Optimal maintenance of deteriorating systems
integrating deep reinforcement learning and
Bayesian inference

MSc Thesis
Civil Engineering
Structural Engineering track

Student
Christos Lathourakis | 5143616

Assessment committee

Dr. C. P. Andriotis (Daily Supervisor)
Dr. A. Cicirello (Chair)
Dr. A. A. Nunez Vicencio

Delft
e t University of
Technology

“Wir miissen wissen. Wir werden wissen”
David Hilbert (1930)

ABSTRACT

An issue of utmost significance constitutes the maintenance of engineering systems exposed to
corrosive environments, e.g. coastal and marine environments, highly acidic environments, etc. The
most beneficial sequence of maintenance decisions, i.e. the one that corresponds to the minimum
maintenance cost, can be sought as the solution to an optimization problem. Owing to the high
complexity of this sequential decision optimization problem, traditional methods such as threshold-
based approaches, fail to arrive at an optimal strategy, while at the same time the commonly used
offline knowledge about the environment can not capture efficiently the stochastic way in which
an engineering system deteriorates. Over the last few years, Deep Reinforcement Learning (DRL)
has been proven a promising tool to tackle such problems, being often limited though by the
dimensionality curse and the implications caused by large state and action spaces, an issue which
leads to simplifications like their discretization. Bayesian principles and model updating are the most
widely used tools to model accurately systems with high uncertainty, by incorporating data acquired
through monitoring devices and thus improving the knowledge about the stochastic system.

This research proposes an integrated framework that aims to determine an optimal sequence
of maintenance decisions over the lifespan of deteriorating engineering systems, combining
the aforementioned core concepts of Deep Reinforcement Learning (DRL) and Bayesian Model
Updating (BMU). More specifically, it investigates different Deep Reinforcement Learning (DRL)
algorithms, namely Double Deep Q-Network (DDQN), Advantage Actor Critic (A2C), and Proximal
Policy Optimization (PPO), while the updating of the uncertain parameters is performed through
sampling, i.e. No-U-Turn Sampler (NUTS). All these tools will be first applied to elementary
problems for the sake of verification and validation, while the culmination of this research is the
application of the framework on a more realistic and complicated, multi-component structure. The
obtained results are compared with benchmark performances to properly showcase the efficiency
and the weaknesses of the tool.

ACKNOWLEDGMENTS

| always considered the coupling between computer science and civil engineering fascinating. Back
in November, | had a solid background in structural engineering and Python as tools in my hands,
and zero experience on Deep Reinforcement Learning (DRL) and Bayesian inference. | was willing

to dive into unknown fields, gain new practical and theoretical knowledge, and expand my skill set.

My mentors seemed more than certain that | could pull this off, and | am grateful for their trust and
glad for proving them right seven months later. Of course, this amazing experience, and unique
opportunity to learn and grow, would not have been the same without the contribution of many
people whom | would like to thank.

First of all, | would like to express my gratitude to my mentors Charalampos Andriotis and Alice
Cicirello for their tremendous assistance and support during this project. Their passion for the field is
an ever-motivating factor that was and keeps inspiring me. They provided me with incredible insight
and feedback, and their total guidance was a key factor in completing this project. | want to also
thank Alfredo Nunez Vicencio for his valuable input and his constructive comments that improved
significantly aspects of the project. Lastly, | am grateful for the genuine help of Ziead Metwally, who
was always willing to discuss with me various challenging issues and provide me with valuable insight.

Last but not least, | would like to thank my friends and family, both back in Greece and the
Netherlands. In particular, | am thankful to Arte for being a friend and supporter of mine for
longer than | can remember, Lisa and Matteo, for the unique trips, dinners, and brunches, Giorgos
and Maria, for the countless movie and board game nights we had, my good friend Kostas, for
continuing to be the best candidate to discuss any new project | set my hands on, and many others
| would like to include, for being part of my life and supporting me in their unique way. Special

thanks to my dear friend and partly roommate Leo for being part of so many beautiful experiences,

but this time also for the extra computational power he generously granted me during this project. |
could not quantify the contribution of my partner Anastasia to every little or big achievement of my
adult life. This one could not differ, with her support in every daily aspect and her encouragement
for me to keep pushing forward, played a vital part in me completing this journey. Finally, | would
like to thank my brother Nikos and my mother Zoi, who always supported and believed in me, and
trying to make them proud has always been a driving factor.

Christos Lathourakis
Delft, July 2022

Contents

Acronyms

1 Introduction
11 Motivation
1.2 Problem Statement
1.3 Research Question
1.4 Research Methodology
1.5 Thesis Structure

2 Literature Review
2.1 Markov Decision Process (MDP)
2.2 Partially Observable Markov Decision Process (POMDP)
2.3 Reinforcement Learning (RL)
2.4 Deep Reinforcement Learning (DRL)
Deep Q-Network (DQN)
Double Deep Q-Network (DDQN)
Advantage Actor Critic (A2C)
Proximal Policy Optimization (PPO)
Other Deep Reinforcement Learning (DRL) algorithms
2.5 Bayesian Model Updating (BMU)
2.6 Deterioration Processes
2.7 Research gap
2.8 Conclusions

2.41

242
243
244
2.4.5

3 Methodology
3.1 General Framework
3.2 Sampling Algorithm
3.3 Deep Reinforcement Learning (DRL) algorithms

Double Deep Q-Network (DDQN)

3.3.2 Advantage Actor Critic (A2C)
3.3.3 Proximal Policy Optimization (PPO)
3.4 Conclusions

3.31

4 Verification, Validation and Benchmarking

4.1 Toy Problem
Problem Description
Discrete case
Continuous case

411
412
413
4.2 Validation
421

Bayesian Inference

CONTENTS

4.2.2 Deep Reinforcement Learning (DRL) algorithms
4.3 Benchmarking

4.4 Results
441

Case Study

51 Problem Description

5.1.1

51.2
513
514

5.4 Results

5.5 Conclusions

Discussion - Conclusion

6.1 Discussion of results
6.2 Limitations
6.3 Future Development

Appendices

Al Appendix 1 - Case Study

Al
Al2

Discrete case
4.4.2 Continuous case
45 Conclusions

Deterioration Model
Probability of failure
52 Framework
5.3 Benchmarking

Deterioration

CONTENTS

LIST OF FIGURES

List of Figures

O 00O NoONULT MW N

— — e e))))
NouokxwN=90

N NN DNDN AR

25

26
27
28
29
30
31

32
33
34
35
36
37

Problem Statement - General Framework
Research Methodology flowchart
Core Python dependencies’
The agent-environment interaction in an Markov Decision Process (MDP) [15]
Non stationary Gamma process describing the damage evolution over 70 years . . .
Problem conceptual breakdown - Motivation for the selectedtools
Graphical Model of the employed POMDP
Proposed Framework
Actor-critic Deep Neural Network (DNN) architectures 2
Problem conceptual breakdown - Motivation for the selected tools and algorithms .
Single Degree of Freedom (SDOF) oscillator
Repair by reducing thedamage D(7)
Repair by reducing the deteriorationratet
Repair by reducing both the damage and the deteriorationrate
Belief vector, bfordiscretecase
Transition matrix, P; fordiscretecase L
Transition matrix, E for discrete case explanation L L.

Double Deep Q-Network (DDQN) DNN architecture for the discrete toy problem .
Actor-critic DNN architecture for the discrete toy problem
Framework flowchart for thetoy problem
Failure Probability calculation
DDQN DNN architecture for the continuous toy problem
Actor-critic DNN architecture for the continuous toy problem
Posterior distributions of parameters A, B after 5 iterations of Bayesian Inference

and No-U-Turn Sampler (NUTS)o
Posterior distributions of parameters A, B during 20 iteration of Bayesian Inference

and NUTS . . L
All three algorithms on the CartPole-vO environment
DDQN and Proximal Policy Optimization (PPO) on discrete SDOF environment . .
DDQN and PPO policy realizations on discrete SDOF environment
DDQN and PPO on continuous SDOF environment
DDQN and PPO policy realizations on continuous SDOF environment
Probability of failure for 50 policy realizations, for both DDQNand PPO
Probability of failure for 50 policy realizations, for both DDQNand PPO
Updating of parameter A for nine (9) of theepisodes
Updating of parameter B for nine (9) of theepisodes
Probability of failure for 50 policy realizations
Structural system employed forthe Case Study
First three eigenmodesof theframe

vi

LIST OF TABLES

38 Degradation of the IPE cross-section 74
39 Cross section properties deterioration e 75
40 Beliefupdatingflowchart 76
41 Case StudyBayesianinference 77
42 Linearisation of the Limit State Surface (LSS) M(U) = 0 at the design point U™ in

the uncorrelated standard normal random variables Uspace 80
43 Comparison between First Order Reliability Method (FORM) and Monte Carlo (MC) 82
44 PPO architecture - Centralized statesand actions 84
45 Case Study completeflowchart 85
46 Policy realization for all components - CBM Benchmark 89
47 TBM benchmark costs overreplaceintervals 90
48 PPOappliedoncasestudy 92
49 Policy realization for all components (constrained) 94
50 Policy realization for all components for different training episodes - Leftside 96
51 Policy realization for all components for different training episodes - Right side . . . 97
52 Policy realization for all components (constrained)-3D 100
53 PPO architecture - Centralized states and decentralized actions 103
54 PPO architecture - Centralized states and decentralized actions - Floor variation . . 104
55 PPO architecture - ComponentsID, 105
56 Elasticresponse spectrumot 108
57 Simplified modelof theframe 109
58 I-beam cross-section 10

List of Tables

1 Action-space fortoy problem. 39
2 Rewards (costs) for thetoy problem L. 40
3 Toyprobleminputdata. 40
4 Countersused forDDQN 46
5 CountersusedforPPO 46
6 Parameters of the stochastic deteriorationmodel 49
7 Benchmark maintenance thresholds and costs - Toy Problem 60
8 DDQN hyperparameters - Toyproblem 61
9 PPO hyper-parameters - Toyproblem 61
10 Deep Reinforcement Learning (DRL) algorithms’ performance on continuous Toy

Problem 64
11 Case study frame geometry and properties 73
12 Rewards (costs) forthecasestudy 74
13 Casestudyinputdata. 79
14 CBM Benchmark maintenance thresholds and costs - Case Study 88
15 PPO hyper-parameters-Case Study 91

Vii

LIST OF ALGORITHMS

16 Benchmark and DRL performanceonthe CaseStudy 93
17 Values of the parameters describing the recommended Type | elastic response
spectralb62] 107
18 Elastic quasi-static forces based on EN1998-1[62] 109
List of Algorithms
1 Stormer-Verlet (“leapfrog”) integrator 26
2 Hamiltonian Monte Carlo (HMC) s e i 27
3 BuildTreedrecursivefunction 28
4 Heuristic for choosing an initial valueofe 29
5 No-U-Turn Sampler (NUTS) with Dual Averaging 30
6 Double Deep Q-Network (DDQN) e 32
7 Advantage Actor Critic (A2C) o 33
8 Proximal Policy Optimization (PPO) [1] 34
9 Double Deep Q-Network (DDQN) - Discrete Toy Problem 47
10 Proximal Policy Optimization (PPO) - Discrete Toy Problem 48
11 Proximal Policy Optimization (PPO) agent training - Toy problem. 49
12 Deterioration model parameters updating - Toy Problem 51
13 Double Deep Q-Network (DDQN) - Continuous Toy Problem 55
14 Proximal Policy Optimization (PPO) - Continuous Toy Problem 56
15 Deterioration model parameters updating-Case Study 78
16 First Order Reliability Method (FORM) geometric interpretation 81
17 Proximal Policy Optimization (PPO) -CaseStudy 86
18 Proximal Policy Optimization (PPO) agent training - Casestudy 87

viii

Acronyms

A2C

Al
ANN

BMU

CBM
CDF
CNN
cv

DCMAC
DDMAC
DDPG
DDQN

DL
DNN
DOF
DP
DQN
DRL

FE
FEM
FORM

Advantage Actor Critic i, iv, viii, 14, 15, 31-33, 35, 44, 45, 54,
59,70, 83,99

Artificial Intelligence 22
Artificial Neural Network 13

Bayesian Model Updating ii, iv, 1, 3, 16, 22-24, 55-57, 73,
86, 99,102

Condition-Based Maintenance vii, 88, 89, 92, 93, 98, 99
Cumulative Distribution Function 80
Convolutional Neural Network 13

Coefficient of Variation 49, 79

Deep Centralized Multi-agent Actor Critic 16, 84
Deep Decentralized Multi-agent Actor Critic 16, 102
Deep Deterministic Policy Gradient 16

Double Deep Q-Network ii, iv, vi-viii, 14, 31, 32, 35, 44—47,
52-55, 59, 61-67, 69, 70, 83, 99

Deep Learning 1,13

Deep Neural Network vi, 12-14, 31, 44, 45, 52-54, 83
Degree of Freedom 72

Dynamic Programming 10, 11

Deep Q-Network iv, 13, 14, 20, 31

Deep Reinforcement Learning ii-v, vii, viii, 2, 3, 11-14, 16,
21-24, 31,32, 44, 51, 52, 57, 59, 61, 62, 64,73, 81,83, 86, 93,
99-102, 106

Finite Element 73, 76, 78, 81
Finite Element Method 72
First Order Reliability Method vii, viii, 79, 81, 82, 86

Acronyms

HCRL Hierarchical Coordinated Reinforcement Learning 21
HMC Hamiltonian Monte Carlo viii, 17, 25-28

KDE Kernel Density Estimation 51, 78

KL Kullback—Leibler 15

LSF Limit State Function 79

LSS Limit State Surface vii, 79—81

MC Monte Carlo vii, 17, 79, 81, 82

MCMC Markov Chain Monte Carlo 17, 25, 43
MDP Markov Decision Process iv, vi, 8—11

NUTS No-U-Turn Samepler ii, vi, viii, 18, 24-26, 28, 30, 35, 43, 51,
57,58,78

OMA Operational Modal Analysis 2, 24, 36,37,72,77

PDF Probability Density Function 19, 79

POMDP Partially Observable Markov Decision Process iv, vi, 8, 10, 11,
18,20, 23, 43

PPO Proximal Policy Optimization ii, iv, vi-viii, 15, 16, 31, 32, 34,
35, 44-46, 48, 49, 54, 56, 59, 61-67, 69, 70, 78, 83, 84,
86-88, 91-93, 99, 103-106

RC Reinforced Concrete 37

RelLU Rectified Linear Unit 61

RL Reinforcement Learning iv, 1, 2, 11-14
RNN Recurrent Neural Network 13

RVD Random-Variable Degradation 18

SDOF Single Degree of Freedom vi, 36, 46, 60, 62—65, 73, 88

SHM
SLS
SMC
SMDP
SPD

TBM
D
TMCMC
TRPO

Vol

Structural Health Monitoring 1, 24
Serviceability Limit State 72, 99
Sequential Monte Carlo 17

Semi Markov Decision Process 8

Stochastic-Process Degradation 18

Time-Based Maintenance vii, 88, 90, 92, 93
Temporal Difference 11
Transitional Markov Chain Monte Carlo 17

Trust Region Policy Optimization 15, 70

Value of Information 16

Acronyms

xi

1 INTRODUCTION

1 Introduction

1.1 Motivation

An ever-important issue regarding civil infrastructure or in general engineering systems is their
deterioration over time. Deterioration is a serious concern since it often leads to the reduction of
structural capacity as well as the reliability and service life of a system. Many instances showcase
the importance of structural degradation, with structures located in coastal and marine environ-
ments being the most common cases, as well as structures subjected to cyclic loading, hence
fatigue. Typical examples of deteriorating systems constitute bridges [2], [3], [4], offshore plat-
forms [5], [6], [7], and wind turbines [8], [9], [10]. In particular, in cases of structural steel, it is
most likely that galvanic corrosion will occur due to the atmospheric exposure in a marine envi-
ronment, whereas the deterioration of reinforced concrete elements takes place in the form of
corrosion of the reinforcement and/or spalling of the concrete. Lastly, fatigue can also lead to signifi-
cant degradation of the structure, being responsible for the formation and the propagation of cracks.

However, these degradation processes are highly stochastic, and their prediction often requires a
probabilistic analysis, having first expressed quantitatively the uncertainties, which are involved
in these physical procedures. Therefore, the maintenance of a deteriorating system constitutes a
complex sequential decision-making problem under uncertainty, for which it is often intractable to
find closed-form solutions concerning the optimal actions that accomplish a plethora of life-cycle
objectives. Additionally, the existence of multiple components, their interaction, and their ability to
mitigate one anothers failure, contribute to the enhancement of the uncertainty and the difficulty
to define an optimal sequence of actions that will fulfill long-term goals.

To define the actual degradation of a system, a common practice is to employ new information
derived from monitoring devices, to update the prior knowledge of a system's parameters. This
non-destructive damage assessment, i.e. incorporating observations based on Structural Health
Monitoring (SHM), can reflect the actual deterioration, leading to a decreased variability of the
system’s current condition and structural capacity, hence to more realistic and accurate modeling
of it, allowing the decision-maker to proceed with more informed and rational decisions. The
majority of these updating techniques rely on Bayesian principles and the notion of Bayesian Model
Updating (BMU).

As far as the optimal maintenance policy is concerned, due to the significant amount of deterioration
states, possible maintenance actions, and the decision steps under consideration, analytical
solutions for determining the wanted optimal sequence of actions are more often than not
computationally heavy. The so-called curse of dimensionality has been alleviated with the use
of Reinforcement Learning (RL) techniques, which were able to provide approximate solutions
for optimal maintenance policies for engineering systems. Even further progress was achieved
when, in 2014, DeepMind patented an application of RL techniques to Deep Learning (DL), with

1 INTRODUCTION

the scope of playing Atari games better than human experts [11]. This new approach, namely Deep
Reinforcement Learning (DRL), overcame the limitations that traditional RL had, and was proved to
be a promising tool for finding near-optimal control policies.

1.2 Problem Statement

The scope of this thesis is the development of an integrated framework that will combine DRL
techniques with Bayesian Inference, with the former tackling the sequential decision optimization,
while the latter one would deal with the accurate modeling of the stochastic deterioration process.
The ultimate goal of this tool is to determine the optimal sequence of maintenance decisions that
result to the minimum cost throughout the service life of an engineering system. To elaborate further
on the interaction between the various elements that will be used in this framework, response
quantities of the system, that are contaminated with noise, will be fed into an Operational Modal
Analysis (OMA) procedure, in order to obtain modal characteristics (also including some uncertainty,
through additional noise). Furthermore, the transition of the system to its new state will be described
by a stochastic deterioration model, which will be constantly more accurate by incorporating
observations during each decision step. A generic schematic representation of the aforementioned
problem is depicted in Figure 1.

System's
Response

(+noise)

OMA

Modal Data

(+noise)

System

Deterioration Model
(stochastic)

Updated
System

Maintenance
Action

Figure 1: Problem Statement - General Framework

1 INTRODUCTION

The necessary inputs are:

« Initial (prior) distribution for system parameters (e.g. stiffness, mass, deterioration parame-
ters, etc)

« Stochastic deterioration model over time

+ Possible actions (e.g. do nothing, repair, replace, etc)

« Cost definition (e.g. action costs, risk of failure)

+ Noise interfering in observations’ monitoring

+ Time window of interest

The ouput of the proposed framework will be the optimal sequence of actions, that minimize the
cost function, over the system's service life.

It should be mentioned, that such a coupling of these two core concepts, namely DRL and BMU,
has not been done yet in the existing research (as will be thoroughly presented in Chapter 2),
especially in the field of infrastructure maintenance, a fact that highlights the innovation of the
proposed framework. Nevertheless, owing to the limited assumptions and simplifications that will
be considered for the sake of accuracy, it is likely that considerable challenges and obstacles may
be posed regarding the computational costs.

1.3 Research Question

The research question can be formulated as follows:

“How to develop an integrated framework that will efficiently couple Deep Reinforcement
Learning (DRL) algorithms and Bayesian Model Updating (BMU) when it comes to structural
systems' life cycle optimization, using vibration data/observations? ”

In order to efficiently reach the answer to the main research question, it is further broken down into
the following sub-questions:
+ How can this framework be applied in a simplified yet representative case (toy problem)?
+ Having produced sound results for the simple case, which DRL algorithm performs better?
+ Due to the significant computational cost of BMU, how can it be integrated in a more time-
efficient way?
+ Can this framework be scaled up to more complicated cases? (e.g. bigger action spaces,
complex multi-component structures, etc)

1 INTRODUCTION

1.4 Research Methodology

The research of the current problem can be structured in four main sections, as illustrated also in
Figure 2. The research framework constitutes the first part, including the motivation, the definition
of the problem statement and a clear formulation of the research question. The second part focuses
on the literature review, according to which the research objectives and questions might be refined.
Having laid the theoretical foundation, and built an informed picture of the existing research, the
tool development follows, as well as the formulation of the applications on which the proposed
tool will be tested. In the current project, two problems of different complexity will be addressed,
with the minor one acting also as a validation and verification test for the proposed framework.
The culmination of the aforementioned steps will be the evaluation of the results, accompanied
by the corresponding discussions and considerations about future developments, based on the
showcased strengths and weaknesses of the tool.

1 INTRODUCTION

t 4 N T
: Markov Decision : Lo e <
1 Processes - MDPs L
Lo a i Literature Review !
v N o T
B
: Markov Decision 1
1 Processes - POMDPs :
L) ! | Evaluation/Conclusions |
s N 1 f) 1
. . .
Motivation : Deterioration X
. Processes '
N\ J 1 \ y 1
1 N\]
p \ 4 1 Bayesian Model 1
h 1
Problem X Updating- BMU X
Statement ! - X
S g 1 Reinforcement :
1 .
_ \ 4 . . Learning - RL .
Research L, o
Question 1 Deep Reinforcement !
J 1
S : Learning - DRL 1
‘ r 1 N v 1
s R [N !
Research [Literature !] == Tool [&°°7°°7=°°7 ”
Methodology g Review X ”
N J AN J .,

Figure 2: Research Methodology flowchart

1 INTRODUCTION

The sheer amount of mathematical operations and algorithms that are required for the current
project, will be handled with Python programming language. A summary of the core libraries/packages
that will be needed, is displayed in Figure 3.

