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Chapter 8

Uncertainty assessment
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1University of Lyon, INSA Lyon, Laboratory DEEP, Villeurbanne, France
2Muenster University of Applied Sciences, Institute for
Infrastucture·Water·Resources·Environment (IWARU), Münster, Germany
3Delft University of Technology, Water Management Department, Delft, The Netherlands
4Deltares, Unit Hydraulic Engineering, Dept. Experimental Facility Support, Delft, The Netherlands
5Norwegian University of Science & Technology, Faculty of Engineering, Dept. Civil &
Environmental Engineering, Trondheim, Norway

ABSTRACT
Assessing uncertainties in measurements must become a standard practice in the field of urban drainage and
stormwater management. This chapter presents three standard methods to estimate uncertainties: the Type A
method (repeated measurements), the Type B method (law of propagation of uncertainties) and the MC
method (Monte Carlo method). Each method is described with its fundamental principles and equations,
various examples are presented in detail and Matlab® codes are given to facilitate the calculations for
routine applications. An advanced method to account for partial autocorrelation in time series is
presented. Lastly, typical orders of magnitude of standard uncertainties for usual sensors used in urban
drainage and stormwater management are given.

Keywords: Coverage interval, error, guide for uncertainty in measurements, law of propagation of
uncertainties, Monte Carlo method, standard uncertainty.
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SYMBOLS

a low boundary of an interval or index of the iterative calculation of δ or numerical coefficient
A matrix containing data related to constant quantities
b high boundary of an interval or vector of coefficients bi or numerical coefficient
bi regression coefficients
B channel width (m)
Bc notch width (m)
Be effective width (m)
c integer value used to calculate δ
ci sensitivity coefficient related to the quantity xi in the measurement function f
Cd discharge coefficient (-)
COV covariance matrix
dlow distance between low boundaries of Type B and MCM coverage intervals
dhigh distance between high boundaries of Type B and MCM coverage intervals
D pipe diameter (m)
efs numerical factor to calculate V from Vfs (-)
emax numerical factor to calculate V from Vmax (-)
f function of quantities xi representing the measurement process
fc as index: full autocorrelation
Fy numerical coefficient for velocity-area methods
Fz numerical coefficient for velocity-area methods
g gravity (m/s2)
h water level (m)
he effective head (m)
hp crest height (m)
i index
I slope of a channel or a pipe (m/m)
Iest estimated rainfall intensity (mm/h)
Im measured rainfall intensity (mm/h)
Ir reference rainfall intensity (mm/h)
IC95min shortest 95% coverage interval calculated with the Monte Carlo method
j index
J smallest integer greater than or equal to 100/α
k coverage factor
K Manning-Strickler coefficient (m1/3/s)
Kb correction factor in the calculation of QRW (-)
Kh correction factor in the calculation of QRW (-)
l integer value used to calculate δ
L distance upstream a weir where the water level is measured (m)
m mean value of a normal distribution or number of quantities in the matrix Z
M number of Monte Carlo simulations
MC as index: refers to the Monte Carlo method
n number of repeated measurements in the Type A method
nc as index: no autocorrelation
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ndig number of significant digits used to calculate δ
N number of quantities xi used in the function f
N(m,s) normal (Gaussian) probability distribution with mean value m and standard deviation s
p number of quantities in the matrix A
pc as index: partial autocorrelation
q integer used for estimating the narrowest coverage interval in Monte Carlo simulations
Q discharge (m3/s)
Qc discharge in a circular pipe (m3/s)
QMS discharge calculated with the Manning-Strickler formula (m3/s)
Qp perimeter flow for velocity-area methods (m)
QRW discharge over a rectangular weir (m3/s)
r coefficient of correlation
r as index: index of Monte Carlo simulations
r(xi, xj) coefficient of correlation of xi and xj
rij coefficient of correlation of xi and xj
Rc circular pipe radius (m)
Rh hydraulic radius (m)
s(y) standard deviation of y
S wet cross section (m2)
t Student t value
TB as index: refers to the Type B method
Trap(a,b,β) trapezoidal probability distribution in the interval [a,b] with the coefficient β
Tri(a,b) triangular probability distribution in the interval [a,b]
u(xi, xj) covariance of xi and xj
u(Y ) standard uncertainty of Y
u*(Y ) relative standard uncertainty of Y
U(a,b) uniform probability distribution in the interval [a,b]
U(Y ) enlarged uncertainty of Y
v flow velocity at a given position within a wet cross section (m/s)
V cross section mean flow velocity (m/s)
Vd daily volume (m3)
Vfs free surface flow velocity (m/s)
Vmax maximum flow velocity (m/s)
xi quantities used in the measurement function f to calculate y
Xi random variable corresponding to the quantity xi
�y mean value of y
Y measured or calculated quantity
Yα,low low boundary of a coverage interval for Y calculated by the Monte Carlo method for a level of

confidence α
Yα,high high boundary of a coverage interval for Y calculated by the Monte Carlo method for a level of

confidence α
Z matrix containing data related to time varying quantities (time series)
α level of confidence
β numerical coefficient of a trapezoidal probability distribution
δ tolerance
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Δt time step (s)
εi finite difference used in the 2nd order approximation of ci
ν degree of freedom
νeff effective degree of freedom

8.1 INTRODUCTION
Why is uncertainty assessment important and should be systematically done? In urban drainage and
stormwater management (UDSM), like in numerous other professional fields and disciplines,
information, knowledge, performance analysis, modelling, scenario analysis, planning and decision
making are based on or use measurement results. However, measurements are never perfect and cannot
be carried out without uncertainties. Consequently, ‘when reporting the result of a measurement of a
physical quantity, it is obligatory that some quantitative indication of the quality of the result be given so
that those who use it can assess its reliability. Without such an indication, measurement results cannot be
compared, either among themselves or with reference values given in a specification or standard. […]
When all of the known or suspected components of error have been evaluated and the appropriate
corrections have been applied, there still remains an uncertainty about the correctness of the stated result,
that is, a doubt about how well the result of the measurement represents the value of the quantity being
measured’ (ISO, 2008b, p. vii).

Uncertainty assessment (UA) should thus become a standard professional practice in UDSM, aiming to
comply with laws and regulations, quality control requirements, expected professional skills, basic and
applied research needs, etc. This chapter aims to provide information, concepts, methods, tools, and
detailed examples facilitating knowledge transfer and implementation of uncertainty assessment.
However, as UA is not always obvious and requires some training, ‘critical thinking, intellectual honesty
and professional skills’ (ISO, 2008b, p. 8) remain fundamental.

This chapter is organized in three main sections:

• Section 8.2 presents the methods and international standards for UA, with their principles, conditions
of application, step by step explanations and basic examples of application.

• Section 8.3 provides some additional examples for various aspects of UDSM.
• Section 8.4 gives complements including in situ uncertainties and some reference values for typical

sensors and measurement methods used in UDSM.

BOX 0: EXAMPLES WITH MATLAB®

Detailed examples of calculations with Matlab® are shown in dedicated boxes throughout this chapter:
the instructions and codes are written with the Matlab® syntax and courier new font to distinguish
them from the rest of the text. The instructions and code lines can be copied-pasted directly by the
reader who would like to replicate them for training or to adapt them to his/her own needs.

Numerical results in boxes are usually given with 4 digits (format short). In the main text,
numerical values are rounded to the number of significant digits. It is also important to note, for
readers who would like to reproduce them, that all calculations have been run without rounding in
the successive steps.

Matlab® codes and associated data csv files are available for download at https://doi.org/10.
2166/9781789060102.
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8.2 INTERNATIONAL STANDARDS AND METHODS FOR
UNCERTAINTYASSESSMENT
8.2.1 Introduction and common rules of application
The first internationally unified frame for UA in measurements was published in 1993 as an ISO
(International Organization for Standardization) guide entitled GUM – Guide for Uncertainty in
Measurements (ISO, 1993), re-published with revisions in 1995 and also as a European standard in
1999 (CEN, 1999). It was later on revised, adapted and completed as parts of a new Guide for
Uncertainty in Measurement, abbreviated hereafter as the ISO Guide 98, elaborated at international
level by the JCGM – Joint Committee for Guides in Metrology – convened by the Bureau
International des Poids et Mesures (BIPM), the International Electrotechnical Commission (IEC), the
International Organization for Standardization (ISO), and the International Organization of Legal
Metrology (OIML). The Supplement 1 published in 2008 introduces the Monte Carlo method for
uncertainty assessment.

The ISO Guide 98 is based on a statistical approach to estimate uncertainties in measurements, in
agreement with definitions given in Chapter 12.

In this chapter, we refer to the following parts of the ISO Guide 98:

• As general introduction for all concepts and methods:
ISO (2009a). ISO/IEC Guide 98-1:2009(E) Uncertainty of measurement – Part 1: Introduction to the

expression of the uncertainty in measurement. Geneva (Switzerland): ISO, September 2009,
32 p.

• As Guide for uncertainty in measurements method (abbreviated as GUM):
ISO (2008a). ISO/IEC Guide 98-3:2008(E) Uncertainty of measurement – Part 3: Guide to the

expression of uncertainty in measurement (GUM: 1995). Geneva (Switzerland): ISO,
December 2008, 130 p.

• As Monte Carlo method (abbreviated as MCM):
ISO (2008b). ISO/IEC Guide 98-3/Suppl.1:2008(E) Uncertainty of measurement – Part 3:

Guide to the expression of uncertainty in measurement (GUM: 1995) Supplement 1:
Propagation of distributions using a Monte Carlo method. Geneva (Switzerland): ISO,
December 2008, 98 p. and

ISO (2009b). ISO/IEC Guide 98-3/S1/AC1:2009(E) Uncertainty of measurement – Part 3: Guide to
the expression of uncertainty in measurement (GUM: 1995), Supplement 1: Propagation of
distributions using a Monte Carlo method, Technical corrigendum 1. Geneva (Switzerland):
ISO, May 2009, 2 p.

GUM andMCMmay also be referred to as the ‘propagation of uncertainties’method and the ‘propagation of
distributions’ method, respectively.

This chapter does not reproduce the full content of the above detailed standards. A brief introduction is
presented below in Section 8.2, and additional examples are given in Section 8.3.

For any measured or calculated quantity Y, there are three steps in UA:

(1) Estimation of the true value* of Y. (Note: the symbol * indicates that the definition of the word
or the expression is given in Chapter 12).

(2) Estimation of the standard uncertainty* of Y noted u(Y ).
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(3) Estimation of the coverage interval* of Y for a given level of probability α (typically 95%):

[Y− ku(Y ), Y+ ku(Y )] in the case of methods A and B (described respectively in Sections 8.2.2 and
8.2.3), where k is the coverage factor*, or

[Yα,low, Yα,high] in the case of MCM (described in Section 8.2.4).

The third step is optional but is almost systematically applied in practice.
Reporting UA should be done systematically, and the following information should be provided (ISO,

2008b, p. 25):

• A detailed and clear description of (i) the measurement process, and (ii) the methods used.
• A list of all uncertainty components that are accounted for and how they are evaluated.
• All values, constants, corrections used in the UA analysis process, so that it could independently

repeated if necessary.

A test of the foregoing list is to ask oneself ‘Have I provided enough information in a sufficiently clear
manner that my result can be updated in the future if new information or data become available?’ (ISO,
2008b, p. 25).

An important precondition for UA is the absence of coarse errors and systematic deviations in
measurements. This is ensured by the rigorous application of metrological best practices, including
sensor calibration, and periodic maintenance and checking (see Chapter 7, especially Section 7.6).

8.2.2 Type A method for uncertainty assessment of repeated
measurements
8.2.2.1 Principle
The Type A method assumes that the quantity of interest Y can be measured directly and repeatedly,
according to repeatability conditions*. It is applicable to stationary quantities that do not change with
time (at least at the timescale of measurements), and to dynamic processes provided they are repeatable.
Examples are the diameter of a pipe, the width of a channel, the angle of a weir, the hydraulic
conductivity of a soil, etc.

One assumes that the measurement of the quantity Y is a random process, due to all possible sources of
variabilities attached to the instruments used, the measurement conditions, the operator and to the quantity
itself. Each measurement yi is assumed to be an independent observation of Y. The best estimate of the true
value of Y is given by the mean �y of the i= 1:n repeated measurements yi:

�y = 1
n

∑n
i=1

yi (8.1)

The unbiased standard deviation s(y) of the measured values yi is calculated as follows:

s(y) =
��������������������
1

n− 1

∑n
i=1

(yi − �y)2
√

(8.2)

The unbiased standard deviation s(�y) of the mean value �y is given by:

s(�y) =
�����������������������

1
n(n− 1)

∑n
i=1

(yi − �y)2
√

= s(y)��
n

√ (8.3)

The standard uncertainty* u(�y) is then assumed to be equal to the standard deviation s(�y).
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The expanded uncertainty*U(�y)with a given level of probability α (typically 95%) is calculated with the
coverage factor* k. The value of k depends on α. If n is lower than 30, the level of information about Y and
the distribution of its measurements yi is limited. One assumes that the distribution of the yi values is a
Student t distribution. In this case, which is frequent in practice as making more than 30 repeated
measurements may be too long or too expensive, the value of k is given by:

k = t1+a
2
(n) (8.4)

where t1+a
2
(n) is the Student t value with α= 0.95 for a symmetric probability level of 95% and ν= n− 1

degrees of freedom. The Student t value is found in statistics tables and can be obtained from software tools
like Excel®, Matlab® or Octave® (see Table 8.2).

The expanded uncertainty is:

U(�y) = ku(�y) (8.5)
and the coverage interval with the probability level α is then calculated as follows:

[�y− U(�y),�y+ U(�y)] = [�y− ku(�y), �y+ ku(�y)] (8.6)
If n is above 30, the distribution of the measurements yi is usually assumed to be normal (i.e. Gaussian)

and, in this case, k= 1.96 for α= 0.95 (Table 8.3).
In practice, due to (i) the unavoidable approximations in the measurement process, (ii) the fact that the

measured values are not necessarily exactly normally distributed and (iii) ‘the impracticality of trying to
distinguish between intervals having levels of confidence that differ by one or two percent’, the ISO
Guide 98 (ISO, 2008a, appendix G) indicates that it is also acceptable to approximate k= 1.96 by k= 2
(which corresponds to the exact value α= 0.9545 in case of the normal distribution). The 95% coverage
interval of �y is then approximated by:

[�y− 2u(�y), �y+ 2u(�y)] (8.7)
In this chapter, we use k= 1.96 to approximate 95% coverage intervals with the hypothesis of the normal

distribution. It is recommended to systematically apply Equations (8.4) and (8.6) for any number of
measurements n.

The coverage interval (Equation (8.6)) is usually interpreted, in a simplified way, as ‘the true value of the
mean �y of the quantity Y has an approximately 95% probability to lie between �y− ku(�y) and �y+ ku(�y)’. This
can be acceptable only if (i) there is no bias (systematic error) in the measurements, which is ensured only by
proper calibration of the sensor used for measurements and careful checking of the complete measurement
process, and (ii) the number of measurements is high enough to ensure that the mean of the measured values
is reasonably close to the true value of Y.

As indicated by Equation (8.3), increasing n allows decreasing the uncertainty in �y proportionally to the
square root of n. Multiplying n by 4 and 10 leads to dividing the uncertainty respectively by 2 (i.e.

��
4

√
) and

3.16 (i.e.
���
10

√
).

8.2.2.2 Basic example with Matlab®

The diameter D of a 1 m circular sewer pipe has been measured four times with a 2 m long class II meter
(i.e. true length of this meter is between 1.9993 and 2.0007 m, according to the class definition given in
OJEU, 2014). The four measured values Di with i= 1:4 are given in Table 8.1.
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Note: Examples and codes written for Matlab® (https://fr.mathworks.com) can also be used without any
modification with the free software tool Octave® (https://www.gnu.org/software/octave/). The
compatibility has been checked by the authors with Matlab® 2017b and Octave 5.1.0.

As shown in Box 1 below, the best estimate of the pipe diameter is �D= 1000.2 mm and its 95% coverage
interval is [996.5, 1004.0] mm, with only one meaningful digit. Box 2 shows how to apply the Type A
method with the Matlab® code uTypeA.

BOX 1: STEP BY STEPAPPLICATION OF THE TYPE A METHOD
WITH MATLAB®

For the data given in Table 8.1, the Matlab® instructions are as follows.

