operational implementation. They also emphasized that further accuracy could
be achieved through improved data input, such as better reflecting actual working hours, assistance activities
in the shop, and processing time variations between technicians. The shop leads underscored the advantage
of allocating final inspection tasks earlier and more balanced throughout the week, as opposed to the current
practice of mostly conducting inspections at the end of the week. This improvement could reduce scheduling
difficulties experienced by certified personnel, workload spikes, and ensure earlier job completions, as indicated
by the improved performance of the proposed model. Additionally, by planning all available jobs from the start
of the scheduling horizon, the model enables schedules to extend further into the future than is currently done,
thereby improving management of customer expectations and delivery commitments, as noted by shop leads.
Importantly, they also clarified that periods in the schedule where technicians are not assigned to specific tasks
do not necessarily indicate inefficiency, as these gaps are often used for low-priority teardown work, cleaning
duties, or supervisory responsibilities.

Within the case study, the optimized scheduling implementation resulted in a mean reduction in TAT of
34.21% within the IDG shop and absolute TAT improvements of five to seven days for high-priority repairs.
Additionally, OTD performance improved by 22.97%. Similarly, comparable performance gains were achieved in
the H&P shops, confirming the effectiveness of the developed exact approach. These significant improvements are
mainly attributed to the global optimization approach used by the exact model, which simultaneously considers
all applicable capacity constraints. By comparison, historical scheduling typically focuses on the availability of
a single resource at a time, without accounting for future constraints. By strategically allocating tasks based
on all upcoming routing steps and available resources, the model more effectively leverages the capabilities of
the shop. Although some simplifications were made and certain real-world factors were not modeled in the case
study, the observed performance improvements are primarily due to more efficient scheduling. The relatively
greater improvements in TAT and OTD observed in the IDG shop, compared to the other shops, can likely be
attributed to bottlenecks caused by test capacity. The limited availability of test machines creates scheduling
challenges, as reflected by their high utilization rates. In those environments, the advantages of a data-driven
scheduling approach over manual planning are especially noticeable, explaining the more significant performance
gains in the IDG shop. In comparison, the Pneumatics shop, which only indicated 1.52% OTD improvement,
had the lowest machine utilization levels, suggesting that fewer capacity bottlenecks result in lower optimization
advantages.

The time-based decomposition approach did not lead to the expected performance improvements in this case
study. The use of shorter windows resulted in notably worse total performance, whereas longer windows provided
negligible improvements over non-decomposed models. This limited benefit is primarily due to the workload
and scheduling horizon in the studied CMRO shop, where only a few jobs are initially allocated far enough
into the future for decomposition to reduce complexity or improve overall scheduling quality. Furthermore,
shorter scheduling windows risk excluding early-week job arrivals from subsequent rescheduling, which results
in suboptimal scheduling decisions. Although time-based decomposition showed limited improvement in this
case, prior studies suggest it can be more effective in longer-horizon settings.

Besides the specific case study at the maintenance provider, the developed scheduling framework has broader
applicability. The flexible design, integrating dynamic rescheduling, technician specialization, and priority-based
job handling, makes it applicable to other shop floors experiencing similar planning challenges. The successful
application of the framework to both the H&P and IDG shops demonstrates its adaptability, showing that it
can be modified to fit the operational characteristics of different environments. Therefore, the methodology
could be extended to other maintenance or production environments with comparable shop floor dynamics,
such as varying resource skill levels, the consideration of both human operators and machines, and handling
limited test capacity. These types of environments remain unexplored in existing literature, but could benefit
from data-driven scheduling optimization as demonstrated in this study.

Compared to earlier studies, the time limits of 30 to 60 minutes used in this research seem reasonable for
obtaining near-optimal MILP solutions. Thérnblad et al. (2015) reported MIP gaps of 1.62% on average for
40-job instances with similar complexity and increased time limits. Our model achieved lower gaps, such as
1.43% for the pneumatics shop, despite tighter limits and additional rescheduling, indicating improved effi-
ciency. Moreover, Elyasi and Salmasi (2013) compared a mathematical flow shop model in a dynamic setting
to an SPT-based heuristic and reported an average performance gap of 23.9%, with significant variation across
instances. This is in line with the differences observed between our exact model and the dispatching rule,
both in the performance gap and the large deviations seen for different problem instances. Lastly, Goren et al.
(2011) also observed a slight reduction in scheduling efficiency in their job shop model to enhance stability and
robustness under dynamic conditions, which is consistent with our results, where minor performance losses were
compensated by improved robustness during rescheduling.
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However, the research identified several limitations. First, certain practical details, such as minor operational
interruptions, informal breaks, and unplanned activities, were not modeled due to limited data availability.
Second, the computational demands of the exact optimization model remain high, particularly compared to
heuristic methods, which could pose challenges for scaling up or more frequent rescheduling scenarios, potentially
changing from discrete time steps to continuous time.

Furthermore, several assumptions in this research must be considered when analyzing the results. Although
agreed upon with shop leads, the use of an average setup time for all parts could lead to inaccuracies due to
the significant variability in actual setup times across different parts. Moreover, the determination of technician
qualifications based on historical hours worked on parts could affect result accuracy since, in practice, these
qualifications are determined manually by shop leads. Additionally, machine downtime, which was not modeled
in this research, could further impact real-world scheduling outcomes, though it could be integrated similarly
to technician unavailability. The assignment of scores for the six priority groups kept the model manageable
but ignored variability in job urgency within each group. Finally, the assumption of unlimited buffer space may
affect the practical feasibility of scheduling decisions, as storage limitations within actual shop environments
could limit new job allocations.

9 Conclusion and Future Research

This study successfully developed and implemented an autonomous flexible job shop scheduling model designed
to optimize maintenance operations within dynamic CMRO environments. The scheduling approach uses a
MILP formulation, including a multi-objective optimization that aims to minimize weighted tardiness and
maximize weighted earliness. The method effectively aims to optimize performance and balance operational
metrics, namely TAT and OTD. By incorporating customer-specific priority weights, the model strategically
prioritizes urgent and high-value jobs, as indicated by the enhanced performance of high-priority customer groups
in the simulations. Furthermore, the developed scheduling model incorporated essential real-world constraints
such as technician skills and certification requirements, resource availability, including specialized equipment and
workstations, and scheduled technician unavailability. This results in feasible and well-performing maintenance
schedules, directly applicable on the shop floor, concluding that the proposed model effectively manages the
main operational challenges in CMRO scheduling.

The practical application of this scheduling model in two CMRO shops for the case study at the maintenance
provider demonstrated substantial improvements in key performance metrics. The model achieved reductions in
TAT of up to 34.21% and increases in OTD of up to 22.97% compared to historical manual planning methods,
underlining the effectiveness of the exact optimization approach. The highest performance gains were observed
in the shop with the most constrained test capacity and the highest utilization rates. Thus, the conclusion can
be drawn that the proposed model is most effective in shop environments where limited resource availability
creates significant scheduling challenges.

Additionally, as demonstrated in the simulations, the dynamic rescheduling mechanism enables the model
to re-optimize when new jobs arrive, processing times deviate, or additional operations are inserted, thereby
maintaining feasible and efficient schedules under real-world disruptions within CMRO shops.

The implemented time-based decomposition approach, using varying scheduling window lengths, demon-
strated limited practical value within the context of this case study. However, based on computational ex-
periments, it can be concluded that the model is capable of generating well-performing solutions within the
practically feasible time limits, both for the initial scheduling phase and the rescheduling throughout the plan-
ning horizon.

Incorporating robustness measures into the scheduling model was essential for improving delivery reliability,
as it reduced the number of missed promised due dates despite operational disruptions. Although it affected the
flexibility and performance of high-priority jobs, it can be concluded that the improvements in predictability
justify the inclusion of robustness and stability measures, especially given the importance of delivery reliability
in dynamic CMRO environments.

Finally, the performance gap between the exact optimization approach and the DR heuristic, which, similar
to current manual practices, relies on local decision-making, emphasizes the value of global optimization in
CMRO scheduling. While heuristics compute schedules within faster computational time, this comes at the
cost of solution quality, making them less suitable when optimality is prioritized.