R
Fast operations on multidimensional array
NumPy . . . :
objects (linear algebra, random simulation, etc)
Scientific B

Computing ' —— ————

SCiPy Statistical operations, optimization algorithms

N
R

Probabilistic programming in Python.

PyMC3 DaDTSHIC programiung I £y
Bayesian inference, sampling algorithms, etc

-
R

API for Reinforcement Learning (RL)

Gym -
applications
N
————————
Machine Learning (ML) framework
PyTorch g (ML) .
Neural Network (NN) objects and operations
N
R
Matplotlib Vizualization, plotting of the results

Post Y

Processing ' ——M —
High-level interface for creating

Seaborn informative statistical graphics
-
R
Structural Finite Element Analysis (FEA)
Feastruct
package
Custom e
Packages —
Reliability analysis using
IO I First Order Reliability Method (FORM)

-

Figure 3: Core Python dependencies*

4Apart from the Python libraries, that are widely used for similar projects, there will be use of other, custom ones, that
were available open-source, online [12], [13]

1 INTRODUCTION

1.5 Thesis Structure

In concluding this introductory chapter, the content of the following ones will be briefly described,
further elaborating along with the research methodology flowchart (Figure 2) on the structure of
the whole thesis. In the coming chapter, the literature review is introduced (Chapter 2), followed by
the description of the methodology of the proposed framework in a generic fashion (Chapter 3). A
simple toy problem is presented in the following chapter, where the aforementioned tool is applied
(Chapter 4). Then, the developed framework is further applied to a more complicated and realistic
case study (Chapter 5), leading to the final chapter, where the main conclusions are drawn, along
with a reflection on the advantages and disadvantages of the proposed method, as well as topics
for further discussion and future work (Chapter 6).

2 LITERATURE REVIEW

2 Literature Review

2.1 Markov Decision Process (MDP)

The problem of optimal stochastic control is usually handled using an MDP, which provides a
principled mathematical methodology that can address the uncertainties of planning optimum
inspection and maintenance strategies, including uncertain action outcomes and exact observations.
The theory behind MDPs, together with further concepts that will not be covered in the current
work, like Semi Markov Decision Processes (SMDPs), State Augmentation, etc, has been analyzed
in depth in many papers, e.g. [14]. However, a basic elaboration on MDPs and Partially Observable
Markov Decision Processes (POMDPs) will be made, in order to build a foundation for the more
advanced concepts in the following sections.

The basic components of an MDP are the Environment and the Agent, while it can fully described
by the tuple:

<S; -’4) P) Ry Y)
where,
the finite set of states

the finite set of actions

the state probability matrix

Jd V= O

the reward function

a discount factor for the future rewards

~<

At each decision step ¢, the decision-maker, i.e. the agent, observes the current state s; € S, takes
an action a; € A, receives a reward R;(s;, a;) € R and moves to the next state s;.; € S based on
the environment’s transition dynamics. This procedure is displayed in Figure 4. According to the
so-called Markov property, the next state, s;,1, depends only on the current state, s;, and the
chosen action, a,, regardless from the preceding history of states and actions. The sequence of
actions followed by the agent, defines its policy, 7, that can be either deterministic or stochastic,
meaning that a policy can map states to actions or states to probability mass (or density) functions,
respectively.

2 LITERATURE REVIEW

'J Agent ||

state reward action

. RHI (

;S Environment]4—
\

Figure 4: The agent-environment interaction in an MDP [15]

The ultimate goal of an optimal policy is to maximize the sum of the discounted rewards, i.e. the
total return, G, of the chosen actions, which is given by the following formula:

T .
Gr=R(st,ar) + Y R(st41, A1) +Y* R(Sev2, Ar2) +...= Yy "' R(s;, ap) (1)
i=t
It should be noted that the total return is not deterministic, owing to the problem being stochastic.

Thus, accounting for all future state-action pairs, the action-value function, Q" (s, a,) is defined as
the expected return®over both S and A sets (Equation 2).

Q" (st,ar) =Es, 0, (Gt | 5¢, 4] (2)
It should be noted that the notation E corresponds to the expected value, i.e. the mean, while the

variables over which it is computed, are denoted as the subscripts.

Decomposing Q" into the immediate reward plus the discounted value of the successor state, leads
to the following recursive form:
Q" (s, ar) = R(sy, ar) +Es,, a,., [Y Q" (st+1,a+1) | St at] (3)
The state-value function V" (s;) is defined in a similar way, corresponding to the expected return
starting from state s; and following policy .
V7 (sp) = Eq, (G| s (4)
Since the state-value function is stochastically defined for all possible actions of policy 7, it takes

the form:

V7 (sp) = Eq, [Qn(st, al’)] (5)

2 LITERATURE REVIEW

For any MDP there exists an optimal policy . that achieves the optimal state and action-state
value function. These are formulated through the Bellman Optimality Equation as follows:

V*(s) =max |R(sp,a) +y Y. P(sir1l8,a0) V(sit1) (6)
a,eA SH1€S
Q" (spad=R(spa)+y Y, Plses1lspadmaxQ(se1, drs1) (7)
se1€8 !

The symbol P(-) corresponds to the probability of a quantity; a notation that will be used for the
rest of the thesis.

When the optimal action-state value function is known, the optimal policy is known, thus the MDP
is solved. Since the Bellman Optimality Equation is non-linear, it is often solved using Dynamic
Programming (DP) (value iteration, policy iteration), or algorithms like Q-learning and SARSA (both
will be presented in Section 2.3).

A considerable disadvantage of using MDPs for a sequential decision problem is the curse of

dimensionality, as with an increase in the state-space, the computational cost grows exponentially.

Therefore, in the existing literature, there are mostly attempts that choose discrete deterioration
states instead of continuous, e.g. [16], [17].

2.2 Partially Observable Markov Decision Process (POMDP)

A significant aspect in the exploitation of the ever-increasing available observation data is the degree
of confidence the decision-maker has in the received input. This issue is undoubtedly connected with
uncertainties regarding various environmental and loading conditions, modelling errors, inefficient
measuring systems or inaccuracies in the information transmission network [18]. This is why, more
often than not, models based on MDPs are limited by the need of perfect observations, leading
to their extension to Partially Observable Markov Decision Processes (POMDPs), which take into
consideration the partial observability of the systems’ information in order to approach the optimal
sequence of maintenance decisions based on uncertain structural data. In these cases, when the
states are not fully observable, at each decision step the agent gets a belief, b, over the states of the
system. Since the Markov property still holds, this probability distributions over S is sufficient to
describe the history of actions and observations. Starting with an initial belief, b, the agent takes
an action, a;, but instead of receiving the new state, gets an observation o;., € Q, with which the
belief is updated, using Bayesian principles.

b(st+1) =P(ses1 | 0111, ar, by)

P(ot+11St+1,ar)
= P(sii1 | 8¢, ap) b(sy) 8
P(or+11 by, ar) stgs e T (8)

10

2 LITERATURE REVIEW

In a similar notion with MDPs and assuming that the beliefs are the states of this environment,
Equation 6 can be rewritten for POMDPs.

V(b)) =max | > b(s)R(ss,a)+y Y, Polb,a)V(bs1) 9)
@A | 5eS 0€Q)

POMDPs have been used in many cases for infrastructure maintenance in the existing literature
([19], [20]) often along with point-based algorithms ([21], [22], [23], [24], [25]) demonstrating that
they can model more efficiently complex decision problems outperforming heuristic-based policies.
However, they face limitations when it comes to the solution of large action- and state-spaces,
and even greater ones in the case of continuous state spaces. The most significant difficulty lays
on the updating of the belief, with Equation 8 (which corresponded to discrete spaces) taking the
following form:

D' (s141) = P(s¢41 1 0¢41) < P(0g41 | St41, ar) f P(st+11 8¢, a) b(sp)ds; (10)
St

Because the integral of Equation 10 can not be calculated in a closed form, many researchers
have attempted to use other mathematical ways that work around this issue ([26], [27], [28]). This
updating of the belief can be broken down into two steps, the transition step, during which the belief
propagates in time according to a predefined conditional probability distribution [24]:

b(ss+1) If P(st+1 1 8¢, a0) b(spds, (11

and the estimation step, with the belief now updating based on obtained evidence by means of
Bayes' rule:

b'(st4+1) = P(st11 1 0041) o< P(0g41 | S¢41, ar) b(Sp41) (12)

These drawbacks and difficulties of POMDPs led to the need of developing an RL or DRL
methodology, capable of tackling them.

2.3 Reinforcement Learning (RL)

RL is often an advantageous technique to deal with sequential decision optimization, especially
when knowledge about the system is uncertain or unknown. Indeed in the existing literature there
are even examples that tackle optimal maintenance planning in the absence of a deterioration
model [29]. The agent interacts directly with the environment by taking actions and adjusts the
policy based on the information received back, aiming to identify the optimal one.

RL algorithms are divided into two main categories, model-based and model-free. In the former
group, e.g. DP (policy iteration, value iteration), the model must provide state transition probabilities
and expected rewards for every state-action pair in order to identify the optimal policy, whereas
algorithms in the latter category, such as Temporal Difference (TD) learning, SARSA, Q-learning,

"

2 LITERATURE REVIEW

rely on real samples from the environment, which is a feature that makes them applicable in various
different cases. Both model-based and model-free approaches were tested along with Q-learning
in [30], for a problem of maintenance optimization, with the system'’s discrete state transitions
being defined through the assumed degradation model.

A second major distinction between RL algorithms, is the one among on-policy and off-policy. In
on-policy learning the Q(s, a) function is learned through actions of the current policy, 7, while
in off-policy learning, it is learned while taking different/random actions. Namely, SARSA is an
on-policy algorithm, that updates the state-action value function as follows:

Q(st, ar) — Qs ar) + a (R(s, ar) +y Q(S41, ars1) — Q(ss, ay)) (13)

where a,., is the action taken according to policy 7.

On the other hand, Q-learning is an off-policy learning algorithm, that updates the state-action
value function in the following way:

Q(ss,ar) — Q(sy,an) +a |R(sp,a) +y max Q(Sr+1, ar+1) — Q(st, ar) (14)

where a;,; can be any of the possible actions.

In Q-learning, the value functions Q for any state-action pair are stored in a table, and they are
updated by interacting with the environment, i.e. taking actions and receiving rewards. In order to
explore every possible action, hence, every unknown area of the Q-table, usually an e-greedy policy
is used, in order to balance out exploration and exploitation. More specifically, the agent will exploit
the already known Q-values, or explore, picking an action at random, based on the following rule:

aeA (15)

maxQ(sy, a;) with probability 1 —¢
ar =
random a; € A with probability

In [31], a customized version of Q-learning is introduced, namely "safe Q-learning", that includes a
model-based safe exploration for near-optimal management of infrastructure, in order to decrease
the variance induced by choosing random actions (exploring).

However, there are two main limitations in the classic Q-learning approach, which are (1) the curse
of dimensionality when the state- and action-space are large, and (2) the inability of this algorithm
to visit all states, hence, to estimate the Q-values for the whole table.

2.4 Deep Reinforcement Learning (DRL)

To tackle the aforementioned limitations, the Q-function is approximated through a Deep Neural
Network (DNN). This way, the state-action value function is reparameterized, and is now expressed

12

2 LITERATURE REVIEW

in terms of parameters 6, in order to alleviate the computational cost and instabilities that large
state- and action-spaces cause.

2.4.1 Deep Q-Network (DQN)

The state, s, is given as an input to the DNN, and by using a suitable number of inner layers and
activation functions, it outputs the action-state value function, Q(s;, a; | 0), for every a; € A. The
parameters, 0, i.e. the Q-network weights, are adjusted in every iteration of the agent's training in
order to minimize a sequence of loss functions that are given by the following equation:

L(O) =Es,a, | ((ve = Qlstrac 10))° (16)

with y; being the target for decision step t,

yt = IESH.l (17)

R(s¢, ay) +Y1}llaXQ(5t+1y ar1107) | st ay
t+1

In order to stabilize the learning process, tuples of (s, as, R(s;, a;), s¢+1) are being stored in a replay
buffer and are then used in batch training the Deep Q-Network (DQN) according to the following
gradient:

VoL (0) =Es, q, [(Rt(st,az) +y maﬁQ(sHl,am 1607) —Q(st,azIG))VeQ(st,at | 9)] (18)

ar1€

Each tuple of the experience replay is potentially used in many weight updates, which leads to the
use of non-consecutive uncorrelated samples, hence, to the reduction of the variance through the
updates. Additionally, as it is shown in Equations 17, 18, a target network is used, with parameters
0. This target network takes the values of the original one with a delay, which contributes to the
stability of the training.

Various examples exist in the literature, using DQN including different DNNs to approximate the
value functions. In the initial coupling of RL and DL by DeepMind [11], Convolutional Neural Networks
(CNNs) were used in order to decompose the Atari’s screen into a rectangular grid that was fed into
the network. Similarly, a DRL framework for optimal maintenance, again with a CNN is developed
in [32]. Moreover, in both [33] and [34], Recurrent Neural Networks (RNNs) are used for the policy
optimization while in a partially observable environment. Finally, an Artificial Neural Network (ANN)
is used in [35] in order to tackle the two-dimensional state-space limitation, existing in cases when
CNNs or RNNs were chosen instead. This approach was followed in [36], too, as well as in [37]
where an ANN was used both for the multi-component system’s maintenance but also for the
creation of a surrogate model.

13

2 LITERATURE REVIEW

2.4.2 Double Deep Q-Network (DDQN)

It is known that standard DQN suffers from an overestimation problem for the action values in
noisy environments, thus, an even more stable algorithm is DDQN that uses both the target and
the original network in the calculation of y;, in particular:

Vi =R(ss,a:) +y Q(sr41,argmaxQ (si+1, a4110) [07) (19)

In [38] a DDQN is used for the maintenance planning of a stochastically deteriorating system,
accounting also for the dependency between its multiple components. DDQN is thoroughly
explained in [39].

2.4.3 Advantage Actor Critic (A2C)

Another common approach in both RL and DRL is to instead of interacting with value functions,
change directly the policy, 7. In the case of DRL, when a DNN is used to approximate 7, the training
is done through the gradient:

Vo] () =Es,q, | Y Vologm(a,|s:,0)Qlss, ar) (20)

t=0

where J(0) is the objective function, i.e.

J©) =) v'R(st,a;) (21)

=0

One way to reduce the variance and improve policy gradient methods is by subtracting a baseline
from the Q-function. This is why the advantage value is being introduced:

A(sg,ar) = Q(sg,ae) — V(sy) (22)

corresponding to how much better a specific action is, compared to the average, general action at
the given state.

In order to compute all terms in Equation 20, the policy gradient requires also an estimation of a
value function. This issue led to the creation of the so-called Actor-Critic methods, which use a
value approximator (critic) to train the parameters of the policy approximator (actor). Two DNNs are
employed, one for each of the two approximators (actor-network, critic-network), with the latter
being used for the V-function estimation, since Equation 22 can be rewritten through the Bellman
equation as follows:

A(sg,ap) = R(sg,ap) +y V(see1) — V(sy) (23)

14

2 LITERATURE REVIEW

This leads to the Advantage Actor Critic (A2C) algorithm, which aims to the minimization of:

VoJ(0) =Es,q, | Y Vologm(a;|s:,0) (R(ss,ar) +yV(si1) = V(sy))
=0

=Es,a, | 2 Vologm(as | s;,0) A(sy, ar) (24)
=0

2.4.4 Proximal Policy Optimization (PPO)

In order to avoid destructively large policy updates in policy gradient algorithms, the trust region
methods were developed. In particular, the Trust Region Policy Optimization (TRPO) algorithm,
aims to maximize the "surrogate” objective function, under the constraint that the Kullback—Leibler
(KL) divergence between the old and new policy is less than a constant 6.

mg(as| sy)
maximize E, | ———— 4, (25)
0 Moy (@t | S¢)
with E; [KL[mg (| 0, 79(- | 51)]] <& (26)
or, using a penalty term instead of a constraint:
imize £, | 2y BKL [y - 50,701 50)] (27)
maximize —A; - Ty, (150, mo(- | s
9 t neow(at|st) t eold t 6 t

An improvement to TRPO is the PPO algorithm. Although, an in depth description of this method
is presented in [40], a brief reference to its main steps/equations will be also included here.

Denoting the probability ratio,

wg(a; | sy)
7,(0) = o (28)
ﬂ:eold (al’ | St)

the TRPO "surrogate” objective becomes:

7 (ar | st)

LCPI (8) — [Et
”Hold (at | Sl)

A | =E¢[r(0) Ay (29)

The superscript CPI refers to conservative policy iteration, while the maximization of L’ would

cause large policy updates. Therefore, the objective needs to be adjusted so as to penalize policy
changes that move r,(0) away from 1. Thus, the clipped surrogate objective is considered instead:

LYMP () =, [min (r:(0) Ay, clip (r,(0),1 —€,1 +€) A;)] (30)

15

2 LITERATURE REVIEW

The term, clip (r/(0),1—¢,1 +¢€) A;, modifies the surrogate objective by clipping the probability ratio,
not allowing it to move outside the interval [1—¢,1 +€].

PPO is used to optimize the maintenance of renewable energy systems in [41].

2.4.5 Other Deep Reinforcement Learning (DRL) algorithms

Regarding different DRL algorithms, Deep Deterministic Policy Gradient (DDPG) is used in [42],
which is an actor-critic algorithm that enables the modeling of a continuous deterioration state-
space. Additionally, the development of a new algorithm, namely Deep Centralized Multi-agent
Actor Critic (DCMAC), is presented in [43] that aims for the optimal maintenance in multi-
component systems with high dimensional action- and state-spaces. Lastly, in order to address
challenges regarding stochastic optimal control, such as the curse of dimensionality in large spaces,
the curse of history, and the environment uncertainties/stochasticity, Deep Decentralized Multi-
agent Actor Critic (DDMAC) is introduced in [44].

2.5 Bayesian Model Updating (BMU)

As it has already been mentioned, in the current project, the problem of optimal stochastic control
will be combined with the notion of BMU. To be more precise, model updating constitutes an
inverse problem, meaning that, instead of knowing beforehand the exact parameters of a model to
calculate its response, observations of the system's behavior are used in order to update or calibrate
the unknown system properties. This technique can efficiently tackle the fact that many system
parameters are not deterministic, but stochastic. Additionally, in most cases the deterioration of
an existing structure can not be modeled accurately, with a Gamma process e.g. like in [38], [43],
[45] (this type of deterioration will be covered in depth in Section 2.6) or generally a relationship
of the form D(r) = A ¢® for the damage, D(), over time, ¢, e.g. like in [46]. Therefore, an updating
procedure can be useful in defining its properties during its whole service life. An extensive review
on model updating about damage assessment, including BMU is presented in [47].

It should be mentioned that, a detailed and instructive example on how to account for a structure’s
deterioration through BMU is presented in [46]. In that research, aiming to quantify the Value of
Information (Vol), periodic inspections are made, and the obtained observation are used in the
updating of the system's parameters as well as its structural reliability. A heuristic based approach
was followed regarding the life-cycle optimization.

16

2 LITERATURE REVIEW

From a more technical standpoint, Bayesian Inference is performed using Bayes Theorem, which,
assuming that 8 are the parameters of interest and D are the observations, takes the form:

P@| D)= P(D|6)P6) 31
P(D)
where,
0 : the vector of the parameters of interest
D : the vector of observations
P@) . the prior distribution

P(D|6@) : the likelihood function of the parameters 0
P(D) : the evidence
P@|D) : the posterior distribution of 8

Analyzing each factor involved in Equation 31:

« Prior distribution
The prior distribution P(0) corresponds to the initial hypothesis about the system's parameters.
It is an uninformed estimation of them, e.g. if only the upper and lower bounds are known, a
Uniform distribution among these bounds will be used.

+ Likelihood function
The likelihood function describes the degree of agreement between the observations D
and the output/result of the actual model, computed deterministically using the existing
knowledge for parameters 6

- Evidence function
The evidence function acts as a normalizing constant in Bayes Theorem. This way the
integral of the posterior distribution sums up to 1. Because the evidence is independent
from parameters 6, it does not affect the shape of the posterior distribution, hence, it can be
written:

P@|D)x P(D|6)P(0) (32)

« Posterior distribution
The posterior distribution is the updated distribution of parameters 6 with the use of the
observed response data.

A challenge lays on the sampling of the posterior distribution, because it can not be expressed in a
closed form, but only implicitly, point-wise, using a MC approach. To overcome this obstacle, many
sampling methods have been developed, in order to approximate P(@ | D). An in-depth overview of
three popular sampling methods, namely Markov Chain Monte Carlo (MCMC), Transitional Markov
Chain Monte Carlo (TMCMC) and Sequential Monte Carlo (SMC) is presented in [48]. Two of the
most well-known MCMC algorithms are Metropolis-Hastings and Gibbs sampling. However, they
often fail to converge to the posterior distribution, especially for continuous model parameters.
Therefore, more efficient algorithms have been developed and are widely used, such as Hamilto-

17

2 LITERATURE REVIEW

nian Monte Carlo (HMC), and an even more advanced variation of it, No-U-Turn Sampler (NUTS).
NUTS tends to be significantly efficient, thanks to its stability and the fact that it does not need
hand-tuning of hyper-parameters by the user. A brief elaboration on NUTS is presented in Section
3.2, whereas an in-depth presentation of it, and its many variations, is included in [49].

Concluding, the stochastic nature of this problem, and the inability to know the exact value for
the parameters of interest at every decision step, comes to highlight the need of POMDP, where
the belief, b, at every ¢, will correspond to the posterior distribution, after having incorporated the
observations D.

