
Delft Center for Systems and Control

Receding Horizon Control of Per-
turbed Railway Network Opera-
tion

Ate Conraad Kleijn

M
a
s
te

r
o
f

S
c
ie

n
c
e

T
h
e
s
is

Receding Horizon Control of
Perturbed Railway Network Operation

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft

University of Technology

Ate Conraad Kleijn

May 15, 2012

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

Railway networks, such as the one in the Netherlands, form an important means of trans-
portation, both for passengers, as well as for transporting goods. Train services carrying
passengers often run according to a predefined schedule or timetable. When those train ser-
vices are delayed, for example due to accidents or malfunctioning rolling stock, the affected
train may not be able to run according to schedule any longer. When the railway network
is dense and hosts different kinds of services, such as local and intercity services, this initial
delay is easily passed on to other train services in the network, due to different stopping
patterns and drive speeds. Human dispatchers, possibly aided by computer systems, make
temporary modifications to the way the network is used by the trains running in the region of
the disturbance. However, due to the high complexity and the limited time, these decisions
may be optimal for only the designated area of the dispatcher, but far from optimal from a
network perspective. Therefore, a railway network operator could have a major benefit from
a system able to compute globally optimal decisions in the case of disturbances.

This thesis is written as part of the development of such a system. Specifically, this project
aims at applying Model Predictive Control (MPC) to railway networks. In MPC, a model of
the system is used to predict the future behaviour of the system within a prediction horizon.
The principle of receding horizon control is employed to compute an optimal future input
sequence, such that a certain cost is minimized. This cost is the total delay in the network
within the prediction horizon. The inputs of the controlled system are associated to the order
of a train pair on a track. Train orders can be swapped at stations and junctions. As there are
many of those points present in the network, swapping orders offers the most possibilities and
is effective in a wide range of delay scenarios. Therefore, in this thesis only order swaps are
considered. The system is modelled within a max-plus algebraic framework, which allows for
a structured representation and systematic approach, where the latter is especially useful for
future endeavours to exploit max-plus system theory, such that for example model reduction
can be applied to the generally very large railway models.

The algorithm presented in this thesis forms the basis for an MPC algorithm for railway
networks. The development of a tailor-made receding horizon control algorithm for railway
networks, has not been carried out before. First an extension of the existing max-plus linear
model is presented, such that a model which is uncertain in the parameters is obtained. This

Master of Science Thesis Ate Conraad Kleijn

ii

model already contains controllable train orders. The problem of finding the optimal order
swaps, such that the total delay in the network is minimal, can be written as a Mixed Integer
Linear Programming problem. Several test cases were derived to highlight the various as-
pects of the receding horizon control algorithm, such as how it copes with different parameter
estimations at various points in time. Through the use of a time-based control horizon, a
significant reduction in computation time was achieved an provides a very good method to
overcome the computational complexity encountered during optimal control of railway net-
works. Although the prediction horizon is defined in the discrete event domain, the algorithm
is easily modified to also contain a time-based prediction horizon, allowing for more freedom
in tuning of the prediction horizon and thus also computation times.

Ate Conraad Kleijn Master of Science Thesis

Table of Contents

Acknowledgements xi

1 Introduction 1

1-1 Railway Terminology . 1

1-2 Line planning . 3

1-2-1 Timetable design . 3

1-2-2 Resource allocation . 4

1-3 Delays and Dispatching Actions . 4

1-3-1 Dispatching actions aimed at reducing secondary delays 4

1-4 Automation Approaches . 6

1-4-1 Summary of related work . 6

1-5 Problem description and project goals . 9

1-6 Thesis Outline . 10

2 Modelling 11

2-1 Modelling Aspects . 11

2-2 Max Plus Algebra . 13

2-2-1 Basic concepts and definitions . 13

2-2-2 Vectors and matrices . 14

2-3 Railway Network System Description . 15

2-3-1 Max-Plus System Description . 16

2-3-2 Nominal System Description . 18

2-3-3 Perturbed System Description . 20

2-4 Conclusions . 21

Master of Science Thesis Ate Conraad Kleijn

iv Table of Contents

3 Control 23

3-1 Order Swap Example . 23

3-2 Controlled System Description . 24

3-3 Prediction Model . 28

3-4 Solving the Control Problem . 31

3-5 Receding Horizon Control . 33

3-5-1 Event time constraints . 34

3-5-2 Constraints due to computation time . 36

3-5-3 Receding horizon MILP constraints . 39

3-6 Conclusions . 40

4 Implementation 41

4-1 Introduction . 41

4-2 Data Structures . 41

4-2-1 Timetable . 42

4-3 From Timetable to Prediction System . 43

4-3-1 Obtaining the running and dwell time matrices 44

4-3-2 Obtaining the headway time matrices 46

4-4 Receding Horizon Algorithm . 46

4-4-1 Supplying disturbance information . 50

4-4-2 Fixing the states and inputs . 51

4-4-3 Extracting sub-matrices . 51

4-4-4 Constructing the MILP constraints . 52

4-4-5 Shifting the horizon . 57

4-4-6 Control Horizon . 59

4-5 Conclusions . 59

5 Case Studies 65

5-1 Introduction . 65

5-2 Test Network . 65

5-3 Test cases . 67

5-4 Setup and Settings . 70

5-5 Results . 70

5-5-1 Test case 1.1 . 70

5-5-2 Test case 1.2 . 72

5-5-3 Test case 2.1 . 74

5-5-4 Test case 2.2 . 76

5-6 Conclusions . 76

Ate Conraad Kleijn Master of Science Thesis

Table of Contents v

6 Conclusions and Recommendations 79

6-1 Conclusions . 79

6-2 Recommendations For Future Work . 81

6-2-1 Time-based prediction horizon . 81

6-2-2 Dynamic control/prediction horizon length 81

6-2-3 Control horizon over successive events 81

6-2-4 Effect of parameter variation . 83

A Appendix 85

A-1 Timetable for the test network . 85

Bibliography 87

Master of Science Thesis Ate Conraad Kleijn

vi Table of Contents

Ate Conraad Kleijn Master of Science Thesis

List of Figures

1-1 One cycle contains a set of past decisions and events and a set of future decisions
and events. The controller is allowed to only optimize over the set of future
decisions and events. 10

2-1 Junction merging two separate tracks into one. 12

2-2 Junction at which tracks cross. 12

2-3 Illustration of a train run on a track. 12

2-4 Trains crossing paths share a virtual track with 0 minutes running time. 13

2-5 Illustration of headway time between two subsequent trains. 13

3-1 Example network in which train 1 acquires a delay at station B. 23

3-2 The principle of receding horizon control. 34

3-3 During disturbances events are delayed and it takes longer before all event infor-
mation of the perturbed cycle is available, so at some point in time in that cycle,
there are more pending events than there would be in the nominal case. Due to
the disturbance, not all events of cycle k′ have occurred until time t

′

3 > t3. As
the disturbance also affects events from cycle k′ + 1, the point t4 is also shifted
to t

′

4. Note, however, that due to a stable timetable and effect of control actions,

the distance between t4 and t
′

4 is smaller than the distance between t3 and t
′

3
(assuming no more disturbances occur). 35

3-4 The decision to change the order of train 1 and 2 is not known until time t + δt.
Therefore, train 2 cannot have departed or arrived earlier than that time. 37

3-5 Situation in which the order must be maintained during the optimization. If an
order swap were allowed, both events would have to be postponed to not earlier
than t+δt. In that case, the total delay would be bigger than when the order swap
was not allowed. 38

3-6 Visualization of the control horizon. 39

4-1 Global scheme of the algorithm. 42

4-2 Entries of the coordinate lists point to entries in ỹ, ũ and Θ̃. 44

Master of Science Thesis Ate Conraad Kleijn

viii List of Figures

4-3 Separation of fixed and variable event times. 50

4-4 Separation of fixed and variable inputs. 51

4-5 Extracting the sub system related to ỹvar. 51

4-6 Visualization of index mapping. The same applies to the event time vector . . . 57

4-7 Separation of fixed and variable inputs when using a time-based control horizon. 59

5-1 The network used for the case studies as described in this chapter. Above: the
track layout. Below: the line plan. 66

5-2 Place-time diagram the lines running between stations 7, 3 and 6 in the case of
nominal operation. 67

5-3 Place-time diagram for the lines running between stations 1 and 6 in the case of
nominal operation. 68

5-4 Network situation at 9:00h in test case 1.1. All event times later than 9:00h are
estimates. 71

5-5 Network situation at 9:17h in test case 1.1. All event times later than 9:17h are
estimates. No order swap is advised yet. 71

5-6 Network situation at 9:23h in test case 1.1. All event times later than 9:23h are
estimates. The order of train 301 and 101 is changed. However, train 301 cannot
depart at its scheduled time of 9:20h. 72

5-7 Network situation at 9:29h in test case 1.2. All event times later than 9:29h are
estimates. 73

5-8 Network situation at 9:32h in test case 1.2, after the first optimization. All event
times later than 9:32h are estimates. 73

5-9 Network situation at 9:35h in test case 1.2, after the second optimization. Train
302 is allowed to leave at its scheduled time. All event times later than 9:35h are
estimates. 74

5-10 Network situation at 9:37h in test case 1.2 with δt = 4 minutes. Train 302 is
forced to leave with a delay. 74

5-11 Total delay with and without applying control in scenario 1. 75

5-12 Total delay with and without applying control in scenario 2. 75

5-13 Place-time diagram for the lines running between stations 7, 3 and 6 during scenario
1, in which train 101 is delayed 10 minutes. The actual movement is shown with
a solid line, whereas the scheduled movement is shown with a dotted line. 77

5-14 Place-time diagram for the lines running between stations 1 and 6 during scenario
2, in which train 301 is delayed 10 minutes. 77

5-15 Reduction in computation time compared to full control for various lengths of Nc
for scenario 1. Each line is associated to a specific disturbance magnitude. 78

5-16 Reduction in computation time compared to full control for various lengths of Nc
for scenario 2. Each line is associated to a specific disturbance magnitude. 78

A-1 Track numbering of the test network. 85

Ate Conraad Kleijn Master of Science Thesis

List of Tables

4-1 The timetable format. 43

5-1 Schedule for trains running from right to left in Figure 5-1 66

5-2 Schedule for trains running from left to right in Figure 5-1 67

5-3 Data for test case 1.1 . 69

5-4 Data for test case 1.2 . 69

5-5 PC specifications. 70

5-6 Simulation parameters. 70

A-1 The timetable for the test network. 86

Master of Science Thesis Ate Conraad Kleijn

x List of Tables

Ate Conraad Kleijn Master of Science Thesis

Acknowledgements

My gratitude goes out to my supervisor, Dr. Ir. Ton J.J. van den Boom, for his support
throughout the project. I would also like to thank Ir. Bart Kersbergen, who joined the team
the last couple of months. Thanks for your useful feedback and thinking-along!

Delft, University of Technology Ate Conraad Kleijn
May 15, 2012

Master of Science Thesis Ate Conraad Kleijn

xii Acknowledgements

Ate Conraad Kleijn Master of Science Thesis

Chapter 1

Introduction

The Dutch railway network is used by both passenger and freight trains. The passenger
trains, for the largest part operated by the NS (Nederlandse Spoorwegen), run according to
a predefined schedule. In case of a disturbance, such that, for example, a train is forced to
drive slowly, a scheduled arrival or departure cannot can be delayed. Especially when the
network hosts a high density of trains, the delayed train easily gets into conflict with other
trains. In that case, dispatchers decide on what actions to take, such that nominal network
operation can be regained as quickly as possible. However, due to the high complexity of
this decision problem, often a solution is chosen which is good enough for the designated
area of the dispatcher, but far from optimal from a network point of view. A decision may
introduce new, unforeseen problems at another point in the network. Therefore, a railway
network operator could have a major benefit from a system able to compute decisions which
are optimal from a network point of view. This chapter presents an introduction into these
kind of systems. First, some terminology relevant to this thesis is introduced in Section 1-1.
Then, the process of bringing train lines into operation is briefly covered in Section 1-2.
Typical dispatching actions are presented in Section 1-3, after which automation approaches
to compute dispatching actions are summarized in Section 1-4. Finally, in Section 1-5, the
project goals are defined.

1-1 Railway Terminology

Below, a short overview of terms related to railway networks are introduced. For passenger
transportation in the Netherlands, usually three types of services are differentiated:

Local service A train running a local service stops at all stations along its route.

Regional service A train running a regional service stops at less stations than a local train.
For example, a regional service connecting stations A and B makes less planned stops than a
train running a local service between stations A and B.

Master of Science Thesis Ate Conraad Kleijn

2 Introduction

Intercity service A train running an intercity service stops only at the major stations along
its route.

A network hosting various types of services as mentioned above, is said to be heterogeneous,
whereas networks hosting one type of service (like subway networks) are said to be homoge-
neous.

In the Netherlands, for each type of service different types of rolling stock is generally used.
Railway networks consist of a variety of track types, but in this thesis only the following are
considered:

Single track One track that can be used by trains travelling in both directions.

Double track Two tracks of which each track can only be used by trains travelling in one
direction.

Overtaking track Extra piece of track parallel to primary track on which slower trains can
wait to let faster trains pass.

These various types of tracks could merge or split at various points in the network, or they
cross either physically or by utilizing a flyover, such that crossing trains cannot hinder each
other. Stations usually consist of multiple platforms and, depending on the size of the station,
a complex routing infrastructure is presents around a station. Furthermore, the network traffic
is regulated through use of switches and traffic lights. In this thesis however, only junctions,
stations and the tracks connecting these points are modeled. The individual platforms at
stations are not considered. A station is merely seen as a node in the network, connecting
multiple tracks. In fact, the capacity at stations is assumed to be unlimited. This means that
a station can host an unlimited number of trains. For each train using a track, the following
three parameters are considered:

Running time The time a train spends to traverse a track.

Dwell time The time a train resides at a station to ensure a connection to another train
and to let passengers transfer.

Headway time The time between two subsequent trains on the same track needed to ensure
safety. Usually based on physical properties of a train, like acceleration and deceleration
limits.

The parameters mentioned above are those considered in obtaining the railway network model,
which is presented in Section 2-1.

During operation of the network, temporary adjustments may be made to the schedule due
planned maintenance, holidays or unforseen events, like rolling stock or infrastructure failure.
The last example, temporary adjustments due to unforseen events, forms the basis of the re-
scheduling procedure considered in this thesis and is covered in Section 1-3. However, to give

Ate Conraad Kleijn Master of Science Thesis

1-2 Line planning 3

the interested reader an insight into the process of setting up train services, a short summary
is presented next. Otherwise, this part can be skipped and the reader is invited to continue
reading from Section 1-3 on.

The process of setting up a train service generally goes through the following three phases:

• Line planning

• Timetable design

• Resource allocation

Each of these phases will be treated separately next.

1-2 Line planning

In the process of line planning, decisions are made on what the starting and ending stations of
train lines are, routes of trains, where train lines connect and at which stations the line stops
[1]. This influences the choice of which type of service (and rolling stock) operates on a line.
Decisions made in this phase already affect the performance of a network in terms of sensitivity
to delays. Train lines connecting cities far apart decrease the number of transfers needed for
passengers travelling between those cities, but delays can spread far over space and time [2].
Literature on line planning problems have for example proposed methods for maximizing
passenger comfort, by maximizing the number of direct connections or by minimizing the
number of transfers. Passenger behaviour presents a big complication in line planning, since
this is hard to model.

1-2-1 Timetable design

The railway public transportation system in the Netherlands runs according to a predefined
timetable, i.e. each train has a predefined arrival and departure time at specific points, such
as stations, in the network. In the Dutch railway system this timetable repeats every hour,
i.e. at least once every hour a train runs on a specific train line. The timetable is designed
such that different train lines connect to each other, passengers have time to transfer to an-
other line, safety on the tracks is guaranteed and possibly some other specifications such as
deploying as many trains as possible on the tracks (while still respecting safety issues and
other constraints). The decisions made during line planning do not imply that a feasible
timetable can be constructed. Therefore, there are often several iterations between line plan-
ning and timetable design. Reliability is one of the predominant performance measures in
railway performance [1]. When aiming to design reliable timetables, robustness is an impor-
tant property. A robust timetable is capable of absorbing small delays due to unforeseen
circumstances, without the need of intervention by railway dispatchers [1]. A timetable can
have this absorbing property if it contains margins in running and dwell times [3]. These
margins are referred to as slack or buffer times. Trains which have acquired some small delay
can then still operate according to the timetable. More in-depth information and references
related to timetabling can be found in [2].

Master of Science Thesis Ate Conraad Kleijn

4 Introduction

1-2-2 Resource allocation

This phase deals with rolling stock and crew schedules. Allocation of rolling stock is based
on quality of service, efficiency and robustness. Quality of service relates to the availability
of sufficient capacity to transport the expected number of passengers. Robustness in this
case relates to avoiding disturbing processes such as coupling and uncoupling of train units.
Railway planners aim for a balanced rolling stock distribution over the network [4], [5], which
means that at each station, enough and the correct type of rolling stock is present.

The problem of constructing a crew schedule consists of assigning crew members to a feasible
duty (sequence of tasks). Feasibility relates for example to duty length and the order of tasks.

At a train station, trains have to be assigned tracks and platforms. This process is constrained
by efficient passenger transfer, arrival and departure times as defined in the timetable, in-
frastructure (switches etc.), possible coupling or decoupling and safety aspects. Algorithms
to find optimal routings, usually employ dominance techniques, i.e. techniques to reduce
the problem size by only considering relevant sections of the railway infrastructure. More
in-depth information and references related to resource allocation can be found in [2].

1-3 Delays and Dispatching Actions

Malfunctioning rolling stock, malfunctioning infrastructure, bad weather conditions, large
alighting and boarding times of passengers, accidents, and so on, are all unforseen events that
disrupt the intended operation of a railway network and could result in large delays. A delayed
train might get into conflict with another train at a crossing or junction. This may happen
at several points, possibly far apart, and other trains may thus be indirectly influenced by
a disturbance due to interference with the ’originally’ delayed train. Delays resulting from
this interaction are referred to as secondary or knock-on delays. Secondary delays appear
because of the shared use of the same infrastructure, rolling stock connections, transfers in
crew schedules, passenger transfers, and so on. During disturbed operations, decisions may
have to be made on how trains should move, both in space and time, in order to regain the
intended operation is quickly as possible. Sometimes, the delays can be absorbed quickly
enough due to sufficient slack or buffer time in the schedule, and no actions are necessary. In
case of more severe disturbances re-scheduling of train movements is necessary. A number of
dispatching actions can be undertaken to reduce the negative effects of disturbances. This is
described next.

1-3-1 Dispatching actions aimed at reducing secondary delays

During disturbances, the predefined timetable may no longer be feasible and arrival and
departure times need to be re-scheduled. Re-scheduling results in a new, temporary timetable.
This timetable must respect safety constraints and is ideally optimal in the sense that it
keeps some cost to a minimum. This cost can be e.g. the number of delayed trains or the
total delay with respect to the predefined timetable. The schedule should converge to the
predefined timetable as quickly as possible. Timetables are designed such that some train
lines connect at certain stations to let passengers transfer from one line to the other. If one of

Ate Conraad Kleijn Master of Science Thesis

1-3 Delays and Dispatching Actions 5

the connecting trains is delayed it may be better to break the connection to prevent the delay
from propagating to other trains. The decision of whether or not a train should wait for a
delayed connecting train is referred to as delay management in literature [3], [6]. The goal of
delay management usually is to minimize some form of passenger delay, like e.g. the sum of
all passenger delays [6], or the average delay of a passenger [7]. Finding an algorithm to solve
the delay management problem in practical time is a big challenge, due to the complexity of
the decision problem [6], [8], [9].

In most literature on delay management, only wait-depart decisions are considered, whereas
[10] also considers priority decisions. More generally, one could consider all allowed dispatch-
ing actions, as usually performed by human dispatchers in practice. The following dispatching
actions may be taken [3]:

Changing stopping patterns If two trains are of the same rolling stock type and it is impos-
sible for the successive train to overtake the delayed train, stopping patterns may be switched.
A regional train then for example becomes an intercity train and vice versa. This happens
after passengers in both trains are informed, of course.

Inserting an on-time train A train is inserted at an intermediate station in the route of a
delayed train, according to the scheduled arrival time of the delayed train at that station.
When the delayed train reaches the intermediate station, this train is removed from the route.

Increasing residual capacity It may be necessary to decrease the capacity use of (a part of)
the network, since due to a delayed train some infrastructural constraints are no longer met.
Increasing capacity along a train line can be achieved through multiple actions. Canceling a
departure from a terminal will increase the capacity along the entire route of the train. A
down side of this is that this results dissatisfied passengers and a surplus of inventory at a
certain station along the line and a deficit of inventory at the end of the line, which may result
in the cancellation of a departure at the end station. Another measure is to cancel stops at
stations with minor passenger loads and few connecting lines.

Short-turn a train A train route is shortened by letting the train turn around before it has
arrived at its final station. This is referred to as short-turning a train. The short-turned train
is then removed from the track and cannot affect other trains any longer.

Changing train speed profiles In [11] a re-scheduling method based on altering train speed
profiles is used together with train re-ordering. The method relies on accurate monitoring of
train speeds and locations to predict possible conflicts. Updated train speeds are communi-
cated to train drivers in order to resolve those conflicts in real-time.

Changing dwell times Changing the dwell time at scheduled stops could compensate for
the acquired delay during a trip [12].