Create the vertical vector Di with the four measured values:
Di=[1002 1000 997 1002]’
Calculate the mean value �D:
Dbar=mean(Di)
One gets �D= 1000.2500 mm.
Calculate the standard uncertainty u(�D):
uDbar=std(Di)/sqrt(length(Di))
One gets u(�D)= 1.1814 mm.
Calculate k with α= 95% and ν= n-1 degrees of freedom:
alpha=0.95
k=tinv((1+alpha)/2, length(Di)-1)
One gets k= 3.1824. The expanded uncertainty k × u(�D)= 3.7599 mm.
Calculate the coverage interval with the probability level α:
Dbar-k*uDbar
Dbar+k*uDbar
One gets respectively 996.4900 mm and 1004.0099 mm.

Table 8.1 Four measurements
of the pipe diameter D.

Di (mm)

1002

1000

997

1002
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8.2.3 Type B method for uncertainty assessment by the law of
propagation of uncertainties
8.2.3.1 Principle
The Type B method is applied in cases where the quantity of interest Y can be measured neither directly nor
repeatedly, i.e. when the Type A method cannot be applied. Some examples: rainfall intensities calculated
from measured tips of a rain gauge bucket, discharge calculated from the water level measured over a weir,
discharge calculated from both measured water level and mean flow velocity, infiltration flow in a
stormwater infiltration tank calculated from water level and mass balance, pollutant load calculated from
measured water quality and discharge, etc. In many cases in urban hydrology, the quantities of interest
vary with time: repeated measurements are not possible. Measured process data are usually recorded as
time series.

It is assumed that Y is determined from N other quantities Xi by means of a function f representing the
measurement process. All quantities are assumed to be random quantities. All measured, estimated or
known values xi of the quantities Xi and their standard uncertainties u(xi) shall be known from Type A
repeated measurements, previous applications of the Type B method, sensor calibration, experiments,
expertise, standards, scientific literature, textbooks, etc. Previous knowledge on uncertainties u(xi) and
their distribution is a pre-requisite for the Type B method and is discussed in Section 8.2.3.3.

The estimate y of the quantity Y is given by:

y = f (x1, x2, . . . xi, . . . xN) (8.8)

The combined standard uncertainty u(y) is obtained using the following equation, also referred to as the
Law of Propagation of Uncertainties (LPU):

u(y)2 =
∑N
i=1

u(xi)2 ∂f

∂xi

( )2

+ 2
∑N−1

i=1

∑N
j=i+1

u(xi, xj) ∂f

∂xi

( )
∂f

∂xj

( )
(8.9)

where u(xi, xj) is the covariance of xi and xj:

BOX 2: APPLICATION OF THE TYPE A METHOD WITH THE
MATLAB® CODE uTypeA

(Matlab® codes and csv files available for download at https://doi.org/10.2166/9781789060102).
All calculations presented in Box 1 are automated in the Matlab® code uTypeA.
With the previous notations defined in Box 1, enter uTypeA(yi,alpha)with yi the vertical vector of n
measured values yi and alpha the level of probability. The uTypeA function provides respectively the
mean value �y, the standard uncertainty u(�y), and the boundaries of the coverage interval
[�y − ku(�y), �y + ku(�y)] with the level of probability α and the coverage factor k calculated with the
Student t value.
For the Box 1 example, type
Dbar=uTypeA(Di,alpha)
One gets �D= 1000.2500 mm, u(�D) = 1.1814 mm, a= 996.4900 mm and b= 1004.0099 mm.
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u(xi, xj) = r(xi, xj)u(xi)u(xj) (8.10)
where r(xi, xj) is the correlation coefficient of xi and xj.

The partial derivatives, also called sensitivity coefficients ci, are evaluated at Xi= xi using:

ci = ∂f

∂Xi

( )
(8.11)

In the case where f has a complicated expression, its derivatives may be difficult to establish
analytically. They can be replaced by numerical second order approximations:

ci = ∂f

∂Xi

( )
≈ f (xi + 1i) − f (xi − 1i)

21i
(8.12)

where εi is very small compared to xi. Typically, one can use εi= u(xi)/1000.
The expanded uncertainty U(�y) with a given level of probability α (typically 95%) is calculated with the

coverage factor k:

U(y) = ku(y) (8.13)

The value of k depends on α. Ideally, uncertainty estimates u(xi) are based upon reliable Type A and
Type B evaluations with a sufficient number n of observations such that using the coverage factor of
k= 1.96 will ensure a confidence level close to 95%.

If the above assumption is not valid, the effective degree of freedom νeff needs to be estimated using the
Welch-Satterthwaite formula:

neff = u(y)4
∑N
i=1

[ciu(xi)]4
ni

( )−1

(8.14)

If u(xi) is determined from a Type A estimation based on n repeated measurements, then νi= n−1. If u(xi)
is determined from a previous Type B estimation, and if the distribution of xi is exactly known (i.e. the type
and the boundaries of the distribution are known), which is frequent in practice, then νi→∞. Otherwise, νi is
estimated from the following equation:

ni = 1
2

u(xi)2
s[u(xi)]2

≈ 1
2

Du(xi)
u(xi)

[ ]−2

(8.15)

where σ[u(xi)] is the standard deviation of the standard uncertainty u(xi).
The quantity between large brackets in the last part of Equation (8.15) corresponds to the relative

uncertainty of the standard uncertainty u(xi), i.e. how exactly the standard uncertainty u(xi) itself is
known. This is usually based on scientific judgement and expertise.

In the case where the value of νeff obtained from Equation (8.14) is not an integer, then round νeff to the
nearest lower integer.

The value of k is then calculated from the Student t distribution:

k = t1+a
2
(neff ) (8.16)
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and the coverage interval with the probability level α is calculated as follows:

[y− U(y), y+ U(y)] = [y− ku(y), y+ ku(y)] (8.17)

Note that the coverage interval is, by definition, symmetric around the estimate y of the measurand Y.

8.2.3.2 Covariances in the type B method
The main equation of the LPU is Equation (8.9). The right-hand part contains two sums. The first one is
always applied and corresponds to cases where all measured values xi and their uncertainties u(xi) are
fully independent of each other and are not correlated: all covariances u(xi, xj)= 0 or all coefficients of
correlation r(xi, xj)= 0. This is the case when all xi values are estimated with separate sensors or
independent measurement processes and sources of information.

The second double sum has to be taken into account when measured values xi or their uncertainties u(xi)
are not independent of each other and are correlated: covariances u(xi, xj) ≠ 0 or coefficients of correlation
r(xi, xj) ≠ 0 shall be (i) detected by means of a detailed analysis of the measurement process and
(ii) quantified to be included in the calculation. Detection and quantification of covariances are not
always obvious and should receive special attention. As covariances and coefficients of correlation may
be positive or negative, they may contribute, sometimes in a very high proportion, to respectively
increasing or decreasing the standard uncertainty u(y). More details are given in Section 8.2.6.

It is frequent in practice that estimating the value y of the measurand Y includes intermediate quantities Xi

in the function f which are themselves based on common measured quantities Xj. This shall be avoided as
it generates covariance and complicates the estimation of the standard uncertainty u(y). It is thus very
important to avoid intermediate quantities as much as possible, and to write the function f in a way
which may be less usual but reflects closely the measurement process with independent quantities.

Example 1: Calculation of flow by the Manning-Strickler equation
The discharge Q (m3/s) in a rectangular channel is commonly calculated using the Manning-Strickler

equation as:

Q = f (K, I, S,Rh) = KI
1
2SR

2
3
h (8.18)

where K (m1/3/s) is the Manning-Strickler coefficient, I (m/m) is the pipe invert slope, S (m2) is the flow
cross section and Rh (m) is the hydraulic radius.

The coefficientK is estimated either from field experiments or, more frequently, from tables or textbooks.
The slope I is estimated from field measurements, maps or GIS data. Both the cross section S and the
hydraulic radius Rh are calculated from the channel width B (m) and the measured water level h (m):

S = Bh (8.19)

Rh = Bh

B+ 2 h
(8.20)

K, I, B and h are the truly independent quantities estimated by means of different and independent
instruments and information. But S and Rh are obviously not independent quantities and are highly
correlated as both depend on B and h. Clearly Equation (8.18) is not appropriate to be used in
Equation (8.9) as covariance between S and Rh has been introduced. It is thus recommended to rewrite
Equation (8.18) without correlated intermediate quantities and only with the truly independent quantities
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in a way which reflects closely the real measurement process, as:

Q = f (K, I,B, h) = KI
1
2(Bh) Bh

B+ 2 h

( )2
3= KI

1
2(Bh)53(B+ 2 h)−2

3 (8.21)

8.2.3.3 Estimation of standard uncertainties u(xi) from prior information on distributions
As the Type B method requires all values u(xi) as inputs in Equation (8.9), and as these values are not
necessarily obtained from Type A estimations (i.e. series of repeated observations), it is necessary to
provide additional information on the probability distributions of the quantities Xi.

If the value xi of the quantity Xi is known from repeated measurements and if the Type A method is
applied to estimate u(xi), the degrees of freedom ν(xi) are known and u(xi) can be used directly in
Equation (8.9). In the case where xi is not given with its standard uncertainty u(xi) but with (i) a
coverage interval [a, b] and (ii) a coverage factor k or a level of probability α, then u(xi) is calculated
from Equation (8.6), by assuming the values of the quantity Xi are distributed according to a normal (i.e.
Gaussian) distribution:

u(xi) = (b− a)
2k

(8.22)

or

u(xi) = (b− a)
2k(a) (8.23)

where k(α) is calculated either from the normal distribution or from the Student t distribution for an infinite
number of degrees of freedom ν=+∞. The value k(α) is found in statistics tables and can be obtained from
software tools like Excel®, Matlab® or Octave® (Table 8.2). Most typical values are given in Table 8.3.

Example 2: If xi= 100 and [a, b]= [99, 101] with k= 2 (i.e. α ≈ 0.95), then Equation (8.22) gives u(xi)=
0.5. If xi= 100 and [a, b]= [99, 101] with α= 0.99, then k(α)= 2.58 and Equation (8.23) gives u(xi)=
0.39.

Table 8.2 Excel
®

and Matlab
®

/Octave
®

functions to calculate the coverage factor k from the probability level α
and reciprocally.

Normal distribution Student distribution

From α to k

Excel
®

* k(a) = NORMINV((1+ a)/2, 0, 1) (8.24) k(a) = TINV((1− a),1e6) (8.25)
Matlab

®

k(a) = norminv((1+ a)/2) (8.26) k(a) = tinv((1+ a)/2, inf) (8.27)

From k to α

Excel
®

* a(k) = (NORM.DIST(k,0,1,1) ∗ 2) − 1 (8.28) a(k) = (T.DIST(k, 1e6) ∗ 2) − 1 (8.29)
Matlab

®

a(k) = (normcdf(k) ∗ 2) − 1 (8.30) a(k) = (tcdf(k, inf) ∗ 2) − 1 (8.31)
* With Excel

®

, the infinite value is replaced by one million (1e6).
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The probability distribution of the quantities Xi can take a variety of other forms. In addition to the normal
distribution, three typical examples are the uniform (or rectangular), the triangular and the trapezoidal
distributions (Figure 8.1).

The symmetric uniform distribution corresponds to cases with limited information about the value xi
of the quantity Xi. One knows for example that the value xi lies in the interval [a, b] with a probability
close to 1 but without any additional information about the shape of the distribution. It is thus
assumed that (i) any value within the interval [a, b] has the same probability to be the most likely
value of xi, and (ii) any value outside this interval is almost unlikely. In this case, xi and u(xi) are
given respectively by:

xi = a+ b

2
(8.32)

and

u(xi) = b− a

2
��
3

√ (8.33)

Example 3: If [a, b]= [99, 101], then Equations (8.32) and (8.33) give respectively xi= 100 and u(xi)=
0.58.

The symmetric triangular distribution corresponds to cases with more information. One knows for
example that the most likely value xi is the central value of the interval [a, b] and that the probability
declines regularly towards the lower and upper bounds a and b, with the assumption that any value
outside the interval is unlikely. In this case, xi is given by Equation (8.32) and u(xi) is given by:

u(xi) = b− a

2
��
6

√ (8.34)

Example 4: If [a, b]= [99, 101], then Equations (8.32) and (8.34) give respectively xi= 100 and u
(xi)= 0.41.

The symmetric trapezoidal distribution is used to account for the fact that in the uniform distribution,
the abrupt probability step below a and above b is likely unphysical. Slopes on each side of the
distribution are thus included to get a more realistic distribution (Figure 8.1). The trapezoidal distribution
is characterized by both the bottom interval [a, b] and the coefficient β which represents the width of the

Table 8.3 Most typical values of probability level α
and corresponding coverage factor k for the normal
distribution. Note: as indicated in ISO (2008a)
appendix G, it is acceptable to replace k= 1.96 by
k= 2 to approximate 95% coverage intervals.

Probability level α Coverage factor k

0.68 1.00

0.90 1.64

0.95 1.96

0.99 2.58
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Figure 8.1 Uniform, triangular and trapezoidal distributions for the Type B method. Source: adapted from
ISO (2008a) by Jean-Luc Bertrand-Krajewski (INSA Lyon).
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top of the distribution as a fraction of the interval [a, b]. In this case, xi is given by Equation (8.32) and u(xi) is
given by:

u(xi) = b− a

2
��
6

√
���������
1+ b2

√
(8.35)

Example 5: If [a, b]= [99, 101] and β= 0.5, then Equations (8.32) and (8.35) give respectively xi= 100 and
u(xi)= 0.46.

It is worth noting that Equation (8.35) is similar to Equation (8.33) when β= 1 (uniform distribution) and
to Equation (8.34) when β= 0 (triangular distribution).

Other distributions, including non-symmetrical ones, are described in ISO (2008a) and also in textbooks
(e.g. Gentle, 2003; Thomopoulos, 2018). The choice of an appropriate distribution for each quantity Xi in
running the Type B method is based on knowledge and experience. Some examples are given in Table 8.4.
In practice, normal and uniform distributions are among the most frequently used ones.

8.2.3.4 Basic example with Matlab®

The discharge Q (m3/s) in an open rectangular channel is calculated by means of the Manning-Strickler
formula, written as discussed in Section 8.2.3.2:

Q = f (K, I,B, h) = KI
1
2(Bh) Bh

B+ 2 h

( )2
3= KI

1
2(Bh)53(B+ 2 h)− 2

3 (8.36)

where K (m1/3/s) is the Manning-Strickler coefficient, I (m/m) is the channel invert slope, B (m) is the
channel width and h (m) is the water level in the channel.

The channel is made of smooth concrete, with no deposits, no biofilm, and no surface degradation.
Textbooks (e.g. Lencastre, 1999) indicate that the value of K is usually between 70 and 80 m1/3/s.
Consequently, in the absence of in situ measurements, it is reasonable to assume that the value of K

Table 8.4 Choice of typical distributions for the Type B method.

Distribution Examples/////available information

Normal • Calibration certificates, handbooks, material or sensor specifications, knowledge
quoting either (i) a probability level α or a coverage factor k with the expanded
uncertainty, (ii) a number of standard deviations, or (iii) a given probability level interval α.

• Information from Type A estimations based on repeated measurements.

Uniform • Maximum bounds within which all values of the quantity are assumed to lie with
equal probability.

• Maximum instrument drift between calibrations.
• Error due to limited resolution of an instrument’s display or digitizer.
• Manufacturers’ tolerance limits.

Triangular • Maximum bounds within which all values of the quantity are assumed to lie with higher
probability for the central value and decreasing probabilities towards the interval bounds.

Trapezoidal • Maximum bounds within which all values of the quantity are assumed to lie with equal
probability in the central part of the interval.
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lies with a symmetric uniform probability in the interval [a, b]= [70, 80] m1/3/s (uniform distribution
U(70, 80)).

The mean slope I of the open channel has been measured by a land surveyor along a reach of 50 m with
the direct levelling method. The result is I= 0.0032 m/m, with a standard uncertainty u(I )= 6× 10−6 m/m
(normal distribution N(0.0032, 6×10−6)).

The channel width B has been measured four times with a class II meter, similarly as the pipe diameter in
Section 8.2.2.2. The results are B= 0.805 m, u(B)= 0.002 m and νB= 3 degrees of freedom.

The water level h= 0.32 m is measured by means of a calibrated ultrasound sensor. In situ sensor
calibration accounting for uncertainties related to both the sensor itself and local measurement conditions
results in a whole standard uncertainty u(h)= 1.5 mm (normal distribution N(0.32, 0.0015)).