2.6 Deterioration Processes

As elaborated thoroughly in [50] and [51], the uncertainty associated with the evolution of degrada-
tion over time is an important consideration for the optimisation of maintenance. The commonly
used Random-Variable Degradation (RVD), where the rate of degradation®is random, can not
capture the temporal variability of the degradation, which is why a Stochastic-Process Degradation
(SPD) model is usually adopted. An efficient modelling option would be the Brownian motion with
a drift. A stochastic process that has been applied successfully in a plethora of fields (e.g. exchange
value of shares, movement of small particles in fluids, etc), however in the current application fails
to perform due to the fact that it can alternately increase and decrease, which is not the case for
a structure’s performance, which monotonically decreases. Therefore, more often than not, the
stochastic process chosen for the modelling of an engineering system's deterioration is the Gamma
process. It is a stochastic process with independent non-negative increments that have a gamma
distribution with identical scale parameter and time-dependent shape parameter. This choice has
been proven suitable to model gradual damage monotonically accumulating over time applicable
to a variety of problems e.g. wear, fatigue, corrosion, crack growth, erosion, consumption, creep,
swell, etc [50].

6For a degradation in the form of A ¢5, linear parameter A is known as the rate of degradation, while B is the non-linear
trend of the degradation law. Usually, A reflects the variability in a large population of similar components.

18

2 LITERATURE REVIEW

At every step t, the damage d follows a Gamma distribution with shape v(#) > 0 and scale u > 0.

Mathematically, its Probability Density Function (PDF) is given by:

u' (1)
Ga(d | v(t),w) = md’/m_le(_ud)l(o,oo) (d) (33)

where,

I4(d)=1 for deA
I4(d)=0 for de¢A

assuring positivity of d, and,

I'(a) =f e tds
t=0

The following properties hold for a Gamma process:

d(0)=0 with probability 1
dm)—d) ~Ga(v(t)-v(t),u) forall 7>t=0

d(t) hasindependent increments

Its first two statistical moments, i.e. the mean and the variance, are:

v(t)

[E(d(t)) = 7
v(t)
Var(d(t)) = 7

Empirical studies show that the expected deterioration at time ¢ is proportional to a power law:

vi)=ct? with ¢>0,b>0 (34)
which, as already mentioned, is a simplified deterioration model employed in many projects in the

existing literature [46].

A typical arbitrary (in terms of shape and scale parameters) example of such a deterioration process
is plotted in Figure 5.

19

2 LITERATURE REVIEW

12
—— mean of gamma process

1.0

0.8

Damage

0.4
0.2

0.0

0 10 20 30 40 50 60 70
Decision steps

Figure 5: Non stationary Gamma process describing the damage evolution over 70 years

2.7 Research gap

Throughout the literature review, a plethora of obstacles and features that needed improvement
was noted, enriching the existing research gap and shaping the final research question and problem
formulation.

As a general observation, the majority of the examined papers, considers only discrete deterioration
states, owing to the computational complexity that is induced in continuous or large state-spaces.
This necessity for an efficient maintenance framework for large/continuous state spaces is high-
lighted in [17], [21].

What is more, a common assumption in many papers is full observability of the environment, and
consequently not accounting for measurement errors. This issue is being mentioned as a future
improvement in [17], [31] and [36]. Additionally, while the framework proposed in [33] considers
a POMDRP, its efficiency is low when observability is low, emphasizing the need of an efficient
integration of Bayesian Inference.

One of the few cases when a large and continuous state space was considered, along with DQN, is
in [36]. However, the authors stressed out the need of including partial observability, in the sense
of noisy observations, as well as model updating.

Lastly, in many papers in which POMDPs were considered for stochastic optimal control, it was
pointed out that a more efficient algorithm needs to be used. To be more precise, in [23] it is

20

2 LITERATURE REVIEW

mentioned that instead of point-based algorithms, a more advanced learning technique should be
used, making DRL the suitable choice. In [24], where Bayesian Networks and point-based solvers
are used, it is also stated that a DRL approach to solve Bayesian Updating is necessary. Lastly, in
[45], Hierarchical Coordinated Reinforcement Learning (HCRL) is proposed for the maintenance
of large-scale multi-component systems, however, it also refers to the development of a DRL
algorithm for maintenance as a future improvement.

2.8 Conclusions

Concluding this chapter, along with the introduction of various scientific fields, a thorough
investigation of the existing literature was presented. Through the findings and comments of other
researchers, the advantages and disadvantages of different algorithms were better understood,
while at the same time assisted to the choice of the necessary tools for the current project, which
will be presented in detail in the coming chapter (Chapter 3) as parts of the general methodology. A
significant finding of the literature review constitutes the definition of the existing gap, which was also
elaborated extensively, as it further compliments the objective of this thesis and its contribution.

21

3 METHODOLOGY

3 Methodology

3.1 General Framework

Conducting the literature review, it can be observed that, although Artificial Intelligence (Al), and
in particular DRL, has a huge potential regarding the life-cycle optimization and maintenance of
engineering systems, there are still considerable limitations. These limitations gave rise to the scope
of the current project, and subsequently justify its future contribution.

To be more precise, the goal of the considered framework is to couple Bayesian Inference with
DRL algorithms, aiming to find the optimal sequence of maintenance actions for a stochastically
deteriorating engineering system. The thought process, thus the motivation, behind the choice of
these two core concepts is illustrated in Figure 6.

Engineering System
Maintenance

(1) (4)

v v

Deterioration Process Sequlepnal
Modelling Decision
Problem

Bayesian Model
Updating

- = = = =

- = - - m mm Em Em Em = - = -

[Samp.mg] [oRL J

Figure 6: Problem conceptual breakdown - Motivation for the selected tools

In order to explain better this workflow, each logical step is numbered and further elaborated:

(1) Akey concept interfering with any engineering system's maintenance, is its deterioration. As
already stated, the way in which a system ages is not straightforward, since many uncertainties
are involved in the physical degradation processes. Therefore, an important sub-problem
constitutes the deterioration process modelling.

(2) An efficient way to tackle the underlying stochasticity in the deterioration processes is to
incorporate the ever-increasing available observed/measured data, in order to update the
knowledge about the system's parameters; a key element in the BMU concept.

22

3 METHODOLOGY

(3) As explained in Section 2.5, applying Bayes Theorem (Equation 31), can be cumbersome, due
to the inability to calculate the normalizing constant in the denominator, i.e. the so-called
evidence P(D). This is the case especially in the inference of continuous variables, which
justifies the choice of a sampling algorithm to tackle this obstacle.

(4) Returning to the general problem, the maintenance of an engineering system constitutes a
sequential decision problem, since the sought strategy is defined by the optimal sequence of
maintenance actions.

(5) More often than not, POMDPs are utilized since they provide a principled mathematical
methodology for stochastic optimal control under uncertain action outcomes and observa-
tions [24].

(6) As elaborated in Chapter 2, the most efficient way to solve a POMDP, is DRL, since it can
handle multi-dimensionality, and even continuous state and action spaces, leading eventually
to the wanted optimal strategy.

(7) It should be mentioned that both BMU and POMDPs rely on the same principles, employing
Bayesian rules to update the system's parameters using observations in the former case, and
update the state probability distribution, i.e. the so-called belief, in the latter one.

The interaction between the different elements of the POMDP for the current framework, i.e. beliefs,
actions, rewards and observations, during each decision step, is depicted in Figure 7.

Figure 7: Graphical Model of the employed POMDP

Elaborating in each of the components displayed in Figure 7:

+ by is the unknown deterioration state. To be in accordance with the theory presented in
Section 2.2, it represents the belief, meaning a probability distribution about the deterioration
of the system. On the contrary to the biggest part of the existing literature, where the

3 METHODOLOGY

deterioration space is discretized, in this project a continuous state-space is considered,
hence, the belief is a continuous probability distribution.

O; is the observation that is obtained through a SHM system periodically, i.e. in every decision
step. This observation (possibly the acceleration at the location of the sensors) is fed into an
OMA scheme, in order to derive modal data, e.g. eigenfrequencies, eigenmodes, etc. It should
be mentioned, that the OMA step of this procedure will not be considered for the current
project, since more emphasis is going to be given on the DRL and BMU parts. Therefore, the
needed modal data will be generated directly, taking into account that they are contaminated
with noise.

A is the maintenance action that is taken at the decision step, . The action space is assumed
to be discrete.

Ry is the reward received for taking the action A; when in state S;. As displayed in Sections
2.1and 2.2, the expected return of the sum of these rewards, including also a discounting
factor y for future rewards, is the quantity that needs to be maximized (Equation 1). In the
current project, the rewards correspond to the costs, thus, the goal is the minimization of the
rewards. At any given state, the reward/cost can be decomposed into two sub-costs, i.e. the
cost of the taken action and the cost associated with the risk of failure.

Ry = C; = Cy, + Ciisk (35)

The risk of failure cost is calculated as the product of the probability of failure times the failure
cost, i.e. Cyisx = Py - Cr. Animportant matter constitutes the calculation of this probability for
every deterioration state.

b¢ | O is the updated deterioration state, having included the information of the observation
O;. This means that at every decision step, a Bayesian Inference is performed in order to
improve the knowledge, i.e. the probability distribution, about the deterioration parameters
of interest. The updating is executed using the NUTS method, which will be briefly introduced
in the coming section (Section 3.2).

24

3 METHODOLOGY

The proposed general framework is illustrated in more detail in Figure 8.

Observations,
o
Updated
N\ Belief
Probability Distribution P(s¢| O)
over states (belief), —
P(sy)
J
A
St
R(st+1, as1) R(ss, ay
St+1 St
Environment
(including stochastic Agent

deterioration model)

Figure 8: Proposed Framework

3.2 Sampling Algorithm

For the sake of completeness and transparency regarding the proposed framework, a brief walk-
through the sampling procedure used, is presented in this section. To be more precise, the chosen
sampling method is NUTS, which will be applied through the probabilistic programming Python
package of PyMC3 [52].

As already mentioned, in bayesian inference problems the posterior distribution is usually intractable.
The commonly used MCMC methods, approach the target distribution by drawing a series of
correlated samples. However, in complicated problems with many parameters, widely applicable
methods such as random-walk Metropolis and Gibbs sampling, could be computationally expen-
sive to achieve convergence, because of the random walks with which they explore the parameter
space. This is why, in applications with continuous model parameters HMC has been proven more
efficient, shifting from a problem of sampling to a problem of simulating Hamiltonian dynamics, as
elaborated in [53].

Nevertheless, in order to apply HMC there are two tuning parameters that the user needs to cali-
brate, i.e. the step size € and the number of steps L for which the simulated Hamiltonian system is
ran. Determining these parameters is usually a cumbersome and time-efficient task, that requires

25

3 METHODOLOGY

also some experience, which is the reason why HMC is not widely used. Nonetheless, it provides
the foundation for NUTS, which is a self-tuning algorithm that eliminates the need to choose the
problematic number-of-steps parameter L. At the same time, the version of NUTS which will be
used through PyMC3, includes a dual averaging scheme, introduced in [54], which automatically
tunes the step size parameter ¢, too.

As it exceeds the scope of the current research, more information about the exact mathematical

formulation of both HMC and NUTS, as well as the step by step algorithms, are presented in [49].

However, the main algorithms are presented briefly along with the core principles, as elaborated on
the aforementioned paper.

In HMC an auxialiary momentum variable r, is introduced for the model variables 6 ;, which are
usually drawn independently from the standard normal distribution, leading to their joint density
being:

P@,r)x exp{L(0)-0.57 1} (36)

where L is the logarithm of the joint density of the values of interest 8, while - r denotes the inner
product between the momentum vectors.

Afictitious Hamiltonian system can be used instead of this augmented model, where each parameter
gains a physical meaning. In particular, 6 corresponds to the particle’s position in the D-dimensional
space, r denotes its momentum, L is the negative potential energy function for the given position,
0.57 - r is the particle’s kinetic energy and lastly logP (0, r) is the negative energy of the particle. The
evolution over time of this Hamiltonian system, is often simulated through the Stormer-Verlet
(“leapfrog’) integrator, which is presented in Algorithm 1.

Algorithm 1: Stérmer-Verlet (“leapfrog”) integrator

. Leapfrog (0, r,¢):

2 SetF—r+(€/2)VyeL(0)
3 Set —0+eF

s | SetF—F+(e/2)VyeL(H)
5 return 0, 7

Even though 6 and r are vectors, they are not underlined (which would be consistent with the thesis' notation) in order
to be in accordance with the original paper [49]

26

3 METHODOLOGY

Having introduced the basic principles, the complete HMC algorithm is presented in Algorithm 2.

Algorithm 2: Hamiltonian Monte Carlo (HMC)

. Given 0%, ¢, L, L, M form=1to Mdo

2

3

4

5

Sample r® ~ N(0,1) // I denotes the identity matrix
Seto™ — ™1, 0 —0m L F—r0
fori=1toLdo
L Set 0, 7 — Leapfrog(d, 7€)
exp(L©0)-0.57F)
exp (L™ 1) -0.5r0-70

With probability a = min{l,)} set@™ —@, r™m — —F

where L is the number of steps, i.e. Leapfrog updates, and M is the amount of drawn samples.

27

3 METHODOLOGY

As mentioned already, a crucial improvement on HMC is the self-tuning of the hyperparameters, e
and L, which is being done by the NUTS algorithm. To determine when the amount of leapfrog
steps is sufficient, a recursive function is used, namely Buildtree, which is presented in Algorithm 3.

Algorithm 3: BuildTree’recursive function

1

20

BuildTree (9, r, u, v, j, €, 6°, r):

if j =0 then
Base case - take one leapfrog step in the direction v
0', r' — Leapfrog(6, r, ve)

" H[u <exp{L(©)-05r"- r,}]
% <_]I[u < exp {Amax+ L£(0") - 0.5 r’~r’}]

return@’, 1,0, 1, 0", n', s, min{l,exp{ﬁ(@’) —0.57"-r"= L% +0.5 ro.ro}}, 1

else

Recursion - implicitly build the left and right subtrees
0, r,0%r%,0,n,s,a, n, —BuildTree®, r, u, v, j - 1,¢,6° %
if s =1 then

if v=—1then
t 0=, r ,——0"n"s" a, nl —BuildTree(®, r~, u, v, j—1,¢,6° r%
else

t - =0 r%,0", n", s a" n, —BuildTree(@*, r*, u, v, j—1,¢,0° 1%
n//
H HH / 1
With probability Pl setf' — 0
Seta' —a'+a’, n, —n, +n,

s —s'1[©O -07)-r 20]11 @ —07)-rt =0

n' —n'+n"

return0-,r=,0%,r%,0',n', ¢, a, n,

where I[-] is a boolean operator, returning 1 if the expression inside brackets is true, and 0 if false.

’More information on the BuildTree function, its input, output and intermediate steps, can be found in [49].

28

3 METHODOLOGY

As far as the choice of ¢ is concerned, the function used and the step by step procedure is presented
in Algorithm 4.

Algorithm 4: Heuristic for choosing an initial value of e

. FindReasonableEpsilon (6):

2

3

Initialize € = 1, r ~N(0, I) // I denotes the identity matrix
Set 6',r' — Leapfrog (0, 1,¢)

. P®©’, 1"

a—2 P(e,r)>0'5]_1

hite (2" ya 5 p-a g

WIe(P(H,r)) >2"%do
€—2%

Set 0',r' — Leapfrog(0, r,¢)

return ¢

29

3 METHODOLOGY

Moving towards the final algorithm which is followed by the PyMC3 package, Algorithm 6 of [49],
namely No-U-Turn Sampler (NUTS) with Dual Averaging, is presented in Algorithm 5 of the current
project.

Algorithm 5: No-U-Turn Sampler (NUTS) with Dual Averaging
. Given 6°,6, £, M, M2adapt
> Set ¢y = FindReasonableEpsilon(0), i =1log(10¢€g), €y = 1, Hy =0, y = 0.05, o = 10, k = 0.75
s form=1toMdo

+ | Sample r®~N(0,1)
s | Resample u~ Uniform([O, exp{L©O™ 1 -0.5r°- ro)}])
6 Inititalize 6= =", 07 =01, r =10 r*=1%j=0,0"=0""1,n=1,5s=1
7 while s=7 do
e Choose a direction v; ~ Uniform({-1,1})
9 if vj= —1 then
10 L 6-,r,—,—0,n,5s,a ny—BuildTree(0~, r™, u, vj, j, €m-1,0™ 1, 1%
11 else
12 L - = 0% 1%,0, 1,5, a, ng — BuildTree 0", r*, u, v}, j, €m-1,0™ 1, 1%
13 if s =1 then
n/
14 L With probability min {1, ;}, setf0™ — 0’
15 n—n+n
16 s—s'I[O"-67)-r" =0]I[(6"-67)-r* =0]
17] —] +1
18 if m< Madapt then
Set 1 _ 1 5 (11

tH,,=(1- Hy 1+ -—

b et Hm (m+t0) m-1 m+t0(I’la)
NI
20 Setloge,, = 4— — Hyy, logé, = m™* loge,, + (1 — m™*) logé -1
L Y

21 else
22 L Set €Em = éMadapt

where § is the desired average acceptance probability of the samples and 129t s the number of
iterations after which the adaption is stopped.

30

3 METHODOLOGY

3.3 Deep Reinforcement Learning (DRL) algorithms

It has already been mentioned that in DRL the value functions Q, V as well as the policy 7 are
approximated by a DNN, in order not only to capture efficiently their non-linear behaviour, but
also, achieve a reparameterization, and express them in terms of the network’s weights, so as to
decrease the computational cost and instabilities.

Anillustration of such networks is displayed in Figure 9. The input to the DNN is the state (or belief®),
s¢, while the output layer includes the action-state value function for every possible action, a; € A,
in the case of DQN and DDQN. In a similar fashion for actor-critic algorithms like A2C and PPO, the
actor and the critic neural networks are illustrated in Figures 9b, 9c. The former takes as input the
state and yields as an output the probability to take each action given the state, n(a; | s;), and the
later using the same input, i.e. the state, returns the corresponding value state function, V (s;).

Weights, 6

[Q(st,a1)

(BS tﬁfaef itt) o

elief, S
Qlsiy)
@ Qo)

INPUT LAYER | :

- Q(styan)

OUTPUT LAYER

INNER LAYERS

(a) DQN/DDQN approximating the Q-function

g O 6 (a1 | s) 6 6
8 O | 7o 1) @ ?:8 8 \f_ff‘::
® Q e | 1) O O
(b) Actor neural network (c) Critic neural Network

Figure 9: Actor-critic DNN architectures °

8The used s; notation represents the belief vector b along with any other input quantities (e.g. age) that together
compose the state, and are passed as input to the neural networks.
9The amount of inner layers and neurons depicted is for the sake of a more clear and explanatory representation

31

3 METHODOLOGY

The DRL algorithms that will be considered in the current project are:

+ Double Deep Q-Network (DDQN)

« Advantage Actor Critic (A2C)

+ Proximal Policy Optimization (PPO)
The step-by-step procedure for all three of them, as found in literature, is described in the following
subsections and more specifically in Algorithms 6, 7, 8, respectively.

3.31

Double Deep Q-Network (DDQN)

Algorithm 6: Double Deep Q-Network (DDQN)

+ Initialize primary network weights 0
> Initialize target network weights 6~
s Initialize replay buffer

+ Set target update time Typqate

s forepisode —1to M do

6

7

8

9

10

11

12

13

14

15

16

17

forr—1to T do
Select action a, according to e-greedy method
Collect reward R(s;, a;), observe next state s;41
Store tuple (sy, as, R(s¢, ay), s¢+1) in replay buffer
Sample batch of tuples (s;, a;, R(s;, a;), si+1) from replay buffer
if s;.1 is terminal state then

| yi=RGia)
else

L Vi =R(st,an) +y Q(si+1,argmaxQ (sy41,ar+1 160) 107)
Update parameters 6 according to: VoL (0) =Y. [(Q(si,ai |0) — yi) VoQ (si, a; | 6)]
if Typdate then

| 07=0

32

3 METHODOLOGY

3.3.2 Advantage Actor Critic (A2C)

Algorithm 7: Advantage Actor Critic (A2C)

. Initialize policy parameters 6
> Initialize value function parameters 6,
s for Episode=0,1,2...do
4 fort—1to T do
5 Perform a; according to policy n(a; | s;,6)
L Collect reward R(s;, a;), observe next state s;,;

7 if terminal s; then

8 | R=0

5 else

10 L R= V(St | 9,;)// Bootstrap from last state

1 Update 6 according to:

Vol©0) =Es, q, | Y Vologm(a;|s:,0) (R(ss,an) +yV(si110,)— V(s 16,))
t=0

12 Update 6, according to:

VB,,](HV) =Es, a, [VH,,V(SL‘ 16y) (R(St» ap) +y V(s 10y) = Vise| 01}))]

33

3 METHODOLOGY

3.3.3 Proximal Policy Optimization (PPO)

Algorithm 8: Proximal Policy Optimization (PPO) [1]

. Initialize policy parameters 6,

2

Initialize value function parameters ¢
fork=0,1,2...do

Collect set of trajectories Dy = {r;} by running policy 7. = 7(0y) in the environment

Compute rewards-to-go R,

Compute advantage estimates, A; (using any method of advantage estimation) based
on the current value function Vy,

Update the policy by maximizing the PPO-Clip objective:

7 (ar | sp)

A”ek) M)An:ek)
|Dk|T,§>tZo ror @ Tsy " nan, gle AT (snan)

Oy1 = argmax

typically via stochastic gradient ascent with Adam
Fit the value function by regression on mean-squared error:

T
. 2
= \% -R
e =argmin o 3 3 (Vo0 R)

typically via some gradient descent algorithm

34

3 METHODOLOGY

3.4 Conclusions

Having elaborated on the selected algorithms of this project, an updated version of the conceptual
breakdown flowchart (Figure 6) is illustrated in Figure 10.

Engineering System
Maintenance

I
\7 v

Deterioration Process Sequ.ermal
Modelling Decision
Problem

! !

Bayesian Model
Updating

! !
e | [om

l Algorithms
DDQN
A2C
PPO

Figure 10: Problem conceptual breakdown - Motivation for the selected tools and algorithms

POMDP

This flowchart acts both as a summary of the current chapter as well as the motivation and reasoning
behind the choice of the specific algorithms. It moves from the general problem to be tackled,

namely “Engineering System Maintenance’, to the most efficient tools existent for every sub-task,
i.e. NUTS, DDQN, A2C and PPO.