Master of Science Thesis Ate Conraad Kleijn

6 Introduction

Rerouting Due to a closed section of a track, the train line is (partly) rerouted over a
different part of the network.

Swapping train order Suppose an intercity train is stuck behind a delayed regional train.
The intercity train may then overtake the regional train at a station with multiple platforms in
the same direction. In another case, a conflict may arise at a junction. Instead of maintaining
the order (as predefined in the timetable), the delayed train gives priority to the other train
such that this train is not hindered.

1-4 Automation Approaches

It is the task of a railway dispatcher to choose the appropriate action or a combination
of actions listed above (more may exist), while ensuring safety. The quality of the chosen
dispatching action for the disturbance in question grows with the experience of the dispatcher
[13]. However, while in this way feasible solutions are produced, they may be far from optimal.
Especially in dense networks with a high degree of synchronization, disturbances on one line
easily affect multiple lines and the effects can have a long duration. Therefore, dispatchers
would greatly benefit from automated systems which can propose and/or evaluate solutions
[13]. Such automated system is usually referred to as a Decision Support System or DSS. At
the Dutch railways the automatic route setting system ARI provides a support to dispatchers
[12]. In operations research there is a lot of focus on finding algorithms to optimally reschedule
trains in real-time. Optimal can mean minimal total passenger delay, minimal cost for the
railway company, a trade-off between the latter two etc. However, complexity is a major
issue and therefore these algorithms are mostly heuristic and present near-optimal solutions.
Most proposed methods can find suboptimal solutions in practical time only for small parts
of railway networks, like junctions [14], single lines [15] or parts of a network [11]. In [16] a
detailed overview of proposed models and algorithms is presented.

1-4-1 Summary of related work

The Decision Support System (DSS) presented in [17] was implemented in the Asturian re-
gional railway network in Spain in 1998. The rescheduling is done such that a minimal devi-
ation from the original timetable results and is based on heuristic methods. The rescheduling
problem is defined as optimally re-assigning train units within a predefined time interval to
carry out these affected services. The objective function which is to be maximized during
the optimization is based on the number of passengers, the expected delay a service suffers
and the priority of that service. The expected delay is based on historical data. The solution
results from searching a tree, in which each level in the tree corresponds to a service and each
branch represents a train unit able to carry out that service. To be able to solve the problem
in real-time, the algorithm first explores and reduces the solution space of the problem. This
is done by means of a depth-first search in which a solution is discarded (by pruning branches)
if that solution does not belong to the k best solutions. The system was implemented in 1998
in the Asturian regional railway network, serving as a DSS to train controllers. Based on
experience of the users, the system could come up with useful solutions within 5 minutes.

Ate Conraad Kleijn Master of Science Thesis

1-4 Automation Approaches 7

The method proposed in [11] uses variation of train speed in its rescheduling scheme. The
objective of the rescheduling method is to minimise the maximum delay due to conflicts.
For the train speed profiles of all the trains in the network considered, potential conflicts
between trains are predicted and resolved. This is done in the Conflict Detection and Reso-
lution (CDR) phase of the algorithm, which uses an alternative graph [18] to model the train
scheduling problem. Three different CDR algorithms are presented, being: simple dispatch-
ing rules simulating a human dispatcher, a greedy heuristic which in each step eliminates a
scheduling alternative resulting in the largest delay, and a branch-and-bound algorithm. The
found schedule is then fed to the train speed coordination part of the algorithm. In this part, a
minimum distance headway is ensured, while keeping acceptable train speed profiles. Accept-
able train speed profiles mean that the physical limitations like acceleration and deceleration
limits are respected. The CDR and train speed coordination are performed iteratively, until a
feasible solution is found. Computational tests based on the railway network around Schiphol
in the Netherlands were carried out. The method performed better compared to situations
where a human dispatcher made decisions.

ROMA (Railway traffic Optimization by Means of Alternative graphs) is a traffic management
system proposed in [12] which uses two separate algorithms iteratively for sequencing and
rerouting of trains in real time. First, infeasible routes due to blocking, caused by e.g.
a defective train blocking a single track, are rerouted to obtain feasible new routes. The
routing obtained in this step is referred to as the default routing. For the default routing a
conflict-free train sequence is computed. As in [11], an alternative graph formulation is used
to model the train scheduling problem. Two algorithms are tested for computing the new
train sequence. One being a branch & bound algorithm, the other simulates the ARI traffic
management system, as used by the Dutch railways. Then, for the computed sequence, a
local rerouting is computed to possibly further improve the solution. The rerouting is limited
to local modifications only, such as change of platforms within stations and is computed using
a local-search algorithm. The re-sequencing and rerouting are performed iteratively until no
better solution is found, or a time limit has been reached. In [19], a tabu-search algorithm
has been proposed to solve the rerouting problem in ROMA, yielding both improvement
in quality and computational time. Computational tests were carried out on practical size
instances referring to the Dutch dispatching area between Utrecht and Den Bosch. The
algorithm produces near-optimal solutions in short times. For example, after 20 seconds the
new version of ROMA produces solutions up to more than 15% better than the previous
version of ROMA does within 180 seconds.

In [20] the rescheduling problem is formulated as a Mixed Integer Linear Programming (MILP)
problem and is solved using CPLEX. An event based model is developed in which each event
is associated to a train requesting access to a segment. During rescheduling, the starting and
ending times of these events may be altered. To investigate solution quality versus computa-
tional time, four rescheduling strategies differing in timetable modification possibilities were
tested. Computational tests on a large part of the Swedish railway network with dense and
heterogeneous traffic were carried out to test the different strategies. However, since in some
cases the method could not find a solution fast enough for real-time applications, a method
was developed using a greedy algorithm which finds a solution in 30 seconds [21]. The model
was also extended to contain a more detailed description of stations which serve as junction
points for different lines. Only a single delayed train is considered

In [5] a rescheduling method based on the rolling stock inventory at stations is presented.

Master of Science Thesis Ate Conraad Kleijn

8 Introduction

During a perturbation in the schedule of a railway system, a rescheduling of trains (rolling
stock) may lead to a inefficient distribution of rolling stock over the stations, such that
expensive overnight re-allocation of trains is necessary. While railway dispatchers usually
come up with modifications of rolling stock circulation to work around a disturbance relatively
easy, they mostly end up with an off-balance (i.e. a deviation from a target inventory level
of a certain rolling stock type at a certain station), such that the original schedule cannot
immediately be re-established. The method presented in [5] aims at minimizing this off-
balance in rolling stock and is one of the pioneering papers using this approach. Together
with [4], the authors also explicitly model the shunting possibilities at the stations. Shunting
is defined as the action necessary to perform a composition change of a train. A composition
change refers to the coupling or uncoupling of train units. The main difference between
[4] and [5] is the method of solving the problem. In [4] an MILP problem is obtained and
solved using CPLEX, whereas [5] uses heuristic methods, employing experience of railroad
dispatchers. The fact the method in [4] is used by the Dutch railway operator NS (Nederlandse
Spoorwegen) since 2005 makes it an obvious candidate for comparison with the method in
[5].

Related work as basis for this thesis

In [22], a model predictive controller computing the most effective re-scheduling actions is
presented. This controller uses predictions of future departure and arrival times to determine
a control sequence leading to a minimum total delay of all trains, while taking into account
the cost of control actions. The control actions are restricted to only changing order of trains
running on the same track. The scheduled railway network is modelled within a max-plus
linear framework. They show that the control problem of allowing to change any number of
train orders on a track yields an MILP.

During disturbances, the order of train departures may be altered to prevent accumulation
of delays. Changing train order leads to a different model. Each train order results in
a different operational mode and during re-scheduling the system switches between these
modes. Each mode consists of a set of permutations. A permutation is an order swap of
two trains scheduled to run on the same track. A binary control variable is associated to
each possible permutation. The problem of finding the optimal set of integer event times and
binary control variables, subject to the operational constraints, can be written into a Mixed
Integer Linear Programming (MILP) problem. For this, the max-plus algebraic ǫ is replaced
by a large negative number β, such that the max-plus algebraic permutations can be rewritten
into a form in conventional algebra. This then results in a set of equations which is affine in
the control variables.

Through examples using fictive data, the authors show that the proposed method indeed
reduces delay significantly. They mention that the complexity of the MILP could be reduced
by limiting the decision variables to only the relevant ones, by employing a delay propagation
algorithm as proposed in [23].

Ate Conraad Kleijn Master of Science Thesis

1-5 Problem description and project goals 9

1-5 Problem description and project goals

When a train is delayed it may as a consequence interfere with other trains in the railway
network, which results in secondary delays. Changing the order of trains passing through
at junctions or stations can reduce these secondary delays. Since stations and junctions are
inherent to the basic infrastructure of a railway network and since regulating the order at
those points is easily implemented, this is the focus of the research. The order swaps must
be optimal, in that the total delay is minimized from a network point of view. Therefore, it
is necessary to know the impact of decisions on future events, since current can affect events
in the long run.

The controllable (i.e. allowing re-ordering of trains) railway network is represented using a
max-plus linear system. Such a system allows for a structured representation of the various
operational constraints of a railway network. Furthermore, analysis of a railway network can
be carried out efficiently using max-plus system theory.

Optimal re-orderings are computed within a model predictive control (MPC) framework. It
has already been shown that the problem of finding an optimal re-ordering of trains yields a
Mixed Integer Linear Programme (MILP) [22]. The application of MPC to railway networks
has not been carried out before. MPC is based on the principle of receding horizon control,
however, no receding horizon control algorithm for railway networks is available yet.

Challenges

The scheduled railway network is a time-varying discrete event system. The model used gives
all (expected) event times per cycle. A cycle is defined as the occurrence of all train runs as
contained in one period of the timetable. A train run is completed when the train in question
has arrived at the end-point of a track. At any time during one cycle, the system description
may change due to a disturbance. Then, the optimal event times and train order must be
re-computed, while respecting already occurred events and implemented decisions. This is
visualized in Figure 1-1.

Project goals

The main goal of this thesis is:

Design and implementation (in Matlab) of a receding horizon algorithm which computes an
optimal future sequence of trains over some event horizon, such that in the event of primary
delays, the sum of all future delays is reduced to a minimum.

The main goal is divided into two more specific subgoals:

1. The max-plus linear system reflects the operation according to a predefined timetable.
In the event of disturbances, this description is no longer valid and has to be updated
with estimated parameters (running and dwell times). The system description can thus
change within the same event horizon and the optimum has to be recomputed for every
change in parameters, while respecting past decisions and events. The model predictive
controller thus has to be able to compute new optimal events times and train orders

Master of Science Thesis Ate Conraad Kleijn

10 Introduction

b

1 Cycle

Past decisions

Future decisions
and events.

and events.

t0 t1t
′

Figure 1-1: One cycle contains a set of past decisions and events and a set of future decisions
and events. The controller is allowed to only optimize over the set of future decisions and events.

using an updated system description. Therefore, develop a receding horizon algorithm
to deal with changes occurring both in the event and time domain.

2. Investigate the effect of employing a control horizon on computational times and quality
of solution. This control horizon is either defined over a fixed number of events within
a variable time span or over a fixed time span containing a variable number of events.

1-6 Thesis Outline

The following subjects are treated next:

Chapter 2: Modelling A structured railway network model based on max-plus algebra is
presented here.

Chapter 3: Control This chapter presents how order swaps can be implemented in the
model as presented in chapter 2. The model is structured further with respect to the
inputs and a prediction model is presented. A receding horizon control strategy is
defined for railway networks.

Chapter 4: Implementation The implementation of the receding horizon algorithm.

Chapter 5: Case Studies Case studies in which the receding horizon control algorithm is
tested on a virtual railway network.

Chapter 6: Conclusions and Recommendations Discussion of the results obtained in
chapter 5 and the main issues of receding horizon control of railway networks.

Ate Conraad Kleijn Master of Science Thesis

Chapter 2

Modelling

In this chapter an algebraic model describing the operation of railway networks [22] is pre-
sented. The relevant aspects of railway network operation are covered in Section 2-1, result-
ing in operational constraints which are captured in a max-plus algebraic system description.
Max-plus algebra is introduced in Section 2-2. The max-plus algebraic model is introduced in
Section 2-3, of which Section 2-3-2 presents a structured nominal system description, which
is developed into a structured perturbed system description in Section 2-3-3.

2-1 Modelling Aspects

The previous chapter introduced the concept of minimizing train delays by changing the train
order at different tracks. The controller to be designed will thus be able to change the train
order at separate tracks. The endpoints of those tracks must give the possibility to change
the train order. This is the case at stations and junctions. Therefore, a track is defined as
the connection between two stations, two junctions or a station and a junction. A station is
seen as a node connecting multiple tracks, with unlimited capacity.
Two types of junctions are present in the network. One junction merges two or more separate
tracks into one (Figure 2-1) and at the other junction two tracks cross but do not merge
(Figure 2-2).

On each track, trains can perform several activities, viz.:

• Traversing a track: a running activity with an associated running time.

• Waiting at a station: a dwell activity with an associated dwell time.

A running time is the time needed for a train to traverse a track (see Figure 2-3). The du-
ration of a running activity differs for different types of trains. For example, the running

Master of Science Thesis Ate Conraad Kleijn

12 Modelling

b

train 1

tra
in

2

junction

Figure 2-1: Junction merging two separate tracks into one.

b

train 1

tra
in

2

junction

Figure 2-2: Junction at which tracks cross.

time of an intercity train will be smaller than that of a local train. A stop at a station is
characterized by a dwell activity.

train 1 train 1
running time of train 1

1 track

Figure 2-3: Illustration of a train run on a track.

For safety reasons, trains are not allowed to be too close to each other when sharing a track
(see Figure 2-5). This separation time is called the headway time. The time difference be-
tween train 2 entering track 2 in Figure 2-5 and train 1 entering track 2 must at least be this
headway time. Trains meeting at a junction as in Figure 2-1 are defined to be traveling in
the same direction, whereas trains meeting at junctions like the one in Figure 2-2 are said to
be traveling in opposite directions. However, since a junction is a point, a traveling direction
cannot be well defined. Therefore, this junction is modeled as a virtual track. This virtual
track is then given a running time equal to 0 minutes such that this track has the properties
of a point. This representation is visualized in Figure 2-4. In general, the departure and
arrival times of subsequent trains must be at least a headway time apart.

Each train has a departure and an arrival time for each track it visits. Moreover, each
train has a scheduled departure and arrival time which will be obeyed in the disturbance-
free case with a feasible timetable. Departures and arrivals are called events. These events
are allowed to occur only in a specific order. For example, a train cannot arrive before it
has departed and has traveled at least some time (running time) on a track. The minimum
headway time dictates that a departure event of a train cannot occur if the departure event
of the preceding train occurred less than a headway time earlier. Event occurrence thus
determines the operation of the network. Due to this event-driven nature, a railway network

Ate Conraad Kleijn Master of Science Thesis

2-2 Max Plus Algebra 13

b bb

0 min. running time

Figure 2-4: Trains crossing paths share a virtual track with 0 minutes running time.

train 1 train 2
min. headway time

track 2track 1

Figure 2-5: Illustration of headway time between two subsequent trains.

can be modeled as a Discrete Event System (DES). A DES is a discrete-state, event-driven
system. Event-driven means that a discrete-state transition only happens in the occurrence
of an asynchronous discrete event over time [24]. For example, a computer program changes
from idle to busy (discrete state), when a user hits a button (discrete event). Modeling DES
can be done with e.g. automata and Petri nets [24]. Railway networks belong to a special
class of DES, viz. the class of DES’s with synchronization and no concurrency. Events are
synchronized as they are allowed to only occur as a consequence of other events. There is
no concurrency, since for a feasible operation (e.g. according to the timetable) there will
be no resource conflicts, i.e. there is one predefined order in which trains will use tracks
(resources). This type of DES can be algebraically described by max-plus algebra, which will
be the modeling formalism used in this thesis. Therefore, the next section is devoted to the
basics of max-plus algebra.

2-2 Max Plus Algebra

This section introduces max-plus algebra and its properties as found in [25], which are relevant
to this thesis. Basic concepts and definitions are introduced first, after which vector and
matrix operations are defined over max-plus algebra.

2-2-1 Basic concepts and definitions

Define ε = −∞ and e = 0, and define Rmax as the set R∪ {ε}. Let a, b ∈ Rmax and define the
operations ⊕ and ⊗ by

a ⊕ b = max(a, b) and a ⊗ b = a + b. (2-1)

For any a ∈ Rmax it holds that

Master of Science Thesis Ate Conraad Kleijn

14 Modelling

a ⊕ ε = ε ⊕ a = a (2-2)

a ⊗ ε = ε ⊗ a = ε (2-3)

Max-plus algebraic multiplication (⊗) precedes over max-plus algebraic addition (⊕), as is
the case in conventional algebra. Some max-plus algebraic properties are listed below:

• Associativity:
∀x, y, z ∈ Rmax : x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z
∀x, y, z ∈ Rmax : x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z

• Commutativity:
∀x, y ∈ Rmax : x ⊕ y = y ⊕ x and x ⊗ y = y ⊗ x

• Distributivity of ⊗ over ⊕:
∀x, y, z ∈ Rmax : x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z)

• Idem-potency of ⊕:
∀x ∈ Rmax : x ⊕ x = x

2-2-2 Vectors and matrices

The elements of an n × m matrix A are defined over the set R
n×m
max and are denoted by

aij = [A]ij , 1 ≤ i ≤ n, 1 ≤ j ≤ m. (2-4)

Matrix addition of A ∈ R
n×m
max and B ∈ R

n×m
max , denoted by A ⊕ B, is defined through

[A ⊕ B]ij = aij ⊕ bij (2-5)

= max(aij , bij).

Scalar multiplication of α ∈ Rmax and A ∈ R
n×m
max is defined by

[α ⊗ A]ij = α ⊗ aij. (2-6)

The matrix product for matrices A ∈ R
n×l
max and B ∈ R

l×m
max is defined through

[A ⊗ B]ik =
l

⊕

j=1

aij ⊗ bjk (2-7)

= max
1≤j≤l

(aij + bjk).

Ate Conraad Kleijn Master of Science Thesis

2-3 Railway Network System Description 15

Matrix multiplication is not commutative:

A ⊗ B 6= B ⊗ A. (2-8)

Define the element-wise max-plus algebraic multiplication of two equally sized matrices A ∈
R

n×m
max and B ∈ R

n×m
max through:

[A ⊙ B]ij = aij ⊗ bij = aij + bij (2-9)

Let E(n, m) be the n × m matrix with all elements equal to ε, then the following holds for all
n × m matrices A:

A ⊕ E(n, m) = E(n, m) ⊕ A = A (2-10)

A ⊗ E(m, k) = E(n, k) and E(k, n) ⊗ A = E(k, m). (2-11)

Define the square matrix E as

[E]ij =

{

e for i = j
ε otherwise.

(2-12)

then the following holds for square matrices A ∈ R
n×n
max :

A ⊗ E = E ⊗ A = A. (2-13)

Note that matrix E is the max-plus algebraic identity matrix and E represents the max-plus
algebraic zero matrix.
The next section presents a max-plus algebraic model for railway networks, based on the
theory presented above.

2-3 Railway Network System Description

As introduced in Section 2-1, the railway network operates according to various constraints,
like minimum headway time and running time constraints. This section will present a max-
plus model which can be used to calculate all departure and arrival times of all trains in the
network, subject to those constraints. First, all relevant operational constraints are formalized
algebraically in Section 2-3-1 yielding a max-plus system description. Section 2-3-2 structures
this system description for the nominal case (i.e. disturbance-free) and Section 2-3-3 provides
a notation for the system description in the perturbed case.

Master of Science Thesis Ate Conraad Kleijn

16 Modelling

2-3-1 Max-Plus System Description

As introduced in Chapter 1, the railway network operates according to a periodic timetable.
Events are thus scheduled to repeat every T minutes. Let k denote a cycle counter, such
that if all events have occurred for the k − th time, cycle k is complete. Each train has train
runs associated to the individual tracks in the network. Each train run i is characterized by
a departure and an arrival event. A train run i is from now on referred to as simply by train
i, such that we can speak of "the departure of train i" and "the arrival of train i". Trains i
and j in the model may therefore be associated to the same physical train!
The k-th departure time of train i is denoted by di(k) and the k-th arrival time of train i is
denoted by ai(k). The following four operational constraints apply to di(k) and ai(k).

Timetable constraints Each train is scheduled to depart and arrive at predetermined times,
as provided by the timetable:

di(k) ≥ rd
i (k) (2-14)

ai(k) ≥ ra
i (k), (2-15)

where rd
i (k) and ra

i (k) denote the scheduled departure and arrival time of train i, respectively.

Running constraints The arrival time of train i depends on its departure time from the
previous track and the running time on that track.

ai(k) ≥ θrun
i + di(k), (2-16)

where θrun
i denotes the running time of the train associated to train i.

Dwell constraints The departure time of train i depends on its arrival time at a station or
junction and the dwell time at that station or junction:

di(k) ≥ θdwell
ij + aj(k − µij), (2-17)

where µij = 0 for events from the same cycle or µij = 1 if the arrival event is from the
previous cycle. Note that events i and j are related to the same train, of which the dwell
time is given by θdwell

ij . Dwell constraints are therefore also called continuity constraints, as
they link the movement of a train to different event numbers.

