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Summary 
Walking is a very efficient way of getting around and covering large distances. Due 
to impairments or in extreme conditions, such as carrying a heavy load, one might 
encounter difficulties while walking. In many cases, wheeled vehicles offer a 
solution. However, wheeled vehicles are often not suitable for indoor environments 
or heavy outdoor terrain. Furthermore, wheeled vehicles do not exploit the walking 
capabilities of the human. 

As an alternative, exoskeletons have been proposed. These exoskeletons fit around 
the human body as a portable mechanical suit. The effort and control needed to 
fulfill a task are shared by the human and the exoskeleton. Human physical effort is 
measured by metabolism. Metabolism can be measured by recording the intake 
and exchange of oxygen and carbon dioxide. Many different exoskeletons have been 
developed in recent decades. Recently experiments showed that walking 
metabolism can be reduced with an exoskeleton. 

The goal of this dissertation is to improve exoskeletons that reduce the metabolic 
cost of walking. One of the main difficulties in achieving this goal is the difficulty 
in determining in advance what the effect of the exoskeleton will be on the 
metabolic energy consumption of walking. As a consequence, the design process is 
characterized by trial and error. This dissertation contributes to improving the 
complete design process, which includes the modelling, the hardware and control 
design, and the evaluation of exoskeletons. Based on a literature review, three 
challenges were defined that facilitate a more systematic design approach for 
exoskeletons. These challenges are: 

• Improving knowledge of human–exoskeleton interaction  
• Improving exoskeleton hardware and control 
• Fast and detailed evaluation of exoskeleton concepts  

These challenges have been the cornerstones of the research described in this 
dissertation.  
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Improving knowledge of human–exoskeleton interaction  

Walking simulations 
The dynamics of human walking are highly non-linear. This has been shown in 
both simulation studies and experimental studies. The development of 
exoskeletons requires knowledge of this non-linear behavior. A way to predict this 
behavior is through biomechanical models. These models predict the kinematics, 
kinetics, muscle activation, and metabolism of walking (Geyer and Herr, 2010; van 
den Bogert et al., 2011). Until now, these models have not been used to predict 
walking with an exoskeleton. This dissertation makes a first attempt to use these 
models for exoskeleton design. The model developed by Geyer and Herr (2010) is 
used to simulate human walking with exoskeleton dynamics based on the 
exoskeleton by (Cain et al., 2007). The model of Geyer and Herr was used since it 
also has a model of the neuromuscular controller. This controller model has a 
relatively small number of parameters, which makes it suitable for optimization. 
Optimization of the control parameters showed that the walking model can adapt 
to exoskeletal walking. Some experimental trends were captured by the simulation 
study. However the model does not yet predict the quantitative results that can 
directly be used in the development process. 

Empirical knowledge 
Since biomechanical models have insufficient accuracy to predict the metabolic 
cost of walking with an exoskeleton, an alternative solution must be found. One of 
these solutions is to use empirical data that has been obtained with studies with 
previous exoskeletons. This dissertation has further expanded this empirical 
knowledge. 

The XPED exoskeletons that are described in this dissertation are a realization of 
the exotendon concept of Van den Bogert (2003). This concept makes use of long 
elastic cables that run parallel to the human leg. These cables have a similar 
function to the long tendons that are observed in some animals that move very 
efficiently, like horses. The cables can temporarily store energy and redistribute 
energy over the joints. In simulation these exotendons reduce the human joint 
moments by 71 percent. This model-based prediction is based on the assumption 
that the joint angles do not change under the load and also the total joint torques 
stay are invariant. A second assumption is that a reduction in the human joint 
moments leads to a reduction in the walking metabolism. This dissertation 
contradicted both assumptions. 
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Experiments with the Achilles exoskeleton, an active ankle exoskeleton, have 
shown that the joint angles are strongly influenced by the support provided by the 
Achilles exoskeleton. This should be taken into account when designing a support 
strategy for the exoskeleton. In the XPED and Achilles exoskeleton, the joint angle 
patterns were assumed to be influenced by the exoskeleton support. When the 
joint angles changed in the experimental studies, the support decreased. From this 
result it was concluded that the support should be robust against changes in the 
walking pattern. It is noted that in other exoskeletons (Malcolm et al., 2013; Sawicki 
and Ferris, 2008), the support was high despite the changes in the walking pattern. 
Still it is difficult to make an exact copy of the controllers of these exoskeletons for 
implementation in the Achilles exoskeleton since an exact description of the 
dynamics of these exoskeletons is not available. For the exoskeletons described in 
this dissertation, an exact description of the dynamics is included. The intention of 
this description is to make the results obtained with these exoskeletons more 
generally applicable. 

Improving exoskeleton hardware and control 
Many exoskeletons are not powerful enough or are too heavy to be successful. This 
follows from regression equations comparing the results of different exoskeletons 
(Mooney et al., 2014a). In this dissertation, two design methods are presented that 
can be used to design exoskeletons that can generate much mechanical power and 
a relatively low weight. 

Use of passive mechanisms 
If the mechanical power in exoskeletons is delivered directly by motors, these 
motors are relatively heavy. Analogous to mechanisms found in musculoskeletal 
systems, passive elements could be used to reduce the required motor power. For 
specific supports, it is even possible to design exoskeletons without motors. The 
previously mentioned XPED exoskeletons are an example of these passive 
exoskeletons. 

Passive elements can also be used in combination with active elements. An 
example in the human body is the combination of the soleus muscle and the 
Achilles tendon (Ishikawa et al., 2005). In this dissertation, a similar principle is 
applied in the Achilles exoskeleton. The Achilles exoskeleton supports the ankle 
push off. In this exoskeleton, a spring in series with an actuator is used. 
Temporarily storing energy in the spring can generate a higher mechanical peak 
power than the maximal motor power and reduce the energy consumption. 
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Numerical optimization 
The performance of the exoskeleton is determined by the interaction between 
many different components. It is difficult to see how changes in one component 
influence the functioning of other components. This dissertation solves this 
problem through modelling and optimization. A model of the exoskeleton is made 
that contains the (electro-)mechanical properties of exoskeletons. The 
dimensioning and choice for components can be acquired through optimization of 
the model. This principle has been applied in the design of the XPED and Achilles 
exoskeletons. 

Improvement of exoskeleton control 
Walking is a cyclic motion. This dissertation has shown how this property of 
walking can be used to improve the force control of exoskeletons. The gait phase 
can be estimated with an adaptive frequency oscillator (AFO). Input to the AFO is a 
cyclic signal. In the case of walking, the hip angle or ground reaction force are 
suitable candidates. Based on the phase estimation cyclic signals can be estimated. 
The estimated signal is build up from primitive function. In this case, these are 
Gaussian functions. The amplitude of these signals is determined by a non-linear 
filter. The estimated signals can be used to improve tracking or to attenuate 
undesired dynamical effects. 

Fast and detailed evaluation of exoskeleton concepts  

Improvement in gait analysis 
The human effort during walking and the change of human metabolic cost due to 
support with an exoskeleton is measured with respiratory analysis. This measure 
gives no insight in how changes in metabolic energy emerge. To get this insight, 
additional measurements are needed. Some of these measurements are kinetic and 
kinematic measures obtained from gait analysis. This analysis can, for example, be 
used to see how much mechanical power the human and the exoskeleton absorb 
and generate. Data is commonly acquired by tracking optical markers placed on 
the human body and measuring interaction forces with dynamometers such as 
force plates. Gait analyses are sensitive to errors and in the case of exoskeletal 
walking, the protocol is hindered due to occlusion of markers by the exoskeleton. 
The kinematic and kinetic acquired data is redundant. Current data analysis 
protocols do not make optimal use of this redundancy. This dissertation describes a 
generic method to process gait data based on an extended Kalman filter. The filter 
assumes consistent dynamics, and makes it possible to improve the accuracy of 
estimated joint angles moments, and estimate system parameters (e.g. segment 
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lengths). The latter makes it possible to eliminate the need for palpation of 
anatomical landmarks. Since the method can be used in real-time, it can be used to 
evaluate the effects of changes in control settings of the exoskeletons while 
walking. 

Exoskeleton testbeds 
The development of new hardware to evaluate new exoskeleton concepts is very 
time consuming. It would therefore be beneficial to be able to test multiple 
concepts on one platform, an exoskeleton testbed. This requires some flexibility in 
the hardware and control. Also the dynamics of the exoskeleton should be well 
defined. This makes it possible to generalize the knowledge that is obtained with 
exoskeletons and use it in new exoskeleton designs. In this dissertation, two 
exoskeletons are described that could serve as a testbed. The Achilles exoskeleton is 
an autonomous exoskeleton for support of the ankle. The Achilles exoskeleton is 
force controlled and different controllers can be implemented on the exoskeleton. 
Secondly, this dissertation evaluated how existing rehabilitation robots can be used 
to simulate the design of new exoskeletons. This dissertation specifically focuses on 
attenuation of the existing exoskeletons dynamics and improvement of the 
tracking. 

Conclusion 
The goal of this dissertation was to improve exoskeletons that reduce the metabolic 
cost of walking. The research has not directly led to such new exoskeletons. One of 
the main causes is the difficulty of predicting with sufficient accuracy the effect of 
an exoskeleton on the walking kinetics, kinematics, and metabolism. Some 
biomechanical models that might be suitable for this are available and have also 
been used in this dissertation. However, these models have not been validated. 
Therefore this dissertation paid special attention to the evaluation of exoskeletons 
to make these validation studies possible. Altogether, this has led to new methods 
to model, design, and evaluate exoskeletons. Hopefully, these methods will be 
valuable tools for the design of future exoskeletons.  
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Samenvatting 
Lopen is een efficiënte manier van voortbewegen die kan worden gebruikt om lange 
afstanden af te leggen. Door ziekte of in extreme omstandigheden, zoals tijdens het 
dragen van zware bagage, kan het lopen worden bemoeilijkt. Het wiel biedt in veel 
gevallen uitkomt. Echter voertuigen met wielen zijn vaak ongeschikt voor ongelijk 
terrein en gebruik in gebouwen, ook maken ze geen gebruik van de 
loopcapaciteiten van de mens. 

Als alternatief zijn exoskeletten bedacht. Deze exoskeletten sluiten om het lichaam 
als een draagbaar mechanisch pak. De inspanning en aansturing die nodig zijn om 
de taak uit te voeren worden verdeeld tussen de mens en het exoskelet. De 
inspanning van de mens wordt uitgedrukt in het metabolisme, dit kan worden 
bepaald door de omzetting van zuurstof in koolstofdioxide te meten. In de 
afgelopen decennia zijn er veel verschillende exoskeletten ontwikkeld. Recent is het 
experimenteel aangetoond dat het metabolisme tijdens het lopen kan worden 
verminderd door het dragen van een exoskelet.  

Het doel van dit proefschrift is om deze exoskeletten te verbeteren. Een van de 
grote moeilijkheden hierbij is dat van te voren het niet exact te bepalen is welke 
invloed een exoskelet zal hebben op de menselijke inspanning. Met als gevolg dat 
het ontwerpproces zich laat karakteriseren door trial-and-error. Dit proefschrift 
richt zich daarom op het gehele ontwerpproces. Dit omvat de modellering, het 
ontwerp van de hardware en regelaar en de evaluatie van exoskeletten. Na een 
beschouwing van dit gehele proces zijn een drietal uitdagingen geformuleerd om 
tot een meer systematisch ontwerpproces voor exoskeletten te komen. Deze 
uitdagingen zijn: 

• Het verbeteren van het inzicht in interactie tussen mens en exoskelet 
• Het ontwikkelen van betere hardware 
• Het snel evalueren van exoskeletconcepten 
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Deze uitdagingen zijn het uitgangspunt geweest voor het onderzoek dat is 
beschreven in dit proefschrift.  

Verbeteren van het inzicht in interactie tussen mens en 
exoskelet 

Loopsimulaties 
Het menselijk lopen vertoont sterk niet-lineair gedrag. Dit volgt zowel uit 
simulatiestudies als uit experimenten. Het ontwikkelen van een exoskelet vereist 
inzicht in dit gedrag. Een mogelijkheid om dit gedrag te voorspellen is door het 
gebruik van biomechanische mensmodellen. Deze modellen voorspellen de 
beweging, het krachtenspel, de spieractivatie en het metabolisme van het 
menselijk lopen (Geyer and Herr, 2010; van den Bogert et al., 2011). Tot nu toe zijn 
deze modellen niet gebruikt om het lopen met een exoskelet te voorspellen. Dit 
proefschrift doet hier een eerste aanzet toe. Het model van Geyer en Herr (2010) is 
gebruikt om het lopen met een exoskelet gebaseerd op het exoskelet van Cain et al. 
(2007) te simuleren. Het model van Geyer en Herr werd geselecteerd omdat het 
naast het spierskeletmodel ook een neuromusculaire regelaar bevat. Deze regelaar 
heeft een relatief beperkt aantal parameters waardoor het model geschikt is om 
optimalisaties mee uit te voeren. Optimalisatie van de parameters van de regelaar 
heeft laten zien dat het model zich kan aanpassen aan lopen met een exoskelet en 
dat een aantal experimenteel waargenomen veranderingen ook zichtbaar zijn in 
het model. De simulaties zijn echter kwalitatief nog niet goed genoeg om direct als 
ontwerphulpmiddel gebruikt te worden. 

Empirische kennis 
Omdat resultaten van simulaties en modellen ontoereikend zijn om exoskeletten 
mee te ontwerpen wordt er ook veel gebruik gemaakt van empirische kennis die is 
opgedaan met experimenten met eerdere exoskeletten. Dit proefschrift heeft ook 
hieraan een bijdrage geleverd. 

De XPED exoskeletten zijn een realisatie van het exotendonconcept van Van den 
Bogert (2003). Dit concept omvat lange elastische kabels die parallel lopen aan het 
been. Deze kabels zijn analoog aan de lange pezen zoals die voorkomen in onder 
andere het been van een paard. Deze elementen kunnen tijdelijk energie opslaan 
en herverdelen over de gewrichten. In simulatie kan dit concept de 
gewrichtsmomenten verlagen met 71%. Dit getal is uitgerekend onder de aanname 
dat lopen met zo een exoskelet geen invloed heeft op de gewrichtshoeken en de 
totale gewrichtsmomenten. Een tweede aanname is gemaakt dat een reductie in de 
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gewrichtsmomenten leidt tot een reductie in het metabolisme. Dit proefschrift 
ontkracht beide aannames. 

Ook het onderzoek met het Achilles-exoskelet, een geactueerd enkel exoskelet, 
heeft aangetoond dat gewrichtshoeken sterk afhankelijk zijn van de geleverde 
ondersteuning door het exoskelet. Dit heeft gevolg voor de aangeboden 
ondersteuning. In de XPED en Achilles exoskeletten werd een constante enkelhoek 
aangehouden. In experimenten met deze exoskeletten was, door de veranderde 
gewrichtshoeken, de ondersteuning lager dan was voorspeld. Hieruit is 
geconcludeerd dat de ondersteuning robuust moet zijn tegen veranderingen in het 
looppatroon. Bij andere exoskeletten is waargenomen dat de ondersteuning hoog is 
ondanks veranderingen in het looppatroon (Malcolm et al., 2013a; Sawicki and 
Ferris, 2008). Het is echter lastig om resultaten van andere exoskeletten direct over 
te nemen omdat een exacte beschrijving van de mechanica en aansturing van deze 
exoskeletten ontbreekt. Dit proefschrift laat verschillende exoskeletten zien waar 
deze beschrijving wel compleet is om resultaten van het onderzoek algemeen 
toepasbaar te maken. 

Het ontwikkelen van betere hardware 
Veel exoskeletten zijn simpelweg niet krachtig genoeg of te zwaar om succesvol te 
kunnen zijn. Dit blijkt uit regressievergelijkingen die de prestaties van 
verschillende exoskeletten hebben vergeleken (Mooney et al., 2014a). In dit 
proefschrift zijn twee ontwerpmethodes beschreven die het mogelijk maken 
exoskeletten ontwerpen met een hoog vermogen en relatief laag gewicht 

Gebruik van passieve mechanismes 
Als alleen maar motoren worden gebruikt om vermogen te leveren in een exoskelet 
leidt dit tot relatief zware motoren. Analoog aan het menselijk spier-skeletsysteem 
kunnen passieve elementen worden gebruikt om het geleverde vermogen te 
verminderen. Hierdoor kunnen minder zware motoren worden gebruikt. Voor 
bepaalde types ondersteuning is het zelfs mogelijk om zonder motoren te 
ontwerpen. De eerder genoemde XPED exoskeletten zijn hier een voorbeeld van. 

Passieve elementen kunnen ook worden toegepast in combinatie met actieve 
elementen. In het menselijk lichaam wordt dit onder andere waargenomen bij de 
scholspier (soleus) en de achillespees (Ishikawa et al., 2005). In dit proefschrift 
wordt een vergelijkbaar principe toegepast in het Achilles exoskelet. Het Achilles 
exoskelet ondersteunt de enkelafzet. In dit exoskelet wordt een veer in serie met 
een actuator gebruikt. Door tijdelijke opslag van energie kan het maximale 
vermogen wat de motor moet leveren worden verminderd. 
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Numerieke optimalisatie 
De werking van een exoskelet wordt bepaald door de interactie tussen veel 
verschillende componenten. Het is vaak lastig te doorgronden hoe een verandering 
in een component doorwerkt in andere componenten. Dit proefschrift laat zien hoe 
dit probleem kan worden opgelost door modelleren en optimaliseren. De 
(elektro)mechanische eigenschappen van het exoskelet kunnen worden 
gemodelleerd. In het model kunnen de dimensionering en eigenschappen van 
onderdelen als modelparameters worden meegenomen. De uiteindelijke keuze 
voor onderdelen en de dimensionering hiervan kan door optimalisatie van het 
model worden verkregen. Dit principe is toegepast in het ontwerp van de XPED en 
Achilles exoskeletten. 

Verbetering van aansturing 
Lopen is een cyclische beweging. In dit proefschrift wordt beschreven hoe deze 
eigenschap kan worden gebruikt om de aansturing van exoskeletten te verbeteren. 
De fase van het lopen wordt geschat met een adaptieve frequentie oscillator (AFO). 
De input voor de AFO is een repeterend signaal, in het geval van lopen kan 
bijvoorbeeld de heuphoek of de grondreactiekracht worden gebruikt. Op basis van 
de geschatte fase kunnen andere signalen worden geschat. De geschatte signalen 
worden opgebouwd uit een aantal primitieve functies. In dit geval zijn dit 
Gaussische functies. De amplitude van deze signalen wordt bepaald door een niet- 
lineair filter. De geschatte signalen kunnen worden gebruikt om een regelaar beter 
een referentiesignaal te laten volgen of om ongewenste dynamische effecten te 
kunnen wegregelen. 

Snel en nauwkeurig evalueren van exoskeletconcepten 

Verbeteren van loopanalyses 
De menselijke inspanning, en de mogelijke vermindering hiervan door 
ondersteuning met een exoskelet, wordt gemeten met het metabolisme. Deze maat 
geeft echter geen inzicht in hoe deze verandering tot stand komt. Extra metingen 
geven hier meer inzicht in. Een van deze metingen is het uitvoeren van een 
loopanalyse. De loopanalyse geeft de gewrichtshoeken en –momenten weer. 
Hieruit kan bijvoorbeeld worden afgeleid hoe het mechanisch vermogen is 
verdeeld tussen de mens en het exoskelet. Data voor het uitvoeren van een 
loopanalyse wordt meestal verzameld door het plaatsen en volgen van optische 
markers op het lichaam en het meten van de grondreactiekrachten met 
dynamometers (zoals krachtplaten). Loopanalyses zijn zeer gevoelig voor fouten en 
in het geval van het meten met een exoskelet wordt het uitvoeringsprotocol 
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bemoeilijkt doordat delen van het exoskelet de optische markers in de weg zitten. 
De data die wordt verzameld is redundant wat de mogelijkheid biedt tot 
foutdetectie en -reductie, hier word echter in gangbare methodes voor 
dataverwerking geen optimaal gebruik van gemaakt. Dit proefschrift laat een 
algemene methode zien voor dataverwerking in de vorm van een extended Kalman-
filter. Het filter veronderstelt consistente dynamica. Door deze veronderstelling 
kunnen fouten worden gereduceerd en systeemparameters worden geschat. Dit 
laatste maakt kalibratie gebaseerd op de identificatie van anatomische punten 
overbodig. Deze kalibratie is voor veel andere methodes noodzakelijk. Een 
voordeel van deze methode is tevens dat data realtime kan worden verwerkt. 

Testplatformen voor exoskeletten 
Het ontwikkelen van nieuwe hardware om een exoskeletconcept te evalueren 
neemt veel tijd in beslag. Het is daarom zinnig om een testplatform te ontwikkelen 
waarop meerdere exoskeletconcepten kunnen worden geëvalueerd. Dit vereist een 
zekere flexibiliteit in de hardware en regelaar. Ook moet de mechanica van het 
platform en de regelaar die op het platform is geïmplementeerd goed zijn 
beschreven. Zo kan kennis die wordt vergaard met het platform worden 
gegeneraliseerd voor gebruik in nieuwe exoskeletontwerpen. In dit proefschrift 
worden twee exoskeletten beschreven die kunnen worden gebruikt als 
testplatform. Het Achilles exoskelet is een autonoom exoskelet voor ondersteuning 
van de enkel. Dit exoskelet is krachtgestuurd en er kunnen meerdere controllers op 
worden uitgetest. Ook wordt in dit proefschrift beschouwd hoe bestaande 
revalidatierobots kunnen worden ingezet om nieuwe exoskeletten te simuleren. Er 
wordt specifiek gekeken naar het wegregelen van dynamische effecten en het 
verbeteren van het volgen van een aansturingssignaal.  

Conclusie 
Dit proefschrift heeft als doel gehad exoskeletten die het metabolisme van het 
lopen omlaag brengen te verbeteren. Het onderzoek heeft niet direct geleid tot 
exoskeletten die het metabolisme ook omlaag brengen. Een van de oorzaken 
hiervan is geweest dat op dit moment van te voren moeilijk is te voorspellen welke 
invloed een nieuw exoskelet heeft op het metabolisme van het lopen. Enkele 
biomechanische modellen zijn beschikbaar en zijn ook toegepast in dit onderzoek. 
De validatie van deze modellen ontbreekt. Er is daarom in dit proefschrift speciale 
aandacht uitgegaan naar het evalueren van exoskeletten om deze validatie mogelijk 
te maken. Dit alles heeft geleid tot een aantal nieuwe methodes om exoskeletten te 
modelleren, ontwerpen, en evalueren met in de hoop dat deze methodes in de 
toekomst zullen bijdragen aan nog betere exoskeletten.  
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1 Introduction 

1.1 Motivation 
Human walking is energy efficient and can be used to cover long distances. Some 
people even walk around the world (Johanson, 2011), but most people walk more 
modest distances. The average Dutchmen walks a distance roughly equal the length 
of his or her country by foot one time a year (all travel movements excluding 
vacation and professional travels) (Centraal Bureau voor de Statistiek, 2014).  

