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10.1 Introduction

10.1.1 Infrared thermography

The first “Image of Heat” was produced in 1840 by Sir John Herschel
[1]. Sir John was also able to show a primitive heat image in his study,
which he called thermography.

Infrared was discovered between 1900 and 1920. Numerous patents
were granted for devices that can detect people, artillery, airplanes, ships,
and even icebergs. In particular, the earliest operating system was devel-
oped during World War I, whereas, in the interwar period, two revolu-
tionary new infrared detectors were built, namely, the image converter
and the photon detector [2].

The tactical military disadvantages of the so-called “active” thermal
imaging systems provided the opportunity, after World War II, for further
military-secret infrared research aimed at developing “passive” systems. It
was only in the mid-1950s that thermal imaging devices began to be
available to science and industry.

Recently, governments and airport security used infrared thermogra-
phy (IRT) to detect suspected swine flu and other viral diseases during
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both the 2009 and 2020 pandemic emergencies [3]|. The use of IRT has
increased dramatically in recent years in several sectors.

In modern thermographic cameras, the live thermogram reveals tem-
perature variations very clearly,thanks to the use of innovative algorithms
[4]. A demonstration is provided in this chapter.

10.1.2 Basic principle

IRT utilizes an infrared (thermal) camera to extract and analyze a thermal
pattern based on the principle that each body at a temperature above
absolute zero (—273.15°C) emits electromagnetic (EM) radiation. The
EM radiation emitted by an object is sensed by the infrared camera and
transformed into an electronic signal, which is then processed to produce
a thermal image.

10.1.2.1 Basic infrared radiation

Fig. 10.1 shows an overview of the EM spectrum. Within the EM, infra-
red radiation occurs at frequencies above those of microwaves and just
below those of red visible light (VL). The infrared band lies between 0.74
and 1000 pm of the EM spectrum and is divided into five parts: near-
infrared (NIR) lying between 0.74 and 1 pm, short wavelength infrared
(SWIR) lying between 1 and 3 pm, medium wavelength infrared
(MWIR) lying between 3 and 5 pum, long wavelength infrared (LWIR)
lying between 8 and 14 pm, and very long wavelength infrared which lies
between 14 and 1000 pm. SWIR, MWIR, and LWIR are the regions
where infrared imaging devices exist [5].

Microwave >

a0 )

1000 [pum]

VLWIR

Figure 10.1 Electromagnetic spectrum with different infrared bands.
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10.1.2.2 Radiation laws of the black body
A blackbody is a theoretical or model body that absorbs all radiation fall-
ing on it, reflecting or transmitting none. It is a hypothetical object that is
a “perfect” absorber and “perfect” emitter of radiation at all wavelengths.
The characteristics of blackbody radiation are explained with the help of
Planck’s law, Wien’s displacement law, and Stefan—Boltzmann law.
Planck’s law describes the spectral distribution of radiation emitted by
a black body and can be expressed by Eq. (10.1) [6]. Fig. 10.2 depicts the
graphic representation of a series of blackbody spectra for various tempera-
tures following Eq. (10.1):

G
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where EA,I,[W/m2 pm] is the blackbody spectral radiant emittance at
wavelength A [um] and temperature T [K]|, C; =27hc=3.742 X 108

Ey,(\, T) = (10.1)
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Figure 10.2 Spectral distribution of the radiation intensity from a blackbody accord-
ing to Planck’s law, plotted for various absolute temperatures. The dotted line repre-
sents the maximum radiant emittance points at each temperature according to
Wien'’s Displacement Law. The maximum intensity of radiation emitted is within the
infrared spectral band with the material under study at the temperatures it is usually
found. Hence the cameras are sensitive to the infrared spectrum to measure the
temperature, in addition to the atmospheric absorption is minimal between the
body emitting radiation and the camera reading the emitted radiation.
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[W pum*/m?] is the first radiation constant, and C, = % =1.439 X 10*[um
K] is the second radiation constant, with ¢=2.998 X 10° [m/s] being the
velocity of light in vacuum, h=6.626 X 10 >*[] s] and k=1.381
X 10~ [J/K] the universal Planck and Boltzmann constants, respectively.

Wien’s Displacement Law states that “The wavelength of the maxi-
mum intensity of blackbody radiation is inversely proportional to the tem-
perature [7].” Graphically, this is represented in Fig. 10.2 and marked as a
straight dotted line. It is found that the peak energy is proportional to
their corresponding X\ for varying temperatures and can be expressed by
Eq. (10.2):

C
My = — (10.2)
T

where C; =2897.8 [um K] is the third radiation constant.

The Stefan—Boltzmann law can be obtained by integrating Planck’s
law over the entire spectrum (0 <A< o0) which states that “The total
flux density Eb [W/m?] emitted by a black body is proportional to the
fourth power of its absolute temperature T [7]. It can be expressed by
Eq. (10.3):

E,=oT* (10.3)

where 0=5.6697 X 10~ % [W/m? K*] denotes the Stefan—Boltzmann
constant, which depends on C; and C, values.