Headway constraints Trains have to be separated by a headway time τf when traveling in
equal direction. Suppose that train j precedes train i, then

di(k) ≥ τf + dj(k − µij) (2-18)

ai(k) ≥ τf + aj(k − µij), (2-19)

Ate Conraad Kleijn Master of Science Thesis

2-3 Railway Network System Description 17

where µij = 0 for events from the same cycle or µij = 1 if dj or aj is from the previous cycle.
Trains i and j are different physical trains!
When traveling in opposite directions (when meeting at a junction as in Figure 2-2):

di(k) ≥ τw + aj(k − µij) (2-20)

where µij = 0 for events from the same cycle or µij = 1 if the arrival event is from the
previous cycle. Trains i and j use a virtual track. Again, trains i and j are different physical
trains! Headway relations separate the occurrence of two events, associated to two different
trains, in time and thus represent the order of trains.

Suppose that n is the total number of train runs and 1 ≤ ℓ ≤ n. The departure time of
train i then follows from:

di(k) = max
ℓ

(rd
i (k), θdwell

iℓ + aℓ(k − µiℓ), τf + aℓ(k − µiℓ), τh + dℓ(k − µiℓ)). (2-21)

The arrival time of train i follows from:

ai(k) = max
ℓ

(ra
i (k), θrun

i + di(k), τf + aℓ(k − µiℓ)). (2-22)

Suppose that xi(k) denotes an event time, which can either be a departure or an arrival, then
this time is given by Eq. (2-23).

xi(k) = max
j

(ri(k), θrun
i + xi(k), θdwell

ij + xj(k − µij), τf + xj(k − µij), τh + xj(k − µij)), (2-23)

where 1 ≤ j ≤ 2n as there are n departure and n arrival events.
Denote an activity time, like a running or dwell time, from event j to i in one cycle k (µij = 0)
by aij and an activity time from event j in cycle k − 1 to event i in cycle k (µij = 1) by bij

and by using Eq. (2-1) and Eq. (2-7), then Eq. (2-23) becomes:

xi(k) =
(

n
⊕

j=1

aij ⊗ xj(k)
)

⊕
(

n
⊕

j=1

bij ⊗ xj(k − 1)
)

⊕ ri(k), (2-24)

If there is an activity from event j to i and they are in the same cycle k, then aij will have a
non-ε value. If they are not in the same cycle, bij is non-ε.
When x(k) ∈ R

m×1
max is a vector of all event times (departures and arrivals), aij and bij are

matrix entries of respectively A ∈ R
n×m
max and B ∈ R

n×m
max , and r(k) ∈ R

m×1
max is a vector with

scheduled event times. By applying Eq. (2-5) and Eq. (2-7), Eq. (2-24) becomes:

xi(k) = [A ⊗ x(k)]i ⊕ [B ⊗ x(k − 1)]i ⊕ ri(k) (2-25)

For the vector x(k) then holds:

x(k) = A ⊗ x(k) ⊕ B ⊗ x(k − 1) ⊕ r(k) (2-26)

Master of Science Thesis Ate Conraad Kleijn

18 Modelling

2-3-2 Nominal System Description

The previous section presented a max-plus system description for a railway network. This
section aims at providing a structuring in this system description by partitioning the state
vector x(k) and grouping the system matrices A and B with respect to the various activity
times. This provides a convenient notation for analysis and implementation. The partitioning
of the system is chosen such that departure and arrival times are grouped in the event time
vector x(k) as shown in Eq. (2-27), where d(k) and a(k) denote the departure and arrival
times of trains in cycle k, respectively. The vector containing schedule times is partitioned
likewise (Eq. (2-27)), with rd(k) and ra(k) denoting scheduled departure and arrival times
for cycle k, respectively. The same partitioning holds for x(k − 1).

x(k) =

[

d(k)

a(k)

]

, r(k) =

[

rd(k)

ra(k)

]

(2-27)

The matrices are divided in four blocks, each representing a different type of constraint
(as presented in Section 2-3-1) related to departures and arrivals. Eq. (2-28) shows this
partitioning.

A =

[

A1 A2 ⊕ A3

A4 A1

]

, B =

[

B1 B2 ⊕ B3

B4 B1

]

(2-28)

In Eq. (2-28), matrices A1 and B1 contain headway times for trains traveling in the same
direction, whereas matrices A2 and B2 contain headway times for trains traveling in opposite
directions. The former headway times are denoted by τf and the latter by τw. The entries of
matrices A1, B1, A2 and B2 are defined as:

[A1]ij =

{

τf if event j precedes event i
ε otherwise

(2-29)

[B1]ij =

{

τf if event j from k − 1 precedes event i from k
ε otherwise

(2-30)

[A2]ij =

{

τw if event j precedes event i in opposite direction
ε otherwise

(2-31)

[B2]ij =

{

τw if event j from k − 1 precedes event i from k in opposite direction
ε otherwise

(2-32)

The dwell times are contained in matrices A3 and B3. The entries of matrices A3 and B3 are
given in Eq. (2-35) and Eq. (2-34). Matrices A4 and B4 contain the running times. However,

Ate Conraad Kleijn Master of Science Thesis

2-3 Railway Network System Description 19

since the convention is followed that a train departing in cycle k also has its arrival time
defined in cycle k (see Section 2-3-1), all entries of matrix B4 are equal to ε. Throughout
this thesis, B4 will therefore be denoted by E . Let the vector containing all running times
be denoted by Θrun and the vector of all dwell times by Θdwell. These vectors are stacked to
obtain the parameter vector Θ, as shown in Eq. (2-33).

Θ =

[

Θrun

Θdwell

]

(2-33)

Let γ(i) denote the index in Θdwell of the dwell time related to train i. The entries of matrices
B3 and A3 are given as:

[B3]ij =

{

Θdwell
γ(i) if train j from cycle k − 1 proceeds as train i in cycle k

ε otherwise,
(2-34)

and

[A3]ij =

{

Θdwell
γ(i+n) if train j proceeds as train i in the same cycle

ε otherwise.
(2-35)

Matrix A4 is a diagonal matrix with on its diagonal the running times:

A4 =

Θrun
1 ε . . . ε

ε Θrun
2

. . .
...

...
. . .

. . . ε
ε . . . ε Θrun

n

(2-36)

where n is the number of trains in one cycle.

Since matrices A3, A4 and B3 depend on Θ, Eq. (2-28) is rewritten into

A =

[

A1 A2 ⊕ A3(Θ)

A4(Θ) A1

]

, B =

[

B1 B2 ⊕ B3(Θ)

B4 B1

]

. (2-37)

Recall that the railway network model contains only those points where order swaps can
occur, viz. stations and junctions, and that it consists of tracks connecting those points. Let
y(k) denote x(k) ordered with respect to individual tracks and let T ∈ R

m×m
max , such that

T T ⊗ T = E, denote the transformation matrix needed to obtain x(k) from y(k), which is
given in formula by:

x(k) = T ⊗ y(k) = T ⊗

x1(k)
x2(k)

...
xnt(k)

, (2-38)

Master of Science Thesis Ate Conraad Kleijn

20 Modelling

where xp denotes all event times associated to track p, for 1 ≤ p ≤ nt.
Inserting Eq. (2-38) into Eq. (2-26) yields:

y(k) = T T ⊗ A ⊗ T ⊗ y(k) ⊕ T T ⊗ B ⊗ T ⊗ y(k − 1) ⊕ rp(k)

= G ⊗ y(k) ⊕ H ⊗ y(k − 1) ⊕ s(k) (2-39)

Like matrices A and B in Eq. (2-28), matrices G and H can be partitioned likewise:

G =

[

G1 G2 ⊕ G3(Θ)

G4(Θ) G1

]

, H =

[

H1 H2 ⊕ H3(Θ)

E H1

]

(2-40)

Let the transformation matrix T also be partitioned as

T =

[

T1 T2

T3 T1

]

, and T T =

[

T T
1 T T

3

T T
2 T T

1

]

, (2-41)

then the track-ordered headway matrices G1, G2, H1 and H2 are obtained through Eq. (2-42)
and Eq. (2-43).

G1 =

G1
1 E · · · E

E G2
1

. . .
...

...
. . .

. . . E
E · · · E Gnt

1

= T T
1 ⊗A1⊗T1, G2 =

G1
2 E · · · E

E G2
2

. . .
...

...
. . .

. . . E
E · · · E Gnt

2

= T T
1 ⊗A2⊗T3

(2-42)

H1 =

H1
1 E · · · E

E H2
1

. . .
...

...
. . .

. . . E
E · · · E Hnt

1

= T T
1 ⊗B1⊗T1, H2 =

H1
2 E · · · E

E H2
2

. . .
...

...
. . .

. . . E
E · · · E Hnt

2

= T T
1 ⊗B2⊗T3

(2-43)

2-3-3 Perturbed System Description

The system description presented in Eq. (2-39) reflects nominal operation and (for a feasible
timetable) y(k) will be equal to s(k). It is furthermore assumed that y(k − 1) is fully known.
During operation, however, not all parameters are known beforehand. For example, the
running time of a train will not be known until its arrival. This running time will be nominal
in a disturbance-free case, but will deviate (i.e. will be bigger) in a disturbed case. Therefore,
the parameter set Θ may differ from cycle to cycle and an appropriate notation will thus be
Θ(k). Eq. (2-39) can then be written as

y(k) = G(Θ(k)) ⊗ y(k) ⊕ H(Θ(k)) ⊗ y(k − 1) ⊕ s(k) (2-44)

Ate Conraad Kleijn Master of Science Thesis

2-4 Conclusions 21

As at a certain point in time, part of Θ(k) is known and the remainder will be an estimation
of the actual parameter values. Therefore, Θ(k) may also change with time and at a certain
time instant, a prediction of Θ(k) is available and an appropriate notation would be Θ(k | t).
Eq. (2-44) then becomes:

y(k | t) = G(Θ(k | t)) ⊗ y(k | t) ⊕ H(Θ(k | t)) ⊗ y(k − 1) ⊕ s(k) (2-45)

State vector y(k) then also contains predicted event times susceptible to change over time,
hence the notation y(k | t). Vector y(k − 1) was assumed to be fully known and therefore
does not change in time whilst the system is in cycle k. Note that even though y(k − 1) is
known, dwell activities relating events from k − 1 to k can still be perturbed.
Eq. (2-28) then becomes:

G(Θ(k | t)) =

[

G1 G2 ⊕ G3(Θ(k | t))

G4(Θ(k | t)) G1

]

(2-46)

H(Θ(k | t)) =

[

H1 H2 ⊕ H3(Θ(k | t))

E H1

]

(2-47)

2-4 Conclusions

In this chapter, a max-plus linear model of a railway network was presented. This model is
structured with respect to the headway, running and dwell times. The running and dwell
times are stacked in the parameter vector Θ(k | t). Since this parameter vector is susceptible
to perturbations, part of this vector is known and the remainder is estimated. The next
chapter presents a controllable system description, in which the headway time matrices can
be manipulated by a control variable.

Master of Science Thesis Ate Conraad Kleijn

22 Modelling

Ate Conraad Kleijn Master of Science Thesis

Chapter 3

Control

This chapter presents how order swaps are implemented [22] into the max-plus system de-
scription presented in the previous chapter. First, an example is presented to get insight
into how order swaps are implemented. Then, the structured perturbed max-plus model is
extended to also be structured in the input vector in Section 3-2. This model is used as basis
for a prediction model, which is developed in Section 3-3. Section 3-4 presents the MILP
formulation [22] of finding the optimal inputs and event times. The receding horizon control
framework as used for the control of railway networks is presented in Section 3-5.

3-1 Order Swap Example

As mentioned in Section 2-3-1, headway relations represent the order of trains. This section
shows an example in which the headway relations between two trains is modified to implement
an order swap. Consider the simple network consisting of three stations A, B and C connected
by two tracks, as depicted in Figure 3-1.

track 1 track 2

train 1train 2

A B C

Figure 3-1: Example network in which train 1 acquires a delay at station B.

Suppose that during each cycle, two train lines operate on the network. Line 1 has planned
stops at all three stations, whereas line 2 only stops at stations A and C. Train a operates
on line 1 and train b operates on line 2. Assume that at each station there is the possibility
for trains to overtake each other. Furthermore assume that all events of the previous cycle
have occurred and were punctual (i.e. all trains were on time). In other words, y(k − 1) is
fully known and equal to s(k − 1). Suppose that train a precedes train b on both tracks in
the nominal case, but that due to a disturbance the departure of train a from station B is

Master of Science Thesis Ate Conraad Kleijn

24 Control

delayed. If no action would be taken, train b would have to wait for train a to leave station B
and would as a result also be delayed. The departure of train b should thus be given priority
above that of train a. For this example it is sufficient to only consider the departure events
and matrix G1, since G1 also relates the arrival events and there are no trains running in
opposite directions (G2 = E). Since two trains are using two tracks, there is a total of 4 train
runs (with 4 departures and 4 arrivals) each cycle. Recall that a train run i is referred to as
a train i. Define the vector d(k) as follows:

d(k) =

d1(k)
d2(k)
d3(k)
d4(k)

=

departure of train 1 from track 1
departure of train 2 from track 1
departure of train 3 from track 2
departure of train 4 from track 2

,

. (3-1)

where trains 1 and 3 are associated to train a and trains 2 and 4 are associated to train b.
The departure events are related through G1 as follows:

d(k) = G1 ⊗ d(k) =

[

G1
1 E

E G2
1

]

⊗ d(k). (3-2)

Matrices G1
1 and G2

1 are given by:

G1
1 =

[

ε ε
τf ε

]

, G2
1 =

[

ε ε
τf ε

]

. (3-3)

The departure order of train 1 and train 2 from track 2 needs to be swapped. This can be
achieved by swapping entries [G2

1]2,1 and [G2
1]1,2. In that way, the departure time of train 2

from track 2 now follows from the departure time of train 1 from track 2: d3(k) = d4(k) ⊗ τf .
Matrix G2

1 thus becomes:

G2
1 =

[

ε τf

ε ε

]

. (3-4)

In general, the procedure of swapping orders between events i and j is as follows. Suppose that
in the nominal case, event j from cycle k precedes event i from cycle k, such that [G1]ij = τf

and [G1]ji = ε (for the same direction) or [G2]ij = τw and [G2]ji = ε (for opposite directions).
Then, an order swap is implemented by setting [G1]ij = ε and [G1]ji = τf or [G2]ij = ε and
[G2]ji = τw. If event j belongs to cycle k − 1 and i to cycle k, the swap is applied to H1 or
H2.

3-2 Controlled System Description

In the previous section, it was demonstrated that order swaps are realized through manip-
ulation of the headway matrices. More specifically, by swapping entries of the track-order
matrices G1, G2, H1 and H2. This section will present the mathematical formulation for
realizing order swaps, in stead of doing this by inspection as was done in the example of the

Ate Conraad Kleijn Master of Science Thesis

3-2 Controlled System Description 25

previous section.
First, the matrices G1, G2, H1 and H2 are split as follows:

Gp
1 = Mp ⊙ Dp ⊙ τf (3-5)

Gp
2 = Mp ⊙ D̄p ⊙ τw (3-6)

Hp
1 = Np ⊙ Dp ⊙ τf (3-7)

Hp
2 = Np ⊙ D̄p ⊙ τw. (3-8)

Matrix Mp defines event orders on track p, matrices Dp and D̄p are direction matrices for
track p and matrix Np defines event orders on track p for two events from cycle k − 1 and k.
Define the very large negative number β << 0. The entries of matrices Mp, Np, Dp and D̄p

are given by Eq. (3-9) - Eq. (3-12).

[Mp]ij =

{

0 if event j precedes event i on track p
β otherwise

(3-9)

[Np]ij =

{

0 if event j from cycle k − 1 precedes event i from cycle k on track p
β otherwise

(3-10)

[Dp]ij =

{

0 for trains traveling in equal direction on track p
β for trains traveling in opposite direction on track p

(3-11)

[D̄p]ij =

{

0 for trains traveling in opposite direction on track p
β for trains traveling in equal direction on track p

(3-12)

Order swaps on track p can now be implemented by manipulating the entries of Mp, without
having to take the direction and the associated different headway time (τf or τw) into con-
sideration.
Define up

M ∈ {0, 1}nu , with nu = np(np − 1)/2, where np equals the number of trains on track
p during one cycle, then in cycle k for each track matrix Mp can be manipulated through use
of Eq. (3-13). This permutation of matrix Mp is referred to as mode switching, as for each
choice of up

M the system description changes or switches to another operational mode. The
introduction of β to represent ε in the controlled system description ensures that the notation
using multiplication from conventional algebra, as used in Eq. (3-13), is correct.

Mp(up
M (k)) = Mp

0 ⊙

np(np−1)/2
∑

l=1

Mp
l · [up

M (k)]l, (3-13)

Master of Science Thesis Ate Conraad Kleijn

26 Control

where matrix Mp
0 represents order matrix Mp in the nominal case, matrix Mp

l represents a
permutation option and the binary variable [up

M (k)]l is the input associated to that specific
permutation. The input [up

M (k)]l thus activates the permutation Mp
l .

In the same way, order swaps between events from subsequent cycles can be implemented by
permutation of matrix Np:

Np(up
N (k)) = Np

0 ⊙
np(np−1)/2

∑

l=1

Np
l · [up

N (k)]l, (3-14)

where matrix Np
0 represents order matrix Np in the nominal case, matrix Np

l represents a
permutation option and the binary variable [up

N (k)]l is the input associated to that specific
permutation.
Suppose that mode l is associated to events i and j, where j precedes i on track p in the
nominal case, then the entries of Mp

l and Np
l are defined as

[Mp
l]qr =

β for q = i and r = j
−β for q = j and r = i
0 otherwise,

(3-15)

and

[Np
l]qr =

β for q = i and r = j
−β for q = j and r = i
0 otherwise.

(3-16)

In the permutable system description, matrices G1 and G2 depend on uM (k), where uM (k) =
[u1

M (k) u2
M (k) · · · unt

M (k)]T . Eq. (2-46) can thus be rewritten into

G(uM (k), Θ(k | t)) =

[

G1(uM (k)) G(uM (k)) ⊕ G3(Θ(k | t))
G4(Θ(k | t)) G1(uM (k))

]

. (3-17)

Matrices H1 and H2 depend on uN (k), where uN (k) = [u1
N (k) u2

N (k) · · · unt

N (k)]T . Equation
2-47 can thus be rewritten into

H(uN (k − 1), Θ(k | t)) =

[

H1(uN (k − 1)) H2(uN (k − 1)) ⊕ H3(Θ(k | t))
B H1(uN (k − 1))

]

. (3-18)

where B is a matrix with its entries equal to β. When swapping orders of trains it may occur
that an event needs to be scheduled after an event scheduled to occur in the next cycle (i.e.
cycle k + 1). Therefore, in the controlled case, y(k) may also depend on y(k + 1). First,
Eq. (2-45) is augmented with the term I(k) ⊗ y(k + 1 | t):

y(k | t) = G(Θ(k | t)) ⊗ y(k | t) ⊕ H(Θ(k | t)) ⊗ y(k − 1) ⊕ I(k) ⊗ y(k + 1 | t) ⊕ s(k).
(3-19)

Ate Conraad Kleijn Master of Science Thesis

3-2 Controlled System Description 27

In the nominal case, I(k) = E . Like matrices G(Θ(k | t)) and H(Θ(k | t)), matrix I(k) is
partitioned as follows:

I((k)) =

[

I1(k) I2(k)
B I1(k)

]

, (3-20)

where

[I1(k)]ij =

{

τf if event j precedes event i
β otherwise

(3-21)

and

[I2(k)]ij =

{

τw if event j precedes event i in opposite direction
β otherwise

(3-22)

The entries of matrices I1 and I2 follow from:

Ip
1 = Op ⊙ Dp ⊙ τf (3-23)

Ip
2 = Op ⊙ D̄p ⊙ τw, (3-24)

where the entries of Op is defined as:

[Op]ij =

{

0 if event j from cycle k + 1 precedes event i from cycle k on track p
β otherwise

(3-25)

Define up
O ∈ {0, 1}nu , with nu = np(np − 1)/2, where np equals the number of trains on track

p during one cycle, then in cycle k for each track matrix Op can be manipulated through

Op(up
O(k)) = Op,0 ⊙

np(np−1)/2
∑

l=1

Op
l · [up

O(k)]l (3-26)

where Op
0 represents order matrix Op in the nominal case, Op

l represents a permutation option
and [up

O(k)]l is the input associated to that specific permutation.
Suppose that mode l is associated to events i and j, where j precedes i on track p in the
nominal case, then the entries of Op

l are defined as

[Op
l]qr =

β for q = i and r = j
−β for q = j and r = i
0 otherwise.

(3-27)

Master of Science Thesis Ate Conraad Kleijn

28 Control

Matrix I(k) thus depends on uO(k), therefore we will use the notation I(uO(k)) and Eq. (3-20)
becomes:

I(uO(k)) =

[

I1(uO(k)) I2(uO(k))
B I1(uO(k))

]

, (3-28)

Eq. (3-19) is rewritten into:

y(k | t) = G(Θ(k | t)) ⊗ y(k | t) ⊕ H(Θ(k | t)) ⊗ y(k − 1)

⊕ I(uO(k)) ⊗ y(k + 1 | t) ⊕ s(k). (3-29)

When new measurements become available for events in cycle k at time t, the earlier computed
input sequence may not be optimal any longer and needs to be recomputed. Therefore,
the input vectors may also change within one cycle at various time instants and Eq. (3-29)
becomes:

y(k | t) = G
(

uM (k, t), Θ(k | t)
)

⊗ y(k | t) ⊕ H
(

uN (k − 1, t), Θ(k | t)
)

⊗ y(k − 1)

⊕ I
(

uO(k, t)
)

⊗ y(k + 1 | t) ⊕ s(k). (3-30)

The next section extends Eq. (3-30) over an horizon of future cycles, such that consequences
for future cycles of actions taken now can be assessed during the current cycle.