With the above values, the discharge is Q= 0.346 m3/s (detailed calculations are given in Box 3).
The next step consists of calculating the standard uncertainty u(Q) by applying Equation (8.9). As the

quantities K, I, B and h are measured with independent sensors, there is no covariance between them and
only the first part of Equation (8.9) is applied. This leads to:

u(Q)2 =
∑4
i=1

(u(xi)2 ∂Q

∂xi

( )2

= u(K)2 ∂Q

∂K

( )2

+u(I)2 ∂Q

∂I

( )2

+u(B)2 ∂Q

∂B

( )2

+u(h)2 ∂Q

∂h

( )2

(8.37)

The partial derivatives of Q need to be estimated first. There are two possibilities: algebra derivation or
second order numerical approximation. In this example, both approaches are used and compared.

The algebra derivation gives (with 6 digits for illustrative purpose):

∂Q

∂K
= I

1
2(Bh)53(B+ 2 h)− 2

3 = Q

K
= 0.004615 (8.38)

∂Q

∂I
= 1

2
KI−

1
2(Bh)53(B+ 2 h)− 2

3 = Q

2I
= 54.090477 (8.39)

∂Q

∂B
= 5

3
hKI

1
2(Bh)23(B+ 2 h)− 2

3 − 2
3
KI

1
2(Bh)53(B+ 2 h)− 5

3 = Q

3
5
B
− 2

B+ 2 h

( )
= 0.557013 (8.40)

∂Q

∂h
= 5

3
BKI

1
2(Bh)23(B+ 2 h)− 2

3 − 4
3
KI

1
2(Bh)53(B+ 2 h)− 5

3 = Q

3
5
h
− 4

B+ 2 h

( )
= 1.483588 (8.41)

The second order numerical approximation, calculated according to Equation (8.12), gives:

∂Q

∂K
= Q(K + 1K, I,B, h) − Q(K − 1K, I,B, h)

21K
= 0.004615 (8.42)

∂Q

∂I
≈ Q(K, I + 1I,B, h) − Q(K, I − 1I,B, h)

21I
= 54.090477 (8.43)

∂Q

∂B
≈ Q(K, I,B+ 1B, h)− Q(K, I,B− 1B, h)

21B
= 0.557013 (8.44)

∂Q

∂h
≈ Q(K, I,B, h+ 1h) − Q(K, I,B, h− 1h)

21h
= 1.483588 (8.45)

Both approaches provide results which, in this example, are identical to the 6th digit at least. The
advantage of the numerical approximation is the possibility to run calculations automatically without
algebra.

The resulting standard uncertainty is u(Q)= 0.013 m3/s and the relative standard uncertainty is u*(Q)=
u(Q)/Q= 0.039, i.e. 3.9%. All calculations with Matlab® are given in Box 3.
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BOX 3: STEP BY STEP CALCULATIONS OF Q AND u(Q) IN A
RECTANGULAR CHANNELWITH MATLAB®

Let us first set the values and the standard uncertainties for K, I, B, and h.
Define the interval for K:
intK=[70 80]
Calculate K and its standard uncertainty u(K):
K=mean(intK)
uK=diff(intK)/2/sqrt(3)
One gets K= 75 m1/3/s and u(K)= 2.8867 m1/3/s.
Then type
I=3.2e-3
uI=6e-6
B=0.805
uB=2e-3
h=0.32
uh=1.5e-3
Calculate the discharge Q(K,I,B,h) by Equation (8.36):
Q=K.*power(I,1/2).*power(B.*h,5/3).*power(B+2.*h,-2/3)
One gets Q= 0.3462 m3/s.
Calculate the standard uncertainty u(Q) by Equation (8.37).
Let us first define the quantities cK, cI, cB and ch respectively equal to the numerical values of the
partial derivatives of Q (Equations 8.42 to 8.45):
epsK=uK/1000
epsI=uI/1000
epsB=uB/1000
epsh=uh/1000
cK=((K+epsK).*power(I,1/2).*power(B.*h,5/3).*power(B+2*h,-2/3)-
(K-epsK).*power(I,1/2).*power(B.*h,5/3).*power(B+2*h,-2/3))/epsK/2
cI=(K.*power(I+epsI,1/2).*power(B.*h,5/3).*power(B+2*h,-2/3)-
K.*power(I-epsI,1/2).*power(B.*h,5/3).*power(B+2*h,-2/3))/epsI/2
cB=(K.*power(I,1/2).*power((B+epsB).*h,5/3).*power(B+epsB+2*h,-2/3)-
K.*power(I,1/2).*power((B-epsB).*h,5/3).*power(B-epsB+2*h,-2/3))/epsB/2
ch=(K.*power(I,1/2).*power(B.*(h+epsh),5/3).*power(B+2*(h+epsh),-2/3)-
K.*power(I,1/2).*power(B.*(h-epsh),5/3).*power(B+2*(h-epsh),-2/3))/
epsh/2
Then create two intermediate vectors Vu and Vc and apply Equation (8.37):
Vu=[uK uI uB uh]’
Vc=[cK cI cB ch]’
uQ=sqrt(sum(power(Vu.*Vc, 2)))
One gets
u(Q)= 0.0136 m3/s
The relative standard uncertainty is calculated by
uQ/Q
One gets u*(Q)= 0.0392, i.e. 3.9%.
The 95% coverage interval is given by
[Q-1.96*uQ, Q+1.96*uQ]
One gets [0.3196, 0.3728] m3/s.
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Let us now calculate the 95% coverage interval. In the first andmost simple way, one may assume that the
coverage factor k= 1.96 for the probability level α= 0.95. In this case, the 95% coverage interval for Q is
determined from Equation (8.17):

[Q− 1.96× u(Q), Q+ 1.96× u(Q)] = [0.320, 0.373] m3/s (8.46)
A more detailed approach is based on the estimation of the effective degree of freedom from the

Welch-Satterthwaite formula (Equations 8.14 to 8.16). Detailed Matlab® calculations are given in Box 4.
The effective degrees of freedom νi are estimated as follows.

As u(K ) can be considered to be known itself with a relative uncertainty of 20% according e.g. to
hydraulic textbooks, then, according to Equation (8.15):

n(K) = 1
2
[0.20]−2 = 12.49 (8.47)

to be approximated to the nearest lower integer, i.e. ν(K )= 12.
u(I ) is given by the land surveyor, based on repeated calibrations of the sensors. One assumes here that

ν(I )=∞.
u(B) is calculated from a Type A estimation based on n= 4 repeated measurements: ν(B)= n− 1= 3.
u(h) is estimated from a sensor calibration based on n= 60 measurements (12 repeated measurements for

5 values along the sensor measurement range). Thus ν(h)= 60− 1= 59. For comparison purposes, onemay
also assume that ν(h)=∞.

Applying Equation (8.14) gives νeff= 12, with both ν(h)= 59 or ν(h)=∞.

BOX 4: STEP BY STEP CALCULATIONS OF THE COVERAGE
INTERVAL OF Q WITH THE EFFECTIVE DEGREE OF FREEDOM

Set the respective values of the degrees of freedom for K, I, B, and h:
nuK=floor(0.5*power(0.20, −2))
One gets ν(K)= 12.
Type
nuI=Inf
nuB=3
nuh=59 (or nuh= Inf)
Define Vnu an intermediate vertical vector:
Vnu=[nuK nuI nuB nuh]’
The effective degree of freedom νeff is calculated by Equation (8.14), with Vu and Vc defined in Box 3:
nueff=floor(power(uQ,4)/sum(power(Vu.*Vc,4)./Vnu))
One gets νeff= 12, with both ν(h)= 59 or ν(h)=∞.
Then type
alpha=0.95
k=tinv((1+alpha)/2, nueff)
One gets k= 2.1788.
The coverage interval is then calculated by:
[Q-k*uQ,Q+k*uQ]
One gets [0.3166, 0.3757] m3/s.
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The coverage factor k corresponding to νeff = 12 is equal to 2.18 (Equation (8.16)), which is a little bit
higher than the default value k= 1.96 used previously.

Lastly, applying Equation (8.17), the coverage interval for the discharge Q is:

[Q− k × u(Q),Q+ k × u(Q)] = [0.317, 0.376] m3/s.

Looking at the details of the calculations reveals that the strongest contribution to the combined
uncertainty is due to the uncertainty in the Manning-Strickler coefficient K. If one assumes that the
relative uncertainty of u(K ) is 10% instead of 20%, then ν(K ) increases from 12 to 49. Consequently, νeff
increases from 12 to 52, and k= 2.006, which is now equivalent to the default value. This emphasizes
the importance of a reliable assessment of all components contributing to the estimation of the coverage
interval, including the degrees of freedom.

All calculations presented in this example can be run automatically with the Matlab® code uTypeB

presented in Box 5.

BOX 5: APPLICATION OF THE TYPE B METHOD WITH THE
MATLAB® CODE uTypeB

(Matlab® codes and csv files available for download at https://doi.org/10.2166/9781789060102).
The calculations of the discharge Q and its standard uncertainty u(Q) shown in Box 3 and Box 4 are
automated in the Matlab® code Y= uTypeB(Z,A,chaine,alpha,MatCor,NuZ,NuA), where the
quantities Xi of the measurement process are divided into two groups Z and A, where:
Z is the matrix containing data related to time varying quantities (time series). Its structure is as follows:
Z has as many lines as time steps in the time series. Each line contains, in successive columns from left
to right, m pairs of data for each time varying quantity Z: Z1, u(Z1), Z2, u(Z2),…Zi, u(Zi), …Zm, u(Zm).
A is the matrix containing data related to constant quantities. The single line of A contains, in the
successive columns from left to right, p pairs of data for each constant quantity A: A1, u(A1), A2, u
(A2),…Aj, u(Aj),…Ap, u(Ap).
The sum m+ p is equal to N, the number of quantities Xi in Equation (8.9).
chaine is the equation string describing the measurement process of Y using Zi and Aj quantities.
alpha is the level of probability.
MatCor is the matrix of correlation between Zi and Aj quantities.
NuZ is the vector of the degrees of freedom ν(Zi) of each quantity Zi, in the same order as in the matrix Z.
NuA is the vector of the degrees of freedom ν(Ai) of each quantityAj, in the same order as in thematrixA.
NuZ and NuA are optional inputs in the function uTypeB: if they are not used, the coverage interval
is estimated solely with the default values of k given in Tables 8.2 and 8.3 for an infinite degree
of freedom.
The uTypeB function provides respectively the following results in successive columns of the output
matrix Y, with one line per time step: the value y of Y, its standard uncertainty u(Y ), the boundaries of
the coverage interval calculated with an infinite degree of freedom and the boundaries with the
effective degree of freedom νeff.
For the above example, there is one time-varying quantity: the water level h, and three
constant quantities: respectively the Manning-Strickler coefficient K, the channel slope I and the
channel width B. Consequently, type
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8.2.4 Monte Carlo method for uncertainty assessment
8.2.4.1 Principle
The Monte Carlo method (MCM) is a generic simulation method, which can be applied to
estimate uncertainties under various conditions and in particular when the conditions of the Type B
method are not satisfied (non-linearity, non-symmetric distributions, significance of second order
terms in the derivation of the LPU) or are very difficult to apply. It is considered as the reference
method.

BOX 5: (Continued)

Z=[h uh]
with only one line as there is only one single value of h.
A=[K uK I uI B uB]
The previous measurement process equation (see Box 3):
Q=K.*power(I,1/2).*power(B.*h,5/3).*power(B+2.*h,-2/3)
is then re-written with notations indicating the quantities with their rank in matrices Z and A.
h is the first quantity in thematrix Z: h is replaced by Z(:,1) in the above expression ofQ. Similarly, K, I
and B are replaced, respectively, by A(:,1), A(:,2) and A(:,3) as they are, respectively, the first,
second and third quantities in the matrix A. It is important to note that the indices refer to the rank of the
quantities in matrices Z and A, and not to the rank of the columns.
Consequently, type
chaine=’A(:,1).*power(A(:,2),0.5).*power(A(:,3).*Z(:,1),5/3).*power

(A(:,3)+2.*Z(:,1),-2/3)’
alpha=0.95
In this example, all four quantities in Z and A are independent as there is no correlation or covariance
between them. Consequently, type
MatCor=eye(4)
which gives

MatCor =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

where the columns from left to right and the lines from top to bottom refer successively to the Zi and
Aj quantities.
In addition, type
NuZ=[59]
NuA=[12 inf 3]
Lastly type
Q=uTypeB(Z,A,chaine,alpha,MatCor,NuZ,NuA)
One gets Q= 0.3462 m3/s, u(Q)= 0.0136 m3/s, and
coverage interval with an infinite degree of freedom: [0.3196, 0.3728]
coverage interval with the effective degree of freedom: [0.3166, 0.3757].
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The MCM consists basically of repeatedly simulating the measurement process f calculating the
measurand Y from the quantities Xi as described by Equation (8.8) in Section 8.2.3.1:

y = f (x1, x2, . . . xi, . . . xN) (8.48)

Samples of size M are built for all quantities Xi involved in the measurement process, according to their
distributions and with appropriate correlation coefficients. Then the samples are used to calculate M times
the value y of the measurand Y and theM values of y allows calculation of the mean value �y of the measurand
Y, the standard uncertainty u(y) and the coverage interval corresponding to the defined probability level α.

As for the Type B method, it is of particular importance:

• To write the measurement process Y= f (X1, X2, …XN) in a way which closely reflects the
measurement process with independent quantities Xi.

• To define the probability distributions for all quantities Xi.
• To carefully analyse the possible correlations between quantities and to quantify them when

they exist.

The principle of the MCM is illustrated in Figure 8.2. The sample of each quantity Xi for i= 1:N in the
measurement process f is represented by a vector of M values with r= 1:M: xi,1, xi,2, … xi,r,… xi,M. Within
each sample, the successive values xi,r are sorted neither in ascending nor in descending order but are
randomly listed.

The samples are built according to two requirements: (i) each sample distribution should represent the
information and knowledge about each quantity Xi, as in the Type B method (see Section 8.2.4.2), and
(ii) the correlation between samples should represent the correlation as described in Equation (8.10)
between the quantities Xi in the measurement process f (see Section 8.2.4.3). Creating large samples
cannot be done manually and software tools are required.

Once all samples of the quantities Xi are built appropriately, M values of y are calculated as follows:

yr = f (x1,r, x2,r, . . . xi,r, . . . xN,r) (8.49)
with r= 1:M.
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… … f (X1,X2,…Xi,…XN)

Figure 8.2 Principle of the Monte Carlo method. Source: Jean-Luc Bertrand-Krajewski (INSA Lyon).
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The estimate of the measurand Y is given by the mean �y of the yr values:

�y = 1
M

∑M
r=1

yr (8.50)

The estimate of the standard uncertainty u(y) is given by the standard deviation s(y) of the values yr:

u(y) =
���������������������

1
M − 1

∑M
r=1

(yr − �y)2
√√√√ (8.51)

One of the advantages of the MCM, contrarily to the Type B method, is its ability to deal with
non-symmetric distributions. As a consequence, the distribution of the yr values may be also
non-symmetric, and thus the coverage interval is not necessarily symmetric around the mean value �y, as
this is the case in Equation (8.17) with the Type B method.

With the MCM, the coverage interval [yα,low, yα,high] for the given level of probability α corresponds to
the narrowest interval containing the fraction α of the values yr. Its estimation requires some preliminary
steps for processing of the values yr:

(1) Sort all values yr in ascending and non-decreasing order (in case of possible equalities among values
yr). The sorted values are then noted y(r) with r= 1:M.

(2) Define an integer q= αM if αM is an integer. Otherwise, define q as the integer part of (αM+ 1/2).
(3) Determine the confidence interval [yα,low r, yα,high r] for Y where, for any r= 1:M-q, yα,low r= y(r)

and yα,high r= y(r+q).
(4) The shortest coverage interval with probability level α is obtained with r* such that, for r= 1:M-q,

y(r∗+q) − y(r∗) ≤ y(r+q) − y(r) (8.52)

8.2.4.2 Creating non-correlated samples
Creating samples of the quantities Xi according to a given probability density function (pdf) requires a
random number generator. Basic Matlab® functions to create uniform, normal, triangular and trapezoidal
samples are given in Box 6. Similar functions exist with other software tools. They are parameterized
and used to create samples following predefined pdfs.

Other pdfs can be used with the MCM: Student t pdf, exponential pdf for values which cannot be higher
or lower than a threshold (typically non-negative values), gamma pdf, empirical pdfs based on experiments,
truncated normal pdf, lognormal pdf, etc.

Additional information to generate samples according to these pdfs can be found in ISO (2008b) and in
textbooks (e.g. Gentle 2003; Press et al., 2007; Robert & Casella, 2005).