Walking is an indispensable necessity, which becomes clear when walking is 
impaired or when extreme working conditions are encountered. Many daily 
activities require some form of mobility, and these activities might be a challenge 
for someone with a walking impairment. Carrying a heavy load for a long distance 
is challenging for everybody. In many cases, a solution is found in the form of a 
wheeled vehicle, but in indoor environments or rough outdoor terrain wheeled 
vehicles do not suffice. Furthermore, wheeled vehicles ignore the (remaining) 
human walking capabilities. The use of an exoskeleton would form a more elegant 
solution. The exoskeleton, a wearable mechanical device, assists or augments the 
human motion. This idea has been around for a long time but only recently gained 
more attention (Figure 1).  

Assisting people with a walking impairment and augmenting performance of 
healthy subjects are closely related. In both cases the load of the task and the 
control of the task are shared between the human and the exoskeleton. This 
dissertation will specifically focus on lowering the metabolic cost of walking (i.e. 
enhanced endurance), but the results can be generalized to other tasks. 

Many exoskeletons have been built with the intention of reducing the metabolic 
cost of walking. Recently it was shown that the metabolic cost of walking could be 
reduced with an exoskeleton (Malcolm et al., 2013a; Mooney et al., 2014a). Still, 
exoskeletons technology is in an early stage of development.  
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1.2 Goal and challenges 
The goal of this dissertation is to improve exoskeletons that reduce the metabolic 
cost of walking. The past decades of exoskeleton development have been 
characterized by trial and error. Many new prototypes were presented. Only a few 
were evaluated, and even fewer were successful. This led to long development times 
and has limited the success of exoskeletons.  

The success of exoskeletons could be greatly improved if the trial-and-error 
approach were replaced with more systematic methods. Chapter 2 reviews studies 
related to exoskeletons and identifies the key challenges that need to be fulfilled in 
order to come to such methods. 

1.2.1 Challenge 1: Improve knowledge of human–exoskeleton 
interaction 

The knowledge of human–exoskeleton interaction is insufficient to accurately 
predict performance results by simulation and to generalize experimental results to 
be applied to more than one exoskeleton. The human and the exoskeleton are two 
dynamic systems that interact. Enhanced knowledge of each of these systems 
would contribute to a better design approach for exoskeletons. 

Insight in the human dynamical system 
Neuromuscular models have been shown to capture fundamental characteristics of 
human gait, estimate metabolic cost, and adapt to new tasks (Geyer and Herr, 2010; 
Song and Geyer, 2012). So far, these models have not been able to predict the 
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Figure 1: Almost 200 years of exoskeletons. a: (ca. 1830) Detail of the print “Locomotion” by 
Robert Seymour. The artist envisioned the steam powered pants as one of the applications of 
the steam engine. b: (1891) A patent by Nicholas Yagn describing a “Apparatus for Facilitating 
Walking, Running, and Jumping” (Yagn, 1890). c: (1969) First active exoskeleton developed by 
the Mihailo Pupin Institute (Vukobratovic, 2007). d: (2013) First exoskeleton that reduces the 
metabolic cost of walking (Malcolm et al., 2013a). Credits are given in the list of figures. 
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metabolic cost of exoskeletal walking. If such models were available, it would be 
possible to optimize exoskeleton designs in computer simulation. 

Insight in the exoskeleton dynamical system 
Exoskeleton dynamics are often not completely described in publications. Without 
the exact description, it is impossible to reproduce results. A description of the 
exoskeleton dynamics makes it possible to generalize the results obtained with a 
specific exoskeleton, and would therefore make a large contribution to the 
understanding of human-exoskeleton interaction. 

1.2.2 Challenge 2: Improving exoskeleton hardware and control 
There are still many opportunities to improve exoskeleton hardware and control. In 
general, exoskeleton performance increases with power and decreases with weight. 
It was shown by Mooney et al. (2014a) that many exoskeletons lack the mechanical 
power (or are too heavy) to achieve an improvement in human performance over 
normal walking. Improving the hardware with more powerful yet lightweight 
designs is expected to enhance exoskeleton performance. 

1.2.3 Challenge 3: Fast and detailed evaluation of exoskeleton 
concepts 

The experimental evaluation of an exoskeleton concept can take a very long time. 
Developing the hardware, analysis of results, and tweaking the exoskeletons takes 
the majority of the time. The challenge is to shorten the time needed to evaluate 
exoskeleton concepts.  

1.3 Approach 
This dissertation presents newly developed tools both in software and hardware 
contributing to overcoming the set challenges. The chapters of this dissertation 
describe how these challenges have been approached from different angles. 

Evaluation of a neuro-muscular model in combination with an 
exoskeleton 
Challenge 1 
Biomechanical models might be used to simulate walking with an exoskeleton. In 
Chapter 3, the neuromuscular model of Geyer and Herr (2010) is used to simulate 
exoskeletal walking. The simulated exoskeleton is based on the ankle exoskeleton 
with different controllers described by Cain et al. (2007). The neuromuscular 
controller is re-optimized to walk energy efficiently with the exoskeleton. The 
simulation results are compared with the experimental results of Cain et al. (2007). 
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Improved motion analysis 
Challenges 1 and 3 
Human–exoskeleton interaction can be evaluated using motion analysis. 
Traditional motion analysis protocols are sensitive to uncertainties. These 
uncertainties arise from inaccurate palpation of anatomical landmarks or partially 
missing data. Both types of uncertainties easily occur during exoskeleton 
evaluations due to obstruction by the exoskeleton. Chapter 4 presents a general 
framework that can handle uncertainties from various sources. The framework 
allows for real-time data analysis, which can be used for fast evaluation and 
adjustments of exoskeleton concepts. 

Learning controller for exoskeleton testbeds 
Challenges 1 and 3 
Instead of building a new exoskeleton for each new exoskeleton concept, a testbed 
can be used to simulate a variety of exoskeleton concepts. The testbed should have 
a transparent mode on top of which the dynamics of a new exoskeleton can be 
rendered. A good transparent mode should closely resemble normal walking, 
which is not always the case. Walking can be influenced by the dynamics of the 
testbed (e.g. van Asseldonk et al., 2008). The quality of the transparent mode can 
be improved by designing a controller that compensates for the testbed dynamics. 
Chapter 5 presents a method with a learning controller that improves the 
transparent mode of a rehabilitation robot that can be used to simulate exoskeleton 
concepts. A similar controller is used in Chapter 8 to improve torque tracking. 

Lightweight design using passive elements 
Challenge 2 
Human and animal legs contain passive elements that contribute to energy-
efficient locomotion. The energy storage function of tendons can be mimicked in 
exoskeleton designs (Hollander et al., 2005; van den Bogert, 2003). This reduces the 
power requirements and weight of the exoskeleton. Chapters 6-8 describe the 
design and experimental evaluation of different exoskeletons with passive 
elements. 

Numerical optimization of exoskeleton components 
Challenge 2 
The weight of the exoskeleton should be kept minimal. Minimizing the weight of 
exoskeleton components is difficult since exoskeletons are typically multibody 
systems where the design of one component influences the requirements on many 
other components. This dissertation presents methods for modelling the (electro-) 
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mechanical structure of the exoskeletons. This model can be optimized using 
numerical simulations to optimize the exoskeleton design (Chapters 6-8). 

Autonomous exoskeleton testbed 
Challenge 3 
Chapter 8 presents a new ankle exoskeleton. This exoskeleton uses series elastic 
actuation and allows the evaluation of different control algorithms. The 
exoskeleton is autonomous, which allows for experiments on different terrains. 

 
 





 25 

2 Background 
Walking is for many people their principle way of getting around. It is energy 
efficient and can be used to cover large distances. Still, one might encounter tasks 
that are beyond his or her capabilities. This might occur in extreme work 
conditions or when dealing with an impairment. The traditional approach in these 
situations is to turn to wheeled vehicles such as bicycles, cars and wheelchairs.  

The downside of wheeled vehicles is they perform best on flat paved roads. This is 
problematic since much of our environment is built for people who can walk and 
doors, stairs, or narrow passages are discovered everywhere. Additionally many 
vehicles are not suitable for rough outdoor terrains. As an alternative to wheeled 
vehicles, exoskeletons have been proposed. Exoskeletons (and orthoses) have been 
defined as: 

 “Mechanical devices that are essentially anthropomorphic in nature, are 
'worn' by an operator [user] and fit closely to the body, and work in concert 
with the operator's [user’s] movements.” (Herr, 2009) 

Since these exoskeletons fit closely to the human body they are believed to be much 
more compatible with many of our daily life situations. This review will focus on 
exoskeletons for walking and running. These exoskeletons can be divided into two 
groups: 1. Exoskeletons for healthy users and users with partially impaired legs, and 
2. Exoskeletons for paraplegic users. In the first group there is usually a form of a 
shared task where the forces and moments required for the movement are divided 
between human and the exoskeleton. In the second group the task might be shared 
in terms of control, but the forces and moments required for the movement are 
fully provided by the exoskeleton (e.g. Wang et al., 2014). This makes these 
exoskeletons fundamentally different. This review will focus on exoskeletons for 
healthy users and in a lesser extend users with partially impaired legs. Furthermore 
some exoskeletons that have been demonstrated without any information on the 
design, control or performance (e.g. HAL, Cyberdyne Inc. Tsukuba, Ibaraki, Japan 
or Hercule, RB3D, Auxerre, France) are not discussed. 



26 | Chapter 2 

A generic model that describes human and exoskeleton interaction is shown in 
Figure 2. The model describes how a task is shared between the human and the 
exoskeleton, and how the performance of this task is evaluated. The intention of 
the shared task is in most cases to improve human performance by either 
enhancing human strength or endurance for healthy users or neuro-rehabilitation 
or motion assistance of users with a limb pathology. All these different applications 
can be described using the same model and sometimes the same exoskeletons are 
used for these different applications (e.g. endurance and strength (Galle et al., 
2014), or endurance and motion assistance (Sawicki and Ferris, 2008; Sawicki et al., 
2006)) 

For a successful exoskeletons design, knowledge of the underlying dynamical 
systems is essential along with powerful hardware that influences the interaction 
between these systems. The review is divided in three sections corresponding to 
different phases of the design cycle; investigation, development, and evaluation. 
This review aims to come up with general considerations for exoskeleton design 
rather than a list of all different exoskeletons that exists. The review will conclude 
with current challenges that exist within exoskeleton design. 

2.1 Investigate 
The investigation step covers the process from problem definition to the design 
specifications. In exoskeleton design, the problem is in many cases well defined. 
For healthy subjects this is in most cases either preform the same task at a lower 
metabolic cost or perform a higher intensity task (faster walking, carrying heavier 
loads) at the same metabolic cost. For partially impaired patients the problem 

 
Figure 2: A generic human exoskeleton model. The model describes two dynamical systems, the 
human and the exoskeleton, that are attached to each other causing physical interaction. 
Additionally information can flow between the exoskeleton and the human (e.g. 
electromyographic (EMG) recordings that are used by the exoskeleton controller (Gordon and 
Ferris, 2007)). This results in a shared load and control task. The intention of this shared task is 
to enhance the user’s performance. In a typical research setup, measures are taken from the 
human to evaluate its performance. Additionally, measures can be taken from the exoskeleton 
to evaluate the exoskeleton performance. 
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definition might focus on a sub-task such as creating foot clearance during swing 
(Koopman et al., 2013). Translating the objective into a design specification requires 
knowledge of human locomotion. The knowledge that exists about human 
locomotion can roughly be divided into two groups: walking models and empirical 
knowledge. 

2.1.1 Walking models 

Musculoskeletal models 
The metabolic cost of a specific task can be predicted trough musculoskeletal 
models Figure 3. These models include muscular and skeletal properties. Based on 
the model states an estimate of the metabolic cost can be obtained (Umberger et 
al., 2003). The model states can be obtained through modelling of the 
neuromuscular control (Geyer and Herr, 2010) or optimization of open loop muscle 
activation patterns (van den Bogert et al., 2011). Both models have been successfully 
used for the simulation of human walking. To become successful design tools for 
designing of wearable robotics, these models should also successfully predict other 
tasks, specifically exoskeletal walking. Adaptation to new tasks has been 
demonstrated by (Song and Geyer, 2012). So far it has not been with validated 
quantitative results that the metabolic cost is accurately estimated for these new 
tasks.  

Simplified walking models 

 
Figure 3: Neuromuscular vs. simple walking models. Left: A representation of the 
neuromuscular model of Geyer and Herr (2010). The model contains seven segments (Torso, 
Thigh, Shank, and Foot) and in total fourteen muscles (the segments and muscles of one leg 
are shown). Right: A simplified walking model, the bipedal spring-mass model of Geyer et al. 
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Simplified walking models form a contrast with the high-dimensional 
musculoskeletal models Figure 3. The aim of the simple walking models is to 
drastically reduce the number of variables while still capturing the essence of 
walking. The advantage is that these models can be studied with little 
computational effort. Examples of these models are the simplest walking model of 
(Garcia et al., 1998), the spring-mass model, and the bipedal spring-mass model 
(Geyer et al., 2006). Examples of the predictive power of these models are the 
correlation between impact losses after heel strike with metabolic cost, and the 
relation between step length and metabolic cost (Donelan et al., 2002) and the 
correlation between leg stiffness and ground reaction forces (Geyer et al., 2006). A 
downside of these models is that due to their simplifications they do not give a 
support strategy for specific joints. This requires additional assumptions when 
translating model results to exoskeleton design specifications. 

2.1.2 Empirical knowledge 
Studying (exoskeletal) walking resulted in a rich body of empirical knowledge that 
gives insight in human-exoskeleton interaction. This research can roughly be 
divided into three groups. Gait analysis: Gait analysis has is to investigate the 
kinetics and kinematics of walking with and without exoskeletons. Augmentation 
factor: The augmentation factor is a measure that compares the performance of 
different exoskeletons. So far it is the only meta-study carried out to find an 
empirical relation that predicts the human performance when walking with an 
exoskeleton. Adaptation effects: These studies investigate how humans adapt to 
walking with an exoskeleton. These studies investigate how changing a specific 
(exoskeleton) parameter affects the human performance 

Gait analysis 
Gait analysis describes the joint angles and torques over time. The general 
procedure to obtain this data is to track motions of body segments with an optical 
tracking system and measure ground reaction forces with dynamometers such as 
force plates (Cappozzo et al., 2005). It is important to notice that gait analysis 
cannot be used to predict walking with an exoskeleton in advance.  

Superposition principle 
It is sometimes assumed that exoskeleton specifications can be directly obtained 
from gait analysis. In this case the superposition principle is used to define the 
shared load task between the human and the exoskeleton. The superposition 
principle assumes that that the joint angles and the total torque (human and 
exoskeleton) are invariant under the load (e.g. van den Bogert, 2003). This 
assumption is incorrect as will be discussed later on. 
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Augmentation factor 
The augmentation factor (AF) is an empirical relation that estimates the change in 
metabolic rate due to walking with an exoskeleton (Mooney et al., 2014a). The 
relation is based on: the average positive and negative power during one step +p

[W] and −p  [W], the apparent efficiency of the exoskeleton η [], the mass im  [kg] 

and the relative cost of carrying this mass βi  [W/kg] on the foot, shank, thigh, and 

pelvis segment. 
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The first term of the equation, involving the average power, is based on a meta-
study combining results of different exoskeletons. The second part of the equation 
is based on a parameter sweep where subjects walked with different masses placed 
on different body segments (Browning et al., 2007). The augmentation factor shows 
that there exist a clear trade-off between the amount of support the exoskeleton 
provides and the mass of the exoskeleton. The augmentation factor is solely based 
on average power and weight. Many other differences in exoskeleton design, such as 
the control method or measurement protocol, which do have a significant effect on 
the metabolic cost, are not captured in the augmentation factor. The augmentation 
factor therefore only provides a course estimate. This is further addressed below. 

Adaptation effects 

Joint angle and moment adaptation 
(Kao et al., 2010a; Lewis and Ferris, 2011) investigated how joint angles change 
under influence of an exoskeleton. One study supported hip flexion torque, 
another supported ankle plantarflexion torque. Both studies showed that while the 
total torque stayed the same, the joint kinematics changed significantly. This 
means that for exoskeletons the superposition principle will not hold and 
exoskeletons cannot be designed purely on gait analysis data from normal walking. 

Support timing 
The effect of timing is investigated by (Malcolm et al., 2013a). Most ankle 
exoskeletons provide plantarflexion torque starting during the stance phase and 
ending at toe-off. The onset off the timing influences the metabolic cost of walking. 
Onsets close to heel strike result in a smaller reduction in metabolic cost than 
onsets close to toe-off. The optimal support-torque pattern is thereby different 
from the normally observed ankle torque pattern. 
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Control input signal 
The exoskeleton controller requires some form of control input that let it 
synchronize its actions with the human. The choice for a specific signal directly 
influences the exoskeleton performance (Cain et al., 2007).  

Time and exploration 
Humans adapt their gait to optimize for energy efficiency (Umberger and Martin, 
2007). However, when walking with an exoskeleton this adaptation is not 
instantaneous. Studies with ankle exoskeletons have shown that it can take up to 
20 minutes before a plateau is reached. Adaptation effects are also still visible after 
multiple sessions (Galle et al., 2013; Gordon and Ferris, 2007). It is not given that 
humans will always adapt their walking pattern to maximize energy efficiency in a 
reasonable amount of time. For specific examples it has been shown that 
exploration had to be enforced before a global maximum was found (Selinger et al., 
2014). 

2.2 Development 
The development phase covers the design, planning, and creation of the 
exoskeleton. Different options are available when choosing the joints to be 
actuated, the level of autonomy, the actuation and support, and the control 
algorithm. Different solutions that were found in existing exoskeletons are 
reviewed below. 

2.2.1 Actuated joints 
Exoskeletons can support the ankle, knee, and hip joint or a combination of those. 
The hip and ankle joint have multiple degrees of freedom. Single-joint exoskeletons 
typically support only one degree of freedom in the sagittal plane. Multi-joint 
exoskeletons sometimes provide support for additional degrees of freedom like hip 
abduction and adduction. Degrees of freedom can be supported in one direction 
(unidirectional) or both directions (bidirectional). 

Ankle 
There exists a relative large group of ankle exoskeletons (Figure 4). The rationale 
for ankle exoskeletons is given by (Sawicki and Ferris, 2008). The ankle provides 
the majority of the work during push-off work in the trailing leg during double 
support, and thereby compensates for the energy loss due to impact of the leading 
leg as discussed above. The push-off torque is unidirectional which is reflected in 
many exoskeleton designs (Malcolm et al., 2013a; Mooney et al., 2014a; Norris et al., 
2007; Sawicki and Ferris, 2008).  



 Background | 31 

Knee 
During a normal gait cycle the knee mostly dissipates energy. The knee has a dual 
characteristic during walking and running. In the stance phase the stiffness is high 
and in the swing phase the stiffness is low. Mimicking the dual stiffness 
characteristics with a locking mechanism has been beneficial for patients (Rietman 
et al., 2004). A similar approach has also been used to design running exoskeletons 
(Elliott et al., 2014). The fact that the knee mostly dissipates energy has been used 
to harvest energy from the human motion. The harvested energy can be used to 
charge batteries of personal equipment (Donelan et al., 2008). 

Hip 
During a normal gait cycle the hip joint exerts both positive and negative power. 
Different exoskeletons have been designed to partially take over this task. Examples 
are unidirectional exoskeletons (Lewis and Ferris, 2011) and bi-directional 
exoskeletons (Kerestes et al., 2014; Lenzi et al., 2013). 

Multi joint 
Multi joint exoskeletons can be divided into three sub-categories. The first category 
contains exoskeletons that combine a number of single joint actuators. 
Rehabilitation robots (Riener, 2012; Veneman et al., 2007), exoskeletons for 
paralyzed patients (Ekso Bionics, 2012; Wang et al., 2014; Zeilig et al., 2012) are 
typical examples within this category. The second category contains exoskeletons 
that link multiple joints. This is similar to bi- and tri-articular muscles found in 
nature (van den Bogert, 2003). The coupling of joints is mostly intended to increase 
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Figure 4a: Exoskeleton by Malcolm et al. (2013a). b: Exoskeleton by Mooney et al. (2014b). c: 
Exoskeleton Kao et al. (2010b), multiple slightly different versions exist. Credits are given in the 
list of figures. 
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the exoskeleton efficiency (Malcolm et al., 2013b). The third category contains 
exoskeletons that do not have connections at the thigh and shank segment. This 
can either be for bodyweight support (Krut et al., 2010) or simulate the spring like 
behavior of the human leg (Elliott et al., 2014) which are closely related. 

2.2.2 Autonomy 
We will define three levels of autonomy: untethered, the exoskeleton has no 
connection to the fixed world; tethered, the exoskeleton is connected to the fixed 
world through a flexible connection that is typically used to transfer power or data; 
world fixed, there is a direct connection between the limbs and the fixed world 
through a series of rigid elements. 

Untethered 
Untethered exoskeletons are designed for use outside the lab environment. 
Untethered operation is required for many intended exoskeleton applications, but 
puts heavy constraints on the weight of the power source and actuators that have to 
be carried on board. 

Tethered 
Tethered devices are typically used on treadmills in lab environments. The user can 
move freely in a limited space. The tether can transfer power and data which gives 
the possibility to place a power source, actuator, or computer off-board. This makes 
it easier to construct lightweight exoskeletons.  

World fixed 
World fixed exoskeletons are also typically used on a treadmill. Their intended use 
is in most cases for gait rehabilitation and are therefore also referred to as 
rehabilitation robots. Examples of such robots are the Lokomat (Riener, 2012) and 
the LOPES (Veneman et al., 2007). They have the advantage that the weight of the 
exoskeleton can be transferred to the ground. Often the weight of the user can also 
be partially supported by a bodyweight support system. These robots are heavy and 
cannot easily be moved. This is acceptable since they are specifically designed for 
use within clinics. 

2.2.3 Actuation and support principle 
The actuation and support principle determines what forces and torques are 
exerted on the human body. Interaction forces between the human and the 
exoskeleton can be controlled by using impedance (Vallery et al., 2008) or 
admittance control (Meuleman et al., 2013). Both methods have a feedback 
controller that regulates the control signal to the actuator. Other exoskeletons lack 
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such a feedback loop. Since stiff position control is often not desired, they have a 
compliant actuation mechanism and the actuator is open-loop controlled (e.g. 
Cain et al., 2007). Impedance controlled and the described open-loop controlled 
exoskeletons require compliant actuation mechanisms. The different solutions that 
exist are reviewed. 

Pneumatic 
Pneumatic actuators have been used in multiple exoskeletons design (Malcolm et 
al., 2013a; Norris et al., 2007; Sawicki and Ferris, 2008), mostly in the form of 
pneumatic muscles. Pneumatic muscles are lightweight and have intrinsic 
compliance. The compressed air is supplied by a tank or a compressor. These 
components are typically placed off-board resulting in tethered devices.  

