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ABSTRACT

An issue of utmost significance constitutes the maintenance of engineering systems exposed tocorrosive environments, e.g. coastal and marine environments, highly acidic environments, etc. Themost beneficial sequence of maintenance decisions, i.e. the one that corresponds to the minimummaintenance cost, can be sought as the solution to an optimization problem. Owing to the highcomplexity of this sequential decision optimization problem, traditional methods such as threshold-based approaches, fail to arrive at an optimal strategy, while at the same time the commonly usedoffline knowledge about the environment can not capture efficiently the stochastic way in whichan engineering system deteriorates. Over the last few years, Deep Reinforcement Learning (DRL)has been proven a promising tool to tackle such problems, being often limited though by thedimensionality curse and the implications caused by large state and action spaces, an issue whichleads to simplifications like their discretization. Bayesian principles and model updating are the mostwidely used tools to model accurately systems with high uncertainty, by incorporating data acquiredthrough monitoring devices and thus improving the knowledge about the stochastic system.
This research proposes an integrated framework that aims to determine an optimal sequenceof maintenance decisions over the lifespan of deteriorating engineering systems, combiningthe aforementioned core concepts of Deep Reinforcement Learning (DRL) and Bayesian ModelUpdating (BMU). More specifically, it investigates different Deep Reinforcement Learning (DRL)algorithms, namely Double Deep Q-Network (DDQN), Advantage Actor Critic (A2C), and ProximalPolicy Optimization (PPO), while the updating of the uncertain parameters is performed throughsampling, i.e. No-U-Turn Sampler (NUTS). All these tools will be first applied to elementaryproblems for the sake of verification and validation, while the culmination of this research is theapplication of the framework on a more realistic and complicated, multi-component structure. Theobtained results are compared with benchmark performances to properly showcase the efficiencyand the weaknesses of the tool.
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1 INTRODUCTION

1 Introduction

1.1 Motivation

An ever-important issue regarding civil infrastructure or in general engineering systems is theirdeterioration over time. Deterioration is a serious concern since it often leads to the reduction ofstructural capacity as well as the reliability and service life of a system. Many instances showcasethe importance of structural degradation, with structures located in coastal and marine environ-ments being the most common cases, as well as structures subjected to cyclic loading, hencefatigue. Typical examples of deteriorating systems constitute bridges [2], [3], [4], offshore plat-forms [5], [6], [7], and wind turbines [8], [9], [10]. In particular, in cases of structural steel, it ismost likely that galvanic corrosion will occur due to the atmospheric exposure in a marine envi-ronment, whereas the deterioration of reinforced concrete elements takes place in the form ofcorrosion of the reinforcement and/or spalling of the concrete. Lastly, fatigue can also lead to signifi-cant degradation of the structure, being responsible for the formation and the propagation of cracks.
However, these degradation processes are highly stochastic, and their prediction often requires aprobabilistic analysis, having first expressed quantitatively the uncertainties, which are involvedin these physical procedures. Therefore, the maintenance of a deteriorating system constitutes acomplex sequential decision-making problem under uncertainty, for which it is often intractable tofind closed-form solutions concerning the optimal actions that accomplish a plethora of life-cycleobjectives. Additionally, the existence of multiple components, their interaction, and their ability tomitigate one another’s failure, contribute to the enhancement of the uncertainty and the difficultyto define an optimal sequence of actions that will fulfill long-term goals.
To define the actual degradation of a system, a common practice is to employ new informationderived from monitoring devices, to update the prior knowledge of a system’s parameters. Thisnon-destructive damage assessment, i.e. incorporating observations based on Structural HealthMonitoring (SHM), can reflect the actual deterioration, leading to a decreased variability of thesystem’s current condition and structural capacity, hence to more realistic and accurate modelingof it, allowing the decision-maker to proceed with more informed and rational decisions. Themajority of these updating techniques rely on Bayesian principles and the notion of Bayesian ModelUpdating (BMU).
As far as the optimal maintenance policy is concerned, due to the significant amount of deteriorationstates, possible maintenance actions, and the decision steps under consideration, analyticalsolutions for determining the wanted optimal sequence of actions are more often than notcomputationally heavy. The so-called curse of dimensionality has been alleviated with the useof Reinforcement Learning (RL) techniques, which were able to provide approximate solutionsfor optimal maintenance policies for engineering systems. Even further progress was achievedwhen, in 2014, DeepMind patented an application of RL techniques to Deep Learning (DL), with
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the scope of playing Atari games better than human experts [11]. This new approach, namely DeepReinforcement Learning (DRL), overcame the limitations that traditional RL had, and was proved tobe a promising tool for finding near-optimal control policies.
1.2 Problem Statement

The scope of this thesis is the development of an integrated framework that will combine DRLtechniques with Bayesian Inference, with the former tackling the sequential decision optimization,while the latter one would deal with the accurate modeling of the stochastic deterioration process.The ultimate goal of this tool is to determine the optimal sequence of maintenance decisions thatresult to the minimum cost throughout the service life of an engineering system. To elaborate furtheron the interaction between the various elements that will be used in this framework, responsequantities of the system, that are contaminated with noise, will be fed into an Operational ModalAnalysis (OMA) procedure, in order to obtain modal characteristics (also including some uncertainty,through additional noise). Furthermore, the transition of the system to its new state will be describedby a stochastic deterioration model, which will be constantly more accurate by incorporatingobservations during each decision step. A generic schematic representation of the aforementionedproblem is depicted in Figure 1.

Figure 1: Problem Statement - General Framework
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The necessary inputs are:
• Initial (prior) distribution for system parameters (e.g. stiffness, mass, deterioration parame-ters, etc)• Stochastic deterioration model over time• Possible actions (e.g. do nothing, repair, replace, etc)• Cost definition (e.g. action costs, risk of failure)• Noise interfering in observations’ monitoring• Time window of interest

The ouput of the proposed framework will be the optimal sequence of actions, that minimize thecost function, over the system’s service life.
It should be mentioned, that such a coupling of these two core concepts, namely DRL and BMU,has not been done yet in the existing research (as will be thoroughly presented in Chapter 2),especially in the field of infrastructure maintenance, a fact that highlights the innovation of theproposed framework. Nevertheless, owing to the limited assumptions and simplifications that willbe considered for the sake of accuracy, it is likely that considerable challenges and obstacles maybe posed regarding the computational costs.
1.3 Research Question

The research question can be formulated as follows:
“How to develop an integrated framework that will efficiently couple Deep Reinforcement
Learning (DRL) algorithms and Bayesian Model Updating (BMU) when it comes to structural
systems’ life cycle optimization, using vibration data/observations? ”

In order to efficiently reach the answer to the main research question, it is further broken down intothe following sub-questions:• How can this framework be applied in a simplified yet representative case (toy problem)?• Having produced sound results for the simple case, which DRL algorithm performs better?• Due to the significant computational cost of BMU, how can it be integrated in a more time-efficient way?• Can this framework be scaled up to more complicated cases? (e.g. bigger action spaces,complex multi-component structures, etc)
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1.4 Research Methodology

The research of the current problem can be structured in four main sections, as illustrated also inFigure 2. The research framework constitutes the first part, including the motivation, the definitionof the problem statement and a clear formulation of the research question. The second part focuseson the literature review, according to which the research objectives and questions might be refined.Having laid the theoretical foundation, and built an informed picture of the existing research, thetool development follows, as well as the formulation of the applications on which the proposedtool will be tested. In the current project, two problems of different complexity will be addressed,with the minor one acting also as a validation and verification test for the proposed framework.The culmination of the aforementioned steps will be the evaluation of the results, accompaniedby the corresponding discussions and considerations about future developments, based on theshowcased strengths and weaknesses of the tool.
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Figure 2: Research Methodology flowchart
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The sheer amount of mathematical operations and algorithms that are required for the currentproject, will be handled withPythonprogramming language. A summary of the core libraries/packagesthat will be needed, is displayed in Figure 3.

Figure 3: Core Python dependencies4

4Apart from the Python libraries, that are widely used for similar projects, there will be use of other, custom ones, thatwere available open-source, online [12], [13]
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1.5 Thesis Structure

In concluding this introductory chapter, the content of the following ones will be briefly described,further elaborating along with the research methodology flowchart (Figure 2) on the structure ofthe whole thesis. In the coming chapter, the literature review is introduced (Chapter 2), followed bythe description of the methodology of the proposed framework in a generic fashion (Chapter 3). Asimple toy problem is presented in the following chapter, where the aforementioned tool is applied(Chapter 4). Then, the developed framework is further applied to a more complicated and realisticcase study (Chapter 5), leading to the final chapter, where the main conclusions are drawn, alongwith a reflection on the advantages and disadvantages of the proposed method, as well as topicsfor further discussion and future work (Chapter 6).
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2 Literature Review

2.1 Markov Decision Process (MDP)

The problem of optimal stochastic control is usually handled using an MDP, which provides aprincipled mathematical methodology that can address the uncertainties of planning optimuminspection and maintenance strategies, including uncertain action outcomes and exact observations.The theory behind MDPs, together with further concepts that will not be covered in the currentwork, like Semi Markov Decision Processes (SMDPs), State Augmentation, etc, has been analyzedin depth in many papers, e.g. [14]. However, a basic elaboration on MDPs and Partially ObservableMarkov Decision Processes (POMDPs) will be made, in order to build a foundation for the moreadvanced concepts in the following sections.
The basic components of an MDP are the Environment and the Agent, while it can fully describedby the tuple:

〈S ,A,P ,R,γ〉
where,

S : the finite set of states
A : the finite set of actions
P : the state probability matrix
R : the reward function
γ : a discount factor for the future rewards

At each decision step t , the decision-maker, i.e. the agent, observes the current state st ∈S , takesan action at ∈A, receives a reward Rt (st , at ) ∈R and moves to the next state st+1 ∈ S based onthe environment’s transition dynamics. This procedure is displayed in Figure 4. According to theso-called Markov property, the next state, st+1, depends only on the current state, st , and thechosen action, at , regardless from the preceding history of states and actions. The sequence ofactions followed by the agent, defines its policy, π, that can be either deterministic or stochastic,meaning that a policy can map states to actions or states to probability mass (or density) functions,respectively.
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Figure 4: The agent-environment interaction in an MDP [15]

The ultimate goal of an optimal policy is to maximize the sum of the discounted rewards, i.e. thetotal return, Gt , of the chosen actions, which is given by the following formula:
Gt = R(st , at )+γR(st+1, at+1)+γ2 R(st+2, at+2)+ . . . =

T∑
i=t

γi−t R(si , ai ) (1)
It should be noted that the total return is not deterministic, owing to the problem being stochastic.Thus, accounting for all future state-action pairs, the action-value function, Qπ(st , at ) is defined asthe expected return5over both S and A sets (Equation 2).

Qπ(st , at ) = Est ,at [Gt | st , at ] (2)
It should be noted that the notation E corresponds to the expected value, i.e. the mean, while thevariables over which it is computed, are denoted as the subscripts.
Decomposing Qπ into the immediate reward plus the discounted value of the successor state, leadsto the following recursive form:

Qπ(st , at ) = R(st , at )+Est+1,at+1

[
γQπ(st+1, at+1) | st , at

] (3)
The state-value function V π(st ) is defined in a similar way, corresponding to the expected returnstarting from state st and following policy π.

V π(st ) = Eat [Gt | st ] (4)
Since the state-value function is stochastically defined for all possible actions of policy π, it takesthe form:

V π(st ) = Eat

[
Qπ(st , at )

] (5)
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For any MDP there exists an optimal policy π∗ that achieves the optimal state and action-statevalue function. These are formulated through the Bellman Optimality Equation as follows:

V ∗(st ) = max
at∈A

[
R(st , at )+γ ∑

st+1∈S
P(st+1 | st , at )V (st+1)

]
(6)

Q∗(st , at ) = R(st , at )+γ ∑
st+1∈S

P(st+1 | st , at )max
at+1

Q(st+1, at+1) (7)
The symbol P(·) corresponds to the probability of a quantity; a notation that will be used for therest of the thesis.
When the optimal action-state value function is known, the optimal policy is known, thus the MDPis solved. Since the Bellman Optimality Equation is non-linear, it is often solved using DynamicProgramming (DP) (value iteration, policy iteration), or algorithms like Q-learning and SARSA (bothwill be presented in Section 2.3).
A considerable disadvantage of using MDPs for a sequential decision problem is the curse ofdimensionality, as with an increase in the state-space, the computational cost grows exponentially.Therefore, in the existing literature, there are mostly attempts that choose discrete deteriorationstates instead of continuous, e.g. [16], [17].
2.2 Partially Observable Markov Decision Process (POMDP)

A significant aspect in the exploitation of the ever-increasing available observation data is the degreeof confidence the decision-maker has in the received input. This issue is undoubtedly connected withuncertainties regarding various environmental and loading conditions, modelling errors, inefficientmeasuring systems or inaccuracies in the information transmission network [18]. This is why, moreoften than not, models based on MDPs are limited by the need of perfect observations, leadingto their extension to Partially Observable Markov Decision Processes (POMDPs), which take intoconsideration the partial observability of the systems’ information in order to approach the optimalsequence of maintenance decisions based on uncertain structural data. In these cases, when thestates are not fully observable, at each decision step the agent gets a belief, b, over the states of thesystem. Since the Markov property still holds, this probability distributions over S is sufficient todescribe the history of actions and observations. Starting with an initial belief, bt , the agent takesan action, at , but instead of receiving the new state, gets an observation ot+1 ∈Ω, with which thebelief is updated, using Bayesian principles.

b(st+1) =P(st+1 | ot+1, at ,bt )

=
P(ot+1 | st+1, at )

P(ot+1 | bt , at )

∑
st∈S

P(st+1 | st , at )b(st ) (8)
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In a similar notion with MDPs and assuming that the beliefs are the states of this environment,Equation 6 can be rewritten for POMDPs.
V ∗(bt ) =max

at∈A

[ ∑
st∈S

b(st )R(st , at )+γ ∑
o∈Ω

P(o | b, a)V (bt+1)

]
(9)

POMDPs have been used in many cases for infrastructure maintenance in the existing literature([19], [20]) often along with point-based algorithms ([21], [22], [23], [24], [25]) demonstrating thatthey can model more efficiently complex decision problems outperforming heuristic-based policies.However, they face limitations when it comes to the solution of large action- and state-spaces,and even greater ones in the case of continuous state spaces. The most significant difficulty layson the updating of the belief, with Equation 8 (which corresponded to discrete spaces) taking thefollowing form:
b′(st+1) =P(st+1 | ot+1) ∝P(ot+1 | st+1, at )

∫
st

P(st+1 | st , at )b(st )dst (10)
Because the integral of Equation 10 can not be calculated in a closed form, many researchershave attempted to use other mathematical ways that work around this issue ([26], [27], [28]). Thisupdating of the belief can be broken down into two steps, the transition step, during which the beliefpropagates in time according to a predefined conditional probability distribution [24]:

b(st+1) =
∫

st

P(st+1 | st , at )b(st )dst (11)
and the estimation step, with the belief now updating based on obtained evidence by means ofBayes’ rule:

b′(st+1) =P(st+1 | ot+1) ∝P(ot+1 | st+1, at )b(st+1) (12)
These drawbacks and difficulties of POMDPs led to the need of developing an RL or DRLmethodology, capable of tackling them.
2.3 Reinforcement Learning (RL)

RL is often an advantageous technique to deal with sequential decision optimization, especiallywhen knowledge about the system is uncertain or unknown. Indeed in the existing literature thereare even examples that tackle optimal maintenance planning in the absence of a deteriorationmodel [29]. The agent interacts directly with the environment by taking actions and adjusts thepolicy based on the information received back, aiming to identify the optimal one.
RL algorithms are divided into two main categories, model-based and model-free. In the formergroup, e.g. DP (policy iteration, value iteration), the model must provide state transition probabilitiesand expected rewards for every state-action pair in order to identify the optimal policy, whereasalgorithms in the latter category, such as Temporal Difference (TD) learning, SARSA, Q-learning,
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rely on real samples from the environment, which is a feature that makes them applicable in variousdifferent cases. Both model-based and model-free approaches were tested along with Q-learningin [30], for a problem of maintenance optimization, with the system’s discrete state transitionsbeing defined through the assumed degradation model.
A second major distinction between RL algorithms, is the one among on-policy and off-policy. Inon-policy learning the Q(s, a) function is learned through actions of the current policy, π, whilein off-policy learning, it is learned while taking different/random actions. Namely, SARSA is anon-policy algorithm, that updates the state-action value function as follows:

Q(st , at ) ←Q(st , at )+α (
R(st , at )+γQ(st+1, at+1)−Q(st , at )

) (13)
where at+1 is the action taken according to policy π.
On the other hand, Q-learning is an off-policy learning algorithm, that updates the state-actionvalue function in the following way:

Q(st , at ) ←Q(st , at )+α
(
R(st , at )+γ max

at+1∈A
Q(st+1, at+1)−Q(st , at )

) (14)
where at+1 can be any of the possible actions.
In Q-learning, the value functions Q for any state-action pair are stored in a table, and they areupdated by interacting with the environment, i.e. taking actions and receiving rewards. In order toexplore every possible action, hence, every unknown area of the Q-table, usually an ϵ-greedy policyis used, in order to balance out exploration and exploitation. More specifically, the agent will exploitthe already known Q-values, or explore, picking an action at random, based on the following rule:

at =
max

at∈A
Q(st , at ) with probability 1−ϵ

random at ∈A with probability ϵ (15)
In [31], a customized version of Q-learning is introduced, namely "safe Q-learning", that includes amodel-based safe exploration for near-optimal management of infrastructure, in order to decreasethe variance induced by choosing random actions (exploring).
However, there are two main limitations in the classic Q-learning approach, which are (1) the curseof dimensionality when the state- and action-space are large, and (2) the inability of this algorithmto visit all states, hence, to estimate the Q-values for the whole table.
2.4 Deep Reinforcement Learning (DRL)

To tackle the aforementioned limitations, the Q-function is approximated through a Deep NeuralNetwork (DNN). This way, the state-action value function is reparameterized, and is now expressed

12



2 LITERATURE REVIEW

in terms of parameters θ, in order to alleviate the computational cost and instabilities that largestate- and action-spaces cause.