35

4 VERIFICATION, VALIDATION AND BENCHMARKING

4 Verification, Validation and Benchmarking

4.1 Toy Problem

4.1.1 Problem Description

Now that the general framework of this project has been explained, a simple case, i.e. a "toy"
problem, is chosen in order to further elaborate on the proposed algorithm in a more streamlined
manner, but also to make a first assessment of its efficiency, drawbacks, and future issues that need
to be adjusted. Therefore, a SDOF oscilator is selected, with its stiffness being the deterioration
parameter. The mass of the oscilator, m, is assumed to be deterministic and constant, while the
initial stiffness is denoted as Kp. The described system is illustrated in Figure 11.

Ko

Figure 11: SDOF oscillator

The deterioration model employed is:

D(7) = A8 (37)

where A, B, are random variables, responsible for the uncertainty in this model. In particular, A
corresponds to the deterioration rate, while B is related to the non-linearity effect in terms of a
power law in time. This is a standard model, described by the rate equation above, often employed
for an engineering system's deterioration, e.g. [46].

A clear distinction should be made between the decision step ¢, which is the running time variable
of the system's lifespan, and the deterioration rate t which describes the exposure time, or the age,
of the system, and subsequently the degree to which the corrosive environment affects it. In a
scenario where no maintenance action is performed during the time window of interest, t and ©
coincide. However, as will be displayed in this section, the agent’s actions can possibly reduce or
even reset the deterioration rate 7 while the decision step # will keep increasing with unit step.

The stiffness at any given state is calculated as follows:

Ko Ko
1+D(x) 1+A7P
It is assumed that there is a monitoring system, whose noisy measurements are passed through an
OMA scheme, which subsequently outputs modal data, in this case, the eigenfrequency, w. The
eigenfrequency, as known from basic structural dynamics theory, is calculated, hence related to the
system’s damage, through Equation 39.

K(1) = (38)

36

4 VERIFICATION, VALIDATION AND BENCHMARKING

K(1) Ko Ko
a1) = = = (39)
m m (1+ D(1)) m (1+At8)

Since A and B are stochastic, @(7) represents the aforementioned noisy measurement. After
passing it through the the OMA procedure, the yielded observation which is given to the agent can
be expressed as:

(1) =0(T) + Eoma (40)

where eoma corresponds to the additional noise that is explicitly added during the OMA scheme.

For the case at hand, it is assumed that the additional noise £oma follows a Gaussian distribution
with a zero mean and a standard deviation that is proportional to the noisy measurement.

€oma ~ N (0, €c- (1)) (41)

where e is a coefficient describing the degree to which the OMA scheme contaminates the measure-
ment with noise.

Therefore, the observation during each decision step is generated based on the following Gaussian
distribution:

(1) ~ N (@(1), €c- D (1)) (42)

The choice for the possible actions that the agent can take is a significant modeling decision. Apart
from the "do nothing" and the "total replacement” actions, there is the need of a "partial repair”
one, too. The way in which the rest of the parameters will be affected due to such a repair can
vary depending on the materials of the structure, the type of repair, etc. Regarding the chosen
deterioration model, i.e. D(1) = AT5, there are three cases of partial repair that can be distinguished.

+ Reduce only the caused damage D(1), but the deterioration rate, 7, at which the environment
affects the structure, stays the same. This would mean that the slope of the D(z) — 7 curve
will stay the same, and a vertical shift of the right-half curve will be observed, as displayed
in Figure 12. This could be the case when restoring the damaged surrounding concrete of a
Reinforced Concrete (RC) component, but no action is taken for the corrosion of the rebar,
which will continue to develop.

+ Reduce the deterioration rate, meaning that the environment will continue to affect the
structure with a reduced intensity, but the existent damage that is already caused is not
affected. Geometrically, there will be a horizontal shift to the left in order for the damage to
continue developing in a less steep slope (Figure 13). For example, applying an epoxy painting
on a steel member without repairing the existent damage, will slow down the effect of the
corroding environment, but the damaged cross-section will remain as is.

37

4 VERIFICATION, VALIDATION AND BENCHMARKING

+ A combination of the two cases above, which means that both the damage D(7) and the
deterioration rate, 7, are reduced. This action equals a move back along the D(r) — 7 curve
as illustrated in Figure 14. For example, removing/restoring the corroded parts of a steel
cross-section and applying a protective paint to protect it against the corroding environment.

1.0

0.8
=
E 0.6
g X
©
% 04 |
(@] POX
b
02
080 25 50 75 0.0 25 5.0 75 20.0
Deterioration rate, t
Figure 12: Repair by reducing the damage D(t)
1.0
0.8
-
‘6 0.6
g .
£ . [——
o 04
[m]
X
0.2
) 25 50 75 0.0 25 5.0 75 20.0

Deterioration rate, T

Figure 13: Repair by reducing the deterioration rate

4 VERIFICATION, VALIDATION AND BENCHMARKING

0.8

o
)

Damage, D(T)

0.2

086 25 50 75 70.0 25 5.0 75

. . 20.0
Deterioration rate, T

Figure 14: Repair by reducing both the damage and the deterioration rate

Having described the various approaches for modelling a repair action, the one depicted in Figure
13 is chosen for the current application. Thus, the three possible actions are listed in Table 1.

Table 1: Action-space for toy problem

Index Action

0 do nothing
1 partial repair”

2 total replace

*
Decrease the deteriora-
tion rate 7, i.e. rewind by
two steps

Regarding the rewards, i.e. the costs of maintenance, a fixed amount is considered for the system'’s

total replace (action 2), and every other cost is expressed as relatively to this value. The correlation
between the costs is included in Table 2.

39

4 VERIFICATION, VALIDATION AND BENCHMARKING

Table 2: Rewards (costs) for the toy problem

Description Cost Value Factor
Total replacement Cr Cp units 1
Partial repair Cm 0.5CR 0.5
Failure Cr 2Cr 2
Risk of failure Cisk PrCr 2Py

It can be observed that failure, which will cause a complete replacement of the component (system),
has a higher cost than the actual replacement as an action. This is the case because of the sudden
aspect of a structure failing, and the unpredicted consequences that this event might provoke
financially.

The input data used for this application, such as deterministic quantities, starting values, etc, are
gathered and displayed in Table 3.

Table 3: Toy problem input data

Quantity Value Units
Mass, m 10 [kel
Initial stiffness, K 200 [N/m]
Replace cost, Cp 10000 [-]
Noise coefficient,ec 10% [-]

4.1.2 Discrete case

Considering the stochastic parameters A, B, as well as the damage D(r) to be continuous vari-
ables, increases significantly the computational cost. This is why, in order to scale up gradually
the complexity in verifying the validity of the proposed methodology, a discrete version of the
described toy problem is being tackled first.

In particular, the following discrete values are accounted for:

A=[6e—4 8e—4 10e—4 12e-4 14e—4]
32[1.4 16 1.8 2.0 2.2]

DI[O 0.1 02 03 04 05 06 07 08 09 1.0]

40

4 VERIFICATION, VALIDATION AND BENCHMARKING

It should be noted that just for demonstration purposes in the coming figures, smaller discrete
spaces will be used, particularly:

A=|a 4
B=[B, B

D=|D, D, D

In each iteration the agent does not know the exact value of the damage, so it forms a belief b,

i.e. a vector which contains the probabilities of all possible damage states'C. For the smaller scale
representative discrete case, this vector has the form displayed in Figure 15.

--

_____q----..=================== --------

EO, 0.2,01 e :|

Figure 15: Belief vector, b for discrete case

I
I

The observation w(7) in each decision step is generated as described already in Equation 42.

The main advantage of this simplification, compared to the continuous case, is the calculation of the
belief vector in a closed-form. This is achieved using the so-called transition matrix P, as well as the
observation matrix 0. The former corresponds to the probability of shifting to a new state given the
previous state and the chosen action, while the latter reflects the probability of an eigenfrequency
w to be observed given the current state. In math notation, they are defined as follows:

E =P(st41 1 81, ay) (43)
=P(os sy (44)

where s, is the next state, s, is the current state, a, is the chosen action and o; is the observation w.

The dependency of the transition probability to the chosen action is dropped, since a; is accounted
for by modifying the deterioration rate. Additionally, in order to describe all possible transitions, a
different transition matrix is considered for each deterioration rate 7, i.e. Py = P(s;41 | 5¢).

10The sum of all elements in the belief vector should sum uptolie Y b;=1.

41

4 VERIFICATION, VALIDATION AND BENCHMARKING

A typical example of a transition matrix for a random deterioration rate is depicted in Figure 16.

D1.Dp Dg D1 Dy Dg Dy Dy Dg Dy Dy Dgi 1ot

-

A4 B,

Aq Bs

o
O A
- O O

(@]

o

Ay By

A, Bs
Ds

Current
State

Figure 16: Transition matrix, P for discrete case"

To elaborate a bit further on the meaning of the entries in the transition matrix, the second row and
second column are examined, as displayed in Figure 17.

"The values included in both Figures 15, 16 are arbitrary, for illustration purposes.

2

4 VERIFICATION, VALIDATION AND BENCHMARKING

A1 B
e S S SREEEE e C eI
i Dy D, D
R S L | Sime
T
} | A1 B
i i 0
H i D4 D, D, State transition
1 D1 0|10 D4] 0 —— from Dy to D,
A1By i Dy ! 0 010 0 0 A1By D, 0 0 —— remainatDy
! Dy ! 0 1 D; 0 OE]—D remain at Dy
{ Dy § 0
t Dy | 0
o
Current
State

Figure 17: Transition matrix, P for discrete case explanation

In the examined part, knowing that the parameters A, B have the values A; and B, respectively,
the damage state will be D,. This means that the agent can either shift from state D, to D5, or
remain to state D,, or in the case the prior damage has already reached Dj, it can not go back in
a less damaged state, so it will remain at Ds. It is observed that only the 3 by 3 sub-matrix that
corresponds to the same A, B values both in the row and the column indexing is populated with
non-zero values, which is reasonable since the two parameters can not simultaneously be equal to
different values. Lastly, an important property of the transition matrix is that each row needs to
sum up to 1 (as noted also for the belief vector).

Having defined the necessary quantities, the belief vector can be found using Bayes Theorem,
applied in POMDPs, avoiding time consuming sampling procedures like MCMC or NUTS. For a
single entry of b(s;+1) it holds:

p(0t+1 | Se+1)
b(sii) = ——— ¥ b 45
($¢+1) o 1h p(si1 1) b(se) (45)
where the denominator is a normalizing constant, i.e. the so-called evidence in Bayes Theorem,

which is equal to:

por11D)= > plors1lsec1) Y plsesr] s)b(sy) (46)

Si+1€S s€S

43

4 VERIFICATION, VALIDATION AND BENCHMARKING

Equations 45, 46 can be generalized and rewritten in matrix notation:

0o @ [PT-b]

v = [QT(OI‘H)'[ET'Q]] (47)

As far as the DRL aspect is concerned, apart from the belief vector, b, the exposure time of the
component, in other words the deterioration rate 7, needs to be fed into the DNN, since the current
case constitutes a time dependent problem. A time parameter is a necessary input for the DNN in
order to define accurately the rate with which the system deteriorates at every given state, after
any maintenance action.

To be more precise, for DDQN, the belief vector b and the deterioration rate 7 are passed as input
to the DNN, and after a forward pass the network yields the action-state value function for each
action, Q(s¢, a;) for i = 1,2,3, which is interpreted as the reward of taking a specific action a; given a

state s;. These three value functions constitute the knowledge based on which the agent will act, i.e.

if the agent chooses to exploit what it already knows, the action with the highest Q-value (as derived
from the DNN) will be chosen. A schematic representation of the described DNN architecture is
displayed in Figure 18.

7 %

Belief Vector, b O

Q(st,a1) Repair

Deterioration Rate, 7 O

_ J

Input Layer

Q(st,a2) Replace

)
’VO Q(st,a0) Do nothing
___J

Output Layer

10000 Q]
!
!,

Q- 0000)]

Inner Layers
Figure 18: DDQN DNN architecture for the discrete toy problem

When it comes to A2C and PPO, which are actor-critic algorithms, the same input, b and 7, are
passed to two different networks, namely the Actor and the Critic network. A forward pass of the
former will yield directly the policy 7y (a; | s¢), i.e. the probability of choosing each action a; when
being at state s;, while the latter one returns the state value function Vy(s;), which corresponds to
the reward of being at the state s, regardless from the chosen action. The aforementioned networks
are depicted in Figure 19.

The symbol @ in Equation 47 denotes the Hadamar product, i.e. an elementwise matrix multiplication.

44

4 VERIFICATION, VALIDATION AND BENCHMARKING

Critic Network

\

~ 2)

Belief Vector, b O

@-00 0

~
K[Q---OOQ]

L

Deterioration Rate, 7 O Inner Layers Output Layer

_ _J

Input Layer

wo(ay | s¢)

mg(as | 8¢)

mg(as | s¢)

© @ O

v
([O--OOOT
kO--OOO]J

Actor Network

Figure 19: Actor-critic DNN architecture for the discrete toy problem

It should be noted that although three algorithms were initially chosen to be tested, namely DDQN,
A2C and PPO, only two of them actually performed adequately. In particular, A2C failed to yield
optimal solutions both for the discrete and the continuous variations of the toy problem. Therefore,
the necessary steps of the proposed framework regarding the remaining two algorithms are listed
in Algorithms 9 and 10 for DDQN and PPO respectively.

45

4 VERIFICATION, VALIDATION AND BENCHMARKING

To produce more compact and readable algorithms, several counting parameters are defined, which
are explained in Tables 4, 5, for DDQN and PPO respectively.

Table 4: Counters used for DDQN

Parameter Name Description

The amount of decision steps
T steps per episode considered for the maintenance

of the SDOF system

Every how many steps the parameters
Tupdate target network update of the current neural network are

passed to the target one

The number of episodes employed
M number of episodes to train the DDQN agent. Each

episode consists of T decision steps

Table 5: Counters used for PPO

Parameter Name Description

The amount of decision steps
T steps per episode considered for the maintenance

of the SDOF system

The amount of decision steps
N steps per epoch employed for a single batch
training of the PPO agent

The number of epochs used to
M number of epochs train the PPO agent in total. Each

epoch consists of N decision steps

46

4 VERIFICATION, VALIDATION AND BENCHMARKING

Algorithm 9: Double Deep Q-Network (DDQN) - Discrete Toy Problem

. Initialize primary network weights 0
> Initialize target network weights 6~
s Initialize replay buffer

s forepisode —1to M do

5

6

7

8

20

21

22

23

24

25

26

27

28

29

30

31

s < reset environment // 1 —o0, initialize belief vector b to zero damage
forr—1to T do
T—T+1
Calculate the next belief vector according to
Q1)@ [PT-b]

B [QT(OHl) ' [ET 1_7]]
Choose Action according to e-greedy method:
Generate random number rand € [0, 1]
if rand < e then

L Sample a random action, a; € A // Explore

// the transition matrix P depends on T

else

a; = argmaxQ(sy, a;) // Exploit
aeA

if a; is ‘replace” then

L 70

else if a; is “repair” then
L T — max(t - 2,0)

Calculate Py for the belief vector b’
R(s¢, ay) — Cu[+ Pf Cr
Store tuple (sy, as, R(sy, ay), s¢+1) inreplay buffer // s, = w,1), si01= @0
St — Sr+1
Sample batch of tuples (s;, a;, R(s;, a;), si+1) from replay buffer
if s;,1 is terminal state then
| vi=Rsia)
else
t Vi =R(st,a) +y Q(si+1,argmaxQ (sy41, ar+1 160) 1 07)
Update parameters 6 according to: VoL (0) = Y. [(Q (s;,ai |0) — yi) Ve Q (si,ai | 0)]
if Typdate then
| 07=0

47

4 VERIFICATION, VALIDATION AND BENCHMARKING

Algorithm 10: Proximal Policy Optimization (PPO) - Discrete Toy Problem

. Initialize policy (actor) network weights 0
> Initialize value function (critic) network weights ¢
s forepisode—1to M do

4

5

6

10

11

12

16

17

18

19

20

21

22

23

24

25

26

27

28

29

sy — reset environment // 1—0,7—0, initialize belief vector b to zero damage
forn—1to Ndo
t—t+l,71—7+1
Calculate the next belief vector according to
0010 [PT-b]

" [0 [P b]

mglas | s¢) — Actor Net (St) // forward pass of the actor network

// the transition matrix P depends on T

V(/) (87) — Critic Net (S[) // forward pass of the critic network
a; — sample mg(a; | s;)
if a; is ‘replace” then

t 70

else if a; is “repair” then
| T —max(r-2,0)

Calculate P for the belief vector b’

R(ss,ap) — Ca[+ Pf Ce

Store tuple (s;, ar, mo(ay | 1), Vp(s1), R(s, ar)) in Dy // so= b0
St St+1 // si+1=(b,7)

if =T orn=N then

if =T then

L Vip(s141) — 0

sy — reset environment // t+—0,7—0, initialize belief vector b to zero damage
else
L Vs (5,41) — Critic Net(s,)
Returns 6; — R(s¢, ar) +y Vip(sp41) — Vip(s¢)
Advantages A; — 8+ (Y D) 8rs1 +...+ (V)71 57
Store 64, A; in Dy

B Train Agent (D)

48

4 VERIFICATION, VALIDATION AND BENCHMARKING

The function “Train Agent” is further elaborated in Algorithm 11.

Algorithm 11: Proximal Policy Optimization (PPO) agent training - Toy problem

. Train Agent (Dy):
2 Update parameters ¢, using the Critic cost function:

T
P ()= (Vels) —6,)°

t=1

3 Update parameters 0, using the Actor loss function:

r mg (a | s¢) 7o (as | sp)
LCLIP(H) = Z min LA[(s¢,ay), Cllp A
t=1

—1-¢,1+¢
neold (at | St) 7T00[d (a[| Sl’)

J

via minibatch stochastic gradient ascent with Adam

4.1.3 Continuous case

Following the discrete case, the stochastic parameters A and B are now considered to be continuous
variables. The assumed prior distributions are displayed in Table 6.

Table 6: Parameters of the stochastic deterioration model

Parameter Distribution Mean Coefficient of Variation (CV)

A Lognormal 8.0E-03 0.5
B Normal 1.5 0.3

49

4 VERIFICATION, VALIDATION AND BENCHMARKING

Since the continuous case of the toy problem does not impose any simplification as far as the proposed framework is concerned, the
already presented flowchart (Figure 8) is now being updated and elaborated further, and is depicted in Figure 20.

Initial
System P

P(4),

P(B)

rior distributions]

.........

A

\

A

Sample a, b
from P(A),P(B)

Y Iera— mt aT” Add N01se)+ N(0,noise - w(T))
Observatlon]

[Noisy Measurement]

T

Total
rewards

[Model Output]

Damage dlstrlbutlon]j [

o B K
'[D(t)=Art m (1t D(r

A

Ca
[Action cost]

—— replace
Reset 7 |«

D ——

YvY

NUTS l

Y

C’ri
[Risk of faisll;re cost| P(A[0),P(B|O)
li [Posterior distributions]
A

CE—

Reduce 7
e

P(D(7) | 0)
[Posterior Damage]

repair

/47

do nothing

I KDE l‘

)

Figure 20: Framework flowchart for the toy problem

50

4 VERIFICATION, VALIDATION AND BENCHMARKING

As displayed above, the parameters of interest that will be updated in every iteration are the
distributions of A, B, hence, P(A),P(B), which are used as priors for the Bayesian inference. These
distributions are used both to define the damage distribution D(r) = A75, and to create the noisy
measurement based on sampled a, b values. The measurement will be further contaminated with
noise, as seen at the top part of the flowchart, while the damage distribution is used to compute
the model output:

Ko
m(1+ D(1))

Then, the observation, the model output and the prior distribution are passed to the NUTS algorithm
to yield the posterior distributions of A, B and subsequently D(t). These posterior distributions,
P(A| 0),P(B| O) are transformed into priors using a Kernel Density Estimation (KDE) scheme. The
updated damage distribution P(D(7) | O) is used to calculate the risk of failure cost Cj;s which is
added to the stored total reward of the iteration, but it is also passed to the agent in order to choose
an action based on it. If the agent chooses to perform a maintenance action, this would result to
a modification of the deterioration rate while yielding also an additional action cost C, which is
added as well to the stored total reward. Before proceeding to the next iteration, the deterioration
rate will be incremented by 1. This loop is being ran for 20 decision steps, and the quantity that
needs to be optimized, i.e. minimized, is the total reward, thus the total maintenance cost.

A detailed description of the parameter updating procedure is presented in Algorithm 12.

Algorithm 12: Deterioration model parameters updating - Toy Problem

. DeteriorationParametersUpdating (P(A),P(B), mass, Ko, noise, T):

2 D)0
3 70
4 fort—1to T do
5 T—T+1

o
6 Wy — mass 1+ D)) // mean w
7 Generate wqps — N (g, noise)
s NUTS (P(A), P(B), wps):

L Output: P(A| wops), P(B | weps), P(D(T))

o Choose action, a; // as explained in the DRL algorithm
10 Adjust D(r) distribution based on a;
1 Sample A, B from P(A | wgps), P(B | Wgps)
12 D(1) — A8 // wi11 be used to calculate mean
13 P(A),P(B) — P(A| wobs), P(B| ‘Uobs) // posteriors become priors through KDE

This algorithm focuses only on the Bayesian inference and the updating of the parameters. This is why the action part is
covered abstractly.

51

4 VERIFICATION, VALIDATION AND BENCHMARKING

The first term of the total cost during an iteration is the already mentioned risk of failure cost, which
is being computed as the product of the probability of failure times the cost of failure, Py - Cty. The
probability of failure, Py in the current simplified application is considered equal to the number of
samples from the damage distribution that are located above the failure threshold, divided by the
total number of samples (Figure 21).