Non-correlated samples can be created individually one after another or simultaneously by using
appropriate software functions. It is however important to ensure that they are really not correlated,
usually by controlling the parameters of the random number generator.

8.2.4.3 Creating correlated samples
In the case where two quantities Xi and Xj with i ≠ j are correlated in the measurement process f with a
correlation coefficient r(xi, xj) as given in Equation (8.10), their corresponding samples shall be built in
such a way that (i) each quantity is distributed according to its own pdf and (ii) the correlation of the two
samples is equal to r(xi, xj). Generating correlated samples may be complex and presenting the details of
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BOX 6: MATLAB® FUNCTIONS AND CODES TO
CREATE NON-CORRELATED SAMPLES WITH

PRE-DEFINED PDFS

Two basic Matlab® functions are available: rand and randn.
rand(M,1)
generates a vector of random numbers x uniformly distributed between 0 and 1, noted U(0, 1) with M
lines and 1 column. An example of results is given in Figure 8.3 with M= 10,000.
randn(M,1)
generates a vector of random numbers x normally distributed with mean value m= 0 and standard
deviation s= 1, noted N(0,1). An example of results is given in Figure 8.4 with M= 10,000.
These basic functions can be parameterized and used to create samples following predefined pdfs.

Uniform (rectangular) pdf
To create a sample ofM values x uniformly distributed in the interval [a, b] (see Figure 8.1), notedU(a, b):
x=a+(b-a).*rand(M,1)
or
x=unifrnd(a,b,M,1)

Normal (Gaussian) pdf
To create M values x normally distributed with mean value m and standard deviation s, noted N(m, s):
x=m+s.*randn(M,1)

Triangular pdf
To create a sample of M values x distributed according to a triangular pdf in the interval [a, b] (see
Figure 8.1), noted Tri(a, b):

0.223770404697041
0.373563807642645
0.087500349576586
0.640116548246715
0.180616887753108
0.045051107473574
0.723173479183095
0.347437645581790
0.660616824502904
0.383868601071971
0.627346502443467
0.021649814630306
0.910569988523029
0.800558656278811
0.745847484342721
0.813112813610761
0.383306318625529
0.617279232316449
0.575494859702814
0.530051704765016
0.275069755821935
0.248628959661970
0.451638770451973
0.227712826026548
0.804449583613070

Figure 8.3 First 25 values (left) and histogram (right) of the 10,000 values x created by rand
(10000,1). Source: Jean-Luc Bertrand-Krajewski (INSA Lyon).
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available methods (e.g. copulas) is beyond the scope of this chapter (Gentle, 2003; Nelsen, 2010). Creating
samples with various pdfs and predefined correlation coefficients requires specific methods. Among them,
the copula functions are very convenient (Nelsen, 2010) and can generate bi- and multivariate samples with
correlated marginal distributions. Generation of correlated uniform and normal samples with Matlab® is
described in Box 7. Other examples are given below in Section 8.3.

BOX 6: (Continued)

generate two independent samples
s1=rand(M,1)
s2=rand(M,1)
and then
x=a+(b-a)/2.*(s1+s2)

Trapezoidal pdf
To create a sample ofM values x distributed according to a trapezoidal pdf in the interval [a, b] with the
top coefficient β (see Figure 8.1), noted Trap(a, b, β):
generate two independent samples
s1=rand(M,1)
s2=rand(M,1)
and then
x=a+(b-a)/2.*((1+β)*s1+(1-β)*s2)
The function rng allows controlling of the independence (no correlation) of samples.
Parametric functions makedist and random allow creation of samples with other pre-defined pdfs.

-0.110223485241791
0.414258701179269
0.230095272512933
0.857030996309090
0.048208732255379
1.023348450918008
-0.181992873626858
-0.290128384322202
0.815203911371096
0.322332331608368
0.138374675429518
-0.451012495444746
-0.153040599206172
-0.879002127680258
-0.192706939633842
0.194885569504571
1.594878084883789
-0.441943288721280
-0.421970829486422
0.225809147824111
0.146405492458328
0.009690168833214
0.107598715326320
-2.049531488596142
1.314029894987952

Figure 8.4 First 25 values (left) and histogram (right) of the 10,000 values x created by randn
(10000,1). Source: Jean-Luc Bertrand-Krajewski (INSA Lyon).
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BOX 7: MATLAB® FUNCTIONS ANDCODES TOCREATE UNIFORM
AND NORMAL CORRELATED SAMPLES

Bivariate normal (Gaussian) pdf
To create two correlated samples of size M for two quantities Xi and Xj normally distributed, with their
own respective means mi and mj, and standard deviations si and sj, noted N(mi, si) and N(mj, sj),
with a defined coefficient of correlation rij= r(xi, xj)= rji= r(xj, xi) (knowing that rii= rjj= 1):
create the vector of means m= [mi, mj]
create the covariance matrix:

COV = cov(xi, xi) cov(xi, xj)
cov(xj, xi) cov(xj, xj)

[ ]
= riisisi rijsisj

r jisjsi r jjsjsj

[ ]
= s2i rijsisj

r jisjsi s2j

[ ]

and then type
X=mvnrnd(m,COV,M)
The output matrix X contains 2 columns, respectively with the values of Xi and Xj.

Example 1: two samples X1 and X2 normally distributed withM= 10,000 values, withm1=10, s1= 25,
m2= 25, s2= 1.2 and r12= 0.45.
First define
m=[10 25]
s1=0.5
s2=1.2
r12=0.45
COV=[s1^2 r12*s1*s2; r12*s2*s1 s2 ^2]
M=10000
and then
X=mvnrnd(m,COV,M)
The results are illustrated in Figure 8.5.

Figure 8.5 Scatter plot and marginal histograms of two correlated normally distributed samples with
10,000 values x1 (m1=10, s1= 0.5) and x2 (m2= 25, s2= 1.2) and r12= 0.45 created by mvnrnd.
Source: Jean-Luc Bertrand-Krajewski (INSA Lyon).
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BOX 7: (Continued)

Bivariate uniform (rectangular) pdf
The easiest way to generate two correlated uniformly distributed samples Xi and Xj is to start with two
correlated standard normally distributed samples N(0, 1) and then to use the normal cumulative
probability function (cdf) usually noted Φ. The two new standard uniform samples U(0, 1) are then
re-scaled as U(ai, bi) and U(aj, bj) on their respective intervals.

Example 2: two samples X1 and X2 uniformly distributed withM= 10,000 values, with [a1, b1]= [5, 15],
[a2, b2]= [18, 32] and r12= 0.45.
First create two normally distributed samples N(0, 1) in the matrix Z1 :
m=[0 0]
COV=[1 0.45; 0.45 1]
M=10000
Z1=mvnrnd(m,COV,M)
Then generate the two uniformly distributed samplesU(0, 1) in thematrix Z2 bymeans of the functionΦ,
noted normcdf in Matlab®, which transforms a standard normal random sample N(0, 1) into a random
sample that is uniform U(0, 1):
Z2=normcdf(Z1)
Lastly, create the two samples U(5, 15) and U(18, 32) from the two samples in Z2 :
X1=5+(15-5).*Z2(:,1)
X2=18+(32-18).*Z2(:,2)
The results are illustrated in Figure 8.6.

Figure 8.6 Scatter plot and marginal histograms of two correlated uniformly distributed samples with
10,000 values x1 (a1= 5, b1=15) and x2 (a2= 18, b2= 32) and r12= 0.45 created by mvnrnd and
normcdf. Source: Jean-Luc Bertrand-Krajewski (INSA Lyon).
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8.2.4.4 Size of samples
As the MCM is stochastic in nature, each run of the MCM giving a sample of M estimates yr of Y from the
random samples of the quantities Xi will generate slightly different outputs for �y, u(y) and [yα,low, yα,high]. If
M is too small (some tens or hundreds), the results may be significantly different for each run, especially for
the interval [yα,low, yα,high] which strongly depends on the representativeness and exhaustiveness of the
possible combinations of the values xi,r involved in the calculation of the values yr. Large values of M
ensure that successive runs of the MCM deliver successive output estimates which are stable and do not
differ from each other more than a required numerical tolerance to be defined by the operator.

BOX 7: (Continued)

Other bi- and multivariate pdfs

Example 3: create two samples X1 normally distributed with meanm= 10 and standard deviation s=
0.5, and X2 uniformly distributed in the interval [a, b]= [5, 15], withM= 10,000 values and a correlation
coefficient r12= -0.7.
First create the copula Z:
M=10000
r12=-0.7
Z=copularnd(’gaussian’,r12,M)
Then create the two samples X1 and X2 in the matrix X:
X=[norminv(Z(:,1),10,0.5) 5+(15-5).*Z(:,2)]
The results are illustrated in Figure 8.7.
The correlation coefficient r(X1, X2)= - 0.69, which is close to the target value r12= - 0.7.

Figure 8.7 Scatter plot andmarginal histograms of two correlated samples withM= 10,000 values and
r12=− 0.7: x1 as N(10, 0.5) and x2 as U(5, 15) created by copularnd. Source: Jean-Luc
Bertrand-Krajewski (INSA Lyon).
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ISO (2008b) indicates in its Section 7.2.2 that ‘the choice of a value of M that is large compared with
1/(1−α), e.g. M at least 104 times greater than 1/(1−α), should be made’. For example, with α= 0.95,
a minimum value of M= 2× 105 should be used.

In practice, in many cases, ‘a value ofM= 106 can often be expected to deliver a 95% coverage interval
for the output quantity such that its length is correct to one or two significant decimal digits’ (note in Section
7.2.1 of ISO, 2008b). However, it is always recommended to check that this prior choice ofM is appropriate.

A procedure that selectsM adaptively by iterations can be used (Section 7.9 of ISO, 2008b). It is based on
the number of significant digits ndig considered as meaningful in a numerical value z by the operator. The
numerical tolerance δ is then defined as follows:

Express z in the form c×10 l where c is a ndig decimal digit integer and l is an integer.

Set d = 1
2
10l (8.53)

Example: tolerance
If a discharge Q= 0.346 m3/s with a standard uncertainty u(Q)= 0.013 m3/s (taken from Section

8.2.3.4), and if the last two digits are significant, then ndig= 2 and u(Q) can be written as 13×10−3,
therefore c= 13 and l=−3. Consequently, the tolerance δ=½ ×10−3= 0.0005= 5×10–4 m3/s. If
only one digit is significant, then Q= 0.35 m3/s, u(Q)= 0.01 m3/s, u(Q) can be written as 1×10−2,
therefore c= 1 and l=−2. Consequently, the tolerance δ=½ ×10−2= 0.005= 5×10−3 m3/s.

The objective of the MCM adaptive procedure is to estimate �y, u(y) and [yα,low, yα,high] in a way that
ensures they meet the numerical tolerance required. The adaptive procedure includes the following steps
(ISO, 2008b):

(1) Set ndig, usually 1 or 2.
(2) Set M=max(J, 104) where J is the smallest integer greater than or equal to 100/α.
(3) Set a= 1, first application of the MCM in the sequence.
(4) Carry out the M Monte Carlo simulations.
(5) From the M outputs, calculate �y(a), u(y)(a), yα,low

(a) and yα,high
(a) respectively, for the ath member of

the sequence.
(6) If a= 1, increase a by one and return to step 4.
(7) Calculate the standard deviation sy associated with the average estimates y(1), y(2), …y(a) by:

s2y =
1

a(a− 1)
∑a
r=1

(y(r) − ym)2 (8.54)

where

ym = 1
a

∑a
r=1

y(r) (8.55)

(8) Calculate the counterpart of this statistic also for u(y)(a), yα,low
(a) and yα,high

(a) respectively.
(9) Use all a×M values available so far to calculate �y, u(y), yα,low and yα,high.
(10) Calculate the numerical tolerance δ according to Equation (8.53) respectively for �y, u(y), yα,low and

yα,high.
(11) If any of 2sy, 2su(y), 2syα,low and 2syα,high exceeds its respective tolerance δ, increase a by one and

return to step 4. Otherwise, go to step 12.
(12) As all outputs of the MCM are now stabilized, use all a×M values available to calculate �y, u(y),

and [yα,low, yα,high].
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The above adaptive method is appropriate to minimize the total number a×M of simulations to be run to
achieve a given tolerance. However, if the choice of M in step 2 is too low, it will be necessary to
increase the number a of applications, and the global time required for simulations will increase. So, in
practice, it is suggested to use preferably M= 105 rather than 104 in step 2. In addition, for repetitive
calculations (e.g. calculations of uncertainties in discharge in a sewer with measurements every 2 or 5
minutes), the adaptive procedure does not need to be carried out for each time step, which is
counterproductive. A first estimation can be done to estimate the minimum necessary total number a×M
of simulations to reach the required tolerance, and then run this total number of Monte Carlo
simulations, possibly multiplied by a safety factor, to save computation times. For example, if
preliminary assessments indicate that a total number a×M= 4×105 simulations is necessary, the routine
number can be increased to 106 for repetitive simulations. This is only a case-by-case decision.

8.2.4.5 Basic example with Matlab®

For this example, let us take the same case as for the Type B example in Section 8.2.3.4. The four measured
quantities K, I, B and h involved in the measurement process given by Equation (8.21) are independent and
not correlated, so independent samples will be created. Detailed Matlab® calculations are given in Box 8.

BOX 8: STEP BY STEP APPLICATION OF THE MCM WITH
MATLAB®

Define M= 106:
M=1e6
For K, create a sample U(70, 80):
K=unifrnd(70,80,M,1)
One gets
mean(K)=74.99
std(K)=2.8854
For I, create a sample N(0.0032, 6×10−6):
I=normrnd(0.0032, 6e-6,M,1)
One gets
mean(I)=0.003200
std(I)=6.003e-06
For B, create a sample N(0.8005, 0.002):
B=normrnd(0.805, 0.002,M,1)
One gets
mean(B)=0.80500
std(B)=0.00200
For h, create a sample N(0.32, 0.0015) (as with a degree of freedom ν= 59, the Student t distribution is
equivalent to a normal distribution):
h=normrnd(0.32,0.0015,M,1)
One gets
mean(h)=0.3199
std(h)=0.001499
The histograms of the four samples are shown in Figure 8.8.

Uncertainty assessment 291

Downloaded from http://iwaponline.com/ebooks/book/chapter-pdf/919174/9781789060119_0263.pdf
by TECHNISCHE UNIVERSITEIT DELFT user
on 01 September 2021



BOX 8: (Continued)

Then calculate the vector Q with M values:
Q=K.*power(I,1/2).*power(B.*h,5/3).*power(B+2.*h,-2/3)
(Note the importance of the dot in front of the * operators in the above expression to ensure sample
vectors are multiplied term by term according to the Matlab® syntax).
The histogram of the M values of Q is shown in Figure 8.9.
Calculate the mean value:
mean(Q)
One gets Q= 0.3462 m3/s.
Calculate the standard deviation:
std(Q)
One gets u(Q)= 0.0136 m3/s.
Calculate the shortest 95% coverage interval:
alpha=0.95
Qsort=sort(Q)
q=round(alpha*M)
which is an integer.
One gets q= 950,000.

Figure 8.8 Histograms of K, I, B and h used in the MCM withM= 1,000,000 values. Source: Jean-Luc
Bertrand-Krajewski (INSA Lyon).
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Let us create non-correlated samples with size M= 106 for the four quantities:

• K with a uniform distribution between 70 and 80 m1/3/s.
• I, B and h with normal distributions given, respectively, by NI(0.0032, 6×10−6), NB(0.8005, 0.002)

and Nh(0.32, 0.0015).

The histograms of the four samples are shown in Figure 8.8. The M values of the discharge Q are then
calculated by Equation (8.21). The resulting histogram of the Q values is shown in Figure 8.9.

The mean value is �Q = 0.346 m3/s, the standard uncertainty is u(Q)= 0.014 m3/s and the shortest 95%
coverage interval is [Q95,low,Q95,high]= [0.323, 0.369] m3/s. This interval is shorter than the interval [0.320,
0.373] obtained with the Type B method in Section 8.2.3.4. This difference is discussed in Section 8.2.5.

Box 9 shows how to apply the Monte Carlo method with the Matlab® code uMCM.

BOX 8: (Continued)

Create the matrix IC95 with three columns (respectively low boundary, high boundary and width of the
interval) as follows:
for r=1:M-q
IC95(r,1:3)=[Qsort(r) Qsort(r+q) Qsort(r+q)-Qsort(r)];
end
Find the boundaries (in columns 1 and 2) of the shortest interval (in column 3) in IC95:
IC95(find(IC95(:,3)==min(IC95(:,3))),1:2)
The result is [Q95, low, Q95, high]= [0.3233, 0.3689] m3/s.