2.4.1 Deep Q-Network (DQN)

The state, st is given as an input to the DNN, and by using a suitable number of inner layers andactivation functions, it outputs the action-state value function, Q(st , at | θ), for every at ∈A. Theparameters, θ, i.e. the Q-network weights, are adjusted in every iteration of the agent’s training inorder to minimize a sequence of loss functions that are given by the following equation:
L(θ) = Est ,at

[(
(yt −Q(st , at | θ)

)2
] (16)

with yt being the target for decision step t ,
yt = Est+1

[
R(st , at )+γmax

at+1
Q(st+1, at+1 | θ−) | st , at

] (17)
In order to stabilize the learning process, tuples of (st , at ,R(st , at ), st+1) are being stored in a replaybuffer and are then used in batch training the Deep Q-Network (DQN) according to the followinggradient:

∇θL (θ) = Est ,at

[(
Rt (st , at )+γ max

at+1∈A
Q (st+1, at+1 | θ−)−Q (st , at | θ)

)
∇θQ (st , at | θ)

] (18)
Each tuple of the experience replay is potentially used in many weight updates, which leads to theuse of non-consecutive uncorrelated samples, hence, to the reduction of the variance through theupdates. Additionally, as it is shown in Equations 17, 18, a target network is used, with parameters
θ−. This target network takes the values of the original one with a delay, which contributes to thestability of the training.
Various examples exist in the literature, using DQN including different DNNs to approximate thevalue functions. In the initial coupling of RL and DL by DeepMind [11], Convolutional Neural Networks(CNNs) were used in order to decompose the Atari’s screen into a rectangular grid that was fed intothe network. Similarly, a DRL framework for optimal maintenance, again with a CNN is developedin [32]. Moreover, in both [33] and [34], Recurrent Neural Networks (RNNs) are used for the policyoptimization while in a partially observable environment. Finally, an Artificial Neural Network (ANN)is used in [35] in order to tackle the two-dimensional state-space limitation, existing in cases whenCNNs or RNNs were chosen instead. This approach was followed in [36], too, as well as in [37]where an ANN was used both for the multi-component system’s maintenance but also for thecreation of a surrogate model.
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2.4.2 Double Deep Q-Network (DDQN)

It is known that standard DQN suffers from an overestimation problem for the action values innoisy environments, thus, an even more stable algorithm is DDQN that uses both the target andthe original network in the calculation of yt , in particular:
yt = R(st , at )+γQ

(
st+1,argmaxQ (st+1, at+1 | θ) | θ−) (19)

In [38] a DDQN is used for the maintenance planning of a stochastically deteriorating system,accounting also for the dependency between its multiple components. DDQN is thoroughlyexplained in [39].
2.4.3 Advantage Actor Critic (A2C)

Another common approach in both RL and DRL is to instead of interacting with value functions,change directly the policy, π. In the case of DRL, when a DNN is used to approximate π, the trainingis done through the gradient:
∇θ J (θ) = Est ,at

[∑
t≥0

∇θ logπ(at | st ,θ)Q(st , at )

] (20)
where J (θ) is the objective function, i.e.

J (θ) = ∑
t≥0

γt R(st , at ) (21)
One way to reduce the variance and improve policy gradient methods is by subtracting a baselinefrom the Q-function. This is why the advantage value is being introduced:

A(st , at ) =Q(st , at )−V (st ) (22)
corresponding to how much better a specific action is, compared to the average, general action atthe given state.
In order to compute all terms in Equation 20, the policy gradient requires also an estimation of avalue function. This issue led to the creation of the so-called Actor-Critic methods, which use avalue approximator (critic) to train the parameters of the policy approximator (actor). Two DNNs areemployed, one for each of the two approximators (actor-network, critic-network), with the latterbeing used for the V-function estimation, since Equation 22 can be rewritten through the Bellmanequation as follows:

A(st , at ) = R(st , at )+γV (st+1)−V (st ) (23)
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This leads to the Advantage Actor Critic (A2C) algorithm, which aims to the minimization of:

∇θ J (θ) = Est ,at

[∑
t≥0

∇θ logπ(at | st ,θ)
(
R(st , at )+γV (st+1)−V (st )

)]
= Est ,at

[∑
t≥0

∇θ logπ(at | st ,θ) A(st , at )

] (24)

2.4.4 Proximal Policy Optimization (PPO)

In order to avoid destructively large policy updates in policy gradient algorithms, the trust regionmethods were developed. In particular, the Trust Region Policy Optimization (TRPO) algorithm,aims to maximize the "surrogate" objective function, under the constraint that the Kullback–Leibler(KL) divergence between the old and new policy is less than a constant δ.

maximize
θ

Et

[
πθ(at | st )

πθold (at | st )
At

]
(25)

with Et
[KL[

πθold (· | st ),πθ(· | st )
]]≤ δ (26)

or, using a penalty term instead of a constraint:
maximize

θ
Et

[
πθ(at | st )

πθold (at | st )
At −βKL[

πθold (· | st ),πθ(· | st )
]] (27)

An improvement to TRPO is the PPO algorithm. Although, an in depth description of this methodis presented in [40], a brief reference to its main steps/equations will be also included here.
Denoting the probability ratio,

rt (θ) =
πθ(at | st )

πθold (at | st )
(28)

the TRPO "surrogate" objective becomes:
LC PI (θ) = Et

[
πθ (at | st )

πθold (at | st )
At

]
= Et [rt (θ)At ] (29)

The superscript C PI refers to conservative policy iteration, while the maximization of LC PI wouldcause large policy updates. Therefore, the objective needs to be adjusted so as to penalize policychanges that move rt (θ) away from 1. Thus, the clipped surrogate objective is considered instead:
LC LI P (θ) = Et

[
min

(
rt (θ)At ,clip(rt (θ),1−ϵ,1+ϵ) At

)] (30)
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The term, clip(rt (θ),1−ϵ,1+ϵ) At , modifies the surrogate objective by clipping the probability ratio,not allowing it to move outside the interval [1−ϵ,1+ϵ].
PPO is used to optimize the maintenance of renewable energy systems in [41].
2.4.5 Other Deep Reinforcement Learning (DRL) algorithms

Regarding different DRL algorithms, Deep Deterministic Policy Gradient (DDPG) is used in [42],which is an actor-critic algorithm that enables the modeling of a continuous deterioration state-space. Additionally, the development of a new algorithm, namely Deep Centralized Multi-agentActor Critic (DCMAC), is presented in [43] that aims for the optimal maintenance in multi-component systems with high dimensional action- and state-spaces. Lastly, in order to addresschallenges regarding stochastic optimal control, such as the curse of dimensionality in large spaces,the curse of history, and the environment uncertainties/stochasticity, Deep Decentralized Multi-agent Actor Critic (DDMAC) is introduced in [44].
2.5 Bayesian Model Updating (BMU)

As it has already been mentioned, in the current project, the problem of optimal stochastic controlwill be combined with the notion of BMU. To be more precise, model updating constitutes aninverse problem, meaning that, instead of knowing beforehand the exact parameters of a model tocalculate its response, observations of the system’s behavior are used in order to update or calibratethe unknown system properties. This technique can efficiently tackle the fact that many systemparameters are not deterministic, but stochastic. Additionally, in most cases the deterioration ofan existing structure can not be modeled accurately, with a Gamma process e.g. like in [38], [43],[45] (this type of deterioration will be covered in depth in Section 2.6) or generally a relationshipof the form D(t ) = A t B for the damage, D(t ), over time, t , e.g. like in [46]. Therefore, an updatingprocedure can be useful in defining its properties during its whole service life. An extensive reviewon model updating about damage assessment, including BMU is presented in [47].
It should be mentioned that, a detailed and instructive example on how to account for a structure’sdeterioration through BMU is presented in [46]. In that research, aiming to quantify the Value ofInformation (VoI), periodic inspections are made, and the obtained observation are used in theupdating of the system’s parameters as well as its structural reliability. A heuristic based approachwas followed regarding the life-cycle optimization.
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From a more technical standpoint, Bayesian Inference is performed using Bayes’ Theorem, which,assuming that θ are the parameters of interest and D are the observations, takes the form:
P(θ | D) =

P(D | θ)P(θ)

P(D)
(31)

where,
θ : the vector of the parameters of interest
D : the vector of observations
P(θ) : the prior distribution
P(D | θ) : the likelihood function of the parameters θ
P(D) : the evidence
P(θ | D) : the posterior distribution of θ

Analyzing each factor involved in Equation 31:
• Prior distributionThe prior distribution P(θ) corresponds to the initial hypothesis about the system’s parameters.It is an uninformed estimation of them, e.g. if only the upper and lower bounds are known, aUniform distribution among these bounds will be used.• Likelihood functionThe likelihood function describes the degree of agreement between the observations Dand the output/result of the actual model, computed deterministically using the existingknowledge for parameters θ• Evidence functionThe evidence function acts as a normalizing constant in Bayes Theorem. This way theintegral of the posterior distribution sums up to 1. Because the evidence is independentfrom parameters θ, it does not affect the shape of the posterior distribution, hence, it can bewritten: P(θ | D) ∝P(D | θ)P(θ) (32)
• Posterior distributionThe posterior distribution is the updated distribution of parameters θ with the use of theobserved response data.

A challenge lays on the sampling of the posterior distribution, because it can not be expressed in aclosed form, but only implicitly, point-wise, using a MC approach. To overcome this obstacle, manysampling methods have been developed, in order to approximate P(θ | D). An in-depth overview ofthree popular sampling methods, namely Markov Chain Monte Carlo (MCMC), Transitional MarkovChain Monte Carlo (TMCMC) and Sequential Monte Carlo (SMC) is presented in [48]. Two of themost well-known MCMC algorithms are Metropolis-Hastings and Gibbs sampling. However, theyoften fail to converge to the posterior distribution, especially for continuous model parameters.Therefore, more efficient algorithms have been developed and are widely used, such as Hamilto-
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nian Monte Carlo (HMC), and an even more advanced variation of it, No-U-Turn Sampler (NUTS).NUTS tends to be significantly efficient, thanks to its stability and the fact that it does not needhand-tuning of hyper-parameters by the user. A brief elaboration on NUTS is presented in Section3.2, whereas an in-depth presentation of it, and its many variations, is included in [49].
Concluding, the stochastic nature of this problem, and the inability to know the exact value forthe parameters of interest at every decision step, comes to highlight the need of POMDP, wherethe belief, bt at every t , will correspond to the posterior distribution, after having incorporated theobservations D .

2.6 Deterioration Processes

As elaborated thoroughly in [50] and [51], the uncertainty associated with the evolution of degrada-tion over time is an important consideration for the optimisation of maintenance. The commonlyused Random-Variable Degradation (RVD), where the rate of degradation6is random, can notcapture the temporal variability of the degradation, which is why a Stochastic-Process Degradation(SPD) model is usually adopted. An efficient modelling option would be the Brownian motion witha drift. A stochastic process that has been applied successfully in a plethora of fields (e.g. exchangevalue of shares, movement of small particles in fluids, etc), however in the current application failsto perform due to the fact that it can alternately increase and decrease, which is not the case fora structure’s performance, which monotonically decreases. Therefore, more often than not, thestochastic process chosen for the modelling of an engineering system’s deterioration is the Gammaprocess. It is a stochastic process with independent non-negative increments that have a gammadistribution with identical scale parameter and time-dependent shape parameter. This choice hasbeen proven suitable to model gradual damage monotonically accumulating over time applicableto a variety of problems e.g. wear, fatigue, corrosion, crack growth, erosion, consumption, creep,swell, etc [50].

6For a degradation in the form of A t B , linear parameter A is known as the rate of degradation, while B is the non-lineartrend of the degradation law. Usually, A reflects the variability in a large population of similar components.
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At every step t , the damage d follows a Gamma distribution with shape v(t) > 0 and scale u > 0.Mathematically, its Probability Density Function (PDF) is given by:
Ga(d | v(t ),u) =

uv (t )

Γ(v(t ))
d v(t )−1 e(−u d) I(0,∞)(d) (33)

where,

IA(d) = 1 for d ∈ A

IA(d) = 0 for d ∉ A

assuring positivity of d , and,
Γ(α) =

∫ ∞

t=0
tα−1 e−t dt

The following properties hold for a Gamma process:

d(0) = 0 with probability 1

d(τ)−d(t ) ∼ Ga(v(τ)− v(t ),u) for all τ> t ≥ 0

d(t ) has independent increments
Its first two statistical moments, i.e. the mean and the variance, are:

E
(
d(t )

)= v(t )

u

Var
(
d(t )

)= v(t )

u2

Empirical studies show that the expected deterioration at time t is proportional to a power law:
v(t ) = c t b with c > 0, b > 0 (34)

which, as already mentioned, is a simplified deterioration model employed in many projects in theexisting literature [46].
A typical arbitrary (in terms of shape and scale parameters) example of such a deterioration processis plotted in Figure 5.
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Figure 5: Non stationary Gamma process describing the damage evolution over 70 years

2.7 Research gap

Throughout the literature review, a plethora of obstacles and features that needed improvementwas noted, enriching the existing research gap and shaping the final research question and problemformulation.
As a general observation, the majority of the examined papers, considers only discrete deteriorationstates, owing to the computational complexity that is induced in continuous or large state-spaces.This necessity for an efficient maintenance framework for large/continuous state spaces is high-lighted in [17], [21].
What is more, a common assumption in many papers is full observability of the environment, andconsequently not accounting for measurement errors. This issue is being mentioned as a futureimprovement in [17], [31] and [36]. Additionally, while the framework proposed in [33] considersa POMDP, its efficiency is low when observability is low, emphasizing the need of an efficientintegration of Bayesian Inference.
One of the few cases when a large and continuous state space was considered, along with DQN, isin [36]. However, the authors stressed out the need of including partial observability, in the senseof noisy observations, as well as model updating.
Lastly, in many papers in which POMDPs were considered for stochastic optimal control, it waspointed out that a more efficient algorithm needs to be used. To be more precise, in [23] it is
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mentioned that instead of point-based algorithms, a more advanced learning technique should beused, making DRL the suitable choice. In [24], where Bayesian Networks and point-based solversare used, it is also stated that a DRL approach to solve Bayesian Updating is necessary. Lastly, in[45], Hierarchical Coordinated Reinforcement Learning (HCRL) is proposed for the maintenanceof large-scale multi-component systems, however, it also refers to the development of a DRLalgorithm for maintenance as a future improvement.
2.8 Conclusions

Concluding this chapter, along with the introduction of various scientific fields, a thoroughinvestigation of the existing literature was presented. Through the findings and comments of otherresearchers, the advantages and disadvantages of different algorithms were better understood,while at the same time assisted to the choice of the necessary tools for the current project, whichwill be presented in detail in the coming chapter (Chapter 3) as parts of the general methodology. Asignificant finding of the literature review constitutes the definition of the existing gap, which was alsoelaborated extensively, as it further compliments the objective of this thesis and its contribution.
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3 Methodology

3.1 General Framework

Conducting the literature review, it can be observed that, although Artificial Intelligence (AI), andin particular DRL, has a huge potential regarding the life-cycle optimization and maintenance ofengineering systems, there are still considerable limitations. These limitations gave rise to the scopeof the current project, and subsequently justify its future contribution.
To be more precise, the goal of the considered framework is to couple Bayesian Inference withDRL algorithms, aiming to find the optimal sequence of maintenance actions for a stochasticallydeteriorating engineering system. The thought process, thus the motivation, behind the choice ofthese two core concepts is illustrated in Figure 6.