10.1.2.3 Radiation laws of the real body

Objects in the real world are not perfect black bodies. Not all the incident
energy upon them is absorbed; therefore, they are not perfect emitters of
radiation. A real generic object may have a different ability to absorb
(emit), reflect, and transmit energy concerning the black body owing to
its bulk material nature and surface finishing, which can be expressed by

Eq. (10.4) [7]:
atpt+r=1 (10.4)

which links the total absorptance (@) to the total reflectance (p) and the
total transmittance (7).
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10.1.2.4 Heat transfer mechanism

Heat transfer is the process of transferring heat from a high-temperature
medium to a low-temperature medium. It is an essential tool that explains
abnormal surface temperature patterns. The three heat transfer mechan-
isms are conduction, convection, and radiation. When dealing with tran-
sient thermal problems and inspection using IRT, conduction is the most
important heat transfer mode, as this mechanism defines the amount of
heat reached and finally emitted by the surface of the solid. Different
materials conduct heat at different rates, and these rates are related to their
thermal properties. The main thermophysical properties related to IRT
are thermal conductivity, density, specific heat, diftusivity, and effusivity.

10.1.3 Thermography approaches

There are two approaches in thermography, that is passive and active
thermography, which will be discussed in detail later. Moreover, defects
can be active or passive. Passive defects are at the same temperature as the
surrounding environment and hence need to be heated or cooled to pro-
duce defect indications. Whereas active defects emit or absorb thermal
energy and can be detected in a passive mode [8].

10.1.3.1 Passive thermography

There is no extraneous energy required in passive thermography to stimu-
late a gradient of temperature at the structure or material being investigated.
The aspects of importance are inherently below or above ambient tempera-
ture due to the object’s self-heating or friction. This approach works well
in two spectral regions, 3—5 m (MWIR) and 8—12 m (LWIR), in which
the amount of IR radiation energy relies on the desired range of wave-
length. The passive thermography consists of an IR camera, a control
device, and a computer (processing unit) as shown in Fig. 10.3A.

It is generally a qualitative method with the primary aim of identifying
discontinuities. This approach is widely applied as a standard quality con-
trol technique and has numerous applications, including condition moni-
toring, predictive maintenance, structural health monitoring, medical
imaging, power station monitoring, building thermal efficiency, process
monitoring, fire forest detection, road traffic monitoring, agriculture, and
biological sciences [9]. Nevertheless, such an approach is sometimes
restricted to NDT applications because there should be sufficient natural
thermal contrast.
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Figure 10.3 Experimental setup (A) passive, and (B) active thermography.

10.1.3.2 Active thermography

Active thermography integrates infrared imaging with an external energy
source; that is, an external energy source is supplied to the subject being
inspected, which was previously thermally balanced, and a temperature
difference is generated to expose the details of interest. Active thermogra-
phy, therefore, comprises an external energy source, a supply source, an
IR camera, a control device, and a computer (processing unit), as shown
in Fig. 10.3B. The experimental setup of active thermography is similar to
passive thermography except that an external energy source is needed to
produce a thermic inconsistency in the object or system. The heating or
cooling energy can be generally supplied in pulsed or harmonically modu-
lated form [10]. A wide range of energy origins can be employed for
active thermography. Laser heating, optical flash lamps, halogen lamps,
hot or cold air guns, electrical heating, ultrasonic excitation, eddy cur-
rents, microwaves, and other techniques are instances [11].

When a sample is heated or cooled, heat propagates by diftusion
through the material, which has a direct impact on the surface tempera-
ture’s temporal changes. Then, the thermal response of the investigated
object, recorded by an IR camera, is evaluated to disclose the existence of
imperfections. The assessment can take place in either transmission or
reflection mode. In the transmission mode, the heating unit and the IR
camera are on opposite sides of the object under examination, while in
the reflection mode, the heating source and the IR camera are on the
same side of the sample. Controlled testing conditions, including the
quantity and type of stimulation, enable not only the detection of abnor-
malities but also the quantification of defects [12,13].
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Active thermography provides different inspection methods as well as
a variety of measuring techniques. Thus, the measurement procedure can
be optimally adapted to different materials and parts with difterent struc-
tural properties. The inspection methods mainly differ in the type of exci-
tation source used, the way thermal energy is applied, and the data/signal
processing methods [14].

The primary classical practices are pulsed thermography (PT), step
heating thermography (SHT), and lock-in thermography (LIT). In PT,
short and high-power thermal energy is applied to the object’s surface
being inspected, and the thermal response of the stimulated surface is
observed in a transient mode. PT is a fast and popular thermal imaging
technique in non-destructive testing and evaluation (NDT&E). SHT is
similar to PT, but in contrast, a longer pulse, from a few seconds to sev-
eral minutes, is used for thermal stimulation, and the surface temperature
of the stimulated object is monitored during both the heating and cooling
phases. Whereas in LIT, the surface of the object being inspected is ener-
gized by a periodically modulated thermal wave, and the thermal response
of the surface is observed in a steady-state condition [12,15].

Concerning the defect information, both filtering and efficient signal pro-
cessing are of primary importance. By using the adapted image and signal pro-
cessing strategies, it is possible to visualize discontinuities of different sizes inside
structures or to inversely retrieve material thermal properties. Working with a
reduced amount of thermal images speeds up the process, but inaccuracy
increases, and these cons must be kept in mind. [16].

In NDT&E applications, active thermography can be used for the inspec-
tion of components/processes in various industries. Examples include investiga-
tion of interior structures such as lightweight honeycomb structures and
recognition of deeper material deficiencies; detecting and characterizing defects
such as metal corrosion, cracks, subsurface defects, coating wear, debonding,
and impact damage; determining material properties such as thermophysical
properties like diffusivity and thermal conductivity, adhesion strength, anisotro-
pic material characterization, etc. [17].