Electric 
Electric actuators are suitable for light weight exoskeletons design (Mooney et al., 
2014a). To enable force control electric actuators can be used in series with elastic 
elements, which also makes the actuator compliant (Hitt et al., 2007). The 
deflection of the elastic element can be measured which makes series elastic 
actuation a candidate for impedance control.  

Passive 
In order to design autonomous lightweight exoskeletons, passive exoskeletons have 
been proposed. In these exoskeletons the support torque is provided by passive 
components like springs and dampers. This has the advantage that passive 
exoskeletons can be constructed that are extremely lightweight (Wiggin et al., 
2011). Sometimes the term quasi-passive is used for exoskeletons that contain active 
components to control components that are mechanically passive, like actuated 
clutches or magnetorheological dampers (Walsh et al., 2007).  

2.2.4 Control algorithm 
Actuated exoskeletons require a controller to regulate the signals sent to the 
actuator. This review will discuss the high level control algorithms that exist, but 
will skip the details of low level feedback controllers. The latter is broadly reviewed 
in other literature (e.g. Vallery et al., 2008). The intention of exoskeletons is to give 
a certain amount of support. The best type of support is open for debate, and 
different support algorithms exist. To synchronize the support with the motions of 
the user some support algorithms rely on a gait phase estimator. Gait phase 
estimators will be separately discussed. 

 
 



34 | Chapter 2 

Support algorithms 
The most straightforward control signal is an on/off signal that activates the 
actuator for certain parts of the gait. This type of controller is popular in ankle 
exoskeletons with pneumatic muscles. The support torque provided by these 
exoskeletons is not an on/off signal. The non-linear properties of this actuator can 
result in a torque pattern that is close to the human ankle torque pattern observed 
in walking (Cain et al., 2007; Malcolm et al., 2013a). Similar are exoskeletons that 
define a reference pattern for the actuator. This pattern is again a function of the 
gait phase and feedback control is used to track this pattern (Hitt et al., 2007). 

Support algorithms can also depend on the gait phase in combination with the 
system state (joint angles and angular velocities). In prosthetics such a controller 
has been implemented by that simulates different sprig characteristics for different 
phases of the gait (Caputo and Collins, 2014). A control signal can also be generated 
independent of the gait phase. The controller of (Gordon and Ferris, 2007) uses a 
modified EMG signal of the soleus muscle to control the exoskeleton. 

Rehabilitation robots are intended for training of patients with (partially) impaired 
legs. Rehabilitation strategies can focus on a subtask of walking. Therefore 
specialized controllers are developed that for example increase foot-height during 
swing (Koopman et al., 2013) or couple the motion of the left and right leg (Vallery 
et al., 2009b).  

Gait phase estimation 
Different exoskeletons define their support as a function of the gait phase. This 
requires some form of synchronization for which multiple solutions exist. The 
property that walking is cyclic can be used in this case. A solution that is used for 
multiple exoskeletons is to define the support as a function of time. The time is 
reset when heel strike is detected (Malcolm et al., 2013a; Mooney et al., 2014a). The 
heel strikes can be detected by footswitches under the foot. The gait phase can also 
be learned with an adaptive frequency oscillator. This approach online fits 
sinusoidal functions to one or more measured periodic signals, which are typically 
joint angles. An advantage of this method is that it can learn the frequency of a 
signal (Righetti et al., 2006; Ronsse et al., 2011). A last approach is to directly map 
joint angles and angular velocities to a reference signal. The phase of this reference 
signal can be used to define the support (Karssen and Wisse, 2008). 

2.3 Evaluate 
In the identification of exoskeletons we discriminate between primary and 
secondary measures. The primary measures investigate if the original objective was 
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met. To gain additional knowledge of the underlying dynamical systems additional 
measurements are needed. 

2.3.1 Primary measures 
The primary measures are the measures for the human effort and the overall task 
intensity (the task to be performed by the human and the exoskeleton). A common 
method is to measure metabolic rate with an open respirometry system. The 
relation between the oxygen uptake and carbon dioxide production with the 
metabolic rate is given by an empirical relation (Collins, 2008). Alternative 
measures that have been used are heart rate and blood lactate measurements 
(Galle et al., 2014). In many studies the overall task intensity is kept at a constant 
level, typically by walking on a treadmill at a fixed speed. The overall task intensity 
can be varied in different ways, walking speed (Kerestes and Sugar, 2014) and 
carried weight (Galle et al., 2014) are two typical examples of which the quantities 
can be easily measured.  

2.3.2 Secondary measures 

Kinetics kinematics 
The calculation of kinematics and kinetics is commonly based on the 
measurement of body movements with a marker tracking system and ground 
reaction forces trough dynamometers such as force plates or instrumented 
treadmills. This data is often combined with motion or force sensors within the 
exoskeleton. The kinematic and kinetic analysis commonly serves two purposes. 
One is to determine the kinematic and kinetic effects of human-exoskeleton 
interaction (e.g. Kao et al., 2010a). A second is to determine the performance of the 
exoskeleton (e.g. Malcolm et al., 2013a). 

Muscle activation 
Muscle activation is measured in different exoskeletons through electromyography 
(EMG) with surface electrodes. The advantage is that the signal can be obtained for 
individual muscles at a high sampling rate. This gives insight in how the task is 
shared between the human and the exoskeleton. Downside is that EMG cannot be 
directly linked to metabolic cost. 

Muscular dynamics 
If the muscular dynamics are known it can be investigated how individual muscles 
contribute to an increase or decrease in the metabolic cost. The muscular dynamics 
can be directly or indirectly studied. The muscle-fiber velocity has been measured 
with ultrasound by (Farris et al., 2013). The muscular dynamics can also be 
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indirectly studied. In this case the muscle activations are found trough 
optimization. In this case the muscular dynamics are optimized to match the 
experimentally obtained kinematics and kinetics (Delp et al., 2007). So far the 
latter approach has not been applied in exoskeleton research. 

2.4 Challenges 
So far, this chapter reviewed the state-of-the art of walking and running 
exoskeletons for healthy users and users with a limb pathology. The review was 
separated into three sections that covered the investigation, development, and 
evaluation phase of exoskeletons. The principal findings of each section will be 
briefly summarized. Essential improvements in each section will be formulated in 
the form of a challenge. 

2.4.1 Investigate 
It is difficult to predict the metabolic cost of walking with an exoskeleton. While 
musculoskeletal models have predicted the metabolic cost of normal walking, it 
has not been shown yet with validated quantitative results that these models can 
adapt to other tasks. Alternatively, simplified walking models and empirical 
relations have been formulated to predict the metabolic cost of exoskeleton 
walking. Their scope is more limited, and they cannot be used for any arbitrary 
exoskeleton. 

Challenge 1: Improve the knowledge of human–exoskeleton 
interaction 
Since no estimate of the metabolic cost of exoskeletal walking can be made, the 
design process is often characterized by trial-and-error. Improved knowledge of 
human–exoskeleton interaction could lead to a more systematic approach for 
exoskeleton design. The human and the exoskeleton are two dynamical systems 
that interact, the challenge is split into improved knowledge of the human 
dynamical system and improved knowledge of the exoskeleton dynamical system. 

Insight in the human dynamical system 
A thorough insight in the human dynamical system would make it possible to 
estimate human performance before human experiments have been carried out. 
This can either be trough walking models or expanding the empirical knowledge. 

Insight in the exoskeleton dynamical system 
Some examples are found where the exoskeleton dynamics are described in full 
detail (Koopman et al., 2013; Witte et al., 2015), but this is not common practice. In 
many cases the dynamics are not straight forward, e.g. when pneumatic muscles 
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are used which are highly non-linear. Without this description it is not possible to 
repeat experimental results with a different exoskeleton. A description of the 
exoskeleton dynamics makes it possible to generalize the results obtained with a 
specific exoskeleton, and would therefore make a large contribution to the 
understanding of human-exoskeleton interaction. 

2.4.2 Development 
There exist a wide variety of exoskeleton designs. The variety can partly be 
explained by the intended application, e.g. design considerations for a clinic based 
rehabilitation robot are different than for an exoskeleton that augments walking in 
outdoor terrains. Another part could be explained by the fact that the best 
hardware configuration has not yet been found.  

Challenge 2: Improving exoskeleton hardware and control 
Hardware requirements are very strict. In general, exoskeleton performance 
increases with power and decreases with weight. It was shown by (Mooney et al., 
2014a) that many exoskeletons lack the power (or are to heavy) to achieve a 
performance better than normal walking. Improving the hardware with more 
lightweight designs should therefore enhance exoskeleton performance. 

2.4.3 Evaluation 
Exoskeleton concepts are typically evaluated by building a prototype and do an 
experimental evaluation. This method is very time consuming. Building and tuning 
the exoskeleton takes a lot of time while performing the actual measurement takes 
only a little.  

The evaluation of exoskeletons is often performed by using a primary measure that 
measures human effort or task intensity. These measures provide quantitative 
results that make it possible to compare the performance of different exoskeletons. 
It is in many cases not sufficient to explain the differences between experimental 
results obtained with different exoskeletons. Additional insights in the human–
exoskeleton interaction can be obtained with a gait analysis that provides 
kinematic and kinetic data. Performing a gait analysis with an exoskeleton has 
some specific difficulties. For many protocols the data analysis takes a lot of time 
and cannot be processed in real-time. Furthermore the exoskeleton might interfere 
with the measurement equipment (e.g. optical markers of a motion tracking 
system could be blocked by the exoskeleton). 
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Challenge 3: Fast and detailed evaluation of exoskeleton concepts 
Exoskeleton designs could be greatly improved if the time it takes to evaluate 
exoskeleton concepts could be severely reduced. Most progress could be made by 
reducing (or eliminating) the time it takes to build and tune the exoskeleton and 
perform data analysis. Data analysis methods should be adapted so that they are 
better compatible with exoskeletal walking making measurements easier to 
conduct. 
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Abstract—It is hypothesized that healthy humans can reduce their energy 
expenditure during walking by wearing an exoskeleton. Exoskeletons are often 
designed for mechanical efficiency at joint level. This approach disregards the energy 
savings mechanisms in the human leg like bi-articular muscles and tendons. We use 
the muscle-reflex model to simulate the experiments by Cain et al. with an ankle 
exoskeleton actuated by a pneumatic muscle that supports plantarflexion. The 
muscle-reflex model predicts muscle activations and metabolic rate. The reflex-
control parameters of the model were optimized for walking with and without 
support from an exoskeleton. The simulated exoskeleton uses either the EMG signal 
from the soleus muscle (proportional myoelectric control), or a footswitch to trigger 
the actuation of the pneumatic muscle. Cain et al. did find an experimental 
reduction in soleus muscle activation of 41.4 percent for the proportional 
myoelectric control and 13.0 percent for the footswitch control, where the 
optimization outcomes of simulated walking predicted a reduction of 42.8 percent 
and 25.9 percent respectively. 

3.1 Introduction 
It is hypothesized that healthy humans can improve their walking performance by 
wearing an exoskeleton (Ferris et al., 2007). During the last decade the number of 
exoskeleton prototypes with the intention of doing this has greatly increased. 
Theoretical and experimental results give no conclusive answer on how humans 
can be most effectively supported during walking. One of the proposed strategies 
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for multiple exoskeletons is to partially match the support with the torque patterns 
normally observed in human gait. Joint torques and powers are calculated using 
inverse dynamics. Exoskeletons that use this principle can be (quasi) passive 
systems (van den Bogert, 2003; van Dijk et al., 2011; Walsh et al., 2007; Wiggin et al., 
2011), or active systems (Cain et al., 2007; Norris et al., 2007). The assumption made 
for the design of these systems is that if the gait kinematics and joint torques stay 
the same, the joint torques that the human has to provide will decrease, what will 
make the human walking effort, in mechanical terms, more efficient. However, in 
metabolic terms, these systems, as well as other systems (Herr, 2009; Malcolm et 
al., 2013a), have not or only slightly reduced energy expenditure during walking.  

A problem with exoskeletons solely focusing on reducing joint torque or power is 
that they do not take into account the following effects: 1. Humans will adapt to the 
support, which results in different gait kinetics and kinematics (Kao et al., 2010a) 
and 2. Tendons provide temporal energy storage and bi-articular muscles transfer 
energy between joints (Ishikawa et al., 2005; Wiggin et al., 2011). We assume that 
due to this focus on mechanical efficiency, exoskeleton performance is often 
overestimated, and thereby leads to the poor results with reducing metabolic cost 
in exoskeletal walking studies. 

More advanced walking models that take into account the human adaptation, and 
the effects of tendons and bi-articular muscles might better predict the 
effectiveness of an external support offered by an exoskeleton. This requires 
forward dynamical simulations to evaluate kinetic and kinematic adaptation effects 
and modeling of the musculoskeletal system to predict the effect of tendons and 
bi-articular muscles. Examples of such models are (Geyer and Herr, 2010; van den 
Bogert et al., 2011). The model we used in this study is the muscle-reflex model of 
(Geyer and Herr, 2010). The model is suitable for forward simulation of human 
walking, models musculoskeletal dynamics and control, and has a limited number 
of control parameters. The model has the flexibility to represent different gaits as 
has been shown by the optimization of the model for different walking speeds 
(Song and Geyer, 2012). The model has been extended and optimized for walking 
and running in 3D (Wang et al., 2012), however this was done mainly for animation 
purposes and out of plane movements were not generated by a muscle model, but 
controlled by a PD-controller instead.  

Aim of this study is to investigate if this model can be used for exoskeletal walking 
and if it can make predictions for the metabolic cost of walking. This requires the 
control parameters of the model to be optimized which is a highly non-linear 
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optimization problem. A particle swarm optimization (PSO) is used to perform 
this optimization. 

To test the model and the optimization two different types of external support that 
mimic the behavior of an exoskeleton were implemented in the walking 
simulation. The supports were modeled after the controllers used by (Cain et al., 
2007) on a pneumatic ankle exoskeleton (Ferris et al., 2005; Gordon et al., 2006).  

The first implemented controller is the ankle torque feedforward (AFF) controller. 
The AFF controller plays back a fraction of a pre-recorded ankle torque pattern 
normally observed in human gait. This controller is modeled after the footswitch 
(FS) controller of (Cain et al., 2007) where the amount of support is controlled by a 
footswitch. A similar controller was also evaluated by (Norris et al., 2007). The 
second implemented controller is the soleus activation feedback (SFB) controller. 
The SFB controller amplifies the soleus muscle activation signal generated by the 
muscle-reflex model. This controller is modeled after the proportional myoelectric 
controller (PM) of (Cain et al., 2007). The PM controller measures the EMG of the 
soleus muscle and scales the support of the exoskeleton with this signal.  

The study of (Cain et al., 2007) was selected since the results with this exoskeleton 
are well documented and different controllers have been applied on the same 
exoskeleton. In terms of mechanical power these two controllers offer a similar 
support, however the measured performance of the two controllers is different in 
terms of EMG, kinematics and adaptation time.  

We hypothesize that the optimization of the muscle-reflex model for different 
exoskeletal supports can predict the experimental outcomes. Additionally the 
prediction of the metabolic cost (Umberger et al., 2003) can be used to determine 
the metabolic advantage of the exoskeletal supports. 

3.2 Methods 

3.2.1 Walking and exoskeleton model 
The walking model which was used is the muscle-reflex model (Geyer and Herr, 
2010; Song and Geyer, 2012). The walking model consists of seven body segments 
with fourteen muscles. Each muscle has its own controllers that generate a muscle 
stimulation signal. Via the muscle dynamics this results in joint torques. The 
walking simulation is extended with an external support that acts around the ankle 
and mimics the support of the controllers implemented on the pneumatic ankle 
exoskeleton by (Cain et al., 2007). Our support offers a torque directly at the ankle 
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joint. Effects from the mass or actuator dynamics are not taken into account 
(Figure 5).  

Ankle torque feed forward (AFF) 
This controller plays back a fraction of the ankle torques (τREF) normally observed 
in human gait and that were acquired from an internal gait database. The ankle 
torques are defined as a function of the gait phase (ϕ(t)). The gait phase is detected 
by an adaptive frequency oscillator that synchronizes the gait frequency with the 
right and the left hip angle (Righetti et al., 2006). Zero phase (ϕ(t) = 0) is 
synchronized with the heel strike. The reference torques are scaled with a gain 
(GAFF) and the control torque (τAFF) becomes: 

 ( )τ τ ϕ=( ) ( )AFF AFF REFt G t  (2) 

Soleus activation feedback (SFB) 
This controller exerts an ankle torque (τSFB) that is proportional to the soleus 
activation (ASOL) with a gain (GSFB). 

 τ =SFB SFB SOLG A  (3) 

The muscle activation signal of the muscle-reflex model is analogous to the 
rectified and filtered EMG signal measured in humans. 

3.2.2 Simulations 
The walking model has been implemented in a custom-made simulator for 2D 
rigid body dynamics for Matlab (Natick, Mass., USA). The simulator uses a fourth 
order Runge-Kutta integrator with a fixed time step of 5·10-4 s. The software 
including the simulation results is available under a BSD license 
(dbl.tudelft.nl/exoskeleton/simulation/). Our simulations ran on 12 cores of a 
server with two Intel Xeon E5 2665 processors. 

3.2.3 Optimization algorithm 
The optimization algorithm which was used is a particle swarm optimization 

 
Figure 5: Schematic overview of the simulation. The muscle reflex model and exoskeleton 
controllers generate input torques for the multibody dynamics module that simulates the 
motion of the human body segments. 
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(PSO). A variant of the particle swarm optimization is used where each particle is 
influenced by its own best position over all the past iterations (xpbest) and a local 
best position of the previous iteration (xlocalbest). The local particles are determined 
by a ring topology, where each particle receives information of its n left and right 
neighbors. Additionally the velocity is damped with a factor (ω = 0.95). The 
velocity (v) of particle j at iteration k + 1 is adjusted as follows: 

 ω+ = + − + −1 1 2( ) ( )jk jk pbest jk socialbest jkv v r x x r x x  (4) 

where r is a random number between 0 and 1, and xjk the position of particle j at 
iteration k. The positions of the particles are limited by xmin, xmax that are the 
bounds on the control parameters by (Geyer and Herr, 2010). The velocity of the 
particles vmin, vmax is limited as follows. 

 ( )= − = ⋅ −min max max min0.015v v x x  (5)  

Staged optimization 
The PSO uses a staged optimization criterion. First the fitness of the first stage is 
calculated, if a desired fitness value is reached the particle moves to the next stage 
and the fitness of this next stage is calculated, until a final stage is reached. This 
can be interpreted as a constrained optimization problem where the stages are the 
constraints. In the optimization the following stages are used:  

First stage is maximizing the simulation time close to its set maximum (tmax [s]). 
The simulation is terminated if the model falls. Maximizing the simulation time is 
in this case similar to ensuring that the model does not fall. The second criterion is 
a coarse matching of the walking speed. Third stage is the minimization of the 
standard deviation of the step time. This is a coarse measure for stability and it 
ensures a regular gait pattern. The fourth step is a fine matching of the gait speed. 
The fifth, and final, step is the optimization of the product of: average muscle 
power, the RMS of the muscle activation averaged over the muscles, and average 
absolute ligament torques. The first two terms are introduced to optimize for an 
energy efficient gait pattern. The last term prevents for overstretching of ligaments 

Stage Fitness Criterion next stage 

1 Simulation time [s] > tmax - 0.01s  

2 abs(Speed – Desired speed) [m/s] < 0.5m/s 

3 SD(Step time) [s] < 0.05s 

4 abs(Speed – Desired speed) [m/s] < 0.1m/s 

5 Average muscle power [W/kg] 
   x muscle activation RMS [] 
   x average absolute ligament torques [Nm/kg] 

-- 

Table 1: Fitness criteria 
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and might be interpreted as a pain factor (Song and Geyer, 2012). To determine the 
best particle out of a group of particles they are first sorted by their achieved stage 
and secondly on their fitness within that stage. The values choices for the fitness 
criteria are summarized in Table 1.  

Muscle noise 
To achieve more stable results muscle noise (e) was added to the model. For every 
stage and fitness evaluation by the PSO the simulation was repeated three times 
with different random initialized noise. Of the three acquired stages and fitness 
values the lowest was passed to the optimization algorithm. The noise is a 
piecewise polynomial fit through data points with random time intervals between 
0.1 s and 0.2 s with random values between 0 and 1. The muscle stimulations (S) 
were adapted as follows: 

 = + ⋅(1 0.02 )S e S  (6) 

3.2.4 Optimization experiments 
Two optimization experiments were performed. The first optimization was used to 
optimize the initial conditions. The second optimization was walking with 
different types and levels of support. The settings of the PSO for the different 
experiments are given in Table 2. During all the experiments we optimized all the 
muscular control parameters of the reflex model. For the optimization of the initial 
conditions the lean angle of the torso (applied to the torso element and the shank 
of the stance leg), the angle of the swing leg and the speed of the swing leg were 
optimized as well, since the muscle-reflex model cannot start from every possible 
pose.  

Optimizing initial conditions 
The muscle-reflex model and the phase detection of the AFF controller require a 
few seconds of simulation before they reach steady state. Since the optimizations of 
supported walking require a long computation time, a series of optimizations were 
performed to optimize the initial conditions, so further simulations can start from 
a steady state walking cycle. These optimizations optimized walking without the 
support from the controllers. The maximal simulation time was 15 seconds. To 
 Initial conditions Supported walking  

Step -- 1st step 2nd to 8th 

Population 50 60 40 

Population 1st iteration 100 120 80 

Iterations 60 75 50 

Particle neighbours (n) 2 7 5 
Table 2: Settings used for the PSO 
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check the convergence of the results the optimization was repeated five times. The 
state of the walker at t = 10 s of the optimization with the best fitness was used as 
the initial state for the further experiments. The computation time for this 
experiment was two hours per repetition.  

Optimizing supported walking 
After the initial conditions were determined walking with and without the different 
controllers was optimized. We optimized for different walking conditions: walking 
with SFB controller, walking with AFF controller, and walking without support. 
The amount of support was gradually increased over eight optimizations, indicated 
by the optimization step (istep). This was done to obtain results for different levels of 
support. For the SFB controller the gain (GSFB) is: 

 = ⋅ − =(30 1) 1..8SFB step stepG i i  (7) 

For the AFF controller the gain (GAFF) is a function of the body mass (m) and the 
step: 

 = ⋅ ⋅ − =0.06 ( 1) 1..8AFF stepG m i i  (8) 

For the normal walking there is no change in the support. Still the same multistep 
approach was chosen for walking without support, so all optimizations have a 
similar number of iterations of the PSO. 

The initial population of each optimization step, except for the first optimization 
step, is a random population around the best particle from the previous step. The 
position of each new particle is seeded within +/-15% of the search space size 
around the best particle of the previous step (respecting the bounds on the search 
space). In order to evaluate the convergence of the results the experiment was 
repeated ten times. The computation time for this experiment was approximately 
twenty hours per repetition. 