Figure 6: Problem conceptual breakdown - Motivation for the selected tools

In order to explain better this workflow, each logical step is numbered and further elaborated:
(1) A key concept interfering with any engineering system’s maintenance, is its deterioration. Asalready stated, the way in which a system ages is not straightforward, since many uncertaintiesare involved in the physical degradation processes. Therefore, an important sub-problemconstitutes the deterioration process modelling.
(2) An efficient way to tackle the underlying stochasticity in the deterioration processes is toincorporate the ever-increasing available observed/measured data, in order to update theknowledge about the system’s parameters; a key element in the BMU concept.
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(3) As explained in Section 2.5, applying Bayes Theorem (Equation 31), can be cumbersome, dueto the inability to calculate the normalizing constant in the denominator, i.e. the so-calledevidence P(D). This is the case especially in the inference of continuous variables, whichjustifies the choice of a sampling algorithm to tackle this obstacle.
(4) Returning to the general problem, the maintenance of an engineering system constitutes asequential decision problem, since the sought strategy is defined by the optimal sequence ofmaintenance actions.
(5) More often than not, POMDPs are utilized since they provide a principled mathematicalmethodology for stochastic optimal control under uncertain action outcomes and observa-tions [24].
(6) As elaborated in Chapter 2, the most efficient way to solve a POMDP, is DRL, since it canhandle multi-dimensionality, and even continuous state and action spaces, leading eventuallyto the wanted optimal strategy.
(7) It should be mentioned that both BMU and POMDPs rely on the same principles, employingBayesian rules to update the system’s parameters using observations in the former case, andupdate the state probability distribution, i.e. the so-called belief, in the latter one.

The interaction between the different elements of the POMDP for the current framework, i.e. beliefs,actions, rewards and observations, during each decision step, is depicted in Figure 7.

Figure 7: Graphical Model of the employed POMDP

Elaborating in each of the components displayed in Figure 7:
• bt is the unknown deterioration state. To be in accordance with the theory presented inSection 2.2, it represents the belief, meaning a probability distribution about the deteriorationof the system. On the contrary to the biggest part of the existing literature, where the
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deterioration space is discretized, in this project a continuous state-space is considered,hence, the belief is a continuous probability distribution.• Ot is the observation that is obtained through a SHM system periodically, i.e. in every decisionstep. This observation (possibly the acceleration at the location of the sensors) is fed into anOMA scheme, in order to derive modal data, e.g. eigenfrequencies, eigenmodes, etc. It shouldbe mentioned, that the OMA step of this procedure will not be considered for the currentproject, since more emphasis is going to be given on the DRL and BMU parts. Therefore, theneeded modal data will be generated directly, taking into account that they are contaminatedwith noise.• At is the maintenance action that is taken at the decision step, t . The action space is assumedto be discrete.• Rt is the reward received for taking the action At when in state St . As displayed in Sections2.1 and 2.2, the expected return of the sum of these rewards, including also a discountingfactor γ for future rewards, is the quantity that needs to be maximized (Equation 1). In thecurrent project, the rewards correspond to the costs, thus, the goal is the minimization of therewards. At any given state, the reward/cost can be decomposed into two sub-costs, i.e. thecost of the taken action and the cost associated with the risk of failure.
Rt =Ct =C At +Crisk (35)

The risk of failure cost is calculated as the product of the probability of failure times the failurecost, i.e. Crisk = P f ·CF . An important matter constitutes the calculation of this probability forevery deterioration state.• bt |Ot is the updated deterioration state, having included the information of the observation
Ot . This means that at every decision step, a Bayesian Inference is performed in order toimprove the knowledge, i.e. the probability distribution, about the deterioration parametersof interest. The updating is executed using the NUTS method, which will be briefly introducedin the coming section (Section 3.2).

24



3 METHODOLOGY

The proposed general framework is illustrated in more detail in Figure 8.

Figure 8: Proposed Framework

3.2 Sampling Algorithm

For the sake of completeness and transparency regarding the proposed framework, a brief walk-through the sampling procedure used, is presented in this section. To be more precise, the chosensampling method is NUTS, which will be applied through the probabilistic programming Pythonpackage of PyMC3 [52].
As already mentioned, in bayesian inference problems the posterior distribution is usually intractable.The commonly used MCMC methods, approach the target distribution by drawing a series ofcorrelated samples. However, in complicated problems with many parameters, widely applicablemethods such as random-walk Metropolis and Gibbs sampling, could be computationally expen-sive to achieve convergence, because of the random walks with which they explore the parameterspace. This is why, in applications with continuous model parameters HMC has been proven moreefficient, shifting from a problem of sampling to a problem of simulating Hamiltonian dynamics, aselaborated in [53].
Nevertheless, in order to apply HMC there are two tuning parameters that the user needs to cali-brate, i.e. the step size ϵ and the number of steps L for which the simulated Hamiltonian system isran. Determining these parameters is usually a cumbersome and time-efficient task, that requires
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also some experience, which is the reason why HMC is not widely used. Nonetheless, it providesthe foundation for NUTS, which is a self-tuning algorithm that eliminates the need to choose theproblematic number-of-steps parameter L. At the same time, the version of NUTS which will beused through PyMC3, includes a dual averaging scheme, introduced in [54], which automaticallytunes the step size parameter ϵ, too.
As it exceeds the scope of the current research, more information about the exact mathematicalformulation of both HMC and NUTS, as well as the step by step algorithms, are presented in [49].However, the main algorithms are presented briefly along with the core principles, as elaborated onthe aforementioned paper.
In HMC an auxialiary momentum variable rd is introduced for the model variables θd , which areusually drawn independently from the standard normal distribution, leading to their joint densitybeing:

P(θ,r ) ∝ exp
{
L(θ)−0.5r · r

} (36)
where L is the logarithm of the joint density of the values of interest θ, while r · r denotes the innerproduct between the momentum vectors.
A fictitious Hamiltonian system can be used instead of this augmented model, where each parametergains a physical meaning. In particular, θ corresponds to the particle’s position in the D-dimensionalspace, r denotes its momentum, L is the negative potential energy function for the given position,
0.5r · r is the particle’s kinetic energy and lastly logP(θ,r ) is the negative energy of the particle. Theevolution over time of this Hamiltonian system, is often simulated through the Störmer-Verlet(“leapfrog”) integrator, which is presented in Algorithm 1.
Algorithm 1: Störmer-Verlet (“leapfrog”) integrator
1 Leapfrog (θ,r,ϵ):
2 Set r̃ ← r + (ϵ/2)∇θL(θ)

3 Set θ̃← θ+ϵ r̃

4 Set r̃ ← r̃ + (ϵ/2)∇θL(θ̃)

5 return θ̃, r̃

Even though θ and r are vectors, they are not underlined (which would be consistent with the thesis’ notation) in orderto be in accordance with the original paper [49]
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Having introduced the basic principles, the complete HMC algorithm is presented in Algorithm 2.
Algorithm 2: Hamiltonian Monte Carlo (HMC)
1 Given θ0, ϵ, L, L, M for m = 1 to M do
2 Sample r 0 ∼N (0, I ) // I denotes the identity matrix

3 Set θm ← θm−1, θ̃← θm−1, r̃ ← r 0

4 for i = 1 to L do
5 Set θ̃, r̃ ← Leapfrog(θ̃, r̃ ,ϵ)

6 With probability α= min
{

1,
exp

(
L(θ̃)−0.5 r̃ · r̃

)
exp

(
L(θm−1)−0.5r 0 · r 0

)}, set θm ← θ̃, r m ←−r̃

where L is the number of steps, i.e. Leapfrog updates, and M is the amount of drawn samples.
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As mentioned already, a crucial improvement on HMC is the self-tuning of the hyperparameters, ϵand L, which is being done by the NUTS algorithm. To determine when the amount of leapfrogsteps is sufficient, a recursive function is used, namely Buildtree, which is presented in Algorithm 3.
Algorithm 3: BuildTree7recursive function
1 BuildTree (θ, r, u, v, j , ϵ, θ0, r 0):
2 if j = 0 then
3 Base case - take one leapfrog step in the direction v

4 θ′, r ′ ← Leapfrog(θ, r, v ϵ)

5 n′ ← I
[

u ≤ exp
{
L(θ′)−0.5r ′ · r ′}]

6 s′ ← I
[

u < exp
{
∆max +L(θ′)−0.5r ′ · r ′}]

7 return θ′, r ′, θ′, r ′, θ′, n′, s′, min
{

1,exp
{
L(θ′)−0.5r ′ · r ′−L(θ0)+0.5r 0 · r 0

}}
, 1

8 else
9 Recursion - implicitly build the left and right subtrees
10 θ−, r−, θ+, r+, θ′, n′, s′, α′, n′

α←BuildTree(θ, r, u, v, j −1, ϵ, θ0, r 0)

11 if s′ = 1 then
12 if v =−1 then
13 θ−, r−, −, −, θ′′, n′′, s′′, α′′, n′′

α←BuildTree(θ−, r−, u, v, j −1, ϵ, θ0, r 0)

14 else
15 −, −, θ+, r+, θ′′, n′′, s′′, α′′, n′′

α←BuildTree(θ+, r+, u, v, j −1, ϵ, θ0, r 0)

16 With probability n′′

n′+n′′, set θ′ ← θ′′

17 Set α′ ←α′+α′′, n′
α← n′

α+n′′
α

18 s′ ← s′′ I
[

(θ+−θ−) · r− ≥ 0
]
I
[

(θ+−θ−) · r+ ≥ 0
]

19 n′ ← n′+n′′

20 return θ−, r−, θ+, r+, θ′, n′, s′, α′, n′
α

where I[·] is a boolean operator, returning 1 if the expression inside brackets is true, and 0 if false.

7More information on the BuildTree function, its input, output and intermediate steps, can be found in [49].
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As far as the choice of ϵ is concerned, the function used and the step by step procedure is presentedin Algorithm 4.
Algorithm 4: Heuristic for choosing an initial value of ϵ
1 FindReasonableEpsilon (θ):
2 Initialize ϵ= 1, r ∼N (0, I ) // I denotes the identity matrix

3 Set θ′,r ′ ← Leapfrog (θ,r,ϵ)
4 a ← 2I

[P(θ′,r ′)
P(θ,r )

> 0.5
]
−1

5 while
(P(θ′,r ′)

P(θ,r )

)a > 2−a do

6 ϵ← 2a ϵ

7 Set θ′,r ′ ← Leapfrog(θ,r,ϵ)

8 return ϵ
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Moving towards the final algorithm which is followed by the PyMC3 package, Algorithm 6 of [49],namely No-U-Turn Sampler (NUTS) with Dual Averaging, is presented in Algorithm 5 of the currentproject.
Algorithm 5: No-U-Turn Sampler (NUTS) with Dual Averaging
1 Given θ0,δ,L, M , M adapt
2 Set ϵ0 = FindReasonableEpsilon(θ), µ= log(10ϵ0), ϵ̄0 = 1, H̄0 = 0, γ= 0.05, t0 = 10, κ= 0.75

3 for m = 1 to M do
4 Sample r 0 ∼N (0, I )

5 Resample u ∼ Uniform
([

0,exp
{
L(θm−1 −0.5r 0 · r 0)

}])
6 Inititalize θ− = θm−1, θ+ = θm−1, r− = r 0, r+ = r 0, j = 0, θm = θm−1, n = 1, s = 1

7 while s=1 do
8 Choose a direction v j ∼ Uniform({−1,1})

9 if v j =−1 then
10 θ−, r−, −, −, θ′, n′, s′, α, nα←BuildTree(θ−, r−, u, v j , j , ϵm−1, θm−1, r 0)

11 else
12 −, −, θ+, r+, θ′, n′, s′, α, nα←BuildTree(θ+, r+, u, v j , j , ϵm−1, θm−1, r 0)

13 if s′ = 1 then

14 With probability min
{
1,

n′

n

}, set θm ← θ′

15 n ← n +n′

16 s ← s′ I
[
(θ+−θ−) · r− ≥ 0

]
I
[
(θ+−θ−) · r+ ≥ 0

]
17 j ← j +1

18 if m ≤ M adapt then

19 Set H̄m =
(
1−

1

m + t0

)
H̄m−1 +

1

m + t0

(
δ−

α

nα

)
20 Set logϵm =µ−

p
m

γ
H̄m , log ϵ̄m = m−κ logϵm + (1−m−κ) log ϵ̄m−1

21 else
22 Set ϵm = ϵ̄M adapt

where δ is the desired average acceptance probability of the samples and M adapt is the number ofiterations after which the adaption is stopped.
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3.3 Deep Reinforcement Learning (DRL) algorithms

It has already been mentioned that in DRL the value functions Q,V as well as the policy π areapproximated by a DNN, in order not only to capture efficiently their non-linear behaviour, butalso, achieve a reparameterization, and express them in terms of the network’s weights, so as todecrease the computational cost and instabilities.
An illustration of such networks is displayed in Figure 9. The input to the DNN is the state (or belief8),
st , while the output layer includes the action-state value function for every possible action, at ∈A,in the case of DQN and DDQN. In a similar fashion for actor-critic algorithms like A2C and PPO, theactor and the critic neural networks are illustrated in Figures 9b, 9c. The former takes as input thestate and yields as an output the probability to take each action given the state, π(at | st ), and thelater using the same input, i.e. the state, returns the corresponding value state function, V (st ).

(a) DQN/DDQN approximating the Q-function

(b) Actor neural network (c) Critic neural Network

Figure 9: Actor-critic DNN architectures 9

8The used st notation represents the belief vector b along with any other input quantities (e.g. age) that togethercompose the state, and are passed as input to the neural networks.9The amount of inner layers and neurons depicted is for the sake of a more clear and explanatory representation
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The DRL algorithms that will be considered in the current project are:• Double Deep Q-Network (DDQN)• Advantage Actor Critic (A2C)• Proximal Policy Optimization (PPO)The step-by-step procedure for all three of them, as found in literature, is described in the followingsubsections and more specifically in Algorithms 6, 7, 8, respectively.