10.1.4 Recent trends and developments

Since each NDT&E technique has its inherent limitations, integrating dif-
ferent methods is suggested for better inspection. In this regard, the fusion
of IRT with other existing NDT&E techniques is rising. It will result in
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better inspection capability, and more information can be acquired in a
single test compared to the results of an individual technique.

The potential of combining thermography with shearography, an opti-
cal approach for identifying and characterizing subsurface defects in struc-
tures, has been investigated. Investigations have shown that by integrating
two image-based NDT approaches, the suggested approach is suitable for
defect detection [18].

Ultrasonics is the most mature and widely used method for NDT&E.
The main advantage of ultrasound sensing is its outstanding capability to
probe inside the object, with the disadvantage of being contacted and a
low-productive technique. Hence, the integrated use of IRT with ultra-
sonic sensing may be advantageous to detect both shallow and deep
defects, saving time during the inspection of large surfaces [19]. In this
integrated approach, heating of the material under inspection can be
accomplished via the application of sonic or ultrasonic energy using a
device such as an ultrasonic welding horn known as vibrothermography,
thermosonics, or sonic infrared.

Eddy current can be combined with IRT, in which the object under
inspection is heated by an inductively generated current flow, which is
known as induction thermography. This integrated technique uses
induced eddy currents to heat the material being tested, and defect detec-
tion is based on the changes in the induced eddy current flow revealed by
the thermal distribution captured by the infrared camera.

In some cases, even more than two NDT methods can be fused. For
example, eddy current, IRT, and laser scanning were used in combination
to inspect aeronautical structures such as honeycomb sandwich panels that
have been damaged by low-velocity impacts [20].

10.2 Data analysis

Raw thermal data are generally not suitable for the quantitative evaluation
of defects. Several preprocessing and processing techniques to enhance the
detection capability and evaluation metrics to characterize the perfor-
mance of the processing techniques have been developed.

10.2.1 Conventional techniques

Some preprocessing techniques such as pseudo-colorization, histogram equali-
zation, image filters—a median filter and a gaussian low filter—segmentation,
image fusion, image building, image subtraction, etc. are integrated features
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in the typical R&D software in infrared cameras. These preprocessing techni-
ques mainly help to reduce the effects of nonuniform surface emissivity, tem-
poral noise, spatial image noise, and outliners caused by dead pixels. Besides
these, several studies demonstrate the development of processing techniques
and their effectiveness in detecting and assessing defects. Table 10.1 depicts a
simple classification of thermal data processing techniques based on image

Table 10.1 Classification of thermal data processing based on image processing

groups [21,22].

Groups

Techniques

Remarks

Thermal
contrast

Transforms

Statistical

Absolute contrast running
contrast normalized
contrast standard contrast
differential absolute
contrast

Harmonic approximation
(four point method)

Fast Fourier transform
Wavelet transform

Pulsed phase thermography

Principle component analysis

Signal reconstruction,
derivatives, skewness,
kurtosis

1-D solution of Fourier’s
diffusion equation for pulsed
thermography and enables to
model the time evolution
profiles of the sample surface
temperature. Enhanced the
defect contrast for pulsed
thermography data.

Fast method and only valid for
sinusoidal stimulation.
Enhanced the defect
detectability for modulated
thermography.

Enhanced the defect
detectability for both pulsed
and modulated thermography.
Also used in the passive
thermography approach.

Enhanced the defect
detectability for pulsed
thermography data.

Usually used to enhance the
defect detectability for pulsed
thermography data. But can
also be used for modulated
thermography, though
efficiency needs to be
evaluated. Also used in the
passive thermography
approach.

Enhanced the defect
detectability for Dirac and
square pulsed thermography.
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processing groups, that is, techniques based on thermal contrast, techniques
based on transforms, and techniques using statistical methods.

Although there are several data processing techniques, computation of
the amplitude image and phase image using the Fourier transform is the
most popular technique in active thermography, specifically for both
pulsed and modulated thermography. The Fourier transform is used to
pass from time to the frequency domain in thermal images. The Discrete
Fourier Transform (DFT) is implemented for each pixel of the thermo-
graphic data set and can be expressed by Eq. (10.5) [17]:

N-l [2mnke

F,=At»  T(kAt)exp ~ = Re, + Im, (10.5)

k=0
where At is the sampling interval, j is the imaginary number, # is the fre-
quency increment (n =0, 1, ... N), and R, and I, are real and imaginary
parts of the transform, respectively. To simplify, the Fast Fourier
Transform is used instead of the DFT and is available in the standard soft-
ware package. With the transformation of data to the frequency domain,
the amplitude (A,) and phase angle (¢,) in different frequencies are com-
puted using Eqs. (10.6) and (10.7), respectively [17]:

A, =[R2+ 12 (10.6)

@, = tan”! <1m> (10.7)
R

€n

The phase image is not directly linked to local disturbances, for example,
nonuniform heating and emissivity; in fact, it is related to the depth
attained by the thermal wave. Hence, phase images are used in the identi-
fication of defects.