In conclusion, this paper demonstrated the potential of flexible job shop scheduling, enhanced by multi-
objective optimization and dynamic rescheduling capabilities, to significantly improve operational efficiency in
TAT and OTD within real-world CMRO shops. By confirming that optimization techniques, when realistically
constrained, can substantially outperform traditional scheduling methods in dynamic maintenance environ-
ments, the primary research objective is reached. Furthermore, by integrating job prioritization, technician skill
constraints, robustness, and dynamic rescheduling into a single scheduling framework, this study addresses the
identified research gap in the existing literature.
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Nevertheless, future research in this area could further enhance model accuracy by exploring variable pro-
cessing times dependent on technician experience, which significantly influence task durations in CMRO envi-
ronments. Moreover, decreasing computational time by using metaheuristics or hybrid optimization approaches
would further enhance the practical use of the model, allowing for more frequent and faster schedule updates.
Another promising area involves deep reinforcement learning techniques in the JSSP, which offer significant
potential, particularly for developing adaptive scheduling policies capable of improving over time in dynamic
environments. Lastly, while dynamic rescheduling effectively addresses uncertainty in the developed approach,
the proactive management of processing time variability through predictive analytics and stochastic optimization
represents another promising direction for future research in these environments.
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Appendices

A Dynamic Rescheduling Algorithm

Algorithm 2 Rescheduling flexible job shop problem after dynamic events

1:

—
=

11:
12:
13:

14:
15:

16:

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

30:
31:

Input
previous schedule S°4 = {S, C, X, Y}
updated job set J — including new jobs and updated processing times
current time ¢
// Step 1 - Classify each operation
for each (j,0) € J do
if C’;’ff is before ¢ then
completed before cut: mark COMPLETED
else if S;’fg is before ¢ and Cﬁ;j is equal or after ¢t then
currently in progress: mark ONGOING
else
mark NOT-STARTED
end if
end for
// Step 2 — Handle resource breaks intersection for ongoing, delayed, operations
for each ONGOING (4, 0) do
if a technician or machine assigned to (7, 0) has a break (bs, b.) with ¢t < by < C’;‘ﬁdated then
split (4, 0) into two sub-operations:
(J, 0a) with duration by — S;l(‘f (fixed as ongoing),
(4, 0p) with duration C;fgdated — b,
end if
end for
// Step 8 — Build a new MILP identical to the week-start model, given in Section 5.2.3
starting model < initialization with model given for the P&H shop, enforcing all operational constraints
// Step 4 — Partially fix variables so the past cannot move
for each operation classified as COMPLETED do
fix Sj,= ;’fod, Cjo= Cj‘?’lg
fix all resource assignment binary variables found in S°¢
end for
for each operation classified as ONGOING do
fix start time S;, = S;ff and resource assignment binary variables
if an operation has an updated processing time then
fix Cj0 = Sﬁlg + extra processing time
end if
end for
for each operation classified as NOT-STARTED do
enforce S; , > max{t, job arrival time}
end for
// Step 5 — Optimise
run starting model and added fixed variables
Output updated schedule S™%
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B Dispatching Rule Algorithm

Algorithm 3 Discrete-Event DR Scheduler for the Flexible Job Shop Problem

1: Input: jobs J; technicians 7; machines M; horizon H; step At
2: initialise resource states and empty maps S, C, Xtech, xmach

3: for t + 0 to H step At do

4:  // release newly arrived jobs

5.  for j € J and arrival; <t and not released do

6 mark j as released

7. end for

8 // finish running operations

9:  for all resource r € T U M finishing at ¢ do

10: correct overrun; split at breaks if needed

11: update next-free time and last finished op of the technician
12:  end for

13:  // dispatch on each idle technician

14:  for all technician k£ € T and k idle at ¢ do

15: try chained next-op of k’s last job

16: if no op scheduled then

17: build ready list O; compute with WMDD priority weight 7 (%)
18: sort O by descending 7

19: for o € O do

20: if o is technician-only operation and feasible on £ and no intersection with unavailability then
21: schedule o on k

22: else if o is test operation and free machine m exists then
23: schedule o on k and m

24: end if

25: end for

26: end if

27:  end for

28: end for

29: Output: start times S, finish times C, resource assignments Xtech xmach
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C Simulation outcomes

C.1 Hydraulics shop
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16: Gantt chart outcome of the Hydraulics shop weekly scheduling simulation

approach: week of 2 September.
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17: Gantt chart outcome of the Hydraulics shop weekly scheduling simulation

approach: week of 9 September.
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approach: week of 9 December.
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Figure 19: Gantt chart outcome of the Hydraulics shop weekly scheduling simulation using the exact
approach: week of 16 December.
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Figure 20: Gantt chart outcome of the Hydraulics shop weekly scheduling simulation using the exact
approach: week of 13 January.
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Figure 21: Gantt chart outcome of the Pneumatics shop weekly scheduling simulation using the exact
approach: week of 9 September.
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Figure 22: Gantt chart outcome of the Pneumatics shop weekly scheduling simulation using the exact
approach: week of 30 September.
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Figure 23: Gantt chart outcome of the Pneumatics shop weekly scheduling simulation using the exact
approach: week of 9 December.
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Figure 24: Gantt chart outcome of the Pneumatics shop weekly scheduling simulation using the exact
approach: week of 13 January.
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Figure 25: Gantt chart outcome of the IDG shop weekly scheduling simulation using the exact approach: week
of 16 September.
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Figure 26: Gantt chart outcome of the IDG shop weekly scheduling simulation using the exact approach: week
of 23 September.
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Introduction

Component Maintenance, Repair, and Overhaul (CMRO) shops play an important role in ensuring the
reliability and availability of aircraft by performing maintenance on various aviation components. These
shops handle thousands of parts annually, varying from navigation instruments to power generation
systems, using highly trained and experienced technicians for specific inspection, repair, and testing
tasks. Efficient scheduling in these environments is crucial for maximizing resource utilization and
maintaining service-level agreements to improve customer satisfaction, minimize operational costs,
and reduce turnaround times. In current CMRO environments, scheduling processes rely on simple
prioritization models and manual decision-making. The allocation of operations to technicians is mainly
done by the expertise and judgment of the shop lead, rather than relying on a scheduling algorithm.
While this is effective to some extent, this approach lacks the flexibility to adapt to dynamic operational
changes. Additionally, this inefficient scheduling can lead to increased Work-In-Progress (WIP), delays
in critical repairs, and higher labor and resource costs, making optimization of scheduling an important
topic in CMRO operations.

Recent advancements in scheduling optimization demonstrate the potential impact of integrating data-
driven methods. For instance, new scheduling model tools have been shown to improve overall equip-
ment effectiveness (OEE) by over 3%, reduce planning-related labor hours by more than 50%, and
improve sustainability and customer satisfaction (Kumar and He, 2023). Such results emphasize the im-
portance of transitioning from manual, experience-based scheduling to automated, optimization-driven
systems. There are many other examples in the aviation industry where efficient scheduling has signif-
icantly reduced maintenance efforts and improved utilization. For example, a study on aircraft heavy
maintenance check scheduling introduced a genetic algorithm-based approach that reduced the total
number of heavy maintenance checks by 7%. Additionally, it increased aircraft utilization by 4.4%, po-
tentially leading to significant annual maintenance cost savings (van der Weide et al., 2022). These
improvements show the potential of advanced scheduling techniques in aviation maintenance opera-
tions.

Figure 1.1: Technician working on an IDG unit in the Power Generation shop of the component maintenance provider.



This project aims to develop an advanced, automated, dynamic scheduling model tailored to diverse
and complex CMRO environments. The model will integrate stochastic elements related to uncertain
processing times and new job arrivals. Additionally, by incorporating dynamic properties, the proposed
model will adapt to real-time updates, improving decision-making and operational efficiency on the
shop floors. Another key aspect of this project is technician assignment, which could be handled with
machine assignment in the Flow Shop Scheduling Problem (FSSP). Due to the high specialization
of technicians in these shop environments, certain tasks can only be performed by individuals with
specific skills and qualifications. Constraints such as limited equipment availability and the need to
batch certain testing tasks for efficiency are also important considerations.

The model developed in this research will be applied to a case study at an independent component
maintenance provider, a significant player in aerospace maintenance. The maintenance provider op-
erates three different CMRO shops, each with specialized processes and unique characteristics. The
Hydraulics and Pneumatics (P&H) shop focuses on both hydraulic and pneumatic components. This
shop contains two subgroups. The Avionics shop specializes in repairing and maintaining displays,
control units, and flight data systems. It is divided into multiple workgroups, each focused on a spe-
cific domain. The Power Generation shop works on parts related to the power generation of aircraft,
for instance, Integrated Drive Generators (IDG). This shop is characterized by its resource allocation
flexibility and a significantly more complex workflow. Due to its involvement in CMRO operations, the
company offers a great opportunity to test and build the proposed scheduling model.



State-of-the-Art

Effective scheduling is important in optimizing operational performance within Component Maintenance,
Repair, and Overhaul (CMRO) environments. Complex processes, diverse constraints, and dynamic
elements such as varying job priorities, uncertain processing times, and resource limitations charac-
terize these operations. Overcoming these challenges requires advanced scheduling techniques that
outperform traditional static and rule-based approaches, using modern optimization methods and ap-
plied concepts.

The field of scheduling optimization has seen significant advancements in recent years, with appli-
cations across manufacturing, maintenance, and production industries. Research has focused on im-
proving scheduling efficiency under real-life complications and constraints like resource availability and
uncertainty. This chapter provides the state-of-the-art techniques and approaches most relevant to the
scheduling challenges in CMRO shop environments, mainly related to the job and flow shop scheduling
problems, but the influence of efficient resource allocation of technicians is also important.

This chapter begins by exploring the foundational problem of flow and job shop scheduling in section
2.1, explaining how these models have evolved, how they are classified, and recent developments in in-
corporating different operational characteristics. Next, section 2.2 focuses on research about assigning
technicians with specific skills, which is important in environments where skill constraints significantly
affect how tasks can be allocated. After that, section 2.3 looks at human factor constraints in schedul-
ing, such as working-hour regulations and technician availability. Section 2.4 explains how different job
priorities are included in scheduling models, while section 2.5 goes into deterministic and stochastic
scheduling approaches. Section 2.6 dives into dynamic scheduling methods that respond to changes
in real time, including handling uncertain job arrivals and variable processing times. Section 2.7 looks
at robust optimization techniques, focusing on making schedules more reliable with high variability in
parameters. Section 2.8 introduces rolling horizon and decomposition methods to solve large schedul-
ing problems in smaller parts. In section 2.9, both exact optimization methods and other techniques
such as metaheuristics are discussed. Section 2.10 provides a general look at existing research that
has integrated topics mentioned in past sections of the chapter. Finally, section 2.11 identifies impor-
tant gaps in the current methods and prepares the groundwork for creating a scheduling model tailored
to the needs of a CMRO environment.