3.3.1 Double Deep Q-Network (DDQN)

Algorithm 6: Double Deep Q-Network (DDQN)
1 Initialize primary network weights θ
2 Initialize target network weights θ−
3 Initialize replay buffer
4 Set target update time Tupdate
5 for epi sode ← 1 to M do
6 for t ← 1 to T do
7 Select action at according to ϵ-greedy method
8 Collect reward R(st , at ), observe next state st+1

9 Store tuple (st , at ,R(st , at ), st+1) in replay buffer
10 Sample batch of tuples (si , ai ,R(si , ai ), si+1) from replay buffer
11 if si+1 is terminal state then
12 yi = R(si , ai )

13 else
14 yt = R(st , at )+γQ

(
st+1,argmaxQ (st+1, at+1 | θ) | θ−)

15 Update parameters θ according to: ∇θL (θ) ≃∑[(
Q (si , ai | θ)− yi

)∇θQ (si , ai | θ)
]

16 if Tupdate then
17 θ− = θ
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3.3.2 Advantage Actor Critic (A2C)

Algorithm 7: Advantage Actor Critic (A2C)
1 Initialize policy parameters θ
2 Initialize value function parameters θv

3 for E pi sode = 0,1,2 . . . do
4 for t ← 1 to T do
5 Perform at according to policy π(at | st ,θ)

6 Collect reward R(st , at ), observe next state st+1

7 if terminal st then
8 R = 0

9 else
10 R =V (st | θv )// Bootstrap from last state

11 Update θ according to:
∇θ J (θ) = Est ,at

[∑
t≥0

∇θ logπ(at | st ,θ)
(
R(st , at )+γV (st+1 | θv )−V (st | θv )

)]

12 Update θv according to:
∇θv J (θv ) = Est ,at

[∇θv V (st | θv )
(
R(st , at )+γV (st+1 | θv )−V (st | θv )

)]
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3.3.3 Proximal Policy Optimization (PPO)

Algorithm 8: Proximal Policy Optimization (PPO) [1]
1 Initialize policy parameters θ0

2 Initialize value function parameters φ0

3 for k = 0,1,2 . . . do
4 Collect set of trajectories Dk = {τi } by running policy πk =π(θk ) in the environment
5 Compute rewards-to-go Rt

6 Compute advantage estimates, At (using any method of advantage estimation) basedon the current value function Vφk

7 Update the policy by maximizing the PPO-Clip objective:
θk+1 = argmax

θ

1

|Dk |T
∑
τ∈Dk

T∑
t=0

min

(
πθ (at | st )

πθk (at | st )
Aπθk (st , at ) , g

(
ϵ, Aπθk (st , at )

))

typically via stochastic gradient ascent with Adam
8 Fit the value function by regression on mean-squared error:

φk+1 = argmin
φ

1

|Dk |T
∑
τ∈Dk

T∑
t=0

(
Vφ (st )−Rt

)2

typically via some gradient descent algorithm
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3.4 Conclusions

Having elaborated on the selected algorithms of this project, an updated version of the conceptualbreakdown flowchart (Figure 6) is illustrated in Figure 10.

Figure 10: Problem conceptual breakdown - Motivation for the selected tools and algorithms

This flowchart acts both as a summary of the current chapter as well as the motivation and reasoningbehind the choice of the specific algorithms. It moves from the general problem to be tackled,namely “Engineering System Maintenance”, to the most efficient tools existent for every sub-task,i.e. NUTS, DDQN, A2C and PPO.
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4 Verification, Validation and Benchmarking

4.1 Toy Problem

4.1.1 Problem Description

Now that the general framework of this project has been explained, a simple case, i.e. a "toy"problem, is chosen in order to further elaborate on the proposed algorithm in a more streamlinedmanner, but also to make a first assessment of its efficiency, drawbacks, and future issues that needto be adjusted. Therefore, a SDOF oscilator is selected, with its stiffness being the deteriorationparameter. The mass of the oscilator, m, is assumed to be deterministic and constant, while theinitial stiffness is denoted as K0. The described system is illustrated in Figure 11.

Figure 11: SDOF oscillator

The deterioration model employed is:
D(τ) = AτB (37)

where A, B , are random variables, responsible for the uncertainty in this model. In particular, Acorresponds to the deterioration rate, while B is related to the non-linearity effect in terms of apower law in time. This is a standard model, described by the rate equation above, often employedfor an engineering system’s deterioration, e.g. [46].
A clear distinction should be made between the decision step t , which is the running time variableof the system’s lifespan, and the deterioration rate τ which describes the exposure time, or the age,of the system, and subsequently the degree to which the corrosive environment affects it. In ascenario where no maintenance action is performed during the time window of interest, t and τcoincide. However, as will be displayed in this section, the agent’s actions can possibly reduce oreven reset the deterioration rate τ while the decision step t will keep increasing with unit step.
The stiffness at any given state is calculated as follows:

K (τ) =
K0

1+D(τ)
=

K0

1+ AτB
(38)

It is assumed that there is a monitoring system, whose noisy measurements are passed through anOMA scheme, which subsequently outputs modal data, in this case, the eigenfrequency, ω. Theeigenfrequency, as known from basic structural dynamics theory, is calculated, hence related to thesystem’s damage, through Equation 39.
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ω̂(τ) =
√

K (τ)

m
=

√√√√ K0

m (1+D(τ))
=

√√√√ K0

m
(
1+ AτB

) (39)
Since A and B are stochastic, ω̂(τ) represents the aforementioned noisy measurement. Afterpassing it through the the OMA procedure, the yielded observation which is given to the agent canbe expressed as:

ω(τ) = ω̂(τ)+εoma (40)
where εoma corresponds to the additional noise that is explicitly added during the OMA scheme.
For the case at hand, it is assumed that the additional noise εoma follows a Gaussian distributionwith a zero mean and a standard deviation that is proportional to the noisy measurement.

εoma ∼N (0, ϵc · ω̂(τ)) (41)
where ϵc is a coefficient describing the degree to which the OMA scheme contaminates the measure-ment with noise.
Therefore, the observation during each decision step is generated based on the following Gaussiandistribution:

ω(τ) ∼N (ω̂(τ), ϵc · ω̂(τ)) (42)
The choice for the possible actions that the agent can take is a significant modeling decision. Apartfrom the "do nothing" and the "total replacement" actions, there is the need of a "partial repair"one, too. The way in which the rest of the parameters will be affected due to such a repair canvary depending on the materials of the structure, the type of repair, etc. Regarding the chosendeterioration model, i.e. D(τ) = AτB , there are three cases of partial repair that can be distinguished.

• Reduce only the caused damage D(τ), but the deterioration rate, τ, at which the environmentaffects the structure, stays the same. This would mean that the slope of the D(τ)−τ curvewill stay the same, and a vertical shift of the right-half curve will be observed, as displayedin Figure 12. This could be the case when restoring the damaged surrounding concrete of aReinforced Concrete (RC) component, but no action is taken for the corrosion of the rebar,which will continue to develop.• Reduce the deterioration rate, meaning that the environment will continue to affect thestructure with a reduced intensity, but the existent damage that is already caused is notaffected. Geometrically, there will be a horizontal shift to the left in order for the damage tocontinue developing in a less steep slope (Figure 13). For example, applying an epoxy paintingon a steel member without repairing the existent damage, will slow down the effect of thecorroding environment, but the damaged cross-section will remain as is.
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• A combination of the two cases above, which means that both the damage D(τ) and thedeterioration rate, τ, are reduced. This action equals a move back along the D(τ)−τ curveas illustrated in Figure 14. For example, removing/restoring the corroded parts of a steelcross-section and applying a protective paint to protect it against the corroding environment.

Figure 12: Repair by reducing the damage D(τ)

Figure 13: Repair by reducing the deterioration rate τ
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Figure 14: Repair by reducing both the damage and the deterioration rate

Having described the various approaches for modelling a repair action, the one depicted in Figure13 is chosen for the current application. Thus, the three possible actions are listed in Table 1.
Table 1: Action-space for toy problem

Index Action

0 do nothing
1 partial repair*
2 total replace

* Decrease the deteriora-tion rate τ, i.e. rewind bytwo steps
Regarding the rewards, i.e. the costs of maintenance, a fixed amount is considered for the system’stotal replace (action 2), and every other cost is expressed as relatively to this value. The correlationbetween the costs is included in Table 2.
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Table 2: Rewards (costs) for the toy problem

Description Cost Value Factor

Total replacement CR C0 units 1

Partial repair CM 0.5CR 0.5

Failure CF 2CR 2

Risk of failure Crisk P f CF 2P f

It can be observed that failure, which will cause a complete replacement of the component (system),has a higher cost than the actual replacement as an action. This is the case because of the suddenaspect of a structure failing, and the unpredicted consequences that this event might provokefinancially.
The input data used for this application, such as deterministic quantities, starting values, etc, aregathered and displayed in Table 3.

Table 3: Toy problem input data

Quantity Value Units

Mass, m 10 [kg]
Initial stiffness, K0 200 [N/m]
Replace cost, CR 10000 [-]
Noise coefficient, ϵc 10% [-]

4.1.2 Discrete case

Considering the stochastic parameters A,B , as well as the damage D(τ) to be continuous vari-ables, increases significantly the computational cost. This is why, in order to scale up graduallythe complexity in verifying the validity of the proposed methodology, a discrete version of thedescribed toy problem is being tackled first.
In particular, the following discrete values are accounted for:

A =
[

6e−4 8e−4 10e−4 12e−4 14e−4
]

B =
[

1.4 1.6 1.8 2.0 2.2
]

D =
[

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
]
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It should be noted that just for demonstration purposes in the coming figures, smaller discretespaces will be used, particularly:

A =
[

A1 A2

]
B =

[
B1 B2

]
D =

[
D1 D2 D3

]
In each iteration the agent does not know the exact value of the damage, so it forms a belief b,i.e. a vector which contains the probabilities of all possible damage states10. For the smaller scalerepresentative discrete case, this vector has the form displayed in Figure 15.

Figure 15: Belief vector, b for discrete case

The observation ω(τ) in each decision step is generated as described already in Equation 42.
The main advantage of this simplification, compared to the continuous case, is the calculation of thebelief vector in a closed-form. This is achieved using the so-called transition matrix P, as well as theobservation matrix O. The former corresponds to the probability of shifting to a new state given theprevious state and the chosen action, while the latter reflects the probability of an eigenfrequency
ω to be observed given the current state. In math notation, they are defined as follows:

P=P(st+1 | st , at ) (43)
O=P(ot | st ) (44)

where st+1 is the next state, st is the current state, at is the chosen action and ot is the observationω.
The dependency of the transition probability to the chosen action is dropped, since at is accountedfor by modifying the deterioration rate. Additionally, in order to describe all possible transitions, adifferent transition matrix is considered for each deterioration rate τ, i.e. Pτ =P(st+1 | st ).

10The sum of all elements in the belief vector should sum up to 1, i.e. ∑
bi = 1.
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A typical example of a transition matrix for a random deterioration rate is depicted in Figure 16.

Figure 16: Transition matrix, Pτ for discrete case11

To elaborate a bit further on the meaning of the entries in the transition matrix, the second row andsecond column are examined, as displayed in Figure 17.
11The values included in both Figures 15, 16 are arbitrary, for illustration purposes.
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Figure 17: Transition matrix, Pτ for discrete case explanation

In the examined part, knowing that the parameters A,B have the values A1 and B2 respectively,the damage state will be D2. This means that the agent can either shift from state D1 to D2, orremain to state D2, or in the case the prior damage has already reached D3, it can not go back ina less damaged state, so it will remain at D3. It is observed that only the 3 by 3 sub-matrix thatcorresponds to the same A,B values both in the row and the column indexing is populated withnon-zero values, which is reasonable since the two parameters can not simultaneously be equal todifferent values. Lastly, an important property of the transition matrix is that each row needs tosum up to 1 (as noted also for the belief vector).
Having defined the necessary quantities, the belief vector can be found using Bayes Theorem,applied in POMDPs, avoiding time consuming sampling procedures like MCMC or NUTS. For asingle entry of b(st+1) it holds:

b(st+1) =
p(ot+1 | st+1)

p(ot+1 | b)

∑
st∈S

p(st+1 | st )b(st ) (45)
where the denominator is a normalizing constant, i.e. the so-called evidence in Bayes Theorem,which is equal to:

p(ot+1 | b) = ∑
st+1∈S

p(ot+1 | st+1)
∑

st∈S
p(st+1 | st )b(st ) (46)
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Equations 45, 46 can be generalized and rewritten in matrix notation:
b′ =

O(ot+1)⊙ [
PT ·b

][
OT (ot+1) · [PT ·b

]] (47)

As far as the DRL aspect is concerned, apart from the belief vector, b, the exposure time of thecomponent, in other words the deterioration rate τ, needs to be fed into the DNN, since the currentcase constitutes a time dependent problem. A time parameter is a necessary input for the DNN inorder to define accurately the rate with which the system deteriorates at every given state, afterany maintenance action.
To be more precise, for DDQN, the belief vector b and the deterioration rate τ are passed as inputto the DNN, and after a forward pass the network yields the action-state value function for eachaction, Q(st , ai ) for i = 1,2,3, which is interpreted as the reward of taking a specific action ai given astate st . These three value functions constitute the knowledge based on which the agent will act, i.e.if the agent chooses to exploit what it already knows, the action with the highest Q-value (as derivedfrom the DNN) will be chosen. A schematic representation of the described DNN architecture isdisplayed in Figure 18.

Figure 18: DDQN DNN architecture for the discrete toy problem

When it comes to A2C and PPO, which are actor-critic algorithms, the same input, b and τ, arepassed to two different networks, namely the Actor and the Critic network. A forward pass of theformer will yield directly the policy πθ(ai | st ), i.e. the probability of choosing each action ai whenbeing at state st , while the latter one returns the state value function Vφ(st ), which corresponds tothe reward of being at the state st regardless from the chosen action. The aforementioned networksare depicted in Figure 19.
The symbol ⊙ in Equation 47 denotes the Hadamar product, i.e. an elementwise matrix multiplication.
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Figure 19: Actor-critic DNN architecture for the discrete toy problem

It should be noted that although three algorithms were initially chosen to be tested, namely DDQN,A2C and PPO, only two of them actually performed adequately. In particular, A2C failed to yieldoptimal solutions both for the discrete and the continuous variations of the toy problem. Therefore,the necessary steps of the proposed framework regarding the remaining two algorithms are listedin Algorithms 9 and 10 for DDQN and PPO respectively.
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To produce more compact and readable algorithms, several counting parameters are defined, whichare explained in Tables 4, 5, for DDQN and PPO respectively.
Table 4: Counters used for DDQN

Parameter Name Description

T steps per episode
The amount of decision steps

considered for the maintenance
of the SDOF system

Tupdate target network update
Every how many steps the parameters

of the current neural network are
passed to the target one

M number of episodes
The number of episodes employed

to train the DDQN agent. Each
episode consists of T decision steps

Table 5: Counters used for PPO

Parameter Name Description

T steps per episode
The amount of decision steps

considered for the maintenance
of the SDOF system

N steps per epoch
The amount of decision steps
employed for a single batch

training of the PPO agent

M number of epochs
The number of epochs used to

train the PPO agent in total. Each
epoch consists of N decision steps

46



4 VERIFICATION, VALIDATION AND BENCHMARKING

Algorithm 9: Double Deep Q-Network (DDQN) - Discrete Toy Problem
1 Initialize primary network weights θ
2 Initialize target network weights θ−
3 Initialize replay buffer
4 for epi sode ← 1 to M do
5 st ← reset environment // τ← 0, initialize belief vector b to zero damage

6 for t ← 1 to T do
7 τ← τ+1

8 Calculate the next belief vector according to
9 b′ =

O(ot+1)⊙ [
PT ·b

][
OT (ot+1) · [PT ·b

]] // the transition matrix P depends on τ

10 Choose Action according to ϵ-greedy method:
11 Generate random number r and ∈ [0,1]

12 if r and < ϵ then
13 Sample a random action, at ∈A // Explore

14 else
15 at = argmax

at∈A
Q(st , at ) // Exploit

16 if at is “replace” then
17 τ← 0

18 else if at is “repair” then
19 τ←max(τ−2,0)

20 Calculate P f for the belief vector b′

21 R(st , at ) ←Cat +P f CF
22 Store tuple (st , at ,R(st , at ), st+1) in replay buffer // st = 〈b,τ〉, st+1 = 〈b′,τ〉
23 st ← st+1

24 Sample batch of tuples (si , ai ,R(si , ai ), si+1) from replay buffer
25 if si+1 is terminal state then
26 yi = R(si , ai )

27 else
28 yt = R(st , at )+γQ

(
st+1,argmaxQ (st+1, at+1 | θ) | θ−)

29 Update parameters θ according to: ∇θL (θ) ≃∑[(
Q (si , ai | θ)− yi

)∇θQ (si , ai | θ)
]

30 if Tupdate then
31 θ− = θ
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Algorithm 10: Proximal Policy Optimization (PPO) - Discrete Toy Problem
1 Initialize policy (actor) network weights θ
2 Initialize value function (critic) network weights φ
3 for epi sode ← 1 to M do
4 st ← reset environment // t ← 0, τ← 0, initialize belief vector b to zero damage

5 for n ← 1 to N do
6 t ← t +1, τ← τ+1

7 Calculate the next belief vector according to
8 b′ =

O(ot+1)⊙ [
PT ·b

][
OT (ot+1) · [PT ·b

]] // the transition matrix P depends on τ

9 πθ(at | st ) ← Actor Net (st ) // forward pass of the actor network

10 Vφ(st ) ← Critic Net (st ) // forward pass of the critic network

11 at ← sample πθ(at | st )

12 if at is “replace” then
13 τ← 0

14 else if at is “repair” then
15 τ←max(τ−2,0)

16 Calculate P f for the belief vector b′

17 R(st , at ) ←Cat +P f CF
18 Store tuple (

st , at ,πθ(at | st ),Vφ(st ),R(st , at )
) in Dk // st = 〈b,τ〉

19 st ← st+1 // st+1 = 〈b′,τ〉
20 if t = T or n = N then
21 if t = T then
22 Vφ(st+1) ← 0

23 st ← reset environment // t ← 0, τ← 0, initialize belief vector b to zero damage

24 else
25 Vφ(st+1) ←Critic Net(st )

26 Returns δt ← R(st , at )+γVφ(st+1)−Vφ(st )

27 Advantages At ← δt + (γλ)δt+1 + . . .+ (γλ)T−t+1δT−1

28 Store δt , At in Dk

29 Train Agent (Dk )
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The function “Train Agent” is further elaborated in Algorithm 11.