3.2.5 Data processing 
For each optimization result an average step was calculated from the last five steps 
of each simulation. The amount of support was characterized by the maximal 
support power in an average step. For the experimental results by (Cain et al., 2007) 
this was 1.23 and 1.18 Wkg-1 for the FS and PM controller respectively. The average of 
1.20 Wkg-1 was used as the target support power for our optimization. From the 
different optimization steps, the results from the optimization step where the 
maximal support powers were closest to this target were selected. 
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Three different energy related measures for the evaluation of walking performance 
are used. 1. Average absolute joint power. The average was taken over the time and 
summed over the joints. 2. Average muscle power. This is the power from the 
contractile element of the muscle averaged over time and summed over the 
muscles. 3. Estimated metabolic cost. The estimated metabolic cost using the 
model of (Umberger et al., 2003) takes into account the muscle activation and 
maintenance heat, the shortening and lengthening heat, and the mechanical work. 
All these measures are normalized with the body weight. Results for the different 
controllers are compared to each other. Statistics are performed with a single sided 
ANOVA-test over all the results from the different repetitions of the experiment. 

3.3 Results 

3.3.1 Optimization 
During all optimizations on average 31.9% and at least 7.5% of the particles reached 
the final stage of the five fitness stages in the last iteration of the optimization. This 
means that for all optimizations, solutions were found that fulfilled the criteria for 
optimization stages one to four. A typical example of a walking cycle that was 
optimized is shown in Figure 6. For both controllers the simulation step where the 
maximal support power (Pmax) was closest to the maximal support power of (Cain 
et al., 2007) was selected (Figure 7). For the SFB controller this was the fourth 
optimization step (GSFB = 90 Nm, Pmax = 1.18 W/kg) and the fifth optimization step 
for the AFF controller (GAFF = 0.24 Nmkg-1, Pmax = 1.04 Wkg-1). Further results will 
describe the data acquired from these optimization steps.  

3.3.2 Support vs. joint power, muscle power and energy 
expenditure 

Different energy measures were calculated from the results. The average absolute 
joint power, the average power of the contractile elements in the muscle, and the 
estimated metabolic cost calculated using the model of (Umberger et al., 2003) are 
given in Table 3. The results are given for all the joints together and for the ankle 
only. 

 
Figure 6: Typical example of a walking cycle with an ankle exoskeleton. 
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3.3.3 Ankle kinematics and kinetics 
The average ankle angle, ankle torque, and ankle power are shown in Figure 8. The 
ankle kinematics for walking with and without the support are compared with the 
cross correlation coefficient. For the SFB controller the correlation with 
unsupported walking is 0.98. For the AFF controller the correlation with 
unsupported walking is 0.99.  

  
Figure 7: Optimization step vs. the maximal support power. The different markers for each 
optimization step represent the data acquired from the different repetitions of the 
experiment. 

 All joints  Ankle only 

 No support SFB AFF No support SFB AFF 

Metabolic rate [Wkg-1] 2.82 
(0.05) 

2.82 
(0.13) 

2.63 
(0.13)* 

0.486 
(0.058)* 

0.378 
(0.024)* 

0.340 
(0.051)* 

Muscle power [Wkg-1] 1.12 
(0.06) 

1.23 
(0.07)* 

1.12 
(0.06) 

0.157 
(0.008)* 

0.147 
(0.014)* 

0.149 
(0.010)* 

Table 3: Different measures for the human energy expenditure. Results are shown for all joints 
together and for the ankle only. The muscle energy expenditure and the muscle power for the 
ankle only was based in data from, the soleus, tibialis anterior and gastrocnemius muscles. 
Values between brackets denote standard deviations over the repetitions of the experiment. * 
denotes a significant difference between the results with controller from results for 
unsupported walking (single sided ANOVA, p < 0.05) 
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3.3.4 Support work vs. muscle activation 
The muscle activations for the different controllers are compared in Figure 9. 
Significant decreases of 42.8% and 25.9% in soleus activation were found for the 
SFB controller and AFF controller respectively (experimentally found reductions 
were 41.4% and 13.0%). For the SFB controller we found a significant increase for 
the tibialis anterior and the gluteus muscles of respectively 16.0% and 5.4%, in the 
experiment by Cain et al. these changes were not significant. For the AFF controller 
we found a significant reduction of 37.9% and 10.0% in respectively the activation 
of the gastrocnemius and vastus muscles. Cain et al found a decrease in the 
gastrocnemius muscles of 27.7% and 9.77% for the PM and FS controller 
respectively. 

3.4 Discussion 

3.4.1 Optimization 
The used optimization algorithm was able to find stable gait patterns for the 
different controllers and the different levels of support. This is a first indication 
that the muscle-reflex model is able to simulate walking with exoskeletons or 
orthoses.  

 
Figure 8: Comparison of kinetics and kinematics for the different controllers. The upper row 
shows the ankle angle, the middle row shows the ankle torque, the bottom row shows the 
ankle power. Plantarflexion is positive. 
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3.4.2 Gait kinematics 
The different conditions led to very similar gait kinematics for the ankle. Cain et al. 
have shown in their experiments that the initial gait kinematics showed more 
plantar flexion and converged to a gait pattern closer to that of normal walking. 
This adaptation process cannot be captured with the optimizations. The PM 
controller of Cain et al. and the results for the SFB controller both show a gait 
pattern very similar to that of unsupported walking. Cain et al. showed that the gait 
kinematics of the footswitch controller even after convergence showed large 

 
Figure 9: Muscle activations for the different walking conditions. Lines denote the mean, 
shaded areas denote the standard deviations taken over the last five steps of the different 
optimizations. The data is normalized to the walking condition without support. The 
percentages show the difference in RMS between no support and walking with the controllers. 
* denotes a significant difference between the results with controller from results without 
controller (single sided ANOVA, p < 0.05) 
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deviations from a normal gait pattern, where this was not observed with the AFF 
controller we evaluated. The FS controller of Cain et al. produces a weaker 
resemblance to a normal ankle torque signal since it is controlled by an on/off 
signal coming from the footswitch, which might have contributed to the different 
gait pattern.  

3.4.3 Muscle activation 
The studies from Cain showed that both controllers have the biggest effect on the 
activity of the soleus muscle, which was confirmed by our simulation results. We 
also found a big reduction in gastrocnemius activation for the AFF controller that 
was not found by Cain et al. It should be noted that the standard deviation in the 
gastrocnemius activation over the different repetitions of the optimization was 
large. Cain et al. did find a significant reduction in gastrocnemius EMG for the SFB 
controller that we did not find, but in another study with the same controller by 
(Gordon et al., 2006) this reduction was not found. Additionally we found 
numerous smaller differences that were significant, but not reported in the 
experimental study. These effects are small and they might not be noticed in 
experiments due to inter-subject differences. 

3.4.4 Energy expenditure 
Of the different energy measures (absolute joint power, muscle power, and 
metabolic rate) evaluated over all the joints, only the metabolic rate for the AFF 
controller decreases significantly. A possible explanation might be that reductions 
in energy expenditure at the ankle are counteracted by increases in energy 
expenditure at the knee and hip. Additionally the muscle-reflex model tends to 
overestimate the hip and knee power, making the relative contribution of the ankle 
smaller. To rule out these effects the ankle was also evaluated in isolation. For the 
ankle alone all performance measures predicted a decrease in energy consumption. 
Experimental data with the proportional feedback controller showed reductions in 
metabolic rate of 0.39 Wkg-1 (3.39 Wkg-1 with the unpowered device, 3.00 Wkg-1 
with the powered device) (Sawicki, 2009). The simulations with the SFB controller 
only predicted savings of 0.108 Wkg-1. The prediction of the reduction in muscle 
power showed the smallest gain in energy efficiency by the controllers. The 
predictions of reductions in joint power and metabolic rate were on a comparable 
scale. For the AFF controller the relative reduction in metabolic rate was larger, for 
the SFB the relative reduction in joint power was larger.  

Our research has some limitations that might be addressed in future research. 
Although the muscle reflex model has a good resemblance of human walking the 
model is not validated. Our research considers only the torque exerted by the 
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exoskeleton. The mass of the exoskeleton was not taken into account. However, 
added mass to the leg does have a significant influence on the walking performance 
(Browning et al., 2007; Malcolm et al., 2013a; Sawicki, 2009). 

3.5 Conclusion 
We have shown that the muscle-reflex model adapts to an external support. Muscle 
activation patterns showed similar changes as the experimental recordings of EMG 
when an ankle support is provided. In general, changes in muscle activation and 
metabolism predicted by the simulation were lower than the observed changes in 
the experiment. For this study we only used experimental data from one 
exoskeleton as reference. Based on this reference we conclude that the simulations 
give a conservative estimation of the reduction in human energy expenditure. 
Estimated metabolic rate and joint power showed similar reductions. Our 
hypothesis that reductions in estimated metabolic rate would be lower than 
reductions in joint power was not confirmed. Still the estimated metabolic rate is a 
physiologically sounder estimate of the human energy expenditure than absolute 
joint power. 
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4 Real-time Motion Analysis and 
Parameter Estimation with a 
Multibody Kalman Filter 

Wietse van Dijk 
Shiqian Wang 
Herman van der Kooij 

In review 

Abstract— In motion analysis, the errors that are made in the processing of 
measurement data are much larger than the measurement errors. Protocols for data 
processing are prone to errors caused by: incorrect model parameters, imprecise 
palpation of anatomical landmarks, poor estimates of the accelerations, soft tissue 
artifacts, and missing data. Motion analysis data often contains redundant 
information that can be used to reduce these errors. We developed the multibody 
Kalman filter (MKF) for real-time motion analysis that considers uncertainties from 
various causes. The MKF simultaneously estimates kinematics and kinetics from 
force and motion data. This makes the MKF suitable for real-time applications. The 
MKF eliminates the need to palpate anatomical landmarks, which is labor intensive 
and prone to errors.  

The performance of the MKF was evaluated in two experiments. In the first 
experiment the MKF was used on synthetic data generated with a simplified walking 
model. This experiment showed the advantage of simultaneously handling force and 
motion data. In the second experiment the gait of four subjects was analyzed with 
the MKF and the calibrated anatomical systems technique (CAST). The RMS 
difference in estimated joint angles between these two methods ranged from 1.72° to 
6.41°. The RMS difference in joint moments ranged from 0.07 to 0.30 Nm/kg. 
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Estimation errors for the position, force, and moment showed that the MKF is as 
reliable as the CAST. 

Keywords: Motion analysis, gait, multibody dynamics, Kalman filter, real-time, 
parameter estimation 

4.1.1 Nomenclature 
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4.2 Introduction 
Movement analysis has a wide range of applications in research, clinics, and sports. 
Data is acquired by measuring motions and interaction forces with the 
environment. Motion is captured with optical or electromagnetic tracking systems 
or with body-mounted motion sensors (Wong et al., 2007). Interaction forces with 
the environment can be acquired with force plates, an instrumented treadmill 
(Riley et al., 2007), or force shoes (Veltink et al., 2005).  

Measurement data is commonly processed in three sequential steps. The first step 
is to determine the location of the joints and define a reference frame for each 
segment. In most conventional methods for data processing, the joint centers and 
segment reference frames are defined with respect to anatomical landmarks 
(Ferrari et al., 2008). This can be done by placing the markers directly on the 
anatomical landmarks (e.g. the Conventional Gait Model, CGM) or by using a 
calibration trial (e.g. the calibrated anatomical systems technique, CAST, Cappozzo 
et al., 1995; Davis et al., 1991). In a calibration trial, anatomical landmarks are 
palpated with an instrumented so that their relative positions to other markers are 
known. The second step is to calculate the segment and joint angles by comparing 
the orientation of markers clusters during movement with their orientation in a 
reference pose. Velocities and accelerations are obtained by differentiating the 
angles with respect to time. The third step is to calculate the kinetics, i.e. joint 
moments and joint powers. Joint moments are usually derived from Newton-Euler 
equations. 

4.2.1 Estimation errors 
In general, estimation errors in joint angles and moments due to processing of 
measurement data are much larger than the measurement errors (Baker, 2006). 
Conventional methods that use tracking of optical markers, such as the CGM and 
CAST, have some common problems that are the cause of these estimation errors:  

Incorrect model parameters: The relation between anatomical landmarks, joint 
locations, joint orientations, and mass distributions often depend on regression 
analysis and inter-subject differences are ignored (Davis et al., 1991; Leva, 1996; 
Reinbolt et al., 2005; Winter, 1990). 

Imprecise palpation of anatomical landmarks: The identification of anatomical 
landmarks on the subject depends on the experimenter and might be inaccurate. 
Differences in the joint angles can be more than 20° between different sites and 
experimenters (Della Croce et al., 2005; Gorton et al., 2009). 
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Poor estimate of the accelerations: The acceleration signal tends to be noisy due to 
the numerical differentiation of the angles. This is commonly suppressed by 
applying a low-pass filter. 

Soft tissue artifacts: The methods assume that every segment is rigid. However, soft 
tissue deformation causes markers to move relative to the true segment reference 
frames causing an error in the estimation of the joint centers and the segment 
reference frames (Leardini et al., 2005).  

Missing data: The methods are vulnerable to missing data that commonly occurs 
due to marker occlusion. If one marker is missing, a segment reference frame 
cannot be reconstructed, and kinetics and kinematics for one or more joints cannot 
be calculated. This can be partially compensated with interpolation techniques.  

4.2.2 Countermeasures 
Different countermeasures are introduced to reduce the estimation errors due to 
processing of measurement data. Different approaches can be separated into 
methods that solely focus on an improved estimation of the kinematics and 
methods that improve both kinematics and kinetics. 

Improved kinematics 
Different studies focus on estimating joint rotation centers directly from marker 
data instead of indirectly from anatomical landmarks. In the formed case, the joint 
centers are estimated from the relative movements of markers on both sides of the 
joint (Reinbolt et al., 2005; Schwartz and Rozumalski, 2005). 

The segment kinematics can be determined for every segment and time step 
individually (segmental optimization method, SOM). In reality the segment 
kinematics are constrained at the joints. Global optimization methods (GOMs) 
make use of these constraints to reduce the estimation error. GOMs describe the 
body as a multilink system and estimate all joint angles at the same time (Lu and 
O’Connor, 1999). Requiring motion smoothness can further improve this estimate, 
for example by using a Kalman filter (Cerveri et al., 2003), possibly in combination 
with a smoother (De Groote et al., 2008). 

Obtaining the joint positions and finding the segment trajectories is an estimation 
problem with different kinds of uncertainties. This estimation problem can be 
captured in an universal framework (Todorov, 2007). In this framework all 
unknown quantities (including model parameters) are treated as variables and all 
prior knowledge is encoded probabilistically. This framework is a Gauss-Newton 
generalization of an extended Kalman filter, and has been tested for both synthetic 
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and experimental kinematic data. With this filter, the model parameters and 
kinematics can be reliably estimated, also when input data is partially missing 
(Todorov, 2007). 

Improved kinematics and kinetics 
In many cases, the force-plate data and the motion data contain redundant 
information, since the forces and accelerations are coupled via the mass matrix. 
Solving the equations of motions is thereby an over-constrained problem. In 
conventional methods, the over-constrained problem is solved by simply ignoring 
some of the force and moment equilibrium constraints, which results in residual 
forces and moments. Alternatively, finding the joint torques and moments might 
be formulated as an optimization problem (Chao and Rim, 1973; Delp et al., 2007; 
Kuo, 1998; Remy and Thelen, 2009; van den Bogert and Su, 2008). By doing so, 
joint toques are more accurately estimated, and measurement biases can be 
identified. So far these methods were not suitable for real-time applications. 

4.2.3 Goal 
The goal of this paper is to develop a general framework for motion analysis and 
parameter estimation that considers uncertainties from various causes and makes 
an optimal estimation of kinematics and kinetics simultaneously. The framework 
we developed is an extension of Todorov’s framework to the kinetic domain. This 
leads to a Kalman filter that estimates the state of a multibody dynamical system, 
hence the name multibody Kalman filter (MKF). This integral approach allows for 
real-time analysis of gait data.  

To justify the use of the MKF we will conduct two experiments. In the first 
experiment the MKF is used on a set of synthetic data. This experiment shows 
advantage of the extension of Todorov’s framework to the kinetic domain. In the 
second experiment the gait of four subjects is analyzed. This experiment shows the 
applicability of the MKF for motion analysis. The kinematics and kinetics 
calculated with the MKF and the CAST are compared. The latter is an example of 
common practice in gait analysis. 

4.3 Methods 

4.3.1 The MKF 
The MKF is a special application of the extended Kalman filter, and an extension of 
the filter developed by Todorov (2007). This section will generally describe the 
MKF. A detailed description of the MKF equations can be found in the appendix. 
The MKF performs alternating time and measurement updates. The time update 
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predicts ahead, resulting in an a priori estimate (denoted with ˜). The 
measurement update corrects the estimates when new measurements are available, 
resulting in an a posteriori estimate (denoted with ˆ, Figure 10). The extended ( ) 
state vector is defined by: 

 

 
 
  =  
 
 
  

fix

flo

int

ext

q
q

s u
f
f

 (9) 

fixq is a vector with time-invariant spatial variables. These are the model 

parameters such as segment lengths and local joint orientations of which the value 
is unknown. Therefore, they are modeled as variables as well. floq is a vector with 

time-variant spatial variables (e.g. joint angles). u  and intf  are vectors with 

generalized velocities and forces (e.g. joint velocities and moments). extf is a vector 

with external moments and forces acting at the center of mass of each segment in 
the multibody system (e.g. ground reaction forces).  

s

 
Figure 10: Schematic overview of the workings of the MKF which is a special application of the 
extended Kalman filter. First, the filter makes a time update that leads to an a priori estimate 
of the state and the error covariance matrix. Secondly, the filter makes a measurement update 
that lead to an a posteriori estimate of the state and the error covariance matrix. After the 
measurement update the time frame is incremented with one and the cycle restarts. 
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Time update 
The time update function (

−1f( , )ks w ) of the state 
−1ks  is given by: 

  

 
− − −= + ∆ =1 1 1( )f( , ), N( , )k k k kts s B s s w w O Q  (10) 
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Where ∆t  is the time step, k and − 1k  are, respectively, the indices of the current 
and previous time frame. fixq is unchanged because it is time invariant. floq is 

updated with the velocity. u  is updated with the acceleration. The acceleration is 
calculated with the equations of motion. intf  and extf  are updated with the process 

noise w . w  is assumed to have a normal distribution with zero mean and 
covariance Q . The matrix B accounts for the quaternion constraints. The a priori 

estimates 
 ks  and kP  are made using the a posteriori estimate 

−1
ˆ

ks and −1
ˆ

kP  while 

assuming zero process noise: 
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Measurement update 
The measurement function ( g( , )s r ) provides a new measurement (

kz ) at each 

time frame. The measurement is a function of ( s ) and the measurement noise ( r ): 

 = =g( , ), N( , )z s r r O D  (15) 
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Where r  is assumed to be normally distributed with zero mean and covariance D . 
It is not required that every time frame all signals are measured, this 
accommodates for missing data. The Kalman gain ( K ) is calculated as follows: 

 ( )−= + 

  

1
( ) ( ) ( )T T

k k k k k k k k k kK P G s G s P G s D  (16) 
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The Kalman gain is used to perform the measurement update resulting in 
the a posteriori estimate ˆ

ks  and ˆ
kP : 

 = + − ˆ ( g( , ))k k k k ks s BK z s O  (18) 

 = − 



ˆ ( ( ))k k k k kP I K G s P  (19) 

 

Implementation 
The MKF was implemented in Matlab (MathWorks, Natick, MA, USA) and ran on a 
laptop (Intel Core2Duo T9600). 

4.3.2 Synthetic data experiments 
This experiment shows the workings of the filter on a simple model. Synthetic data 
was used so the ground truth was available, the noise on the model could be 
controlled, and the noise covariance was exactly known. Synthetic data was 
generated by using the bipedal spring-mass model of (Geyer et al., 2006) shown in 
Figure 12. The kinematics of the model were estimated with the MKF that used 
both the position and force input, and with a simple Kalman filter (SKF). The SKF 
used only the position inputs and assumed constant accelerations with a noise 
term to account for the errors introduced by this assumption. In this particular case 
the SKF was effectively the same as the MKF without force inputs. 
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To investigate the effect of a smoother the filter output was processed by a Rauch-
Tung-Striebel smoother (Rauch et al., 1965). Gait analysis methods that do not 
apply special smoothing, like SOMs and GOMs, often use a low pass filter to 
eliminate measurement noise and obtain smooth signals that can be numerically 
derived to obtain velocities and accelerations (e.g. Riley et al., 2007). The results of 
the MKF and SKF were therefore also compared with the marker kinematics after 

 
Figure 12: Two dimensional bipedal spring mass model (Geyer et al., 2006). The model consists 
out of a point mass representing the body and two massless linear springs representing the 
legs. The springs deform during stance and thereby exert forces on the center of mass, during 
swing the leg moves to a fixed angle with respect to the ground. The properties are chosen to 
represent human like walking (mass = 80 kg, leg length = 1 m, g = 9.81m/s2). The system has a 
constant energy and has many stable gait patterns. We selected a system energy of 819 J, a leg 
stiffness of 14 N/mm, and an initial leg angle of 69°. This specific example is also shown in 
(Geyer et al., 2006). The simulated measurements are the position of the center of mass and 
the sum of the ground reaction forces with a sampling rate of 100Hz. 

M
xCoM

fleft fright

 
Figure 11: Front view of the human model and definition of axes used in the experiments. The 
subjects walked in the positive x-direction. 
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forward and backward filtering the center of mass position ( CoMx ) with a fourth-

order Butterworth filter with a cut off frequency of 15 Hz. Note that a smoothers 
and backward filters cannot be used in real-time applications since they require 
estimates from future time frames.  