3-3 Prediction Model

This section presents a description of the prediction model based on the model description
of Section 3-2. This prediction model predicts event times for cycles k to k + Np, where Np

denotes the prediction horizon. The event times for each cycle within the prediction horizon
are given by Equation 3-31.

y(k + j | t) = G(uM (k + j, t), Θ(k + j | t)) ⊗ y(k + j | t) ⊕ . . .

H(uN (k + j − 1, t), Θ(k + j | t)) ⊗ y(k + j − 1) ⊕ . . .

I(uO(k + j, t)) ⊗ y(k + j + 1 | t) ⊕ s(k + j) (3-31)

for j = 0, . . . , Np

Define ỹ(k | t) as the vector containing event times over the prediction horizon as predicted
in cycle k at time instant t. Its structure is given in Equation 3-32, where s̃(k) is represented
likewise. The same is done for the input and parameter vector, yielding ũ(k, t) and Θ̃(k | t)
respectively. Their structure is shown in Equation 3-33

Ate Conraad Kleijn Master of Science Thesis

3-3 Prediction Model 29

ỹ(k | t) =

d(k | t)
d(k + 1 | t)

...
d(k + Np | t)

a(k | t)
a(k + 1 | t)

...
a(k + Np | t)

=

[

d̃(k | t)
ã(k | t)

]

, s̃(k) =

sd(k)
sd(k + 1)

...
sd(k + Np)

sa(k)
sa(k + 1)

...
sa(k + Np)

=

[

s̃d(k)
s̃a(k)

]

(3-32)

ũ(k, t) =

uM (k, t)
uM (k + 1, t)

...
uM (k + Np, t)

uN(k)
uN(k + 1, t)

...
uN (k + Np − 1, t)

uO(k, t)
uO(k + 1, t)

...
uO(k + Np, t)

=

ũM (k, t)
ũN (k, t)
ũO(k, t)

 , Θ̃(k | t) =

Θrun(k | t)
Θrun(k + 1 | t)

...
Θrun(k + Np | t)

Θdwell(k | t)
Θdwell(k + 1 | t)

...
Θdwell(k + Np | t)

=

[

Θ̃run(k | t)

Θ̃dwell(k | t)

]

(3-33)

The system generating ỹ(k | t), using Equation 3-33 is given by:

ỹ(k | t) = G
(

ũ(k, t), Θ̃(k | t)
)

⊗ ỹ(k | t) ⊕ H
(

uN(k − 1), Θ̃(k | t)
)

⊗ y(k − 1) ⊕ s̃(k) (3-34)

with

G(ũ(k, t), Θ̃(k | t)) =

[

G1(ũ(k, t)) G2(ũ(k, t)) ⊕ G3(Θ̃(k | t))

G4(Θ̃(k | t)) G1(ũ(k, t))

]

(3-35)

and

H
(

uN (k − 1), Θ̃(k | t)
)

=

[

H1(uN (k − 1)) H2(uN (k − 1)) ⊕ H3(Θ̃(k | t))

B H1(uN (k − 1))

]

(3-36)

(3-37)

where

Gp
1 = Mp(ũp(k)) ⊙ Dp ⊙ τf (3-38)

Gp
2 = Mp(ũp(k)) ⊙ D̄p ⊙ τw. (3-39)

The entries of matrices Mp, Dp and D̄p are defined as those of Mp, Dp and D̄p (Eq. (3-9),
Eq. (3-11) and Eq. (3-12), respectively).
Matrix Mp(ũp(k)) depends on ũp(k) in the following way:

Master of Science Thesis Ate Conraad Kleijn

30 Control

Mp(ũp(k)) = Mp
0 ⊙

ñp(ñp−1)/2
∑

i=1

Mp
i [ũp(k)]i, (3-40)

where Mp
0 represents the nominal situation on track p during the prediction horizon, [ũp(k)]i

is the binary control variable associated to permutation option Mp
i on track p, and ñp is the

number of trains using track p during the prediction horizon.

Matrices H1(uN (k − 1)) and H2(uN (k − 1)) are defined as

H1(uN (k − 1)) =

H1(uN (k − 1))
B
...
B

, H2(uN (k − 1)) =

H2(uN (k − 1))
B
...
B

(3-41)

and H3(Θ̃(k | t)) is defined through:

H3(Θ̃(k | t)) =

H3(Θ̃(k | t))
B
...
B

. (3-42)

Matrices G1(ũ(k, t)), G2(ũ(k, t)), G3(Θ̃(k | t)) and G4(Θ̃(k | t)) are defined in Equations
3-44 - 3-47, where the arguments k and t are left out for presentational reasons only. Note
from Eq. (3-44) that matrices I1(uN (k)) and H1(uN (k)) are coupled through uN , since a
permutation of I1(uN (k)) relating y(k) to y(k + 1) in cycle k, will define permutations to
H1(uN (k)) in cycle k + 1. This implies that for the prediction model it does not make sense
to differ between uN (k) and uO(k − 1). The same holds for I2 and H2. Therefore, Equations
3-44 - 3-47 do not contain uO and the vector ũ(k, t) is redefined in Equation 3-43.
Matrix I1(uN (Np)) is not included in the expression for y(k + Np) in Equation 3-44, since
y(k + Np + 1) falls outside the prediction horizon. The same holds for I2.

ũ(k, t) =

uM (k, t)
uM (k + 1, t)

...
uM (k + Np, t)

uN (k)
uN (k + 1, t)

...
uN (k + Np − 1, t)

=

[

ũM (k, t)

ũN (k, t)

]

(3-43)

Ate Conraad Kleijn Master of Science Thesis

3-4 Solving the Control Problem 31

G1(ũ(k)) =

G1(uM (0)) I1(uN (0)) B

H1(uN (0)) G1(uM (1)) I1(uN (1))
. . .

...

. . .
. . .

. . .
. . .

B
H1(uN (Np − 2)) G1(uM (Np − 1)) I1(uN (Np − 1))

. . . B B H1(uN (Np − 1)) G1(uM (Np))

(3-44)

G2(ũ(k)) =

G2(uM (0)) I2(uN (0)) B

H2(uN (0)) G2(uM (1)) I2(uN (1))
. . .

...

. . .
. . .

. . .
. . .

B
H2(uN (Np − 2)) G2(uM (Np − 1)) I2(uN (Np − 1))

. . . B B H2(uN (Np − 1)) G2(uM (Np))

(3-45)

G3(Θ̃(k)) =

G3(Θ(0)) B

H3(Θ(0)) G3(Θ(1))
. . .

...
. . .

. . .
. . .

H3(Θ(Np − 1)) G3(Θ(Np − 1)) B
. . . B B H3(Θ(Np)) G3(Θ(Np))

(3-46)

G4(Θ̃(k)) =

G4(Θ(0)) B

B G4(Θ(1))
. . .

. . .
. . .

...

G4(Θ(Np − 1)) B
. . . B G4(Θ(Np))

(3-47)

3-4 Solving the Control Problem

This section presents a linear programming formulation to solve the problem of finding optimal
the optimal input and state vector. It has been shown in [22] that this problem yields a Mixed
Integer Linear Programming problem. The optimization has to minimize some cost function
J(k), through the optimizers ỹ(k | t) and ũ(k, t):

min
ỹ(k|t),ũ(k,t)

J(k) (3-48)

Master of Science Thesis Ate Conraad Kleijn

32 Control

Objective function As the objective is to minimize the total delay over the whole prediction
horizon, an obvious candidate cost function is:

J(k) = cT
y

(

ỹ(k | t) − s̃(k)
)

, (3-49)

where cT
y is a vector containing constant weights. Since the constant term −cT

y s̃(k) does not
affect the position of the optimum, it can be discarded from the cost function:

J(k) = cT
y ỹ(k | t), (3-50)

When changing train order, it may occur that the non-prioritized train has to decelerate (to
a full stop) and accelerate again. The time needed for this action contributes to the delay.
Therefore, an order swap is also penalized in the optimization, albeit with a weight much
smaller than given to the state vector. The cost function then becomes:

J(k) = cT
y ỹ(k | t) + cT

u ũ(k, t). (3-51)

Constraints Eq. (3-34) can be written as (through applying Eq. (2-5) and Eq. (2-7)):

ỹi(k | t) = max(s̃i(k), max
j

(ỹj(k | t) + [G
(

ũ(k, t), Θ̃(k | t)
)

]ij),

max
h

(yh(k − 1) + [H
(

uN (k − 1), Θ̃(k | t)
)

]ih)), (3-52)

which can be rewritten into (where (· | t) and (·, t) are left out of the arguments for presen-

Ate Conraad Kleijn Master of Science Thesis

3-5 Receding Horizon Control 33

tational reasons only)

d̃i(k) ≥ s̃d
i (k) (3-53a)

ãi(k) ≥ s̃a
i (k) (3-53b)

d̃i(k) ≥ ãj(k) + [G3(Θ̃(k))]ij ∀j (3-53c)

ãi(k) ≥ d̃j(k) + [G4(Θ̃(k))]ij ∀j (3-53d)

d̃i(k) ≥ ah(k − 1) + [H3(Θ̃(k))]ih ∀h (3-53e)

d̃i(k) ≥ d̃j(k) + τf + [D]ij + [M0]ij +
nũ
∑

l

[Ml]ij · [ũ(k)]l ∀j (3-53f)

d̃i(k) ≥ d̃j(k) + τw + [D̄]ij + [M0]ij +
nũ
∑

l

[Ml]ij · [ũ(k)]l ∀j (3-53g)

ãi(k) ≥ ãj(k) + τf + [D]ij + [M0]ij +
nũ
∑

l

[Ml]ij · [ũ(k)]l ∀j (3-53h)

d̃i(k) ≥ dh(k − 1) + τf + [D]ih + [N0]ih +

nuN
∑

l

[Nl]ih · [uN (k − 1)]l ∀h (3-53i)

d̃i(k) ≥ dh(k − 1) + τw + [D̄]ih + [N0]ih +

nuN
∑

l

[Nl]ih · [uN (k − 1)]l ∀h (3-53j)

ãi(k) ≥ ah(k − 1) + τf + [D]ih + [N0]ih +

nuN
∑

l

[Nl]ih · [uN (k − 1)]l ∀h, (3-53k)

where h = 1, 2, . . . , n, i = 1, 2, . . . , n and j = 1, 2, . . . , n are the train numbers, nũ is the
number of permutations associated to matrix M and nuN

is the number of permutations
associated to matrix N . These constraints are linear in d̃(k | t) and ã(k | t), and therefore in
ỹ(k | t), as well as in ũ(k, t). Eq. (3-53) can thus be written in the form:

Ac

[

ỹ(k | t)
ũ(k, t)

]

≥ bc(k) (3-54)

The linear objective function (Eq. (3-51)) subject to the linear constraints, with continuous
values for ỹ(k | t) and binary values for ũ(k, t), yields a Mixed Integer Linear Programme
(MILP).

3-5 Receding Horizon Control

In conventional receding horizon control, an optimal sequence of future inputs is computed,
of which the first input is implemented in the real system. Then, the prediction horizon shifts
ahead one sample and the process restarts. Figure 3-2 illustrates this process.

At time step l some objective function J is minimized subject to constraints, by optimizing
a future control sequence {u(l | l, . . . , u(l + Nc − 1 | l)}. At this time step l only u(l | l) is
applied to the process under control. At the next time step (l + 1), the horizon shifts ahead

Master of Science Thesis Ate Conraad Kleijn

34 Control

b b b

r(l)

y(l)

l

Nm

Nc Np

FuturePast

u(l)

l + j

Figure 3-2: The principle of receding horizon control.

one sample and the optimization is repeated.
In Section 3-3 the prediction horizon was defined to be an integer number of cycles. During
each cycle k new measurements become available at various time steps, which can either be
actual event times, or estimated parameter values. During one cycle multiple optimizations
are thus carried out using this updated information, yielding new optimal states and inputs
for cycles k to k + Np.

3-5-1 Event time constraints

Consider the situation in Figure 3-3. The graphs show the number of pending events in the
prediction horizon plotted against time. The upper graph shows when the system is in cycle
k and predicts event times up to and including cycle k + 1 (as indicated by the dashed area).
All events of cycle k − 1 are known. Assume that cycle k will not be perturbed, such that
no control is needed. As time progresses, more state information becomes available and the
number of pending events thus decreases. At the point t2, this number increases, since then
all event times of cycle k are known and the horizon shifts ahead one cycle to k′ = k + 1 and
includes k′ + 1 = k + 2, which is depicted in the middle graph. This is consistent with the
assumption that all event times of the initial cycle k − 1 are known, as cycle k of which all
event times are known now becomes k′ − 1.
Now consider the lower graph of Figure 3-3. Suppose that a disturbance occurs in cycle k′

at time t∗. Since the actual operation of the network will deviate from the desired operation,
the optimization is started. However, the optimization must be restricted, as event times for
which holds that t2 ≤ ỹ(k, t) ≤ t∗ are not allowed to be changed. Denote by fixed event times
the event times which are not allowed to be varied in the optimization. All the other event
times are called variable event times. The value ỹi(k | t) is an estimate resulting from an

Ate Conraad Kleijn Master of Science Thesis

3-5 Receding Horizon Control 35

#
p

en
d

in
g

ev
en

ts

Time

k − 1 k k + 1

t1 t2 t3t0

Nominal:

t4

k + 2

#
p

en
d

in
g

ev
en

ts

Time

t1 t2 t
′

3
t0 t∗

Perturbed:

t3 t
′

4
t4

#
p

en
d

in
g

ev
en

ts

Time

k′ − 2 k′ − 1 k′

t1 t2 t3t0 t4

k′ + 1

k′ k′ + 1k′ − 1k′ − 2

Figure 3-3: During disturbances events are delayed and it takes longer before all event information
of the perturbed cycle is available, so at some point in time in that cycle, there are more pending
events than there would be in the nominal case. Due to the disturbance, not all events of cycle
k′ have occurred until time t

′

3 > t3. As the disturbance also affects events from cycle k′ + 1, the
point t4 is also shifted to t

′

4. Note, however, that due to a stable timetable and effect of control
actions, the distance between t4 and t

′

4 is smaller than the distance between t3 and t
′

3 (assuming
no more disturbances occur).

estimated activity time Θ̃γ(i)(k | t). Define the fixed and variable part of ỹi(k | t) as follows:

ỹfix
i (k, t) = ỹi(k, t) ∀ {i | t ≥ ỹi(k | t)} (3-55)

ỹvar
i (k, t) = ỹi(k, t) ∀ {i | t < ỹi(k | t)} (3-56)

When at time t an estimate of a perturbed parameter is supplied, the optimization is started.
Like event times that occurred before time t, train orders cannot be changed when one of the
trains has already departed or arrived. Therefore, all inputs associated to fixed events are not
allowed to be changed in the optimization. However, more restrictions apply to order swaps,
due to the time needed to perform the optimization. This is explained next.

Master of Science Thesis Ate Conraad Kleijn

36 Control

3-5-2 Constraints due to computation time

Denote the time needed for the optimization to complete by δt. This implies that the optimal
order swaps and event times are available no earlier than at time t + δt. However, the
optimization has the freedom to perform order swaps such that events can be re-scheduled to
occur before t + δt. When this is the case, at time t + δt it turns out that a train should have
already departed for the order swap to be optimal. We should therefore give re-scheduled
events a lower bound on event time, viz. t + δt. This restriction is called the minimum
re-schedule time constraint. First, we need to determine which inputs are not allowed to be
changed by the optimization. Consider Figure 3-4 in which two events, event 1 and event 2,
are to expected to occur at times ỹ1 and ỹ2, respectively. However, at time t1 a new estimate
of ỹ1 is available, predicting event 1 will occur at time ỹ1(t1). This is depicted in Figure 3-4.
Event 2 was scheduled to occur after event 1, but due to perturbed event 1, it is better to
let event 2 precede event 1. After the optimization at time t + δt, two situations as depicted
in Figure 3-4 could occur. Ideally, the departure time of train 2 equals its scheduled time
again. However, the decision should be based on the departure time of train 2 not earlier
than at t+δt, since that is the time at which the order swap will be known. The optimization
introduces some delay due to the relatively late decision. However, the optimal solution is not
known beforehand. In the worst case, the situation would be the same as when no decision
would have been made (lower graph of Figure 3-4.

The next example shows when it is not desired to change a train order. Consider the situation
as depicted in Figure 3-5. A new parameter estimation is available at time t1, which results
in a new estimate ỹ1(k | t1). Assume that the order of train 1 and 2 can be changed. By the
time the optimization routine has finished, the optimal decision might have been to change
the order of train 1 and 2. In that case, train 2 should have left at time ỹ2(t−

1). However,
this does not comply with the actual network situation, in which train 1 has already departed
and train 2 is still waiting until enough headway time is ensured. Therefore, during the
optimization the order between event 1 and 2 must be maintained. Moreover, if the order
were allowed to be changed, both trains would need to wait for the decision to be computed.
Both trains would then also be subjected to the minimum re-schedule time constraint of t+δt.
This would only increase the delay of both trains, which is not desired.

From the previous examples it can be concluded that we need to fix some of the inputs
associated to future events. For that we need knowledge about the network situation at t+δt,
but this network situation changes due to the order swaps resulting from the optimization.
Therefore, at the moment disturbance information comes available, the network is simulated
with the perturbed parameter vector, while using the last known optimal input vector. All
events that were fixed, remain fixed. Then, all inputs are fixed which are associated to the
simulated event times smaller than t + δt. The fixed and variable events are defined as:

ũfix(k, t) = ũα(i,·)
(k, t) ∀ {i | ỹi(k | t) < t + δt} (3-57)

ũvar(k, t) = ũα(i,j)
(k, t) ∀ {i | ỹi(k | t) ≥ t + δt, ỹj(k | t) ≥ t + δt}, (3-58)

where ỹ(k | t) is the prediction of the network situation at time t, based on the last parameter
estimation and the last optimal input vector.

Ate Conraad Kleijn Master of Science Thesis

3-5 Receding Horizon Control 37

b

bb

b

time

ỹ1(t−

1)

τf

ỹ2(t1 + δt) ỹ1(t1 + δt)

b b

time

ỹ1(t−

1)

t1
τf

ỹ2(t1 + δt)ỹ1(t1 + δt)

bb

t = t1 + δt

b
t1

b b
t1 + δt

ỹ2(t−

1)

ỹ2(t−

1)

Order swap:

No order swap:

time

ỹ1(t−

1)

τf

ỹ2(t−

1) ỹ1(t1)

b b b

δt

t = t1

b b

τf

b
t1

t1 + δt

ỹ2(t1)

Figure 3-4: The decision to change the order of train 1 and 2 is not known until time t + δt.
Therefore, train 2 cannot have departed or arrived earlier than that time.

All events, which are allowed to be re-scheduled must have a minimum event time of t + δt.
The minimum re-schedule time constraint is given by Eq. (3-59).

ỹi(k | t + δt) ≥ t + δt ∀ {i | ỹi(k | t) ≥ t + δt} (3-59)

Note that events for which holds that ỹi(k | t) ≥ t + δt, may still be re-scheduled to a point
in time between t and t + δt. This can only happen to events which have a scheduled time s̃i

between t and t + δt, so it is sufficient to apply the constraint only to those events. Therefore,
Eq. (3-59) is rewritten into:

ỹi(k | t + δt) ≥ t + δt ∀ {i | ỹi(k | t) ≥ t + δt, s̃i(k) < t + δt} (3-60)

Master of Science Thesis Ate Conraad Kleijn

38 Control

bb

bbb

time

ỹ1(t−

1) ỹ2(t−

1) ỹ1(t1 + δt)

bb
t1

τf

t1 + δt

ỹ2(t1 + δt)

t = t1 + δt

b

time

ỹ1(t−

1) ỹ2(t−

1) ỹ2(t1 + δt)

bb
t1

τf

t1 + δt

ỹ1(t1 + δt)

Order swap:

No order swap:

time

ỹ1(t−

1) ỹ2(t−

1) ỹ1(t1)

b b b

δt

t = t1

b bb
t1

τf

ỹ2(t1)

Figure 3-5: Situation in which the order must be maintained during the optimization. If an order
swap were allowed, both events would have to be postponed to not earlier than t + δt. In that
case, the total delay would be bigger than when the order swap was not allowed.

Control horizon

The set of variable inputs can be reduced by introducing a control horizon. The control
horizon can be defined over a fixed number of events or a fixed time interval. In the first
case, the time this horizon spans is variable, while in the latter the number of events is
variable. Defining the control horizon over a fixed time interval is preferred, since limiting
the number of events may exclude some are estimated to occur later than δt and thus may
still be manipulated now, but must be fixed the next optimization step. In this way, the
controller never had the chance to manipulate inputs related to those events and may yield
suboptimal solutions. One could state that simply making the control horizon large enough
will circumvent this problem, but using a fixed time span provides a far more intuitive and
better operation. The control horizon is thus defined over a fixed time interval Nc and is
implemented including only inputs associated to variable events scheduled before t + δt + Nc.
A visualization of the control horizon is given by Figure 4-7, where t∗ denotes t + δt.