2.1. Classification of Scheduling Problems

Scheduling problems can be classified using well-known frameworks based on their objectives, con-
straints, and environmental characteristics. These classifications help in understanding the nature of
scheduling problems and finding the right framework to optimize them. According to Pinedo (2016),
scheduling problems can generally be categorized by their machine environments, job characteris-
tics, and the objectives to be optimized. Additionally, scheduling problems include deterministic and
stochastic variants, and they can range from single-machine to complex multi-machine setups such as
flow shops and job shops.
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Flow shop scheduling problems involve a set of jobs processed in the same order across multiple
machines. In this environment, the sequencing of jobs significantly impacts objectives that can be
used such as makespan or tardiness. In contrast, job shop scheduling allows for unique job routing
across machines, adding slightly more complexity to the problem due to the varying sequences and
dependencies (Pinedo, 2016). These differences are relevant to CMRO operations, where different
shops show mostly characteristics of the flow shop scheduling problem (FSSP).

In examples of CMRO shops, with the focus on, for instance, Avionics, Hydraulics or Pneumatics, tasks
typically follow a linear flow, similar to a flow shop environment. Similarly, a shop focused on Power
Generation parts also follows a pre-determined sequence of routing steps, similar to the characteris-
tics of a flow shop model. Because in the routing steps that are followed in all three shops, there are
multiple processors, which are the multiple technicians, to whom jobs can be assigned, the shops are
showing characteristics of a hybrid flow shop problem (HFSP) (Hillier and Lieberman, 2015). Addition-
ally, the shops show some characteristics of a flexible flow shop problem (FFSP), because they involve
multiple phases where each phase may have one or more technicians, referred to as machines, that
can perform various tasks. According to Hillier and Lieberman, 2015, a flexible flow shop is a classifi-
cation that combines elements of flow shops and job shops, creating and incorporating more flexibility
in processing jobs. This will create routing flexibility, where jobs can be allocated to multiple machines
within a phase, machine flexibility, where machines can handle different tasks, and resource or labor
flexibility, where the labor can move between machines and phases. The routing steps of the process
are referred to as phases in these flow shop models. The machines or technicians in each phase can
be identical or unrelated, and the latter is applicable in the CMRO environment because of the unique
skillset of each technician.

Another critical dimension of classification is the nature of the scheduling environment: static or dy-
namic. Static scheduling means that all jobs and resources are known in advance, making it suitable
for predictable and controlled environments. Dynamic scheduling, in contrast, implements and takes
into account variability in job arrivals and processing times, incorporating the real-world conditions com-
parable to CMRO operations (Z. Wang et al., 2020). In CMRO shop operations, the scheduling problem
is mostly dynamic, driven by unpredictable job arrivals and stochastic processing times.

The inclusion of stochastic variables, such as uncertain processing times and unexpected job arrivals,
introduces additional complexity to scheduling problems. Stochastic scheduling methods address
these complexities by using probabilistic and robust optimization techniques, which have the goal of
creating schedules resilient to variability and disruptions (Xiao et al., 2017). When considering a bet-
ter representation of real-life operations, both uncertain processing durations and job arrivals must be
incorporated into the model.

2.2. Skilled Technician Assignment

In scheduling environments where human resources play a crucial role, technician assignment is an
important aspect to consider, especially in dynamic and skill-constrained environments. Assigning
technicians to tasks requires consideration of their individual skill sets, the tasks’ specific requirements,
and additional constraints such as the availability of fitting work.

Technician assignment problems often involve multi-skilled personnel, where workers have diverse
skill sets that must be matched to job requirements. For instance, Ciro et al. (2015) addresses this
challenge in an open shop scheduling problem with multi-skills resource constraints. Their approach
implemented constraints that only technicians with the required skill levels perform a given job. These
constraints enforce that each operation is assigned to a qualified technician, who remains assigned to
the operation throughout its duration. The authors further emphasize the complexity added by multi-
skilled personnel assignment, which transforms the problem into an NP-hard optimization challenge.

Similarly, Damm et al. (2024) propose an adaptive multi-objective biased random-key genetic algorithm
(BRKGA) to handle technician scheduling. Their model incorporates technician-specific skills as binary
parameters, ensuring that a task can only be executed by a qualified individual. The BRKGA approach
optimizes objectives such as maximizing task priority fulfilment and minimizing resource inefficiencies,
showing its effectiveness in managing real-world scheduling problems with diverse constraints.
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In more dynamic contexts, such as job shops, Annear et al. (2023) use an approximate dynamic pro-
gramming approach to assign a multi-skilled workforce in the presence of stochastic processing times
and demand uncertainty. Their model captures the real-time changes in technician availability and skill
requirements, dynamically assigning resources to maximize productivity while maintaining flexibility to
adapt to changing and uncertain demands.

A comprehensive review by Afshar-Nadjafi (2021) highlights the increasing importance of multi-skilling
in scheduling problems, especially in environments where workers must perform tasks requiring diverse
skill sets. The study indicates that Mixed-Integer Linear Programming (MILP) approaches are most
general, accounting for 54.2% of the reviewed research, due to their ability to accurately incorporate
constraints such as skill requirements. Additionally, metaheuristic methods, such as Genetic Algorithms
and Ant Colony Optimization, represent 28.7% of the solving methodologies, offering better solutions
for large and complex problems.

Another example of skilled technician scheduling is Project Scheduling with Multi-Skilled Workforce
Allocation Problem (PSMWAP), which involves task scheduling and workforce allocation, addressing
real-world complexities such as skill-dependent task durations and flexible working hours (Karam et al.,
2017). In this model, each task requires a set of skills, with task durations influenced by the skill lev-
els and the number of workers assigned. Multi-skilled workers, whose efficiencies vary across skills,
are assigned based on skill requirements constraints, ensuring a minimum skill level. The model also
considers team-building aspects by pairing expert workers with trainees to encourage knowledge trans-
fer, enhancing workforce flexibility over time. Additionally, penalties for project tardiness, unbalanced
workloads, and excessive overtime are incorporated into the objective function, reflecting the trade-offs
between efficiency and cost.

By using methodologies from Ciro et al. (2015), Damm et al. (2024), and Annear et al. (2023), the
proposed model for the CMRO shops integrates multi-skilled technician assignment with the scheduling
of jobs. This hybrid approach tries to optimize task allocations and make sure that skill constraints are
satisfied.

2.3. Human Factor Constraints

Integrating human factors such as working-hour regulations, shift patterns, and technician availability
into scheduling models is essential to maintaining realistic workloads and implementing factors such
as the absence of technicians on certain days, which need to be accounted for. Hashimoto et al. (2011)
highlights the importance of ensuring team stability and compliance with workday limits to prevent
overburdening technicians. Constraints such as non-working days and maximum daily work hours are
explicitly modeled in the algorithm to comply with regulatory requirements.

Damm et al. (2024) further incorporates lunch breaks and daily work schedules into their framework,
ensuring compliance with labor laws and improving the practicality of the generated schedules. Their
model accounts for both individual and team-level constraints, providing an extensive approach to
managing technician workloads. These researches are clear examples of incorporating human factors
in an algorithm, which need to be taken into account in a hybrid flow shop when modeling human
operators or technicians, as machines in a production environment.

2.4. Job Priorities

The different priorities of jobs that need to be processed will play an important role in the model pro-
posed in this research. There are different ways of incorporating priority rules into a scheduling model.
In the Technicians and Interventions Scheduling Problem (TIST) proposed by Hashimoto et al. (2011),
priorities are assigned to interventions, and their objective function is designed to minimize the weighted
completion time of interventions based on their priority levels. Specifically, the function assigns higher
weights to tasks of greater importance. This weighting system ensures that interventions with higher
priorities are scheduled as early as possible while balancing resource availability and precedence con-
straints.

Schworm et al. (2023) proposes a method that assigns penalties to jobs based on their completion time
relative to their priority. Higher-priority jobs are weighted more heavily, resulting in earlier scheduling
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and minimization of delays for critical tasks. This approach implements the importance of considering
job urgency within a multi-objective framework, balancing other operational goals such as workload
distribution and resource utilization.

The concept of Total Weighted Tardiness (TWT) provides an effective framework for integrating job pri-
orities into scheduling models. Hsieh et al. (2024) proposes a method that minimizes TWT by assigning
weights to jobs based on factors such as customer importance, order profitability, and due dates. By
incorporating these weights into the scheduling objective, the method ensures that high-priority jobs,
such as urgent customer orders, are scheduled earlier, reducing overall tardiness. This approach ef-
fectively balances operational efficiency with customer satisfaction by aligning the scheduling process
with organizational priorities.

It is important to state the differences between the concept of job priorities and the use of priority rules
in scheduling. Job priorities, as will be incorporated in this model, reflect the relative importance of
certain tasks based on external factors, such as customer requirements or the criticality of the job to
operational goals. These priorities ensure that high-priority jobs, such as those for key customers or
time-sensitive repairs, are given precedence in the overall scheduling objective. In contrast, priority
rules are heuristics used to determine the sequencing of jobs during the scheduling process, such as
First-Come-First-Serve (FCFS). While priority rules are instrumental in solving some of the scheduling
problems, job priorities define the strategic importance of tasks, making sure that the schedule aligns
with business objectives.