The filters were used multiple times with input signals containing different 
amounts of white noise. The standard deviation of the noise on the CoMx  ranged 

between 0.001 m and 0.1 m. The standard deviation of the noise on the ground 
reaction forces, only used by the MKF, was 1%, 10%, and 20% of the amplitude of 
the force signal. The process noise covariance was determined by taking the 
covariance of the high pass filtered (fourth-order Butterworth filter, 0.25Hz 
crossover frequency) CoMx  and force signals without noise. The measurement 

noise was set to its actual value. The filter performance was evaluated by 
calculating the variance accounted for (VAF) of the absolute position (high pass 
filtered, 4th order Butterworth filter, 0.25Hz crossover frequency) and absolute 
acceleration of the CoM. The VAF is given by: 

segment name segment parent joint  
type 

Time 
variant? 

estimated 
during DCT 

estimated  
during WT 

HAT position -- T Yes Yes Yes 

HAT orientation + CoM* HAT position B Yes Yes Yes 

HAT markers (5x) HAT orientation + CoM T No Yes No 

Right hip location HAT orientation + CoM T No Yes No 

Right hip joint Right hip location B Yes Yes Yes 

Right thigh CoM Right hip joint S No No No 

Right thigh markers (4x) Right hip joint T No Yes No 

Right knee location Right hip joint S No Yes No 

Right knee orientation Right knee location H No Yes No 

Right knee joint Right knee orientation H Yes Yes Yes 

Right shank CoM Right knee joint S No No No 

Right shank markers (4x) Right knee joint T No Yes No 

Right ankle location Right knee joint S No Yes No 

Right ankle joint Right ankle location B Yes Yes Yes 

Right foot CoM Right ankle joint S No No No 

Right foot markers (5x) Right ankle joint T No Yes No 
Table 4: Human model. Segment name: The name of the segment, Segment parent: The name 
of the proximal segment it is attached to, Joint type: The type of joint (B: ball joint 3DoF, H: 
hinge joint 1DoF, T: translational joint 3DoF, S: sliding joint 1DoF). Time variant: yes: variable is 
time variant, no: variable is time invariant, Estimated during DCT: The variables are estimated 
while processing the dynamic calibration trial (kinematics only), Estimated during WT: The 
variables are estimated while processing the walking trial. The model is symmetric so that for 
every right segment there is an equivalent left segment. *CoM = Centre of mass, HAT = Head, 
arms and trunk, DoF = Degree of freedom. 
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Where is the true signal and is the signal estimate. 

4.3.3 Human data 

Subjects 
Four healthy subjects (two males, two females, age: 21 years 5 months ± 1 year 10 
months, height: 1.76 ± 0.12 m, weight: 73.4 ± 11.9 kg) participated in this 
experiment. The Human Research Ethics Committee of the Delft University of 
Technology approved the study, and all subjects gave written informed consent to 
participate.  

Human model 
A 3D seven-segment model was used to describe the human body (Figure 11, Table 
4).  

Experimental apparatus and recordings 
Ground reaction forces and moments were recorded with a dual belt instrumented 
treadmill (Y-Mill, Forcelink B.V., Culemborg, The Netherlands). Marker trajectories 
were recorded by an optical tracking system (VZ4000, Visualeyez, Burnaby, BC, 
Canada). Data was sampled at 100 Hz. 

Experimental protocol 
Markers were placed on the subject according to Figure 11 and the subject’s weight 
and height were recoded. For the CAST, the following anatomical landmarks were 
palpated with a pointer: The anterior/posterior superior iliac spine, the trochanter 
major, lateral/medial epicondyle, the caput fibulae, the tuberositas tibiae, the 
lateral/medial malleolus, the calcaneus, the caput metatarsale I/V. All landmarks 
were palpated on the left and right side. A static trial was recorded where the 
subject stands upright. A dynamic calibration trial (DCT) was recorded where the 
subjects performed a motion moving each leg joint through its whole range of 
motion. After these initial trials, a walking trial (WT) was recorded. The subject 
walked at a constant speed of 5 km/h for three minutes. All measurements were 
performed barefoot. 

Data analysis 
The data was analyzed with the MKF and the CAST. For the CAST, BodyMech 
(VUMC, Amsterdam, The Netherlands) was used. The joint angles and force data 

y ŷ
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were filtered with a fourth-order low-pass Butterworth filter with a cut-off 
frequency of 15 Hz. 

Theoretically, all variables could be estimated at the same time. Preliminary tests 
revealed that the estimate of fixq  greatly improved if the subject moved within a 

large part of its range of motion. This was accounted by processing the data in two 
steps. In the first step the DCT trial was processed. During processing of the DCT 
only kinematics ( fixq  and floq ) were estimated (similar to Todorov’s filter), since 

no force data was available for this trial. In the second step the WT was processed, 
in which both joint kinetics and kinematics ( floq , u , intf , and, extf ) were 

estimated. During the processing of the WT, fixq  was kept constant, and left out 

the state vector (Table 4). The filter parameters are given in Table 5. 
Anthropometric data from (Leva, 1996; Winter, 1990) were used as an initial state 
of the filter in the DCM trial.  

Both the MKF and CAST were used to estimate the joint centers, joint angles, and 
joint moments. For both methods, the angles during the static trial were defined as 
zero. The data was split into individual strides separated by the heel strike of the 
right foot. The steps from a 60-second sample of each trial were used to calculate a 
 DCT WT  DCT WT 
 σ2 σ2  σ2 σ2 

floQ floQ  [m, rad]2 1002 -- 0fixP 0fixP  (marker segment s) [m, 

rad] 2 
12 -- 

fintQ fintQ  (ankle joints) 

[Nm]2 
-- 102 0fixP 0fixP  (other segment s) [m, rad] 

2 
0.22 -- 

fintQ fintQ  (other joints) 

[Nm]2 
-- 202 0floP 0floP  [m, rad] 2 1002 12 

fextQ fextQ  [N, Nm]2 -- 502 0uP 0uP  [m/s, rad/s]2 -- 102 

markerD markerD  [m]2 0.022 0.022 0fintP 0fintP  (ankle joints) [Nm]2 -- 102 

fextD fextD  [N, Nm]2 -- 502 0fintP 0fintP  (other joints) [Nm]2 -- 202 

   0fextP 0fextP  [N, Nm]2 -- 502 

Table 5: Filter parameters of the MKF filter used in the human experiments. Q, D and P|0 are 
diagonal matrices. The coefficients (σ2) on the diagonal are mentioned in the table. Ideally 
these parameters are known, but a course estimate often suffices. Parameters that are similar 
are grouped and have all the same value. Standard deviation of the marker noise, including 
soft tissue artifacts, was assumed to be 20mm (Leardini et al., 2005). Standard deviation of the 
noise in the ground reaction forces and moments was assumed to be respectively 50N and 
50Nm. For the DCT trial Pflo|0 was chosen much larger than Pfix|0 so the MKF favored changing 
joint angles over model parameters. For the same reason Pfix|0 for the marker segments was 
larger than for the other segments, since the other segments had a reasonable initial estimate 
adapted from (Leva, 1996; Winter, 1990). For all other values a course estimate was made 
based normal gait kinetics and kinematics. After this initial guess some filter parameters 
required manual tuning to improve the filter performance.  
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median step. The presented results were averaged over the subjects and standard 
deviations were calculated.  

4.3.4 Error measures 

Position estimation error 
For both methods, a position estimation error is defined. The MKF constrains the 
segment movements at the joint. As a consequence, the estimated marker positions 
differ from the observed marker positions. The marker estimation error ( mkre ) is 

defined as the RMS of the Euclidian distance between observed ( ,imkrp ) and the 

estimated ( ,ˆ imkrp ) marker position averaged over all markers ( n ) on the segment.  

 ( )
=

= ⋅ −∑ , ,
1

1 ˆ( ) ( )
n

mkr i i
i

e rms t t
n mkr mkrp p  (21) 

In the CAST, the segment movement is not constrained by joints. Joints locations 
are estimated from the segment distal and proximal of the joint. During 
movement, these estimates may move relative to each other. The joint estimation 
error ( jnte ) is defined as the RMS of the Euclidian distance between the estimate 

from the proximal ( ˆ proxp ) and distal ( ˆdistp ) segment.  

 ( )= −ˆ ˆ( ) ( )jnt prox diste rms t tp p  (22) 

The proximal and distal joints are defined to coincide during the static trial. The 
marker and joint estimation errors are defined at different locations and cannot be 
directly compared. However, their order of magnitude is an indication of the 
performance. 

Residual moments and forces 
The residual forces and moments ( resf ) are additional forces and moments that are 

required to maintain the force and moment equilibrium at the HAT-segment. In 
reality resf does not exist, and the smaller the forces the more feasible the solution. 

Therefore the residual force error is defined as:  

 
 



66 | Chapter 4 

 
( )

 
 
 
  = = 
 
 
 
  

,

,

,

,

,

,

( )

res Fx

res Fy

res Fz res
res

res Mx

res My

res Mz

e
e
e mean t
e
e
e

f
e

m
 (23) 

Where m  is the mass of the subject. 

4.4 Results 

4.4.1 Synthetic data 
Figure 13 shows the performance of the different filters. Up to 3 mm marker noise, 
all filters gave good position estimates (VAF > 0.9). MKF performed better than the 
SKF and smoothed estimates are better than unsmoothed estimates. The 
Butterworth filter only gave good estimates for small amounts of noise. The 
acceleration estimates were generally poorer than the position estimates. Only the 
MKFs (except the unsmoothed MKF with 20% force noise) gave an acceptable (VAF 
> 0.75) estimate for all tested position noise levels.  

4.4.2 Human data 

Estimated joint centers 
The locations of the joint centers in the static trial were both estimated with the 
MKF and the CAST. The differences between the two estimates were calculated by 
subtracting the estimates of the CAST from the estimates of MKF. The largest 
differences were found at the y-position of the hip, knee, and ankle (all between 
13.2 mm and 24.6 mm) and the z-position of the hip (left -18.4 mm, right 19.8 mm), 
see Table 6. 
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Gait kinetics and kinematics 
The joint angles and moments averaged over the subjects are shown in Figure 14. 
The largest differences in joint angles were found for the right knee with a RMS of 
6.41° (left = 6.04°). All other differences in joint angles were smaller (Table 7). Table 
5 shows that the largest differences in estimated moments were found for the hip 
flexion/extension and ab/adduction (RMS between 0.23 Nm/kg and 0.30 Nm/kg).  

  
Figure 13: The VAF for the different filters and different noise levels. The smoothed signals 
were obtained with a Rauch-Tung-Striebel smoother for the MKF and the SKF and with a 
Butterworth filter for the unfiltered signal. The horizontal axes show the standard deviation 
(σ) of the marker noise and the correspondent signal to noise ratio of the CoM position. 

 
x [mm] y [mm] z [mm] 

 
mean σ mean σ mean σ 

left ankle -9.5 11.0 -20.8 9.6 3.2 6.8 

left knee 0.8 9.6 -13.2 3.0 7.8 7.9 

left hip 11.5 14.6 -20.5 18.2 -18.4 15.2 

right ankle -4.5 5.8 -20.0 8.1 -2.1 13.2 

right knee 6.6 6.8 -22.8 9.0 15.4 15.2 

right hip 13.4 10.8 -24.6 10.7 19.8 10.7 
Table 6: Differences in the estimation of the joint centers in the static trial with the MKF 
method and the CAST. The mean values and standard deviations (σ) are given.  
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Position estimation errors 
Table 9 gives the RMSE of the marker and the joint estimation error. The marker 
estimation errors (MKF) were between 4.18 (pelvis segment) and 9.28 mm (left 
foot). The joint estimation errors (CAST) were between 8.18 mm (left ankle) and 
22.93 mm (left hip). 

Residual moments and forces 
Table 10 gives the residual forces and moments around the CoM of the HAT-
segment for both methods. Both methods had a relatively large error in the y- and 
z-moment (0.21-0.22 Nm/kg). 

Computation time 
On the used hardware, the processing of the data was performed 2.2 times faster 
than real time. 

 
Figure 14: Joint angles and moments calculated with the MKF and the CAST. The joint angles 
are given as ZXY Euler angles. The lines represent the average over the subjects. Note that 
since the MKF had a hinge joint at the knee, x- and y-moments were not estimated by the MKF 

0 50 100
-30

-20

-10

0

10

20

an
gl

e 
[

]°

ankle

0 50 100
-1.5

-1

-0.5

0

0.5

stride [%]

to
rq

ue
 [N

m
/k

g]

0 50 100
-80

-60

-40

-20

0

20
knee

0 50 100
-20

0

20

40
hip

0 50 100
-1

-0.5

0

0.5

1

stride [%]
0 50 100

-2

-1

0

1

stride [%]

MKF CAST



 Real-time Motion Analysis and Parameter Estimation with a Multibody Kalman Filter | 69 

4.5 Discussion 

4.5.1 Synthetic data 
In the experiment with synthetic data the MKF outperformed the SKF. The 
addition of a smoother generally improved the estimate. A smoother performs a 
backward operation and can therefore not be used for real-time applications. 

The bipedal spring-mass model only described the hip motion which only made 
small deviations from a linear movement. In human walking, these deviations are 
much larger for other joints like the ankle joint. The VAF of the estimates was low 
for some filter conditions, but it needs to be considered that the signal covariance 
was already low in the first place. In this example all forces were known from 
measurements, thereby the MKF made a large improvement over the SKF. If not all 
forces are measured, like it is the case in gait analysis, this improvement could be 
more modest. Given the superior performance of the MKF in the simplified model, 
its use is justified. 

4.5.2 Human data 
The joint angle and moment patterns estimated with the MKF and CAST were 
compared. The RMS difference in estimated joint angles between both methods 
ranged from 1.72° to 6.41°. The RMS difference in estimated joint torques ranged 

joint x [°] y [°] z [°] 

 
mean σ mean σ mean σ 

left ankle 4,15 2,27 3,69 1,51 1,72 0,27 

left knee 3,17 1.00 6,04 1,07 3,42 1,55 

left hip 5,19 0,32 4,96 1,21 4,10 2,88 

right ankle 3,91 1,77 3,36 1,56 2,20 0,86 

right knee 2,82 0,70 6,41 1,37 2,38 0,79 

right hip 4,28 0,30 4,32 1,46 3,15 1,73 
Table 7: RMS of the difference in calculated angles. The mean values and standard deviations 
(σ) are given. 

joint x [Nm/kg] y [Nm/kg] z [Nm/kg] 

 
mean σ mean σ mean σ 

left ankle 0,07 0,04 0,17 0,03 0,22 0,10 

left knee -- -- -- -- 0,17 0,01 

left hip 0,30 0,16 0,18 0,01 0,28 0,03 

right ankle 0,08 0,06 0,15 0,05 0,19 0,06 

right knee -- -- -- -- 0,15 0,02 

right hip 0,28 0,07 0,16 0,03 0,23 0,02 
Table 8: RMS of the difference in calculated moments. The mean values and standard 
deviations (σ) are given. Note that since the MKF had a hinge joint at the knee, x- and y-
moments were not estimated by the MKF. 
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from 0.07 to 0.30Nm/kg. Differences of this magnitude are not uncommon when 
comparing different gait protocols (Ferrari et al., 2008). The differences in joint 
torque are closely related to the differences in estimated joint centers. Horizontal 
differences in the joint centers are multiplied with the dominant vertical 
component of the ground reaction force, this causes that small differences in joint 
centers have a relative large effect on the joint moments. Additionally the MKF 
introduces a small phase lag that is partly responsible for the found errors. For non-
real-time applications this phase lag could be removed by the use of a smoother 
algorithm. 

In the experiment with human data, the true kinematic and kinetic data was not 
accessible. The force and moment residuals, except Fy, at the HAT-segment were 
similar for the CAST and the MKF. The marker estimation errors for the MKF were 
generally lower than joint estimation errors for the CAST. This comparison should 
be interpreted with caution since definition of marker estimation and joint 
estimation errors differ, and the differences between methods are small. Based on 
our comparison, we conclude that the MKF performs at least as well as the CAST.  

marker estimation error 
(MKF) 

joint estimation error 
(CAST) 

segment RMSE [mm] joint RMSE [mm] 

 
mean σ 

 
mean σ 

left foot 9.28 0.63 left ankle 8.18 3.12 

left shank 6.90 0.76 left knee 15.91 4.11 

left thigh 5.66 0.61 left hip 22.93 6.53 

right foot 4.11 0.62 right ankle 9.66 5.29 

right shank 6.39 0.43 right knee 20.97 8.80 

right thigh 6.02 0.75 right hip 19.89 5.11 

pelvis 4.18 0.63 
   Table 9: Position estimation errors. RMSE of the marker estimation error for the MKF and joint 

estimation error for the CAST. The mean values and standard deviations (σ) are given. 

 
MKF CAST 

 
mean σ mean σ 

Mx [Nm/kg] 0.07 0.02 0.05 0.06 

My [Nm/kg] 0.22 0.02 0.21 0.02 

Mz [Nm/kg] -0.22 0.21 -0.21 0.21 

Fx [N/kg] 0.11 0.07 -0.03 0.06 

Fy [N/kg] -0.03 0.04 -0.01 0.04 

Fz [N/kg] -0.01 0.01 0.00 0.02 
Table 10: RMS of the residual moments and forces at the CoM of the HAT-segment. The mean 
values and standard deviations (σ) are given. 
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The MKF intrinsically handles uncertainties from multiple sources and makes 
more optimal use of all available data. This favors the method over the CAST and 
other conventional methods. The MKF might suffer from errors in the model 
representation, which is also the case for GOMs (Duprey et al., 2010; Lu and 
O’Connor, 1999).  

The MKF does not use the regression equations to determine the joint centers this 
might be an advantage for specific subject groups (e.g. children with cerebral palsy 
(Della Croce et al., 2005)). The identification of anatomical landmarks is more 
difficult for obese subjects. The MKF eliminates the requirement of this 
identification and might therefore give more accurate results, although soft tissue 
artefacts can influence the results. Calibration trials, as needed for the MKF, might 
be perceived as too difficult for patient. But there are examples where similar 
calibration trials have been conducted with patients and the benefit might 
outweigh the difficulty (Baker, 2006). 

4.6 Conclusion 
In this paper we developed an extended Kalman Filter that simultaneously 
estimates the kinematics and kinetics in real-time. Experiments with synthetic 
data show that the inclusion of force data largely improves motion estimates. 
Experiments with human data show that the MKF gives as reliable estimates as 
with a conventional and commonly used technique in gait analysis (CAST). 

One of the main advantages of the MKF is that it estimates model parameters and 
eliminates the need to palpate anatomical landmarks, which is labor intensive and 
prone to errors. The MKF is fast enough for real-time motion analysis. 
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Abstract— To promote active participation of neurological patients during robotic 
gait training, controllers, such as “assist as needed” or “cooperative control”, are 
suggested. Apart from providing support, these controllers also require that the 
robot should be capable of resembling natural, unsupported, walking. This means 
that they should have a transparent mode, where the interaction forces between the 
human and the robot are minimal. Traditional feedback-control algorithms do not 
exploit the cyclic nature of walking to improve the transparency of the robot. The 
purpose of this study was to improve the transparent mode of robotic devices, by 
developing two controllers that use the rhythmic behavior of gait. Both controllers 
use adaptive frequency oscillators and kernel-based non-linear filters. Kernel-based 
non-linear filters can be used to estimate signals and their time derivatives, as a 
function of the gait phase. The first controller learns the motor angle, associated 
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with a certain joint angle pattern, and acts as a feed-forward controller to improve 
the torque tracking (including the zero-torque mode). The second controller learns 
the state of the mechanical system and compensates for the dynamical effects (e.g. 
the acceleration of robot masses). Both controllers have been tested separately and 
in combination on a small subject population. Using the feed-forward controller 
resulted in an improved torque tracking of at least 52 percent at the hip joint, and 61 
percent at the knee joint. When both controllers were active simultaneously, the 
interaction power between the robot and the human leg was reduced by at least 40 
percent at the thigh, and 43 percent at the shank. These results indicate that: if a 
robotic task is cyclic, the torque tracking and transparency can be improved by 
exploiting the predictions of adaptive frequency oscillator and kernel-based 
nonlinear filters. 

5.1 Introduction 
Robot-aided gait training is an emerging clinical tool for gait rehabilitation of 
neurological patients. These patients benefit form task oriented, high intensity, 
and repetitive training, to regain functional mobility (Bayona et al., 2005; Kwakkel 
et al., 2004, 1997; Teasell et al., 2005). Due to the repetitive behavior of gait 
training, rehabilitation robots are introduced. Robots can be used to provide more 
frequent, and more intensive training sessions, while reducing the workload of the 
therapist, compared to conventional forms of manual assisted (and body weight 
supported) gait training. 

Despite the mentioned advantages of robotic-assisted gait training a large 

 
Figure 15: The Lopes is a bilateral exoskeleton with eight degrees of freedom. The actuators 
are detached from the exoskeleton and connected to the joints via Bowden cables and springs. 
The robot is impedance controlled via series elastic actuation. 
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multicenter randomized clinical trial among stroke survivors suggested that the 
diversity of conventional gait training results in greater improvements in 
functional recovery than robotic-assisted gait training (Hidler et al., 2009). This 
emphasizes that robotic-assisted training needs to be further optimized in order to 
improve therapeutic outcome. Active patient participation is thought to be the key 
in achieving this improvement.  

To encourage active participation, more and more robotic devices control the 
interaction forces with impedance or admittance control algorithms. Control 
strategies that promote active participation are often referred to as: “assist-as-
needed” (AAN), “cooperative”, “adaptive” or “interactive” controllers, and make the 
robot’s behavior more flexible and adaptive to the patient’s capabilities, progress 
and current participation. These types of controllers potentially increase the 
motivation of the patient since additional effort by the patient is reflected in their 
gait pattern. Additionally, depending on the impedance levels, small errors are still 
possible, which have been suggested to promote motor learning in mice (Cai et al., 
2005; Ziegler et al., 2010) as well as humans (Emken and Reinkensmeyer, 2005; 
Jezernik et al., 2003). 

A prerequisite of these control strategies is that the robot should have a transparent 
mode. When the patient does not require any support during specific subtasks or 
gait phases of walking, or when he increases his capabilities or effort, the robot 
should reflect normal unassisted walking. Due to the mass and inertia of the 
device, and/or imperfections in the controller for the transparent mode, unassisted 
walking is often different from free walking (Emken et al., 2007; van Asseldonk et 
al., 2008).  

In a perfect transparent mode there are no interaction forces between the subject 
and the robot. In our gait rehabilitation robot, Lopes (Figure 15), the transparent 
mode consists of a zero-torque mode, where torques at the robot joints are 
controlled to zero. This does however not result in a perfect transparent mode and 
causes small gait alterations (van Asseldonk et al., 2008). These imperfections are 
partly due to sensor noise and friction in the actuation that limit the gains of the 
PI-controller, resulting in torque tracking errors. Additionally, the forces that occur 
due to joint friction, gravity, and inertias of the moving segments of the Lopes, are 
not compensated for in the current implementation. It is possible to compensate 
for these forces by an additional controller (Vallery et al., 2009a).  

As mentioned before, Lopes, like many other rehabilitation robots, is specifically 
designed to assist a cyclic task, in this case walking. Robotic performance of cyclic 
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tasks can be improved by repetitive control or adaptive control (Wang et al., 2009). 
The latter has been implemented on the Lokomat rehabilitation robot in order to 
increase the compliance and transparency of this robot. One of the proposed 
controllers for this robot minimizes human-robot interaction forces by online 
optimization of a limited number of gait characteristics (angle offset, amplitude, 
and cycle time) of the reference angle trajectory used by their impedance controller 
(Riener et al., 2005). Thus, the robot motion gets entrained with the desired human 
motion. In this paper we present a more general framework for improved torque 
control, and improved transparent control. Therefore we developed two new 
controllers. Both controllers use a framework of adaptive frequency oscillators and 
kernel-based non-linear filters to learn a control signal (Gams et al., 2009; Ronsse 
et al., 2011).  