The control horizon is implemented by fixing control variables at their nominal values (i.e. 0)

Ate Conraad Kleijn Master of Science Thesis

3-5 Receding Horizon Control 39

#
p

en
d

in
g

ev
en

ts

Time

k = 1 k = 2 k = 3

t1 t2 t3t0 t∗ t∗ + Nc

Receding horizon control with control horizon:

Figure 3-6: Visualization of the control horizon.

if they are associated to events beyond t + δt + Nc. The fixed and variable part of ũ(k, t) are
then given by:

ũfix(k, t) = ũα(i,·)
(k, t) ∀ {i | s̃i(k | t) < t + δt ∨ s̃i(k | t) > t + δt + Nc}, (3-61)

ũvar(k, t) = ũα(i,j)
(k, t) (3-62)

∀ {i | ỹi(k | t) ≥ t + δt, s̃i(k | t) ≤ t + δt + Nc, ỹj(k | t) ≥ t + δt, s̃j(k | t) ≤ t + δt + Nc}

3-5-3 Receding horizon MILP constraints

The optimizers of the MILP thus only need to consist of the variable event times and inputs.
The constraints in Eq. (3-54) will be rewritten such that only ỹvar(k | t) and ũvar(k, t) will be
subjected to constraints. Partition ỹ(k | t) and ũ(k, t) as follows:

ỹ(k | t) =

[

ỹvar(k | t)
ỹfix(k, t)

]

, and ũ(k, t) =

[

ũvar(k, t)
ũfix(k, t)

]

(3-63)

Using Eq. (3-63) we can rewrite Eq. (3-51) into:

J(k) =

[

cvar
y

cfix
y

]T [

ỹvar(k | t)
ỹfix(k, t)

]

+

[

cvar
u

cfix
u

]T [

ũvar(k, t)
ũfix(k, t)

]

. (3-64)

Since ỹfix(k) and ũfix(k) are constants, they can be removed from the cost function, yielding:

J(k) = [cvar
y]T ỹvar(k | t) + [cvar

u]T ũvar(k, t). (3-65)

The objective thus becomes:

min
ỹvar(k|t),ũvar(k,t)

J(k) (3-66)

Master of Science Thesis Ate Conraad Kleijn

40 Control

Inserting Eq. (3-63) into the constraints as given by Eq. (3-54) gives:

[

Avar
c,ỹ Afix

c,ỹ

]

[

ỹvar(k | t)
ỹfix(k, t)

]

+
[

Avar
c,ũ Afix

c,ũ

]

[

ũvar(k, t)
ũfix(k, t)

]

≥ bc(k). (3-67)

Bringing the constraints related to ỹfix(k) and ũfix(k) to the right-hand side of Eq. (3-67), we
obtain the following constraints:

[

Avar
c,ỹ Avar

c,ũ

]

[

ỹvar(k | t)
ũvar(k, t)

]

≥ bc(k) −
[

Afix
c,ỹ Afix

c,ũ

]

[

ỹfix(k | t)
ũfix(k, t)

]

(3-68)

Eq. (3-68) needs to be augmented with the minimum re-schedule constraint:

[

Avar
c,ỹ Avar

c,ũ

Arc 0

] [

ỹvar(k | t)
ũvar(k, t)

]

≥

[

bc(k)
t + δt

]

−

[

Afix
c,ỹ Afix

c,ũ

0 0

] [

ỹfix(k | t)
ũfix(k, t)

]

(3-69)

3-6 Conclusions

This chapter presented a railway network prediction model, which has been structured with
respect to the input and parameter vector. The headway time matrix of this prediction
model can be manipulated by the control variable ũ(k, t). The control of a railway network
by changing train orders, can be written in a form which is affine in ũ(k, t). The problem
of finding the optimal set of event times and inputs, is written as an MILP, with continuous
event times and binary inputs. To keep the number of constraints low, the optimization is
carried out solely over the unknown event times and inputs. The ingredients for receding
horizon control of railway networks have been derived, which are summarized below.

• All event times of the initial cycle are known. The horizon recedes one cycle ahead
when all event times of the current cycle are known.

• Event times in the past will remain fixed.

• Inputs associated to event times between t and t + δt will be fixed.

• Event times are subjected to minimum re-schedule time due to this computation time.

• A control horizon is defined over inputs associated to variable event times scheduled
before t + δt + Nc. All other inputs are fixed at 0.

• The optimizer consist of only the variable event times and inputs.

Ate Conraad Kleijn Master of Science Thesis

Chapter 4

Implementation

4-1 Introduction

This chapter presents the implementation of the receding horizon control algorithm. The im-
plementation is split into two parts, viz. building the system description given in Section 3-2
and the implementation of the receding horizon controller as presented in Section 3-5. The
process of building the system model can be done offline, while the receding horizon control
algorithm is an online process. The system description itself does not change during con-
trol, only the system states, inputs and parameters do. Parameter estimates are supplied
to the controller, which computes optimal event times and inputs based on this parameter
information. This is depicted in Figure 4-1.

The implementation is done in Mathworks Matlab, however the algorithms presented in this
chapter are written in pseudo-code. These pseudo-codes use the format as shown in Algorithm
1.

This chapter is outlined as follows. First, the data structures used to represent the timetable
and system model are presented in Section 4-2. Then, the algorithms for building the system
matrices are treated in Section 4-3, after which Section 4-4 presents the various steps of the
receding horizon control algorithm.

4-2 Data Structures

This section presents the data formats as used for the implementation of the receding horizon
algorithm. For example, the system matrices G

(

ũ(k, t), Θ̃(k | t)
)

and H
(

u(k − 1), Θ̃(k | t)
)

are generally very large for railway systems, but they are also sparse. Therefore, in stead
of storing these matrices including mostly entries equal to ε, a more efficient representation
is used. In the following, the arguments of the system matrices are left out, so for example
G

(

ũ(k, t), Θ̃(k | t)
)

is written as G. As the matrices G and H result from a timetable, the
timetable format is treated first. How exactly these matrices are obtained from the timetable
is covered in Section 4-3.

Master of Science Thesis Ate Conraad Kleijn

42 Implementation

Offline processes: Online processes:

Actual network

Build prediction

system

Update

Θ̃, ỹ, ũ

τf , τw

Np, Nc

Timetable
– – –
— –
— —

Θ̃est, ỹfix

ũ, ỹvar

Figure 4-1: Global scheme of the algorithm.

Algorithm 1 Pseudo-code format.

Syntax:

How to use the function

Output:

List of output variables

Input:

List of input variables

Here come the steps that constitute the algorithm:

1. Step 1 //Comments are written in italic light-grey text, following a ’//’-sign

...

n. Step n

4-2-1 Timetable

The nominal operation of the network is given by the timetable. For every train in the
timetable, running and dwell times are specified. Furthermore, each train is associated to a
train line and a track number, uses a track in a specific direction from which it should depart
at its scheduled departure time and uses the track for a certain time given by the running
time. The relation to preceding trains is given by the previous train number for the current
cycle or previous cycle indicated by cycle. Finally, each train has a dwell time. The timetable

Ate Conraad Kleijn Master of Science Thesis

4-3 From Timetable to Prediction System 43

tt = [train train line track dir. dep. time run. time prev. train cycle dwell time arr. time]

Table 4-1: The timetable format.

is stored as a matrix tt with the following structure:

Each row in this matrix is corresponds to a train. To meaning of each column is explained
below.

Train The first column contains the train number. Recall that each train number represents
a run on a track and thus multiple train numbers are associated to one physical train.

Train line Each train is associated to a specific train line, of which the service is carried out
by one physical train.

Track This field assigns the train to a track in the network. This could either be a real track
or a virtual track.

Dir. The direction of the train. Single tracks carry trains in opposite directions. This field
has the value 0 or −1. The value should be chosen such that trains using same track in the
same direction receive the same direction value.

Dep. time The scheduled departure time of the train.

Run. time The minimal running time of the train.

Prev. train The train number this physical train had on the previous track.

Cycle This field has the value 0 when the previous train is from the same cycle as this train,
or −1 when from the previous cycle.

Dwell time The minimal time in minutes the previous train waited at a station or junction.

Arr. time The scheduled arrival time at the end-point of the track.

4-3 From Timetable to Prediction System

The system matrices describe the system operation within the prediction horizon and follow
from the timetable. However, these matrices are sparse, i.e. most entries are equal to ε, and
will take up a lot of computer memory to store. Therefore, to ensure efficient memory usage
and reduce computational times, these matrices are converted to coordinate lists, which store

Master of Science Thesis Ate Conraad Kleijn

44 Implementation

matrices as [row, column, value]. For matrices G and H extra columns are used to allow for
the implementation of the inputs. The coordinate list has the following entries:

[row column nominal value additional value input #]

When an input is active, additional value is added to nominal value. In the following, indices
are no longer given in the subscript, but are shown between parentheses after the variable in
question. For example, ỹi is written as ỹ(i).

4-3-1 Obtaining the running and dwell time matrices

Parameter vector Θ̃ is stored separately, so the value entry in the coordinate list is replaced by
the index of Θ̃ at which the parameter can be found. As no inputs are associated to running
and dwell times, matrices A3, B3 and A4 are stored as:

[row column Θind 0 0]

The running time matrix G4 is implemented through constructing G4. The steps needed to
create G4 are given in Algorithm 2. The first column of G4 contains the index of the arrival
time in ỹ(k, t), the second column contains the index of the departure time in ỹ(k, t) and the
third column contains the index of Θ̃(k | t) (representing γ(i) from Section 2-3-2). Recall
that the fourth and fifth column are equal to 0, as no permutation is associated to a running
time.

GΘ =

Ghead=

b b b

b b b

b

b

b

b
b

b

Θ̃ ỹ

ỹũ

Figure 4-2: Entries of the coordinate lists point to entries in ỹ, ũ and Θ̃.

The dwell time matrices are implemented through construction of G3 and H3. Denote the
latest cycle of which all events are known by k − 1. This is called the initial cycle and event
times of this cycle are denoted by yinit. The current cycle is defined as the cycle following
directly after the initial cycle. All dwell activities between trains from cycle k, the current

Ate Conraad Kleijn Master of Science Thesis

4-3 From Timetable to Prediction System 45

Algorithm 2 Obtaining G4.

Syntax:

G4 = buildRun(tt, n, Np)

Output:

G4 //Implementation of the running time matrix G4

Input:

tt //The timetable.

n //The number of trains per cycle.

Np //The prediction horizon.

1. G4 = ∅

2. For 0 ≤ k ≤ Np

3. For 1 ≤ i ≤ n //For each train in cycle ’k’

4. Θ̃ind = Θ̃ind + 1 //Increase index in Θ̃

5. Θ̃(Θ̃ind) = tt(i ,6) //Add running time to Θ̃

6. G4 =

[

G4

j + k · n + n · Np i + k · n Θ̃ind 0 0

]

//Augment G4

7. End

7. End

Master of Science Thesis Ate Conraad Kleijn

46 Implementation

cycle, and trains from cycle k − 1, the initial cycle, are contained in H3. All dwell activities
between trains from cycle k + ℓ and k + ℓ + 1, where 0 ≤ ℓ ≤ Np − 1 are contained in G3.
Algorithm 3 shows the procedure of creating G3 and H3. Figure 4-2 provides an illustration
of the implementation of the running and dwell time matrices.

The running and dwell time matrices G4, G3 and H3 will from now on be represented by one
matrix, viz. GΘ, containing G4 and G3, and HΘ, containing H3.

4-3-2 Obtaining the headway time matrices

Matrices G1,H1, G2 and H2 are stored as H1, H2, G1 and G2, respectively, in the following
format:

[i j τnom τalt − τnom ũind],

where τnom is the nominal headway time between event j and i, and τalt − τnom is added to
τnom when input ũ(uind) is active. The input vector is stored separately and uind gives the
index of the associated input in ũ. Note that τnom can be β, τf or τw. The same holds for
τalt. Algorithms 4 and 5 show the steps that constitute to construction of H1, H2, G1 and
G2.

4-4 Receding Horizon Algorithm

The receding horizon algorithm is executed along four main steps: Disturbance information
can be supplied at various time instants (step 2). The states and inputs are separated into
fixed and variable parts (steps 3 and 4) and the subsystem related to the variable states is
extracted (step 5). The optimization (step 8) runs when new information becomes available,
when the system has shifted ahead one cycle or, when using a control horizon, at every time
step. The optimization has a dual function: to provide a simulation of the network and to
find the optimal event times and inputs. As soon as all event times of the current cycle k are
known, the system is shifted one cycle ahead and the variables are updated (step 11).

Step 3 of Algorithm 6 is illustrated in Figure 4-3. At each time step t a vector ỹ with estimated
event times is obtained. Part of this vector contains event times prior to time t. These event
times lie in the past and are not allowed to be changed in the optimization routine. The
indices in ỹ of those event times are contained in the set ỹfix

ind. All event times greater than
the current time t are contained in the set ỹvar

ind.

Step 4 of Algorithm 6 is illustrated in Figure 4-4. Here, the set of inputs is divided into two
subsets ũvar and ũfix.

Only the variable event times and inputs need to be optimized. Therefore, the optimization
only requires the entries of G related to the variable event times. These entries constitute
the matrix Gvar and is formed by all rows of G of which the first column is in the set ỹvar

ind.
Figure 4-5 visualizes this process.

The algorithms used for each step are treated separately next. In the following, the arguments
k and t are dropped for presentational reasons only.

Ate Conraad Kleijn Master of Science Thesis

4-4 Receding Horizon Algorithm 47

Algorithm 3 Obtaining G3 & H3.

Syntax:

G3, H3 = buildDwell(tt, n, Np)

Output:

G3 //Implementation of the dwell time matrix G3

H3 //Implementation of the dwell time matrix H3

Input:

tt //The timetable.

n //The number of trains per cycle.

Np //The prediction horizon.

1. G3 = ∅, H3 = ∅

2. For 0 ≤ ℓ ≤ Np //For each cycle

3. For 1 ≤ i ≤ n //For each train in one cycle

4. j = tt(i,7) //The previous train

5. Θ̃ind = Θ̃ind + 1 //Increase index in Θ̃

6. Θ̃(Θ̃ind) = tt(i ,9) //Augment Θ̃ with the dwell time

7. If tt(i,8)== 0 //The previous train is from the same cycle

8. G3 =

[

G3

i + ℓ · n j + ℓ · n + n · Np Θ̃ind 0 0

]

//Augment G3

9. Else //The previous train is from the previous cycle

10. If ℓ == 0 //The previous train is from k − 1, so constraint is contained in H3

11. H3 =

[

H3

i j + n Θ̃ind 0 0

]

//Augment H3

12. Else //Constraint is contained in G3

13. G3 =

[

G3

i + ℓ · n j + (ℓ − 1) · n + n · Np Θ̃ind 0 0

]

//Augment G3

14. End

15. End

16. End

17. End

Master of Science Thesis Ate Conraad Kleijn

48 Implementation

Algorithm 4 Obtaining H1 & H2.

Syntax:

H1, H2 = buildHhead(tt, n, Np, τf , τw)

Output:

Hhead //Implementation of the headway time matrices H1 and H2

Input:

tt //The timetable.

n //The number of trains per cycle.

Np //The prediction horizon.

τf //Headway time for trains running in the same direction.

τw //Headway time for trains running in the opposite direction.

1. Hp
1 = ∅, Hp

2 = ∅, Hhead = ∅

2. For 1 ≤ p ≤ nt //For each track

3. Sort trains on track p with respect to departure time

4. For each train i in cycle k using track p

5. For each train j in cycle k − 1 using track p

6. If direction of i is the same as that of j

7. If train j is not the previous train from k − 1 for train i

8. uind = uind + 1 //Add input/Increase index of input vector

9. Hp
1 =

Hp
1

i j τf β − τf uind

i + n j + n τf β − τf uind

//Augment Hp

1

10. Else //trains travel in opposite directions

11. uind = uind + 1 //Add input/Increase index of input vector

12. Hp
2 =

[

Hp
2

i j + n τw β − τw uind

]

//Augment Hp
2

13. End //End direction condition

14. End //End "for each train j"

15. End //End "for each train i"

16. Hhead =

Hhead

Hp
1

Hp
2

//Augment Hhead with track matrices Hp

1 and Hp
2

17. End //End "for each track p"

Ate Conraad Kleijn Master of Science Thesis

4-4 Receding Horizon Algorithm 49

Algorithm 5 Obtaining G1 & G2.

Syntax:

G1, G2 = buildGhead(tt, n, Np, τf , τw)

Output:

Ghead //Implementation of the headway time matrix G1 and G2

Input:

tt //The timetable.

n //The number of trains per cycle.

Np //The prediction horizon.

τf //Headway time for trains running in the same direction.

τw //Headway time for trains running in the opposite direction.

1. Gp
1 = ∅, Gp

2 = ∅, Ghead = ∅

2. For 1 ≤ p ≤ nt //For each track

3. Sort all trains using track p in prediction horizon with respect to departure time

4. For each train i using track p

5. For each train j using track p

6. uind = uind + 1 //Add input/Increase index of input vector

7. If direction of i is the same as that of j

8. Gp
1 =

Gp
1

i j τf β − τf uind

i + n · Np j + n · Np τf β − τf uind

j i β τf − β uind

j + n · Np i + n · Np β τf − β uind

//Augment Gp
1

9. Else //trains travel in opposite directions

10. Gp
2 =

Gp
2

i j + n · Np τw β − τw uind

j i + n · Np β τw − β uind

//Augment Gp

2

11. End //End direction condition

12. End //End "for each train j"

13. End //End "for each train i"

14. Ghead =

Ghead

Gp
1

Gp
2

//Augment Ghead with track matrices Gp

1 and Gp
2

15. End //End "for each track p"

Master of Science Thesis Ate Conraad Kleijn

50 Implementation

Algorithm 6 Receding horizon algorithm outline.

1. For each timestep t

2. Update ỹ(k | t), Θ̃(k | t)
3. separate variable and fixed event times
4. separate variable and fixed inputs
5. extract subsystem related to variable event times
6. If new parameter information or system has shifted or when using control horizon
7. Build constraints related to variable states
8. simulate/find optimal inputs and states
9. End

10. If current cycle k known
11. Update variables
12. End

13. End

Indices of
all

ỹ < t

b

b

b

bb

b

b

ỹ

t

PAST FUTURE

Indices of

all
ỹ ≥ t

= ỹvar
indỹfix

ind =

time

Figure 4-3: Separation of fixed and variable event times.

4-4-1 Supplying disturbance information

At various time steps, estimates on perturbed parameters may come available. These esti-
mates are contained in a list Z, with the following format for each row i:

Zi = [Θ̃ind Θ̃est(Θ̃ind) test],

where Θ̃ind is the index in Θ̃ of the perturbed parameter and Θ̃est(Θ̃ind) is the estimated
parameter value at time test. During the simulation at time test, the associated parameter is
updated with the estimate. After each parameter update, the system is simulated whit this

Ate Conraad Kleijn Master of Science Thesis

4-4 Receding Horizon Algorithm 51

G =
Indices of

all

ỹ < t + δt

Indices of

ũfix

b

b

b

bb

b

b

ỹ

t t + δt

PAST FUTURE

G =
Indices of

all
ỹ ≥ t + δt

Indices of

ũvar

b

b

b

b

b

b
b

b

b

b

b

b

time

Figure 4-4: Separation of fixed and variable inputs.

ỹvar
ind

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

G: Gvar:

Figure 4-5: Extracting the sub system related to ỹvar.

new parameter vector, while keeping the inputs at their last optimal value. This simulation
was carried out by running the optimization with all the inputs fixed.

4-4-2 Fixing the states and inputs

The states and inputs are fixed according to the rules (Eq. (3-57), Eq. (3-57), Eq. (3-55) and
Eq. (3-56)) presented in Section 3-5. Steps 2 and 3 of Algorithms 8 and 9 rely on logical
indexing. The logical test ỹ ≤ t results in a binary vector with a length equal to that of ỹ,
with entries equal to 1 at the indices where ỹ ≤ t is true. When the vector ymask is used as
index for ’yLinList’, all the entries of ’yLinList’ at the indices where ymask = 1 are obtained.

4-4-3 Extracting sub-matrices

After finding the fixed and variable states, the entries from G and H related to the variable
states can be extracted, such that only the constraints related to those states are used in
the MILP. This procedure is shown in Algorithm 10. The fixed states are constants and do
not depend on other events any longer. Therefore, constraints yielding the event time of an
already fixed state can be discarded. Again, logical indexing is used in steps 7 to 17. The
"length()" operator gives the length of a vector, so for a vector v of size 1 × 6, length(v)

Master of Science Thesis Ate Conraad Kleijn

52 Implementation

Algorithm 7 Updating Θ̃ with available disturbance information.

Syntax:

Θ̃ = getDistInfo(Z, GΘ , t, δt)

Output:

Θ̃ //Updated parameter vector.

Input:

Θ̃//Previous parameter vector.

Z //Matrix with disturbance information.

1. If Z ! = ∅ //The ’!’ denotes the ’not’-operator.

2. Zind =find(Z(:, 3) == t)

3. End

4. If Zind ! = ∅//If Z contains information at time t.

5. For j=1:length(Zind)//For each parameter perturbation at time t.

6. Θ̃(Z(Zind(j), 1)) := Z(Zind(j), 2) //Update Θ̃

7. End

8. End

yields 6. Since also only the parameters related to variable states are of interest, a reduced
parameter vector Θ̃var is created. The indices in column 3 of Gvar and Hvar (denoted by
Gvar(:, 3) and Hvar(:, 3), respectively) are changed to refer to Θ̃var, instead of Θ̃. This is done
in steps 19 to 24.