Literature shows different types of evaluation criteria to characterize
the performance of the processing techniques. The signal-to-noise ratio,
also known as the contrast to noise ratio (CNR), is an evaluation metric
to determine and qualify the advantages and limitations of each processing
technique. Also, the CNR metric is used to differentiate the two regions
of interest (ROI). The quantification of a defect is based on the informa-
tion of two areas: the defective area and the reference or sound area.
Contrast is the absolute difference between the defective area information
and the sound area information. Noise is the standard deviation of the
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noise area information. Information may be in temperature, amplitude, or
phase angle, depending on the type of image. For this purpose, two
ROIs, one for each defective area and one adjacent to the defective area
(i.e., sound area), are selected. ROI in the defective area will be consid-
ered as “signal” (DROI), and ROI in the sound area will be considered as
“noise” (SROI). The CNR metric for a defect can be calculated by using
Eq. (10.8) [22]:

|DROIme:m - SROImeanl
CNR = 20log;,

o

(10.8)

where DROI,,.., is the arithmetic mean of the defective area; SROI,, can
is the arithmetic mean of the sound area; and o is the standard deviation
of the defective area.

10.2.2 Advanced techniques

The analysis of temperature evolutions in both defective and sound
regions is central to IRT data processing. In both passive and active ther-
mography, the data recorded with infrared cameras can be considered in
three different forms in order to be processed: a 1-D model which is
independent of spatial information and where input is a vector of temper-
ature history in terms of time for a pixel; a 2-D model which is indepen-
dent of temporal information and where input is thermal images; and a 3-
D model with the input of thermal images (video) series combining the
1-D and 2-D models.

Artificial intelligence’s rapid advancement, particularly Machine
Learning (ML) and Deep Learning (DL), makes IRT increasingly auto-
mated and intelligent, broadening its scope of applications significantly
[23]. For instance, Recurrent Neural Networks (RNN) and 1D
Convolutional Neural Networks (CNN), 2D CNN, and 3D CNN are
the popular DL methods based on the format of the input corresponding
to 1D, 2D, and 3D models, respectively. On the other hand, compared to
visible images, the quantity of labeled thermal images is significantly
lower; thus, various challenges arise. Utilizing labeled VL data to mini-
mize the quantity of data necessary for IRT algorithms in DL is a fascinat-
ing topic. Transfer learning [24] is an ML method that focuses on storing
and transferring information obtained while addressing one problem to a
different but related task. Domain adaptation [25] is a particularly effective
approach to transfer learning when the data is diverse but the tasks are the
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same. Common VL tasks, like object detection, offer passive IRT with a
wide range of expertise and data [23]. The DL algorithms that have
recently been used to analyze IRT data are explained in the following
within the two categories of passive and active IRT.

10.2.2.1 Deep learning in passive infrared thermography

In passive IRT, the use of DL models such as RNN, CNN, Generative
Adversarial Network (GAN), Auto-encoder (AE), and Restricted
Boltzmann Machine is often more prevalent than in active IRT. Since IR
cameras have an inferior resolution to visual cameras, resulting in a poor-
quality image and restricted use of passive IRT, several researchers have
evaluated CNN [26] and GAN [27] to boost the resolution of IR projec-
tions. To increase the resolution of thermal images, single-frame superre-
solution technology might be used. For instance, the enhancement of the
quality of infrared images for object detection was studied in [28]. To
enhance target signature quality and maximize the baseline resolution of
inputs, a method according to Super-Resolution CNN (SRCNN) and
image bias correction has been suggested. The key goal is to improve the
amount of usable information on the item to be identified, even if the
quantity of target pixels is insufficient. The method improved target reso-
lution substantially in experiments, allowing automated detection systems
to recognize objects more efficiently. Instead of just merely improving the
resolution of thermal data, some researchers are attempting to exploit the
synergy of visual and thermal images to combine their information for
super-resolution. For example, a DL method according to GAN was
established, improving the resolution of thermal images by integrating VL
and IRT data [29]. An approach combining a GAN with a residual net-
work has been suggested to enhance the visualization of the fusion of
thermal and visible images [27]|. Experiments show that the suggested
technique finally produces suitable results, outperforming nine representa-
tive thermal and visible image fusion methods in terms of visual resolution
and objective assessment.

10.2.2.2 Deep learning in active infrared thermography

Although the use of DL in active IRT is currently lower than in passive
IRT, its advancement and growing use are expected in this regard. DL in
active thermography NDT&E can be categorized into three subdivisions
depending on the format of the input data, as earlier mentioned above
since active IRT generally creates thermal video.
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10.2.2.2.1 1-D model

A Long Short-Term Memory Recurrent Neural Network (LSTM-RNN)
model based on an array of temperature series [30] has been used to auto-
matically classify prevalent defects in honeycomb materials, such as adhe-
sive pooling, debonding, and liquid ingress. The proposed LSTM-based
algorithm has a sensitivity of more than 90% in identifying water and
hydraulic oil ingress and more than 70% in classifying adhesive pooling
and debonding.

In LIT, 2 1D CNN model is used to evaluate the thermal sequence of
Carbon Fiber Reinforced Polymer (CFRP) specimens [31]. A new two-
stream CNN structure is utilized to draw features from a pair of 1D ther-
mal signal series to accurately classify faulty and healthy areas. In compari-
son to PCA and the Fourier transform, the results show that the 1D
CNN improves resolution.

10.2.2.2.2 2-D model

For surface crack detection, 2D CNN has been employed [32]. A DL-
based autonomous concrete fracture detection approach integrating vision
and IRT data has been provided. By spatially inspecting via unmanned
vehicles equipped with a hybrid imaging technology that includes IR and
vision cameras as well as a continuous-wave line laser, concrete-made
infrastructure on a large scale (like bridges and dams) can be efficiently
assessed. To accomplish automatic crack detection and visualization, the
reconstructed images have been categorized into multiple patches, and
each patch has been categorized using a pretrained GoogleNet using a
transfer learning approach.