The first controller is intended to improve the limited torque tracking of the 
currently implemented PI-controller. As suggested by Kuo the control of rhythmic 
movements can be improved by combining feedback and feed-forward control 
(Kuo, 2002). In general, feed-forward control requires a precise model of the 
dynamic system. To establish this model, precise system identification is required 
which is, for many applications, a limitation to implement feed-forward control 
strategies. In this special case however we can use the information from previous 
cycles to learn the feed-forward signal in a model-free manner, and gradually learn 
the feed-forward signal over multiple cycles. 

The second controller compensates for the passive dynamics of the system that 
exist between the actuator and the user. This includes: gravitational, inertial and 
frictional forces. Forces that emerge from these effects are not sensed, and 
therefore not compensated, in the zero-torque mode. Compensation of these 
forces is achieved by the implementation of an inverse model, which in this case is 
an inverse dynamical model of the Lopes exoskeleton legs. The forces calculated by 
the inverse model are opposite to the existing forces. Application of the calculated 
forces should, theoretically, cancel out the interaction forces between the robot and 
the human. 

Both controllers are tested separately and in combination on a small group of 
healthy test subjects (N=4). To evaluate the performance of both control strategies 
the applied torques, the human-robot interaction forces, as well as the joint angles, 
are tracked. Here the suggested control strategies are specifically applied and tuned 
for the Lopes gait rehabilitation robot, but both approaches can be applied to other 
applications as well, as long as it concerns cyclic movement. 
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5.2 Experimental setup and methodology 

5.2.1 Subjects 
Four healthy subjects (4 males, age: 28 ± 2 years, height: 1.80 ± 0.03 m, weight: 74.5 
± 11.2 kg) participated in this experiment. All subjects gave written informed 
consent prior to participation. 

5.2.2 Experimental apparatus and recordings 
To test both controllers the Lopes was used. The Lopes (Figure 15) is a treadmill-
based lower-limb exoskeleton type robotic gait trainer. The Lopes is impedance-
controlled and has eight actuated degrees of freedom (DoF) (flexion/extension at 
the hip and knee, hip abduction/adduction and horizontal pelvis translations). The 
robot was initially designed to provide supported treadmill training for stroke 
patients. Torque control was achieved by Bowden-cable-driven, PI-controlled, 
series-elastic actuators (Veneman et al., 2007). The actuators themselves were 
controlled with an inner velocity feedback loop (Vallery et al., 2007). Every DoF of 
the Lopes was fitted with potentiometers that record the kinematics, and 
potentiometers on the springs of the SEA that record the applied torque. Matlab 
xPC (Mathworks, Natick, Mass., USA) was used to control the applied torques by 
the exoskeleton joints at 1000 Hz. The performance of the used PI controller is 
described in (Vallery et al., 2007). 

Additionally the interface between the subject’s legs and the exoskeleton legs was 
sensorized using three (six DoF) force sensors (ATI-Mini45-SI-580-20, ATI 
Industrial Automation, Apex, N.C., USA, Figure 16). The cuffs (Hocoma, 
Volketswil, Switzerland) used in the Lopes were made of a rigid carbon fiber shell 
with Velcro straps and secure the subject’s legs to the robot. One cuff connected to 
the upper leg and two cuffs connected to the lower leg of the subject. Only the 
interface of the right leg was fitted with force sensors. The analog signals coming 
from the force sensors were sampled at 1000 Hz using a data acquisition system (NI 
usb-6259, National Instruments, Austin, Texas, USA) and sent to the computer, 
where the data was stored for further processing. For clarity, the force sensors were 
only used to quantify the human-robot interaction forces, which were used as a 
measure for the transparency, and not as an input to the controller. 
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5.2.3 Controller design 
For the controllers that are presented in the next sections, an estimate of the 
position signals and their first and second order derivatives are required. To learn 
these signals the approach as suggested by (Gams et al., 2009) was used, which uses 
adaptive frequency oscillators in combination with kernel-based non-linear filters. 

Adaptive frequency oscillator  
Positions and their time derivatives can be expressed as a function of the gait 
phase. To acquire the gait phase, an adaptive frequency oscillator (Righetti et al., 
2006) matches a sinusoidal signal to an input signal. The phase of the sinusoidal 
signal was used as the gait phase (ϕ) that runs from 0 to 2π. In our application the 
right and left hip angle were used as input signals, since they show a sinusoidal like 
profile. The right and left hip angle (θright and θleft) were estimated with the 
following sinusoidal functions: 

 ( ) ( )θ ϕ θ ϕ π= + ⋅ = + ⋅ +ˆ ˆ( ) sin ( ) , ( ) sin ( )right leftt k a t t k a t  (24) 

Of which k, a, and ϕ are the offset, amplitude and the phase of the signal 
respectively and t is the time in seconds, the circumflex (^) denotes a signal 
estimate by the adaptive frequency oscillator. The left and right hip motions were 
assumed identical, with only a phase shift of π. The signal parameters were 
continuously updated using two error functions (e). 

 
θ θ

θ θ
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Figure 16: Six DoF force sensors (encircled). The force sensors are, via carbon shells and Velcro 
straps, attached to the human at one side and to the robot on the other side. Interaction 
forces are measured at the thigh (1 connection) and the shank (2 connections, high, and low) 
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The following differential equations are governing the update process of the 
sinusoidal signal parameters: 
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The parameter ω [rad s-1] estimated the frequency of the stride. Constants η 
and ε were used to regulate the learning rate of the signal. Pre-trials showed 
that with a η and ε of respectively 0.4 and 2 the adaptive frequency 
oscillator was synchronized within approximately ten steps. 

Kernel-based non-linear filters 
Subsequently, the position signals and their first and second order time-derivatives 
were estimated. The obtained gait phase of the adaptive frequency oscillator was 
used to learn the joint angles and the motor angles as a function of the phase. We 
used kernel-based non-linear filters as presented by (Gams et al., 2009) to learn the 
signal as a sum of n Gaussian functions (ψ(t)): 

 ( )( )( )ψ ϕ= − − =( ) exp cos ( ) 1 1..i it h t c i n  (27) 

with 
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2
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i
c

n
 (28) 

where h is a parameter that determines the width of the Gaussian function. Pre-
trials showed that with n is 20 and an h of 15 the learned signal matched the 
angular pattern of the hip and knee well. The learned signal (θ( )t ) was estimated 
on time (t) with:  
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The tilde (~) denotes the signal estimated by the non-linear filter. The weights (w) 
were adapted according to: 

 ( )ψ θ θ= −  ( ) ( ) ( )w t P t t  (30) 
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Where P had a value of 3 and is the learning gain, determining how fast the filter 
adapted its prediction. When the non-linear filter had learned the characteristics 
of the signal the filter can be locked by setting w to zero. A nice feature of this filter 
is that analytical derivatives of the signal estimate can be obtained, which provided 
the velocity and acceleration estimate that was needed for the improved torque 
tracking and the improved transparency. The frequency and weights were only 
changing relatively slow and therefore assumed constant: 

 ϕ ω=( )t  and = ( ) 0w t  (31) 

Additionally it was assumed that: 

 ( )ψ
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=∑ 1
( ) 0n

ii

d
t

dt
 (32) 

This is approximately true if a sufficient large number of kernels is chosen. The first 
time derivative is: 
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with 

 ( )ψ ψ ω ϕ= − − ( ) ( ) sin ( )i i it t h t c  (34) 

And the second time derivative is: 
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with 

 ( ) ( )ψ ψ ω ϕ ψ ω ϕ= − − − − 

2( ) ( ) sin ( ) ( ) cos ( )i i i i it t h t c t h t c  (36) 

Feed-forward velocity learning controller 
In the Lopes the series-elastic actuators were originally PI-controlled. In this setup 
sensor noise and friction in the actuation limited the maximal feedback gains that 
can be used, resulting in tracking errors. The cyclic behavior of walking provides 
the possibility to estimate a feed-forward signal. The feed-forward signal was 
obtained with a non-linear filter. This filter learned the motor angles, (θmotor , from 

the motor encoder) as a function of the phase, according to eq. 0.6. The analytical 

derivative (eq. 0.10) of the estimated signal (θmotor ) was used as the feed-forward 
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signal in the Lopes torque control loop (which is velocity controlled). This signal 
was added to the motor-velocity command (θPI ) from the PI-controller and was 

sent to the actuators. Figure 17 shows this control strategy. 

Dynamics compensation controller 
In the original transparent mode the joint torques were regulated to zero (zero-
torque mode). Even if this control works perfectly this does not mean that the 
human, who walks in the Lopes, does not experience any interaction forces (F). 
Friction, gravity and inertia will still result in reaction forces that are felt via the 
connections with the Lopes. An inverse dynamics module can be used to calculate 
the torques (τID) required to cancel these interaction forces.  

The inverse dynamics module described two planar double pendulums. Each 
double pendulum represented one leg of the Lopes in the sagittal plane, consisting 

of an upper and lower leg segment. Each segment of the pendulums had a mass 
(located at a certain distance from the proximal joint) and inertia. Additionally, 
each joint had rotational damping, which represented friction in each joint. The 
parameters corresponding to the different Lopes segments were estimated using 
multi-input-multi-output (MIMO) system identification (Koopman et al., 2010). 
Table 11 provides an overview of the system parameters. The input of the inverse 

model consisted of the hip and knee angle, angular velocity, and angular 
acceleration. The Lopes was not fitted with accelerometers that measure the 

required signals directly. Therefore, the joint angles and their first and second order 
derivatives were also obtained with the non-linear filter.  

Figure 17 shows this control strategy. 

5.2.4 Experimental protocol 
Before the subject was positioned in the Lopes, different anthropometric 
measurements were taken to adjust the exoskeleton segment lengths. Additionally, 
the positions of the cuffs were adjusted to align the subject’s knee and hip axis with 
the exoskeleton joints. Next, the subject was positioned into the Lopes and the 

 Thigh Shank 

Mass [kg] 5.9 4.2 

Inertia [kg m2] 0.079 0.044 

Length [m] 0.44 -- 

Centre of mass [m] 0.2 0.2 

Damping [Nm2s-1] 0.98 0.54 

Strap position [m] 0.32 0.15 and 0.29 
Table 11: Dynamical properties of the Lopes rehabilitation robot. Distances are measured from 
the proximal joint of the segment. 
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trunk, thigh, and upper- and lower shank were strapped to the exoskeleton (Figure 
16).  

After a 5 minute familiarization period, to get used to walking in the Lopes, each 
subject performed two trials. The trials were performed at a slow walking (0.5 ms-1) 
and fast walking speed (1.0 ms-1). First the subjects walked for ninety seconds in the 
device using only the PI-controller (the conventional zero-torque mode). During 
this period the subject’s cadence was recorded. The interaction forces scale with the 
cadence and the walking speed. At higher walking speeds the exoskeleton legs are 
accelerated and decelerated more, resulting in higher interaction forces. To cancel 
this effect out, the different controllers were tested at a fixed treadmill speed and a 
fixed cadence. The fixed cadence was achieved by asking the subjects to 
synchronize their walking tempo with a metronome that was set to the average of 
the subjects’ pre-recorded cadence. This first condition (90 seconds of PI-
controller) was also used to learn the signals that were required for the dynamics 
compensation. After 90 seconds the non-linear filters, that learn the hip and the 
knee angle (and their derivatives), were locked. Subsequently the different 
controllers were tested. The non-linear filter for the feed-forward controller was 
not locked. The different walking conditions and their duration are listed in Table 
12. All conditions (at one speed) were evaluated directly after each other at the 
same cadence, without interruptions. In the second trial this protocol was repeated 
for the fast walking speed. 

 
Figure 17: A schematic overview of the implemented controllers on the Lopes rehabilitation 
robot. The dynamics compensation module and the velocity learning module can be switched 
off so their output becomes zero. In the experiments described here the transparent mode was 
evaluated so the reference torque is set to zero. 
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5.2.5 Data analysis  
All signal processing was done with custom-written software in Matlab (Natick, 
Mass., USA). The measured forces from the three force sensors were resampled at 
100 Hz and synchronized with the potentiometer data from the Lopes. 

Of all the recorded conditions only the last 60 seconds were used for data 
processing. Performance of the controllers was calculated based on the root mean 
square (RMS) of different signals. The evaluated signals were: 1) the torque tracking 
error, 2) the interaction force in the sagittal plane (perpendicular to the 
exoskeleton legs), and 3) the interaction power. The interaction power was 
calculated by taking the product of the moment of the interaction forces around 
their proximal joint and the velocity of their proximal joint. Results for the upper 
and lower shank force were summed. The power provides a measure for the flow of 
energy between robot and human, that is: it shows how much the robot is 
supporting, or resisting, the movement of the human. 

Average steps were calculated by splitting the data into individual strides, based on 
the heel-contact event. Next, the different data blocks were normalized as a 
percentage of the gait cycle and averaged. Paired t-tests were performed to test for 
significant differences between the conditions. The level of significance was 
defined at p=0.05. 

5.3 Results 

5.3.1 Torque tracking  

Condition Duration for each speed (s) 

PI 90 

PI + velocity learning 90 

PI + dynamics compensation 90 

PI + velocity learning + dynamics compensation 90 
Table 12: Walking conditions 

 Dynamics compensation off Dynamics compensation on 

 Slow Fast Slow Fast 

Hip 52% 
(49%-56%) 

59% 
(51%-60%) 

56% 
(53%-64%) 

58%  
(51%-62%) 

Knee 61% 
(55%-68%) 

64% 
(55%-70%) 

65% 
(63%-67%) 

62% 
(61%-63%) 

Table 13: Reductions in RMS of the difference between desired and recorded torque (tracking 
error), averaged over the subjects. All reductions were significant with p < 0.01 (paired t-test). 
The values between brackets show the range of the data over the different subjects. 

 
 



84 | Chapter 5 

The torque tracking was improved by the feed-forward controller. The RMS of the 
torque tracking error (RMSE) significantly reduced (Table 13, Figure 18). 
Reductions in tracking error were similar in the zero-torque mode and with the 
dynamics compensation switched on (Table 3). The small standard deviation 

 
Figure 18: RMS of the tracking error at the hip (left) and knee (right). The bars are the results, 
averaged over the subjects. The error bars denote the standard deviations. 

 
Figure 19: Top: difference between the desired and the measured torque without dynamics 
compensation (zero-torque mode) Bottom: difference between both signals with dynamics 
compensation. The figure shows the results for a typical subject. All signals are presented as a 
function of the gait cycle, starting at heel strike. Left: results for the hip. Right: results for the 
knee.  
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indicates that all subjects showed similar reductions. In general the knee joint had 
the largest reduction in RMSE. No clear effect of the walking speed on the tracking 
error was observed. A typical example of the tracking error as a function of the gait 
cycle, with and without the dynamics compensation, is shown in Figure 19.  

5.3.2 Interaction forces 
For the thigh, the interaction forces were reduced when the feed-forward controller 
was switched on, compared to the zero-torque mode (Figure 20). The dynamics 
compensation also resulted in a reduction in thigh interaction forces compared to 
the zero-torque mode. An additional decrease was observed when the feed-forward 
controller was switched on in combination with the dynamics compensation, 
leading to a total reduction of interaction forces of 39% (p = 0.001) for slow walking 
and 35% (p = 0.009) for fast walking. Walking at higher speed showed the same 
trends. In general: a higher walking speed resulted in higher interaction forces 
between subjects and robot.  

For the interaction forces on the lower leg (shank high and shank low) the 
dynamics compensation did not result in a reduction of the forces, compared to the 
zero-torque mode (Figure 20). In fact: the interaction forces increased slightly. In 
contrast, the feed-forward controller did reduce the interaction forces. When it was 
switched on in the zero-torque mode, as well as in combination with the dynamics 
compensation, it resulted in reduced interaction forces.   

5.3.3 Interaction power 

 
Figure 20: RMS of the interaction forces at the thigh (left) and shank (right). The bars are the 
results, averaged over the subjects. The error bars denote the standard deviations. 
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The interaction power (Figure 21) showed the same trends as observed in the 
interaction forces (Figure 20). At the thigh the dynamics compensation resulted in 
a reduction in power compared to the zero-torque mode. An additional decrease 
was observed when the feed-forward controller was switched on (Figure 21). 
Combining both controllers led to a total reduction of interaction power of 40.9% 
(p = 0.002) for slow walking and 40.2% (p = 0.007) for fast walking. Looking solely 
at the effect of walking speed, walking at higher speeds resulted in larger powers. 

 
Figure 21: RMS of the power at the thigh (left) and shank (right) over the total gait cycle (top) 
and divided in stance (middle) and swing phase (bottom). The bars are the results, averaged 
over the subjects. The error bars denote the standard deviations. 

 
Figure 22: Gait kinematics averaged over the subjects (flexion is positive), and presented as a 
function of the stride, starting at heel strike. Shaded areas show the standard deviations 
between the subjects.  
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For the lower leg the dynamics compensation alone did not result in a clear 
reduction of the interaction power, compared to the zero-torque mode (Figure 21), 
but the feed-forward controller did reduce the interaction power. In contrast to the 
interaction force (Figure 20), combining both controllers resulted in a large 
reduction in the power at the shank (slow walking 45.3%, fast walking 43.2%).  

Figure 7 also shows that the dynamics compensation resulted in a larger reduction 
in interaction power during the swing phase than during the stance phase. 

5.3.4 Kinematics 
The recorded joint angles are compared for the different controllers in Figure 22. 
Gait kinematics show only subtle differences. The most prominent difference is the 
increase in knee flexion angle. If the feed-forward controller and the dynamics 
compensation are on simultaneously the maximal knee ankle is 5.8 degrees larger 
than the condition where both controllers are off (p = 0.003). 

5.4 Discussion 
The purpose of this study was to investigate how the cyclic nature of many 
rehabilitation tasks could be exploited to improve the control and transparency of 
rehabilitation robots. The results for the two tested controllers are discussed below. 

5.4.1 Feed-forward velocity learning controller  
The RMS of the torque tracking error showed a large improvement. Still, our 
approach can only filter out errors that are cyclic, with the same cycle time as the 
gait cycle (Figure 19). Errors that are not a function of the gait phase cannot be 
captured by the non-linear filter. The remaining error in the torque tracking is 
partly due to tracking errors that are not cyclic. However, in our study the cyclic 
effects were dominant and the RMSE could be reduced by more than half. 

5.4.2 Dynamics compensation 
The effect of the dynamics compensation was measured by the interaction power. 
When the dynamics compensation was switched on the interaction power reduced, 
especially for the thigh (Figure 21). Our results also indicate that the effect of the 
dynamics compensation controller is larger if the feed-forward velocity controller is 
active in parallel, which clearly improved the torque tracking (Figure 18). This 
indicates that a good torque tracking is a prerequisite for the dynamics 
compensation controller to work, especially since the desired torques are relatively 
small (Figure 19). 
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In general the dynamics compensation controller showed a larger reduction in 
interaction power during the swing phase than during the stance phase (Figure 21). 
This might be due to larger joint accelerations during the swing phase, than during 
the stance phase. Larger accelerations correspond to larger forces that can be 
compensated for with this controller. Indeed, Figure 21 shows higher interaction 
powers during the swing phase compared to the stance phase. 

An additional possible explanation is that the interaction forces, during the stance 
phase, have a source that cannot be compensated for by either one of the 
controllers. As a safety measure the Lopes has a mechanical end-stop at the knee 
joint to prevent hyperextension. At initial heel contact, at the beginning of the 
stance phase, the subject is likely to hit that end-stop and the Lopes cannot reduce 
the interaction forces by further extending.  

Some of the remaining interaction forces might emerge from a misalignment 
between the human and the robot leg. This cannot be compensated for by the 
controllers, but can only be solved with a more ergonomic design. 

Evaluation of the kinematics showed an increase in maximum knee angle during 
the swing (Figure 22). This suggest that, in our specific case, the previous observed 
reduction in knee flexion (van Asseldonk et al., 2008) (in de zero-torque mode) 
was compensated for by our controllers. This might indicate that the subjects have 
a more natural gait when the controllers are switched on. Up to this point we did 
not investigate the changes in human performance in terms of the kinematic 
resemblance of natural walking, energy expenditure or muscle activation. This will 
be part of further research. 

5.5 Conclusion 
If a robotic task is cyclic, the performance of this task can be improved by 
exploiting the predictions of adaptive frequency oscillator and kernel-based 
nonlinear filters. These filters predict signals for the upcoming steps. This 
prediction can be used to compose a feed-forward signal to increase robotic control 
accuracy. We showed that for our rehabilitation robot we improved the torque 
tracking and reduced the interaction forces between the robot and the human, and 
thereby improved the transparency of our robot. Still we need to evaluate how the 
controllers react to sudden gait changes and irregular gait patterns.  
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Abstract— We developed a passive exoskeleton that was designed to minimize joint 
work during walking. The exoskeleton makes use of passive structures, called 
artificial tendons, acting in parallel with the leg. Artificial tendons are elastic 
elements that are able to store and redistribute energy over the human leg joints. 
The elastic characteristics of the tendons have been optimized to minimize the 
mechanical work of the human leg joints. In simulation the maximal reduction was 
40 percent. The performance of the exoskeleton was evaluated in an experiment in 
which nine subjects participated. Energy expenditure and muscle activation were 
measured during three conditions: Normal walking, walking with the exoskeleton 
without artificial tendons, and walking with the exoskeleton with the artificial 
tendons. Normal walking was the most energy efficient. While walking with the 
exoskeleton, the artificial tendons only resulted in a negligibly small decrease in 
energy expenditure.  

6.1 Introduction 
Different exoskeletons have been developed for medical or military use like the 
IHMC exoskeleton or the BLEEX (Kwa et al., 2009; Zoss et al., 2006). The high 
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power requirements of these exoskeletons negatively influences their operation 
radius and weight (the IHMC exoskeleton requires an external power supply; the 
BLEEX has a 30kg on board power supply). Although other, lighter, exoskeletons 
have been developed, like ReWalk and eLegs (Argo Medical Technologies Ltd, 2010; 
Berkeley Bionics, 2010), the problem of limited energy resources still persists. 
Alternatively passive exoskeletons have been developed that aim for energy 
efficient walking. By using only passive elements, the power requirement reduces to 
zero. For passive exoskeletons lightweight design is even more important. The mass 
and inertia of the exoskeleton results in a higher energy expenditure (Browning et 
al., 2007) that can only be compensated by the passive elements of the exoskeleton. 
Some of these passive exoskeletons aim at walking in reduced gravity, like the 
Gravity-Balancing Leg Orthosis and the MoonWalker (Banala et al., 2006; Krut et 
al., 2010). Another approach is the use of a mechanism that minimizes the 
mechanical work at the joints. It is assumed that that by minimizing mechanical 
joint work the metabolic energy expenditure decreases. During a typical human 
gait cycle the leg joints perform positive as well as negative work. If the energy 
dissipated due to the negative work is stored, transferred, and reused, a more 
efficient gait cycle is possible. In humans and animals multiarticular tendons act as 
an elastic energy buffer and link between the joints (McNeill Alexander, 1991; 
Voronov, 2004). This mechanism lowers the net joint work. However, the tendons 
are acting in series with a muscle. Muscular effort is required to tension the 
tendon. This means that the system cannot be used without energy expenditure. 
The use of elastic elements (artificial tendons) in parallel with the muscle tendon 
system circumvents this problem. Such a mechanism has been theoretically 
studied for human walking (van den Bogert, 2003) and robotic walking (Dean and 
Kuo, 2009), but the principle has not been applied in an exoskeleton. Goal of this 
study was to investigate if it is possible to lower the energy expenditure of walking 
by applying artificial tendons. This is done by designing and evaluating an 
exoskeleton with artificial tendons. 