Figure 8.9 Histogram of the discharge Q calculated with the MCM withM= 1,000,000 values. Source:
Jean-Luc Bertrand-Krajewski (INSA Lyon).
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BOX 9: APPLICATIONOF THEMONTECARLOMETHODWITH THE
MATLAB® CODE uMCM

(Matlab® codes and csv files available for download at https://doi.org/10.2166/9781789060102).
The calculations of the discharge Q, its standard uncertainty u(Q) and its shortest coverage interval
shown in Box 8 are automated in the Matlab® code Y= uMCM(Z,A,chaine,alpha,MatCor,Mmc,
distrib), where the quantities Xi of the measurement process are divided into two groups Z and
A, where:
Z is the matrix containing data related to time varying quantities (time series). Its structure is as
follows: Z has as many lines as time steps in the time series. Each line contains, in successive
columns from left to right, m pairs of data for each time varying quantity Z: Z1, u(Z1), Z2, u(Z2),…Zi, u
(Zi), …Zm, u(Zm).
A is the matrix containing data related to constant quantities. The single line of A contains, in the
successive columns from left to right, p pairs of data for each constant quantity A: A1, u(A1), A2, u
(A2),…Aj, u(Aj),…Ap, u(Ap).
chaine is the equation string describing the measurement process of Y using Zi and Aj quantities.
alpha is the level of probability.
MatCor is the N×N matrix of correlation between Zi and Aj quantities, with N=m+ p.
Mmc is the length of the samples (number of Monte Carlo simulations).
distrib is the vertical vector containing the codes of the pdfs for all quantities Zi and Aj: 0 for no pdf, 1
for normal pdf, 2 for uniform pdf, 3 for triangular pdf.
The uMCM function provides, respectively, the following results in successive columns of the output
matrix Y, with one line per time step: the value y of Y, its standard uncertainty u(Y ), and the
boundaries of the shortest coverage interval.
For the above example, there is one time-varying quantity: the water level h, and three constant
quantities: respectively, the Manning-Strickler coefficient K, the channel slope I and the channel
width B. Consequently, type
Z=[h uh] with only one line as there is only one single value of h.
A=[K uK I uI B uB]
The measurement process equation:
Q=K.*power(I,1/2).*power(B.*h,5/3).*power(B+2.*h,-2/3)
is then re-written with notations indicating the quantities with their rank in matrices Z and A.
h is the first quantity in thematrix Z: h is replaced by Z(:,1) in the above expression ofQ. Similarly, K, I
and B are replaced, respectively, by A(:,1), A(:,2) and A(:,3) as they are, respectively, the first,
second and third quantities in the matrix A. It is important to note that the indices refer to the rank of the
quantities in matrices Z and A, and not to the rank of the columns.
Consequently, type
chaine=’A(:,1).*power(A(:,2),0.5).*power(A(:,3).*Z(:,1),5/3).*power(A
(:,3)+2.*Z(:,1),-2/3)’
and
alpha=0.95
In this example, all four quantities in Z and A are independent as there is no correlation or covariance
between them. Consequently, type
MatCor=eye(4)
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8.2.5 Comparison of uncertainties estimated with Type B and Monte
Carlo methods
The Type B method is less demanding than the MCM in term of calculations: once the literal expression of
the Law of Propagation of Uncertainties (Equation (8.9)) for the quantity Y of interest is established, it can be
applied instantaneously to any value of Y. On the contrary, the MCM imposes that the simulations are run
systematically for each value of Y, which requires more computation time. However, the MCM is much
more flexible and does not require the conditions of application of the Type B method. This is why
MCM is the reference method.

In practice, it is frequent that the operator compares the Type B method and the MCM: if both methods
give equivalent results, then the Type B method can be applied, which may be more convenient, especially
with repetitive calculations. If the results are not equivalent, then the MCM should be used.

The comparison of both methods, based on their coverage intervals, is made with the following steps:

(1) Apply the Type B method to calculate y and the interval [y – U(y), y+U(y)] (Equation (8.13)) for
the given level of probability α.

(2) Apply the MCM to calculate u(y) and the interval [yα,low, yα,high] for the same level of probability α.
(3) Set the required tolerance δ for the coverage interval according to Equation (8.53).
(4) Compare the above coverage intervals by determining:

dlow = |y− U(y) − ya,low| (8.56)

dhigh = |y+ U(y) − ya,high| (8.57)
(5) If both dlow and dhigh are not larger than the tolerance δ for u(y), then the comparison is positive, and

the Type B method can be applied. Otherwise, the MCM should be applied. It is important to note
that the comparison applies only for the specified probability level α.

BOX 9: (Continued)

which gives

MatCor =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

Type
Mmc=1e6
Distribution of quantities in Z and A are, respectively, normal (for h), uniform (for K), normal (for I and B).
Consequently, type
distrib=[1 2 1 1]’
Lastly type
Q=uMCM(Z,A,chaine,alpha,MatCor,Mmc,distrib)
One gets Q= 0.346 m3/s, u(Q)= 0.0136 m3/s, and the 95% coverage interval is [0.3233,
0.3688] m3/s.
The values are slightly different from those given in Box 8 as each MC run generates new samples.
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Example 1:
The comparison is made with the results obtained in Sections 8.2.3.4 and 8.2.4.5. The probability level α

is 0.95.
Coverage interval obtained with the Type B method: [0.320, 0.373] m3/s
Coverage interval obtained with the MCM: [0.323, 0.369] m3/s
Standard uncertainty u(y)= 0.013 m3/s.
If ndig= 2, then u(y)= 13×10−3, l=−3 and δ= 0.5×10−3.
dlow= |0.320–0.323|= 3×10−3. δ
dhigh= |0.373–0.369|= 4×10−3. δ
Consequently, the Type B method and the MCM give non-equivalent results and the MCM shall

be applied.
The same approach can be used to compare the coverage intervals obtained in Section 8.2.3.4 with both

an infinite degree of freedom and the effective degree of freedom. With ndig= 2 and δ= 0.5×10−3, the
conclusion is that the results are different.

Example 2:
Let us modify the above example by assuming now that all quantities follow normal distributions, for

both Type B and MCM calculations, with
K= 75 m1/3/s, u(K )= 2.88 m1/3/s
I= 3.2×10−3 m/m, u(I )= 6×10−6 m/m
B= 0.805 m, u(B)= 2×10−3 m
h= 0.32 m, u(h)= 1.5×10−3 m

One gets (with 4 digits for illustrative purpose):
Coverage interval with the Type B method: QTB= [0.3196, 0.3728]
Standard uncertainty with the Type B method: u(y)TB= 0.0136 m3/s
Coverage interval with the MCM: QMC= [0.3195, 0.3726] m3/s
Standard uncertainty with the MCM: u(y)MC= 0.0136 m3/s
If ndig= 2, then u(y)= 13×10−3, l=−3 and δ= 0.5×10−3.
dlow= abs(QTB,low– QMC,low)= 1.5287×10−4 , δ
dhigh= abs(QTB,high – QMC,high)= 1.0596×10−4 , δ

In this case, the Type B method and the MCM give equivalent results and can be both used
indifferently.

8.2.6 Correlation between quantities
Correlation (or covariance) between quantities involved in a measurement process may have a significant
effect on the estimation of the resulting uncertainty. Therefore, special attention should be devoted to
checking and estimating correlations when they exist. The best practice in uncertainty assessment thus
requires systematic checking and accounting for the possible correlation and estimating it. Only if its
influence is proved to be negligible over the entire range of expected values of all quantities, may it be
neglected in further calculations. It is worth mentioning that detecting and quantifying correlation is not
always obvious and may require expertise.

Correlation can occur:

• Between different input quantities Xi used to calculate an output variable Y.
• As autocorrelation in time series used to calculate aggregated values.
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8.2.6.1 Correlation between input quantities
According to ISO (2008a, Sections 5.2.4 and 5.2.5, p. 22–23), ‘there may be significant correlation between
two input quantities if the same measuring instrument, physical measurement standard, or reference datum
having a significant standard uncertainty is used in their determination. […] Correlations between input
quantities cannot be ignored if present and significant. The associated covariances should be evaluated
experimentally if feasible by varying the correlated input quantities, or by using the pool of available
information on the correlated variability of the quantities in question.’

As explained in Section 8.2.3.2, it is recommended to write the function f

Y = f (X1,X2, . . .Xi, . . .XN) (8.58)
with the quantities Xi corresponding to separate and thus uncorrelated measurement instruments.

Other frequent cases where covariance should be accounted for occur when quantities Xi used in Equation
(8.58) are obtained from previous regression functions like e.g. calibration functions, rating curves, etc.

If covariance remains and cannot be avoided between some quantities Xi, it should then be quantified. As
covariance may be positive or negative, it may increase or decrease the resulting uncertainty in Y. Some
examples are given in Section 8.2.6.3.

8.2.6.2 Autocorrelation in time series
Time series data of flow, water level or water quality are not randomly distributed as they result from
dynamic processes where each value can be considered as equal to the previous one with a small
increase or decrease depending on the evolution of the quantity. In such cases, the successive values
of a given quantity may be considered as partly autocorrelated. Analogous to geostatistics, the
chronostatistics approach (Gy, 1988, 2012) may be applied in such cases, using the variograph of the
data to estimate the time horizon over which the autocorrelation between successive values is
meaningful. Details of the variograph approach are given in Bertrand-Krajewski & Bardin (2001).

The uncertainty in the sum of a time series can be calculated with the Type Bmethod under three different
assumptions:

(1) No autocorrelation (r= 0) between successive values of the time series.
(2) Full autocorrelation (r= 1) between successive values of the time series.
(3) Partial autocorrelation estimated between successive values of the time series calculated from

the variograph.

The third assumption is the recommended approach. The two first ones are given for comparison only. The
Matlab

®

code uTypeBsum given in Box 10 allows calculation of the uncertainty in the sum of a time series
with the three above assumptions.

8.2.6.3 Examples of correlation
8.2.6.3.1 Covariance in measurements

The previous example of a discharge measurement in a rectangular open channel (Section 8.2.3.4) is
revisited, with the following equations:

Q = f (K, I, S,Rh) = KI
1
2SR

2
3
h (8.59)

S = Bh (8.60)
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Rh = Bh

B+ 2 h
(8.61)

Q = f (K, I,B, h) = KI
1
2(Bh) Bh

B+ 2 h

( )2
3= KI

1
2(Bh)53(B+ 2 h)− 2

3 (8.62)

To ensure no covariance between the quantities K, I, B and h, Equation (8.62) was used for the previous
uncertainty calculations with the Type B method and the MCM (see Sections 8.2.3.4 and 8.2.4.5). The
minimum 95% coverage interval of Q given by the MCM was [0.323, 0.369] m3/s. It can be considered
as the reference value.

The most usual writing of Equation (8.59) uses the wet section S and the hydraulic radius Rh. Both values
are calculated by Equations (8.60) and (8.61), respectively, from the same uncorrelated measured quantities
B and h, and are thus correlated.

With the previous values

B= 0.805 m, u(B)= 2×10−3 m
h= 0.32 m, u(h)= 1.5×10−3 m

one gets with MCM:

S= 0.2576 m2, u(S)= 0.0014 m2, Rh= 0.1783 m and u(Rh.)= 5×10−4 m.

One can assume that S and Rh are positively fully correlated, with r(S, Rh)=+1. This assumption can be
tested by means of a basic Monte Carlo simulation with Matlab

®

(see Box 11).
If this correlation is not accounted for, applying the MCM gives Q1= 0.3462 m3/s and u(Q1)=

0.0134 m3/s. If this correlation is accounted for, the MCM gives Q2= 0.3462 m3/s and u(Q2)=
0.0135 m3/s (see detailed calculations in Box 12).

The covariance very slightly increases u(Q) (from 0.0134 to 0.0135 m3/s) and the width of the 95%
coverage interval (from [0.3199, 0.3726] to [0.3198, 0.3728] m3/s). In this example, the increase may be
considered as negligible for operational use but reflects the influence of the writing of the equation f
used in uncertainty assessment for representing the measurement process.

BOX 10: CALCULATING THE UNCERTAINTY IN THE SUM OF A
TIME SERIES WITH THE MATLAB® CODE uTypeBsum

(Matlab® codes and csv files available for download at https://doi.org/10.2166/9781789060102).
Let us consider a times series of volume (m3) measured during 24 hours with a two-minute time step.
The three columns of the vol1.csv file (separator ;) contain successively the date and time, the
volume Vol (m3) and the standard uncertainty u(Vol) (m3).
One should first import the data of the vol1.csv file in a matrix, without the column of date and time:
data=dlmread(’vol1.csv’,’;’,1,1)
Calculate the daily volume Vd and its standard uncertainty u(Vd) with the three assumptions about
correlation (i.e. no autocorrelation – nc, full autocorrelation – fc, and partial autocorrelation – pc):
Vd=uTypeBsum(data)
One gets, respectively, Vd= 328.0588 m3, u(Vd)nc= 0.4495 m3, u(Vd)fc= 12.0623 m3 and u(Vd)pc=
4.6842 m3.
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BOX 11: ESTIMATING THE CORRELATION BETWEEN S AND Rh

WITH THE MATLAB® CODE uMCM

(Matlab® codes and csv files available for download at https://doi.org/10.2166/9781789060102).
Type
B=0.805
uB=2e-3
h=0.32
uh=1.5e-3
M=1e6
Bmc=normrnd(B, uB, M, 1)
hmc=normrnd(h, uh, M, 1)
Smc=Bmc.*hmc
Rhmc=Bmc.*hmc./(Bmc+2*hmc)
Calculate the coefficient of correlation between S and Rh:
corr(Smc, Rhmc)
One gets r(S, Rh)= 0.9961, which is equivalent to one in practice.

BOX 12: IGNORING OR ACCOUNTING FOR THE CORRELATION
BETWEEN S AND Rh WITH THE MATLAB® CODE uMCM

(Matlab® codes and csv files available for download at https://doi.org/10.2166/9781789060102).
In addition to the variables created in Box 11, type
S=mean(Smc)
uS=std(Smc)
Rh=mean(Rhmc)
uRh=std(Rhmc)
K=75
uK=2.88
I=3.2e-3
uI=6e-6
Z=[S uS Rh uRh]
A=[K uK I uI]
distrib=[1 2 1 1]’
If the correlation r(S, Rh) between S and Rh is ignored, the correlation matrix is
MatCor1=eye(4)

MatCor1 =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

Type
chaine=’A(:,1).*power(A(:,2),0.5).*Z(:,1).*power(Z(:,2),2/3)’
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The initial minimum 95% coverage interval of Q obtained with the MCM and the four separate and
independent quantities (Section 8.2.4.5) was [0.323, 0.369] m3/s. It can be considered as the reference
value as it does not include any correlation between the input quantities.

8.2.6.3.2 Covariance resulting from a regression function

Let us consider the discharge in a 1.8 m high A180 egg-shape sewer measured by means of both a water
level sensor and a flow velocity sensor. In situ measurements by a land surveyor have been carried out to
collect a series of 21 pairs of points (hi, Si) with hi (m) the water level and Si (m

2) the corresponding wet
section (see Table 8.5, Figure 8.10, and the file eggshape1.csv). They are used to establish a function
S(h) defined as a third order polynomial function:

S = b1 h+ b2 h
2 + b3 h

3 (8.63)
The regression (detailed calculations are given in Box 13) gives the following results:

• Values of the parameters bi: [b1, b2, b3]= [0.7825, 0.3601, −0.1473].
• Standard uncertainties u(bi): [u(b1), u(b2), u(b3)]= [0.0173, 0.0287, 0.0114].

• Correlation matrix of the parameters b: MatCor(b) =
1 −0.9656 0.9098

−0.9656 1 −0.9848
0.9098 −0.9848 1

⎡
⎣

⎤
⎦.

The values of the coefficients of correlation inMatCor(b) show that the parameters bi are strongly correlated,
either positively (b1 with b3) or negatively (b1 with b2, b2 with b3).