—— Mean D(1)
——=Failure threshold
08| —— D(1) distribution
=
E 0.6
o
[@)]
©
% 0.4
fa
0.2
080 25 50 75 0.0 125 5.0 75 20.0

Deterioration rate, T

Figure 21: Failure Probability calculation ™

Moving to the DRL part of the framework, the need to select a discrete number of features that will
accurately describe each deterioration state has emerged, and subsequently will be fed into the
DNN. For this purpose, the statistical moments of the D(7) distribution were chosen, namely, the
mean, the variance, the skewness and the kurtosis. As mentioned already for the discrete case, the
examined problem is time dependent, meaning that the deterioration rate, 7 of the structure needs
also to be given as an input to the DNN. Regarding the neurons in the output layer, they correspond
to the action state value functions for the three different actions when using the DDQN algorithm.
The aforementioned characteristics of the DNN architecture are demonstrated in Figure 22.

12The curves (values and shape) illustrated in Figure 21 are arbitrary, for explanatory reasons.

52

4 VERIFICATION, VALIDATION AND BENCHMARKING

[Statistical Moments of the \

Damage, D(¢), Distributions

Mean ()
| Variance ()
skewness () R
= | Kutosis ()

Deterioration Rate, 7 O /|

Z 72

Input Layer

Q(st,a9) Do nothing

Q(st,a1) Repair

Q(st,a2) Replace

@ OLOOO]
|
0000 Q]
& 6 8

Output Layer

Inner Layers
Figure 22: DDQN DNN architecture for the continuous toy problem

Accordingly, for actor-critic algorithms, hence, also actor and critic DNNs, the architecture is
displayed in Figure 23.

53

4 VERIFICATION, VALIDATION AND BENCHMARKING

Critic Network

—)

r Statistical Moments of the x

Damage, D(t), Distributions

Mean O
|| Variance O
‘ = Skewness O

. Inner Layers Output Layer
Kurtosis O :

\v4

~
[{O"'OO@

QO--OOO

= ~
Deterioration Rate, 7 O O @ O mg(a1 | st)
\ 8y O O
O .. O > O mo(az | s¢)
Input Layer O m(as |)
o lo =
. 4

2

Actor Network

Figure 23: Actor-critic DNN architecture for the continuous toy problem

It has already been mentioned that only two out of the three tried algorithms managed to produce
valuable results, with A2C being the one that under-delivered. Thus, the detailed procedure of
the proposed framework concerning DDQN and PPO about the continuous variation of the toy
problem, is presented in Algorithms 13 and 14 respectively. As with the discrete version of the
problem, the counters used in the coming algorithms are presented in Tables 4 and 5.

54

4 VERIFICATION, VALIDATION AND BENCHMARKING

Algorithm 13: Double Deep Q-Network (DDQN) - Continuous Toy Problem

. Initialize primary network weights 0

> Initialize target network weights 6~

s Initialize replay buffer

s forepisode —1to M do

sy — reset environment // ¢ —o0, initialize A, B
fort —1to T do

5

6

19

20

21

22

23

24

25

26

27

28

29

30

T—T+1
BMU for params A, B // procedure shown in Algorithm 12
Choose Action according to e-greedy method:
Generate random number rand € [0,1]
if rand < e then

t Sample a random action, a; € A // Explore

else

a; = argmaxQ(s;, a;) // Exploit
ae A

if a; is ‘replace” then

L 70

else if a; is “repair” then
t T — max(t —2,0)

Calculate Py for the D(r) distribution
R(s¢, ay) — Ca[+ Pf Cr
Observe next state s;,] // the statistical moments of the D(r) distribution
Store tuple (sy, ar, R(st, ay), s¢+1) in replay buffer // s, = (stat .moments, 1)
Sample batch of tuples (s;, a;, R(si, a;), si+1) from replay buffer
if s;+1 is terminal state then

t Yi = R(si, a;)
else

t Vi =R(st,an) +y Q(si+1,argmaxQ (sp41, ar+1160) 107)
Update parameters 6 according to: VoL (0) = Y. [(Q (si,ai |0) — yi) VoQ (si,ai | 0)]
if Tupdate then

| 07=0

When resetting the deterioration rate, subsequently D(0) = 0 deterministically, which means that all the statistical
moments of the damage distribution are zero.

55

4 VERIFICATION, VALIDATION AND BENCHMARKING

Algorithm 14: Proximal Policy Optimization (PPO) - Continuous Toy Problem

. Initialize policy (actor) network weights 0
> Initialize value function (critic) network weights ¢
s forepisode—1to M do

4

5

6

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

sy — reset environment // t—0, r—0, initialize A,B
forn—1toNdo

t—t+1,7—7+1

BMU for params A, B // procedure shown in Algorithm 12
mg(as | sy) — Actor Net (s;)

Vi (s;) — Critic Net (s;)

a; — sample from g (a; | s¢)

if a; is ‘replace” then

t 70

else if a; is “repair” then
| T —max(r-2,0)
Calculate Py for the D(7) distribution
R(st,ar) — Cq, + Py Cr
Observe next state s;,1 // the statistical moments of the D(r) distribution
Store tuple (s;, as, mg(a: | s1), Vip(s1), R(st,ar)) in Dy // s = (stat.moments, 7)

St — St+1
if t=Torn=N then
if £ = T then

Vip(St+1) — 0
s¢ — reset environment // +—0, 1—0, initialize A,B
else
| Vp(si1) — Critic Net(s)
Returns 6; — R(s¢, ar) +y Vip(sp41) — Vip(s1)
Advantages A; — 8+ (Y D) 841 +...+ (V) TS50
Store 64, A; in Dy,

B Train Agent (Dy)

The “Train Agent” function is the one presented in Algorithm 11

56

4 VERIFICATION, VALIDATION AND BENCHMARKING

4.2 Validation

4.2.1 Bayesian Inference

Prior to the coupling of BMU with DRL, each of these aspects has been tested in simple examples
in order to eliminate possible errors in the final code of the integrated framework. Therefore, as far
as Bayesian Inference is concerned, the deterioration model of the continuous case (described in
section 4.1.3) will be used to perform the updating of parameters A, B (and subsequently D(r) = A75)
using observations w.

0005 0010 0015 0020 0025 1] 0 500 =0 1000 I¥50 1500 1750
B

0o 05 10 15 20 25 30 0 0 500 =0 1000 1250 1500 1750
Damage Damage

Y na
06
04

_‘ oz

o —— i PP ':]C
an 0z 04 06 08 1] 0 500 70 1000 I¥50 1500 1750

Figure 24: Posterior distributions of parameters A, B after 5 iterations of Bayesian Inference and NUTS

A typical example of NUTS is depicted in Figure 24, using two Markov chains and 4000 samples.
What is more, the updating of the parameters’ distribution through 20 iterations is illustrated in
Figure 25, highlighting the effect of including observations in order to define more accurately the
stochastic parameters of the deterioration model.

57

400

350

300

250

Frequency
I
8
8

=
=]
3

100

50

(a) Posterior distribution of A

4 VERIFICATION, VALIDATION AND BENCHMARKING

Inference no. 1
Inference no. 3
Inference no. 5
Inference no. 7
Inference no. 9
Inference no. 11
Inference no. 13
Inference no. 15
Inference no. 17
Inference no. 19

Frequency

)

(b) Posterior distribution of B

P

Inference no. 1
Inference no. 3
Inference no. 5
Inference no. 7
Inference no. 9
Inference no. 11
Inference no. 13
Inference no. 15
Inference no. 17
Inference no. 19

Figure 25: Posterior distributions of parameters A, B during 20 iteration of Bayesian Inference and NUTS

58

4 VERIFICATION, VALIDATION AND BENCHMARKING

4.2.2 Deep Reinforcement Learning (DRL) algorithms

Before proceeding to more complicated cases, the three DRL algorithms, namely DDQN, A2C and
PPO, will be tested and compared on the CartPole-vO"3environment. The results, i.e. the rewards
that the agent received over the episodes, during its training, are displayed in Figure 26.

g E125
2 100 g
14 & 100
5
75
50
50
25 reward per episode
average reward per 50 episodes 25 —— average of 16 environments
0 0 100 200 300 400 500 600 700 4] 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Episodes Iterations
(a) DDGN (b) A2C

200

175

B
S
Z 100
o
75
50
25 reward per episode
—— average reward per 100 episodes
0 0 200 400 600 800
Episodes
(c) PPO

Figure 26: All three algorithms on the CartPole-vO environment

It should be noted that the Advantage Actor Critic (A2C) algorithm performed sufficiently in the
CartPole-vO environment this is why it is included in Figure 26. Unfortunately, this was not the
case for the toy problem. Its stability is also ambiguous, since out of the three algorithms it was the
slower one to reach the optimal CartPole-vO reward.

13 More information on the CartPole-vO environment can be found here.

59

http://gym.openai.com/envs/CartPole-v0/

4 VERIFICATION, VALIDATION AND BENCHMARKING

4.3 Benchmarking

Even if the algorithms converge to theoretically optimal values for the examined cases, the supe-
riority of the proposed framework will be highlighted upon comparison with a benchmark value.
Defining such a value is cumbersome and computationally expensive due to the stochastic nature
of the problem (both discrete and continuous).

More often than not, a heuristic threshold based approach is being used, accounting for various
control quantities, such as the maximum acceptable damage, the most beneficial periodic
maintenance time interval or the maximum probability of failure allowed [55], [56], [57], [58]. For
the current application, both in the discrete and in the continuous case, a fine grid of repair and
replace damage values were tested, in order to determine when would be the most beneficial to
intervene in the deterioration of the SDOF oscillator. For each combination of values, a plethora of
episodes was ran, due to the high stochasticity. In the discrete case the variance was not significant,
thus, only the expected value of the cost is included in the results. The obtained thresholds and
costs are displayed in Table 7.

Table 7: Benchmark maintenance thresholds and costs - Toy Problem

Optimal Thresholds

Repair Replace Mean Cost St.Dev. Failure Damage

Discrete None 0.14 21809.37 - 0.5
Continuous 0.05 0.10 80745.31 22658.95 0.2

To further elaborate on the findings presented in Table 7, for the discrete case there was no scenario
where it was beneficial to perform a repair, thus, only the replace value is relevant. It is worth
mentioning that due to the parameter updating in a closed form that is possible in the discrete case,
more decision steps were accounted for, thus, a higher damage failure value was considered.

60

4 VERIFICATION, VALIDATION AND BENCHMARKING

4.4 Results

Prior to presenting the results for the toy problem, in order for them to be reproducible, the hyper-
parameters used for both the discrete and continuous variations are displayed in Tables 8 and 9, for
DDQN and PPO respectively.

Table 8: DDQN hyperparameters - Toy problem

Hyper-parameter Discrete Continuous
gamma, y 0.99 0.99
learning rate 5.00E-3 1.00E—-2
number of inner layers 2 2

size of inner layers 128 128
start epsilon, € 1.0 1.0
batch size 64 128

Table 9: PPO hyper-parameters - Toy problem

Hyper-parameter Discrete Continuous
gamma, y 0.99 0.99
clip ratio 0.2 0.1
lambda, 1 0.95 0.95
number of inner layers 2 2

size of inner layers 256 256
policy learning rate 1.00E-4 1.00E-3
value function learning rate 5.00E—4 5.00E—3

It should be noted that the number and the dimensions of the inner hidden layers were the same
both for the actor and the critic network in the case of PPO. What is more, regarding the neural
network activation function, for all networks of this project, and all layers, the Rectified Linear Unit
(ReLU) function is chosen.

4.41 Discrete case

Combining the aforementioned aspects regarding the proposed framework and the toy problem,
the DRL algorithms DDQN and PPO managed to yield optimal strategies that even outperform the
benchmark solution. In Figure 27, the training of the agent is illustrated, by plotting the cost of the
maintenance for a life cycle of 50 decision steps over the episodes ran during training.

61

4 VERIFICATION, VALIDATION AND BENCHMARKING

DDQN
— PPO
Benchmark

0 250 500 750 1000 1250 1500 1750 2000
Episodes

Figure 27: DDQN and PPO on discrete SDOF environment
It should be noted, that owing to the low complexity of this introductory application, it was probable

that the DRL approach would not necessarily achieve a lower maintenance cost. However, it can
be observed in Figure 27, that PPO performs slightly better. The superiority of PPO can be also

complimented by its significantly lower variance, even though the environment is still stochastic.

Another interesting finding for interpretation are the policies that were found by the agent. These
policy realizations are plotted in Figure 28.

62

4 VERIFICATION, VALIDATION AND BENCHMARKING

DDQN expected damage
—— PPO expected damage

0.20 optimal heuristic threshold
repair
replace
0.15
@
=]
w
&
A 0.10
0.05
0.00
0 10 20 30 40 50

Decision Steps

Figure 28: DDQN and PPO policy realizations on discrete SDOF environment

As it can be seen in the above plot, both the DDQN and PPO agents, managed to find a more
suitable damage threshold to perform the replace action. The fact that DDQN fails to consistently
choose when it is more beneficial to replace the component, as seen at decision step 30, leads to
the slightly worse performance of the agent. On the other hand, PPO seems to be more stable
and able to achieve lower maintenance costs, by performing a replace action when the damages
reaches a value around 0.13.

Lastly, both the tested algorithms, avoid to perform a partial repair action, which is a fact backed up
also by the benchmark runs. In this discrete setup of the toy problem, repairing the SDOF oscillator
unarguably leads to higher maintenance costs.

4.4.2 Continuous case

Proceeding to the more accurate, from a modelling standpoint, continuous version of the toy
problem, it is more evident that the proposed framework leads to optimal maintenance strategies
in such stochastic environments. Prior to showcasing the performance of the tested algorithms, it
should be mentioned that due to computational costs and time-consuming runs, the decision steps
were reduced to 20 (instead of 50 for the discrete case), and the failure damage threshold was now
assumed to be 0.2 (instead of 0.5 for the discrete case) as shown also in Table 3. The reduction in
the damage threshold was made in order for the SDOF oscillator to deteriorate enough so as the
cost linked to the probability of failure to be substantial. The training of the agent is plotted over
the episodes in Figure 29.

63

4 VERIFICATION, VALIDATION AND BENCHMARKING

DDQN

— PPO

—— Benchmark mean
Benchmark mean + st.dev

Cost

| bk e

0 100 200 300 400 500 600
Episodes

Figure 29: DDQN and PPO on continuous SDOF environment

It is evident that both the DDQN and the PPO algorithms outperform the benchmark approach.
The exact details of this comparison are included in Table 10. Apart from the mean value and the
standard deviation regarding the cost of each approach, the last column of the table contains the
reduction in cost (as a percentage) compared with the traditional heuristic solution (benchmark).
Additionally, one can observe that in the case of the benchmark, the variability in costs is significantly
higher. This means that the stochasticity of the environment can lead to poor performance and
higher costs, when following a threshold based policy, which is not the case when applying the
proposed framework.

Table 10: DRL algorithms’ performance on continuous Toy Problem

Last 50 Episodes

DRL Algorithm Mean Cost St. Dev. Cost Cost Decrease

Benchmark 80745.3 22659.0 -
DDQN 63776.0 14773.7 21.02%
PPO 64602.0 12992.6 19.99%

Owing to the extensively mentioned stochasticity of the environment, it is expected that each
episode which was ran, will differ considerably from one another. Therefore, a single policy
realization would not be a representative illustration, to fully understand the training of the

64

4 VERIFICATION, VALIDATION AND BENCHMARKING

agent. Nevertheless, for the shake of comparison between the two algorithms and the benchmark
thresholds, such realizations over the 20 decision steps are plotted in Figure 30.

012
DDQN expected damage
—— PPO expected damage
010 Benchmark repair threshold
’ Benchmark replace threshold
repair
replace
0.08
@
& 0.06
£
@
[m]
0.04
0.02
0.00

0.0 25 50 75 10.0 125 15.0 175 20.0
Decision Steps

Figure 30: DDQN and PPO policy realizations on continuous SDOF environment

It is observed for both algorithms that the expected damage does not overcome the replace
benchmark threshold of 0.10. Additionally the damage value when the agent chooses to perform a
partial repair fluctuates around the heuristic benchmark value. More specifically, regarding PPO,
when the damage increases in a more steep and unexpected way such as in decision step 4, the
agent chooses to permit that and not proceed with a repair, letting the system deteriorate up to
higher values and then performs a complete replacement. This is not strictly the case for DDQN, as
it can be seen that for lower damage values like the one during decision step 13, the agent chose to
perform a replacement action even though the damage was smaller than the repair benchmark
threshold of 0.05. This constitutes an interesting finding, since both agents achieved almost identical
costs, which is something that can be possible attributed to the high stochasticity of the corrosive
environment.

65

4 VERIFICATION, VALIDATION AND BENCHMARKING

More descriptive conclusion could be possibly drawn if more than one episodes, hence policies,
were to be plotted. This is done for both DDQN and PPO in Figures 31 and 32 respectively.

0.16 DDQN damages
DDQN mean damage
0.14 —— Benchmark repair threshold

012 Benchmark replace threshold

0.10

Damage
(=]
o
[«5]

0.06

0.04
0.02
0.00

2 4 6 8 10 12 14 16 18 20
Decision Step

Figure 31: Probability of failure for 50 policy realizations, for both DDQN and PPO

0.12 PPO damages
—— PPO mean damage
—— Benchmark repair threshold

0.10

Benchmark replace threshold

0.02

0.00

2 4 6 8 10 12 14 16 18 20
Decision Step

Figure 32: Probability of failure for 50 policy realizations, for both DDQN and PPO
In these plots, policy trends can be identified, highlighting once more the ability of the agent to

diverge from the traditional heuristic actions and proceed in taking actions at unexpected stages of
the deterioration. It should be mentioned that the plotted policies, even though they do not lead

to the minimum of maintenance costs, they are all still smaller than the benchmark average one.

66

4 VERIFICATION, VALIDATION AND BENCHMARKING

Elaborating further on the degree to which the obtained policies comply with the benchmark values,
it can be stated that PPO chose actions in a considerably more consistent way compared to DDQN,
with only limited policies passing the replace heuristic value, and the vast majority of the repair
actions being performed for damages lower than the repair threshold. This is concluded from the
steep peaks that have formed inside the band between 0.05 and 0.10, namely the repair and replace
benchmark values. Even though these peaks could indicate a periodic pattern of maintenance,
particularly replace ones, this is not the case, since they belong to different episodes. On the
contrary, even though the DDQN agent restrict the damage mostly below the replace threshold, it is
observed that the obtained policies are more stochastic, with many repair actions taking place even
at times where the damages approaches 0.10, i.e. the replace heuristic value. An important issue,
that is probably responsible for these differences among the two algorithms, is the way the agent
chooses actions in each case. In DDQN the agent picks deterministically the action it considers
the most beneficial, based solely on the action-state value functions Q(ay, s;). On the other hand,
the PPO agent, even if the damages has reached a worrying damage value, chooses the action
based on a probability distribution, i.e. the policy 7 (a; | s;) which makes every action, no matter
how "good" or "bad" is, to still stand some chances of being picked.

Another interesting outcome of the proposed framework is the impact of the updating procedure,
in case the "true” values of the parameters A, B are known. In Figures 33, 34, the evolution of A and
B respectively, is plotted along the decision steps, for 9 different episodes.

Episode 1 Episode 2 Episode 3
0.012
0.01
0.008
0.006
0.004
0.002 2 6 10 14 18 2 6 10 14 18 2 6 10 14 18
Decision Step Decision Step Decision Step
Episode 4 Episode 5 Episode 6
0.012
0.01
0.008
0.006
0.004
0002 2 6 10 14 18 2 6 10 14 18 2 6 10 14 18
Decision Step Decision Step Decision Step
Episode 7 Episode 8 Episode 9
0.012
0.01
T~
0.008
0.006 T Ha
—— True value
0.004
Ha £ 0a
0002 2 6 10 14 18 2 6 10 14 18 2 6 10 14 18
Decision Step Decision Step Decision Step

Figure 33: Updating of parameter A for nine (9) of the episodes

67

4 VERIFICATION, VALIDATION AND BENCHMARKING

Episode 1 Episode 2 Episode 3
25
20
15 /J J
1.0
2 6 10 14 18 2 6 10 14 18 2 6 10 14 18
Decision Step Decision Step Decision Step
Episode 4 Episode 5 Episode 6
25
20
1.0
2 6 10 14 18 2 6 10 14 18 2 6 10 14 18
Decision Step Decision Step Decision Step
Episode 7 Episode 8 Episode 9
25
2.0
15 // — s
—— True value
1.0 Mg £0p
2 6 10 14 18 2 6 10 14 18 2 6 10 14 18
Decision Step Decision Step Decision Step

Figure 34: Updating of parameter B for nine (9) of the episodes

It can be safely concluded that incorporating more noisy observations, which have been generated
using the assumed “true” values for A and B, i.e. 0.008 and 2.0, reduces the uncertainty, and the
stochastic parameters indeed converge over time with an ever decreasing variance. It should be
noted though that for limited cases the inferred value of the parameters seem to converge to a
slightly offset value, such as in episodes 1, 8 in Figure 33, and in episode 3 in Figure 34. This anomaly
could be justified by the limited amount of decision steps that was employed, expecting a better
convergence to the expected “true” values if more updates were performed.

68

4 VERIFICATION, VALIDATION AND BENCHMARKING

Lastly, since the cost linked to the risk of failure, and subsequently the probability of failure, have an
important contribution to the total reward/cost of an episode, this probability is being plotted over
the 20 decision steps for a plethora of episodes (50 in total) in Figure 35.

0.30 0.30
mean —— Mean

o
]
2]

0.25

o
]
(=1

= 020

2015

Probability of failure
o o ¢
Probability of failure

o
o
o
o
o
o

RV T T e Vg TEE T ASVES ¥ ERV AL P s T

2 4 6 8 10 12 14 16 18 20 : 2 4 6 8 10 12 14 16 18 2
Decision Step Decision Step

(a) DDAN (b) PPO

o
o
S
o
o
S

Figure 35: Probability of failure for 50 policy realizations

Similar conclusions that have already been drawn for the comparison between DDQN and PPO
can be supported through the probability of failure plots, too. PPO appears to perform in a
more controlled manner, not allowing the probability of failure, P¢, hence, the cost G to grow
excessively. Observing also the mean of these episodes, it can be deduced that the agent forces
the risk of failure to stay approximately constant, especially for later steps (after the fifth one),
and in total it does not allow P to overcome the value of 0.035. This is not the case for DDQN,
as seen in Figure 35a, where especially for the early steps, the agent is not that strict, allowing
even higher values for the cost associated with the risk of failure. Among the two algorithms, the
maintenance strategies according to DDQN could be considered more reasonable, since taking
early maintenance decision is counter-intuitive for a brand new engineering system. However,
controlling the damage from an early stage, seems to work as well, leading to relatively stable
results, as PPO showcases.