6.2 Design Concept 

6.2.1 Working principle 
The model for the artificial tendons is similar to (van den Bogert, 2003; van Dijk, 
2010). The artificial tendon is an elastic cable that spans multiple joints. In this 
study a configuration was chosen where the artificial tendon spans the hip, knee, 
and ankle joint. This particular configuration was chosen as a tradeoff between 
efficiency and complexity (van Dijk, 2010). Additionally this configuration is 
interesting since it has no equivalent muscle tendon combination in the human 
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leg. The artificial tendon is on one end attached to the foot and at the other end to 
the pelvis (Figure 23). At the joints in between, the artificial tendon has an offset by 
a lever at the ankle (dankle) and the hip (dhip), and by a lever with an attached pulley 
at the knee (dknee, rknee). These offsets cause the artificial tendon to change length 
when the joint angles change. The elongation and the stiffness (k) of the tendon 
introduce a force in the artificial tendon. A torque is introduced by the force and 
the offset from the joint rotation center. For some joint angles the artificial tendon 
is shorter than its slack length (lslack) in which case no torques are exerted. The 
human effort of walking is influenced by the artificial tendons, since the joint 
torques the human has to provide equal the joint torques required for walking 
minus the joint torques provided by the artificial tendons. The torque 
characteristics of the artificial tendon can be changed by altering the joint offsets 
and the spring characteristics (spring stiffness and slack length).  

6.2.2 Optimization 
The artificial tendons are tuned to minimize the effort of walking. This is done by 
optimization of the spring characteristics. To perform the optimization the 
assumptions are made that: 1.) A cost function can be formulated that scales with 
the energy expenditure of walking, and 2.) The gait kinematics do not change 
under influence of the artificial tendons. The chosen cost function to minimize is 
the absolute residual human joint work during one gait cycle: 

 
Figure 23: Left: Schematic drawing of the exoskeleton concept with artificial tendons (black). 
Right: A photo of the exoskeleton 
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The interval [0, T] is one gait cycle and Pi indicates the power at joint i. The 
efficiency (η) of the artificial tendons based on the cost function with no support 
(J0) and with support (Js) has been defined as: 
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0
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 (38) 

The optimization was done by a genetic algorithm derived from (Houck et al., 
1995). For the optimization gait data from an internal gait database was used. The 
database includes overground walking data of eight subjects (4 male, 4 female, age 
24±1) walking at 1.2 m/s. Joint torques and work from the database are normalized 

 
Figure 24: Optmization results. The upper graphs shows the joint moments for one gait cycle, 
the lower graph shows the joint powers for one gait cycle. The table gives the values for the 
exoskeleton parameters. The gait cycle starts at heel strike and ends at the next heel strike of 
the same leg. The data is scaled to a subject mass of 80kg. The knee offset was fixed at zero. 
The dashed line (─ ─) shows normal gait data. The solid line (──) shows residual joint moments 
and powers when the artificial tendons offer optimal (100%) support. The dotted line (∙∙∙∙∙) 
shows residual joint moments and powers with partial (66%) support. 

Support ratio Efficiency Exoskeleton parameters 

 η[%] dhip[mm] dknee[mm] rknee[mm] dankle[mm] k[Nm-1] lslack[mm] 

66% support 29.9% 50.9 -20 20 143 15000 -862.3 

100% support 40.9% 50.9 -20 20 143 10000 -862.3 
Table 14: Exoskeleton parameter setting for 66% support and 100% support. 
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to the subject's weight (m [kg]). From this data the average torque profile during 
one step was calculated. An optimization of the parameters gave a maximum 
theoretical efficiency of 40.9% (Figure 24, Table 14). If 100% of these optimized 
torques were to be provided, the ankle torque would change sign. As a result, the 
human might need to recruit different, antagonistic, muscle groups while walking 
with assistance from the artificial tendons if compared to normal walking. 
Therefore the exoskeleton torques were reduced to 66% of the optimal torques, so 
this problem no longer occurred. Additionally for the experiments the knee offset 
was fixed at zero to prevent locking of the exoskeleton in slight hyperextension. 
Maximum efficiency given these two constraints was 29.9% (Figure 24, Table 14). 
During all optimizations the spring stiffness was fixed since all joint torques can 
already be individually adapted by changing the lever arms.  

6.2.3 Exoskeleton Design 
The artificial tendons were implemented in a lower extremity exoskeleton (Figure 
23). The joint offsets and the slack length of the artificial tendons are tunable. The 
exoskeleton is anthropomorphic so that the movements of the exoskeleton pelvis, 
thigh, shank, and foot segments match their human equivalents. The exoskeleton 
was attached to the wearer by a backpack resting on the pelvis, straps at the thigh 
and shank, and shoes at the feet. The thigh and shank are adjustable in length and 
different straps can be fitted to accommodate users of different sizes. The 
exoskeleton provides flexion/extension at the hip and knee, dorsi-/plantarflexion 
at the ankle, and hip ab/adduction. The range of motion of these joints is sufficient 
to provide walking. The weight of the exoskeleton is approximately 12kg. 

6.3 Data Collection 
The performance of the exoskeleton was evaluated by experimental testing on 
human subjects. Goal of the experiment was: 1.) To evaluate the effect of the mass 
and inertia of the exoskeleton; 2.) To evaluate the effect the artificial tendons. This 
was done by comparing different walking conditions with and without the 
exoskeleton and artificial tendons. The comparison was made based on energy 
expenditure and muscle activation. Additionally the force in the tendons was 
measured and the feet of the subjects were tracked with optical markers. 

6.3.1 Subjects 
Nine healthy subjects (8 male, 1 female) between the age of 23 and 64 (mean 31±13) 
participated in this study. The weight of the subjects was 75.1±6.5kg and their 
length was 1.79±0.04. All subjects had no symptoms of orthopedic or neurological 
disorders and gave informed consent before participating in the experiments. 
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Subjects were selected based on length and shoe size since the exoskeleton fitted 
only a part of the population. 

6.3.2 Experimental Apparatus and Recordings 
Artificial tendon force: The tension force in the artificial tendons was measured by 
two load cells (Futek LTH 300, Irvine, CA). 

Energy expenditure measurement: An open circuit respirometry system (Jaeger 
Oxycon Pro, Viasys Health Care, Warwick, UK) was used to measure the oxygen 
consumption (  2OV  [ml·s-1]) and carbon dioxide production (  2COV [ml·s-1]). 

Muscle activation measurement: During all trials EMG from eight muscle groups of 
the left leg was recorded. These muscle groups were: gluteus maximus, gluteus 
medius, biceps femoris, gastrocnemius medialis, rectus femoris, adductor longus, 
vastus lateralis, and tibialis anterior. The electrodes were placed according to the 
Seniam guidelines (Hermens et al., 1999). The data were recorded using a Delsys 
Bagnoli EMG system (Delsys Inc., Boston, MA). 

Heel position: The position of both heels was recorded using reflective markers. 
The position of the markers was tracked using a motion capture system (Vicon, 
Oxford Metric Group, Oxford, UK) 

6.3.3 Experimental protocol 
First the subject's energy expenditure in rest was determined. This was done in a 
five-minute trial where the subject had to stand still. After the standing trial the 
exoskeleton was adjusted to the subject size. The artificial tendons were attached to 
the exoskeleton and the lever arms and slack lengths were adjusted to the values 
determined in advance by the optimization procedure, based on physical 
properties of the individual test person. After that, the subject walked two or three 
practice trials to make sure the exoskeleton had a comfortable fit to the body and 
the artificial tendons were tuned as planned. During these practice trials small 
adjustments could still be made. Next, the different walking trials were recorded. 
The duration of each trial was ten minutes. The last five minutes of the trial were 
used to determine the median energy expenditure and the last 30 seconds to 

Acronym Order Description 

EA1,EA2 1st, 3rd walking with the exoskeleton and the artificial tendons attached to 
the exoskeleton. 

E1,E2 2nd, 4th walking with the exoskeleton without the artificial tendons 
attached to the exoskeleton 

NW5 5th walking without the exoskeleton (normal walking) 
Table 15: Walking conditions 
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determine the mean muscle activation. After each trial the subject had a five 
minute break. In between the trials the exoskeleton was not removed. All trials 
were performed on a treadmill at a fixed speed of 1.11m/s (4km/h). Three different 
walking conditions were evaluated during five trials. The different trials are 
summarized in Table 15. Data processing 

Energy expenditure: The energy expenditure per kg mass ( E [W/kg]) for each 
condition is estimated by a formulae derived from (Collins, 2008):  

 +
= 2 216.48 4.48O OV V

E
m

 (39) 

 

To estimate the metabolic cost of walking the median value of a condition is taken 
and the rest rate is subtracted. 

Muscle Activation: The EMG signal is filtered. First notch filters are applied to 
remove grid noise (50, 150, 250, 350Hz). Subsequently, the signal is band pass 
filtered with a second order Butterworth filter between 10 and 400Hz to remove 
movement artifacts. After that the signal is rectified and low pass filtered (zero 
phase) at 4Hz. From the last 30 seconds of each condition for each subject an 
average step is calculated. For each subject the EMG data is normalized to the 
normal walking condition. 

Average step: For the analog signals (EMG and tendon force) an average step cycle 
is calculated. The cycle starts at heel strike and ends at the subsequent heel strike 
of the same leg. Heel strikes are detected using the data from the optical markers 
according to the method proposed by (Zeni Jr et al., 2008). 
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6.3.4 Statistical analysis 
Energy expenditure: Different conditions are compared by performing a paired t-
test on the median of the energy expenditure values for each subject. 

6.4 Results 

6.4.1 Artificial tendon force 
The tensioning of the cable starts and ends at the instants which were well 
predicted by the optimization. The measured tendon force is lower than the value 
predicted by the optimization (Figure 25). 

6.4.2 Energy expenditure 
Figure 26 shows the energy expenditure during the different trials. The energy 
expenditure of all the trials with the exoskeleton was higher than that of the trials 
without the exoskeleton. Compared to normal walking, the average increase in 
energy expenditure of walking with the exoskeleton without the artificial tendons 
(E2) was 35.9±10.6%. When the conditions with the exoskeleton are compared with 
each other, the energy expenditure averaged over the subjects for every next trial is 
lower than the previous ones. This decreasing trend is significant for every 
combination of trials (p < 0.05). To partially eliminate this effect the average of the 
conditions without the artificial tendons E1 and E2 is taken, and compared to the 
second condition with the artificial tendons (EA2). Here the worst performing 

 
Figure 25: Artificial tendon force normalized to the weight of the subject. The dashed line 
showed the artificial tendon force predicted in simulation. The solid line shows the artificial 
tendon force averaged over the subjects measured in experiment. The dark grey area shows 
the standard deviation. 
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subject has been excluded. The performance of this subject was outside the 99% 
confidence interval and considered as an outlier. A small significant benefit of the 
artificial tendons is found (-2.14%, significance p = 0.014). For the best subject a 
higher benefit was measured (-7.12%). 

6.4.3 Muscle activation 
Generally, when walking with the exoskeleton, the EMG values increase when 
compared to normal walking. The largest difference is noticed in the activation of 
uniarticular muscles around the hip (gluteus medius, gluteus maximus, and 
adductor longus) during early stance. The different walking conditions with the 
exoskeleton are compared to determine the effect of the artificial tendons. Most 
noticeable is the decrease in the activation of the gastrocnemius muscle (Figure 
27). 

6.5 Discussion 

6.5.1 Artificial tendon force 
The measured artificial tendon force differs with a roughly constant factor from the 
simulated artificial tendon force. The measured artificial tendon force is in all cases 
lower than the value calculated in the simulation. Apparently the subjects received 

 
Figure 26: Energy expenditure. Five conditions are shown: Normal treadmill walking (NW), 
Walking with the exoskeleton and with the artificial tendons 1st and 2nd trial (EA1, EA2), and 
walking with the exoskeleton without the artificial tendons (E1 and E2). The rightmost column 
(E12) depicts the average value of E1 and E2. All differences are significant with a paired t-test 
(p<0.05). + indicates the best performing subject, * indicates the worst performing subject in 
terms of energy expenditure.  
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a smaller support torque than expected. Possible explanations are: the subjects 
adapt their gait under influence of the exoskeleton with the artificial tendons, 
and/or the flexible or compressible parts of the exoskeleton (e.g. the foam in the 
backpack) or soft tissue deform under the loads and act as a serial spring.  

6.5.2 Energy expenditure 
The energy expenditure while walking with the exoskeleton (regardless of the 
artificial tendons) is generally higher than for normal walking. This is to be 
expected, since the exoskeleton adds mass and inertia to the legs. The subjects were 
also restrained in their motion since the exoskeleton has no mechanism for endo-
/exorotation. When the conditions with exoskeleton are compared a strong effect 
of time was notable. This might indicate that there is a learning effect. This 
learning effect seems to overshadow the effect of the artificial tendons. For only one 

 
Figure 27: Averaged values and standard deviations across subjects (shaded areas) of the 
muscle activation patterns from eight subjects of eight muscle groups. The horizontal axis 
represents one gait cycle where the stance phase is marked with grey. For each subject the 
EMG data is normalized between zero and one for the normal walking condition. The data is 
averaged over the subjects. Three conditions are depicted: Normal walking (──), walking with 
the exoskeleton with the artificial tendons (──), walking with the exoskeleton without the 
artificial tendons (──).  
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subject the energy expenditure while walking with the artificial tendons was lower 
than during each of the trials without the artificial tendons. 

6.5.3 Muscle activation 
Similar to the results found for the energy expenditure, walking with the 
exoskeleton has a large effect on muscle activation, when compared to normal 
walking. A large increase is seen at the uniarticular muscles around the thigh. This 
might be an indication of co-contraction. Co-contraction might indicate a stiffer 
walking pattern or a less adapted walking pattern. The large reduction in hip 
torque as expected from the simulation is not reflected in the muscle activation 
patterns around the hip. The largest positive effect of the artificial tendons is 
measured in the gastrocnemius muscle. This is what is expected since the moment 
arm around the ankle is the largest, and the artificial tendon acts parallel with the 
gastrocnemius muscle and is active during the same part of the gait cycle.  

6.6 Conclusion 
The effect of the artificial tendons on the energy expenditure while walking is 
much lower than expected from the model optimizations. This limited effect could 
be caused by: 1.) The learning effect. It takes users more than the measurement 
time to adapt to walking with the exoskeleton. Thus the still decreasing energy 
expenditure hides the benefits of adding the artificial tendons; 2.) A significant 
effect on the gait pattern due to fixation of the exoskeleton to the test person. This 
could be explained by the increased mass and inertia of the leg as well as the 
implied constraints; 3.) The supportive torques being lower than expected; 4.) A 
nonlinear relationship between the reduction in the mechanical work and the 
reduction in energy expenditure and muscle activation. 

6.7 Future work 
Future research will focus on improving the results by improving the exoskeleton 
and the evaluation methods. Therefore the following steps will be taken: 

• Longer testing that is specifically focused on the identification and 
minimization of the learning effect in order to (partially) remove it from 
the results. 

• Iterative testing and evaluation of the gait kinematics and kinetics. During 
iterative steps spring stiffness, moment arms, and slack length of the 
tendon can be changed and better matched with the results from 
simulation.  
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• Minimizing the mass and inertia and improving the freedom of movement 
while walking with the exoskeleton. This will make it easier for the user to 
adapt to and walk with the exoskeleton, and decrease the effect of the 
added mass. 
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Abstract (for indexing purposes only) — Wearable exoskeletons might reduce the 
human effort during walking. Many of current exoskeletons rely on heavy actuators 
and/or external power supplies; this has a drawback on their efficiency and 
operation range. As an alternative, (quasi) passive exoskeletons have been 
developed. One of the proposed passive exoskeleton concepts is the exotendon 
concept of van den Bogert. In this concept long elastic cables span multiple joints. 
The cables can temporary store energy and transfer energy between joints. In 
simulation, the average absolute joint torque can be reduced by 71%. The 
simulations are based on the hypotheses that: The exoskeleton does not influence 
the joint angles and the total joint torques, and a reduction in the human joint 
torques results in a reduction in the metabolic cost of walking. The goal of this study 
is to experimentally evaluate the exotendon concept and test the hypotheses 
underlying it. We implemented the exotendon concept in a lightweight exoskeleton. 
Experimental results show that the exotendons indeed reduced the average absolute 
joint torques. However, the exotendons did influence the joint kinematics and the 
metabolic cost of walking did not decrease. Therefore, the underlying assumptions of 
the exotendon concept are invalid. We also found that in practice the amount of 
support given by the exotendons is limited to about 35% of the theoretical optimal 
support. For higher levels of support the motion is hindered and the support is 
experienced as uncomfortable by the users of the exoskeleton. 
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It has recently been shown that walking with an exoskeleton can reduce the 
metabolic cost of walking (Malcolm et al., 2013a). For exoskeletons to become 
useful in daily life, their power consumption is a key factor. The required power is 
often provided by batteries, which limits the operation time of exoskeletons. For 
the HAL exoskeleton (Cyberdyne, Tsukuba, Japan) and Ekso (Ekso Bionics, 
Richmond, CA, USA) the operation time is approximately three hours (Cyberdyne, 
2012; Ekso Bionics, 2012). 

The high power requirements of exoskeletons contrast with the efficient 
locomotion found in nature. Human and animal legs possess mechanisms that save 
energy while in motion. Elastic tendons can temporary store energy, and multi-
articular tendons and muscles can transfer energy between joints (Biewener, 1998; 

 
Figure 28a: Working principle: The main functional part of the exoskeleton is the exotendon 
(3), a cable that spans between a lever at the pelvis (1), via a pulley at the knee (4), to a leaf 
spring at the foot (5). The leaf spring at the foot accounts for the elasticity of the mechanism. 
Since the cable has an offset from the joint centers, the deformation of the spring, and thereby 
the force in the cable, depends on the joint angles. In this configuration hip extension and 
ankle dorsiflexion will tension the cable and hip flexion and ankle plantarflexion will loosen 
the cable. The movement of the knee has almost no effect on the tension of the cable. For 
some combinations of joint angles the cable is slack and there will be no force in the cable. The 
force in the cable multiplied by the offset from the joint gives the moment that the exotendon 
exerts around that joint. The exoskeleton is connected to the human via a rigid frame (2) with 
connections at the pelvis, shank, and foot segments. 

b: CAD-model of the XPED2 exoskeleton. The XPED2 has 6 degrees of freedom per leg: 
flexion/extension, ab/adduction, and endo/exorotation at the hip; flexion/extension at the 
knee; plantar/dorsiflexion and pronation/supination at the ankle. 

c: Photo of one of the developers wearing the XPED2 exoskeleton. The total mass of the 
exoskeleton is 6.91 kg. 

1

2

3

4

5

a b c



 XPED2: A Passive Exoskeleton with Artificial Tendons | 103 

Ishikawa et al., 2005; Zajac et al., 2002). 

Model optimizations of van den Bogert suggest that human joint torque and power 
can be reduced by placing elastic structures, called exotendons, parallel to the leg 
(van den Bogert, 2003). These exotendons have a similar function as biological uni-
, and multiarticular tendons. Simulations suggest that the human joint torque, the 
torque provided by the leg muscles, can be reduced by 21% with uni-articular 
exotendons at the ankle. This reduction increases to 46% if tri-articular exotendons 
are used that span the hip, knee, and ankle. For more complex configurations with 
multiple exotendons per leg, the predicted reduction increases to 71%. The 
hypotheses underlying the exotendon concept are: 1. The exotendons do not 
influence the joint angles and total joint torques (the sum of the human joint 
torques and the exoskeleton joint torques), and 2: A reduction in the human joint 
torques results in a reduction in the metabolic cost of walking. 

The first hypothesis has been tested for the hip and ankle separately with uni-
articular powered exoskeletons (Kao et al., 2010a; Lewis and Ferris, 2011). These 
studies show that joint total torque patterns do not change when an external 
support is provided, but joint angle patterns do change. Two exoskeletons with uni-
articular exotendons demonstrated a relative reduction in metabolic cost. Wearing 
these exoskeletons without the elastic elements increased the walking metabolism, 
which was only partially compensated when the elastic elements were added to the 
exoskeleton (e.g. Walsh et al., 2007; Wiggin et al., 2012).  

The goal of this study is to experimentally evaluate the exotendon concept of (van 
den Bogert, 2003). In our study we use tri-articular exotendons as a compromise 
between predicted reductions and complexity. Our experiment is built up to test 
the previously mentioned hypotheses underlying the exotendon concept. Based on 
these hypotheses we expect that our exoskeleton reduces the metabolic cost of 
walking. This paper first describes the design of the exoskeleton and then describes 
the experimental evaluation of the exoskeleton. 

7.1 Design 

7.1.1 Working principle 
The exoskeleton uses a mechanism of springs, cables, lever arms, and pulleys to 
temporary store energy and transfer energy between joints. The working 
mechanism is similar to that of (van den Bogert, 2003) and is described in Figure 
28. The characteristics of the support given by the exotendon can be varied. The 
slack length, lever arm lengths, and spring stiffness of the exotendon were 
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optimized so that the average absolute human joint torque was minimal. In the 
optimizations, the human joint torque was the torque observed in a typical gait 
pattern minus the exotendon torque summed over the hip, knee and ankle (Figure 
29). 

7.1.2 Exoskeleton 
The proposed mechanism was realized in the XPED2 exoskeleton (Figure 28). The 
design is anthropomorphic and has six degrees of freedom per leg. These degrees of 
freedom were possible trough serial hinge joints from the pelvis attachment to the 
foot attachment. An additional attachment to the human body was made at the 
shank. The total mass of the exoskeleton is 6.91 kg and is distributed over the pelvis 
(3.57 kg), the thighs (2x 0.40 kg), the shanks (2x 0.72 kg), and the feet (2x 0.55 kg). 
The added mass will increase the energy consumption. Given the mass distribution 
and the empirical relations of (Browning et al., 2007), the estimated increase will 
be about 14%. The lever arms at the pelvis and the foot and the slack length were 
adjustable so that the exoskeleton characteristics could be matched to the 
optimization results. The length of the shank and thigh segments was adjustable 
and different shoes were available to adjust for subject’s size. The tendons were 
made from Dyneema cable. The elasticity of the system was achieved by making 
the ankle levers elastic. The levers are of a custom design glass fiber leaf spring with 
unidirectional fibers. 