Let us now calculate the discharge Q and u(Q) when the measured water level is h= 0.45 m and the
mean flow velocity V= 0.42 m/s (detailed calculations are given in Box 14). Their respective standard

BOX 12: (Continued)

Mmc=1e6
alpha=0.95
and lastly
Q1=uMCM(Z,A,chaine,alpha,MatCor1,Mmc,distrib)
One gets Q1= 0.3462 m3/s, u(Q1)= 0.0134 m3/s and IC95 min1= [0.3199, 0.3726] m3/s.
If the correlation r(S, Rh)=+1 between S and Rh is accounted for, applying the MCM requires
modification of the correlation matrix MatCor:
MatCor2=MatCor1
MatCor2(1,2)=1
MatCor2(2,1)=1

MatCor2 =
1 1 0 0
1 1 0 0
0 0 1 0
0 0 0 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

Then type
Q2=uMCM(Z,A,chaine,alpha,MatCor2,Mmc,distrib)
One gets Q2= 0.3462 m3/s, u(Q2)= 0.0135 m3/s and IC95 min2= [0.3198, 0.3728] m3/s.
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uncertainties are u(h)= 3×10−3 m (from sensor calibration and in situ conditions) and u(V )= 0.05 m/s
(from expertise).

Q is given by the following equation:

Q = S(h)V = (b1h+ b2h
2 + b3h

3)V (8.64)
One gets Q= 0.1729 m3/s.

The quantities h and V are measured independently and are not correlated. They are also not correlated
with the parameters bi which have been established from the land surveyor’s data. However, MatCor(b)
shows that the parameters bi are correlated with each other.

u(Q) and the 95% coverage intervals are calculated with the MCM for two cases: case 1 accounting for
the correlation of the parameters bi, and case 2 neglecting the correlation. The results given in Table 8.6

Table 8.5 Couples of points (hi, Si)
for the A180 egg-shape sewer
(file eggshape1.csv).

hi (m) Si (m
2)

0.00 0.00

0.10 0.07

0.11 0.08

0.12 0.09

0.20 0.17

0.30 0.27

0.40 0.37

0.50 0.47

0.60 0.57

0.70 0.78

0.80 0.68

0.90 0.88

1.00 0.99

1.10 1.09

1.20 1.20

1.30 1.30

1.40 1.40

1.50 1.49

1.60 1.58

1.70 1.66

1.83 1.72
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Figure 8.10 Plot of measured points (hi, Si) for the A180 egg-shape sewer (red dots) and fitted 3rd order
polynomial regression function S(h) (dashed blue line). Source: Jean-Luc Bertrand-Krajewski (INSA Lyon).

BOX 13: REGRESSION OF THE S(h) FUNCTION FOR AN A180
EGG-SHAPE SEWER WITH MATLAB®

With hi and Si the vertical vectors containing respectively the 21 values of hi and Si in Table 8.5, one
can estimate the values of the parameters b, their standard uncertainties u(b), their covariance matrix
COV(b) and the mean squared error of the regression mse.
Type
[b ub mse COVb]= lscov([hi hi.^2 hi.^3], Si)
One gets
[b1, b2, b3]= [0.7825, 0.3601, −0.1473]
[u(b1), u(b2), u(b3)]= [0.0173, 0.0287, 0.0114]
mse= 7.04×10−5

and

COV(b) = 10−3 ×
0.2982 −0.4789 0.1795

−0.4789 0.8251 −0.3232
0.1795 −0.3232 0.1306

⎡
⎣

⎤
⎦

By applying Equation (8.10), the correlation matrix of b, noted MatCor(b), is calculated by
MatCorb=COVb./(ub*ub’)
which gives

MatCor (b) =
1 −0.9656 0.9098

−0.9656 1 −0.9848
0.9098 −0.9848 1

⎡
⎣

⎤
⎦
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BOX 14: CALCULATION OF u(Q) AND 95% COVERAGE
INTERVALS WITH THE MATLAB® CODE uMCM

(Matlab® codes and csv files available for download at https://doi.org/10.2166/9781789060102).
In addition to the variables defined in Box 13, type
h=0.45
V=0.42
Q=sum(b.*[h h.^2 h.^3]’)*V
One gets Q= 0.1729 m3/s.
To calculate the standard uncertainty u(Q) and the 95% coverage interval with the MCM, type
uh=3e-3
uV=0.05
Z=[h uh V uV]
A=[b(1) ub(1) b(2) ub(2) b(3) ub(3)]
chaineQ=’(A(:,1).*Z(:,1)+ A(:,2).*Z(:,1).^2+ A(:,3).*Z(:,1).^3).*Z(:,2)’
alpha=0.95
Mmc=1e6
distrib=[1 1 1 1 1]’
For case 1, type:

MatCor1 =

1 0 0 0 0
0 1 0 0 0
0 0 1 −0.9656 0.9098
0 0 −0.9656 1 −0.9848
0 0 0.9098 −0.9848 1

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

For case 2, type:
MatCor2=eye(5)

MatCor2 =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

Table 8.6 Comparison of results of uncertainty in discharge Q in the A180 egg-shape
sewer, by accounting for the correlation between the parameters b (case 1) or by
neglecting it (case 2).

Case 1
With correlation

Case 2
Without correlation

Q (m3/s) 0.1729 0.1729

u(Q) (m3/s) 0.0207 0.0211

IC95 min (m3/s) [0.1322, 0.2131] [0.1316, 0.2141]

Relative standard uncertainty (%) 11.9% 12.2%
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indicate that, in this case, accounting for the correlation of the parameters bi slightly reduces the resulting
uncertainty in the discharge Q. Similar results are obtained with the Type B method.

8.2.6.3.3 Covariance in rain gauge calibration function

Tipping bucket rain gauges are affected by systematic underestimation when rainfall intensities increase
(see e.g. Bertrand-Krajewski et al., 2000). Therefore, in addition to the bucket static calibration, it is
recommended to establish a dynamic calibration function to account for and then correct the
underestimation error (see Chapter 7).

An experiment is carried out with known and controlled rainfall intensities Ir (mm/h) over a range of
measurement. The response of the rain gauge, i.e. the measured rainfall intensity Im (mm/h) for each
applied intensity Ir, is recorded (the protocol is described in Bertrand-Krajewski et al., 2000 and in
Chapter 2). An example of data for a rain gauge in the Mediterranean region where high intensities are
expected is given in the file raingauge1.csv and shown in Table 8.7.

The typical calibration function is a power function

Ir = b1I
b2
m (8.65)

Let us estimate the parameters b1 and b2, their standard uncertainties, and their co-variance and
correlation (detailed calculations are given in Box 15). One gets:

[b1, b2]= [2.0826, 0.8401]
[u(b1), u(b2)]= [0.4440, 0.0398]

and MatCor = 1.0000 −0.9969
−0.9969 1.0000

[ ]

Table 8.7 Rain gauge dynamic calibration
data set (file raingauge1.csv).

I r (mm/////h) I m (mm/////h)

0 0

30 30

60 60

110 109

160 155

220 199

290 237

BOX 14: (Continued)

Lastly type
Q1=uMCM(Z,A,chaineQ,alpha,MatCor1,Mmc,distrib)
and
Q2=uMCM(Z,A,chaineQ,alpha,MatCor2,Mmc,distrib)
Results are given in Table 8.6.
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The parameters bi are strongly negatively correlated.
From these results, one can now estimate the most likely true rainfall intensity Iest from a measured value

Imes and its standard uncertainty u(Iest) by using the Type B method and the inverse function

Iest = Imes
b1

( ) 1
b2 (8.66)

Let us consider Imes= 152 mm/h with u(Imes)= 5%.
The standard uncertainty u(Iest) is calculated with the Type Bmethod for two cases: case 1 accounting for

the correlation of the parameters bi, and case 2 neglecting the correlation (detailed calculations are given in
Box 16). One gets, respectively:

Iest1= 165 mm/h and u(Iest1)= 10 mm/h.
Iest2= 165 mm/h and u(Iest2)= 59 mm/h.

In this example, not accounting for the correlation between quantities leads to a standard uncertainty
multiplied by a factor close to 6.

BOX 15: REGRESSION OF A RAIN GAUGE CALIBRATION
FUNCTION WITH MATLAB®

This non-linear regression can be done by means of the Matlab
®

function nlinfit.
Type
Ir=[0 30 60 110 160 220 290]’
Im=[0 30 60 109 155 199 237]’
fun=@(b,Ir) b(1).*power(Ir,(b(2)))
b0=ones(1,2)
and lastly
[b,R,J,CovB]=nlinfit(Ir,Im,fun,b0)
One gets
b= [b1, b2]= [2.0826, 0.8401]
Then
ub=sqrt(diag(CovB))
gives
u(b)= [u(b1), u(b2)]= [0.4440, 0.0398]
The covariance matrix is

CovB = 0.1971 −0.0176
−0.0176 0.0016

[ ]

The correlation matrix is given by
MatCor=CovB./(ub*ub’)

MatCor = 1.0000 −0.9969
−0.9969 1.0000

[ ]
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8.3 EXAMPLES OF APPLICATIONS
All data and the following examples, along with the Matlab® codes, are available at https://doi.org/10.
2166/9781789060102, so that the readers can re-do the examples themselves and also use the software
codes for their own needs and applications.

BOX 16: CALCULATION OF u(Iest) WITH THE MATLAB®

CODE uTypeB

(Matlab® codes and csv files available for download at https://doi.org/10.2166/9781789060102).
In addition to the variables defined in Box 15, type
Imes=152
uImes=0.05*Imes
b1=b(1)
ub1=ub(1)
b2=b(2)
ub2=ub(2)
Z=[Imes uImes]
A=[b1 ub1 b2 ub2]
alpha=0.95
Case 1: correlation is accounted for.
Type
MatCor1=eye(3)
MatCor1(2:3,2:3)=MatCor

MatCor1 =
1 0 0
0 1 −0.9969
0 −0.9969 1

⎡
⎣

⎤
⎦

chaineIest=’(Z(:,1)./A(:,1))^(1/A(:,2))’
and then
Iest1=uTypeB(Z,A,chaineIest,alpha,MatCor1)
One gets Iest1=165 mm/h and u(Iest1)= 10 mm/h.
Case 2: correlation is not accounted for.
Type
MatCor2=eye(3)

MatCor2 =
1 0 0
0 1 0
0 0 1

⎡
⎣

⎤
⎦

Iest2=uTypeB(Z,A,chaineIest,alpha,MatCor2)
One gets Iest2= 165 mm/h and u(Iest2)= 59 mm/h.
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8.3.1 Uncertainty in discharge calculation with a thin plate rectangular
weir formula
Let us consider a thin plate rectangular weir with lateral contraction and the following characteristics
(Figure 8.11):

• Channel width B= 0.8 m.
• Notch width Bc= 0.48 m.
• Crest height hp= 0.25 m.
• Water head h= 0.15 m, measured at the distance L upstream of the weir.

The Kindsvater-Carter formula and the other parameters to estimate the discharge QRW over the
rectangular weir are given in hydraulics textbooks and in the international standard ISO (2017):

QRW = 2
3
Cd

����
2 g

√
Beh

3
2
e (8.67)

where Cd (-) is the discharge coefficient, Be (m) is the effective width and he (m) is the effective head, which
themselves depend on other parameters related to the geometry of the weir:

Cd = f
Bc

B
,
h

hp

( )
(8.68)

Be = B+ Kb (8.69)

he = h+ Kh (8.70)
where Kb and Kh are quantities compensating for combined effects of viscosity and surface tension
of water.

Step 1: Check of the applicability of the formula
Before applying the Kindsvater-Carter formula (Equation (8.67)), the operator shall check that the

numerical values of the variables respect the five conditions given in ISO (2017), as listed and checked
in Table 8.8. In the present case, all conditions are satisfied, and the formula can be applied.

B

hp

h

1 to 2 mm

> 45°
upstream

side of
the weir

plate

Bc

Figure 8.11 Rectangular weir with lateral contraction. Source: Jean-Luc Bertrand-Krajewski (INSA Lyon).
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Step 2: Calculation of the discharge QRW

For Bc/B= 0.6, and h/hp= 0.6, the ISO standard gives (ISO 2017, pp. 11–13):

Cd = 0.593+ 0.018
h

hp
(8.71)

Kb= 3.6×10−3 m
Kh= 10−3 m

Accordingly, Equation (8.67) can be rewritten as

QRW = 2
3

a+ b
h

hp

( ) ����
2 g

√
(Bc + Kb)(h+ Kh)

3
2 (8.72)

where a= 0.593 and b= 0.018 (see Equation (8.71)).
The discharge over the rectangular weir isQRW= 0.506 m3/s (detailed calculations are given in Box 17).

Step 3: Calculation of the 95% coverage interval of the discharge QRW

This step includes the estimation of the standard uncertainties of all quantities in Equation (8.72). Water
level sensor calibration, in situ repeated measurements of weir geometry and the ISO standard give,
respectively:

u(h)= 1 mm
u(hp)= 1 mm
u(Bc)= 0.5 mm
u(a)= 0.75%
u(b)= 0.75%
u(Kb)= 0.15 mm
u(Kh)= 0.15 mm.

One assumes that the uncertainty in the gravity g= 9.81 m/s is negligible.
Applying the MCM (detailed calculations are given in Box 17) gives the following results:

u(QRW)= 0.006 m3/s
IC95 min(QRW)= [0.049, 0.052] m3/s.

Table 8.8 Checking of the conditions of applicability of the Kindsvater-Carter formula.

Condition required by ISO 1438 (2017) Example data Check

h/hp shall be less than 2.5 h/hp= 0.6, 2.5 □✓

h shall be higher than 0.03 m h= 0.15. 0.03 m □✓

Bc shall be larger than 0.15 m Bc= 0.48. 0.15 m □✓

hp shall be higher than 0.10 m hp= 0.25. 0.10 m □✓

(B-Bc)/2 shall be larger than 0.10 (B-Bc)/2= 0.16. 0.10 □✓
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8.3.2 Uncertainty in discharge calculation with both water level and flow
velocity measurements
Let us consider a circular sewer with radius Rc (Figure 8.12) equipped with a sensor measuring the water
depth h (m) and another sensor measuring the mean flow velocity V (m/s).

The discharge Qc (m
3/s) is calculated by the following equation:

Qc = S(h)V = R2
c arccos 1− h

Rc

( )
− 1− h

Rc

( )
sin arccos 1− h

Rc

( )( )[ ]
V (8.73)

According to four repeated measurements (Type A method), the radius Rc is equal to 0.6 m and its
standard uncertainty u(Rc)= 0.002 m. The standard uncertainties u(h) and u(V ) in the file hV1.csv are
calculated from sensors calibration and in situ experiments.

BOX 17: CALCULATION OF QRW AND OF ITS STANDARD
UNCERTAINTY WITH THE MATLAB® CODE uMCM

(Matlab® codes and csv files available for download at https://doi.org/10.2166/9781789060102).
Type
h=0.15
uh=1e-3
hp=0.25
uhp=1e-3
Bc=0.48
uBc=0.5e-3
a=0.593
ua=0.75e-2*a
b=0.018
ub=0.75e-2*b
Kb=3.6e-3
uKb=0.15e-3
Kh=0.001
uKh=0.15e-3
g=9.81
Z=[h uh]
A=[hp uhp Bc uBc a ua b ub Kb uKb Kh uKh]
distrib=ones(7,1)
Nmc=1e6
alpha=0.95
MatCor=eye(7)
chaineRW=’2/3*sqrt(2*9.81).*(A(:,3)+A(:,4).*Z(:,1)./A(:,1)).*
(A(:,2)+A(:,5)).*(Z(:,1)+A(:,6)).^(3/2)’
and lastly
QRW=uMCM(Z,A,chaineRW,alpha,MatCor,Nmc,distrib)
One gets QRW= 0.5059 m3/s, u(QRW)= 6.3699×10−4 m3/s and IC95 min(QRW)= [0.0493,
0.0518] m3/s.
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Both the water level h and the mean flow velocity V are measured every 2 minutes during 24 hours. The
file hV1.csv (separator ;) contains 720 values in the successive order of columns: h, u(h), V and u(V ). The
first 15 lines of hV1.csv are shown in Table 8.9.

This example shows successively

• The calculation of the discharge Qc and of its uncertainty u(Qc) for each time step.
• The calculation of the daily volume Vd, its standard uncertainty u(Vd) and its 95% coverage interval.

Step 1: Calculation of the discharge Qc and of its uncertainty u(Qc) for each time step
One assumes that the quantities h, V and Rc are independent and normally distributed. Detailed

calculations with both the MCM and the Type B method are given in Box 18. The results are shown
graphically in Figure 8.13 and the first 15 lines of the numerical values are given in Table 8.10.

radius Rc

water depth h
section S

Figure 8.12 Scheme of the circular pipe. Source: Jean-Luc Bertrand-Krajewski (INSA Lyon).

Table 8.9 First 15 lines of the file hV1.csv.