10.2.2.2.3 3-D model

Active thermography’s growing development is the 3D model, which

integrates temporal and spatial data. Nonetheless, since 3D input has the

complexity to tackle, several approaches have been developed that can
help, such as:

* Reducing temporal data: Since it is troublous to utilize DL to ana-
lyze temporal and spatial data at the same time, some researchers sug-
gest compressing temporal data with a non-DL approach first, then
processing spatial data with a DL one [23]. For instance, to provide
accurate crack identification and localization, an end-to-end pattern
deep region learning architecture has been suggested [33]. The tempo-
ral information was extracted from the thermal video using PCA and
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compressed into a single frame (matrix) with a more substantial defect
feature, while Faster-RCNN was used to detect faults from the
matrix.

* Dealing with temporal and spatial data independently: This cat-
egory, for instance, can be found in Ref. [34]. A technique integrating
YOLO (Yolonet—you only look once) and a fully connected net-
work (FCN) has been presented, according to the hypothesis that the
spatial and temporal data in thermal sequences are unrelated. FCN
forecasts the depth of defects, whereas YOLO evaluates if there are
any. The approach may be considered as a fusion of a 1D feed-
forward network and a 2D YOLO model.

* Designing a fused temporal-spatial network: To analyze merged
temporal and spatial inputs, a hybrid spatial-temporal DL framework
for automated thermography has been developed [35], notwithstand-
ing the difficulty. An LSTM (with 3 layers) loop has been used to col-
lect the material characteristics that reflect the character of thermal
differences between the defective and the healthy point, and Visual
Geometry Group-Unet (VGG-Unet) has been employed for identify-
ing the faulty area out of the standard.

10.3 Modeling and simulation

Modeling is the process of representing an actual system in a mathematical
form with its properties, while simulation is an experiment based on a
developed model implemented into a computer program to study the
performance of a system. Modeling and simulation provide insight into
how systems can behave early in their lifecycle without the risk and
expense of building the system and transporting it to the environment
concerned. Thus, modeling and simulation enable rapid and cost-effective
analysis of complex systems, thereby reducing development time and
costs. Over the past few decades, modeling and simulation have been
booming with their applications in engineering and computer sciences,
military and defense, aerospace and transportation, education, health care
and drugs, recreation and entertainment, architecture and construction,
climate and environment, finance and economics, etc. [36].

Modeling and simulation consist of four main steps: conceptual
modeling, mathematical modeling, numerical modeling, and computa-
tional modeling. Conceptual modeling puts the problem in the context of
its physical phenomenology and allows the information needed for a
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good system design to be structured and ordered. Mathematical modeling
systematically analyzes phases and components together with the constitu-
tive laws to derive the balance equations and the initial and boundary
conditions. Numerical modeling choose a convenient way of discretizing
equations based on the shape of the balance equations and the mathemati-
cal restrictions of the problem. Computational modeling chose a
suitable computational platform with a computational language and soft-
ware for writing the numerical model once the numerical model has been
finalized [37].

Modeling and simulation studies typically fall into four types of appli-
cations: proof-of-concept, modification, comparison, and optimization.
Proof-of-concept studies are executed in the predesign phase of a future
system, support the determination of the viability of concepts, and provide
information concerning the expected system performance. Modification
studies are conducted on existing systems to allow inferences regarding
system performance under proposed operating conditions and to allow
parameter settings to be tuned for desired system prediction accuracy.
Comparison studies involve competing systems. Finally, the determination
of the best system operating conditions is based on optimization studies
[38].

Modeling and simulation are used in many steps of the NDT&E pro-
cess, specifically for the development and verification of new inspection
methods. Many researchers from around the globe have used modeling
and simulation to stimulate the propagation of the thermal wave in mate-
rials for IRT inspection. Shrestha et al. [13] developed a transient finite
element model using commercial software, “ANSYS 15,” and simulated
PT and LIT to evaluate the coating thickness, stimulated by a flow of
heat, allowing experimental parameters to be tailored without the need
for extensive, time-consuming, and potentially expensive preliminary
experiments. The same authors [39] used modeling and simulation to
develop a PT inspection process to detect artificial flat-bottomed hole
defects in aluminum structures using “ANSYS 15.” Shrestha et al. [40]
also developed a transient finite difference model and simulated the LIT
inspection process to detect inclusions in glass fiber-reinforced plastic
composite structures using the software “ThermoCalc-3D.” Shrestha et al.
[41] used a transient finite element model and stimulated a flow of heat to
simulate PT for the evaluation of ancient marquetry samples using
“ANSYS 19.” Tighe et al. [42] created the finite element model of PT
and PPT to detect the kissing defects in adhesive bonds.
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To obtain the results shown in Fig. 10.4, the authors used commercial
software “ANSYS 15” and modeled a square-shaped coating sample of
size 180 X 180 mm with a nickel-based superalloy substrate of 4 mm, a
bond coat of MCrAlY of 0.1 mm, and a top coat of zirconia varying
from 0.1 to 0.6 mm. In this work, the authors used a tetrahedral fine
mesh. Also, physical preference was taken into account as mechanical
with a relevance equal to 100. Finally, the relative center worked in fine
mode, while both proximity and curvature were used in the advanced
size function. The final mesh had 162,000 elements, while the nodes
were 854,685 in total. In PT configuration, an energy of 9 kJ was deliv-
ered via a single square pulse of heating lasting 10 ms. The frame rate was
set at 0.01 seconds and the analysis lasted 5 seconds. In the LIT configura-
tion, a 2 kW power was applied as a heat stimulus. The time step was
retrieved by the modulation frequency, and the period of analysis was
defined as ﬁ. Here, fis the modulation frequency. Several modulation
frequencies ranging from 1 Hz down to 0.01 Hz were used in the simula-
tion. On this basis, the authors concluded that the simulation model helps
a better understanding of PT and LIT modalities by both optimizing the
experimental configuration and limiting the number of physical tests. It is
possible to underline the fact that both thermographic techniques are use-

3.08

3.02

ful for an accurate and fast determination of coating thickness.