2.5. Deterministic & Stochastic scheduling

Scheduling problems are researched extensively within the operations research (OR) domain, where
most of the problems and models focus on deterministic scheduling problems where parameters are
non-dynamic and known beforehand. However, as Elyasi and Salmasi (2013) highlights, real-world
manufacturing systems or maintenance shops often have to deal with uncertainties during the planning
of production, such as resource unavailability, varying due dates, sudden job arrivals, and uncertain
processing durations. These challenges are the limitations of deterministic models and the need for
stochastic scheduling approaches that account for such uncertainties.

To handle these uncertainties, different approaches have been developed and discussed. One method
is to consider processing times as random variables with known probability distributions, leading to
stochastic scheduling models (Emmons and Vairaktarakis, 2013). In stochastic scheduling, different
ways to compare and rank schedules under uncertainty include expectation ordering, stochastic order-
ing, and almost sure ordering. Another approach is robust scheduling, which aims to create schedules
that are less sensitive to variations in processing times and other random events, which will also be
explained in a later section of this review.

As mentioned by Pinedo (2016), a good scheduling model should address these forms of randomness.
Uncertainties like machine breakdowns can be modeled as part of the processing times or as separate
stochastic processes that determine machine availability. By including these uncertainties in schedul-
ing models, more effective scheduling policies can be developed that are more suitable to reflect the
complexities of real-world manufacturing environments.

2.6. Dynamic Scheduling

Dynamic scheduling addresses the challenges of unforeseen events and real-time changes in manu-
facturing environments, such as job releases, delays in process durations, or shifts in due dates. Unlike
static scheduling, which relies on predetermined parameters and information, dynamic scheduling con-
tinuously adapts to real-time information to maintain efficiency and continuity in operations.

Three primary strategies define dynamic scheduling approaches. The first, completely reactive schedul-
ing, generates no pre-schedule and relies on real-time decision-making using dispatching rules or
heuristics. This approach is quick to implement but often results in suboptimal system performance
due to poor quality outcomes (Z. Wang et al., 2020). The second strategy, predictive-reactive schedul-
ing, calculates an initial schedule for the production, and when dynamic events occur, the planning
is adjusted. Predictive—reactive scheduling is the most commonly used strategy in existing literature
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(Gomes et al., 2013; Ouelhadj and Petrovic, 2009). Finally, robust proactive scheduling anticipates
potential disturbances by incorporating buffers or slack into schedules, improving their ability to handle
disruptions. Bevelander (2022) highlights methods such as slack allocation and real-time data inte-
gration to enhance robustness, ensuring schedules remain effective in dynamic environments. While
effective in minimizing deviations, this method requires extensive robustness modeling, which can be
computationally intensive and difficult in some environments.

In addition to these strategies, policies such as periodic rescheduling, event-driven rescheduling, and
hybrid approaches are employed to determine when adjustments should be made. Periodic reschedul-
ing updates schedules at regular intervals, offering stability but potentially overlooking urgent disrup-
tions. Event-driven rescheduling reacts to specific changes, such as urgent job arrivals, while hybrid
approaches combine both methods for greater flexibility (Kianpour et al., 2021).

For CMRO environments, dynamic scheduling is particularly valuable due to the unpredictable nature
of repair and maintenance workflows. The integration of predictive-reactive strategies, along with hy-
brid rescheduling policies, ensures that schedules remain both efficient and resilient, ensuring that the
dynamic priorities and resource constraints are respected in real-time operations.

2.7. Robust Optimization

In stochastic scheduling, handling environments with uncertainty in job processing times is a significant
challenge when trying to create reliable and optimized schedules. One effective approach to handling
this uncertainty is robust scheduling, which focuses on developing solutions that are resilient to vari-
ations in processing times and other unpredictable factors. A method of robust scheduling that the
book written by Emmons and Vairaktarakis (2013) uses is the minimax regret criterion to minimize the
worst-case deviation from the optimal makespan. Instead of specifying exact processing times, this
method involves setting ranges for uncertain task durations, resulting in schedules that are particularly
resistant to fluctuations. Although the minimax regret approach is more computationally demanding
than deterministic methods, experiments show that schedules remain relatively stable and effective
even when processing time ranges are broadened up to 50

Additionally, Fathollahi-Fard et al. (2024) demonstrates the potential benefits of robust optimization
models in manufacturing operations. By addressing uncertainties like machine breakdowns, variable
processing times, and random arrivals of new jobs, their scenario-based robust optimization model
improves reliability. It measures the performance of the model under different robustness coefficients,
and the optimal value is determined with a sensitivity analysis. Using such robust models leads to more
reliable schedules and can improve key performance metrics. This shows the importance of taking into
account robust scheduling approaches in real-world production scenarios like CMRO shops, where
uncertainties are very common and can significantly impact operational efficiency.

To measure the robustness of a hybrid flow shop schedule, several metrics can be used. For instance,
Goren and Sabuncuoglu (2009) emphasizes the expected realized performance as a key robustness
measure, where the idea is to focus on the expectation of actualized schedule performance, for in-
stance, the total flow time or tardiness, under various disruption scenarios. This approach can also be
extended to assess the variability of schedule performance, for instance, by incorporating terms such as
the standard deviation or variance of realized outcomes. Another approach, as used by Jamili (2016),
introduces explicit formulas to compute necessary buffer times that can ensure a predetermined level
of robustness. In this method, one can define a maximum acceptable expected delay or a probability
threshold indicating that the probability of exceeding a certain delay limit remains below a predefined
level. By adjusting these coefficients, the planner can optimize and customize the degree of resilience
in the schedule.

A different approach is highlighted in Rahmani and Heydari (2014), where robust optimization models
incorporate uncertain parameters directly in the decision-making process. Here, coefficients that rep-
resent the level of uncertainty or adjustable parameters related to buffer sizes can be integrated into
the model. These types of parameters help ensure the schedule remains relatively stable and effective
across diverse scenarios. This can be realized by constraining the expected deviations to remain below
a certain threshold.
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To define schedule robustness more quantitatively, prior literature has proposed several metrics and
approaches. One simple measure is the likelihood that a schedule remains feasible or achieves a
performance target despite uncertainties in parameters. This can be expressed as a service-level
metric that indicates the chances of completing all tasks by a specified deadline, even with stochastic
processing times or resource disruptions, as suggested by Himmiche et al. (2023). This probability-
based measure enables decision-makers to easily understand the level of robustness as the probability
that the schedule will stay within an acceptable limit.

2.8. Rolling Horizon and Decomposition Techniques

To manage the complexity of large-scale scheduling problems, decomposition methods are mostly
used to break down a problem into smaller subproblems, which can make the problem easier to solve.
According to Pinedo (2016), there are several types of decomposition methods: machine-based de-
composition, job-based decomposition, time-based decomposition, and hybrid methods that combine
these approaches.

In Machine-Based Decomposition, machines are scheduled individually, often starting with the most
critical ones. Techniques like the shifting bottleneck procedure, implemented by Cayo and Onal (2020),
are examples of this approach. This method can be very useful for flexible flow shops and job shops,
but determining machine criticality and solving the resulting subproblems can be difficult. Job-Based
Decomposition focuses on scheduling jobs one at a time, prioritizing them to minimize their impact on
the overall schedule. This method is useful when there are specific timing constraints between the
operations of a job.

Time-Based Decomposition or Rolling Horizon Procedures divide the scheduling horizon into smaller
time intervals. A schedule is created for each interval separately, not including the events outside
that period. After scheduling the current interval, the process moves on to solving the next period, as
explained in S. Wang et al. (2013). This approach is useful in dynamic environments where jobs arrive
over time or other parameters are uncertain.

Hybrid Methods combine elements of machine-based, job-based, and time-based decomposition to
leverage the advantages of each approach. For example, a hybrid method might first use time-based
decomposition to divide the scheduling horizon and then apply machine-based decomposition within
each time interval. Kress et al. (2019) uses such a hybrid method, where machine-based and time-
based decomposition is used to solve a flexible job shop scheduling problem.

Other well-known examples of decomposition methods are Benders decomposition and Lagrangian
Relaxation, which are often used to solve complex scheduling problems in earlier research. For ex-
ample, Tan and Terekhov (2018) applied a Benders decomposition to a flexible flow shop scheduling
problem aiming to minimize makespan. Their method outperformed traditional MIP models when look-
ing at computational time and their ability to reach the most optimal solutions. Similarly, Bragin et al.
(2021) used the Lagrangian Relaxation method to address the job-shop scheduling problem in a highly
dynamic setting with a low number of jobs. With the use of this method, they reduce computational time
and achieve faster convergence. Their technique achieves near-optimal solutions faster compared to
commercial solvers.

Decomposition techniques, including rolling horizon procedures, are useful and important methods for
solving complex and large scheduling problems. By breaking down a large problem into smaller parts,
they make it more practical and easier to solve.