Date h (m) u(h) (m) V (m/////s) u(V) (m/////s)

01/01/2017 00:00 0.368 0.008 0.634 0.05

01/01/2017 00:02 0.368 0.008 0.632 0.05

01/01/2017 00:04 0.356 0.008 0.642 0.05

01/01/2017 00:06 0.356 0.008 0.642 0.05

01/01/2017 00:08 0.356 0.008 0.628 0.05

01/01/2017 00:10 0.349 0.008 0.634 0.05

01/01/2017 00:12 0.349 0.008 0.638 0.05

01/01/2017 00:14 0.349 0.008 0.628 0.05

01/01/2017 00:16 0.336 0.008 0.627 0.05

01/01/2017 00:18 0.336 0.008 0.634 0.05

01/01/2017 00:20 0.336 0.008 0.634 0.05

01/01/2017 00:22 0.349 0.008 0.629 0.05

01/01/2017 00:24 0.349 0.008 0.614 0.05

01/01/2017 00:26 0.356 0.008 0.614 0.05

01/01/2017 00:28 0.349 0.008 0.613 0.05
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Figure 8.13 Plot of discharge Qc over 24 hours, standard uncertainty u(Qc) and the 95% coverage interval.
Source: Jean-Luc Bertrand-Krajewski (INSA Lyon).

Table 8.10 First 15 lines of thematrix QcMC (Qc, u(Qc), IC95min low and IC95min high).

Q (m3/////s) u(Q) (m3/////s) IC95min low (m3/////s) IC95min high (m3/////s)

0.1866 0.0157 0.1557 0.2173

0.1860 0.0157 0.1552 0.2166

0.1803 0.0151 0.1508 0.2099

0.1803 0.0151 0.1507 0.2099

0.1764 0.0150 0.1469 0.2058

0.1730 0.0147 0.1443 0.2019

0.1741 0.0147 0.1454 0.2029

0.1714 0.0146 0.1428 0.2002

0.1628 0.0140 0.1355 0.1903

0.1646 0.0140 0.1373 0.1922

0.1646 0.0140 0.1371 0.1921

0.1717 0.0147 0.1431 0.2006

0.1676 0.0146 0.1392 0.1965

0.1726 0.0150 0.1433 0.2021

0.1674 0.0146 0.1391 0.1964
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The Type B method runs much faster in such a case, also for the entire time series of 720 values. The
maximum relative difference of the standard uncertainties (u(QcTB) – u(QcMC))/u(QcMC) is less than
0.25%: both methods deliver similar results.

Step 2: Calculation of daily volume Vd, standard uncertainty u(Vd) and 95% coverage interval
With the time step Δt= 120 s, the daily volume Vd= 22,763 m3. Applying the variograph method (see

Section 8.2.6.2), the standard uncertainty is u(Vd)= 620 m3 and the 95% coverage interval is [21547,
23979] m3 (detailed calculations are given in Box 19).

8.3.3 Uncertainty in discharge calculation with the Manning-Strickler
formula
It is frequent that the Manning-Strickler formula, due to its simplicity, is used to evaluate discharges in
sewers where there is no backwater effect and where, as a first approximation, the discharge can be
considered as locally uniform and permanent during each time step.

The Manning-Strickler formula (Equation (8.74)), in addition to the water level h (m) used to estimate
the wet section S (m2) and the hydraulic radius Rh (m), requires the values of both the roughness
coefficient K (m1/3/s) and the pipe invert slope I (m/m).

QMS = K
��
I

√
SR

2
3
h (8.74)

BOX 18: CALCULATION OF THE DISCHARGE QC AND OF ITS
UNCERTAINTY u(QC) FOR EACH TIME STEP

(Matlab® codes and csv files available for download at https://doi.org/10.2166/9781789060102).
Import the data of the hV1.csv file:
data=dlmread(’hV1.csv’,’;’,1,1)
Then type
Z=data
A=[0.6 0.002]
alpha=0.95
Nmc=1e6
distrib=ones(3,1)
MatCor=eye(3)
chaineQc=’(A(:,1).^2).*(acos(1-Z(:,1)./A(:,1))-(1-Z(:,1)./A(:,1))
.*sin(acos(1-Z(:,1)./A(:,1)))).*Z(:,2)’
and lastly, apply the MCM method for the entire time series of 720 time steps in one single instruction:
QcMC=uMCM(Z,A,chaineQc,alpha,MatCor,Nmc,distrib)
The results are shown graphically in Figure 8.13 and the first 15 lines of the matrix Qcmc are given in
Table 8.10.
Apply now the Type B method for the entire time series of 720 values in one single instruction:
QcTB=uTypeB(Z,A,chaineQc,alpha,MatCor)
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Roughness and slope are critical quantities as the discharge QMS is directly proportional to K and to the
square root of I. Instead of using (i) approximate values of K found in textbooks for the material of the sewer
pipe, and (ii) values of I based on non-verified maps or GIS data, it may be better to estimate the value of the
quantity K

��
I

√
from temporary field measurements.

Let us consider the case of a circular pipe with a radius Rc= 0.8 m, equipped with a water level sensor to
estimate discharges during dry weather and most frequent storm events generating water levels lower than
0.5 m. The water sensor is installed permanently. For one week, a flow velocity sensor has been added
temporarily and verified with tracing experiments (for tracing experiments in sewers, see e.g. Lepot
et al., 2014).

Two days of data recorded with a time step of 2 minutes are available in the file manning1.csv. The first
15 lines are shown in Table 8.11. The ranges of water level h and mean flow velocity V are, respectively,
0.009 to 0.51 m and 0.16 to 2.93 m/s. Standard uncertainties in h, V andRc are, respectively, u(h)= 0.003 m,
u(V )= 0.03 m/s and u(Rc)= 0.002 m.

BOX 19: CALCULATION OF DAILY VOLUME Vd,
STANDARD UNCERTAINTY u(Vd) AND 95%

COVERAGE INTERVAL

(Matlab® codes and csv files available for download at https://doi.org/10.2166/9781789060102).
Type
Dt=120
Calculate the daily volume Vd from the 720 values of the dischargeQc given in the first column of QcMC
calculated in Box 18:
Vd=sum(QcMC(:,1).*Dt)
which gives 22,763 m3.
To use the Matlab® code uTypeBsum (see Box 10), select the first and second columns of QcMC
containing, respectively, the values of the discharge Qc and their standard uncertainties u(Qc), and
multiply them by the time step Δt to get the corresponding values of the volume. In this example, one
assumes that the uncertainty in the time step Δt is negligible.
Type
Vd=uTypeBsum(QcMC(:,1:2).*Dt)
The four components of the vector Vd correspond respectively to

• Vd= 22,763 m3

• standard uncertainty with no autocorrelation u(Vd)nc= 62 m3,
i.e. relative standard uncertainty of 0.3%.

• standard uncertainty with full autocorrelation u(Vd)fc= 1563 m3,
i.e. relative standard uncertainty of 6.9%.

• standard uncertainty with partial autocorrelation u(Vd)pc= 620 m3,
i.e. relative standard uncertainty of 2.7%.

Calculate the 95% coverage interval for the case of partial autocorrelation:
[Vd(1)-1.96*Vd(4), Vd(1)+1.96*Vd(4)]
One gets [21547, 23979] m3.
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Let us determine the values of the quantity K
��
I

√
and of its standard uncertainty. Using the independent

quantities h, V and Rc, Equation (8.74) can be rewritten as

QMS = K
��
I

√
arccos 1− h

Rc

( )
− 1− h

Rc

( )
sin arccos 1− h

Rc

( )( )[ ]5
3
2Rc arccos 1− h

Rc

( )[ ]− 2
3

(8.75)
One calculates directly the values of the quantity K

��
I

√
by combining Equations (8.75) and (8.73):

K
��
I

√
= R

− 2
3

c arccos 1− h

Rc

( )
− 1− h

Rc

( )
sin arccos 1− h

Rc

( )( )[ ]− 2
3
2 arccos 1− h

Rc

( )[ ]2
3
V

(8.76)
The set of 1440 values of the quantity K

��
I

√
calculated from the recorded data can be considered as a

sample for the Type A method.
Calculations (detailed in Box 20) give K

��
I

√ = 7.562 m1/3/s and u K
��
I

√( )
= 0.034 m1/3/s.

Based on these results, future values of the discharge in the circular pipe can be calculated by means of
Equation (8.75) by usingK

��
I

√
as an independent quantity. For example, let us calculate the discharge and its

uncertainty for a water level h= 0.3 m (detailed calculations are given in Box 21). One getsQ= 1.33 m3/s,
u(Q)= 0.03 m3/s, and the 95% coverage interval is [1.28, 1.39] m3/s.

This example does not account for the uncertainties in the 1440 values of K
��
I

√
due to uncertainties

in the quantities h, V and Rc, which would add some additional uncertainty in the estimation of K
��
I

√
.

Table 8.11 First 15 lines of the file manning1.csv.

Date UT h (m) V (m/////s)

13/08/2018 00:00 0.104 1.50

13/08/2018 00:02 0.103 1.53

13/08/2018 00:04 0.103 1.53

13/08/2018 00:06 0.101 1.52

13/08/2018 00:08 0.098 1.51

13/08/2018 00:10 0.096 1.48

13/08/2018 00:12 0.093 1.46

13/08/2018 00:14 0.090 1.44

13/08/2018 00:16 0.088 1.42

13/08/2018 00:18 0.085 1.37

13/08/2018 00:20 0.083 1.36

13/08/2018 00:22 0.082 1.34

13/08/2018 00:24 0.079 1.30

13/08/2018 00:26 0.079 1.30

13/08/2018 00:28 0.079 1.30
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BOX 20: CALCULATION OF K
�
I

√
AND OF ITS STANDARD

UNCERTAINTY

(Matlab® codes and csv files available for download at https://doi.org/10.2166/9781789060102).
Import the data of the manning1.csv file:
data=dlmread(’manning1.csv’,’;’,1,1)
Type
Rc=0.8
For convenience, type
h=data(:,1)
V=data(:,2)
According to Equation (8.76), type
KVI=Rc^(-2/3).*(acos(1-h/Rc)-(1-h/Rc).*sin(acos(1-h/Rc))).^(-2/3)
.*(2*acos(1-h/Rc)).^(2/3).*V
Then apply the Type A method with a 95% level of probability:
KVIbar=uTypeA(KVI, 0.95)

One gets K
�
I

√ = 7.5621 m1/3/s and u K
�
I

√( )
is equal to 0.0338 m1/3/s.

BOX 21: CALCULATION OF Q, u(Q) AND 95%
COVERAGE INTERVAL

(Matlab® codes and csv files available for download at https://doi.org/10.2166/9781789060102).
In addition to the variables defined in Box 20, type
h=0.3
uh=0.003
KVI=KVIbar(1)
uKVI=KVIbar(2)
Rc=0.8
uRc=0.002
Z=[h uh]
A=[KVI uKVI Rc uRc]
alpha=0.95
distrib=ones(3,1)
MatCor=eye(3)
Nmc=1e6
chaineQh=’A(:,1).*(acos(1-Z(:,1)./A(:,2))-(1-Z(:,1)./A(:,2)).*sin(acos
(1-Z(:,1)./A(:,2)))).^(5/3).*(2.*A(:,2).*acos(1-Z(:,1)./A(:,2))).^(-2/3)’
and lastly
Q=uMCM(Z,A,chaineQh,alpha,MatCor,Nmc,distrib)
One gets Q= 1.3342 m3/s, u(Q)= 0.0292 m3/s and the 95% coverage interval is [1.2771,
1.3916] m3/s.
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This could be done by means of Monte Carlo simulations. In addition, this example implicitly assumes that
K is constant, whereas it may happen that it depends on the water level h. A relation K= f (h) can be
investigated along with, if significant, another relation u(K )= f (h).

8.3.4 Uncertainty in velocity-area methods
The velocity-area method is one of the most common non-continuous methods to determine flow data in
open channels. The example introduces the calculation of flow uncertainty of velocity-area methods
using the approach given in ISO (2020). Furthermore, it demonstrates the sensitivity of flow uncertainty
on simplifications and inaccuracies in the measurement process.

8.3.4.1 Case study
In a rectangular channel (width B= 0.8 m, flow depth h= 0.5 m), flow velocities vx(yi, zj) (m/s) are
measured at 135 points (yi, zj) of a grid with Δy= Δz= 0.05 m during uniform steady state (Figure 8.14).

8.3.4.2 Uncertainty of flow and mean velocity
Flow Q (m3/s) and mean flow velocity V (m/s) can be calculated from a sufficiently dense velocity field
vx= f (y,z,t) in a representative flow cross section S (m2). For uniform steady state flow conditions, vx
values do not depend on time t and the following applies:

Q =
∫
S

vx(y, z)dS (8.77)

For m×n elementary sections Sij= Δyi× Δzj and point velocities vx(yi, zj) in the middle of each
elementary section Sij, the flow Q can be calculated as

Q = FxFz

∑m
i=1

∑n
j=1

vx(yi, zj)DzjDyi + Qp (8.78)

where m= 15 is the number of points per row, n= 9 is the number of points per vertical (Figure 8.14), Fy

B = 0.8 m

h
= 

0.
5 

m

y

z

Figure 8.14 Scheme of the rectangular cross section with 135 points (yi, zj) where longitudinal flow velocity
vx(yi, zj) is measured. Source: Mathias Uhl (Muenster University of Applied Sciences).
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and Fz are factors relating the sums, respectively, in the y- and z-direction to an ideal integration of the real
velocity profile, and Qp (m

3/s) is the perimeter flow.
In the case of velocity grid measurements, Fy and Fz can be set to unity. The perimeter flowQp represents

a part of the flow near the boundary of the cross section where measurements are impossible or very
uncertain because of turbulence, velocity gradients or influences on the measurement sensor or just
remaining areas between the real cross section and the measurement grid.

According to ISO (2020), the uncertainty of the flow u(Q) is

u(Q)2 =
∑m
i

∑n
j

vx(yizj)DyiDzj
[ ]

[u∗(Fy)2 + u∗(Fz)2]

+
∑m
i

∑n
j

[vx(yizl)DyiDzj]2u∗|[vx(yizj)]2

+
∑m
i

Dy2i ·
∑n
j

vx(yizj)Dzj
{ }2

· u∗(Dyi)2
⎡
⎣

⎤
⎦

+
∑n
j

Dz2i ·
∑m
i

vx(yizj)Dyj
{ }2

· u∗(Dzi)2
⎡
⎣

⎤
⎦+ u(Qp)2 (8.79)

with the mean velocity V=Q/S, its uncertainty u(V) is

u(V)2 = 1
S2

( )
u2(Q) + Q2

S4
u2(S) (8.80)

8.3.4.3 Flow cross section uncertainty
The assumed range of uncertainty of the channel width B= 0.80 m is 0.002≤ u(B)≤ 0.005 m and as well
0.002≤ u(h)≤ 0.005 m for the water level h= 0.5 m.

8.3.4.4 Measurement segment uncertainty Δy, Δz
The uncertainty of Δy and Δz was estimated in the range of 0.002≤ u(Δy)= u(Δz)≤ 0.005 m.

8.3.4.5 Flow velocity uncertainty u(vx)
The uncertainty of the flow measurements consists of (i) the relative uncertainty uk* of the measurement
device as specified in the calibration certificate and (ii) a random relative component ur* resulting from
the unsteady nature of flow in channels. The uncertainty depends on the sensor type and the local
velocity and turbulence. The uncertainty of the local velocity u(vx) is

u∗[vx(yizj)]2 = u∗k [vx(yizj)]2 + u∗r [vx(yizj)]2 (8.81)
This example uses 0.001≤ uk≤ 0.01 m/s with uk*= uk/vx and 0.01≤ ur*≤ 0.02 as a Type B estimate.

8.3.4.6 Measurement grid relative uncertainties u*(Fy) and u*(Fz)
The density of the measurement grid influences the number and the representativeness of the measurements.
ISO (2020) provides recommended default values in its Annex D: Table D.4 for the number of measurement
points in a vertical and Table D.6 for the number of verticals in a cross section. The respective values in
Table 8.13 are taken from these tables.
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8.3.4.7 Perimeter flow uncertainty u(Qp)
Near to the walls of the cross section, measurements of the flow velocity are either impossible or have large
errors or uncertainties due to boundary effects, large gradients of the flow velocities or disturbed
measurement signals. In those perimeter sections, the flow has to be estimated by extrapolated flow
velocities. A simple approach had been used in this study. The free surface velocity vx(y, z= h) was set
equal to the first measured value vx(y, z= h−Δz). At walls and bottom, flow velocities were assumed to
be 50% of the nearest measured values, i.e. vx(y= 0, z)= 0.5× vx(y= 0+ Δy, z), vx(y= B, z)= 0.5×
vx(y= B−Δy, z) and vx(y, z= 0)= 0.5× vx(y, z= 0+ Δz). The flow in the perimeter strip of 0.025 m
width was calculated with a velocity at 0.0125 m derived from linear interpolation between the wall and
bottom velocities and the next corresponding measured velocities.