4-4-4 Constructing the MILP constraints

The next step to be carried out is the optimization. First, the state and input indices in
Gvar and Hvar need to be mapped to the correct indices in ũvar, ỹvar, ỹfix and ũfix. Then the
constraints have to be constructed. The MILP is solved using the MILP solver as part of the
MPT [26] toolbox available for Matlab.

Index mapping

Since the first two columns of Gvar and Hvar point to entries in the full state vector, these
indices need to be mapped to point to the correct index in ũvar. This is also the case for the
fifth column (containing the input indices) of Gvar and Hvar. Therefore, the mapping vectors
ỹfix

map, ỹvar
map, ũfix

map and ũvar
map are created, according to the steps as shown in Algorithms 11

and 12. Note that the indices of these mapping vectors are 1 higher than that of ũ and ỹ.
This is due to the fact that Matlab does not allow zero-indexing, so a 1 has to be reserved
to indicated a non-used entry, instead of a 0. The concept of index mapping is visualized in
Figure 4-6.

Ate Conraad Kleijn Master of Science Thesis

4-4 Receding Horizon Algorithm 53

Algorithm 8 Separation of fixed and variable states.

Syntax:

[ymask, ỹfix
ind, ỹvar

ind, ỹfix, ỹvar] = fixStates(ỹ, t, n, Np)

Output:

ymask //A binary mask with 1’s on the places corresponding to fixed events.

ỹfix
ind //Indices of fixed events.

ỹvar
ind //Indices of variable events.

ỹfix //The fixed event times.

ỹvar //The variable event times.

Input:

ỹ //The states.

t //The current time.

n, Np //The number of trains per cycle and the length of the prediction horizon.

//Obtain a vector with entries linearly ascending in value from 1 to 2 · n · Np:

1. yLinList = [1, 2, . . . , 2 · n · Np]T

2. ymask = (ỹ < t) //Binary vector ymask(i) = 1 if ỹ(i) < t

3. ỹfix
ind = yLinList(ymask) //Result: vector with indices of fixed ỹ.

4. ỹvar
ind = yLinList(!ymask) //ỹvar

ind contains indices of variable ỹ (’!’ is the ’not’-operator.)

5. ỹfix = ỹ(ỹfix
ind) //The values of the fixed states.

6. ỹvar = ỹ(ỹvar
ind) //The values of the variable states.

Master of Science Thesis Ate Conraad Kleijn

54 Implementation

Algorithm 9 Separation of fixed and variable inputs:

Syntax:

[ũfix
ind, ũvar

ind, ũfix, ũvar]= fixInputs(ũ, Ghead, ỹ, t, δt, nũ)

Output:

ũfix
ind, ũvar

ind //Indices of fixed and variable inputs.

ũfix ,ũvar //Values of fixed and variable inputs.

Input:

ũ //The input vector.

Ghead //The headway time matrix Ghead

ỹ //The state vector

t //The actual time.

δt //The time needed for optimization.

nũ //The total number of inputs within the prediction horizon.

1. uLinList = [1, 2, . . . , nũ]T //Vector with entries linearly ascending in value from 1 to nũ:

2. yLinList = [1, 2, . . . , n · Np]T //Vector with entries linearly ascending in value from 1 to n · Np:

3. ymask = (ỹ < t + δt) //Binary vector ymask(i) = 1 if ỹ(i) < t + δt

4. ỹfix
ind = yLinList(ymask)//Result: vector with indices of fixed ỹ.

5. ũfix
ind := ∅

6. For 1 ≤ j ≤ length(ỹfix
ind)

7. maskG =
(

Ghead(:, 1) == ỹfix
ind(j)

)

8. ũfix
ind :=

[

ũfix
ind

Ghead(maskG, 5)

]

9. Ghead := Ghead(!maskG, :) //Remove already evaluated entries of Ghead.

10. End

11. ũvar
ind = uLinList \ ũfix

ind//All indices of variable ỹ

12. ũvar = ũ(ũvar
ind)

13. ũfix = ũ(ũfix
ind)

Ate Conraad Kleijn Master of Science Thesis

4-4 Receding Horizon Algorithm 55

Algorithm 10 Extracting sub-matrices related to variable states.

Syntax:

[Gvar, Hvar, Θ̃var] = extractSubSys(Ghead, Hhead, GΘ, HΘ, ỹvar
ind, Θ̃)

Output:

Gvar, Hvar //The submatrices related to ỹvar

Θ̃var //The parameter vector.

Input:

Ghead, Hhead, GΘ, HΘ

ỹvar
ind //Indices of variable events.

Θ̃ //The parameter vector.

1. Gvar,head = ∅, Gvar,Θ = ∅

2. Gtemp,head = Ghead, Htemp,head = Hhead//Store G and H in a temporary array for manipulation:

3. Gtemp,Θ = GΘ, Htemp,Θ = HΘ

4. For 1 ≤ i ≤ length(ỹvar
ind)

//Find all entries of G associated to ỹvar
ind(i):

5. Gind,head =
(

Gtemp,head(:, 1) == ỹvar
ind(i))

)

//Gind,head is a binary mask.

6. Gind,Θ =
(

Gtemp,Θ(:, 1) == ỹvar
ind(i))

)

//Gind,Θ is a binary mask.

7. Gvar,head =

[

Gvar,head

Gtemp,head(Gind, :)

]

, Gvar,Θ =

[

Gvar,Θ

Gtemp,Θ(Gind, :)

]

//Augment Gvar,head and Gvar,Θ:

//We do not need to evaluate these entries anymore:

8. Gtemp,head = Gtemp,head(!Gind,head, :), Gtemp,Θ = Gtemp,Θ(!Gind,Θ, :)

//Find all entries of H associated to ỹvar
ind(i):

9. Hind,head =
(

Htemp,head(:, 1) == ỹvar
ind(i))

)

//Hind,head is a binary mask.

10. Hind,Θ =
(

Htemp,Θ(:, 1) == ỹvar
ind(i))

)

//Hind,Θ is a binary mask.

11. Hvar,head =

[

Hvar,head

Htemp,head(Hind, :)

]

, Hvar,Θ =

[

Hvar,Θ

Htemp,Θ(Hind, :)

]

//Augment Hvar,head and Hvar,Θ:

//We do not need to evaluate these entries anymore:

12. Htemp,head = Htemp,head(!Hind,head, :), Htemp,Θ = Htemp,Θ(!Hind,Θ, :)

13. End

//Create Θ̃var and let Gvar,Θ(:, 3) and Hvar,Θ(:, 3) point to indices in Θ̃var:

14. For each row j in Gvar,Θ

15. Θ̃var(j) = Θ̃(Gvar,Θ(j, 3))//Construct parameter vector associated to variable states.

26. Gvar,Θ(j, 3) = j//Let Gvar,Θ(j, 3) point to the index in Θ̃var.

17. End

18. c = length(Θ̃var)

19. For each row j in Hvar,Θ

20. Θ̃var(j + c) = Θ̃(Hvar,Θ(j, 3))//Construct parameter vector associated to variable states.

21. Hvar,Θ(j, 3) = j + c//Let Hvar,Θ(j, 3) point to the index in Θ̃var.

22. End.

23. Gvar =

[

Gvar,Θ

Gvar,head

]

, Hvar =

[

Hvar,Θ

Hvar,head

]

Master of Science Thesis Ate Conraad Kleijn

56 Implementation

Algorithm 11 State mapping.

Syntax:

[ỹvar
map, ỹfix

map] = mapStates(ỹfix, ỹvar, ỹfix
ind, ỹvar

ind, n, Np)

Output:

ỹvar
map, ỹfix

map

Input:

ỹfix, ỹvar

ỹfix
ind, ỹvar

ind

n, Np //The number of trains per cycle and the length of the prediction horizon.

1. ỹfix
map(i) = ones(2 · n · Np, 1)//Initial value: a 1 × 2 · n · Np vector of 1’s.

2. ỹvar
map(i) = ones(2 · n · Np, 1)//Initial value: a 1 × 2 · n · Np vector of 1’s.

3. num1 = [1, . . . , length(ỹfix)] //num1 contains integer values from 1 to length(ỹfix)

4. num2 = [1, . . . , length(ỹvar)] //num2 contains integer values from 1 to length(ỹvar)

5. ỹfix
map(ỹfix

ind + 1) = num1 + 1

6. ỹvar
map(ỹvar

ind + 1) = num2 + 1

Algorithm 12 Input mapping.

Syntax:

[ũvar
map, ũfix

map] = mapInputs(ũfix, ũvar, ũfix
ind, ũvar

ind, n, Np)

Output:

ũvar
map, ũfix

map

Input:

ũfix, ũvar

ũfix
ind, ũvar

ind

n, Np //The number of trains per cycle and the length of the prediction horizon.

1. ũfix
map(i) = ones(2 · n · Np, 1) //Initial value: a 1 × 2 · n · Np vector of 1’s.

2. ũvar
map(i) = ones(2 · n · Np, 1)//Initial value: a 1 × 2 · n · Np vector of 1’s.

3. num1 = [1, . . . , length(ũfix)] //num1 contains integer values from 1 to length(ũfix)

4. num2 = [1, . . . , length(ũvar)] //num2 contains integer values from 1 to length(ũvar)

5. ũfix
map(ũfix

ind + 1) = num1 + 1

6. ũvar
map(ũvar

ind + 1) = num2 + 1

Ate Conraad Kleijn Master of Science Thesis

4-4 Receding Horizon Algorithm 57

b b b b b

b b b b b

b b b b b

b b b b b

Gvar:

1
1
2
1

1

nũvar

3
b
b

b

bPoints to indices

of ũvar
map

Points to indices

of Iũ

0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0

0 0 0 . . . 0 1

b

b

b

b

b

b

b

b

b

bb

b

b

b

ũvar
map: Iũ

0 0 0 . . . 0 0

1 0 0 . . . 0 0

0 1 0 . . . 0 0

0 0 0 . . . 0 1

0 0 0 . . . 0 0

0 0 0 . . . 0 0

0 0 0 . . . 0 0

b

ũvar
1

ũvar
2

ũvar
2

ũvar
2

Avar
ũ ũvar:

Figure 4-6: Visualization of index mapping. The same applies to the event time vector

Constraints

The final step in the optimization procedure, is to obtain the constraints as given by Eq. (3-68).
The constraints and the optimizers are supplied separately to the MILP solver and we thus
end up with a matrix Ac and a vector bc. Matrix Ac is multiplied with the optimizer. The
constraints follow directly from Gvar and Hvar. However, they must be translated from a
coordinate list into a matrix, suitable for multiplication. First of all, the first column of Gvar

contains an index of ỹ. We need the index of ỹvar, so by using ỹvar
map(Gvar(:, 1) + 1) we obtain

the indices in ỹvar. This index is then used to select a row of an identity matrix IG, such that
the correct entry is selected when multiplying this row with ỹvar. The same is done for Hvar,
by using ỹvar

map(Hvar(:, 1) + 1) to select a row of an identity matrix IH .
Selecting the correct entry of the input vector is done in a similar fashion, viz. by us-
ing ũvar

map and Iũ. However, Gvar,Θ and Gvar,Θ refer to input index 0, which is non-existing
in Matlab. Therefore, to select the correct entry in ũvar, 1 is added to the index and
the identity matrix Iũ is augmented with a row of zeros at the top. In this way, when
referring to index 0 in ũvar, the first row (0 + 1) of Iũ is selected, resulting in a multi-
plication of zeros with the input vector. Furthermore, Iinit is an identity matrix of size
length(yinit)×length(yinit), Is̃ is an identity matrix of size length(s̃)×length(s̃), Iỹ is
an identity matrix of size length(ỹvar)×length(ỹvar), Iỹfix is an identity matrix of size

length(ỹfix)×length(ỹfix) and Iũfix is an identity matrix of size length(ũfix)×length(ũfix).
The solver used for solving the MILP requires the inequality constraints to be supplied in the
form of A · z ≤ b, instead of A · z ≥ b as was presented in Section 3-4. Therefore, both sides of
the constraints given by (3-68) are multiplied by −1, as −A · z ≤ −b is equivalent to A · z ≥ b.

4-4-5 Shifting the horizon

The moment that all events of the current cycle of the prediction system are known, the
system switches to the next cycle. Recall that each cycle consists of n events. Suppose that
the current cycle is denoted by k1 and the cycle to shift to is denoted by k2 (= k1 + 1). All
events from cycle k1 are known, so yinit will be equal to y(k1) (for now, k1 is not an index
here, but denotes the cycle). All other departure and arrival times shift n places up in the
state vector and they will thus receive a new index in ỹ as well as a new input index. All

Master of Science Thesis Ate Conraad Kleijn

58 Implementation

Algorithm 13 Construction of the MILP constraints.

Syntax:

[Ac, bc] = buildConstraints(Gvar, Hvar, Θ̃var, yinit, ỹfix, ũfix, ỹvar
ind, ỹvar

map, ỹfix
map, ũvar

map, ũfix
map,t,δt,s̃)

Output:

Ac //The left-hand side of the constraints: Ac · z ≤ bc.

bc //The right-hand side of the constraints: Ac · z ≤ bc.

Input:

Gvar, Hvar //The sub-matrices associated to the variable states.

Θ̃var //The parameters associated to the variable states.

yinit //The initial states.

ỹfix, ũfix //The values of the fixed states and inputs.

ỹvar
ind //The indices of the variable states.

ỹvar
map, ỹfix

map //State-mapping.

ũvar
map, ũfix

map //Input-mapping.

t, δt, s̃ //The current time, the optimization time and the schedule.

//Construction of Ac:

1. Ac1,ỹvar = −IG(ỹvar
map(Gvar(:, 1) + 1), :) + IG(ỹvar

map(Gvar(:, 2) + 1), :)

2. Ac1,ũvar = Gvar(:, 4) · Iũ(ũvar
map(Gvar(:, 5) + 1), :)

3. Ac2,ỹvar = −IH(ỹvar
map(Hvar(:, 1)), :)

4. Ac3,ỹvar = −Is̃

5. Arc = Iỹ(˜yvar < t + δt)

6. Ac =

Ac1,ỹvar Ac1,ũvar

Ac2,ỹvar 0

Ac3,ỹvar 0

Arc 0

//Construction of bc:

7. bvar

c1,Θ̃
= −Θ̃(Gvar,Θ̃(:, 3))

8. bvar

c2,Θ̃
= −Iinit(Hvar,Θ̃(:, 2), :) · yinit − Θ̃(Hvar,Θ̃(:, 3))

9. bvar
c1,head = −Gvar,head(:, 3)

10.bvar
c2,head = −Iinit(Hvar,head(:, 2), :) · yinit − Hvar,head(:, 3)

11. bvar
c3 = −s̃(ỹvar

ind)

12. Ac1,ỹfix = [Iỹfix (ỹfix
map(Gvar(:, 2) + 1))] · ỹfix

13. Ac1,ũfix = [Gvar(:, 4) · Iũfix(ũfix
map(Gvar(:, 5) + 1))] · ũfix

14. Ac2,ũfix = Hvar(j, 4) · Iũfix (ũfix
map(Hvar(:, 5) + 1)) · ũfix

15. bvar
c1 =

[

bvar

c1,Θ̃

bvar
c1,head

]

, bc2 =

[

bvar

c2,Θ̃

bvar
c2,head

]

16. bc =

bvar
c1 − Ac1,ỹfix − Ac1,ũfix

bvar
c2 − Ac2,ũfix

bvar
c3

−(t + δt)

Ate Conraad Kleijn Master of Science Thesis

4-5 Conclusions 59

events and inputs of cycle k1 that were fixed, need to be remained fixed when progressing to
cycle k2. To ensure that the conditions imposed on the inputs in the new cycle are consistent
with those from the previous cycle, a matrix is created which maps input indices from k1

to the input indices as used in k2. This is done in Algorithm 15. Inputs which were first
assigned to y(k1) will now have to be mapped to input indices as found in H, since y(k1) has
now become yinit. These mapping matrices can be created beforehand and can be used every
time the system switches to a new cycle. The parameter vector is updated using Algorithm
7. Recall that the dwell times relating events from the initial cycle to events from the current
cycle can still change and should therefore not be discarded.

4-4-6 Control Horizon

The control horizon is implemented by Algorithm 17. All inputs related to events having
their scheduled time after t + δt + Nc are fixed to the default value of 0.

b

b

b

bb

b

b

G =
G =

Indices of

all
ỹ(ỹvar

ind) ≥ t + δt

Indices of
all

ỹ < t + δt

s̃(ỹvar
ind) > t + Nc

Indices of

Indices of

ũvar

ũfix

Indices of
s̃i(ỹ

var
ind) ≤ t + δt + Nc

ỹ

t t + δt t + Nc

PAST FUTURE

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

s̃j(ỹ
var
ind) ≤ t + δt + Nc

&

time

Figure 4-7: Separation of fixed and variable inputs when using a time-based control horizon.

4-5 Conclusions

An implementation of the receding horizon controller as presented in Section 3-5 was presented
as well as the implementation of model as presented in Section 3-2. Every time step, the
receding horizon controller splits the state vector and input vector into two subsets, viz. a set
of fixed states corresponding to past events, a set of variable states corresponding to future
states, a set of fixed inputs corresponding to past events, a set of variable inputs corresponding
to future states. The large and sparse system matrices are implemented using a coordinate
list, saving computer memory and computation time. This implementation is tested on a
small network, for which some test cases have been designed. This is treated in the next
chapter.

Master of Science Thesis Ate Conraad Kleijn

60 Implementation

Algorithm 14 Variable updates.

Output:

yinit

ymask

ũ

yfix
ind, ufix

ind

yfix, ufix

Input:

n, Np //The number of trains per cycle and the length of the prediction horizon.

ỹ //The state vector.

ymask, umask //Binary fixed state and input mask

//When all states of cycle k1 are known:

1. If ymask
i == 1 ∀ (1 ≤ i ≤ n) & (Np · n + 1 ≤ i ≤ Np · n + n)

2. yinit =

[

ỹ(1 : n)
ỹ(Np · n + 1 : Np · n + n)

]

//Update yinit.

3. ỹfix = ỹ(

[

ymask(n : Np · n)
ymask(Np · n + 1 : 2 · Np · n)

]

)//Update ỹfix.

4. ymask =

ymask(1 : Np · n − n)
0

ymask(Np · n + n : 2 · Np · n)
0

//Update ymask (0 is a vector of length n).

5. linList = [1, 2, . . . , 2 · n · Np]T

6. yfix
ind = linList(ymask)

7. s̃ := s̃ + T //Update schedule.

8. ỹ :=

ỹ(n : n · Np − n)
s̃(n · Np − n + 1 : n · Np)

ỹ(n · Np + 1 : 2 · n · Np − n)
s̃(2 · n · Np − n + 1 : 2 · n · Np)

//Update event times.

9. ũ, ũfix
ind = shiftU(ũfix

ind, ũ, Ghead, Hhead, n, Np)//Update ũ and ũfix
ind.

10. Θ̃ = shiftTheta(Θ̃, GΘ, HΘ, n, Np)//Update Θ̃

Ate Conraad Kleijn Master of Science Thesis

4-5 Conclusions 61

Algorithm 15 Input vector update on cycle shift.

Syntax:

ũnew, ũfix
ind = shiftU(ũfix

ind, ũprev, Ghead, Hhead, n, Np)

Output:

ũnew

ũfix
ind

Input:

ũfix
ind //The previous indices of inputs to fix.

ũprev //The previous input values.

Ghead, Hhead //The headway time matrices.

n, Np //The number of trains per cycle and the length of the prediction horizon.

//Find indices in G related to event times [y(k + 1) . . . y(k + Np)]

//For presentational reasons, Ghead is written as G.

1. index1 = (G(:, 1) > n & G(:, 1) ≤ Np · n & G(:, 2) > n & G(:, 2) ≤ Np · n) ‖
(G(:, 1) > n & G(:, 1) ≤ Np · n & G(:, 2) > Np · n + n)

//Find indices in Ghead related to event times [y(k) . . . y(k + Np − 1)]

2. index2 = (G(:, 1) > 0 & G(:, 1) ≤ Np · n − n & G(:, 2) > 0 & G(:, 2) ≤ Np · n − n) ‖
(G(:, 1) > 0 & G(:, 1) ≤ Np · n − n & G(:, 2) > Np · n & G(:, 2) ≤ (2 · Np · n − n))

//Find indices in G relating event times y(k + 1) and y(k):

3. index3 = (G(:, 1) > n & G(:, 1) ≤ 2 · n & (G(:, 2) ≤ n) ‖
(G(:, 1) > n & G(:, 1) ≤ 2 · n & (G(:, 2) > Np · n & G(:, 2) ≤ Np · n + n)

4. ũprev
ind = G(index1, 5) //The input indices related to [y(k + 1) . . . y(k + Np)].

5. ũprev
ind := unique(ũprev

ind) //Remove repetions.

6. ũnew
ind = G(index2, 5)//The input indices related to [y(k) . . . y(k + Np − 1)].

7. ũnew
ind := unique(ũnew

ind)//Remove repetions.

8. ũH,fix
ind = unique(H(:, 5)) //Find all input indices relating y(k) and yinit.