2.9. Solution Methods

The flow shop problem has been extensively studied, and lots of solution methods have been developed
over the years. One of the earliest and simplest methods is Johnson’s algorithm, introduced by Johnson
(1954), which provides an optimal solution for two-machine flow shop problems. The algorithm is
straightforward and efficient, sequencing jobs to minimize makespan based on specific criteria for task
ordering. Despite its low complexity, Johnson'’s algorithm remains relevant in modern applications for
solving small-scale or specific cases of the flow shop problem, showing its practicality in scheduling
research.
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Dispatching Rules

Using dispatching rules is a common approach for handling scheduling problems, often employed due
to their simplicity and computational efficiency. These rules prioritize jobs dynamically and are rule-
based, making them useful in environments requiring real-time decision-making. Common examples
are Shortest Processing Time (SPT), First-In-First-Out (FIFO), and Earliest Due Date (EDD) (Meilani-
tasari and Shin, 2021). These static rules allocate priorities based on predefined criteria, such as the
order of job arrival or the processing time required. More dynamic rules, such as Shortest Waiting
Time (SWT) or Most Total Work Remaining (MTWR), adapt priorities based on current system states,
resulting in better responsiveness to changing conditions (Zahmani et al., 2021).

Despite their effectiveness, dispatching rules focus on locally optimized decisions and often fail to find
a global optimum for the objective, leading to suboptimal overall performance. For instance, relying
only on SPT minimizes processing times at the machine level but may increase overall tardiness or
imbalance workloads. As Zahmani et al. (2021) suggests, combining multiple rules or tailoring rules
for individual machines can enhance performance, but this requires careful calibration and simulation
to avoid local optima. While dispatching rules are suitable for small-scale or very dynamic systems,
their limited scope and lack of holistic optimization often result in combining them with more advanced
methods for complex scheduling environments.

Mathematical Models

Generally used methods in flow shop scheduling mathematical models, particularly Mixed Integer Lin-
ear Programming (MILP). MILP provides an exact optimization framework by formulating the scheduling
problem using linear equations and inequalities, incorporating continuous and integer variables to rep-
resent scheduling decisions (Hillier and Lieberman, 2015). This approach is highly flexible and can
implement a variety of strict constraints and objectives, making it suitable for complex environments
like hybrid flow shops. In earlier research, other variants of integer programming approaches, such
as pure Mixed Integer Programming (MIP) and Binary Integer Programming (BIP), have also been em-
ployed to tackle flow shop scheduling problems, often focusing on more narrowly defined or structurally
simpler instances. Examples of this can be found in the later section, which gives an overview of the
state-of-the-art research.

In flow shop scheduling, MILP models try to optimize objectives such as minimizing makespan, total
earliness, or weighted tardiness (Gonzalez-Neira et al., 2017). The decision variables typically include
sequencing variables, which determine the order in which jobs are processed, timing variables, which
define start and completion times of jobs on machines, and assignment variables, which are especially
important in hybrid flow shops with multiple machines per phase, where binary variables assign jobs to
specific machines.

Constraints in the MILP model establish feasible and practical schedules by enforcing machine capacity
and processing order. Precedence relations can also be constrained if this applies, so a job cannot be
allocated to the next machine before it completes the previous one. Additional constraints can include
setup times, due dates, machine availability, and other practical considerations relevant to the specific
scheduling environment (Thérnblad, 2013).

The strengths of MILP models are their ability to find the most optimal solutions, their flexibility with easy
adaptation and implementation of various constraints and objectives, and their precision in accurately
modeling complex scheduling scenarios. However, MILP models also have challenges like higher
computational complexity, where solution times can increase exponentially with problem size, which
can lead to scalability issues, as large-scale problems may become too difficult for exact methods
to solve within a reasonable time (Karam et al., 2017). Additionally, these models have high data
requirements, needing detailed and accurate input data for effective modeling of the problem.

To mitigate the issues experienced in MILP models, several strategies are used. Model simplification in-
volves reducing the number of variables and constraints where possible to make the problem easier to
solve, as is demonstrated in the research of Floudas and Lin (2005). Decomposition techniques break
the problem into smaller, more manageable subproblems that are solved successively or simultane-
ously, of which an example can be found in Kunath et al. (2022). Hybrid methods combine MILP with
metaheuristics like Genetic Algorithms or Tabu Search to balance solution quality and computational
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effort, using the best qualities of both exact and approximate optimization techniques. An example of
this is given in the research of Hajji et al. (2023), where a mathematical model and a Tabu Search are
combined to find a solution within a more efficient computational time.

In practical applications, MILP models have been successfully used in various industries and appli-
cations to improve scheduling efficiency and reduce operational costs. Innovations in optimization
software and computing power continue to further improve their applicability, making MILP a valuable
and promising method in both academic research and industrial practice.

Metaheuristics

Johnson’s algorithm and dispatching rules are examples of basic heuristic solutions, more general
metaheuristic approaches can be used to solve flow shop scheduling problems as well. Metaheuristics
are higher-level, problem-independent optimization strategies designed to explore the solution space
more extensively. They are adaptable and often used to find near-optimal solutions for complex or large-
scale instances. The most-used metaheuristic methods to solve the flow shop scheduling problem,
according to Gonzalez-Neira et al. (2017), are given below:

Genetic Algorithm (GA): A widely used metaheuristic, inspired by natural evolution for solving flow
shop scheduling problems due to its flexibility and strengths in exploring large solution spaces.
For instance, in Yu et al. (2018), a GA was developed to minimize total tardiness in a hybrid
flow shop environment with unrelated machines and machine eligibility constraints. The method
incorporates a dynamic technique that balances workload across machines while maintaining
tight schedules, showing a better performance in comparison with the state-of-the-art literature.
The advantages of GA include its robustness and adaptability to different problem configurations.
However, GA may require significant computational time for parameter tuning and large-scale
problems.

* Particle Swarm Optimization (PSO): A metaheuristic inspired by the group behavior of swarms.
In Madenoglu (2021), PSO was applied to minimize makespan in a hybrid flow shop problem
with sequence-dependent setup and transportation times. The method uses forward scheduling
and dynamic job allocation to improve performance, demonstrating significant advantages over
other heuristics like GA and NEH in both quality and computational efficiency. The simplicity
of PCO, fast convergence, and less need for parameter tuning make it highly effective, though
it can sometimes give less optimal outcomes because of early convergence without the right
initialization and parameter selection.

Simulated Annealing (SA): SA is another metaheuristic used for hybrid flow shop problems. In
Haijji et al. (2024), a tailored SA was applied to minimize makespan in a hybrid flow shop with
dedicated machines and delivery constraints. This approach demonstrated low deviations from
the lower bound and strong performance on larger instances, particularly when combined with
an effective cooling schedule and neighborhood operators. While SA performs well in explor-
ing complex solution spaces, its performance heavily depends on careful parameter tuning and
computational resources.

» Ant Colony Optimization (ACO): ACO is a metaheuristic that copies the principles of ants search-
ing for food, using trails to find the solution. In Qin et al. (2018), an improved ACO was developed
for dynamic flow shop scheduling with varying processing times. Key improvements used in this
research were a rolling rescheduling strategy to handle dynamic events and an adaptive path
compression technique to improve computational efficiency. This method showed a strong per-
formance in minimizing makespan and adapting to uncertainty, though ACO may require careful
tuning of heuristic parameters to avoid too early convergence.

» Tabu Search (TS): TS is a metaheuristic that uses memory to explore the solution space by avoid-
ing previously visited solutions stored in a list. In Dodu and Ancau (2020), a TS was applied to
the Permutation Flow Shop Problem, starting with an NEH heuristic-based initial solution and
using adaptive distance to explore unexplored areas. This approach demonstrated strong perfor-
mance in minimizing makespan, especially on medium to large problem instances. However, this
method is also really dependent on the initial solution and needs detailed parameter settings.

In addition to the discussed methods, numerous other metaheuristics can be used to solve the chal-
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lenging environment of flow shop scheduling. Furthermore, hybrid methods, which combine the ap-
proaches of multiple heuristics or metaheuristics, are popular for solving dynamic hybrid flow shop
problems. These hybrid approaches, such as combining Genetic Algorithms with Simulated Annealing,
leverage synergies between techniques to improve the solution quality and adaptability, particularly in
real-world, dynamic applications.

Emerging and Alternative Approaches

Recent advancements in artificial intelligence, particularly reinforcement learning (RL), have introduced
novel approaches to flow shop scheduling. Deep reinforcement learning (DRL) can model the problem
as a Markov Decision Process (MDP). In this method, an agent can learn scheduling policies through
trial and error. For example, Tassel et al. (2021) demonstrated that DRL can outperform traditional
dispatching rules in dynamic environments, while X. Wang et al. (2024) highlighted its potential in
flexible scheduling systems despite scalability challenges.

The method developed by Infantes et al. (2024), which combines Graph Neural Networks and Deep
Reinforcement Learning techniques, shows that traditional OR methods still outperform their methods
in finding the optimal solution, especially for the deterministic variant, but also for smaller instances of
the stochastic problem. However, according to the results of Yan et al. (2022), the performance of Deep
Reinforcement Learning is comparable to the metaheuristic method that is called Genetic Algorithms,
being slightly better in terms of optimality within the same computational time.