Algorithm 11: Proximal Policy Optimization (PPO) agent training - Toy problem
1 Train Agent (Dk ):
2 Update parameters φ, using the Critic cost function:

LVF(φ) =
T∑

t=1

(
Vφ(st )−δt

)2

3 Update parameters θ, using the Actor loss function:
LCLIP(θ) =

T∑
t=1

min

(
πθ (at | st )

πθold (at | st )
At (st , at ) , clip

(
πθ (at | st )

πθold (at | st )
,1−ε,1+ε

)
At

)

via minibatch stochastic gradient ascent with Adam

4.1.3 Continuous case

Following the discrete case, the stochastic parameters A and B are now considered to be continuousvariables. The assumed prior distributions are displayed in Table 6.
Table 6: Parameters of the stochastic deterioration model

Parameter Distribution Mean Coefficient of Variation (CV)

A Lognormal 8.0E −03 0.5

B Normal 1.5 0.3
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Since the continuous case of the toy problem does not impose any simplification as far as the proposed framework is concerned, thealready presented flowchart (Figure 8) is now being updated and elaborated further, and is depicted in Figure 20.

Figure 20: Framework flowchart for the toy problem
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As displayed above, the parameters of interest that will be updated in every iteration are thedistributions of A,B , hence, P(A),P(B), which are used as priors for the Bayesian inference. Thesedistributions are used both to define the damage distribution D(τ) = AτB , and to create the noisymeasurement based on sampled a,b values. The measurement will be further contaminated withnoise, as seen at the top part of the flowchart, while the damage distribution is used to computethe model output:

ω=

√√√√ K0

m
(
1+D(τ)

)
Then, the observation, the model output and the prior distribution are passed to the NUTS algorithmto yield the posterior distributions of A,B and subsequently D(τ). These posterior distributions,P(A |O),P(B |O) are transformed into priors using a Kernel Density Estimation (KDE) scheme. Theupdated damage distribution P(D(τ) | O) is used to calculate the risk of failure cost Crisk which isadded to the stored total reward of the iteration, but it is also passed to the agent in order to choosean action based on it. If the agent chooses to perform a maintenance action, this would result toa modification of the deterioration rate while yielding also an additional action cost Ca which isadded as well to the stored total reward. Before proceeding to the next iteration, the deteriorationrate will be incremented by 1. This loop is being ran for 20 decision steps, and the quantity thatneeds to be optimized, i.e. minimized, is the total reward, thus the total maintenance cost.
A detailed description of the parameter updating procedure is presented in Algorithm 12.
Algorithm 12: Deterioration model parameters updating - Toy Problem
1 DeteriorationParametersUpdating ( P(A),P(B),mass,K0,noi se,T ):
2 D(0) ← 0

3 τ← 0

4 for t ← 1 to T do
5 τ← τ+1

6 ω0 ←
√

K0

mass (1+D(τ))
// mean ω

7 Generate ωobs ←N (ω0,noi se)

8 NUTS ( P(A),P(B),ωobs ):
Output: P(A |ωobs),P(B |ωobs),P(D(τ))

9 Choose action, at // as explained in the DRL algorithm

10 Adjust D(τ) distribution based on at

11 Sample A,B from P(A |ωobs),P(B |ωobs)

12 D(τ) ← AτB // will be used to calculate mean ω

13 P(A),P(B) ←P(A |ωobs),P(B |ωobs) // posteriors become priors through KDE

This algorithm focuses only on the Bayesian inference and the updating of the parameters. This is why the action part iscovered abstractly.
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The first term of the total cost during an iteration is the already mentioned risk of failure cost, whichis being computed as the product of the probability of failure times the cost of failure, P f ·Cfail. Theprobability of failure, P f in the current simplified application is considered equal to the number ofsamples from the damage distribution that are located above the failure threshold, divided by thetotal number of samples (Figure 21).

Figure 21: Failure Probability calculation 12

Moving to the DRL part of the framework, the need to select a discrete number of features that willaccurately describe each deterioration state has emerged, and subsequently will be fed into theDNN. For this purpose, the statistical moments of the D(τ) distribution were chosen, namely, themean, the variance, the skewness and the kurtosis. As mentioned already for the discrete case, theexamined problem is time dependent, meaning that the deterioration rate, τ of the structure needsalso to be given as an input to the DNN. Regarding the neurons in the output layer, they correspondto the action state value functions for the three different actions when using the DDQN algorithm.The aforementioned characteristics of the DNN architecture are demonstrated in Figure 22.
12The curves (values and shape) illustrated in Figure 21 are arbitrary, for explanatory reasons.
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Figure 22: DDQN DNN architecture for the continuous toy problem

Accordingly, for actor-critic algorithms, hence, also actor and critic DNNs, the architecture isdisplayed in Figure 23.
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Figure 23: Actor-critic DNN architecture for the continuous toy problem

It has already been mentioned that only two out of the three tried algorithms managed to producevaluable results, with A2C being the one that under-delivered. Thus, the detailed procedure ofthe proposed framework concerning DDQN and PPO about the continuous variation of the toyproblem, is presented in Algorithms 13 and 14 respectively. As with the discrete version of theproblem, the counters used in the coming algorithms are presented in Tables 4 and 5.
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Algorithm 13: Double Deep Q-Network (DDQN) - Continuous Toy Problem
1 Initialize primary network weights θ
2 Initialize target network weights θ−
3 Initialize replay buffer
4 for epi sode ← 1 to M do
5 st ← reset environment // τ← 0, initialize A, B

6 for t ← 1 to T do
7 τ← τ+1

8 BMU for params A,B // procedure shown in Algorithm 12

9 Choose Action according to ϵ-greedy method:
10 Generate random number r and ∈ [0,1]

11 if r and < ϵ then
12 Sample a random action, at ∈A // Explore

13 else
14 at = argmax

at∈A
Q(st , at ) // Exploit

15 if at is “replace” then
16 τ← 0

17 else if at is “repair” then
18 τ←max(τ−2,0)

19 Calculate P f for the D(τ) distribution
20 R(st , at ) ←Cat +P f CF
21 Observe next state st+1 // the statistical moments of the D(τ) distribution

22 Store tuple (st , at ,R(st , at ), st+1) in replay buffer // st = 〈stat.moments,τ〉
23 Sample batch of tuples (si , ai ,R(si , ai ), si+1) from replay buffer
24 if si+1 is terminal state then
25 yi = R(si , ai )

26 else
27 yt = R(st , at )+γQ

(
st+1,argmaxQ (st+1, at+1 | θ) | θ−)

28 Update parameters θ according to: ∇θL (θ) ≃∑[(
Q (si , ai | θ)− yi

)∇θQ (si , ai | θ)
]

29 if Tupdate then
30 θ− = θ

When resetting the deterioration rate, subsequently D(0) = 0 deterministically, which means that all the statisticalmoments of the damage distribution are zero.
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Algorithm 14: Proximal Policy Optimization (PPO) - Continuous Toy Problem
1 Initialize policy (actor) network weights θ
2 Initialize value function (critic) network weights φ
3 for epi sode ← 1 to M do
4 st ← reset environment // t ← 0, τ← 0, initialize A,B

5 for n ← 1 to N do
6 t ← t +1, τ← τ+1

7 BMU for params A,B // procedure shown in Algorithm 12

8 πθ(at | st ) ← Actor Net (st )
9 Vφ(st ) ← Critic Net (st )
10 at ← sample from πθ(at | st )

11 if at is “replace” then
12 τ← 0

13 else if at is “repair” then
14 τ←max(τ−2,0)

15 Calculate P f for the D(τ) distribution
16 R(st , at ) ←Cat +P f CF
17 Observe next state st+1 // the statistical moments of the D(τ) distribution

18 Store tuple (
st , at ,πθ(at | st ),Vφ(st ),R(st , at )

) in Dk // st = 〈stat.moments,τ〉
19 st ← st+1

20 if t = T or n = N then
21 if t = T then
22 Vφ(st+1) ← 0

23 st ← reset environment // t ← 0, τ← 0, initialize A,B

24 else
25 Vφ(st+1) ←Critic Net(st )

26 Returns δt ← R(st , at )+γVφ(st+1)−Vφ(st )

27 Advantages At ← δt + (γλ)δt+1 + . . .+ (γλ)T−t+1δT−1

28 Store δt , At in Dk

29 Train Agent (Dk )
The “Train Agent” function is the one presented in Algorithm 11
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4.2 Validation

4.2.1 Bayesian Inference

Prior to the coupling of BMU with DRL, each of these aspects has been tested in simple examplesin order to eliminate possible errors in the final code of the integrated framework. Therefore, as faras Bayesian Inference is concerned, the deterioration model of the continuous case (described insection 4.1.3) will be used to perform the updating of parameters A,B (and subsequently D(τ) = AτB )using observations ω.

Figure 24: Posterior distributions of parameters A, B after 5 iterations of Bayesian Inference and NUTS

A typical example of NUTS is depicted in Figure 24, using two Markov chains and 4000 samples.What is more, the updating of the parameters’ distribution through 20 iterations is illustrated inFigure 25, highlighting the effect of including observations in order to define more accurately thestochastic parameters of the deterioration model.
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(a) Posterior distribution of A (b) Posterior distribution of B

Figure 25: Posterior distributions of parameters A, B during 20 iteration of Bayesian Inference and NUTS
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4.2.2 Deep Reinforcement Learning (DRL) algorithms

Before proceeding to more complicated cases, the three DRL algorithms, namely DDQN, A2C andPPO, will be tested and compared on the CartPole-v013environment. The results, i.e. the rewardsthat the agent received over the episodes, during its training, are displayed in Figure 26.

(a) DDQN (b) A2C

(c) PPO

Figure 26: All three algorithms on the CartPole-v0 environment

It should be noted that the Advantage Actor Critic (A2C) algorithm performed sufficiently in theCartPole-v0 environment this is why it is included in Figure 26. Unfortunately, this was not thecase for the toy problem. Its stability is also ambiguous, since out of the three algorithms it was theslower one to reach the optimal CartPole-v0 reward.

13More information on the CartPole-v0 environment can be found here.
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4.3 Benchmarking

Even if the algorithms converge to theoretically optimal values for the examined cases, the supe-riority of the proposed framework will be highlighted upon comparison with a benchmark value.Defining such a value is cumbersome and computationally expensive due to the stochastic natureof the problem (both discrete and continuous).
More often than not, a heuristic threshold based approach is being used, accounting for variouscontrol quantities, such as the maximum acceptable damage, the most beneficial periodicmaintenance time interval or the maximum probability of failure allowed [55], [56], [57], [58]. Forthe current application, both in the discrete and in the continuous case, a fine grid of repair andreplace damage values were tested, in order to determine when would be the most beneficial tointervene in the deterioration of the SDOF oscillator. For each combination of values, a plethora ofepisodes was ran, due to the high stochasticity. In the discrete case the variance was not significant,thus, only the expected value of the cost is included in the results. The obtained thresholds andcosts are displayed in Table 7.

Table 7: Benchmark maintenance thresholds and costs - Toy Problem

Optimal Thresholds

Repair Replace Mean Cost St. Dev. Failure Damage

Discrete None 0.14 21809.37 - 0.5

Continuous 0.05 0.10 80745.31 22658.95 0.2

To further elaborate on the findings presented in Table 7, for the discrete case there was no scenariowhere it was beneficial to perform a repair, thus, only the replace value is relevant. It is worthmentioning that due to the parameter updating in a closed form that is possible in the discrete case,more decision steps were accounted for, thus, a higher damage failure value was considered.
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4.4 Results

Prior to presenting the results for the toy problem, in order for them to be reproducible, the hyper-parameters used for both the discrete and continuous variations are displayed in Tables 8 and 9, forDDQN and PPO respectively.
Table 8: DDQN hyperparameters - Toy problem

Hyper-parameter Discrete Continuous

gamma, γ 0.99 0.99

learning rate 5.00E−3 1.00E−2

number of inner layers 2 2

size of inner layers 128 128

start epsilon, ϵ 1.0 1.0

batch size 64 128

Table 9: PPO hyper-parameters - Toy problem

Hyper-parameter Discrete Continuous

gamma, γ 0.99 0.99

clip ratio 0.2 0.1

lambda, λ 0.95 0.95

number of inner layers 2 2

size of inner layers 256 256

policy learning rate 1.00E−4 1.00E−3

value function learning rate 5.00E−4 5.00E−3

It should be noted that the number and the dimensions of the inner hidden layers were the sameboth for the actor and the critic network in the case of PPO. What is more, regarding the neuralnetwork activation function, for all networks of this project, and all layers, the Rectified Linear Unit(ReLU) function is chosen.
4.4.1 Discrete case

Combining the aforementioned aspects regarding the proposed framework and the toy problem,the DRL algorithms DDQN and PPO managed to yield optimal strategies that even outperform thebenchmark solution. In Figure 27, the training of the agent is illustrated, by plotting the cost of themaintenance for a life cycle of 50 decision steps over the episodes ran during training.
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Figure 27: DDQN and PPO on discrete SDOF environment

It should be noted, that owing to the low complexity of this introductory application, it was probablethat the DRL approach would not necessarily achieve a lower maintenance cost. However, it canbe observed in Figure 27, that PPO performs slightly better. The superiority of PPO can be alsocomplimented by its significantly lower variance, even though the environment is still stochastic.Another interesting finding for interpretation are the policies that were found by the agent. Thesepolicy realizations are plotted in Figure 28.
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Figure 28: DDQN and PPO policy realizations on discrete SDOF environment

As it can be seen in the above plot, both the DDQN and PPO agents, managed to find a moresuitable damage threshold to perform the replace action. The fact that DDQN fails to consistentlychoose when it is more beneficial to replace the component, as seen at decision step 30, leads tothe slightly worse performance of the agent. On the other hand, PPO seems to be more stableand able to achieve lower maintenance costs, by performing a replace action when the damagesreaches a value around 0.13.
Lastly, both the tested algorithms, avoid to perform a partial repair action, which is a fact backed upalso by the benchmark runs. In this discrete setup of the toy problem, repairing the SDOF oscillatorunarguably leads to higher maintenance costs.
4.4.2 Continuous case

Proceeding to the more accurate, from a modelling standpoint, continuous version of the toyproblem, it is more evident that the proposed framework leads to optimal maintenance strategiesin such stochastic environments. Prior to showcasing the performance of the tested algorithms, itshould be mentioned that due to computational costs and time-consuming runs, the decision stepswere reduced to 20 (instead of 50 for the discrete case), and the failure damage threshold was nowassumed to be 0.2 (instead of 0.5 for the discrete case) as shown also in Table 3. The reduction inthe damage threshold was made in order for the SDOF oscillator to deteriorate enough so as thecost linked to the probability of failure to be substantial. The training of the agent is plotted overthe episodes in Figure 29.
63



4 VERIFICATION, VALIDATION AND BENCHMARKING

Figure 29: DDQN and PPO on continuous SDOF environment

It is evident that both the DDQN and the PPO algorithms outperform the benchmark approach.The exact details of this comparison are included in Table 10. Apart from the mean value and thestandard deviation regarding the cost of each approach, the last column of the table contains thereduction in cost (as a percentage) compared with the traditional heuristic solution (benchmark).Additionally, one can observe that in the case of the benchmark, the variability in costs is significantlyhigher. This means that the stochasticity of the environment can lead to poor performance andhigher costs, when following a threshold based policy, which is not the case when applying theproposed framework.
Table 10: DRL algorithms’ performance on continuous Toy Problem

Last 50 Episodes

DRL Algorithm Mean Cost St. Dev. Cost Cost Decrease

Benchmark 80745.3 22659.0 -
DDQN 63776.0 14773.7 21.02%
PPO 64602.0 12992.6 19.99%

Owing to the extensively mentioned stochasticity of the environment, it is expected that eachepisode which was ran, will differ considerably from one another. Therefore, a single policyrealization would not be a representative illustration, to fully understand the training of the
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agent. Nevertheless, for the shake of comparison between the two algorithms and the benchmarkthresholds, such realizations over the 20 decision steps are plotted in Figure 30.