7 054

(A) 0.12 (B)
Figure 10.4 Phase angle data with respect to variation in coating thickness, (A)
Phase image obtained after the processing of PT data using Fourier transform and

(B) Phase image obtained after the processing of LIT data at the modulation fre-
quency of 0.2 Hz [13].
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10.4 Relevant standard

Recently, structural health monitoring of the components, specifically
using IRT, has expanded rapidly in various areas. The effectiveness of
IRT inspection depends on the proper use of the systems and equipment.
The International Organization for Standardization (ISO) provides terms,
basic principles, equipment, and test procedures, as well as matters related
to international certification of thermal imaging. Currently, the ISO tech-
nical committee, ISO / TC 135/SC 8—Thermographic testing in NDT,
is in the process of standardizing “Electrical Equipment Testing” as ISO
5750 in WG 4 and “Testing Method for Integrated Performance” as ISO
18251-2 in WG 3 [43]. Table 10.2 presents some of the ISO standards
developed regarding IR T testing.

In addition, the American Society for Non-destructive Testing and
American Society for Testing and Materials in the United States, the
Deutsches Institut flir Normung in Germany, the British Standards Institution
in the United Kingdom, and the Japanese Society for Non-Destructive
Inspection (JSNDI) in Japan standardize IRT tests, use standards for every
measuring and diagnostic case, and also issue certificates.

10.5 Case study

The high quality of materials and structures is of paramount importance
in different areas of human activity. Steel is used around the world
because of its good chemical-physical and mechanical qualities.

It should be highlighted that multiple preparations and cautions should
be taken into consideration in order to eftectively perform IR T inspection
and avoid further errors throughout the assessment of metallic samples.
Since the reflectivity of the object’s surface, particularly for metal objects,
is one of the key obstacles in IRT, an opaque (color) cover can be sprayed
on the surface. This solution, however, cannot be used on any item, such
as a painting or artwork [52]. Another situation is when IRT performance
is being evaluated. Several mechanical and thermal characteristics should
be considered and appropriately modeled in order to simulate a true
representation of a realistic defect in the lab and research. The most
important characteristic is the relative thermal conductivity of the primary
material to the imperfection. For example, Teflon, which is commonly
used to simulate defects such as delamination and detachments in compos-
ite structures including CFRP and GFRP, should not be used because of



Table 10.2 ISO standards related to thermographic testing.

Group

Standard identification

Remarks

ISO

ISO 10878: 2013—
Non-destructive testing—
Infrared thermography—
Vocabulary [44]

ISO 10880: 2017—
Non-destructive testing—
Infrared thermographic testing—
General principles [45]

ISO 18251—1: 2017—
Non-destructive testing—
Infrared thermography—
Part 1: Characteristics of
system and equipment [40]

ISO 22290: 2020—
Non-destructive testing—
Infrared thermographic
testing—General principles for
thermoelastic stress measuring
method [47]

ISO 18434—1: 2008—Condition
monitoring and diagnostics of
machines—Thermography—
Part 1: General procedures
(48]

ISO 18434—2: 2019—Condition
monitoring and diagnostics of
machine systems—
Thermography—Part 2: Image
Interpretation and diagnostics
[49]

ISO 18436—7: 2014—Condition
monitoring and diagnostics of
machines—R equirements for
qualification and assessment of’
personnel—DPart 7:
Thermography [50)]

ISO 9712:2012—
Non-destructive testing—
Qualification and certification
of NDT personnel [51]

Defines terms used in IRT for NDT

and forms a common basis for
standard general use.

Provides general principles for IRT

testing in the field of industrial
NDT.

Describes the main components and

their characteristics, constituting
an infrared imaging system and
related equipment used in NDT.
It also aims to assist the user in
the selection of an appropriate
system for a particular
measurement task.

Provides general principles for

thermoelastic stress measuring
method of IRT testing in the
field of industrial NDT.

Introduces the application of IRT to

machinery condition monitoring
and diagnostics, where
“machinery” includes machine
auxiliaries such as valves, fluid and
electrically powered machines,
and machinery related heat
exchanger equipment.

Provides specific guidance on the

interpretation of infrared
thermograms as part of a program
for condition monitoring and
diagnostics of machine systems.

Specifies requirements for

qualification and assessment of
personnel who perform
machinery condition monitoring
and diagnostics using IRT.

Specifies requirements for principles

for the qualification and
certification of personnel who
perform industrial NDT including
IRT.
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its similar thermal conductivity coefficient to the polymer matrix of
CFRP and GFRP [53]. In other words, when it comes to assessing IRT,
Teflon is not really an acceptable simulator for defects in polymeric com-
posite materials.