4.5 Conclusions

Concluding this chapter, a review of the obtained results for the toy problem will be made, while
some summarizing comments and conclusions will be drawn.

Starting from the discrete case, due to the great simplifications in the modelling of the system's
deterioration and the state and observation spaces, it was feasible to derive optimal maintenance
strategies even with a heuristic damage threshold-based approach. Nonetheless, PPO managed
to outperform the benchmark approach and arrived to a slightly better policy, showcasing the
superiority of the proposed framework even for such trivial cases.

69

4 VERIFICATION, VALIDATION AND BENCHMARKING

Moving to the more realistic continuous version of the toy problem, it can be safely concluded
that the developed tool performed significantly better. Both DDQN and PPO managed to yield
an optimal sequence of maintenance actions, which decreased the total cost over the system's
lifetime b approximately 20% (the exact numbers/costs and the training of the agents can be found
at Table 10 and Figure 29 respectively).

Unfortunately, the A2C algorithm was not able to perform adequately, this is why it is disregarded
from the rest of the thesis. A possible reason for its poor performance can be its instability, especially
in such a stochastic environment. After all, this is the main reason algorithms like TRPO and especially
PPO were developed; to provide a more stable learning while still taking advantage of the benefits
of a policy gradient algorithm [40].

70

5 CASE STUDY

5 Case Study

5.1 Problem Description

5.1.1 Modelling

Even though the results which were yielded for the toy problem confirm the capabilities of the
proposed framework, its full potential will be better highlighted in the case of a more complicated

engineering system. In particular, a statically indeterminate structure poses the perfect candidate,

because it is often intractable for such systems to derive optimal maintenance strategies simply by
using threshold-based heuristic approaches. The chosen structural system is a three storey two
dimensional steel frame, which consists of linear elements, subjected to a lateral triangular load
along its height. The exact geometry is illustrated in Figure 36.

Qq
3) " A

@) ©® A

Elyeam, EApcam = const.

) ®) 74 element
(6] .
(/) node
[0] L
(0) 4)
Ve 74
I/ 4
/1 /1
L

Figure 36: Structural system employed for the Case Study

Al

5 CASE STUDY

The structure will be modelled using the Finite Element Method (FEM), and more specifically, both
for the beams and the columns, linear Euler-Bernoulli beam elements will be used. Three Degrees
of Freedom (DOFs) will be accounted for at the elements’ nodes, i.e. two translational (horizontal
and vertical) and one rotational, all defined in the displayed 2D plane. At this point it should be
noted that the elements of interest regarding their degradation, are the columns. This is a realistic
simplification, bearing in mind that the deterioration and the possible failure of the columns can
lead to more significant consequences and possibly to a global failure of the frame. Hence, as seen
also in Figure 36, both the axial and flexural stiffness of the beams are assumed to be constant.

In the same fashion as described in Section 4.1.1, noisy measurements, e.g. accelerations obtained
through a monitoring system, are passed through an output-only OMA scheme, which yields modal
data that are contaminated with additional noise, and are used as observations for the model
updating procedure. In the current application, the first eigenmode is considered, meaning that
a modal displacement will be observed for each of the eight (8) nodes, or to be more precise, for
each of the six (6) nodes, since the two (2) bottom ones are fixed. This choice for the observed
quantities serve for a better localization of the damage and the deterioration, which will eventually
result in a more precise and beneficial maintenance strategy. For completeness reasons, the first
three eigenmodes are illustrated in Figure 37.

12 P 2
10 10 10

(a) Mode 1 (b) Mode 2 (c) Mode 3

Figure 37: First three eigenmodes of the frame

It has already been mentioned that the reward, i.e. the maintenance cost, during each decision step,
can be broken down into the cost of the taken action and the cost associated with the risk of failure
(Equation 35). Therefore, in order to further elaborate on the concept of failure and quantify such a
risk, and subsequently calculate the probability of failure, a Serviceability Limit State (SLS) check is
employed. In particular, as stated in Clause 7.2.2 in EN 1993-1-1[59] and the Dutch National Annex
to EN 1990, cl. A1.4.3(7), the limit of the horizontal displacement of the top storey, i.e. the drift,
is u < H/500, where H is the total height of the frame. Thus, for the structure at hand, failure has
been reached if the drift of node (3) is greater than H/500 = 12m/500 = 0.024 m = 24 mm. As far
as the loading is concerned, a simple representation of seismic action is chosen. In particular, a

72

5 CASE STUDY

triangular static equivalent load of maximum magnitude, ¢, is accounted for, which serves as an
approximation of the first eigenmode of the structure. This assumption will reduce significantly the
computational cost that would be induced by a dynamic time history analysis. The calculation of the
triangular load’s maximum value is included in Appendix A.1.1. A more elaborate and realistic choice
for the load (e.g. including the self weight of the transverse beams, etc) would not be beneficial
for the scope of this project, since the assumed load case intervenes only in the calculation of the
top storey drift and subsequently the probability and cost of failure. The DRL and BMU aspects
of the problem are not affected by this modelling decision, which means that a simplified yet
representative load will not affect the framework’s accuracy.

The assumed material, cross-sections, dimensions and loads are summarized in Table 11.

Table 11: Case study frame geometry and properties

Beam cross section IPE220

Column cross section HEA30O0

Material S355
L 4m
qad 3.6 kN/m

A simplified model in terms of discretization was chosen, i.e. one Finite Element (FE) per structural
component, in view of reducing the computational cost. Owing to the relatively straightforward

geometry, this decision does not cause any loss of accuracy, both for linear static and eigen- analyses.

5.1.2 Actions

In this multi-component application, a significant difference constitutes the fact that instead of a
scalar action, there is an action vector a,, containing at each decision step, the different actions that
will be performed at the same time on every component. This can have a serious impact on the
dimension of the global action-space, since for n components and m: different action, there are m”
possible action vectors in a combinatoric fashion. As a starting point, the same actions (3) presented
in Section 4.1.1 and in Table 1 are accounted for, which means that for the six (6) components of the
frame, there are 3% = 729 possible action vectors.

Similarly to the toy problem, the costs for the actions are expressed relatively to one another, as
stated in Table 2, with the failure cost this time being significantly bigger. In particular, for the SDOF
oscillator, the failure cost was simply assumed twice as big compared to the replacement one, to
account for the sudden nature of such an event and its consequences, but for the frame at hand,
failure would mean a global collapse of the structure, so Cr =6 Cr'™. The extra cost that would be

14ix (6) is the number of the frame's components

73

5 CASE STUDY

considered for this event happening abruptly is assumed to be compensated by the fact that some
of the relatively undamaged components could possibly be reused. Therefore, the global failure
would cost the same amount as a complete replacement of all the components. The relative values
of the costs are included in Table 12.

Table 12: Rewards (costs) for the case study

Description Cost Value Factor
Component’s total replacement Cg Cp units 1
Component’s partial repair Cm 0.5Cr 0.5
Structure’s global failure Cr 6Cr 6
Risk of global failure Cisk PrCr 6Py

5.1.3 Deterioration Model

As elaborated in Section 2.6, a common and efficient approach regarding the modelling of the
structure’s degradation is the use of a Gamma process. The damage d(7) is defined as the ratio of
the current, degraded, cross section area over the initial one, i.e. A(7)/Ap. It is assumed that the
corrosion penetrates the steel cross section uniformly (radially) meaning that all parts of the cross-
section are equally exposed to the corrosive environment. Denoting the width of the degradation
layer as c, Figure 38 illustrates how the deterioration evolves on a cross-section scale.

7 Alt
Al an = AQ
Ay

N

Figure 38: Degradation of the IPE cross-section

Since the examined case is a 2D problem, the properties of interest, that intervene both in the
linear static and the eigen- analysis, are the axial stiffness, EA, and the flexural stiffness, EI. With
Young's modulus E remaining constant, it is important to define the degradation of the moment
of inertia, I, too. In Figure 39 the deterioration of the cross section’s properties is being plotted

74

5 CASE STUDY

over the section loss percentage. The detailed calculations for the correlation between the two
degradations (flexural and bending) are included in Appendix A.1.2.

1.00 \\\ —— A(D/Ag ~ 14
1(t) /1o

e o
© ©
o w

o

)

w
e
=)

Penetration depth, ¢

0.80

e
o

Geometric property ratio
<
I

o
[N

e
o

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Section loss percentage, A(t) /Ag

Figure 39: Cross section properties deterioration
Since the evolution of the deterioration follows a Gamma process, at every decision step the
damage increment for each component is described by a Gamma distribution. Hence, as displayed
also in Section 2.6:
AD;(t;) ~Ga(v(t;)—v(T;-1),u) for i=1,...6 (48)
where v(1;) is the shape of the Gamma distribution for the deterioration rate of the i component,

and u is the scale factor, assumed to be constant for all components.

In order to calculate the scale factor, u, it is assumed that the corrosive environment is affecting the
structural components in such a way that after 70 years, there is a mean section loss of 40% and a
standard deviation Of 7.5%, as chosen also in [43]. This means that:

v(70)
=0.40

E(d(70)) =
= u=71.11 (49)

v(70)
Var(d(70)) = 5= 0075

Regarding the shape of the Gamma distributions though, a similar calculation is not possible, since

v(1) is the term where the stochasticity of the deterioration is accounted for. In particular, it is
defined as follows:

v(t) = AT (50)

with A, B, being random variables. In a similar fashion with the toy problem, A, B constitute the
uncertain parameters which are initially assumed (prior knowledge) and are being updated using

75

5 CASE STUDY

observations. Thus, during every decision step, a set of A;, B; values is being sampled from the
distributions P(A), P(B), for every component i, leading to a different Gamsma distribution. Thus, the
distribution of the total damage for each component at any given time/decision step is defined as
the summation of all the Gamma distributions that describe the intermediate damage increments.
It is known that the sum of gamma (v;, v) random variables has a gamma (¥ v;, u) distribution, thus:

T T
Dt~ ZlGa(- |ATTE AT - 1B) =Ga(-| Y ATTB - AT -)BT u) (51)
T=

7=1

where A7, B} are the values of A, B sampled for a deterioration rate 7 for the i component™.

The aforementioned details on the Gamma process, describe the so called transition step for the
updating of the belief, hence, the probability distribution for the deterioration of the structure.
The other aspect of such an updating is the estimation step, which is responsible for incorporating
observations to improve the existing knowledge of the parameters of interest, i.e. A, B, with the
use of a likelihood function. A graphical representation of the two, with the goal of defining the
posterior distribution of the uncertain parameters is depicted in Figure 40.

The stochastic process
defining the transition
from state to state

[Posterior] X [Likelihood] X

How close is an :The prior knowledge :

output of the model
to the observations

Figure 40: Belief updating flowchart

Denoting the system's parameters as 0 = (A, B, D), and the observations, i.e. the modal displace-
ments for the first eigenmode, as O, the likelihood function is assumed to follow a normal distribu-
tion:

n

P10 =(]]

k=10k

1 n (O —M(@)*
=)o)y Ti] (52)

In Equation 52, M(0) represents the modal displacements for the first eigenmode that are derived
from the FE model, given the parameters 6, while o is the standard deviation that describes the

13The Gamma distributions' shapes are dependent on the deterioration rate 7; of each component, while the decision
step counter, , is global for the whole structure and it is evolving through unit increments until reaching the end of the
episode, i.e. the time window of interest.

76

5 CASE STUDY

added noise from the OMA scheme. For each noisy measurement (modal displacement) m. that
is passed through the output-only OMA, the observation that is used in the likelihood function is

O ~ N (my, o), with o = my. - Noise.

A schematic representation of the updating process for the deteriorating structure at hand is
demonstrated in Figure 41.

P(4),P(B)
[Prior distribuﬂ]}—

A
Y
Sample 4;, B;
from P(A), P(B)

Y

v = v; + A (1 +)5 — A 'rl.B’ Diot ~ Ga(- | vi,u) . . Model Ouput
. Eigenanalysis .
[Damage distribution shape] [Total damage distribution [Modal displacements|

i omre b seopled from Dy |

d;
[Sampled damages]

Ei lysi Measurements A 4
1genanalysis [Modal displacements] —)[TUTS I

Add Noise

(@)

[Observations|

Y
(om e [Paj0).pB|0)
\ J° l [Posterior distributions]

Figure 41: Case Study Bayesian Inference

77

5 CASE STUDY

The same procedure is presented in a more technical and formal way in Algorithm 15.

Algorithm 15: Deterioration model parameters updating - Case Study

. DeteriorationParametersUpdating (P(A),P(B), FE model, u, T):

2

3

4

10

11

12

13

14

18

19

20

Initialize Ga(+) shapes 26)(1 (_QGXI // O is a vector of zeros

Initialize deteriorationrates 7., — O,

forr—1to T do

Increment deterioration rates 7 — 7+ 15, // I is a vector of ones

Agy1Bgyp — sample from P(A),P(B)

v—v+A@+DE-ALL

Damage distribution of each component, D, ~ Ga(- | v, u)

d g, — sample from D

Au06x1 —FE eigenanalysis(g) // mean modal displacements, for the first eigenmode

Generate Auy 6x1 — N (Au,, Noise)

NUTS (P(A),P(B),Au .):
| Output: P(A|Aug,,),P(B|Auy,)
Choose actlon,gtg;xl // according to the PPO agent
fori —1to6do
if al is ‘repair” then
7; — max(0,7; —2)
else if a is ‘replace” then
Tj < 0
v;i —0

P(A) P(B) — P(A | Auobs) P(B | Auobs) // posteriors become priors through KDE

The dimensions of all the vectors are specified only at their first occurrence, i.e. 6x1, and they always refer to the number
of the structure’s components

78

5 CASE STUDY

The (starting) values for the parameters of the model’s deterioration are summarized in Table 13.

Table 13: Case study input data

Quantity Value Units
Replace cost, Cr 10000 [-]

Noise 0.1 [-]

Failure drift 24 [mm]
Parameter Distribution Mean CV
A Lognormal 01 05
B Normal 1.8 0.2

5.1.4 Probability of failure

An important issue to be tackled is the calculation of the probability of failure, Py, i.e. the drift of
the top storey being > 24 mm, given the probability distributions of the components damages. An
MC sampling would be the ideal solution in terms of accuracy, however it demands a significant
amount of computational time. Thus, FORM is chosen, and in particular, a geometric interpretation
of it. To be more precise, as it has been thoroughly explained in [60], denoting uf = 24mm i.e. the
failure drift, and (D) as the drift of the frame given the damage distributions of the components,
D, the Limit State Surface (LSS)"®is defined as:

M(D) = up — p(D) = 0 (53)

The LSS separates the safe region, where M (D) > 0, from the failure region, where M (D) < 0, of
the parameter space. The failure probability, P; can be expressed as the integral over the domain
M(D) <0:

Py =P(M(D) <0) :f P(D)dD (54)
M(D)=<0

with P(D) being the joint PDF for the uncertain components damages D.

A computationally inexpensive way to calculate the integral of Equation 54 is through a geometric
optimization analysis. The two necessary steps to do so, are:

1. Transform the uncertain variables, i.e. the damages, into independent normal basic variables
u'.

161 2D problems, instead of a surface, there is the Limit State Function (LSF)
17The most popular methods for this task are the Rosenblatt and the Nataf transformations

79

5 CASE STUDY

2. Compute the minimum distance g, the so-called reliability index, of the LSS from the origin
of the standard coordinate system U as displayed in Figure 42.

The point closest to the origin, U*, is referred to as the design point, and is the point with the
highest joint density on the LSS, meaning that it corresponds to the most probable combination of
damages for the structure to fail.

The probability of failure can now be computed as:

Pf = PAU = 1-®(B) =d(-p) (55)
M(U)<0

where @ is the Cumulative Distribution Function (CDF) of a normally distributed random variable
with zero mean and unit variance.

Failure
Region
M@U)>0

Safe
Region
MU)>0 LSS
M(U) =0
s ~. ” U1
Linearized "~ .
LSS AN

Contours of the joint
probability density
function (PDF)

Figure 42: Linearisation of the LSS M(U) = 0 at the design point U* in the uncorrelated standard normal random
variables U space '8

18For clarity reasons, only two (2) standard normal variables are included in Figure 42. For the case at hand, there will be
a 6-dimensional space and subsequently, 6-dimensional hyperplane as an LSS.

80

5 CASE STUDY

The step-by-step procedure followed to apply FORM is exhibited in Algorithm 16.

Algorithm 16: First Order Reliability Method (FORM) geometric interpretation

 FORM (Damage distributions D, ,, FE model, failure threshold ur):
2 Transform D into standard normal variables, U,
3 (D) — FE_linear_static_analysis(D) // FE model’s drift

4 M(D) =ur—u(D)=0// Linit State Surface (LSS)

5 Transform M (D) to the normal space, M (U)

6 B — min distance between LSS and the origin of U coord system
+ | Ppe—®(-p)

This procedure is not the exact function applied by the proposed framework, but the parameter updating in the absence
of the DRL aspect of the tool.

Even though FORM is significantly lighter from a computational time point of view, it relies on the
linearization of the LSS to find the design point, U*, which can lead to inaccuracies in highly non-
linear problems. This is why, for the current application, which itself is not a linear problem, FORM's
performance needs to be checked, through a comparison with a brute force MC sampling approach.
This comparison, as displayed in Figure 43, is made for three different amounts of samples, and for
a 1000 different damage combinations and Py's.

81

5 CASE STUDY

0 FORM 013 1e3 samples
09 MC - 1e3 samples 012 1e4 samples
: MC - 1e4 samples o1 —— 1e5 samples
08 —— MC - 1ebsamples .
) =
Z 010
o 07 2 009
E £
E 06 S 0.08
k3 o5 g 007
>
£ 2 006
B 04 £
g g % 0.05
Q03 S 004
2
02 2 0.03
0.02
01 0.01
00 0.00
0 100 200 300 400 500 600 700 800 9200 1000 0.0 0.1 0.2 03 0.4 05 0.6 07 08 0.9 1.0
Damage combinations Probability of failure
(a) P r for every approach (b) Absolute difference in P r
8000 2
1e3 samples 10 1e3 samples
7000 1e4 samples 1e4 samples
—— 1eb samples e — 1eb samples
*
6000 =
= 1
3 X 10
2 5000 2
17 £
8 B
® 4000 @
i
o 0
= 5 10
i 3000 2
x [a]
i)
o 2000 S
©
©
1000 o
10
0
0.0 01 02 03 04 05 06 07 08 09 1.0 0.0 0.1 02 03 04 05 06 07 08 09 1.0
Probability of failure Probability of failure
(c) Absolute difference in Cy;g, (d) Relative difference (%)

Figure 43: Comparison between FORM and MC

In Figure 43a, the probability of failure Py is plotted for different damage combinations, having
applied all different approaches, meaning FORM and MC with 3 levels of samples. The results have
been sorted and plotted in an ascending order of P for a clearer representation. It can be observed
that FORM is consistently underestimating P, especially for values that are neither too big nor too
small, i.e. approximately in the range of 0.1 — 0.9. In the next two plots, i.e. Figures 43b and 43c, it is
highlighted that the absolute difference between the two approaches is not significant, especially
again for either too small or too big values of Py. What is more, it is again confirmed that higher
values of Py are yielded with MC sampling, which results also in higher risk of failure costs as seen
in Figure 43c. Lastly, the relative difference between the two methods, expressed as a percentage,
is being plotted in logarithmic scale in Figure 43d.

The accuracy of FORM constitutes an important modelling aspect to be considered. Nevertheless,
since it is capable of capturing small P¢’s and it will be employed both for the benchmark solution
as well as the proposed framework, it is adequate for the time being, leaving some space for future
improvements.

82

5 CASE STUDY

5.2 Framework

Regarding the DRL aspect of the framework, not all of the algorithms examined in the current
project are suitable for such an application. Owing to the multiple components, and the immense
amount of possible action vectors, DDQN would not perform efficiently for this case. As already
been stated in the existing literature, DDQN requires discrete action spaces, and the more the
actions, the more difficult it is for the agent to arrive to optimal strategies. This is not the case with
actor-critic algorithms, which based on the given state compute the probability distribution of the
actions as an output, instead of the action-state value function. Thus, assuming that the actions
of the the system's components are conditionally independent, the policy derived from an actor
network, 7g(a; | s;), can be decomposed and expressed as the product of multiple policies which

would refer to each component individually, a}, a7, ... instead of the full action vector, a;.

6 .
mo(as | sp) =mg(a; | s;)-mo(ag | sp)...mg(ay | sp) = [[molag|sy) (56)
i=1

or,

6 .
log(mg(ay | s:)) = }_log(ma(ay| s1)) (57)

i=1
Therefore, the output layer of the actor network needs to have only 3 x 6 = 18 neurons, i.e. the prob-
ability of taking each action for each component. This means that every three output probabilities
are summing up to one (1). A schematic representation of both the actor and the critic DNNs, for
PPO "is displayed in Figure 44.

19Due to the poor performance of A2C in both the discrete and continuous versions of the toy problem, it is not going
to be tested for the case study, even though it could have handle the fact of multiple components, for it being an
actor-critic algorithm.

83

5 CASE STUDY

Critic Network

(—)
6 Components

— o] |© ~
vy (t) —> .. Vi (st)

00
®
®

|

— —
O O O == m(a |s) |
Uﬁ(t)o (—> 8 cen 8 P O D:: mo(a | 1) — mo(as | s¢) = ﬁ”o(ai | 5)
- O . 7k T
4 % mp(al S¢
) O O O = m(af |)_ .

N _J) o
2
sampled action vector,a = | .