9. ũmask = zeros(nũ, 1) //Initialize binary mask

10. ũmask(ũfix
ind) = 1 //Binary mask for all fixed inputs in the previous cycle.

11. ũG,fix
ind = ũnew

ind (ũmask)//Indices the fixed inputs receive in the new cycle

12. ũfix
ind :=

[

ũH,fix
ind

ũG,fix
ind

]

//All input indices to fix in the new cycle.

13. ũnew(ũnew
ind) = ũprev(ũprev

ind) //Update the input vector.

Master of Science Thesis Ate Conraad Kleijn

62 Implementation

Algorithm 16 Parameter vector update on cycle shift.

Syntax:

Θ̃new = shiftTheta(Θ̃old, GΘ, HΘ, n, Np)

Output:

Θ̃new //The updated parameter vector with shifted entries.

Input:

Θ̃old //The parameter vector for the previous cycle of the prediction system.

Θ̃nom //The nominal parameter values.

GΘ, HΘ //The running and dwell time matrices

n, Np //The number of trains per cycle and the length of the prediction horizon.

//Find indices in G related to event times [y(k + 1) . . . y(k + Np)]

1. index1 = (G(:, 1) > n & G(:, 1) ≤ Np · n & G(:, 2) > n & G(:, 2) ≤ Np · n) ‖
(G(:, 1) > n & G(:, 1) ≤ Np · n & G(:, 2) > Np · n + n)

//Find indices in G related to event times [y(k) . . . y(k + Np − 1)]

2. index2 = (G(:, 1) > 0 & G(:, 1) ≤ Np · n − n & G(:, 2) > 0 & G(:, 2) ≤ Np · n − n) ‖
(G(:, 1) > 0 & G(:, 1) ≤ Np · n − n & G(:, 2) > Np · n & G(:, 2) ≤ (2 · Np · n − n))

//Find indices in G relating event times y(k + 1) and y(k):

3. index3 = (G(:, 1) > n & G(:, 1) ≤ 2 · n & (G(:, 2) ≤ n) ‖
(G(:, 1) > n & G(:, 1) ≤ 2 · n & (G(:, 2) > Np · n & G(:, 2) ≤ Np · n + n)

4. Θ̃new = Θ̃nom //Refresh parameter vector.

//Shift the parameter values one cycle:

5. Θ̃new(GΘ(index2, 3)) = Θ̃old(GΘ(index1, 3))

6. Θ̃new(HΘ(:, 3)) = Θ̃old(GΘ(index3, 3))

Ate Conraad Kleijn Master of Science Thesis

4-5 Conclusions 63

Algorithm 17 Separation of fixed and variable inputs within control horizon:

Syntax:

[ũfix
ind, ũvar

ind, ũfix, ũvar]= fixInputs(ũ, Ghead, ỹ, t, δt, Nc, nũ)

Output:

ũfix
ind, ũvar

ind //Indices of fixed and variable inputs.

ũfix ,ũvar //Values of fixed and variable inputs.

Input:

Ghead //The headway time matrix Ghead

ỹ //The state vector

t //The actual time.

δt //The time needed for optimization.

Nc //The control horizon in minutes.

Np //The prediction horizon.

nũ //The total number of inputs within the prediction horizon.

1. uLinList = [1, 2, . . . , nũ]T //Vector with integer values from 1 to nũ:

2. yLinList = [1, 2, . . . , n · Np]T //Vector with integer values from 1 to n · Np:

3. ỹvar
ind = yLinList \ ỹfix

ind

4. ỹvar
ind := ỹvar

ind(s̃(ỹvar
ind) ≤ t + δt + Nc)

5. Gtemp1 = ∅
6. For 1 ≤ j ≤ length(ỹvar

ind)

7. maskG =
(

Ghead(:, 1) == ỹvar
ind(j)

)

8. Gtemp1 :=

[

Gtemp1

Ghead(maskG, :)

]

9. End

10. Gtemp2 = ∅
11. For 1 ≤ j ≤ length(ỹvar

ind)

12. maskG =
(

Gtemp1(:, 2) == ỹvar
ind(j)

)

13. Gtemp2 :=

[

Gtemp2

Gtemp1(maskG, :)

]

14. End

15. ũvar
ind = unique(Gtemp2(:, 5))//Remove repetitions.

16. ũfix
ind = uLinList \ ũvar

ind//Obtain the indices of fixed inputs.

17. ũvar = ũ(ũvar
ind)//The variable input vector.

18. ũfix = ũ(ũfix
ind)//The fixed input vector.

Master of Science Thesis Ate Conraad Kleijn

64 Implementation

Ate Conraad Kleijn Master of Science Thesis

Chapter 5

Case Studies

5-1 Introduction

This chapter presents the results of two test cases applied to a small, virtual network. In each
test case, a train run is disturbed by increasing its running time or dwell time. The algorithm
as presented in Chapter 4, is used for simulation and control of the network. Test case 1 is
used to show the effect of supplying different estimates at various points in time. Also, the
effect the computation time δt can have on the solution is demonstrated. The second test
case demonstrates how much CPU time can be saved when using a control horizon. The
resulting network situation are visualized through the use of so-called place-time diagrams,
by which the movement of trains over time through the network can be easily interpreted.
This chapter is outlined as follows. The test network is presented in Section 5-2. Section 5-3
presents presents the test cases, of which the results are presented in Section 5-5.

5-2 Test Network

The test network [27] is depicted in Figure 5-1. The network consists of 7 stations and 3 train
lines. The lines end at stations 1, 6 and 7, where the trains turn around. Stations 2, 3, 4 and
5 have overtaking possibilities. At station 3, tracks cross and merge.

The lower drawing in Figure 5-1 shows a schematization of the train lines using the network
and shows for each line at which station the trains stop. Lines 1 and 2 are operated by
intercity trains, whereas line 3 is operated by a local train. Line 1 connects stations 6 and
7, via station 3 and 5. Line 2 runs between stations 1 and 6, while stopping along the route
at stations 3 and 5. Line 3 also connects stations, but stops at all stations in between, viz.
stations 2, 3, 4 and 5. The timetable according to which the lines operate, is shown in Table
5-1 and Table 5-2. For each train line, the departure time (d.) and arrival time (a.) are given
in minutes of every hour.

The movement of trains through the network over time can be visualized by means of a place-
time diagram, as depicted in Figure 5-2 and Figure 5-3. Each color represents a different

Master of Science Thesis Ate Conraad Kleijn

66 Case Studies

Station 1Station 2Station 3Station 4Station 5Station 6

Station 7

Line 1

Line 2

Line 3

Intercity service

Local service

b

Station 1Station 2

Station 7

Station 3

Station 4Station 5Station 6

Track lay-out:

Line plan:

Figure 5-1: The network used for the case studies as described in this chapter. Above: the track
layout. Below: the line plan.

Line 1 Line 2 Line 3

Station 1 d. .15 .45 .21 .51
Station 2 a. | | .28 .58

d. .20 .50 .29 .59
Station 7 d. .00 .30 | | | |
Station 3 a. .11 .41 .26 .56 .36 .06

d. .13 .43 .28 .58 .38 .08
Station 4 a. | | | | .45 .15

d. .18 .48 .33 .03 .51 .21
Station 5 a. .28 .58 .43 .13 .04 .34

d. .30 .00 .45 .15 .05 .35
Station 6 a. .36 .06 .51 .11 .13 .43

Table 5-1: Schedule for trains running from right to left in Figure 5-1

train line. In this case, line 1 is shown in red, line 2 in blue and line 3 in green. Each plot is
accompanied with a number, like ’301’ or ’102’. The first digit denotes the train line number
to which the train run is associated. The second two digits are reserved for the cycle number
to which the train run belongs. The vertical lines in Figure 5-3 belong to lines using the
crossing at station 3. This crossing is modelled as a track with a running time equal to 0
minutes. Note that line 101 using the crossing represents line 1 running from station 6 to 7
and does not belong to train 101 running between station 3 and 6. The same holds for the
plots associated to trains 102.

Ate Conraad Kleijn Master of Science Thesis

5-3 Test cases 67

Line 1 Line 2 Line 3

Station 6 d. .16 .46 .01 .31 .09 .39
Station 5 a. .22 .52 .07 .37 .17 .47

d. .24 .54 .09 .39 .18 .48
Station 4 a. | | | | .31 .01

d. .34 .04 .19 .49 .37 .07
Station 3 a. .39 .09 .24 .54 .44 .14

d. .41 .11 .26 .56 .46 .16
Station 7 d. .52 .22 | | | |
Station 2 a. | | .53 .23

d. .32 .02 .54 .24
Station 1 a. .38 .08 .01 .31

Table 5-2: Schedule for trains running from left to right in Figure 5-1

9:05 9:10 9:15 9:20 9:25 9:30 9:35 9:40 9:45 9:50 9:55 10:00
6

5

4

3

7

201301 102 202302

101201 301 102202 302

101 201301 102 202302

101 102

S
ta

tio
n

Time

Place−time diagram for the nominal case.

Figure 5-2: Place-time diagram the lines running between stations 7, 3 and 6 in the case of
nominal operation.

From the timetable, matrices G and H can be generated, but first the timetable must be
converted to the format as given in Table 4-1. Appendix A-1 shows this timetable format for
the test network.

The next section presents the to be evaluated delay scenarios.

5-3 Test cases

Using the test network in Figure 5-1, various test cases have been evaluated. In each test
case, the network operation is perturbed by changing a running or dwell time. The magnitude
of a disturbance has an upper limit. This upper limit is equal to the period of the affected
train line. Imposing this limit is motivated by the assumption that dispatching actions other

Master of Science Thesis Ate Conraad Kleijn

68 Case Studies

9:05 9:10 9:15 9:20 9:25 9:30 9:35 9:40 9:45 9:50 9:55 10:00
6

5

4

3

3

2

1

201301 102 202302

101201 301 102202 302

101 201301 102 202302

101 201301 102 202302

201 301 202

201 301 202 302
S

ta
tio

n

Time

Place−time diagram for the nominal case.

Figure 5-3: Place-time diagram for the lines running between stations 1 and 6 in the case of
nominal operation.

than order swaps are more effective in such cases. For example, when a train is delayed so
much, that it gets caught up by the next train in the schedule, servicing the same line, then
coupling the delayed train to this next train, or just removing the delayed train from the
route, is probably preferred.

Recall that the the format in which disturbance information is supplied (see Section 4-4-1),
is given by:

Zi = [Θ̃ind Θ̃est(Θ̃ind) test],

The first entry points to the index of the running time in the parameter vector. The second
contains the disturbed parameter value, which equals the nominal value plus the disturbance
magnitude. The third entry gives the time of estimation.

Test case 1

In this test case, the effect of the minimum re-schedule time constraint is demonstrated. Two
disturbance scenarios are created:

Case 1.1 Delaying the run of line 1 between stations 3 and 4 (train 101)

Case 1.2 Delaying the departure of line 1 from station 5 (train 101).

In the first test, denoted by case 1.1, the running time of train 101 between station 3 and 4 is
perturbed. Two estimates are supplied at different times. The estimates are chosen such that
they result in different decisions. In this case, the first estimate turned out to be too low,

Ate Conraad Kleijn Master of Science Thesis

5-3 Test cases 69

time train estimated disturbance (minutes)

9:15 101, between station 3 and 4 +5

9:21 101, between station 3 and 4 +10

Table 5-3: Data for test case 1.1

time train estimated disturbance (minutes)

9:30 101 at station 5 +5

9:33 101 at station 5 +8

Table 5-4: Data for test case 1.2

such that the second estimate, which is assumed to be the actual value of the extra running
time, results in an order swap. The test case data is given in Table 5-3.

In the second test, denoted by case 1.2, the dwell time of train 101 at station 5 is perturbed.
Again, two estimates are supplied at different times and are again chosen such that they result
in different decisions. The test case data is given in Table 5-4.

Test case 2

In this test case, the effect of the control horizon on the computation time is assessed. First,
the network is simulated with perturbed parameters without applying control. Then, the
network is tested with the receding horizon controller without control horizon. The resulting
total delays and average computation times are recorded after each test and compared against
the results obtained without applying control. The same tests are carried out with a control
horizon of various lengths, ranging from 5 minutes to 30 minutes with 5 minute intervals.
The resulting total delays and average computation times are recorded as well.

The following two trains cases are evaluated:

Case 2.1 Delaying the run of line 1 between stations 7 and 3 (train 101)

Case 2.2 Delaying the run of line 3 between stations 1 and 2 (train 301).

The following 5 disturbance magnitudes are applied to each train run:

• +5 min.

• +10 min.

• +15 min.

• +20 min.

• +25 min.

These scenarios are chosen since order swaps are most likely to be effective in reducing the
total delay in the network.

Master of Science Thesis Ate Conraad Kleijn

70 Case Studies

5-4 Setup and Settings

The simulations are carried out on a personal computer with the specifications as listed in
table Table 5-5.

Operating system Windows 7 Enterprise SP1, 32-bit.

Processor Intel R© Core
TM

2 Duo E8500 @ 3.16GHz
RAM 4.00 GB

Table 5-5: PC specifications.

Some parameter values, like the length of the prediction horizon and the value for β, still
need to be defined. Their values are given in Table 5-6. The length of the prediction horizon
Np must be large enough to be able to foresee the effects of disturbances and control actions,
but must be limited to ensure practical computation times. Furthermore, it does not make
sense to look further than three hours ahead in time, as the network situation becomes more
and more uncertain the further one looks. Putting more effort in finding the optimal actions
is therefore less likely to be paid off. The value for β must be chosen such that all event times
within the prediction horizon will always be much smaller than β during the simulation.

Simulation time: tsim = 180 minutes
Prediction horizon: Np = 6 cycles
Constant β = −2000 << −(tsim + (Np − 1) · 30)
Headway time (same dir.) τf = 3 minutes
Headway time (opposite dir.) τw = 1 minute
Max. comp. time δt = 2 minutes
Weighting of ỹ 1
Weighting of ũ 1e−5

Table 5-6: Simulation parameters.

The value for δt is fictive and constant. The value is merely chosen to prove a concept, viz. the
working of the receding horizon controller and to the effect of the minimum re-schedule time
constraint. Due to the large number of variables in a practical situation, the computation
time can be large and will significantly affect the performance of the controller. The actual
computation times for the test network were never higher than 1.4 seconds.

5-5 Results

The results of test case 1 and 2 are presented below.

5-5-1 Test case 1.1

Figure 5-4 to Figure 5-6 show the (partly estimated) network situation at various times for
test case 1.1. Figure 5-4 shows the situation at 9:00h, when operation is still nominal.

Ate Conraad Kleijn Master of Science Thesis

5-5 Results 71

9:10 9:15 9:20 9:25 9:30 9:35 9:40 9:45 9:50 9:55 10:00 10:05
5

6

5

4

3

2

101301 102202 302 203

201
301

102 202302 103

101
201

301 102202 302

101 201
301

102 202302

201 301 202 302
S

ta
tio

n

Time

Place−time diagram for test case 1.1 at 9:14h.

Figure 5-4: Network situation at 9:00h in test case 1.1. All event times later than 9:00h are
estimates.

When at 9:15h the first estimate is available, the controller computes the event times and
train orders as depicted in Figure 5-5. Note that this advice is available at 9:17h, which is δt

minutes later than the time the estimate was supplied. No order swaps are advised at this
point.

9:10 9:15 9:20 9:25 9:30 9:35 9:40 9:45 9:50 9:55 10:00 10:05
5

6

5

4

3

2

101301 102202 302 203

201
301

102 202302 103

101 301 102202 302

101 201
301

102 202302

201 301 202 302

S
ta

tio
n

Time

Place−time diagram for test case 1.1 at 9:17h.

Figure 5-5: Network situation at 9:17h in test case 1.1. All event times later than 9:17h are
estimates. No order swap is advised yet.

Master of Science Thesis Ate Conraad Kleijn

72 Case Studies

Then, at 9:21h a new estimate is available and the optimization is carried out. At 9:23h,
the optimization is finished and an order swap of train 101 and 301 is advised (Figure 5-6).
Note that train 301 is restricted to depart not earlier than 9:23h, while its scheduled time
was 9:21h. This is due to the minimum re-schedule time constraint of the receding horizon
controller.

9:10 9:15 9:20 9:25 9:30 9:35 9:40 9:45 9:50 9:55 10:00 10:05
5

6

5

4

3

2

101301 102202 302 203

101

201
301

102 202302 103

101
201

301 102202 302

101 201301 102 202302

201 301 202 302

S
ta

tio
n

Time

Place−time diagram for test case 1.1 at 9:23h.

Figure 5-6: Network situation at 9:23h in test case 1.1. All event times later than 9:23h are
estimates. The order of train 301 and 101 is changed. However, train 301 cannot depart at its
scheduled time of 9:20h.

5-5-2 Test case 1.2

Figure 5-7 to Figure 5-9 show the (partly estimated) network situation at various times for
test case 1.2. Figure 5-7 shows the nominal situation.

At time 9:30h, train 102 should have left, but the driver has not shown up yet. It is estimated
he will arrive in 5 minutes. Two minutes later, the optimization routine is finished and it
turns out it is best to let train 302 wait. However, at 9:33h, the driver still has not shown up
and a new estimate is supplied that he will arrive in another 3 minutes. The optimization is
restarted and at time 9:35h the controller presents the solution in which train 302 can depart
before train 102 without delay. This is depicted in Figure 5-9.

Ate Conraad Kleijn Master of Science Thesis

5-5 Results 73

9:25 9:30 9:35 9:40 9:45 9:50 9:55 10:00 10:05
4

5

6

5

4

3

101

301

102202 302

101 102202 302 203

102 202302 103

101

301 102202 302

201 102 202302
S

ta
tio

n

Time

Place−time diagram for test case 1.2 at 9:29h.

Figure 5-7: Network situation at 9:29h in test case 1.2. All event times later than 9:29h are
estimates.

9:25 9:30 9:35 9:40 9:45 9:50 9:55 10:00 10:05
4

5

6

5

4

3

101
301

102202 302

101 102202 302 203

102 202302 103

101
301 102202 302

102

201 102 202302

S
ta

tio
n

Time

Place−time diagram for test case 1.2 at 9:32h.

Figure 5-8: Network situation at 9:32h in test case 1.2, after the first optimization. All event
times later than 9:32h are estimates.

In case 1.2, no extra delay was introduced with the given computation time and the time at
which the estimation was supplied. Suppose the computation time δt is not equal to 2 minutes,
but 4 minutes. In that case, the situation changes to that as depicted in Figure 5-10. The
second estimate came too late for the order of train 302 and 101 to be changed. Note that
the second estimate was supplied during the optimization resulting from the first estimate
at 9:30h. In that case, the optimization routine is stopped and re-initiated with the current
event times and the new parameter estimate.

Master of Science Thesis Ate Conraad Kleijn

74 Case Studies

9:25 9:30 9:35 9:40 9:45 9:50 9:55 10:00 10:05
4

5

6

5

4

3

101

301

102202 302

101 102202 302 203

102 202302 103

101
301 102202 302

102

201 102 202302
S

ta
tio

n

Time

Place−time diagram for test case 1.2 at 9:35h.

Figure 5-9: Network situation at 9:35h in test case 1.2, after the second optimization. Train
302 is allowed to leave at its scheduled time. All event times later than 9:35h are estimates.

9:25 9:30 9:35 9:40 9:45 9:50 9:55 10:00 10:05
5

6

5

4

3

101 102202 302 203

102
202

302
103101

101

301 102202 302

302

201 102 202302

S
ta

tio
n

Time

Place−time diagram for test case 1.2 at 9:37h, δ
t
 = 4 minutes

Figure 5-10: Network situation at 9:37h in test case 1.2 with δt = 4 minutes. Train 302 is forced
to leave with a delay.

5-5-3 Test case 2.1

For each scenario, the total delay resulting from a free run (i.e. without applying control) is
compared to the total delay obtained when applying the receding horizon control algorithm
without control horizon (full control). Part of this total delay is the sum of delayed departures
and arrivals of the affected train. This delay cannot be removed by applying order swaps,
but will vanish due to slack times in the timetable. Figure 5-11 and Figure 5-12 show the
resulting total delays for both scenarios. Note that the total delay shown in the graphs is the
sum of all delayed events.

Ate Conraad Kleijn Master of Science Thesis

5-5 Results 75

0 5 10 15 20 25 30
0

100

200

300

400

500

600

Disturbance magnitude (minutes)

T
ot

al
 d

el
ay

 (
m

in
ut

es
)

Total delays in scenario 1

Primary delay
Full control
No control

Figure 5-11: Total delay with and without applying control in scenario 1.

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

900

Disturbance magnitude (minutes)

T
ot

al
 d

el
ay

 (
m

in
ut

es
)

Total delays in scenario 2

Primary delay
Full control
No control

Figure 5-12: Total delay with and without applying control in scenario 2.

In both cases, the delays resulting from a 5 minute disturbance cannot be removed by swap-
ping train orders, but has to die out due to the slack times present in the timetable. As the
disturbance magnitude becomes bigger, the order swaps become more effective. The place-

Master of Science Thesis Ate Conraad Kleijn

76 Case Studies

time diagrams for scenario 1 with a source delay of 10 minutes is shown in Figure 5-13. From
this figure the order swap between train 301 and 101 at stations 4 and 5 can be seen.

The place-time diagrams for scenario 2 with a source delay of 10 minutes is shown in Fig-
ure 5-14. Note the order swap between trains 302 and 102 at the crossing.