A steel sample, shown in Fig. 10.5, was inspected by PT and LIT. The
sample consists of flat-bottomed hole defects to simulate subsurface
defects. The authors used on the front side a KRYLON flat paint with an
emissivity of 0.95, with the aim of providing a uniform value of emissivity
on the entire inspected surface.
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Figure 10.5 Schematic illustration of stainless-steel sample along with the geometry
and location of artificial flat-bottomed holes representing subsurface defects of dif-
ferent sizes at varying depth levels [12].
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10.5.1 Lock-in thermography

The experiment was conducted with a lock-in system in reflection mode.
The lock-in system consisted of an IR camera (SC 645, FLIR Systems,
Danderyd, Sweden) with a 640 X 480 pixel resolution, a spectral range of
7.5—13 pm, thermal sensitivity (NETD) <50 mk, accuracy *2°C, and a
frame rate of 50 Hz; a heat source (two halogen lamps (OSRAM,
Medium Flood, China) of 1 kW each); a programmable function genera-
tor (Agilent 33210A, Malaysia); a lock-in module (Answer Tech,
Republic of Korea); and a personal computer (MSI GE620DX).

Fig. 10.6 shows the phase images acquired at modulation frequencies
of 0.1, 0.05, 0.02, and 0.01 Hz. The phase image is considered superior to
the amplitude image because it is independent of local disturbances such
as nonuniform heating and emissivity and is primarily influenced by the
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Figure 10.6 Phase images using LIT at modulation frequencies, (A) 0.1 Hz, (B)
0.05 Hz, (C) 0.02 Hz, and (D) 0.01 Hz.
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depth attained by the thermal wave. It is possible to see that no defects
were detected at the highest frequencies of 0.1 Hz. While the frequency
is lowered to 0.05 Hz, the contrast begins to improve, and when it
decreases to 0.01 Hz, the subsurface defects in phase images become
clearly visible. It can also be seen that there is a phase contrast between
the defective areas and the sound areas. Hence, the correct modulation
frequency range has to be selected for the material to detect defects.

10.5.2 Pulsed thermography

The experimental setup is based on a short and high-power heating source
lamp (Universal BALCAR, Rungis, Paris, France) of power 6400 W-s with
the system controller (BALCAR Light System, Nexus A 6400, France), an
infrared camera (FLIR Systems, Danderyd, Sweden) with a spectral range of
75—13 pm, thermal sensitivity (NETD) <50 mk, accuracy =*2°C, a
640 X 480 focal plane array detector with a frame rate of 50 Hz, and a personal
computer (MSI GE620DX). The front side of the sample surface was subjected
to a heat pulse with a duration of ~ 10 ms. In addition, 5 seconds was the
duration of the registration of the thermal response. The results obtained
through some of the conventional and advanced techniques are discussed here.

10.5.2.1 Thermal signal reconstruction

The result of Thermal Signal Reconstruction (TSR) is illustrated in Fig. 10.7A.
Also, in order to convert the obtained image to the binary one aimed at a bet-
ter comparison, a thresholding method based on local intensity is utilized,
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Figure 10.7 Results of TSR algorithm with the maximum kurtosis value among
frames: (A) Gray image and (B) Binary image. Axes units are mm.
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which determines a different threshold at each pixel by the Gaussian weighted
mean in the neighborhood. Hereinafter, the results are converted to binary
images using this local thresholding. The binary result of TSR is illustrated in
Fig. 10.7B. The frame has been selected at the moment with the maximum
kurtosis value for that frame having an acceptable contrast. The TSR method
was able to detect shallower defects with a depth of 2 and 3 mm but not dee-
per defects with a depth of 5 and 4 mm.

10.5.2.2 Pulse phase thermography

The amplitude and phase of PPT, as well as their binary results, are shown
in Fig. 10.8. The images have been selected with the maximum kurtosis
value for that frame. Nevertheless, since the result of the amplitude of
PPT at the maximum kurtosis moment is not proper, another (last) frame
is also displayed in Fig. 10.8, in which all defects can be somehow traced.
Nevertheless, the fault size cannot be precisely and simply approximated.

10.5.2.3 Principle component thermography
The first five principle components (PCs) obtained by PCT and their
binary images can be seen in Fig. 10.9. The influence of nonuniform

0 30 60 90 120 150 180 0 30 60 90 120 150 180
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Figure 10.8 Results of PPT algorithm, (A) Gray PPT amp (Max Kurtosis) image, (B)

Gray PPT amp (last frame) image, (C) Gray PPT Phase (Max Kurtosis) image, (D)

Binary Gray PPT amp (Max Kurtosis) image, (E) Binary PPT amp (last frame) image,

and (F) Binary Gray PPT Phase (Max Kurtosis) image. Axes units are mm.
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Figure 10.9 Results of PCT algorithm, (A) Gray image 1st PC, (B) Gray image 2nd PC,
(C) Gray image 3rd PC, (D) Gray image 4th PC, (E) Gray image 5th PC, (F) Binary
image 1st PC (G) Binary image 2nd PC, (H) Binary image 3rd PC, (l) Binary image 4th
PC, and (J) Binary image 5th PC. Axes units are mm.

heating distribution may be noticed in the first and second PCs, and as a
result, the third and fourth PCs can better confirm the existence of all
defects. In addition, as shown in Fig. 10.10, some of the PCs can be com-
bined in order to synergy of the performance because the resolutions of
different defects in different PCs are varied, and it cannot be confirmed
that one PC exists that has the highest resolution for all defects with dif-
ferent depths compared to other PCs.