It is very complicated or even impossible to accurately determine the perimeter flow uncertainty.
Therefore ISO (2020) recommends a flat estimate for relative uncertainties of the perimeter flow in the
range of 0.2≤ u*(Qp)≤ 0.4.

8.3.4.8 Scenarios using different measurement quality
Scenario 1 assumes the best practice in velocity measurement in a close measurement grid with a very
accurate velocity sensor and careful positioning. The measurement grid consists of 135 points with Δy=
Δz= 0.05 m. High sensor accuracy and precise handling is assumed and expressed by the values for
uncertainty given in Table 8.13. Table 8.12 shows a screenshot of the Excel®-based calculations. The
yellow marked perimeter section consists of a 0.025 m layer along the bottom and walls and at the
surface. The measurement result of scenario 1 is Q= 0.2458 m3/s with the relative uncertainty u*(Q)=
0.0388, and V= 0.6144 m/s with the relative uncertainty u*(V )= 0.0391.

Scenario 2 assumes less accurate measurements in the same close measurement grid as scenario
1. Scenarios 3 and 4 use a less dense standard measurement grid with five measurements in eight
verticals with measurement accuracy being high in scenario 3 and lower in scenario 4. Details on the
parameters for all scenarios are given in Table 8.13.

Results in Table 8.14 show relative uncertainties for flow ranging in 0.0355≤ u*(Q)≤ 0.0653 and with
0.0355≤ u*(V )≤ 0.0653 slightly higher for the mean velocity. The low uncertainties confirm the state of
velocity grid measurements as a standard for calibration of other measurement devices. The results of
scenarios 2 and 3 show that accurate measurements can compensate for the uncertainties being
introduced by larger measurement grids.

8.3.4.9 Scenarios using symmetry properties of the velocity field
Velocity grid measurement is undoubtedly one of the most accurate methods to determine flow and mean
velocity. The high metrological effort can be reduced by using theoretically founded symmetry properties of
fully developed flows. Necessary and often sufficient prerequisites are long and straight prismatic channels
with low roughness and constant gradient without lateral junctions and installations. In these cases, the
following symmetries of the velocity field can be observed and assumed:

• Prismatic channels with a free water surface: symmetry to the vertical centre axis.
• Prismatic channels with pressure flow: symmetry to the vertical and horizontal central axis.
• Circular cross sections with pressure flow: rotational symmetry.

Scenario 5 shows how the use of axial symmetry of velocity in the given rectangular cross section affects the
uncertainty ofQ and V. It is based on scenario 1 and assumes that velocity data are available only for the left
side including the middle axis at y= 0.5× B= 0.40 m of the rectangular section. The cross section was split
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into the left section 5l (0≤ y, 0.5× B− 0.5× Δy), the middle section 5m (0.5× B− 0.5× Δy≤ y≤
0.5× B+ 0.5× Δy) and right section 5r (0.5× B+ 0.5× Δy, y≤ B).

The flow velocities on the right side vr (y. 0.5× B, z) are assumed to be equal to the axially mirrored
data vl (y, 0.5× B, z) on the left side. In this study case, data v (y. 0.5× B, z) are available. Therefore, the
uncertainty of the mirrored data vr can be derived from the differences Δvr= vr− vl. They range from
Δvr,min=−0.055 to Δvr,max= 0.065 (mean −0.005, standard deviation −0.025, skewness 0.341). The
uncertainty u(vr) was determined by a Type B estimate using a uniform density function (Section 8.2.3.3,
Figure 8.1) which might slightly overestimate the uncertainty. It amounts to u(vr)= 0.0344 m/s.

The parameters of the uncertainty calculation (Table 8.15) were set equal to scenario 1 (Table 8.13) for
the sections 5l and 5m. For section 5r the uncertainty of the velocity is higher due to (i) the lower number of
measurement verticals (u*(Fy)= 0.063 according to ISO (2020)) and (ii) the uncertainty of the estimated
velocities on the right side which can be considered by uk= u(vr)= 0.0344 m/s.

Table 8.16 shows equal results forQ, S and V in sections 5l and 5r but higher relative uncertainties u*(Q)
and u*(V ) in section 5r due to the higher uncertainties uk. In section 5m, u*(Q) and u*(V ) are higher than in
the left section due to the higher influence of u*(Δy) and u*(Δz) on S which results in a high relative
uncertainty u*(S). This small segment introduces additional uncertainty which in the end decreases

Table 8.13 Grid size and uncertainty parameters of scenarios 1–4.

Scenario Δy Δz u*(Fy) u*(Fz) u*(Δy) u*(Δz) ur* uk u(h) u(B) u*(Qp)

m m – – – – – m/////s m m –

1 0.050 0.050 0.030 0.005 0.040 0.040 0.010 0.001 0.002 0.002 0.200

2 0.050 0.050 0.030 0.005 0.100 0.100 0.020 0.010 0.005 0.005 0.400

3 0.100 0.100 0.030 0.005 0.040 0.040 0.010 0.001 0.002 0.002 0.200

4 0.100 0.100 0.057 0.005 0.050 0.050 0.020 0.010 0.005 0.005 0.400

Table 8.14 Flow, flow cross section, and mean velocity with uncertainties for scenarios 1–4.

Scenario Q u(Q) u*(Q) S u(S) u*(S) V u(V ) u*(V )

m3/////s m3/////s – m2 m2 – m/////s m/////s –

1 0.2458 0.0095 0.0388 0.4000 0.0019 0.0047 0.6144 0.0240 0.0391

2 0.2458 0.0164 0.0667 0.4000 0.0047 0.0118 0.6144 0.0416 0.0677

3 0.2512 0.0103 0.0411 0.4000 0.0019 0.0047 0.6279 0.0260 0.0414

4 0.2512 0.0186 0.0741 0.4000 0.0047 0.0118 0.6279 0.0471 0.0751

Table 8.15 Grid size and uncertainty parameters of scenario 5.

Section Δy Δz u*(Fy) u*(Fz) u*(Δy) u*(Δz) ur* uk u(h) u(B) u*(Qp)

m m – – – – – m/////s m m –

5l, 5m 0.05 0.05 0.030 0.005 0.04 0.04 0.010 0.0010 0.002 0.002 0.2

5r 0.05 0.05 0.063 0.005 0.04 0.04 0.010 0.0344 0.002 0.002 0.2
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slightly when summing upQ and S. A joint calculation for sections 5l and 5m, noted 5l+m, decreases u*(S)
but increases u*(Q) due to the lower number of summands, and also slightly decreases u*(V ).

Using symmetry properties of the velocity field in scenario 5 showed neglectable systematic deviations of
Q, S and V compared to scenario 1 (Table 8.13) but higher uncertainties in V.

8.3.4.10 Scenarios using mean velocities estimates
Grid measurements of flow velocity fields are complex and unsuitable for continuous measurements of
vx(y, z, t) in practice. Continuously-measuring devices capture a more or less well-defined part of the
velocity field, and (i) extrapolate the non-measured part of the field with empirical or hydromechanical
based algorithms or (ii) calculate the mean flow velocity V from the measured values using empirical
factors or algorithms (see Chapter 3).

Exemplarily, two simple approaches are investigated with regard to their uncertainties by using the data
set of scenario 1 in Table 8.12.

Scenario 6 uses the flow velocity Vfs in an area of the free water surface to calculate V= efs× Vfs. The free
surface velocity Vfs is calculated from v(y= 0.25 m, z= 0.45 m) to v(y= 0.55 m, z= 0.45 m) with an
arithmetic mean 0.785 m/s, a median 0.793 m/s, standard deviation 0.0151 m/s, skewness −0.513,
minimum 0.762 m/s and maximum 0.801 m/s. The Type B estimate using a uniform density distribution
results in the uncertainty u(Vfs) and the uncertainty u(efs) for efs= V/Vfs can be calculated by Equation
(8.9) with results given in Table 8.17.

Scenario 7 is based on scenario 6 but uses the maximum flow velocity Vmax to calculate the mean flow
velocity V= emax× Vmax. Vmax is taken from the area of maximum velocities v(y= 0.35 m, z= 0.45 m), to v
(y= 0.45 m, z= 0.35 m) with an arithmetic mean 0.7779 m/s, a median 0.7683 m/s, standard deviation
0.0274 m/s, skewness +0.8795, minimum 0.7451 m/s and maximum 0.8294 m/s. Results with
uncertainties are given in Table 8.18.

Table 8.16 Flow, flow cross section, and mean velocity with uncertainties for scenario 5.

Section Q u(Q) u*(Q) S u(S) u*(S) V u(V ) u*(V )

m3/////s m3/////s – m2 m2 – m/////s m/////s –

5l 0.1146 0.0043 0.0380 0.1875 0.0013 0.0067 0.6111 0.0236 0.0385

5m 0.0171 0.0009 0.0550 0.0250 0.0010 0.0402 0.6822 0.0465 0.0681

5r 0.1146 0.0077 0.0676 0.1875 0.0013 0.0067 0.6111 0.0415 0.0679

5 0.2462 0.0089 0.0363 0.4000 0.0020 0.0051 0.6155 0.0666 0.1082

5l+m 0.1316 0.0049 0.0373 0.2125 0.0013 0.0062 0.6194 0.0234 0.0378

5r 0.1146 0.0077 0.0676 0.1875 0.0013 0.0067 0.6111 0.0415 0.0679

5 0.2462 0.0092 0.0372 0.4000 0.0018 0.0045 0.6155 0.0476 0.0774

Table 8.17 Mean velocity, mean surface velocity, and their ratio with uncertainties for scenario 6.

V u(V ) Vfs Vfs,min Vfs,max u(Vfs) efs u(efs) u*(efs)

m/////s m/////s m/////s m/////s m/////s m/////s – – –

0.6144 0.0240 0.7849 0.7625 0.8008 0.0111 0.7828 0.0325 0.0415
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The results of both scenarios 6 and 7 are rather similar and might indicate a reasonable accuracy when
looking at u*(efs) and u*(emax) only. But note that the values of efs and emax are one of the potential
realizations for these particular cases. Repeated tests of the same configuration would give other results.
The range for e to be expected can be estimated by the coverage interval according to Equation (8.17) as
[e− k× u(e), e+ k× u(e)] with k from Table 8.3. Table 8.19 shows the coverage intervals for efs and emax.

The spreads between the low and high limits are 1.18 for efs and 1.22 for emax at the 95% confidence level
(k= 1.96), and 1.24 for efs and 1.30 for emax at the 99% confidence level (k= 2.58). Note that these results
were derived from one clearly defined steady state flow experiment. The rather wide ranges should be reason
enough for equipment suppliers to carefully derive the values for efs or emax for a broad variety of flow
conditions and quantify their dependencies on influencing factors.

8.4 SENSOR UNCERTAINTYAND IN SITU MEASUREMENT
UNCERTAINTY
8.4.1 Definitions and explanations
In uncertainty assessment, it is of crucial importance to account for two main and independent sources of
uncertainty in measured data: (i) sensor uncertainty and (ii) in situ measurement uncertainty.

8.4.1.1 Sensor uncertainty
All sensors used in UDSM should be calibrated according to rigorous calibration procedures and protocols
(see Section 7.6 on sensor calibration). It is very important to note that the calibration should involve the
entire chain of sensors and instruments, from the transducer to the final data storage in data loggers,
SCADA systems or databases, i.e. to the final state of the data as they are later used by operators,
researchers, regulators, etc.

Calibration of the transducer or the sensor only (uncertainties reported by manufacturers are frequently
given only for such conditions) will lead to systematic underestimation of uncertainties. Indeed, other

Table 8.18 Mean velocity, maximum velocity, and their ratio with uncertainties for scenario 7.

V u(V ) Vmax Vmax,min Vmax,max u(Vmax) emax u(emax) u*(emax)

m/////s m/////s m/////s m/////s m/////s m/////s – – –

0.6144 0.0240 0.7779 0.7451 0.8294 0.0244 0.7898 0.0395 0.0501

Table 8.19 Coverage intervals of efs and emax.

Scenario 6 Scenario 7

k efs k×u(efs) efs
− k×u(efs)

efs
+ k×u(efs)

emax k×u(emax) emax

− k×u(emax)
emax

+ k×u(emax)

1 0.7828 0.0325 0.7503 0.8153 0.7898 0.0395 0.7503 0.8294

1.96 0.7828 0.0637 0.7191 0.8465 0.7898 0.0775 0.7123 0.8673

2.58 0.7828 0.0839 0.6989 0.8667 0.7898 0.1020 0.6878 0.8918
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sources of uncertainties are due to data transmission, signal amplification, analogue-digital conversions,
format conversion, re-scaling, display rounding, etc.

In addition, uncertainties reported by sensor manufacturers are obtained under specific conditions which
may differ significantly for the in situ conditions. Therefore, it is the responsibility of the user to
systematically calibrate all sensors under their real conditions of use, whatever manufacturers indicate.

8.4.1.2 In situ measurement uncertainty
This source of uncertainty may be summarized as ‘the uncertainty due to the in situ conditions of
measurement for a given sensor’. Its evaluation is mainly based on detailed in situ observations
and expertise.

Let us consider water level measurement in a sewer system. In addition to the sensor standard uncertainty
(e.g. 1 mm for an ultrasonic sensor determined from a calibration under static controlled conditions), there
are other sources of in situ uncertainty which affect the measured value of the water level:

• The uncertainty in the position of the sensor in the pipe.
• The waves and oscillations of the free surface.
• The horizontality of the free surface through the width of the sewer.
• Local flow depending on changes of water level due to hydraulic effects.
• Etc.

Visual observations during dry weather in a man entry sewer showed that the free surface wave and
oscillations had an amplitude up to 15 mm, which may be equivalent to a standard uncertainty of 7.5
mm. In the same sewer under wet weather conditions, the amplitude may reach 30 mm and even more.
The resulting total uncertainty u(h) in water level measurement h may be estimated from both the sensor
uncertainty us(h) and the in situ measurement uncertainty ui(h) by the law of propagation of uncertainty:

u(h) =
����������������
us(h)2 + ui(h)2

√
=

�����������
12 + 7.52

√
= 7.6mm (8.82)

In this case, the in situ uncertainty is clearly the dominant contribution. It may be very different if the
same sensor is used e.g. in a Venturi flume with an upstream channel of sufficient length to stabilize the
free surface waves and oscillations.

In situ uncertainties should always be investigated case by case to evaluate their significance. Experience
has revealed that they are too frequently ignored. Their importance may be great, especially for velocity
sensors (Lepot et al., 2014) and some quality sensors like e.g. turbidity sensors as suspended solids are
not always evenly distributed through the entire cross section.

8.4.2 Examples/////orders of magnitude for some common sensors and
methods
Uncertainty assessment (UA) must always be done on a case-by-case basis, accounting for local conditions:
sensors used, associated calibration and verification protocols and data, operating conditions including
maintenance, and operators. However, to provide orders of magnitude for beginners in UA and to
facilitate comparisons, Table 8.20 indicates typical relative standard uncertainties u*(x)= u(x)/x for
common sensors and methods used to measure water level, flow velocity and discharge in sewer
systems. These relative standard uncertainties correspond to in situ best practice usual operational
conditions.
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Example: for a water level ultra-sound sensor with a measurement range of 0–2 m measuring a water
level h= 1 m: this corresponds to 50% of the measurement range. Table 8.20 indicates that the relative
standard uncertainty is u*(h)= u(h)/h= 0.194%. Consequently, the standard uncertainty is u(h)= 1.94
mm and the corresponding 95% coverage interval for h= 1 m is [h− 1.96× u(h), h+1.96× u(h)]=
[0.996, 1.004] m.

8.5 SUMMARYAND TRANSITION
This chapter explained in detail and illustrated with various examples the three methods one can use to
estimate uncertainties: (i) the Type A method (repeated measurements), (ii) the Type B method (law of
propagation of uncertainties), and (iii) the Monte Carlo method (propagation of distributions). It is
essential that uncertainty assessment becomes a routine practice in urban drainage and stormwater
management. Maintenance, periodic calibration and verification of sensors (Chapter 7), and uncertainty
assessment (this chapter) are key elements for the next step in data processing: data analysis, quality
assessment and validation (Chapter 9).
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