Figure 30: DDQN and PPO policy realizations on continuous SDOF environment

It is observed for both algorithms that the expected damage does not overcome the replacebenchmark threshold of 0.10. Additionally the damage value when the agent chooses to perform apartial repair fluctuates around the heuristic benchmark value. More specifically, regarding PPO,when the damage increases in a more steep and unexpected way such as in decision step 4, theagent chooses to permit that and not proceed with a repair, letting the system deteriorate up tohigher values and then performs a complete replacement. This is not strictly the case for DDQN, asit can be seen that for lower damage values like the one during decision step 13, the agent chose toperform a replacement action even though the damage was smaller than the repair benchmarkthreshold of 0.05. This constitutes an interesting finding, since both agents achieved almost identicalcosts, which is something that can be possible attributed to the high stochasticity of the corrosiveenvironment.
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More descriptive conclusion could be possibly drawn if more than one episodes, hence policies,were to be plotted. This is done for both DDQN and PPO in Figures 31 and 32 respectively.

Figure 31: Probability of failure for 50 policy realizations, for both DDQN and PPO

Figure 32: Probability of failure for 50 policy realizations, for both DDQN and PPO

In these plots, policy trends can be identified, highlighting once more the ability of the agent todiverge from the traditional heuristic actions and proceed in taking actions at unexpected stages ofthe deterioration. It should be mentioned that the plotted policies, even though they do not leadto the minimum of maintenance costs, they are all still smaller than the benchmark average one.
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Elaborating further on the degree to which the obtained policies comply with the benchmark values,it can be stated that PPO chose actions in a considerably more consistent way compared to DDQN,with only limited policies passing the replace heuristic value, and the vast majority of the repairactions being performed for damages lower than the repair threshold. This is concluded from thesteep peaks that have formed inside the band between 0.05 and 0.10, namely the repair and replacebenchmark values. Even though these peaks could indicate a periodic pattern of maintenance,particularly replace ones, this is not the case, since they belong to different episodes. On thecontrary, even though the DDQN agent restrict the damage mostly below the replace threshold, it isobserved that the obtained policies are more stochastic, with many repair actions taking place evenat times where the damages approaches 0.10, i.e. the replace heuristic value. An important issue,that is probably responsible for these differences among the two algorithms, is the way the agentchooses actions in each case. In DDQN the agent picks deterministically the action it considersthe most beneficial, based solely on the action-state value functions Q(at , st ). On the other hand,the PPO agent, even if the damages has reached a worrying damage value, chooses the actionbased on a probability distribution, i.e. the policy π(at | st ) which makes every action, no matterhow "good" or "bad" is, to still stand some chances of being picked.
Another interesting outcome of the proposed framework is the impact of the updating procedure,in case the "true" values of the parameters A,B are known. In Figures 33, 34, the evolution of A and
B respectively, is plotted along the decision steps, for 9 different episodes.

Figure 33: Updating of parameter A for nine (9) of the episodes
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Figure 34: Updating of parameter B for nine (9) of the episodes

It can be safely concluded that incorporating more noisy observations, which have been generatedusing the assumed “true” values for A and B , i.e. 0.008 and 2.0, reduces the uncertainty, and thestochastic parameters indeed converge over time with an ever decreasing variance. It should benoted though that for limited cases the inferred value of the parameters seem to converge to aslightly offset value, such as in episodes 1, 8 in Figure 33, and in episode 3 in Figure 34. This anomalycould be justified by the limited amount of decision steps that was employed, expecting a betterconvergence to the expected “true” values if more updates were performed.
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Lastly, since the cost linked to the risk of failure, and subsequently the probability of failure, have animportant contribution to the total reward/cost of an episode, this probability is being plotted overthe 20 decision steps for a plethora of episodes (50 in total) in Figure 35.

(a) DDQN (b) PPO

Figure 35: Probability of failure for 50 policy realizations

Similar conclusions that have already been drawn for the comparison between DDQN and PPOcan be supported through the probability of failure plots, too. PPO appears to perform in amore controlled manner, not allowing the probability of failure, P f , hence, the cost Crisk to growexcessively. Observing also the mean of these episodes, it can be deduced that the agent forcesthe risk of failure to stay approximately constant, especially for later steps (after the fifth one),and in total it does not allow P f to overcome the value of 0.035. This is not the case for DDQN,as seen in Figure 35a, where especially for the early steps, the agent is not that strict, allowingeven higher values for the cost associated with the risk of failure. Among the two algorithms, themaintenance strategies according to DDQN could be considered more reasonable, since takingearly maintenance decision is counter-intuitive for a brand new engineering system. However,controlling the damage from an early stage, seems to work as well, leading to relatively stableresults, as PPO showcases.
4.5 Conclusions

Concluding this chapter, a review of the obtained results for the toy problem will be made, whilesome summarizing comments and conclusions will be drawn.
Starting from the discrete case, due to the great simplifications in the modelling of the system’sdeterioration and the state and observation spaces, it was feasible to derive optimal maintenancestrategies even with a heuristic damage threshold-based approach. Nonetheless, PPO managedto outperform the benchmark approach and arrived to a slightly better policy, showcasing thesuperiority of the proposed framework even for such trivial cases.
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Moving to the more realistic continuous version of the toy problem, it can be safely concludedthat the developed tool performed significantly better. Both DDQN and PPO managed to yieldan optimal sequence of maintenance actions, which decreased the total cost over the system’slifetime b approximately 20% (the exact numbers/costs and the training of the agents can be foundat Table 10 and Figure 29 respectively).
Unfortunately, the A2C algorithm was not able to perform adequately, this is why it is disregardedfrom the rest of the thesis. A possible reason for its poor performance can be its instability, especiallyin such a stochastic environment. After all, this is the main reason algorithms like TRPO and especiallyPPO were developed; to provide a more stable learning while still taking advantage of the benefitsof a policy gradient algorithm [40].
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5 Case Study

5.1 Problem Description

5.1.1 Modelling

Even though the results which were yielded for the toy problem confirm the capabilities of theproposed framework, its full potential will be better highlighted in the case of a more complicatedengineering system. In particular, a statically indeterminate structure poses the perfect candidate,because it is often intractable for such systems to derive optimal maintenance strategies simply byusing threshold-based heuristic approaches. The chosen structural system is a three storey twodimensional steel frame, which consists of linear elements, subjected to a lateral triangular loadalong its height. The exact geometry is illustrated in Figure 36.

Figure 36: Structural system employed for the Case Study
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The structure will be modelled using the Finite Element Method (FEM), and more specifically, bothfor the beams and the columns, linear Euler-Bernoulli beam elements will be used. Three Degreesof Freedom (DOFs) will be accounted for at the elements’ nodes, i.e. two translational (horizontaland vertical) and one rotational, all defined in the displayed 2D plane. At this point it should benoted that the elements of interest regarding their degradation, are the columns. This is a realisticsimplification, bearing in mind that the deterioration and the possible failure of the columns canlead to more significant consequences and possibly to a global failure of the frame. Hence, as seenalso in Figure 36, both the axial and flexural stiffness of the beams are assumed to be constant.
In the same fashion as described in Section 4.1.1, noisy measurements, e.g. accelerations obtainedthrough a monitoring system, are passed through an output-only OMA scheme, which yields modaldata that are contaminated with additional noise, and are used as observations for the modelupdating procedure. In the current application, the first eigenmode is considered, meaning thata modal displacement will be observed for each of the eight (8) nodes, or to be more precise, foreach of the six (6) nodes, since the two (2) bottom ones are fixed. This choice for the observedquantities serve for a better localization of the damage and the deterioration, which will eventuallyresult in a more precise and beneficial maintenance strategy. For completeness reasons, the firstthree eigenmodes are illustrated in Figure 37.

(a) Mode 1 (b) Mode 2 (c) Mode 3

Figure 37: First three eigenmodes of the frame

It has already been mentioned that the reward, i.e. the maintenance cost, during each decision step,can be broken down into the cost of the taken action and the cost associated with the risk of failure(Equation 35). Therefore, in order to further elaborate on the concept of failure and quantify such arisk, and subsequently calculate the probability of failure, a Serviceability Limit State (SLS) check isemployed. In particular, as stated in Clause 7.2.2 in EN 1993-1-1 [59] and the Dutch National Annexto EN 1990, cl. A1.4.3(7), the limit of the horizontal displacement of the top storey, i.e. the drift,is u ≤ H/500, where H is the total height of the frame. Thus, for the structure at hand, failure hasbeen reached if the drift of node (3) is greater than H/500 = 12m/500 = 0.024m = 24mm. As faras the loading is concerned, a simple representation of seismic action is chosen. In particular, a
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triangular static equivalent load of maximum magnitude, qd , is accounted for, which serves as anapproximation of the first eigenmode of the structure. This assumption will reduce significantly thecomputational cost that would be induced by a dynamic time history analysis. The calculation of thetriangular load’s maximum value is included in Appendix A.1.1. A more elaborate and realistic choicefor the load (e.g. including the self weight of the transverse beams, etc) would not be beneficialfor the scope of this project, since the assumed load case intervenes only in the calculation of thetop storey drift and subsequently the probability and cost of failure. The DRL and BMU aspectsof the problem are not affected by this modelling decision, which means that a simplified yetrepresentative load will not affect the framework’s accuracy.
The assumed material, cross-sections, dimensions and loads are summarized in Table 11.

Table 11: Case study frame geometry and properties

Beam cross section IPE220
Column cross section HEA300

Material S355
L 4 m

qd 3.6 kN/m
A simplified model in terms of discretization was chosen, i.e. one Finite Element (FE) per structuralcomponent, in view of reducing the computational cost. Owing to the relatively straightforwardgeometry, this decision does not cause any loss of accuracy, both for linear static and eigen- analyses.
5.1.2 Actions

In this multi-component application, a significant difference constitutes the fact that instead of ascalar action, there is an action vector at , containing at each decision step, the different actions thatwill be performed at the same time on every component. This can have a serious impact on thedimension of the global action-space, since for n components and m different action, there are mn

possible action vectors in a combinatoric fashion. As a starting point, the same actions (3) presentedin Section 4.1.1 and in Table 1 are accounted for, which means that for the six (6) components of theframe, there are 36 = 729 possible action vectors.
Similarly to the toy problem, the costs for the actions are expressed relatively to one another, asstated in Table 2, with the failure cost this time being significantly bigger. In particular, for the SDOFoscillator, the failure cost was simply assumed twice as big compared to the replacement one, toaccount for the sudden nature of such an event and its consequences, but for the frame at hand,failure would mean a global collapse of the structure, so CF = 6CR14. The extra cost that would be
14six (6) is the number of the frame’s components
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considered for this event happening abruptly is assumed to be compensated by the fact that someof the relatively undamaged components could possibly be reused. Therefore, the global failurewould cost the same amount as a complete replacement of all the components. The relative valuesof the costs are included in Table 12.
Table 12: Rewards (costs) for the case study

Description Cost Value Factor

Component’s total replacement CR C0 units 1

Component’s partial repair CM 0.5CR 0.5

Structure’s global failure CF 6CR 6

Risk of global failure Crisk P f CF 6P f

5.1.3 Deterioration Model

As elaborated in Section 2.6, a common and efficient approach regarding the modelling of thestructure’s degradation is the use of a Gamma process. The damage d(τ) is defined as the ratio ofthe current, degraded, cross section area over the initial one, i.e. A(τ)/A0. It is assumed that thecorrosion penetrates the steel cross section uniformly (radially) meaning that all parts of the cross-section are equally exposed to the corrosive environment. Denoting the width of the degradationlayer as c , Figure 38 illustrates how the deterioration evolves on a cross-section scale.

Figure 38: Degradation of the IPE cross-section

Since the examined case is a 2D problem, the properties of interest, that intervene both in thelinear static and the eigen- analysis, are the axial stiffness, E A, and the flexural stiffness, E I . WithYoung’s modulus E remaining constant, it is important to define the degradation of the momentof inertia, I , too. In Figure 39 the deterioration of the cross section’s properties is being plotted
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over the section loss percentage. The detailed calculations for the correlation between the twodegradations (flexural and bending) are included in Appendix A.1.2.

Figure 39: Cross section properties deterioration

Since the evolution of the deterioration follows a Gamma process, at every decision step thedamage increment for each component is described by a Gamma distribution. Hence, as displayedalso in Section 2.6:
∆Di (τi ) ∼ Ga(v(τi )− v(τi −1),u) for i = 1, . . .6 (48)

where v(τi ) is the shape of the Gamma distribution for the deterioration rate of the i component,and u is the scale factor, assumed to be constant for all components.
In order to calculate the scale factor, u, it is assumed that the corrosive environment is affecting thestructural components in such a way that after 70 years, there is a mean section loss of 40% and astandard deviation 0f 7.5%, as chosen also in [43]. This means that:

E
(
d(70)

)= v(70)

u
= 0.40

Var
(
d(70)

)= v(70)

u2 = 0.075

⇒ u = 71.11 (49)

Regarding the shape of the Gamma distributions though, a similar calculation is not possible, since
v(τ) is the term where the stochasticity of the deterioration is accounted for. In particular, it isdefined as follows:

v(τ) = AτB (50)
with A,B , being random variables. In a similar fashion with the toy problem, A,B constitute theuncertain parameters which are initially assumed (prior knowledge) and are being updated using
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observations. Thus, during every decision step, a set of Ai ,Bi values is being sampled from thedistributions P(A),P(B), for every component i , leading to a different Gamma distribution. Thus, thedistribution of the total damage for each component at any given time/decision step is defined asthe summation of all the Gamma distributions that describe the intermediate damage increments.It is known that the sum of gamma (vi ,u) random variables has a gamma (
∑

vi ,u) distribution, thus:
Dtot

i ∼
T∑
τ=1

Ga
(· | Aτ

i τ
Bτ

i − Aτ
i (τ−1)Bτ

i ,u
)= Ga

(· | T∑
τ=1

Aτ
i τ

Bτ
i − Aτ

i (τ−1)Bτ
i ,u

) (51)
where Aτ

i ,Bτ
i are the values of A,B sampled for a deterioration rate τ for the i component15.

The aforementioned details on the Gamma process, describe the so called transition step for theupdating of the belief, hence, the probability distribution for the deterioration of the structure.The other aspect of such an updating is the estimation step, which is responsible for incorporatingobservations to improve the existing knowledge of the parameters of interest, i.e. A,B , with theuse of a likelihood function. A graphical representation of the two, with the goal of defining theposterior distribution of the uncertain parameters is depicted in Figure 40.

Figure 40: Belief updating flowchart

Denoting the system’s parameters as θ = 〈A,B ,D〉, and the observations, i.e. the modal displace-ments for the first eigenmode, as O, the likelihood function is assumed to follow a normal distribu-tion:
P(O | θ) =

( n∏
k=1

1

σk
p

2π

)
·exp

[
−

n∑
k=1

(
Ok −M(θ)

)2

2σ2
k

] (52)
In Equation 52, M(θ) represents the modal displacements for the first eigenmode that are derivedfrom the FE model, given the parameters θ, while σk is the standard deviation that describes the
15The Gamma distributions’ shapes are dependent on the deterioration rate τi of each component, while the decisionstep counter, t , is global for the whole structure and it is evolving through unit increments until reaching the end of theepisode, i.e. the time window of interest.
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added noise from the OMA scheme. For each noisy measurement (modal displacement) mk thatis passed through the output-only OMA, the observation that is used in the likelihood function is
Ok ∼N (mk ,σk ), with σk = mk ·Noise.
A schematic representation of the updating process for the deteriorating structure at hand isdemonstrated in Figure 41.