Actor Network
ag

Figure 44: PPO architecture - Centralized states and actions

In the depicted architecture, instead of each component having its own agent, hence its own inde-
pendent network, there is only one centralized actor with shared parameters 6 for all components.
As elaborated also in [43] with DCMAC, using such a network means that every agent is aware of all
other agents’ states, by getting as input the entire system state s;, while being affected implicitly by
their actions, too, through the common network weights 6.

Various alternatives regarding the network architecture are presented as part of the future work in
Section 6.3.

84

5 CASE STUDY

Having elaborated on every aspect and sub-routine of the proposed framework, a summary of the complete procedure is illustrated in

Figure 45.

Sample A4;, B;

P(4),P(B)
[Prior distributions] from P(A),P(B)
A A
v; =0
=0
Total
rewards
A

Ca
[Action cost]

v = v + A (1 +1

)P~ A

[Damage distribution shape]

[Total damage distribution

Model Ouput

Di,tot ~ Ga(- \ 'inu)
[Modal displacements]

Eigenanalysis

Crisk
[Risk of failure cost]

Reset 7;
Reset v;

replace
comp. ¢

repair
comp. i

FORM

do nothing

Sample d;
from Dj o1

Measurements
[Modal displacements]
Add Noise

[0)

[Observations]

Eigenanalysis

' KDE I:

Y

—J

Figure 45: Case Study complete flowchart

[Plo)PB|O)]
]

l [Posterior distributions

85

5 CASE STUDY

Taking into account the DRL aspect of the problem, and the steps included in the training of the
PPO agent, the developed tool is presented in a thorough and more formal way in Algorithm 17.

Algorithm 17: Proximal Policy Optimization (PPO) - Case Study

. Initialize policy (actor) network weights 0
> Initialize value function (critic) network weights ¢
s forepisode=1to M do

4

5

6

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

¢ < reset environment // initialize A,B, 74, —Og.1» Yer1 — Opn
forr—1to T do
t—t+l,1—1+1
BMU for params A, B // procedure shown in Algorithm 15
mg(a, | s;) — Actor Net (s;) // mp(a, 150 =mp(al Is) mp(a? | 50)...m9(al | 50)
Vi (s¢) — Critic Net (s;)
a, — sample from mg(a, | s;) // a} from a,0:3], a? from a,3:6] ..., af from a,(15:18]
fori —1to6do
if al is ‘replace” then
t 7;<—0
else if al is ‘repair” then
L T; —max(t; —2,0)

Pf — FORM (E) // the shapes of the Gamma (damage) distributions are passed as an input
Cq, — numReplaces x CR + numRepairs x Cq

R(st,a,) — Cq, + Py Cr

Observe next state St+1 // St+1 =(shapes v, deterioration rates 1)

Store tuple (s;, as, mg(a; | s1), Vip(sp), R(st, ar)) in Dy // si=w.p

St — St+1
if t=Torn=N then
if £ = T then

Vp(st+1) <0
S¢ — reset environment // initialize A,B, <0, v—

©

else

t Vip(st+1) < Critic Net(s;)
Returns 6; — R(s;, a,) +v Vip(sr41) — Vip(s1)
Advantages A; — 6, + (Y A) 81 +...+ (Y) T7H15 14
Store 64, A; in Dy,

B Train Agent (Dy)

The indexing and slicing of vectors follows Python notation, i.e. 0 is the starting index and the upper bound is exclusive.

86

5 CASE STUDY

The steps needed to train the PPO agent for the case study, i.e. the function “Train Agent” are
demonstrated in Algorithm 18.

Algorithm 18: Proximal Policy Optimization (PPO) agent training - Case study

. Train Agent (Dy):

2

Update parameters ¢, using the Critic cost function:
T
L) = Z A

Update parameters 0, using the Actor loss function:

mgla,|s
————=A(s,a,), clip Ml—£,1+£
neold(a |St)

g (a, | st)

LCLIP min
Z neold ((l | St)

At

via minibatch stochastic gradient ascent with Adam

87

5 CASE STUDY

5.3 Benchmarking

For the sake of comparison and evaluation of the proposed framework, a benchmark approach
needs to be applied on the case study, setting the threshold (in terms of cost) that the PPO agent
will try to surpass.

As mentioned also for the toy problem in Section 4.3, usually a heuristic approach is chosen, which
indicates when it is more beneficial to perform a maintenance action based on a variety of metrics.
Common options are the maximum damage allowed (per component), the maximum probability
of failure of the structure as a whole, or even a time threshold which would specify every how many
decision steps (e.g. years) a maintenance action should be performed.

Although, for the SDOF system, the control quantity would not lead to considerable differences, it
is expected, that for a multi-component system, monitoring the deterioration of each component
separately can lead in a more efficient maintenance strategy and life-cycle cost. Nevertheless,
both the optimal damage threshold and the optimal maintenance time interval will be sought,
and ultimately the yielded results of these two heuristic approaches, namely Condition-Based
Maintenance (CBM) benchmark and Time-Based Maintenance (TBM) benchmark, will be compared
with the ones of the proposed methodology.

Regarding the CBM benchmark, a fine grid of repair and replace thresholds is created, in order to
check which combination would yield the minimum maintenance cost. In particular, increments of
0.05 are considered starting from 0 damage, up to 0.5. Due to the high stochasticity of the corrosive
environment, an abundance of episodes was ran for each pair of values. The obtained thresholds
as well as the resulting maintenance cost mean and standard deviation are displayed in Table 14,
while a policy realization of such a heuristic approach is depicted in Figure 46.

Table 14: CBM Benchmark maintenance thresholds and costs - Case Study

Optimal Thresholds

Repair Replace = Mean Cost St. Dev.

None 0.10 117819.96 25854.85

As displayed also in Table 14, according to the benchmark; it is more beneficial to let the components
deteriorate and perform directly a replace action when 0.10 damage is reached, rather than perform
a partial repair earlier.

88

5 CASE STUDY

A realization of a maintenance policy following the benchmark approach, i.e. heuristic damage
thresholds, is displayed in Figure 46.

—— Expected damage 1 —— Expected damage

1
—— Replace threshold : —— Replace threshold
replace 1 replace
repair 1 repair
1
1
1
1
1
1
1
2\ 1
1

0 2 4 6 8 0 12 14 16 18 20
Decision Step

0 2 4 6 8 10 12 14 16 18 2
Decision Step

D

—— Expected damage —— Expected damage

1
1
—— Replace threshold —— Replace threshold
replace : replace
repair I repair
()
1
—
A A (1) Pl /\

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Decision Step Decision Step
____________________________ . &~ e e e e e e e e e e e e e
— e e e e e e e e e e e e e, —m——————— 1) I VT N
~. /(0
—— Expected damage : 1 —— Expected damage
—— Replace threshold | 1 —— Replace threshold
replace ! 04 replace
repair repair
03
02

AN

0 2 4 6 8 0 12 14 1% 18 20
Decision Step

. ~//’—/\/
0 2 4 6 8 0 12 14 16 18 20
Decision Step

N == e === ==

Figure 46: Policy realization for all components - CBM Benchmark

89

5 CASE STUDY

As far as the TBM benchmark is concerned, once more a plethora of threshold combination was
examined, as well as a great amount of episodes due to the stochastic nature of the environment.
The scenario of performing replace actions to all components periodically was considerably more

beneficial compared to partial repairs. The different maintenance costs obtained for the different
replace intervals are plotted in Figure 47.

—— Benchmark mean
o+
-200000 Benchmark mean =+ st.dev

-250000

-300000

Reward

-350000

-400000

9
Replace Interval

Figure 47: TBM benchmark costs over replace intervals

It is observed that the optimal maintenance strategy in a periodic fashion, would be to perform
a total replacement of all components every 7 decision steps. Furthermore, it is interesting to
note that by increasing the replace interval there is a significantly higher variance in the rewards
(maintenance costs). This is something expected, since for a shorter maintenance interval, the
deterioration of the system does not evolve as much, leading to a total cost that consists almost
explicitly of the maintenance actions’ cost, rather than the risk of failure one.

90

5 CASE STUDY

5.4 Results

Having elaborated on the individual sub-routines employed as well as the workflow of the complete
framework, the proposed tool is applied to the 2D frame at hand. Before proceeding to the results
and plots, the hyper-parameters that were used, are presented in Table 15.

Table 15: PPO hyper-parameters - Case Study

Hyper-parameter Value
gamma 0.99

clip ratio 0.15
lambda 0.95
number of inner layers 2

size of inner layers 256

policy learning rate 1.0E-3t02.0E-5

value function learning rate 5.0E—3to5.0E-5

It should be mentioned that the learning rates that were used are not constant. To elaborate, at
the beginning of the training higher values were used, i.e. 1.0E — 3 and 5.0E — 3 for the policy (actor
network) and the value function (critic network) respectively, which serve for an initial exploration
of the action and the solution space. Over the course of the training episodes, both the learning
rates were refined, reaching 2.0E — 5 and 5.0E — 5, both to ensure a smoother training, and not to get
stuck in sub-optimal solutions.

91

5 CASE STUDY

In Figure 48 the training of the agent is plotted for over 6000 episodes, along with the two benchmark
thresholds (CBM and TBM).

—— PPO average reward per 100 episodes
PPO reward per episode

—— CBM Benchmark mean

—— TBM Benchmark mean
CBM Benchmark mean * st.dev.
TBM Benchmark mean + st.dev.

Reward

WA%

0 1000 2000 3000 4000 5000 6000
Episodes

Figure 48: PPO applied on case study

It is apparent that the proposed framework could not manage to beat both benchmarks, specifically
it surpassed TBM but not CBM. Most probably this is the case because of the dominance of the
action costs, and the small contribution of the risk of failure one. As a reminder, the total cost per
decision step is decomposed as follows:

R; =C;=Cq, + Ciisk

Additionally, it has been observed that the deterioration, as defined in this case study, is developing
suddenly and rapidly. If there was a more gradual degradation, this would result in a probability
of failure cost that would contribute significantly and during many decision steps to the total
maintenance expenses. Undoubtedly, the sheer computational time needed for such a training
did not allow for a proper experimentation with different hyper-parameters that would possibly
perform better, reaching in the end to a better policy. Nevertheless, the agent seems to perform
considerably better than the TBM benchmark, which is not a surprise, since periodic maintenance
can not account for the localization of the damage, thus, many components, that their remaining
capacity is sufficient, are forced to be maintained along with the rest of the structure.

A way of improving the decisions of the agent, having observed that the deterioration and the
resulting probability of failure, do not grow that rapidly, especially during the first decision steps,

92

5 CASE STUDY

would be to include some hardcoded constraints. To be more precise, in this case, it was considered,
that no maintenance action would be beneficial during the first 4 decision steps, and also no action
should be made if the age (deterioration rate) of a component is less than 2. Once again many
realizations were made in order to obtain a representative average maintenance cost for such a
policy. The total results, both for the benchmarks and the DRL approaches, are summarized in
Table 16. It should be mentioned that for all approaches, more than 100 episodes were ran.

Table 16: Benchmark and DRL performance on the Case Study

Maintenance Mean St. Dev. Relative

Approach Cost Cost Difference’

CBM Benchmark 117820.0 258549 100.00%
TBM Benchmark 192069.2 16121.0 163.02%

PPO 166148.2 27809.7 141.02%
Constrained PPO 133368.7 11180.2 13.20%

" The mean cost achieved by each approach is compared with the
minimum of all, i.e. the CBM Benchmark one

The fact that a constrained PPO agent can arrive at lower maintenance costs, proves that a better
tuning of the hyper-parameters can yield more efficient policies.

What is more, another interesting plot is the policy realization for the constrained agent. Of course,
a single realization is not the most representative, but it still provides a qualitative representation of
how the agent chooses its actions. Such a plot, is displayed in Figure 49, where the damage over
the time horizon and the corresponding actions are plotted for all the components.

93

- e e o e e ey - e e e o o o =,

I S

0.24

0.18

Damage

0.06

0.00

0.24

Damage

0.06

0.00

0.24

0.00

—— Expected damage
replace
repair

o
[N)
IS
o

o
[N)
IS
o

=]
[N]
IS
o

8 10 12
Decision Step

8 10 12
Decision Step

8 10 12
Decision Step

14 16 18 20

—— Expected damage
replace
repair

14 16 18 20

— Expected damage
replace
repair

14 16 18 20

Figure 49: Policy realization for all components (constrained)

N - -

0.24

0.06

______________~
=]
=
®

0.00

-

0.24

(2)

— @

(6)

E
.

Damage

(1)

]
1
1
1
]
1
]
1
1
1

(5)

0.00

= - -

0.24

0.06

0.00

5 CASE STUDY

8 10 12
Decision Step

8 10 12
Decision Step

8 10 12
Decision Step

— Expected damage
replace
repair

14 16 18 20

—— Expected damage
replace
repair

14 16 18 20

— Expected damage
replace
repair

94

5 CASE STUDY

It is evident that there is not a specific pattern that the agent follows neither on a global scale nor
on a component one. Undoubtedly, it does not allow the damage to reach extremely high values,
since this would also affect significantly the horizontal displacement of the top storey, which is the
control quantity for the structure’s failure.

In Figures 50 and 51, policy realizations are plotted for different levels of training. In particular, there
is a policy realization every 1200 episodes, to demonstrate the learning of the agent, and how from
completely uninformed and random actions, it shifted to more reasonable and beneficial ones. To
serve this purpose from a presentation point of view, a color-bar is included in the plots, to display
the decrease of the total maintenance costs over the course of training episodes.

95

5 CASE STUDY

1S0Q [ejoL
o o o o o o o o o
o o o o o o o o bs)
o o o o o o o o ©
o Te} o re} S Te)) re) =
ve} N o N re} NS o I3 Q
~ -~ N N N o ™ ™ o
| 1 | | | 1 | 1
| | | | | | | | | | | | | | | |

repair

||||||||||||||||||||||||||||||||||

1200

Figure 50: Policy realization for all components for different training episodes - Left side

o

5 CASE STUDY

-150000
-175000
-200000
-225000
-250000
-275000
-300000
-325000
replace
repair

100 [ejoL

|||||||||||||||||||||||||||||||||||

E

Figure 51: Policy realization for all components for different training episodes - Right side

5 CASE STUDY

It goes without saying, that the agent during the early learning stages was allowing the deterioration
to grow significantly, something that changed over the course of more episodes, since higher
damage values combined with the degradation of other components as well can lead to a greater
probability of failure P¢. Another interesting observation is that, especially for the left side of the
frame, the agent gets much more sensitive about the damage of the base storey, rather than the
ones of the two above. This is a reasonable strategy, because the damage of the lowest column has
a greater contribution to the global failure. Surprisingly, this is not the same case for the right side,
where all columns are limited to small damage values, regardless from their location. As already
explained, this could be attributed to the high stochasticity of the corrosive environment, which
makes a single realization a non-representative measure.

5.5 Conclusions

Summarizing the chapter, some general comments will be made and conclusions will be drawn,
regarding the case study.

Moving from a simplistic application such as the toy problem, to a more complicated case study
undoubtedly made the optimal maintenance strategy harder to determine. The considered 2D
frame is a multi-component system that poses greater challenges, with the more obvious one
being the enhancement of the action and state spaces. The benchmark approach, and more
specifically the CBM version of it, was more difficult to beat, and it was highlighted that a better
tuning of the hyper-parameters is necessary. It is also possible that the initial problem setup needs
to be reconsidered, and particularly the assumptions made about the costs/rewards during every
decision step.

98

6 DISCUSSION - CONCLUSION

6 Discussion - Conclusion

6.1 Discussion of results

Having presented the proposed framework both in theory and in hands-on applications, it is evident
that such an approach, i.e. coupling DRL with BMU to determine an optimal maintenance strategy,
carries a plethora of advantages. In particular, the basic theory regarding the developed tool was
described, moving to a simplified first application, where the framework’s superiority is firstly high-
lighted, with a culmination of this thesis being the use of this framework for a more complicated
and realistic case study.

As far as the toy problem is concerned, there were two DRL algorithms?Cthat were tested, namely
DDQN and PPO, which both performed better than the traditional maintenance approaches. A
more thorough presentation and elaboration of the results is presented in Section 4.4, where apart
from the learning process of the agent over the training episodes, a variety of important quantities,
is plotted for a plethora of policy realizations. Of course, such an application is over-simplified and
even though it fortifies the potential of the proposed framework, it is not directly applicable to
real-life cases.

After the toy problem, the application of the proposed framework in a case study was presented. In
particular, a 2D 3-storey frame was chosen, with its 6 columns being the deteriorating components,
and the PPO algorithm being selected for the training of the agent. Unfortunately, the proposed
methodology did not manage to beat the benchmark, and to be more precise, the CBM benchmark,
which gave rise to plenty of discussion points, regarding what are the possible reasons for such a
performance.

The main cause that possibly leads to the inferior performance of the developed tool might be the
assumptions that were made about the failure of the structure and subsequently the cost related to
the risk of failure. For the case study the failure was defined through an SLS check regarding the drift
of the top storey, and the cost of failure was assumed to be equal to a total replacement of all the
components. Even though such an assumption could be realistic, as explained also in Section 5.1.1,
since in the case of a global collapse there might be some lightly damaged components that could
be reused, the corresponding cost was proved to have a minor contribution to the total reward,
making the cost of actions dominant. Therefore, it was possible to arrive at an optimal sequence
of actions using a heuristic threshold-based approach that was able to locate these maintenance
expenses in the most cost-efficient way along the structure’s lifecycle.

Another interesting observation, that is worth being discussed, is the decisions that the agent
takes for columns that belong to different storeys. Based on elementary structural mechanics, it is

20 A third algorithm was tested, too, namely A2C, which unfortunately did not yield optimal maintenance strategies
even for the simplest of the cases, this is why it was disregarded for the rest of the thesis.

99

6 DISCUSSION - CONCLUSION

apparent that the damage of the bottom columns contributes more to the possible failure of the
structure. Since the failure is translated to a risk of failure cost, the agent is capable of arriving at a
policy that would limit the damage of the more “important” (failure-wise) components, while on
the other hand allowing the deterioration of the less crucial columns to reach higher values. This
way of maintaining a multi-component system can not be achieved using heuristic threshold-based
approaches; a fact that compliments the benefits of having a DRL agent as a decision-maker. In
Figure 52 the deterioration of all components is plotted over the decision steps of a single policy
realization. It is evident that the strictest maintenance actions take place for components 0 and 3

which correspond to the base columns.

0.25
0.20

0.15

Damage

0.10
0.05

0.00

1 .
2 e
3

Co
n?Don en 4 =

“

Figure 52: Policy realization for all components (constrained) - 3D

100

6 DISCUSSION - CONCLUSION

Last but not least, it should be mentioned that the proposed methodology is not strictly applicable
only to structural engineering applications. The maintenance of any kind of multi-component
engineering system, whose deterioration can be expressed through a stochastic process, can be
dealt with using such an approach. Taking advantage of both the capabilities of the DRL agent
for the sequential decision problem, as well as the more accurate modeling of the deteriorating
environment that the continuous variable Bayesian inference provides, renders this framework a
promising tool to tackle the problem of maintenance in a general sense.

6.2 Limitations

As in every research project, there is a trade-off between the modeling accuracy, i.e. the
simplifications and assumptions made, and the corresponding computational time. Limiting the
assumptions/simplifications for the proposed framework, had the expected outcome regarding the
runtime. Therefore, the most important limitation of the developed tool is the high computational
time needed for the training of the agent. It makes it significantly difficult to tune the hyper-
parameters or do simple modifications to the system’s dynamics, which would require the training
of the agent from scratch. Nevertheless, it could be characterized as a disadvantage worth having,
since such a tool can yield the optimal maintenance strategy for the whole lifetime of an engineering
system, making the runtime seem less important on a relative scale. Of course, as displayed also in
this thesis, the computational resources needed are proportional to the complexity of the considered
system, as the toy problem both in its discrete and continuous version was much faster to solve in
comparison with the more complicated case study. A possible solution for this limitation would be
the further optimization of the Bayesian inference since it was the least time-efficient part of the
algorithm. Additionally, the ever-increasing computational power closely connected with the rapid
development of the technology could also help in this aspect in the future.

101

6 DISCUSSION - CONCLUSION

6.3 Future Development

The current research investigates the benefits and the potential of a workflow that integrates both
DRL and BMU, aiming to determine the optimal sequence of maintenance decisions. Although the
first results of such an approach, which were presented in this thesis, are a promising indicator of
its capabilities, many possible additions and modifications can be incorporated into the proposed
workflow and would be interesting to examine. These ideas for further development and future
research are presented in this section.

Regarding the multi-component system that was examined as a case study, there are many possible
alternatives as far as the actor network architecture is concerned. The actor network architecture
used in this project was a centralized one, meaning that there was a single neural network for all
the components and all the possible actions (this is explained more thoroughly in Section 5.2). A
different approach would be to decentralize each component’s network, in a similar fashion as for
DDMAC in [44]. Even though the states remain centralized and s, constitutes the input for every
agent, there are as many networks and weights 0; as the control points, i.e. the components of the
system. This means, each agent chooses an action independently, but they are still aware of one
another’s condition, owing to the common input they are getting. The described architecture is
illustrated in Figure 53.

102

6 DISCUSSION - CONCLUSION

Critic Network

J

\v

Q000

@ 00 0
'
©)

:

6 Components
r—\ Actor 1
u) Q) —
@) O _
i 9] [O) = @ | = el 190
p— 7 (!
(1) O ©]
T2 O Actor 2
—)
: O o
]
—_—— > O ...|O :ll:l g, (af | s¢) 6
w Q) O o \ - mo(as | s:) = [[7o (af | 52)
@) =~ 2 =
—

.
Actor 6

1 O ' g:: g (0 | 5¢)

az

al_

Actor Networks sampled action vector, a =

ag |

Figure 53: PPO architecture - Centralized states and decentralized actions

103

6 DISCUSSION - CONCLUSION

A variation of this architecture would be to group the elements that belong to the same floor.
From an engineering point of view, it is a valid assumption that columns of the same floor would
stochastically be described by a single neural network. Also for this option, the state s; which
contains the damage and the deterioration rate of all components, would be common for all 3
networks (centralized states). The output of these floor networks would still be a softmax, i.e. 7,
from which two actions would be sampled (one for each column) during every decision step, as
depicted in Figure 54. The validity of this proposal can be further backed up if in the case of a
decentralized 6 sub-network architecture (Figure 53) the agent chooses eventually symmetrical
actions, meaning that similar decisions are made for the columns that belong to the same floor.