10.5.2.4 Thermal signal area

Thermal Signal Area (TSA) combines each pixel’s thermal response across
a user-defined timespan [54,55]. The results of TSA for a time range from
the 10th frame to the 100th frame are shown in Fig. 10.11. Although not
all defects can be detected, particularly the deeper and smaller ones, this
method is fast and simple to use. It should be noted that the TSA is more
suitable for step and long pulse heating thermography methods. In addi-
tion, the TSA-inspired Adaptive Spectral Band Integration (ASBI)
approach [56], considering the frequency domain instead of time domain,
can be utilized to better analyze the thermograms.

10.5.2.5 Atrtificial neural network

In this section, a Pattern Recognition Neural Network (PRNN) in three
simple architectures is used to classify the pixels. In fact, the thermal varia-
tion of each pixel over time is considered a timeseries signal, and as a
result, a thermal video can be considered a multitimeseries. Then, a
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Figure 10.10 Results of PCT algorithm, (A) Gray image superposition of PC1 and PC2, (B)

superposition of PC3 and PC5, (C) Gray image superposition of PC1, PC2, PC3, and PC5,

(D) Binary image superposition of PC1 and PC2, (E) Binary image superposition of PC3 and

PC5, and (F) Binary images superposition of PC1, PC2, PC3, and PC5. Axes units are mm.
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Figure 10.11 Results of TSA algorithm, (A) Gray image, and (B) Binary image. Axes
units are mm.

PRNN can be used to classify these timeseries related to different pixels
to determine which pixels are sound (intact area of the inspected sample)
and which ones are defective (defective area of the inspected sample).
Here, the problem is considered as a supervised NN for classification with



Infrared thermography: philosophy, approaches, analysis—processing, and guidelines 273

two classes: sound (0) and defective (1). Three architectures for PRINN
are:

* 1st architecture: one hidden layer with 10 neurons.

* 2nd architecture: one hidden layer with 20 neurons.

* 3rd architecture: two hidden layers with 10 and 5 neurons,

respectively.
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Figure 10.12 Results of PRNN on thermograms (raw data). First row: Ground truth
image (left side), ground truth image including training (gray) pixels (middle), and
ground truth image including testing (gray) pixels (right side); second row: the results
of architecture 1; third row: the results of architecture 3; fourth row: the results of
architecture 3. Axes units are mm.
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Scaled conjugate gradient backpropagation is used to train the net-
works. First, a ground truth image is made in which 1 (white color) is a
defective pixel and O (black color) is a sound pixel. Next, the dataset con-
taining multitimeseries signals is randomly divided into training and testing
datasets by a ratio of 7:3. It should be noted that the training dataset itself
is also divided into (pure) training and validation datasets by a ratio of 4:1
in order to perform validation checks during training. Thus, the ratio of
the training to the total dataset is 56%. Since only one specimen is evalu-
ated in the present work, this type of division for the training and testing
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Figure 10.13 Confusion matrix of PRNN for the first architecture with 10 neurons
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dataset is applied. Otherwise, if more specimens were available, the results
would be improved. The ground truth image as well as the training and
testing pixels highlighted in gray on the ground truth image can be seen
in Fig. 10.12 (first row). Despite the lack of a sufficient training dataset for
utilizing a supervised NN and the model’s simplicity, the majority of the
faults may be spotted.

The neural networks’ performances are calculated based on cross-
entropy. The performances (MAE) for architectures 1, 2, and 3 on the
raw thermal data are 0.0884, 0.0832, and 0.085, respectively. Also, the
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Figure 10.14 Results of PRNN on processed data (TSR). First row: Ground truth
image (left side), ground truth image including training (gray) pixels (middle), and
ground truth image including testing (gray) pixels (right side); second row: the
results of architecture 1; third row: the results of architecture 3; forth row: the results
of architecture 3. Axes units are mm.
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confusion matrices for the first architecture are shown in Fig. 10.13. The
results confirm that artificial neural networks (ANN) have strong effi-
ciency in detecting defects in thermal videos.

In another scenario, the NN models can also be applied to the processed
data by using some common algorithm. For example, the results of the three
aforementioned PRINN architectures applied to the de-noised data by the
TSR method can be seen in Fig. 10.14. The performance (MAE) for archi-
tectures 1, 2, and 3 on the TSR video are 0.0891, 0.0945, and 0.0793,
respectively. The results are superior with the deeper NN, which has 10 and
5 neurons in the first and second layers, respectively.

The results are acceptable, and the defects can be detected, even
though the PRNN architecture was not optimized and is simplistic. With
a deeper neural network, the outcomes could be much improved. The
application of the DNN in IRT has dramatically increased recently [57],
and advanced, mature DNN frameworks and architectures were intro-
duced for thermography [35,58].

10.6 Conclusions

The chapter has been organized into six sections, comprising this one. The
logic follows a pyramid scheme, that is, the so-called top-down approach.
Initially, an overall view of the IRT technique has been given; therefore,
the authors have deepened the main concepts of data analysis; subsequently,
experience in thermal modeling and simulation has been provided to the
readers, who anticipated the state-of-the-art in relevant standards; and
finally, a series of case studies has taken stock of the technique itself.

The chapter is actualized to 2022 since it provides the recent advances of
numerical modeling as a facilitator to understanding experimental analyses. The
latter rests on a case study dissected through the implementation of well-
known and advanced algorithms for image processing, up to the core, that is,
an ANN example applied to a stainless-steel sample having flat-bottomed holes
representing subsurface defects of different sizes at varying depth levels. The
results obtained can be considered of great interest and leave the doors open
for future perspectives, such as the fusion of images with other NDT
techniques.
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