Figure 41: Case Study Bayesian Inference
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The same procedure is presented in a more technical and formal way in Algorithm 15.
Algorithm 15: Deterioration model parameters updating - Case Study
1 DeteriorationParametersUpdating ( P(A),P(B), FE model, u,T ):
2 Initialize Ga(·) shapes v 6x1 ←O6x1 // O is a vector of zeros

3 Initialize deterioration rates τ6x1 ←O6x1

4 for t ← 1 to T do
5 Increment deterioration rates τ← τ+I6x1 // I is a vector of ones

6 A 6x1,B 6x1 ← sample from P(A),P(B)

7 v ← v + A (τ+1)B − A τB

8 Damage distribution of each component, D 6x1 ∼ Ga(· | v ,u)

9 d 6x1 ← sample from D

10 ∆u 0 6x1 ← FE_eigenanalysis(d) // mean modal displacements, for the first eigenmode

11 Generate ∆u obs 6x1 ←N (∆u 0, Noise)

12 NUTS ( P(A),P(B),∆u obs ):
Output: P(A |∆u obs),P(B |∆u obs)

13 Choose action, a t 6x1 // according to the PPO agent

14 for i ← 1 to 6 do
15 if ai

t is “repair” then
16 τi ← max(0,τi −2)

17 else if ai
t is “replace” then

18 τi ← 0

19 vi ← 0

20 P(A),P(B) ←P(A |∆u obs),P(B |∆u obs) // posteriors become priors through KDE

The dimensions of all the vectors are specified only at their first occurrence, i.e. 6x1, and they always refer to the numberof the structure’s components
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The (starting) values for the parameters of the model’s deterioration are summarized in Table 13.
Table 13: Case study input data

Quantity Value Units

Replace cost, CR 10000 [-]
Noise 0.1 [-]
Failure drift 24 [mm]
Parameter Distribution Mean CV

A Lognormal 0.1 0.5

B Normal 1.8 0.2

5.1.4 Probability of failure

An important issue to be tackled is the calculation of the probability of failure, P f , i.e. the drift ofthe top storey being ≥ 24mm, given the probability distributions of the components’ damages. AnMC sampling would be the ideal solution in terms of accuracy, however it demands a significantamount of computational time. Thus, FORM is chosen, and in particular, a geometric interpretationof it. To be more precise, as it has been thoroughly explained in [60], denoting uF = 24mm i.e. thefailure drift, and µ(D) as the drift of the frame given the damage distributions of the components,
D , the Limit State Surface (LSS)16is defined as:

M(D) = uF −µ(D) = 0 (53)
The LSS separates the safe region, where M(D) > 0, from the failure region, where M(D) < 0, ofthe parameter space. The failure probability, P f can be expressed as the integral over the domain
M(D) < 0:

P f =P(M(D) ≤ 0) =
∫

M(D)≤0
P(D)dD (54)

with P(D) being the joint PDF for the uncertain components’ damages D .
A computationally inexpensive way to calculate the integral of Equation 54 is through a geometricoptimization analysis. The two necessary steps to do so, are:

1. Transform the uncertain variables, i.e. the damages, into independent normal basic variables
U 17.

16In 2D problems, instead of a surface, there is the Limit State Function (LSF)17The most popular methods for this task are the Rosenblatt and the Nataf transformations
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2. Compute the minimum distance β, the so-called reliability index, of the LSS from the originof the standard coordinate system U as displayed in Figure 42.
The point closest to the origin, U∗, is referred to as the design point, and is the point with thehighest joint density on the LSS, meaning that it corresponds to the most probable combination ofdamages for the structure to fail.
The probability of failure can now be computed as:

P f =
∫

M(U )≤0
P(U )dU ≈ 1−Φ(β) =Φ(−β) (55)

where Φ is the Cumulative Distribution Function (CDF) of a normally distributed random variablewith zero mean and unit variance.

Figure 42: Linearisation of the LSS M(U ) = 0 at the design point U∗ in the uncorrelated standard normal random
variables U space 18

18For clarity reasons, only two (2) standard normal variables are included in Figure 42. For the case at hand, there will bea 6-dimensional space and subsequently, 6-dimensional hyperplane as an LSS.
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The step-by-step procedure followed to apply FORM is exhibited in Algorithm 16.
Algorithm 16: First Order Reliability Method (FORM) geometric interpretation
1 FORM (Damage distributions D 6x1, FE model, failure threshold uF ):
2 Transform D into standard normal variables, U 6x1

3 µ(D) ← FE_linear_static_analysis(D) // FE model’s drift

4 M(D) = uF −µ(D) = 0 // Limit State Surface (LSS)

5 Transform M(D) to the normal space, M(U )

6 β← min distance between LSS and the origin of U coord system
7 P f ←Φ(−β)

This procedure is not the exact function applied by the proposed framework, but the parameter updating in the absenceof the DRL aspect of the tool.
Even though FORM is significantly lighter from a computational time point of view, it relies on thelinearization of the LSS to find the design point, U∗, which can lead to inaccuracies in highly non-linear problems. This is why, for the current application, which itself is not a linear problem, FORM’sperformance needs to be checked, through a comparison with a brute force MC sampling approach.This comparison, as displayed in Figure 43, is made for three different amounts of samples, and fora 1000 different damage combinations and P f ’s.
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(a) P f for every approach (b) Absolute difference in P f

(c) Absolute difference in Crisk (d) Relative difference (%)

Figure 43: Comparison between FORM and MC

In Figure 43a, the probability of failure P f is plotted for different damage combinations, havingapplied all different approaches, meaning FORM and MC with 3 levels of samples. The results havebeen sorted and plotted in an ascending order of P f for a clearer representation. It can be observedthat FORM is consistently underestimating P f , especially for values that are neither too big nor toosmall, i.e. approximately in the range of 0.1−0.9. In the next two plots, i.e. Figures 43b and 43c, it ishighlighted that the absolute difference between the two approaches is not significant, especiallyagain for either too small or too big values of P f . What is more, it is again confirmed that highervalues of P f are yielded with MC sampling, which results also in higher risk of failure costs as seenin Figure 43c. Lastly, the relative difference between the two methods, expressed as a percentage,is being plotted in logarithmic scale in Figure 43d.
The accuracy of FORM constitutes an important modelling aspect to be considered. Nevertheless,since it is capable of capturing small P f ’s and it will be employed both for the benchmark solutionas well as the proposed framework, it is adequate for the time being, leaving some space for futureimprovements.
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5.2 Framework

Regarding the DRL aspect of the framework, not all of the algorithms examined in the currentproject are suitable for such an application. Owing to the multiple components, and the immenseamount of possible action vectors, DDQN would not perform efficiently for this case. As alreadybeen stated in the existing literature, DDQN requires discrete action spaces, and the more theactions, the more difficult it is for the agent to arrive to optimal strategies. This is not the case withactor-critic algorithms, which based on the given state compute the probability distribution of theactions as an output, instead of the action-state value function. Thus, assuming that the actionsof the the system’s components are conditionally independent, the policy derived from an actornetwork, πθ(at | st ), can be decomposed and expressed as the product of multiple policies whichwould refer to each component individually, a1
t , a2

t , . . . instead of the full action vector, at .
πθ(at | st ) =πθ(a1

t | st ) ·πθ(a2
t | st ) . . .πθ(a6

t | st ) =
6∏

i=1
πθ(ai

t | st ) (56)
or,

log
(
πθ(at | st )

)= 6∑
i=1

log
(
πθ(ai

t | st )
) (57)

Therefore, the output layer of the actor network needs to have only 3×6 = 18 neurons, i.e. the prob-ability of taking each action for each component. This means that every three output probabilitiesare summing up to one (1). A schematic representation of both the actor and the critic DNNs, forPPO 19is displayed in Figure 44.
19Due to the poor performance of A2C in both the discrete and continuous versions of the toy problem, it is not goingto be tested for the case study, even though it could have handle the fact of multiple components, for it being anactor-critic algorithm.
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Figure 44: PPO architecture - Centralized states and actions

In the depicted architecture, instead of each component having its own agent, hence its own inde-pendent network, there is only one centralized actor with shared parameters θ for all components.As elaborated also in [43] with DCMAC, using such a network means that every agent is aware of allother agents’ states, by getting as input the entire system state st , while being affected implicitly bytheir actions, too, through the common network weights θ.
Various alternatives regarding the network architecture are presented as part of the future work inSection 6.3.
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Having elaborated on every aspect and sub-routine of the proposed framework, a summary of the complete procedure is illustrated inFigure 45.

Figure 45: Case Study complete flowchart
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Taking into account the DRL aspect of the problem, and the steps included in the training of thePPO agent, the developed tool is presented in a thorough and more formal way in Algorithm 17.
Algorithm 17: Proximal Policy Optimization (PPO) - Case Study
1 Initialize policy (actor) network weights θ
2 Initialize value function (critic) network weights φ
3 for epi sode = 1 to M do
4 st ← reset environment // initialize A,B, τ6x1 ←O6x1, v 6x1 ←O6x1

5 for t ← 1 to T do
6 t ← t +1, τ← τ+I
7 BMU for params A,B // procedure shown in Algorithm 15

8 πθ(at | st ) ← Actor Net (st ) // πθ(at | st ) =πθ(a1
t | st ) ·πθ(a2

t | st ) . . .πθ(a6
t | st )

9 Vφ(st ) ← Critic Net (st )
10 at ← sample from πθ(at | st ) // a1

t from at [0 : 3], a2
t from at [3 : 6] . . ., a6

t from at [15 : 18]

11 for i ← 1 to 6 do
12 if ai

t is “replace” then
13 τi ← 0

14 else if ai
t is “repair” then

15 τi ←max(τi −2,0)

16 P f ← FORM (v) // the shapes of the Gamma (damage) distributions are passed as an input

17 Cat ← numRepl aces ×CR +numRepai r s ×CM
18 R(st , at ) ←Cat +P f CF
19 Observe next state st+1 // st+1 = 〈shapes v , deterioration rates τ〉
20 Store tuple (

st , at ,πθ(at | st ),Vφ(st ),R(st , at )
) in Dk // st = 〈v ,τ〉

21 st ← st+1

22 if t = T or n = N then
23 if t = T then
24 Vφ(st+1) ← 0

25 st ← reset environment // initialize A,B, τ←O, v ←O

26 else
27 Vφ(st+1) ←Critic Net(st )

28 Returns δt ← R(st , at )+γVφ(st+1)−Vφ(st )

29 Advantages At ← δt + (γλ)δt+1 + . . .+ (γλ)T−t+1δT−1

30 Store δt , At in Dk

31 Train Agent (Dk )
The indexing and slicing of vectors follows Python notation, i.e. 0 is the starting index and the upper bound is exclusive.
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The steps needed to train the PPO agent for the case study, i.e. the function “Train Agent” aredemonstrated in Algorithm 18.

Algorithm 18: Proximal Policy Optimization (PPO) agent training - Case study
1 Train Agent (Dk ):
2 Update parameters φ, using the Critic cost function:

LVF(φ) =
T∑

t=1

(
Vφ(st )−δt

)2

3 Update parameters θ, using the Actor loss function:
LCLIP(θ) =

T∑
t=1

min

(
πθ

(
at | st

)
πθold

(
at | st

)At
(
st , at

)
, clip

(
πθ

(
at | st

)
πθold

(
at | st

),1−ε,1+ε
)

At

)

via minibatch stochastic gradient ascent with Adam
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5.3 Benchmarking

For the sake of comparison and evaluation of the proposed framework, a benchmark approachneeds to be applied on the case study, setting the threshold (in terms of cost) that the PPO agentwill try to surpass.
As mentioned also for the toy problem in Section 4.3, usually a heuristic approach is chosen, whichindicates when it is more beneficial to perform a maintenance action based on a variety of metrics.Common options are the maximum damage allowed (per component), the maximum probabilityof failure of the structure as a whole, or even a time threshold which would specify every how manydecision steps (e.g. years) a maintenance action should be performed.
Although, for the SDOF system, the control quantity would not lead to considerable differences, itis expected, that for a multi-component system, monitoring the deterioration of each componentseparately can lead in a more efficient maintenance strategy and life-cycle cost. Nevertheless,both the optimal damage threshold and the optimal maintenance time interval will be sought,and ultimately the yielded results of these two heuristic approaches, namely Condition-BasedMaintenance (CBM) benchmark and Time-Based Maintenance (TBM) benchmark, will be comparedwith the ones of the proposed methodology.
Regarding the CBM benchmark, a fine grid of repair and replace thresholds is created, in order tocheck which combination would yield the minimum maintenance cost. In particular, increments of
0.05 are considered starting from 0 damage, up to 0.5. Due to the high stochasticity of the corrosiveenvironment, an abundance of episodes was ran for each pair of values. The obtained thresholdsas well as the resulting maintenance cost mean and standard deviation are displayed in Table 14,while a policy realization of such a heuristic approach is depicted in Figure 46.

Table 14: CBM Benchmark maintenance thresholds and costs - Case Study

Optimal Thresholds

Repair Replace Mean Cost St. Dev.

None 0.10 117819.96 25854.85

As displayed also in Table 14, according to the benchmark, it is more beneficial to let the componentsdeteriorate and perform directly a replace action when 0.10 damage is reached, rather than performa partial repair earlier.
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A realization of a maintenance policy following the benchmark approach, i.e. heuristic damagethresholds, is displayed in Figure 46.

Figure 46: Policy realization for all components - CBM Benchmark
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As far as the TBM benchmark is concerned, once more a plethora of threshold combination wasexamined, as well as a great amount of episodes due to the stochastic nature of the environment.The scenario of performing replace actions to all components periodically was considerably morebeneficial compared to partial repairs. The different maintenance costs obtained for the differentreplace intervals are plotted in Figure 47.

Figure 47: TBM benchmark costs over replace intervals

It is observed that the optimal maintenance strategy in a periodic fashion, would be to performa total replacement of all components every 7 decision steps. Furthermore, it is interesting tonote that by increasing the replace interval there is a significantly higher variance in the rewards(maintenance costs). This is something expected, since for a shorter maintenance interval, thedeterioration of the system does not evolve as much, leading to a total cost that consists almostexplicitly of the maintenance actions’ cost, rather than the risk of failure one.
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5.4 Results

Having elaborated on the individual sub-routines employed as well as the workflow of the completeframework, the proposed tool is applied to the 2D frame at hand. Before proceeding to the resultsand plots, the hyper-parameters that were used, are presented in Table 15.
Table 15: PPO hyper-parameters - Case Study

Hyper-parameter Value

gamma 0.99

clip ratio 0.15

lambda 0.95

number of inner layers 2

size of inner layers 256

policy learning rate 1.0E−3 to 2.0E−5

value function learning rate 5.0E−3 to 5.0E−5

It should be mentioned that the learning rates that were used are not constant. To elaborate, atthe beginning of the training higher values were used, i.e. 1.0E−3 and 5.0E−3 for the policy (actornetwork) and the value function (critic network) respectively, which serve for an initial explorationof the action and the solution space. Over the course of the training episodes, both the learningrates were refined, reaching 2.0E−5 and 5.0E−5, both to ensure a smoother training, and not to getstuck in sub-optimal solutions.
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In Figure 48 the training of the agent is plotted for over 6000 episodes, along with the two benchmarkthresholds (CBM and TBM).