To provide an indication of the wide variety of solution methods available within different domains, ob-
jectives that can be targeted, the number of dispatching rules, and the factors of uncertainty that models
can account for, an overview is given in Figure 2.1. This figure illustrates the research framework, cat-
egorizing the approaches into domains, methods, and objectives. The domain differentiates between
optimization and prediction focuses, the method categorizes the techniques into metaheuristics, math-
ematical modeling, and machine learning, and the objective domain highlights performance indicators,
including single and multi-objective optimization, often concerning time, cost, or environmental factors.
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Figure 2.1: Research framework illustrating methods and objectives in sequence-driven scheduling
(Meilanitasari and Shin, 2021).
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2.10. Overview of State-of-the-Art Research

As previously discussed, the scheduling problem in CMRO shops can be approached using various
models and methods, all with different combinations of characteristics and techniques. To understand
the current landscape and identify potentially useful methodologies for our model, an extensive review
of the most relevant state-of-the-art research was conducted. Table 2.1 provides an overview of various
papers, comparing key characteristics and elements that align with the components of this problem or
techniques potentially implemented in this research.

Each column in the table represents a critical aspect of the scheduling problem or a theoretical approach
that is potentially relevant to our research. Problem classification categorizes the type of scheduling
problem addressed in each paper, such as flow shop, job shop, or hybrid flow shop, indicating the op-
erational environment modeled. The problem researched in this thesis is the hybrid flow shop problem.
The solution method is the technique used to solve the scheduling problem, including MILP, heuris-
tics, metaheuristics, and reinforcement learning approaches, which can be categorized into exact or
approximate solutions. The objectives are the optimization goal or performance measure optimized in
the study. The weighted job priority denotes whether the study incorporates job priorities with weights
to reflect their importance in the scheduling process. Skilled technician assignment indicates if the
assignment of jobs to technicians with specific skills is considered, which means that the restriction of
technicians who can work on specific components is implemented. Dedicated technicians or machines
indicate if the study takes into account the option of whether certain technicians or machines are ded-
icated to specific tasks or jobs, resulting in extra constraints for the assignment process. If the study
takes into account the uncertainties of variable processing times or unexpected job arrivals should also
be included in the table. The dynamic properties, as discussed in section 2.6, indicate if the scheduling
approach adapts to changing variables over time, such as rescheduling in response to event-driven
changes. As discussed in section 2.7, robust optimization uses optimization techniques to create so-
lutions resilient to uncertainty and variability in the system. Rolling horizon or other decomposition
techniques, explained in section 2.8, show whether the study uses methods to solve large scheduling
problems by splitting them into smaller sub-problems.

The foundation of this research is the work by Tliba et al. (2023), which addresses a hybrid flow shop
problem in a perfume manufacturing environment, incorporating a digital twin for dynamic scheduling.
Their model integrates skilled technician constraints by defining a set of qualified machines for each
job and stage, showing a lot of similarities to the CMRO problem explored in this paper. Aribowo et
al. (2020) provides a unique way of integrating dedicated technicians into a mathematical scheduling
model, aligning with the technician-specific constraints of CMRO environments. Tighazoui et al. (2021)
proposes a predictive-reactive strategy for minimizing waiting times and instability in dynamic flow shop
rescheduling, suggesting innovative methods that lay the foundation for approaches to handle dynamic
updates in this research. Roslof et al. (2002) demonstrates a combination of MILP and heuristics for
solving large-scale scheduling problems, presenting effective techniques for managing job arrivals dy-
namically. S. Zhang and Wang (2018) introduces methods to handle sequence-dependent setups and
part sharing in flexible job shops, leveraging MILP and constraint programming for dynamic job arrivals.
Elyasi and Salmasi (2013) implements stochastic modeling by using expected values of uncertain pa-
rameters and machine-based decomposition, providing ways to address uncertainty. Qin et al. (2018)
highlights the application of a rolling horizon in combination with an improved ant colony algorithm for
dynamic scheduling in hybrid flow shops. Jamili (2016) demonstrates robust scheduling techniques
using direct buffer formulations, while Fathollahi-Fard et al. (2024) explores robust optimization by in-
corporating stability coefficients in their model. Finally, Avelino et al. (2016) provides a CMRO-specific
study that, while simple in its dispatching rule application, includes aspects that are highly relevant to
real-world shop-floor challenges. These state-of-the-art papers are some examples from Table 2.1 that
form the foundation for the framework and methodologies used in this research.

Moreover, in Table 2.1, one of the first aspects that stands out is that many studies focus on optimizing
traditional objectives like minimizing makespan or total tardiness, and a minority of the papers used
incorporated weighted job priorities. For instance, Roslof et al. (2002), Fan et al. (2021), and Tighazoui
etal. (2021) implemented job priorities in their models, indicating a potential gap in the literature where
the priority weights of jobs are not extensively researched in different settings.
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2.10. Overview of State-of-the-Art Research

uonisodwoosaq
JuoziioH
Buijjoy

uoneziwndQ sauadold S|eAuly qor

Jsnqoy

ojweukqg

pajoadxaun

X (3s00)uiw

(z + X2 )uiwu

X (D) uiw

X (dom)uiw

(L BAy)uiw

(*ew))uiw

(=)u

X (D) uiw

(W) unw

(*4))unw

X (D) uiw

X (D) Ui

(D) uiw

x (D) uiw

X (z)unwu

(L + a)uw

(I#)uw

x (I + D) uiw

juswubissy  Muoud
VEIRTTITEET qor
palns pajybrap

sawiy saulysep/
Buissadold sueldIuYda)
pajesipaq

aARoalqo
urepasun

ajewixoiddy

X3

ajewixoiddy

ajewixoiddy
3 10ex3

ajewixoiddy

ajewixoiddy

ajewixoiddy

joBX3

ajewixoiddy
@ ex3

ajewixoiddy

ajewixoiddy

ajewixoiddy

ajewixoiddy

ajewixoiddy

R joex3

joEX]

108X3

10BX]

jeX3

uonnjos

ajewixosddy

10 Joex3y

yoieag
pooysoqubieN
abie anpdepy

uml [eybia - 4N

yoeouddy
paseg-juaby
sonsUNaH
/1IN
olsuNaH
J9dAH paseg
-Buiwwe.bold
EIIETETS)
Bujusea] Juswasiouley
yoJeas |ed0]
/ydieas nge|

dTIN

da/do/dIN

wyob)y
Apaaig pajess)
wyoby Auojon
Juy panosdw|
poyisN
paseg-yIomaN
Aioje|nbay onsuss
wyyuob)y Auojon
Juy panosdw)
0sd/sg
/9849/dIN

dig
Buinpayos
OAI}OBaY-9AIOIPaId
peseq-dIN
s|apow
dIN/d
onsunay

dns pue 411N

poulaIN
uonnjos

swia|gold Buinpayog uo Aydelbolqig ay) Jo malnIBAQ :L°Z dlgel

doys mo|4 uonejnwiad
$10SS320.1d a|dnn
ynm doys moj4

doys mo|4 pughH

doys mo|4

doys gor

doys qor

doys moj4 pUaAH

Bunnpayog doys
MO|4 3|qIXd]
doys-qor
Alqusssy s|qixa]4

doys mo|4 uonenwiad

doys mo|4 pughH

doys moj4 puaAH

doyg mo|4
a|qixa|4

doys qor

wa|qold Buinpayos
pue juswubissy

juswiuoIAUg
doys qor 8|qixa|4

saulyoely a|diyniy
ynm doys moj4
(auiyoew-a|bulg)
wsajqold Bulnpayos
lelysnpu|

uoeoyisse|y
wajqoid

¥20Z “Ie 1o pJed-lye|joyie

€202 “le 19 eqiL

1202 “Ie 1o Bueyz "x

120z e }o Inozeypi |

1202 e Jo ued

1202 e Jo [osseL

0202 “'[e 19 Joyoewnyos

0202 “[e 1o omoguy

810z ‘Bue pue Bueyz ‘s

810Z “le1@ N

810z “lele uio

£10T “Ie 18 A

910z “e1e Buel

9102 ‘liwer

9102 “[e 18 oulaAy

€102 “[e }o sswon

€102 ‘Isewes pue iseA|3

200z “'[e 10 JoIsoy

Jaded



2.11. Research Gap 14

Secondly, the assignment of skilled technicians is not always integrated into most scheduling models.
Only some studies, such as Avelino et al. (2016), Tang et al. (2016), Schumacher et al. (2020), Fan
et al. (2021), and Tliba et al. (2023), are specifically considering skilled technician assignment in the
right context, showing that the human resource dimension with skill constraints is often not taken into
account in research done in the past. Additionally, the concept of dedicated technicians is rarely taken
into account in past studies; only one study could be found that researches this application, the research
done by Aribowo et al. (2020), which indicates the potential innovations that can be found regarding
this technique. Moreover, when considering complex constraints like skilled technicians and dedicated
technicians in past research, most of the time, exact modeling approaches are used, which could
indicate that this is the best-fitting approach for such environments.

Moreover, only a limited number of studies address uncertain processing times and unexpected job
arrivals together, which are essential characteristics for modeling the stochastic nature of CMRO opera-
tions. Studies like Jamili (2016), Tang et al. (2016), and Schumacher et al. (2020) integrated techniques
to handle uncertain processing times but do not integrate robust optimization techniques or focus on
dynamic scheduling.

Furthermore, the integration of robust optimization and decomposition techniques like rolling horizon
is not used much in the existing literature. For example, Fathollahi-Fard et al. (2024) employs robust
optimization in a permutation flow shop but does not consider skilled technician assignment or weighted
job priority.