5-5-4 Test case 2.2

Each scenario was also simulated with the algorithm using a control horizon with various
lengths. From these simulations, the total delay and average computation times were recorded
and compared against those resulting from the simulations without the use of a control hori-
zon. The results are shown in Figure 5-15 and Figure 5-16.

In both scenarios, the same amount of total delay is obtained, with a reduction in computation
time of up to 36.7%. The reduction does not seem to have a clear relation with the size of the
delay. However, the graphs lie relatively close to each other and it appears that a reduction
of around 30% can be expected using a control horizon in this network.

5-6 Conclusions

In the test cases as presented in this chapter, the working of the receding horizon controller
was demonstrated. It was shown how the algorithm copes with various estimates supplied
at different time instants. Also, the effect of the computation time δt was demonstrated.
The use of a control horizon provides a significant reduction of computation times and can
be viewed as a practical heuristic to reduce the computational complexity of finding optimal
order swaps.

Ate Conraad Kleijn Master of Science Thesis

5-6 Conclusions 77

9:05 9:10 9:15 9:20 9:25 9:30 9:35 9:40 9:45
6

5

4

3

7

201301 102 302

101201 301 202

101 201301 102302

101

102

S
ta

tio
n

Time

Place−time diagram for scenario 1, with +10 min. disturbance.

Figure 5-13: Place-time diagram for the lines running between stations 7, 3 and 6 during scenario
1, in which train 101 is delayed 10 minutes. The actual movement is shown with a solid line,
whereas the scheduled movement is shown with a dotted line.

9:20 9:25 9:30 9:35 9:40 9:45 9:50 9:55 10:00 10:05 10:10 10:15 10:20
6

5

4

3

3

2

1

102 202302 103 203303

101 301 102202 302 203

201 102 202302 103303

201 102 202302 103303

201 301 202 302

301 202 302 203

S
ta

tio
n

Time

Place−time diagram for scenario 2, with +10 min. disturbance.

Figure 5-14: Place-time diagram for the lines running between stations 1 and 6 during scenario
2, in which train 301 is delayed 10 minutes.

Master of Science Thesis Ate Conraad Kleijn

78 Case Studies

5 10 15 20 25 30
24

26

28

30

32

34

36

38

Nc (minutes)

A
ve

ra
ge

 d
ec

re
as

e
in

 C
P

U
 ti

m
e

(%
)

Decrease in CPU time for scenario 1

+5 min
+10 min
+15 min
+20 min
+25 min

Figure 5-15: Reduction in computation time compared to full control for various lengths of Nc

for scenario 1. Each line is associated to a specific disturbance magnitude.

5 10 15 20 25 30
20

22

24

26

28

30

32

34

Nc (minutes)

A
ve

ra
ge

 d
ec

re
as

e
in

 C
P

U
 ti

m
e

(%
)

Decrease in CPU time for scenario 2

+5 min
+10 min
+15 min
+20 min
+25 min

Figure 5-16: Reduction in computation time compared to full control for various lengths of Nc

for scenario 2. Each line is associated to a specific disturbance magnitude.

Ate Conraad Kleijn Master of Science Thesis

Chapter 6

Conclusions and Recommendations

In this thesis, the development of a receding horizon algorithm for railway networks has been
presented. This algorithm was implemented in MathWorks Matlab and tested with a virtual
network to which various disturbances were applied. Two cases were created. In the fist test
case, different parameter estimates were supplied to the receding horizon controller at various
points in time. This test demonstrated the effect of the minimum re-schedule time constraint.
The second test case showed that a control horizon can significantly reduce the computation
time needed. The text below presents a discussion of the results and how the various aspects
apply in a practical setting. Finally, some recommendations for future work are presented.

6-1 Conclusions

The structuring of the max-plus model as presented in Chapter 2 and Chapter 3 provides a
convenient notation of complex railway network models. The use of max-plus algebra allows
for the application of max-plus system theory to analyze or uncover interesting properties of
railway networks. Although the model only contains running, dwell and headway constraints,
it can be easily extended to also contain e.g. connection constraints. Connection constraints
link the departure of on physical train to the arrival of another physical train, such that
passengers are given the time to transfer from one train to the other. By using a binary
input associated to these constraints, connections can be broken in a very similar way the
headway relations are reversed. A less practical aspect of the model, is that it is assumed that
each cycle consists of the same number of events. Usually, during rush-hours, more trains
are driving, so more events occur per cycle. This also means that the model of the railway
network changes. A solution could be to use a model containing all events that may occur
during one cycle. Then, during rush-hour, only the events associated to this mode of network
operation are considered, while all other events can be fixed. Switching to another mode
of operation can be done by changing which events are fixed and which are variable. The
algorithm presented in this thesis can then also be applied to railway networks using different
timetables during different parts of the day.

Master of Science Thesis Ate Conraad Kleijn

80 Conclusions and Recommendations

The developed receding horizon control algorithm allows for optimal control of a railway net-
work, with the possibility to supply varying parameter estimations. The optimization problem
is done over only a set of variable event times and inputs and further reduction of the MILP
can be achieved by just changing the set of variable event times and inputs. The algorithm
offers a general framework which allows for convenient further development. Furthermore, the
algorithm can work with practical constraints such as the effect of a minimum computation
time, by employing a minimum re-schedule time constraint. The first test case showed the
effect of this minimum re-schedule time constraint, which was introduced such that delayed
events could not be re-scheduled to a point in time before the time the optimization was fin-
ished. The decision of the algorithm would then not be based on the actual network situation
any longer. The optimal event times and train orders are not known until the end of the
optimization, thus the algorithm has to take into account its own computation time. It seems
that the computation time is the weakest link in the chain. After all, when the computation
time δt is small, more decisions can be evaluated which improve the solution. However, now
we are asking for more freedom for less computation time, which is contradictive. We should
therefore find a method to determine which decision variables are not needed to find the global
optimum, i.e. the best decision from a network point of view. In the test cases, the compu-
tation time was assumed to be constant and known beforehand. In practice, the value for δt

could then be based on a worst case scenario, in which the computation time needed is largest.
However, this worst case computation time should not be based on an unlikely scenario, as
then most of the times the algorithm can find better solutions with smaller values of δt. If a
scenario occurs in which more computation time is needed than expected, just implementing
the best solution obtained so far is probably the most practical solution. Another approach
is to make δt dynamic, i.e. changing per scenario. As the disturbances get bigger and more
trains are involved, it is more likely that more order swaps will occur. During testing, it was
noticed that the average computation time needed was bigger in those cases. In that light, it
might be not bad that some events get a little extra delay due to computation time, as the
overall reduction in delay might be very good. Furthermore, what is done when an event is
delayed during optimization, which was not delayed when the optimization started? Does the
optimization routine need to be re-started every time that happens? If the decisions resulting
from the disturbance of two separate events are independent in the optimum, these problems
can be decoupled. In that case, two separate optimizations can be carried out. This requires
knowledge on how these disturbances interact in the optimum. It is a very realistic aspect
of the algorithm to include the minimum re-schedule time and provides a good framework to
study the use of more sophisticated methods, like assigning dynamic values to δt.

Besides identifying variables which will not change in the optimum, the application of a control
horizon is a good method to reduce the computation time. This control horizon should then be
as small as possible. However, how does one know beforehand how small this is? One method
could be to first simulate the network with the perturbed parameter vector to see how far in
the future events are affected by the disturbance. This would than be an upper boundary for
the length of the control horizon. Although from the results of test case 2 it seemed that the
control horizon could be as short as one wanted while still obtained the global optimum, this
is not the case. The algorithm using a control horizon bases its decisions without ’knowing’
about the possibilities of order swaps beyond this control horizon. Therefore, it could ’miss’
a better alternative. However, it could be a practical measure to keep the computation time
short. What is not implemented in the algorithm, is a time-based prediction horizon. Instead,

Ate Conraad Kleijn Master of Science Thesis

6-2 Recommendations For Future Work 81

an event-based prediction horizon was used. This event-based prediction horizon is defined
over an integer number of cycles and recedes as soon all the event times of the earliest cycle
are known. This, however, leaves very little room for tweaking, since adding a cycle to the
prediction horizon means adding n events with all the inputs associated to those events. The
number of inputs per track grows exponentially for each train added to that track. Just like
the control horizon, the prediction horizon could be defined over a time span. This allows
for more freedom in calibrating the prediction horizon and thus the computation time. The
algorithm presented in this thesis provides easy implementation of such a prediction horizon.
Based on the results obtained and the experience gained, the following recommendations are
made regarding the further development of the algorithm.

6-2 Recommendations For Future Work

The text below proposes some extensions to the algorithm as presented in this thesis as well
as ideas for future endeavours.

6-2-1 Time-based prediction horizon

Just as was done with the control horizon Nc, the prediction horizon Np could be defined over
a fixed time span. The system matrices are generated beforehand describing events within Ns

cycles. Every time step, the prediction horizon includes events Np time steps in the future.
All events that lie outside this time span are included in the set ỹfix. Only Algorithm 8 needs
to be rewritten into to Algorithm 18.

The size of Ns should be chosen such that, in the case of a severe disturbance, at any time
during the re-scheduling procedure, the prediction horizon can still recede to include new
events. A rule of thumb would then be:

Ns = ⌈
Np

T
⌉ + 2 (6-1)

Instead of defining the prediction horizon over a time span, it could also be defined over a
fixed number of events.

6-2-2 Dynamic control/prediction horizon length

By first simulating the network with the perturbed parameter vector while fixing the input
vector at its previous optimal values, the extend of the disturbance can be assessed. From
this information, the maximum length for the control and/or prediction horizon can be set.

6-2-3 Control horizon over successive events

The control horizon could be defined over only the affected events within some time frame.
This reduces the search space by excluding control variables which would never improve the
objective function [10]. All events not in the successive events list can be fixed, reducing the
size of the MILP, thus decreasing the computation time.

Master of Science Thesis Ate Conraad Kleijn

82 Conclusions and Recommendations

Algorithm 18 Separation of fixed and variable states. All variable states lie within a Np

minute time frame.

Syntax:

[ymask, ỹfix
ind, ỹvar

ind, ỹfix, ỹvar] = fixStates(ỹ, t, n, Np, Ns)

Output:

ymask //A binary mask with 1’s on the places corresponding to fixed events.

ỹfix
ind //Indices of fixed events.

ỹvar
ind //Indices of variable events.

ỹfix //The fixed event times.

ỹvar //The variable event times.

Input:

ỹ //The event time vector.

t //The current time.

Ns //The number of cycles for which the model is generated

n, Np //The number of trains per cycle and the length of the prediction horizon.

1. yLinList = [1, 2, . . . , 2 · n · Ns]
T

2. ymask = (ỹ ≤ t)&(ỹ > t + Np)

3. ỹfix
ind = yLinList(ymask)

4. ỹvar
ind = yLinList(!ymask)

5. ỹfix = ỹ(ỹfix
ind)

6. ỹvar = ỹ(ỹvar
ind)

Ate Conraad Kleijn Master of Science Thesis

6-2 Recommendations For Future Work 83

6-2-4 Effect of parameter variation

Determining how much variation in disturbance estimates can be tolerated without it affecting
the decisions is an interesting topic to investigate. If a change in parameter value does not
affect the decision, this saves an optimization run. If no optimization run is needed, no delay
due to the optimization is introduced.

Master of Science Thesis Ate Conraad Kleijn

84 Conclusions and Recommendations

Ate Conraad Kleijn Master of Science Thesis

Appendix A

Appendix

A-1 Timetable for the test network

b

Station 1Station 2

Station 7

Station 3

Station 4Station 5Station 6

Track numbering:

13

24

5 6

7

8

9

10

11

12

13

Figure A-1: Track numbering of the test network.

The timetable in the format as presented in Section 4-2-1, is shown in Table A-1. Recall that
a crossing is represented by a virtual track, as explained in Section 2-1. This virtual track
track number 7 in Figure A-1.

Master of Science Thesis Ate Conraad Kleijn

86 Appendix

train line track dir. dep. time run. time prev.train cycle dwell time arr. time
1 1 5 0 0 11 9 -1 1 12
2 1 8 0 13 4 1 0 1 18
3 1 10 0 18 9 2 0 0 28
4 1 12 0 0 5 3 -1 1 6
5 1 13 0 16 5 4 0 1 22
6 1 11 0 24 9 5 0 1 34
7 1 9 0 4 4 6 -1 0 9
8 1 7 0 11 0 7 0 1 11
9 1 6 0 11 11 8 0 0 23
10 2 1 0 15 4 20 0 1 20
11 2 3 0 20 5 10 0 0 26
12 2 7 -1 26 0 11 0 0 26
13 2 8 0 28 4 12 0 1 33
14 2 10 0 3 9 13 -1 0 13
15 2 12 0 15 5 14 0 1 21
16 2 13 0 1 5 15 -1 1 7
17 2 11 0 9 9 16 0 1 19
18 2 9 0 19 4 17 0 0 24
19 2 4 0 26 5 18 0 1 32
20 2 2 0 2 4 19 -1 0 7
21 3 1 0 21 6 31 -1 1 28
22 3 3 0 29 6 21 0 1 36
23 3 7 -1 6 0 22 -1 0 6
24 3 8 0 8 6 23 0 1 15
25 3 10 0 21 12 24 0 1 34
26 3 12 0 5 7 25 -1 1 13
27 3 13 0 9 7 26 -1 1 17
28 3 11 0 18 12 27 0 1 31
29 3 9 0 7 6 28 -1 1 14
30 3 4 0 16 6 29 0 1 23
31 3 2 0 24 6 30 0 1 31

Table A-1: The timetable for the test network.

Ate Conraad Kleijn Master of Science Thesis

Bibliography

[1] M. J. Vromans, R. Dekker, and L. Kroon, “Reliability and heterogeneity of railway
services,” European Journal of Operations Research, vol. 172, pp. 647–665, July 2006.

[2] D. Huisman, L. G. Kroon, R. M. Lentink, and M. J. Vromans, “Operations research in
passenger railway tranportation,” ERIM Report series: Research in management (ref:
ERS-2005-o23-LIS (Logistics)), April 2005.

[3] J. Jespersen-Groth, D. Potthoff, J. Clausen, D. Huisman, L. Kroon, G. Maróti, and
M. Nyhave Nielsen, “Disruption management in passenger railway transportation,”
Econometric Institute Report EI2007-05, 2010.

[4] P.-J. Fioole, L. Kroon, G. Maróti, and A. Schrijver, “A rolling stock circulation model for
combining and splitting of passenger trains,” European Journal of Operational Research,
vol. 174, pp. 1281–1297, October 2006.

[5] G. Budai, G. Maróti, R. Dekker, D. Huisman, and L. Kroon, “Rescheduling in passenger
railways: The rolling stock rebalacing problem,” Journal of Scheduling, Springerlink,
vol. 13, pp. 281–297, September 2009.

[6] M. Gatto, R. Jacob, L. Peeters, and A. Schöbel, “The computational complexity of delay
management,” Lecture Notes in Computer Science, vol. 3787, pp. 227–238, June 2005.

[7] A. Schöbel, “Integer programming approaches for solving the delay management prob-
lem,” Lecture Notes in Computer Science: Algorithmic Methods for Railway Optimisa-
tion, vol. 4359, pp. 145–170, September 2004.

[8] M. Gatto, B. Glaus, R. Jacob, L. Peeters, and P. Wildmayer, “Railway delay man-
agement: Exploring its algorithmic complexity,” Lecture Notes in Computer Science:
Algorithmic Theory - SWAT 2004, vol. 3111, pp. 199–211, July 2004.

[9] S. Cicerone, G. D’Angelo, G. Di Stefano, D. Frigioni, and A. Navarra, “Delay manage-
ment problem: Complexity results and robust algorithms,” Lecture Notes in Computer
Science: Combinatorial Optimization and Applications, Proceedings, vol. 5165, pp. 458–
468, August 2008.

Master of Science Thesis Ate Conraad Kleijn

88 Bibliography

[10] M. Schachtebeck and A. Schöbel, “To wait or not to wait - and who goes first? de-
lay management with priority decisions,” Transportation Science, vol. 44, pp. 307–321,
August 2010.

[11] A. D’Ariano, M. Pranzo, and I. A. Hansen, “Conflict resolution and train speed coordi-
nation for solving real-time timetable perturbations,” IEEE Transactions on Intelligent
Transportation Systems, vol. 8, pp. 208–222, June 2007.

[12] A. D’Ariano, F. Corman, D. Pacciarelli, and M. Pranzo, “Reordering and local rerouting
strategies to manage train traffic in real time,” Transportation Science, vol. 42, pp. 405–
419, November 2008.

[13] A. W. Andersson, B. Sandblad, P. Hellstrom, I. Frej, and A. Gideon, “A systems analysis
approach to modelling train traffic control,” World Congr. Railway Res., Florence, Italy,
pp. 673–679, 1997.

[14] L. Chen, F. Schmid, I. M. Dasigi, B. Ning, C. Roberts, and T. Tang, “Real-time train
rescheduling in junction areas,” Proceedings of the Institution of Mechanical Engineers
Part F-Journal of Rail and Rapid Transit, vol. 224, no. F6, pp. 547–557, 2010.

[15] M. Dorfman and J. Medanic, “Scheduling trains on a railway network using a discrete
event model of railway traffic,” Transportation Research Part B: Methodological, vol. 38,
pp. 81–98, January 2004.

[16] J. Törnquist, “Computer-based decision support for railway traffic scheduling and dis-
patching: A review of models and algorithms,” in 5th Workshop on Algorithmic Meth-
ods and Models for Optimization of Railways (L. G. Kroon and R. H. Möhring, eds.),
(Dagstuhl, Germany), Internationales Begegnungs- und Forschungszentrum f"ur Infor-
matik (IBFI), Schloss Dagstuhl, Germany, 2006.

[17] B. Adenso-Díaz, M. Olivia González, and P. González-Torre, “On-line timetabel re-
scheduling in regional train services,” Transportation Research Part B-Methodological,
vol. 33, pp. 387–398, August 1999.

[18] A. Mascis and D. Pacciarelli, “Job-shop scheduling with blocking and no-wait con-
straints,” European Journal of Operational Research, vol. 143, pp. 498–517, December
2002.

[19] F. Corman, A. D’Ariano, D. Pacciarelli, and M.Pranzo, “A tabu search algorithm for
rerouting trains during rail operations,” European Journal of Operational Research,
vol. 44, pp. 175–192, January 2010.

[20] J. Törnquist and J. A. Persson, “N-tracked railway traffic re-scheduling during distur-
bances,” Transportation Research Part B, vol. 41, pp. 342–362, March 2007.

[21] J. Krasemann, “Greedy algorithm for railway traffic re-scheduling during disturbances:
a swedish case,” IET Intelligent Transport Systems, vol. 4, pp. 375–386, December 2010.

[22] T. van den Boom, N. Weiss, W. Leune, R. Goverde, and B. De Schutter, “A permutation-
based algorithm to optimally reschedule trains in a railway traffic network,” in Proceed-
ings of the 18th IFAC World Congress, (Milan, Italy), pp. 9537–9542, Aug.–Sept. 2011.

Ate Conraad Kleijn Master of Science Thesis

89

[23] R. M. Goverde, “A delay propagation algorithm for large-scale railway traffic networks,”
Transportation Research Part C: Emerging Technologies, vol. 18, pp. 269–287, June 2010.

[24] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems. Kluwer
Academic Publishers, 1999.

[25] B. Heidergott, G. J. Olsder, and J. van der Woude, Max Plus at Work. Princeton
University Press, 2004.

[26] M. Kvasnica, P. Grieder, and M. Baotić, “Multi-Parametric Toolbox (MPT),” 2004.

[27] D. van der Meer, “Modelling railway dispatching actions in switching max-plus linear
systems,” Master’s thesis, Delft University of Technology.

Master of Science Thesis Ate Conraad Kleijn

90 Bibliography

Ate Conraad Kleijn Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements

	Main Matter
	Introduction
	Railway Terminology
	Line planning
	Timetable design
	Resource allocation

	Delays and Dispatching Actions
	Dispatching actions aimed at reducing secondary delays

	Automation Approaches
	Summary of related work

	Problem description and project goals
	Thesis Outline

	Modelling
	Modelling Aspects
	Max Plus Algebra
	Basic concepts and definitions
	Vectors and matrices

	Railway Network System Description
	Max-Plus System Description
	Nominal System Description
	Perturbed System Description

	Conclusions

	Control
	Order Swap Example
	Controlled System Description
	Prediction Model
	Solving the Control Problem
	Receding Horizon Control
	Event time constraints
	Constraints due to computation time
	Receding horizon MILP constraints

	Conclusions

	Implementation
	Introduction
	Data Structures
	Timetable

	From Timetable to Prediction System
	Obtaining the running and dwell time matrices
	Obtaining the headway time matrices

	Receding Horizon Algorithm
	Supplying disturbance information
	Fixing the states and inputs
	Extracting sub-matrices
	Constructing the MILP constraints
	Shifting the horizon
	Control Horizon

	Conclusions

	Case Studies
	Introduction
	Test Network
	Test cases
	Setup and Settings
	Results
	Test case 1.1
	Test case 1.2
	Test case 2.1
	Test case 2.2

	Conclusions

	Conclusions and Recommendations
	Conclusions
	Recommendations For Future Work
	Time-based prediction horizon
	Dynamic control/prediction horizon length
	Control horizon over successive events
	Effect of parameter variation

	Appendices
	Appendix
	Timetable for the test network

	Back Matter
	Bibliography