6 Components

Critic Network

® 000
@ 000

|

\ R NS /
Actor - Floor 1
@) — _
19 i oy (al | 50)
@)
Actor - Floor 2
o] [0 3
1] .
> O O q@:: o, (af | 51) —ﬂe(glst)=2H7roi(a§|st)
/ . i=1
o 9

Actor - Floor 3

[o-voo]
@ 60]

Actor Networks

() === .
> /= o, (af | s¢)
_

sample twice from each softmax,
once for each column of the floor
to obtain:

ay

a
a=

ag

Figure 54: PPO architecture - Centralized states and decentralized actions - Floor variation

104

6 DISCUSSION - CONCLUSION

Lastly, another idea for an actor network architecture would be to consider in the inputs an ID for
each component. There will be only one network and shared parameters 0, which would output a
single policy 7y with three probabilities which would refer to the component with the given ID. The
state s, containing information for the whole structure will remain as is in the input layer (centralized
approach), and there will be six 6 forward propagations of the actor network to obtain the six 6
component policies. This idea is depicted in Figure 55.

Critic Network

|

6 Components

|

Q00 O

@ 00 0

J

N (-
[
v,

E—
—> (e | st)
[

Y

N g
E - =
=

Component ID

-

(@ 00 0

(

v
(@00 0O

Actor Network

Figure 55: PPO architecture - Component’s ID

105

6 DISCUSSION - CONCLUSION

An interesting idea for a future investigation is the inclusion of the stochastic parameters A and B,

which are updated in every decision step, to the state s;, hence to the inputs of the neural networks.

This modification could lead to the agent making more confident decisions in the later decision
steps when it has developed a greater knowledge about the deteriorating environment. Such a
feature would also be an important advantage of the proposed methodology in comparison with
the traditional approaches, which need to follow a strategy from start to end, and can not capture
the decrease of the uncertainties through continuous model updates, subsequently the increase of
the decision-maker's confidence.

What is more, a worthy addition to this framework would be to account for different/additional
actions. One particularly interesting and realistic action scenario would be to reward the grouping
of the components maintenance. More specifically, this can highlight how probable would it be for
the agent to choose a single component’s action at a higher cost, instead of waiting for other ones
to deteriorate further and perform maintenance to more members during the same decision step.
This can be modeled using a fixed base cost, e.g. for the maintenance crew to reach the structure’s
venue, and add to that the cost of the maintenance actions.

On a more technical note, currently, PPO trains the agent using a rollout buffer, i.e. the stored
samples are discarded after their use. Alternatively, to reuse the samples and tackle more efficiently
the stochasticity of the problem, a replay buffer can be employed, that will keep the samples even
after the training. During the training a weighted sampling can be applied, for the more recent
samples (generated by more recent policies) to be more important compared to the old ones ([61],
[43]).

Lastly, as already mentioned, the modeling choice of the failure and its corresponding cost, play
an important role in the ability of the DRL agent to beat the benchmark. To verify this argument,
it would be useful to perform a sensitivity analysis for various scenarios of risk of failure cost.
Unfortunately, although such runs were initiated for this thesis as well, the computational time was
restricting and the proper training of the agent along with hyper-parameter exploration was not
possible.

106

A APPENDICES

A Appendices

A1 Appendix 1 - Case Study
A1l Load Case

To begin with, it should be mentioned that the calculations of the applied loads are made in an
approximate fashion, since the case study is not an existing structure, meaning that any assump-
tion could be justified as valid. This section aims to describe the step-by-step procedure of load
calculation even for a real life application.

The elastic quasi-static forces per floor of the frame will be calculated according to the provisions
of Eurocode 8 and the elastic response spectra. Using Equations (3.2) - (3.5) provided in Clause
3.2.2.2 of EN1998-1[62], and the values included in Table 17, the elastic response spectrum can be

drawn?'.

Table 17: Values of the parameters describing the recommended Type | elastic response spectra [62]

Groundtype S Tg(s) Tc¢(s) Tp(s)

A 1.00 0.15 0.4 2.0
B 1.20 0.15 0.5 2.0
C 1.15 0.20 0.6 2.0
D 1.35 0.20 0.8 2.0
E 1.40 0.15 0.5 2.0

From the eigenanalysis of the frame, the eigenfrequencies are derived, with the fundamental one
being fi = 4.42Hz, meaning that the fundamental period is T} = 0.226 sec. Based on this period, and
the drawn elastic response spectrum, the design ground acceleration is derived S, ¢ = 6.769m/s?
as illustrated in Figure 56.

2|t is assumed that for the current application the ground type is C

107

A APPENDICES

9.0

7.51
(0.226, 6.769)

S, (m/s?)
S

00 05 10 15 20 25 30 35 40
T (sec)

Figure 56: Elastic response spectrum

A simplified mass model for the frame is presented in Figure 57, where M represents the mass of the
two columns and the beam of each floor. In particular, accounting for structural steel's mass density,
p = 7850kg/m3 and the geometric dimensions of the members (cross-sectional area and length),
M is calculated to be 1250kg. Following this assumption, that the mass per floor is concentrated,
the elastic quasi-static forces, are calculated as follows:

Fel,i = Saell mip; (58)
where,

m; = mass at floor i [kg]
@; = first eigenvector value, corresponding to floor i [-]
Li-mi

I'= modal participation factor, =——— [-] (fora diagonal mass matrix M)
(pi -m;

The first eigenvector is plotted also in Figure 57.

0.33 1250 O 0
¢ =4 0.66) 1\:/12 0 1250 0 , I'=1.288
1.00 0 0 1250

108

A APPENDICES

The needed quantities to calculated the quasi-static forces are included in Table 18.

Table 18: Elastic quasi-static forces based on EN1998-1[62]

Floor,i ¢; Floormass r Sael Fq

[-] [-] [kel [-] [m/sec®] [kN]

1 0.33 1250 1.288 6.769 3.6
2 0.66 1250 1.288 6.769 7.2
3 1.00 1250 1.288 6.769 10.8

M M
eigenvector 1 4 Fa s qa
L
M M
F, el, 2
(Y % ’ /2
—
N 4 N
L
F, el, 1
/R ¥ - 2
N NI
L
A A A A A A

Figure 57: Simplified model of the frame

The superposition of these three concentrated loads will be now transformed into a triangular one,
of value g, at the top node, as depicted also in Figure 57.

3 1
Y Fe,i=3Lqq
im1 2

= ¢4 =3.6kN/m (59)

109

A APPENDICES

A.1.2 Deterioration

In the current project, the damage d(7) is defined as the cross section loss, i.e. the ratio of the
current cross-section area at deterioration rate 7, over the initial one.

However, from a more pragmatic point of view, the damage, which is usually a reduction in thickness
does not affect in the same way the flexural and the bending stiffnesses. The correlation between
these two reductions is elaborated in this section.

Denoting as c the corrosion penetration depth, and assuming that it is constant along the perimeter

of the cross-section (Figure 38), the initial stiffnesses are:

A0:2tfbf+twhw (60)
[bftf+bftf() 2]+—l'wh3 (61)

where 17, by are the thickness and the width of the flange, and t,,, 1, are the thickness and the
height of the web, as displayed in Figure 58.

Figure 58: I-beam cross-section

The degraded cross-sectional area is:

A=2(tp—2¢)(bp—2¢)+ (tw—20) (hy +20) (62)

10

A APPENDICES

Subsequently, it holds:

Apd=A
> [2tbp+tyhy|d=2(=2¢) (b —2¢)+ (tw—2¢) (hy +20)
=>4c®+2c(tw—hw—2tp—2bp)+(1—d) [2t; by + by hy| =0

—2(rw—hw—2rf—2bf)i\/(2(tw—hw—2tf—2bf))2—16(1—d)(2tfbf+rwhw)
=>C= 8 (63)

Then based on this value of corrosion penetration depth, ¢, the degraded moment of inertia is:

hw+tf
2

=2 %(bf—2c)(tf—2c)3+(bf—2c)(tf—2c)()2+$(tw—20)(hw+26)3 (64)

Concluding, using Equations 63, 62, 64, the degraded stiffnesses are calculated based on the
damage of every decision step.

m

References

[1]

(2]

[3]

[4]

[5]

[6]

(7]

(8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]
[16]

[17]

Proximal policy optimization, Accessed: 24-Jan-2022. [Online]. Available: https : //spinningup .
openai.com/en/latest/algorithms/ppo.html.

M. G. Stewart and D. V. Rosowsky, “Time-dependent reliability of deteriorating reinforced concrete
bridge decks,” Structural safety, vol. 20, no. 1, pp. 91-109, 1998.

F. Akgil and D. M. Frangopol, “Lifetime performance analysis of existing steel girder bridge superstruc-
tures,” Journal of Structural Engineering, vol. 130, no. 12, pp. 1875-1888, 2004.

D. V. Val, M. G. Stewart, and R. E. Melchers, “Effect of reinforcement corrosion on reliability of highway
bridges,” Engineering structures, vol. 20, no. 11, pp. 1010-1019, 1998.

T. Moan, “Reliability-based management of inspection, maintenance and repair of offshore structures;
Structure and Infrastructure Engineering, vol. 1, no. 1, pp. 33-62, 2005.

|. Lotsberg, G. Sigurdsson, A. Fjeldstad, and T. Moan, “Probabilistic methods for planning of inspection
for fatigue cracks in offshore structures,” Marine Structures, vol. 46, pp. 167-192, 2016.

P. Wirsching, “Fatigue reliability in welded joints of offshore structures” International Journal of Fatigue,
vol. 2, no. 2, pp. 77-83,1980.

P. Schaumann, S. Lochte-Holtgreven, and S. Steppeler, “Special fatigue aspects in support structures
of offshore wind turbines;” Materialwissenschaft und Werkstofftechnik, vol. 42, no. 12, pp. 1075-1081,
201.

W. Dong, T. Moan, and Z. Gao, “Fatigue reliability analysis of the jacket support structure for offshore
wind turbine considering the effect of corrosion and inspection,” Reliability Engineering & System Safety,
vol. 106, pp. 11-27, 2012.

B. Yeter, Y. Garbatov, and C. G. Soares, “Fatigue damage assessment of fixed offshore wind turbine
tripod support structures,” Engineering Structures, vol. 101, pp. 518—528, 2015.

V. Mnih, K. Kavukcuoglu, D. Silver, et al.,, “Playing atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

R. van Leeuwen, Feastruct, Accessed: 04-Apr-2022. [Online]. Available: https://github. com/
robbievanleeuwen/feastruct.

S. Geyer, A. Kamariotis, |. Papaioannou, L. Sardi, D. Straub, and F. Uribe, First-order reliability method,
Accessed: 06-May-2022. [Online]. Available: https: //www.cee.ed.tum.de/en/era/software/
reliability/first-order-reliability-method/.

K. G. Papakonstantinou and M. Shinozuka, “Planning structural inspection and maintenance policies
via dynamic programming and markov processes. part i: Theory,” Reliability Engineering & System Safety,
vol. 130, pp. 202-213, 2014.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

J. F. Andersen, A. R. Andersen, M. Kulahci, and B. F. Nielsen, “A numerical study of markov decision
process algorithms for multi-component replacement problems,” European Journal of Operational
Research, 2021.

M. Compare, P. Marelli, P. Baraldi, and E. Zio, “A markov decision process framework for optimal
operation of monitored multi-state systems;’ Proceedings of the Institution of Mechanical Engineers, Part
O: Journal of Risk and Reliability, vol. 232, no. 6, pp. 677-689, 2018.

12

https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://github.com/robbievanleeuwen/feastruct
https://github.com/robbievanleeuwen/feastruct
https://www.cee.ed.tum.de/en/era/software/reliability/first-order-reliability-method/
https://www.cee.ed.tum.de/en/era/software/reliability/first-order-reliability-method/

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

REFERENCES

R. Schébi and E. N. Chatzi, “Maintenance planning using continuous-state partially observable markov
decision processes and non-linear action models,” Structure and Infrastructure Engineering, vol. 12, no. 8,
pp. 977-994, 2016.

R. B. Coratis, J. Hugh Ellis, and M. Jiang, “Modeling of risk-based inspection, maintenance and life-cycle
cost with partially observable markov decision processes,” Structure and Infrastructure Engineering, vol. 1,
no. 1, pp. 75—-84, 2005.

K. T. Nguyen, P. Do, K. T. Huynh, C. Bérenguer, and A. Grall, “Joint optimization of monitoring quality
and replacement decisions in condition-based maintenance;’ Reliability Engineering & System Safety,
vol. 189, pp. 177195, 2019.

K. G. Papakonstantinou and M. Shinozuka, “Planning structural inspection and maintenance policies via
dynamic programming and markov processes. part ii: Pomdp implementation,” Reliability Engineering
& System Safety, vol. 130, pp. 214-224, 2014.

K. G. Papakonstantinou, C. P. Andriotis, and M. Shinozuka, “Pomdp and momdp solutions for
structural life-cycle cost minimization under partial and mixed observability,” Structure and Infrastructure
Engineering, vol. 14, no. 7, pp. 869-882, 2018.

C. P. Andriotis, K. G. Papakonstantinou, and E. N. Chatzi, “Value of structural health information in
partially observable stochastic environments,” Structural Safety, vol. 93, p. 102 072, 2021.

P. Morato, K. Papakonstantinou, C. Andriotis, J. Nielsen, and P. Rigo, “Optimal inspection and
maintenance planning for deteriorating structural components through dynamic bayesian networks
and markov decision processes,” Structural Safety, vol. 94, p. 102 140, 2022.

P. G. Morato, J. S. Nielsen, A. Q. Mai, and P. Rigo, “Pomdp based maintenance optimization of offshore
wind substructures including monitoring;” 2019.

P. Dallaire, C. Besse, S. Ross, and B. Chaib-draa, “Bayesian reinforcement learning in continuous
pomdps with gaussian processes;” in 2009 IEEE/RS/ International Conference on Intelligent Robots and
Systems, IEEE, 2009, pp. 2604-2609.

A. Brooks, A. Makarenko, S. Williams, and H. Durrant-Whyte, “Parametric pomdps for planning in
continuous state spaces,’” Robotics and Autonomous Systems, vol. 54, no. 11, pp. 887—-897, 2006.

E. Zhou, M. C. Fu, and S. I. Marcus, “Solving continuous-state pomdps via density projection,’ IEEE
Transactions on Automatic Control, vol. 55, no. 5, pp. 1101-1116, 2010.

P. L. Durango-Cohen, “Maintenance and repair decision making for infrastructure facilities without a
deterioration model,” Journal of Infrastructure Systems, vol. 10, no. 1, pp. 1-8, 2004.

P. Zhang, X. Zhu, and M. Xie, “A model-based reinforcement learning approach for maintenance
optimization of degrading systems in a large state space,” Computers & Industrial Engineering, vol. 161,
p.107 622, 2021.

M. Memarzadeh and M. Pozzi, “Model-free reinforcement learning with model-based safe exploration:
Optimizing adaptive recovery process of infrastructure systems,” Structural Safety, vol. 80, pp. 46—55,
2019.

S. Wei, Y. Bao, and H. Li, “Optimal policy for structure maintenance: A deep reinforcement learning
framework," Structural Safety, vol. 83, p. 101906, 2020.

M. Hausknecht and P. Stone, “Deep recurrent g-learning for partially observable mdps,” in 2015 aaai
fall symposium series, 2015.

13

(34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

REFERENCES

L. Meng, R. Gorbet, and D. Kuli¢, “Memory-based deep reinforcement learning for pomdp,” arXiv
preprint arXiv:2102.12344, 2021.

M. Egorov, “Deep reinforcement learning with pomdps,” Tech. Rep.(Technical Report, Stanford
University, 2015), Tech. Rep., 2015.

R. Rocchetta, L. Bellani, M. Compare, E. Zio, and E. Patelli, “A reinforcement learning framework for
optimal operation and maintenance of power grids," Applied energy, vol. 241, pp. 291-301, 2019.

D. Y. Yang, “Adaptive risk-based life-cycle management for large-scale structures using deep
reinforcement learning and surrogate modeling,’ Journal of Engineering Mechanics, vol. 148, no. 1,
p. 04021126, 2022.

N. Zhang and W. Si, “Deep reinforcement learning for condition-based maintenance planning of
multi-component systems under dependent competing risks,” Reliability Engineering & System Safety,
vol. 203, p. 107 094, 2020.

H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double g-learning;” in
Proceedings of the AAAI conference on artificial intelligence, vol. 30, 2016.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,’
arXiv preprint arXiv:1707.06347, 2017.

L. Pinciroli, P. Baraldi, G. Ballabio, M. Compare, and E. Zio, “Optimization of the operation and
maintenance of renewable energy systems by deep reinforcement learning,” Renewable Energy, vol. 183,
pp- 752-763, 2022.

Y. Chen, Y. Liu, and T. Xiahou, “A deep reinforcement learning approach to dynamic loading strategy
of repairable multistate systems” IEEE Transactions on Reliability, 2021.

C. Andriotis and K. Papakonstantinou, “Managing engineering systems with large state and action
spaces through deep reinforcement learning;’ Reliability Engineering & System Safety, vol.191, p. 106 483,
2019.

—, “Deep reinforcement learning driven inspection and maintenance planning under incomplete
information and constraints,” Reliability Engineering & System Safety, vol. 212, p. 107 551, 2021.

Y. Zhou, B. Li, and T. R. Lin, “Maintenance optimisation of multicomponent systems using hierarchical

coordinated reinforcement learning,” Reliability Engineering & System Safety, vol. 217, p. 108 078, 2022.

A. Kamariotis, E. Chatzi, and D. Straub, “Value of information from vibration-based structural health
monitoring extracted via bayesian model updating,’” Mechanical Systems and Signal Processing, vol. 166,
p.108 465, 2022.

E. Simoen, G. De Roeck, and G. Lombaert, “Dealing with uncertainty in model updating for damage
assessment: A review,” Mechanical Systems and Signal Processing, vol. 56, pp. 123—149, 2015.

A. Lye, A. Cicirello, and E. Patelli, “Sampling methods for solving bayesian model updating problems:
A tutorial,” Mechanical Systems and Signal Processing, vol. 159, p. 107 760, 2021.

M. D. Hoffman, A. Gelman, et al,, “The no-u-turn sampler: Adaptively setting path lengths in
hamiltonian monte carlo.,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1593-1623, 2014.

J. Van Noortwijk and M. Pandey, “A stochastic deterioration process for time-dependent reliability
analysis," in Reliability and optimization of structural systems, CRC Press, 2020, pp. 259-265.

14

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

REFERENCES

J. M. van Noortwijk, “A survey of the application of gamma processes in maintenance;’ Reliability
Engineering & System Safety, vol. 94, no. 1, pp. 2-21, 2009.

J. Salvatier, T. V. Wiecki, and C. Fonnesbeck, “Probabilistic programming in python using pymc3,’ Peer/
Computer Science, vol. 2, €55, 2016.

R. M. Neal et al., “Mcmc using hamiltonian dynamics,” Handbook of markov chain monte carlo, vol. 2,
no. 11, p. 2, 2011.

Y. Nesterov, “Primal-dual subgradient methods for convex problems,” Mathematical programming,
vol. 120, no. 1, pp. 221-259, 2009.

M. C. O. Keizer, S. D. P. Flapper, and R. H. Teunter, “Condition-based maintenance policies for systems
with multiple dependent components: A review,” European Journal of Operational Research, vol. 261,
no. 2, pp. 405-420, 2017.

A. Grall, C. Bérenguer, and L. Dieulle, “A condition-based maintenance policy for stochastically
deteriorating systems,” Reliability Engineering & System Safety, vol. 76, no. 2, pp. 167-180, 2002.

G. Barone and D. M. Frangopol, “Reliability, risk and lifetime distributions as performance indicators
for life-cycle maintenance of deteriorating structures” Reliability Engineering & System Safety, vol. 123,
pp. 21-37, 2014

Q. Li, C. Wang, and B. R. Ellingwood, “Time-dependent reliability of aging structures in the presence
of non-stationary loads and degradation,” Structural Safety, vol. 52, pp. 132-141, 2015.

EN 1993-1-1 (2005). "Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for
buildings", The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC.

A. Cicirello and R. S. Langley, “Efficient parametric uncertainty analysis within the hybrid finite
element/statistical energy analysis method,” Journal of Sound and Vibration, vol. 333, no. 6, pp. 1698—
1717,2014.

Z.Wang, V. Bapst, N. Heess, et al., “Sample efficient actor-critic with experience replay,” arXiv preprint
arXiv:1611.01224, 2016.

EN 1998-1 (2004). "Eurocode 8: Design of structures for earthquake resistance — Part 1: General
rules, seismic actions and rules for buildings", The European Union Per Regulation 305/2011, Directive
98/34/EC, Directive 2004/18/EC.

15

	Acronyms
	Introduction
	Motivation
	Problem Statement
	Research Question
	Research Methodology
	Thesis Structure

	Literature Review
	MDP
	POMDP
	RL
	DRL
	DQN
	DDQN
	A2C
	PPO
	Other DRL algorithms

	BMU
	Deterioration Processes
	Research gap
	Conclusions

	Methodology
	General Framework
	Sampling Algorithm
	DRL algorithms
	DDQN
	A2C
	PPO

	Conclusions

	Verification, Validation and Benchmarking
	Toy Problem
	Problem Description
	Discrete case
	Continuous case

	Validation
	Bayesian Inference
	DRL algorithms

	Benchmarking
	Results
	Discrete case
	Continuous case

	Conclusions

	Case Study
	Problem Description
	Modelling
	Actions
	Deterioration Model
	Probability of failure

	Framework
	Benchmarking
	Results
	Conclusions

	Discussion - Conclusion
	Discussion of results
	Limitations
	Future Development

	Appendices
	Appendix 1 - Case Study
	Load Case
	Deterioration