2.11. Research Gap

The observations made about the state-of-the-art research overview, regarding Table 2.1, show a clear
gap in the current research, which is that there are no studies, to our current knowledge, that simultane-
ously address weighted job priorities, skilled and dedicated technician assignment, variable processing
times, dynamic job arrivals, and robust optimization within an exact solution framework. This gap em-
phasizes the need for an extensive scheduling model that integrates these aspects, tailored to the
complex and dynamic environment of CMRO shops.

Second, current literature tends to focus on one or two of these aspects applicable to CMRO environ-
ments. For example, approaches may incorporate uncertainty in processing times or consider dynamic
job arrivals, but they rarely also include technician skill constraints or robust optimization methods.
Moreover, the application of the dedicated technician concept, although a highly crucial factor in many
real-world operations, such as the CMRO operations, remains unexplored in flow shop and hybrid flow
shop scheduling models.

Furthermore, while CMRO environments present a good example of the combination of complex, dy-
namic, and uncertain conditions, most existing research has not fully captured these environments.
Many state-of-the-art models address either deterministic and static industrial environments or use ran-
domly generated instances, which are less complex to model and do not validate the results in real-life
scenarios.

Moreover, while there have been advances in modeling uncertain and dynamic conditions, especially
through approximate solution methods, few researchers have combined dynamic properties with exact
models to handle variable processing times and unexpected job arrivals. This is especially relevant
for highly dynamic and complex environments, such as CMRO shops, where frequent disruptions and
changing task requirements create substantial operational challenges.

In summary, there is a clear need for an exact optimization model that combines weighted job priorities,
multi-skilled and dedicated technicians, variable processing times, dynamic job arrivals, and robust
optimization principles. Addressing this gap will contribute significantly to both academic research and
practical applications in CMRO operations, providing a complete solution to the complex scheduling
challenges faced in these environments.



Case Study

To implement and test the developed model in this research, a case study at the CMRO shops at the
maintenance provider will be conducted. The CMRO shops of the maintenance provider ensure that the
operational reliability of various aviation components is maintained. Current scheduling practices in the
CMRO shops show several challenges that increase the complexity of achieving operational efficiency,
customer satisfaction, and on-time delivery performance. These challenges are more complex to solve
due to the diverse characteristics of their three CMRO shops. This chapter discusses the limitations of
the current system, outlines the specific environment of each shop, and underlines key performance
metrics, forming the foundation for developing an advanced scheduling model.

3.1. Current Challenges and Inefficiencies

Currently, scheduling processes in CMRO shops are mostly static and rule-based, depending heavily
on manual decision-making. The allocation of work orders (WOs) is decided by production leaders
based on their experience, with almost no use of assignment tools or models. While 80% of technician
capacity is scheduled at the beginning of the week, the remaining 20% is handled reactively, often
leading to inefficiencies and delays.

The causes of the sub-optimality of the current way of scheduling include:

+ Limited Flexibility: The current system struggles to adjust to dynamic changes such as unforeseen
delays, urgent job arrivals, and variations in processing times.

» Suboptimal Resource Allocation: Technician skills and equipment capabilities are not fully taken
into account, leading to lower utilization and potentially lower service levels.

* Low On-Time Delivery (OTD) Rate & Turnaround Time (TAT): In 2024, the average OTD rate was
only 82.4%. Meanwhile, the average TAT varied significantly across shops, at 32 days for IDG,
51 days for Avionics, and 60 days for the P&H shop.

* Inefficient Prioritization: The prioritization of WOs is based on a basic points-based approach,
based on customer importance levels and priority levels such as Aircraft On Ground (AOG), criti-
cal, and routine labels, but this approach does not utilize an advanced framework to dynamically
schedule on these parameters.

+ Semi-Manual Decision-Making: Decision-making relies on a combination of a simple prioritization
model and manual decision-making, without making use of advanced, data-driven methods to
improve and optimize the scheduling of maintenance operations.

3.2. Shop-Specific Environments and Routing Characteristics
Each CMRO shop at the maintenance provider has unique characteristics and constraints, which com-
plicate the scheduling process and need customization in the scheduling model. Figures 3.1 and 3.3
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illustrate the routing steps for the Hydraulics & Pneumatics (P&H) and Avionics shops, and the Power
Generation (IDG) shop, respectively.

3.2.1. Hydraulics and Pneumatics (P&H)

The P&H shop specializes in hydraulic and pneumatic components, operating through two workgroups.
Technician specialization is critical, with tasks often assigned to the same technician for the entire
process. However, tasks can be reassigned if necessary, depending on part availability. Next to the
routing steps, of which an overview is given in Figure 3.1, the current way of scheduling is described in
Figure 3.2. The list of workable WOs, that are prioritized by the simple points-based model, is used by
the production leads to assign technicians to those most critical jobs, based on their knowledge of the
individual technician skills. Based on their indication of the processing times, they choose the number
of WOs to be handled by each technician. The technicians each get an overview of the WOs assigned
to them on their overview screen.

Important aspects shop environment:

» Preferred Technician Assignment: Tasks are ideally handled by the same technician who per-
formed the initial inspection.

» Customer Prioritization: High-priority customers demand faster turnaround, but the current sys-
tem does not dynamically accommodate such needs.

+ Skill Requirements: Specific parts require technicians with unique capabilities, limiting scheduling

flexibility.
Quote approval
Evaluation Completion
WO status Ready for evaluation Unit in Evaluation Ready to build (RTB) In Progress (IP)
(RFE) (UIE)
Inspection/ Final
Disassembly Repair Final Test i
) (Quote) Inspection
Routing
| A
steps H ] i
Waiting for Waiting for
parts/ : ! parts/
outsourcing outsourcing
Figure 3.1: Routing steps and WO statuses for H&P and Avionics shop.
Priority list of jobs Schedule viewer shops jobs that
— technicians need to perform
Workable jobs | Assignment of
+ parameters technicians by e
{duration, prio, Production
RDD ect.) Leads

*On Friday 80% of technician capacity is assigned -> during the week the remaining 20% is assigned

Figure 3.2: Current scheduling process for H&P and Avionics shop.

3.2.2. Avionics

The Avionics shop is divided into multiple workgroups, each specializing in distinct components such as
displays and control units. Jobs requiring specialized testing equipment are often batched for efficiency.
Also, the routing steps of this shop, as well as the way of scheduling, are almost identical to the P&H
shop, shown in Figures 3.1 and 3.2.

Important aspects shop environment:

 Batching: Jobs requiring similar testing can benefit from being batched, improving the processing
time on certain machines because no setup time is necessary.

» Workgroup Specialization: Each workgroup focuses on a specific domain, requiring precise allo-
cation of tasks.
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Additionally, each subshop has specific conditions that must be taken into account. For instance, one
subshop may require that only one WO is completed per day, while another prioritizes a specific part
above all others. In some cases, certain technicians are preferred for specific groups of parts within a
subshop. These factors indicate examples of the complexities of the avionics shop environment.

3.2.3. Power Generation (IDG)

The Power Generation shop presents the most complex workflow, with a significantly higher number
of routing steps and equipment limitations. In Figure 3.3, an overview of the current way of scheduling
for the power generation shop is given. Similar to the other shops, the WO is ordered based on its
priority, but separately for each routing step. WOs are moved sequentially through the steps, with job
assignments handled by the Production Lead. The jobs in each step are represented as placeholders,
indicating the WOs currently in progress at that stage. With this approach, WOs are tracked and
progressed in the right way, and this creates a good overview of where certain jobs are in the process.

Important aspects shop environment:

» Equipment Limitations: Limited availability of critical testing machines creates bottlenecks in the
process. For example, there are only two test machines available for incoming tests and final
inspections.

» Unknown Durations: Testing outcomes and durations are often unpredictable, complicating schedul-
ing. There are standard durations that are indications of the processing times of certain repairs
or part numbers, but these are most of the time not accurate.

» Flexible Resource Allocation: Technicians can work across multiple work centers, but capacity
limits must be respected.

» Technician Flexibility: Technicians are encouraged to handle entire workflows but may need re-
assignment in exceptional cases.

Quote approval
Evaluation Completion

WO status Ready for evaluation (RFE) Unit in Evaluation (UIE) Ready to build (RTB) In Progress (IP)

Trouble-
shooting

Routing

steps incoming [ M Disassembly Lapping/ Assembly/ Final Bench
Inspection /Inspection Honing Repair Test Successful
test

Only if possible if not
causing more damage

Final
Inspection

Final
Assembly

Equipment limitation:
Only 2 test machines

Sometimes waiting for
parts step in between

Figure 3.3: Routing steps and WO statuses for Power Generation shop.

Incoming Incoming Disassembly Lapping, Assembly Final Bench Trouble-
Bench Test Honing Repair Test shooting izl Akl

Job xx . Job xx . Job xx . Job xx - Jab xx Jab xx . Job xx - Jab xx
Job s - Job xx . Job xox . Job s - Job xx . Job xx - Job xx
Job . Job % . Job xx - Jab xx . Job xx - Jab xx
Job xx . Job xx . Jab xx - Job xx
Job xx - Job xx

|

Job is moved to next progress step when
ready, assigned by Production Lead

Figure 3.4: Current scheduling process for the Power Generation shop.