Figure 48: PPO applied on case study

It is apparent that the proposed framework could not manage to beat both benchmarks, specificallyit surpassed TBM but not CBM. Most probably this is the case because of the dominance of theaction costs, and the small contribution of the risk of failure one. As a reminder, the total cost perdecision step is decomposed as follows:
Rt =Ct =Cat +Crisk

Additionally, it has been observed that the deterioration, as defined in this case study, is developingsuddenly and rapidly. If there was a more gradual degradation, this would result in a probabilityof failure cost that would contribute significantly and during many decision steps to the totalmaintenance expenses. Undoubtedly, the sheer computational time needed for such a trainingdid not allow for a proper experimentation with different hyper-parameters that would possiblyperform better, reaching in the end to a better policy. Nevertheless, the agent seems to performconsiderably better than the TBM benchmark, which is not a surprise, since periodic maintenancecan not account for the localization of the damage, thus, many components, that their remainingcapacity is sufficient, are forced to be maintained along with the rest of the structure.
A way of improving the decisions of the agent, having observed that the deterioration and theresulting probability of failure, do not grow that rapidly, especially during the first decision steps,
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would be to include some hardcoded constraints. To be more precise, in this case, it was considered,that no maintenance action would be beneficial during the first 4 decision steps, and also no actionshould be made if the age (deterioration rate) of a component is less than 2. Once again manyrealizations were made in order to obtain a representative average maintenance cost for such apolicy. The total results, both for the benchmarks and the DRL approaches, are summarized inTable 16. It should be mentioned that for all approaches, more than 100 episodes were ran.
Table 16: Benchmark and DRL performance on the Case Study

Maintenance
Approach

Mean
Cost

St. Dev.
Cost

Relative
Difference*

CBM Benchmark 117820.0 25854.9 100.00%
TBM Benchmark 192069.2 16121.0 163.02%

PPO 166148.2 27809.7 141.02%
Constrained PPO 133368.7 11180.2 113.20%
* The mean cost achieved by each approach is compared with theminimum of all, i.e. the CBM Benchmark one

The fact that a constrained PPO agent can arrive at lower maintenance costs, proves that a bettertuning of the hyper-parameters can yield more efficient policies.
What is more, another interesting plot is the policy realization for the constrained agent. Of course,a single realization is not the most representative, but it still provides a qualitative representation ofhow the agent chooses its actions. Such a plot, is displayed in Figure 49, where the damage overthe time horizon and the corresponding actions are plotted for all the components.
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Figure 49: Policy realization for all components (constrained)
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It is evident that there is not a specific pattern that the agent follows neither on a global scale noron a component one. Undoubtedly, it does not allow the damage to reach extremely high values,since this would also affect significantly the horizontal displacement of the top storey, which is thecontrol quantity for the structure’s failure.
In Figures 50 and 51, policy realizations are plotted for different levels of training. In particular, thereis a policy realization every 1200 episodes, to demonstrate the learning of the agent, and how fromcompletely uninformed and random actions, it shifted to more reasonable and beneficial ones. Toserve this purpose from a presentation point of view, a color-bar is included in the plots, to displaythe decrease of the total maintenance costs over the course of training episodes.
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Figure 50: Policy realization for all components for different training episodes - Left side
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Figure 51: Policy realization for all components for different training episodes - Right side
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It goes without saying, that the agent during the early learning stages was allowing the deteriorationto grow significantly, something that changed over the course of more episodes, since higherdamage values combined with the degradation of other components as well can lead to a greaterprobability of failure P f . Another interesting observation is that, especially for the left side of theframe, the agent gets much more sensitive about the damage of the base storey, rather than theones of the two above. This is a reasonable strategy, because the damage of the lowest column hasa greater contribution to the global failure. Surprisingly, this is not the same case for the right side,where all columns are limited to small damage values, regardless from their location. As alreadyexplained, this could be attributed to the high stochasticity of the corrosive environment, whichmakes a single realization a non-representative measure.
5.5 Conclusions

Summarizing the chapter, some general comments will be made and conclusions will be drawn,regarding the case study.
Moving from a simplistic application such as the toy problem, to a more complicated case studyundoubtedly made the optimal maintenance strategy harder to determine. The considered 2Dframe is a multi-component system that poses greater challenges, with the more obvious onebeing the enhancement of the action and state spaces. The benchmark approach, and morespecifically the CBM version of it, was more difficult to beat, and it was highlighted that a bettertuning of the hyper-parameters is necessary. It is also possible that the initial problem setup needsto be reconsidered, and particularly the assumptions made about the costs/rewards during everydecision step.
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6 Discussion - Conclusion

6.1 Discussion of results

Having presented the proposed framework both in theory and in hands-on applications, it is evidentthat such an approach, i.e. coupling DRL with BMU to determine an optimal maintenance strategy,carries a plethora of advantages. In particular, the basic theory regarding the developed tool wasdescribed, moving to a simplified first application, where the framework’s superiority is firstly high-lighted, with a culmination of this thesis being the use of this framework for a more complicatedand realistic case study.
As far as the toy problem is concerned, there were two DRL algorithms20that were tested, namelyDDQN and PPO, which both performed better than the traditional maintenance approaches. Amore thorough presentation and elaboration of the results is presented in Section 4.4, where apartfrom the learning process of the agent over the training episodes, a variety of important quantities,is plotted for a plethora of policy realizations. Of course, such an application is over-simplified andeven though it fortifies the potential of the proposed framework, it is not directly applicable toreal-life cases.
After the toy problem, the application of the proposed framework in a case study was presented. Inparticular, a 2D 3-storey frame was chosen, with its 6 columns being the deteriorating components,and the PPO algorithm being selected for the training of the agent. Unfortunately, the proposedmethodology did not manage to beat the benchmark, and to be more precise, the CBM benchmark,which gave rise to plenty of discussion points, regarding what are the possible reasons for such aperformance.
The main cause that possibly leads to the inferior performance of the developed tool might be theassumptions that were made about the failure of the structure and subsequently the cost related tothe risk of failure. For the case study the failure was defined through an SLS check regarding the driftof the top storey, and the cost of failure was assumed to be equal to a total replacement of all thecomponents. Even though such an assumption could be realistic, as explained also in Section 5.1.1,since in the case of a global collapse there might be some lightly damaged components that couldbe reused, the corresponding cost was proved to have a minor contribution to the total reward,making the cost of actions dominant. Therefore, it was possible to arrive at an optimal sequenceof actions using a heuristic threshold-based approach that was able to locate these maintenanceexpenses in the most cost-efficient way along the structure’s lifecycle.
Another interesting observation, that is worth being discussed, is the decisions that the agenttakes for columns that belong to different storeys. Based on elementary structural mechanics, it is
20A third algorithm was tested, too, namely A2C, which unfortunately did not yield optimal maintenance strategieseven for the simplest of the cases, this is why it was disregarded for the rest of the thesis.
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apparent that the damage of the bottom columns contributes more to the possible failure of thestructure. Since the failure is translated to a risk of failure cost, the agent is capable of arriving at apolicy that would limit the damage of the more “important” (failure-wise) components, while onthe other hand allowing the deterioration of the less crucial columns to reach higher values. Thisway of maintaining a multi-component system can not be achieved using heuristic threshold-basedapproaches; a fact that compliments the benefits of having a DRL agent as a decision-maker. InFigure 52 the deterioration of all components is plotted over the decision steps of a single policyrealization. It is evident that the strictest maintenance actions take place for components 0 and 3which correspond to the base columns.

Figure 52: Policy realization for all components (constrained) - 3D
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Last but not least, it should be mentioned that the proposed methodology is not strictly applicableonly to structural engineering applications. The maintenance of any kind of multi-componentengineering system, whose deterioration can be expressed through a stochastic process, can bedealt with using such an approach. Taking advantage of both the capabilities of the DRL agentfor the sequential decision problem, as well as the more accurate modeling of the deterioratingenvironment that the continuous variable Bayesian inference provides, renders this framework apromising tool to tackle the problem of maintenance in a general sense.
6.2 Limitations

As in every research project, there is a trade-off between the modeling accuracy, i.e. thesimplifications and assumptions made, and the corresponding computational time. Limiting theassumptions/simplifications for the proposed framework, had the expected outcome regarding theruntime. Therefore, the most important limitation of the developed tool is the high computationaltime needed for the training of the agent. It makes it significantly difficult to tune the hyper-parameters or do simple modifications to the system’s dynamics, which would require the trainingof the agent from scratch. Nevertheless, it could be characterized as a disadvantage worth having,since such a tool can yield the optimal maintenance strategy for the whole lifetime of an engineeringsystem, making the runtime seem less important on a relative scale. Of course, as displayed also inthis thesis, the computational resources needed are proportional to the complexity of the consideredsystem, as the toy problem both in its discrete and continuous version was much faster to solve incomparison with the more complicated case study. A possible solution for this limitation would bethe further optimization of the Bayesian inference since it was the least time-efficient part of thealgorithm. Additionally, the ever-increasing computational power closely connected with the rapiddevelopment of the technology could also help in this aspect in the future.
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6.3 Future Development

The current research investigates the benefits and the potential of a workflow that integrates bothDRL and BMU, aiming to determine the optimal sequence of maintenance decisions. Although thefirst results of such an approach, which were presented in this thesis, are a promising indicator ofits capabilities, many possible additions and modifications can be incorporated into the proposedworkflow and would be interesting to examine. These ideas for further development and futureresearch are presented in this section.
Regarding the multi-component system that was examined as a case study, there are many possiblealternatives as far as the actor network architecture is concerned. The actor network architectureused in this project was a centralized one, meaning that there was a single neural network for allthe components and all the possible actions (this is explained more thoroughly in Section 5.2). Adifferent approach would be to decentralize each component’s network, in a similar fashion as forDDMAC in [44]. Even though the states remain centralized and st constitutes the input for everyagent, there are as many networks and weights θi as the control points, i.e. the components of thesystem. This means, each agent chooses an action independently, but they are still aware of oneanother’s condition, owing to the common input they are getting. The described architecture isillustrated in Figure 53.
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Figure 53: PPO architecture - Centralized states and decentralized actions

103



6 DISCUSSION - CONCLUSION

A variation of this architecture would be to group the elements that belong to the same floor.From an engineering point of view, it is a valid assumption that columns of the same floor wouldstochastically be described by a single neural network. Also for this option, the state st whichcontains the damage and the deterioration rate of all components, would be common for all 3networks (centralized states). The output of these floor networks would still be a softmax, i.e. πθi ,from which two actions would be sampled (one for each column) during every decision step, asdepicted in Figure 54. The validity of this proposal can be further backed up if in the case of a
decentralized 6 sub-network architecture (Figure 53) the agent chooses eventually symmetricalactions, meaning that similar decisions are made for the columns that belong to the same floor.

Figure 54: PPO architecture - Centralized states and decentralized actions - Floor variation
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Lastly, another idea for an actor network architecture would be to consider in the inputs an ID foreach component. There will be only one network and shared parameters θ, which would output asingle policy πθ with three probabilities which would refer to the component with the given ID. Thestate st containing information for the whole structure will remain as is in the input layer (centralizedapproach), and there will be six 6 forward propagations of the actor network to obtain the six 6component policies. This idea is depicted in Figure 55.

Figure 55: PPO architecture - Component’s ID
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An interesting idea for a future investigation is the inclusion of the stochastic parameters A and B ,which are updated in every decision step, to the state st , hence to the inputs of the neural networks.This modification could lead to the agent making more confident decisions in the later decisionsteps when it has developed a greater knowledge about the deteriorating environment. Such afeature would also be an important advantage of the proposed methodology in comparison withthe traditional approaches, which need to follow a strategy from start to end, and can not capturethe decrease of the uncertainties through continuous model updates, subsequently the increase ofthe decision-maker’s confidence.
What is more, a worthy addition to this framework would be to account for different/additionalactions. One particularly interesting and realistic action scenario would be to reward the groupingof the components’ maintenance. More specifically, this can highlight how probable would it be forthe agent to choose a single component’s action at a higher cost, instead of waiting for other onesto deteriorate further and perform maintenance to more members during the same decision step.This can be modeled using a fixed base cost, e.g. for the maintenance crew to reach the structure’svenue, and add to that the cost of the maintenance actions.
On a more technical note, currently, PPO trains the agent using a rollout buffer, i.e. the storedsamples are discarded after their use. Alternatively, to reuse the samples and tackle more efficientlythe stochasticity of the problem, a replay buffer can be employed, that will keep the samples evenafter the training. During the training a weighted sampling can be applied, for the more recentsamples (generated by more recent policies) to be more important compared to the old ones ([61],[43]).
Lastly, as already mentioned, the modeling choice of the failure and its corresponding cost, playan important role in the ability of the DRL agent to beat the benchmark. To verify this argument,it would be useful to perform a sensitivity analysis for various scenarios of risk of failure cost.Unfortunately, although such runs were initiated for this thesis as well, the computational time wasrestricting and the proper training of the agent along with hyper-parameter exploration was notpossible.
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A Appendices

A.1 Appendix 1 - Case Study

A.1.1 Load Case

To begin with, it should be mentioned that the calculations of the applied loads are made in anapproximate fashion, since the case study is not an existing structure, meaning that any assump-tion could be justified as valid. This section aims to describe the step-by-step procedure of loadcalculation even for a real life application.
The elastic quasi-static forces per floor of the frame will be calculated according to the provisionsof Eurocode 8 and the elastic response spectra. Using Equations (3.2) - (3.5) provided in Clause3.2.2.2 of EN1998-1 [62], and the values included in Table 17, the elastic response spectrum can bedrawn21.

Table 17: Values of the parameters describing the recommended Type I elastic response spectra [62]

Ground type S TB (s) TC (s) TD (s)

A 1.00 0.15 0.4 2.0

B 1.20 0.15 0.5 2.0

C 1.15 0.20 0.6 2.0

D 1.35 0.20 0.8 2.0

E 1.40 0.15 0.5 2.0

From the eigenanalysis of the frame, the eigenfrequencies are derived, with the fundamental onebeing f1 = 4.42Hz, meaning that the fundamental period is T1 = 0.226sec. Based on this period, andthe drawn elastic response spectrum, the design ground acceleration is derived Sa,el = 6.769m/s2

as illustrated in Figure 56.
21It is assumed that for the current application the ground type is C
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Figure 56: Elastic response spectrum

A simplified mass model for the frame is presented in Figure 57, where M represents the mass of thetwo columns and the beam of each floor. In particular, accounting for structural steel’s mass density,
ρ = 7850kg/m3 and the geometric dimensions of the members (cross-sectional area and length),
M is calculated to be 1250kg. Following this assumption, that the mass per floor is concentrated,the elastic quasi-static forces, are calculated as follows:

Fel ,i = Sa,elΓmi ϕi (58)
where,

mi = mass at floor i [kg]

ϕi = first eigenvector value, corresponding to floor i [−]

Γ= modal participation factor, ∑
ϕi ·mi∑
ϕ2

i ·mi
[−] ( for a diagonal mass matrix M)

The first eigenvector is plotted also in Figure 57.

ϕ=


0.33

0.66

1.00

 , M =


1250 0 0

0 1250 0

0 0 1250

 , Γ= 1.288
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The needed quantities to calculated the quasi-static forces are included in Table 18.
Table 18: Elastic quasi-static forces based on EN1998-1 [62]

Floor, i φi Floor mass Γ Sa,el Fel, i

[-] [-] [kg] [-] [m/sec2] [kN]
1 0.33 1250 1.288 6.769 3.6

2 0.66 1250 1.288 6.769 7.2

3 1.00 1250 1.288 6.769 10.8

Figure 57: Simplified model of the frame

The superposition of these three concentrated loads will be now transformed into a triangular one,of value qd at the top node, as depicted also in Figure 57.
3∑

i=1
Fel, i = 1

2
3L qd

⇒ qd = 3.6kN/m (59)
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A.1.2 Deterioration

In the current project, the damage d(τ) is defined as the cross section loss, i.e. the ratio of thecurrent cross-section area at deterioration rate τ, over the initial one.
d(τ) = A(τ)

A0

However, from a more pragmatic point of view, the damage, which is usually a reduction in thicknessdoes not affect in the same way the flexural and the bending stiffnesses. The correlation betweenthese two reductions is elaborated in this section.
Denoting as c the corrosion penetration depth, and assuming that it is constant along the perimeterof the cross-section (Figure 38), the initial stiffnesses are:

A0 = 2 t f b f + tw hw (60)
I0 = 2

[ 1

12
b f t 3

f +b f t f (
hw + t f

2
)2]+ 1

12
tw h3

w (61)
where t f ,b f are the thickness and the width of the flange, and tw ,hw are the thickness and theheight of the web, as displayed in Figure 58.

Figure 58: I-beam cross-section

The degraded cross-sectional area is:
A = 2(t f −2c) (b f −2c)+ (tw −2c) (hw +2c) (62)
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Subsequently, it holds:

A0 d = A

⇒ [
2 t f b f + tw hw

]
d = 2(t f −2c) (b f −2c)+ (tw −2c) (hw +2c)

⇒ 4c2 +2c (tw −hw −2 t f −2b f )+ (1−d)
[
2 t f b f + tw hw

]= 0

⇒ c =
−2(tw −hw −2 t f −2b f )±

√(
2(tw −hw −2 t f −2b f )

)2 −16(1−d)
(
2 t f b f + tw hw

)
8

(63)
Then based on this value of corrosion penetration depth, c , the degraded moment of inertia is:

I = 2
[ 1

12
(b f −2c) (t f −2c)3 + (b f −2c) (t f −2c)

(hw + t f

2

)2 + 1

12
(tw −2c) (hw +2c)3

] (64)
Concluding, using Equations 63, 62, 64, the degraded stiffnesses are calculated based on thedamage of every decision step.
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