Several practical constraints and preferences further complicate the scheduling environment in the
Power Generation shop. First, certain specialized operations, such as lapping and honing, may occur
at different stages, sometimes during the quotation phase, and sometimes during the repair phase. A
specialized technician ideally performs these operations, or when not available, another capable, right-
skilled technician can step in if necessary. Notably, one technician can operate two of such machines
together, increasing capacity but also creating further complexity in incorporating correct resource allo-
cation algorithms in the model.
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For the testing phase, failure of the final test requires that the WO be re-inserted into the system and
re-sequenced for repair. This reintroduction of tasks increases the variability in job flow. Furthermore,
a small buffer before the final due date is preferred to avoid tasks finishing exactly at the deadline.
Frequent updates to the schedule should be limited to twice per day to help process dynamic changes,
such as unforeseen delays or urgent customer requests, while making sure that once a job step has
been initiated, it is carried through to completion without interruption.

Additionally, some of the shop characteristics of all three shops are identical, for instance, the rule that,
if possible, a technician is assigned to each routing step of a WO where he has started working on,
which will be important to incorporate in a model in the earlier stages, because of the application in all
three shops. Additionally, the priority of certain customers, which was explained in subsection 3.2.1, is
a characteristic that is important for all of the CMRO shops of the maintenance provider. An overview
of the aspects, with the indication of importance to the shops, is given in Table 3.1.
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Table 3.1: Shop aspects and their applicability across CMRO shops.

3.3. Key Performance Indicators and Performance

The effectiveness of scheduling practices is measured using several KPIs, including OTD rates, aver-
age TAT, and service levels for AAA customers. Performance metrics that will be used and the room
for improvement emphasized:

» On-Time-Delivery (OTD) rate: Approximately 82.4% of WOs meet the Promised Delivery Date
(PDD), which could be significantly improved. The PDD is determined based on the type of
contract with the customer. The desired target for the OTD rate is 90%.

» Average TAT: The P&H shop averages 60 days, while Avionics averages 51 days. The IDG shop
performs relatively better at 32 days but still fails to meet the 30-day target. This KPI can be
measured in different ways, from the TAT for orders that only need to be quoted to the TAT after
the quote approval by the customer. For example, the TAT for quotes of incoming parts is desired
for the Power Generation shop to be 7 days.

+ Service Level for High Priority customers: This KPI focuses on ensuring high-priority customers,
such as AAA-customers, achieve a higher OTD rate, almost always achieving the overall target
of 90%.

The proposed model aims to bring the performance of the shops closer to achieving the targets set by
the maintenance provider. While no specific minimum performance improvement objectives have been
set for the model, its primary goal is to achieve the targets of a 90% OTD rate and an average TAT of
30 days.
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3.4. Implementation of Proposed Model

This case study implements the proposed theory to test the optimized and dynamic scheduling model
tailored to the diverse needs of the CMRO shops at the maintenance provider. By integrating state-
of-the-art Operations Research (OR) techniques and real-time updates, the model aims to improve
resource allocation, reduce TAT, and enhance OTD rates. In Figure 3.5, the scheduling model that
includes all of the features important for the shops is given schematically. In this model, all important
parameters like job priority, process times, and due dates are input into the model, and an initial sched-
ule is created. Additionally, rescheduling takes place every time a disruptive event, such as a change
in the processing time of a WO in WIP, triggers this process.

Workable jobs + Scheduling model - 15t version Live updates
parameters

related to jobs,
resources,

(duration, prio,
RDD ect.)

technicians,
machines & Live schedule

durations o T e |

Updating schedule based on event updates. > T

Technician/

machine
availability

CE o T T

Historical data

Figure 3.5: Overview of the future aspired scheduling model example for the Power Generation shop.

This project aims to bridge the gap between theoretical optimization models, such as flow shop theories,

and practical applications in CMRO environments, contributing to the wider field of scheduling and
operational research.



Research Proposal

Throughout the project, minor adjustments were made to the research question and sub-questions to
reflect minor changes in the methodological approach and the research scope. These refinements
have been incorporated into this chapter to describe an accurate research plan.

4.1. Research Question

The goal of this research is to develop an automated, data-driven, and flexible scheduling model that
improves the operational performance of CMRO shops. Considering the complexities such as flexible
job shop scheduling, unexpected job arrivals, varying technician skill requirements, the need to prioritize
high-value customers, and other challenging aspects of the shop floor environment, the following main
research question was formulated:

How can a flexible job shop scheduling model be developed and implemented to autonomously plan
the maintenance operations for a dynamic CMRO environment, thereby improving the key
performance indicators Turn-Around-Time (TAT) and On-Time Delivery (OTD)?

4.2. Sub-Questions

Several sub-questions are stated in this subsection to address the main research question thoroughly.
Each sub-question aims to address a specific aspect of the main problem, ensuring that all critical
aspects, constraints, and objectives are considered:

1. Objective and Performance Evaluation:

(a) To what extent can a mathematical optimization model outperform a manual, experience-
based scheduling approach in terms of improvements in TAT and OTD?

(b) How can the multi-objective formulation, specifically combining weighted tardiness and weighted
earliness, be integrated into the scheduling model, and how does this objective compare to
other alternative objectives in terms of their impact on the defined KPIs?

2. Customer and Job Priorities:

(a) How can weighted job priorities, combining customer importance and job urgency, be inte-
grated into the hybrid flow shop scheduling model?

(b) What is the impact of incorporating priority weights on scheduling outcomes, especially con-
cerning service level agreements (SLA) and gains for critical customers such as AAA cus-
tomers?

3. Resource Allocation and Skill Constraints:

(a) How can the model ensure that technicians are assigned to tasks that match their skills,
without requiring continuous intervention from production leaders?

20
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(b) Can the model incorporate constraints related to dedicated technicians or specialized oper-
ations?

(c) How can unavailability periods and other human factor constraints be integrated into the
model to maintain realistic technician workloads and ensure optimal allocation?

4. Uncertainty and Dynamic Properties:

(a) How can job arrivals, uncertain processing times, and dynamic routing steps be effectively
incorporated into a real-time rescheduling model, and what is the impact on schedule per-
formance and computational effort under a discrete-time rescheduling framework?

(b) How can robust scheduling improve shipping date reliability under uncertainty in job process-
ing times and the dynamic arrival of new work orders?

5. Computational Feasibility and Scalability:

(a) Can exact optimization approaches solve real-world CMRO problem instances in a reason-
able computational time, and are they suitable for real-world implementation?

(b) How does the model’'s computational time scale with increasing problem size and complex-
ity, and can strategies such as rolling horizon planning or other decomposition techniques
reduce computational effort without significantly compromising solution quality?

6. Comparative Analysis Across Different Shops:

(a) How does the proposed model handle the operational differences between CMRO shops,
and is the model easily adaptable to each unique shop environment?

(b) To what extent are specific model adjustments needed for shops with more complex work-
flows or limited critical resources, and what is the impact on the scheduling model perfor-
mance for each specific shop?

7. Heuristic approach:

(a) Can approximate methods or heuristic approaches provide high-quality solutions with ac-
ceptable optimality gaps?

(b) How does the computational time of these heuristic methods compare to exact optimization
approaches, and are they better suited for real-world CMRO environments?

These sub-questions aim to break down the main research question into structured and measurable
components. By addressing each of these sub-questions, the goals of this research will be achieved
by using a holistic approach that not only improves CMRO shop floor scheduling performance but also
ensures that this is resilient to real-world uncertainties and scalable to adapt to various CMRO shop
environments.

4.3. Hypotheses

In line with the findings from the state-of-the-art review given in chapter 2, it is hypothesized that a well-
designed flexible job shop scheduling model, incorporating weighted job priorities, skill-based techni-
cian assignments, and robust handling of uncertainty, will outperform current semi-manual approaches
in improving TAT and OTD rates. By implementing well-fitting objectives into a mathematical optimiza-
tion framework, the resulting schedules are expected to calculate high-quality solutions that respect
operational priorities and resource constraints.

Furthermore, by referring to the techniques discussed in existing research, it is expected that inte-
grating stochastic or robust optimization methods, as well as appropriate rescheduling policies, will
lead to improved schedule stability and adaptability under uncertain and dynamic conditions. While
exact optimization methods could face computational challenges in large-scale, real-world scenarios,
the literature suggests that decomposition techniques can be used to manage computational times, re-
sulting in near-optimal solutions being found more efficiently even in large-scale, real-world scenarios.
Otherwise, optionally, metaheuristics can deliver near-optimal solutions within acceptable computation
times.
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In summary, the hypothesis is that by using and implementing these well-supported approaches found
throughout the current body of science, from skill-based personnel planning and priority weighting to
dynamic rescheduling and hybrid solution methods, this research can achieve an automated, data-
driven scheduling model that enhances operational performance for CMRO shops by reducing TAT
and increasing OTD rates.

4.4. Planning of Research Activities

The planning of the research activities is illustrated in Figure 4.1. The Gantt chart outlines the phases
and corresponding activities of the project, beginning with the literature review and research defini-
tion, followed by model development, testing, and implementation. The chart also highlights important
milestones such as the mid-term review, green light meeting, and final thesis defense.

A one-week vacation is planned, as indicated in the chart. Additionally, the approximate flow shop
model phase, which changed to a flexible job shop model during the project, implementing a meta-
heuristic approach, is conditional and will only be executed if time allows. This decision will be eval-
uated during the mid-term review based on the progress made on the exact model phase up to that
point.
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