 
Figure 29: Exotendon optimization results. The torques exerted by the exoskeleton are 
optimized to match those normally observed in human gait (green lines). The optimization 
assumes that total torque (human + exotendon) is constant across the different conditions. The 
optimal (100%) exotendon torques are shown with the dashed blue lines. Preliminary test have 
revealed that users are uncomfortable if very high torques are exerted on the body. The 
settings used for the XPED2 exert 35%of the optimal torques (solid blue lines) to ensure that 
users can walk comfortably with the exoskeleton. The optimizations are done in the sagittal 
plane since this is the dominant plane for walking.  
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7.2 Experiment 

7.2.1 Subjects 
Six subjects (5 male, 1 female, mean 21 years 3 months (SD. 11 months) of age, 1.80 
(0.04) m in height, 72.9 (7.3) kg in weight) volunteered in the study and gave a 
signed informed consent before participating in the study. Subjects were recruited 
from the Dutch student population. The subjects were selected if they were in good 
physical condition without gait abnormalities and if they could fit the exoskeleton. 

7.2.2 Data recordings 
The measurement setup is shown in Figure 30. The metabolic power was recorded 
using a respiratory measurement system. Motions of the lower body were recorded 
with markers bilaterally on the foot, shank, thigh and pelvis, and on the right side 
of the exoskeleton. Ground reaction forces were recorded by a dual belt 
instrumented treadmill. The forces in the exotendons were recorded with load 
cells.  

7.2.3 Protocol 
Three walking conditions were evaluated during the experiments: Baseline, the 

 
Figure 30: Measurement setup. During the experiments the following measurements were 
taken. The metabolic power is measured by a respiratory measurement system (1, 2 subjects: 
K4B2, Cosmed, Pavona, Italy / 4 subjects: Jaeger Oxycon Pro system, Viasys Health Care, 
Warwick, UK) that measures the gas flow and composition. The force in the cable was 
measured by load cells at the end of the exotendon (2, LCM200, Futek, Irvine, CA, USA). The 
kinematics were measured by four trackers (3, VZ4000, Visualeyez, Burnaby, BC, Canada) 
tracking light emitting markers (4) placed on the exoskeleton and the human. Ground reaction 
forces were measured with a dual belt instrumented treadmill (5, Y-mill, Forcelink B.V., 
Culemborg, The Netherlands). 
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subject walks without the exoskeleton; No support, the subject walks with the 
exoskeleton, but the exotendons are not tensioned; Support, the subject walks with 
the exoskeleton and the exotendons are tensioned, so the user gets support from 
the exoskeleton. All measurements were performed at a fixed treadmill speed of 1.0 
m/s. The subject walked with the exoskeleton during three sessions on separate 
days. The first two sessions were practice sessions. These sessions were held to 
minimize the effect of learning that was noted in evaluation of a previous version 
of this exoskeleton (van Dijk et al., 2011). On these days the subject could practice 
for 45 minutes at a self-selected speed and at least 10 minutes at the speed of 1.0 
m/s. During the first sessions subjects were allowed to take breaks at random 
intervals. Measurements were taken during the third session. Each session started 
with fitting the XPED2 to the body and adjusting the settings of the lever arms and 
slack lengths to their desired values. 

During the last sessions five walking trials were conducted: two no support, two 
support, and one baseline trial. The order of the trials was quasi random. The 
baseline trial was randomly assigned to the start or the end of the walking trials. 
The order of the support and no support trials was alternating, with the first trial 
randomly a support or no support trial. Each walking trial lasted 10 minutes. 
Additional trials were needed for the inverse dynamics analysis: the recording of a 
standing pose and identification of anatomical landmarks with a probe. In 
addition, the metabolic power at rest was recorded for 5 minutes while the subject 
was sitting in a chair. 

7.2.4 Data analysis 

Kinematics and kinetics 
The kinematic and kinetic analysis was performed for four of the six subjects. Joint 
kinematics were calculated from the marker data. Joint kinetics were obtained from 
the marker data, ground reaction forces and exotendon forces with inverse 
dynamics (Cappozzo et al., 1995) using BodyMech (VUMC, Amsterdam, The 
Netherlands). The XPED2 is anthropomorphic and we assumed that the mass of 
the segments of the exoskeleton was rigidly connected to the body parts they were 
parallel to. A median step was calculated from a two minutes sample taken from 
the end of each trail. The data was split into individual strides based on the heel-
strike events. The heel-strike events were derived from the vertical ground reaction 
force, measured by the treadmill. The median stride time was calculated for all six 
subjects. The differences between conditions were compared by the average over 
the subjects. Statistical analysis was done by a paired t-test. 
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Metabolic cost 
The metabolic power was calculated from the respiratory data. The following 

empirical relation for the metabolic power ( E [W/kg]) was used (Collins, 2008): 
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2OV [L/s] and  2COV [L/s] are respectively the oxygen uptake and the carbon dioxide 

production, whereas m [kg] is the mass of the subject. For all reported metabolic 
powers, the metabolic power at rest has been subtracted. The differences between 
conditions were compared by the average over the subjects. Statistical analysis was 
done by a Wilcoxon signed rank test. 

7.3 Results 

7.3.1 Kinetics and kinematics 
Figure 31 shows the walking kinetics and kinematics. The exotendons changed the 
walking kinematics. The maximal ankle dorsiflexion angle during support 
decreased by 5.0° compared to the no support and 5.1° compared to the baseline 
condition (p < 0.05). The average ankle plantarflexion torque increased in the 

 
Figure 31: Walking kinetics and kinematics. The lines represent the average over the subjects. 
The shaded areas are the standard deviations. 
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support condition by 0.025 Nm/kg compared to the no support condition and 
0.022 Nm/kg compared to the baseline condition. This increase was not present for 
all subjects. The differences in kinematics and kinetics between the conditions 
were small for the hip and knee. Differences in stride time between the conditions 
were also small (maximal 1.36%) and not significant (p > 0.1). 

The measured average absolute human torque was compared to the estimated 
value from the optimization (Figure 32). The optimization results predict a 
decrease in the average absolute joint torque of 17.0% for a subject of 70 kg (this 
value ranges between 16.8 and 18.3% for subjects between 60 and 100 kg). 
Experimentally we found a reduction of 12.1% in the support condition relative to 
the no support condition (p = 0.089), which could almost entirely be contributed to 
the ankle torque. The reduction for the ankle only was 29.0% (p = 0.057). Apart 
from the differences between conditions, the human torques in the experiment 
differ from the human torques in the optimization. Data for the optimization was 
obtained from different subjects in a different lab causing intra-subject differences. 

7.3.2 Metabolic cost 
The metabolic power of the different subjects is shown in Figure 33. For all subjects 
the metabolic cost of walking during the baseline condition was the lowest. The 

 
Figure 32: Average absolute human joint torque in different conditions. On the left, the 
optimization results. The optimization predicts a decrease in average absolute joint torque of 
17.0%. Note that the effect of the added weight is not taken into account in the optimization 
and therefore the baseline and no support condition could not be discriminated. On the right, 
the experimental results. The difference between the support condition and no support 
condition is 12.1%. 
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metabolic cost in the no support condition was significantly higher (21.2%) than in 
the baseline condition (p < 0.05). The added mass explains most of this increase 
since the estimated increase in metabolism due to the added mass was 14%. In 
contrast with our predictions, the average metabolic cost in the support condition 
was 6.1% higher than in the no support condition (p = 0.052).  

7.4 Discussion 
We built the XPED2 to test the following hypotheses: 1: The exotendons do not 
influence joint angles and total joint torques, and 2: A reduction in the human joint 
torques results in a reduction in the metabolic cost of walking. Although our 
experiment is based on data from a small number of subjects, we could identify 
some clear trends. Our experiments demonstrated that deviations from normal 
walking occur, and thereby we falsified our first hypothesis. The changes in ankle 
motion were also observed in (Kao et al., 2010a). Still, the exotendons did reduce 
the average absolute human joint torque. The reduction in average absolute human 
joint torque did not result in a measurable reduction in the metabolic cost, there 
was even an indication that the metabolic cost increased. This contradicts with the 
second hypothesis. However, the effect could have been small and unnoticed. The 
exotendons did only provide a small amount of support (12.1%). When changing 
the exotendon parameters or configuration this number might be increased. Given 
the changes observed in the walking pattern, it is unlikely that 71% reduction in 
average absolute joint mentioned in (van den Bogert, 2003) is feasible. Preliminary 
pilot trials taught us that subjects were uncomfortable with higher amounts of 
support. 

 
Figure 33: The metabolic power for the different walking conditions. The bars represent the 
average over the subjects with the standard deviations.  
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7.4.1 Outlook 
Our exoskeleton has shown the contrast between the theory and the experiment 
and thereby stressed the importance of experimental evaluation of exoskeleton 
designs. We compared our results to experimental results obtained with other 
exoskeletons for walking augmentation (Table 16). Although some exoskeletons 
have shown a (relative) reduction in metabolic cost, there is no general consensus 
on how to reduce metabolic cost most effectively. 

The hypothesis that the metabolic cost reduces when the absolute joint torque 
reduces is valid for isometric contractions, but in walking there are additional 
effects that might interfere with this relation. Energy storage and transfer between 
joints is already partly covered by the human tendons and bi-articular muscles. 
Adding exotendons might interfere with these energy saving mechanisms. In 
humans, it has been shown that the Achilles tendon stiffness is optimal in the 
sense that muscle work during walking is minimal (Ishikawa et al., 2005). In 
hopping experiments, it has been shown that adding a parallel spring reduced 
muscle force, but increased muscle work (Farris et al., 2013). The observed changes 
in kinematics and kinetics might be explained by the fact that the support by the 
exoskeleton enforces a new equilibrium. 

The metabolic cost of walking could be partially explained with the model used by 
(Donelan et al., 2002). The model predicts that the metabolic cost of walking 
emerges from the need to compensate for energy losses after impact. This is in line 
with experimental results of (Malcolm et al., 2013a) where the highest reduction in 
metabolic cost was observed when the exoskeleton solely provided positive power. 
This result undermines the passive exoskeleton concept since passive exoskeletons 
are energy neutral at best. However, it has been shown that relative metabolic cost 
reductions with a passive exoskeleton are possible (Wiggin et al., 2012). Different 
from our mechanism, this exoskeleton has a clutch that engages the elastic 
element. This allows for a better timing of the support, which might be essential to 
reduce the metabolic cost of walking (Malcolm et al., 2013a; Wehner et al., 2013).  

Exoskeleton Passive? Number of subjects Weight and constraints Support 
XPED2 (this chapter) Yes 6 21.2% 6.1% 
XPED1 (previous chapter) Yes 9 35.9% -2.1% 
Wiggin et al. (2012) Yes 3 -- -10% 
Walsh et al. (2007) Quasi* 1 24% -12.9% 
Malcolm et al. (2013a) No 10 14.3% -17.2% 
Sawicki et al. (2009) No 9 8.3% -11.5% 
Norris et al. (2007) No 9* 16.2% -13.9% 
Wehner et al. (2013) No 1 12.8% -10.2% 
Table 16: Comparison of the metabolic cost of walking for different exoskeletons. Quasi-
passive means that energy is used for control, but there is no mechanical energy added to the 
system. *The results for the young subjects are given. 
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Despite the limited effect of exotendons on the metabolic cost of walking, we see 
potential for the application of exotendons in exoskeletons. Elastic elements in 
combination with actuators can lead to smaller power requirements on the 
actuation side (Hitt et al., 2007), and give the opportunity to place the actuators on 
a more proximal, and thus more metabolically beneficial, place on the leg (Asbeck 
et al., 2013). Combined with actuators, exotendons can contribute to elegant and 
lightweight exoskeleton designs. 
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8 The Achilles Ankle 
Exoskeleton 

Wietse van Dijk 
Cor Meijneke 
Herman van der Kooij 

This chapter is based on the following works: 

C. Meijneke*, W. van Dijk*, and H. van der Kooij, “Achilles: An Autonomous 
Lightweight Ankle Exoskeleton to Provide Push-Off Power,” in 4th IEEE RAS & EMBS 
International Conference on Biomedical Robotics and Biomechatronics (BioRob), 
2014. *Equal contributions 

W. van Dijk, C. Meijneke, H. van der Kooij, “Evaluation of the Achilles Ankle 
Exoskeleton” IEEE Transactions on Neural Systems and Rehabilitation Engineering 
(Submitted) 

Abstract— This chapter presents the Achilles exoskeleton, an autonomous 
lightweight ankle exoskeleton. The exoskeleton is designed to generate maximal 
push-off power with minimal added weight to the ankle. This was achieved by using 
a series elastic actuator. An electromechanical model of the exoskeleton was used to 
optimize the design for positive power injection. Based on the optimization results, 
exoskeleton components were selected and dimensioned.  

Benchtop tests evaluated the performance of the actuator and human experiments 
evaluated the working of the complete system. The actuator can track the optimized 
actuator stroke trajectory with a following error that has a RMS of 2.3 mm, it can 
track force reference signals with amplitudes of 1 N to 100 N with a bandwidth 
between 8.1 Hz and 20.6 Hz, and outputs a maximum mechanical power of 80.2 W. 
Based on these results the augmentation factor predicted that the exoskeleton can 
generate a 33 W decrease in metabolic cost. In contrast with this prediction, in the 
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human experiments we found an increase in metabolic rate for support (21.2 W) and 
no support (22.7 W) compared to baseline.  

Our results are compared to those of Malcolm et al. where a reduction in metabolic 
cost was found. Although the torque provided by the exoskeleton was similar to 
Malcolm et al. the exoskeleton power and walking speed were lower, which might 
explain the difference in metabolic cost. 

8.1 Introduction 
Exoskeletons hold the promise that they can assist people with tasks that require 
power to perform them. One of the main challenges within this field is to reduce 
the metabolic cost of walking. Recently, it has been shown that this is possible 
(Malcolm et al., 2013a; Mooney et al., 2014a).  

Although these exoskeletons have shown the potential of the technology, it is still 
not fully understood how the reduction in metabolic cost arises from the 
exoskeleton characteristics. The human and the exoskeleton are two (non-linear) 
dynamical systems that interact. As a result humans adapt their gait when walking 
with an exoskeleton which causes a change in metabolic cost (Kao et al., 2010a; 
Sawicki and Ferris, 2008). If the relation between the change in walking conditions 
and metabolic cost could is known, exoskeleton performance could be estimated 
on beforehand.  

One approach to estimate this relation is through biomechanical models. 
Biomechanical models have been developed that are capable of generating walking 
motions and predicting the metabolic cost (Geyer and Herr, 2010; van den Bogert et 
al., 2011; Wang et al., 2012). These models have to some extend the capability to 
adapt to new tasks like terrain or speed changes or interaction with exoskeletons 
(Geyer and Herr, 2010; Song and Geyer, 2012; van Dijk and van der Kooij, 2013). So 
far these models have not been validated for predicting the metabolic cost for these 
new tasks.  

Another approach is to search for empirical relations (Caputo and Collins, 2014) 
that estimate the metabolic costs of with wearing an exoskeleton. Experiments 
with current exoskeletons have shown that the augmentation factor (AF), the 
exoskeleton control, and the experimental protocol are all important factors in 
reducing metabolic costs. Besides the measurement of metabolic cost there are 
secondary measures that give additional insight in how humans adapt to a change 
in walking conditions. 
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Augmentation factor: The AF estimates the relative change in metabolic cost when 
walking with an exoskeleton compared to walking without an exoskeleton. This 
change is called the metabolic advantage. Positive values mean that the metabolic 
cost of walking with the exoskeleton is lower than normal walking and vice versa. 
The AF is based on the mass of the exoskeleton and the support the exoskeleton 
provides. The mass the exoskeleton adds to the legs increases the AF, and the more 
distally the mass is placed, the larger the increase (Browning et al., 2007). The 
support of the exoskeleton is the power it provides around the leg joints. These 
powers can for example be induced by actuators, dampers or springs. The AF 
increases when the average positive power increases. When the exoskeleton has a 
net dissipation of energy (the average power is below zero) the AF becomes smaller 
when the dissipation of energy is larger (Mooney et al., 2014a).  

Due to the strong negative effect of added mass on the AF and metabolic cost of 
walking, walking with many exoskeletons (e.g. Norris et al., 2007; Sawicki and 
Ferris, 2008; Walsh et al., 2007) did not result in an absolute reduction of the 
metabolic cost of walking. However, a relative reduction in metabolic cost was 
found when comparing the unpowered and the powered condition where the 
added mass in both conditions was the same. The augmentation factor sets 
constraints on the mass and the support of the exoskeleton if an absolute reduction 
in metabolic cost of walking is desired. 

Exoskeleton control: The augmentation factor can roughly explain different 
experimental results, but does not capture fine differences between exoskeleton 
designs and control methods. Other studies have investigated how changes in the 
control of a specific exoskeleton influenced the performance. We mention two 
examples. Reference (Malcolm et al., 2013a) showed that timing is critical when 
supporting ankle plantarflexion. By evaluating different onset timings of the 
support it was possible to find an optimal condition where the reduction in the 
metabolic cost was the largest. Reference (Cain et al., 2007) compared triggering of 
the exoskeletal support by a footswitch versus triggering by the EMG signal of the 
soleus muscle. The EMG triggering resulted in ankle angle patterns more close to 
normal walking and lower EMG’s of the soleus and gastrocnemius. 

Experimental protocol: The exoskeleton performance depends on the experimental 
protocol. It has been shown that with the same exoskeleton the reduction of 
metabolic energy depended on the step length (Sawicki, 2009) and the adaptation 
time given to subject (Sawicki and Ferris, 2008). For real life applications it would 
be important to also evaluate the effects of terrain adaptation. This would require 
an untethered exoskeleton. 
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Secondary measures: The studies mentioned above were mostly focused on directly 
assessing the human performance. In some studies additional measures were taken 
to gain insight in the interaction of the dynamical systems lying underneath. 
Reference (Kao et al., 2010a) shows that the ankle motion changed under influence 
of the exoskeleton, where the total ankle torque was invariant. To gain deeper 
insight in how exoskeletal support relates to metabolic cost, the influence on 
muscle force and work (Farris et al., 2013), and activation (Cain et al., 2007) is 
investigated.  

The knowledge of how metabolic cost is influenced by an exoskeleton could still be 
expanded. This requires additional knowledge the human and exoskeleton that 
interact as dynamical systems. With some exceptions (XPED, Witte et al., 2015), the 
a dynamical model of the exoskeleton is not given. With such a model it would be 
easier to generalize experimental findings. A dynamical model of the widely used 
pneumatic actuators is hard to obtain due to their high non-linearity. The use of a 
precise force controlled actuator would not only make it easy to obtain model of 
the exoskeleton dynamics, but would also make it easy to evaluate different 
controllers with one exoskeleton. 

Further insight in how humans and exoskeletons interact is possible with new 
exoskeletons. These exoskeletons should have high power and low weight for a high 
augmentation factor, be autonomous to allow experiments on different terrains, 
and have precise force control to be able to model the exoskeleton dynamics and 
test different controllers. These requirements are in many ways conflicting and 
require a specialized design. 

One of the possibilities to keep the weight down is to buffer energy. An energy 
buffer is also seen in the human Achilles tendon that works as a catapult during 
push off. A design analogous to this principle is proposed by (Hitt et al., 2007). The 
actuator in this design consists out of an electric motor in series with a spring (i.e. a 
series elastic actuator, SEA). During stance the spring is loaded with the motor and 
energy is buffered, at late stance the energy is released from the spring and creates 
the catapult effect. As a result the push-off power can be higher than the motor 
power. An additional advantage of this SEA is that it enables good force control 
(Pratt and Williamson, 1995). 

To further increase the power-to-weight ratio of the exoskeleton, numerical 
methods can be used to optimize the exoskeleton design (Wang et al., 2013). This 
optimization uses a parameterized electromechanical model of the exoskeleton to 
determine the best choice for the motor, transmission, geometry, and spring 
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characteristics. Additionally the number of components that interface between the 
SEA and the human can be kept minimal in weight and number by using function 
integration.  

This chapter describes the design and evaluation of the Achilles exoskeleton 
(Figure 34). Separate sections will discuss the design methods, benchtop tests that 
evaluated the performance of the actuator, and human experiments that evaluated 
the working of the complete system.  

8.2 Methods 

8.2.1 Design 

Working principle 
The exoskeleton was build up from a linear actuator, that consisted of a rotary 
electric motor and ball-screw gear, which was suspended in a linkage mechanism 
between the shank and foot shells. The link, or lever-arm, that was attached to the 
foot shell was flexible thus introduced the series elasticity (Figure 35). 

Mechanical model 
The support torque (Ts) was given by the equivalent linear rotational spring 
stiffness (cs) and the spring deformation angle (qs): 

 = ⋅1 2 1 2( , ( ), ( ), , ,ψ) ( ( ), ( ), , ,ψ)s s j m s s j mT c q t x t r r c q q t x t r r  (41) 

 
Figure 34: The Achilles exoskeleton 
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The spring deformation was a function of the joint angle (qj(t)), the motor stroke 
trajectory (xm(t)) that were both changing over time (t), and the exoskeleton 
dimensions (r1, r2 and ψ), and were calculated using trigonometric functions 
(Figure 35). 

The dynamics of the system are given in Figure 35. Throughout the optimization we 
assumed that we knew the joint angle (qj(t)) and the total joint torque (Tj(t)) and 
used data from (Winter, 1990 data from normal walking) as a reference for the 
walking pattern. This leaved the design parameters r1, r2 and ψ, and the motor 
stoke trajectory xm(t). The dynamic equilibrium equations were given by: 

 = Σ = + ( ) ( ) ( ) ( )eq m m sM x t F t F t F t  (42) 

where Meq is the equivalent mass combining the reflected mass of the motor and 
gear inertia. Fm is equivalent motor force. The force in the spindle Fs depended on 
the angle between the actuator axis and lever-arm γ(xm(t), r1, r2) and was given by: 

 

Figure 35 left: A schematic of the system dynamics. Right: The CAD model with a partial cross-
section of the actuator (right). The variables are xm(t) the stroke of the actuator, qs(t) the 
deflection of the lever-arm, qj(t) the joint angle, γ(t) the angle between the actuator axis and 
lever-arm, Tj(t) the joint torque, Th the torque exerted by the human, Fs the spindle force, and 
Fm the force from the motor. The parameters are r1 the proximal lever-arm length, r2 the distal 
lever-arm length, ψ the distal lever-arm angle, and Meq equivalent mass of the drive 
components. Note that the schematic of the system dynamics gives no clear distinction 
between rotational and translational components. 
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The motor stroke and force xm(t) and Fm(t) were linearly related with the motor 
angle (qm(t)) and torque (Tm(t)) by the transmission ratio of the ball-screw: 
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p
R  (44) 

where sp  is the pitch of the ball-screw. 

Optimization 
The main goal in the actuation system design was to supply the highest amount of 
support to with the smallest added mass to the ankle. This was achieved by using 
an optimization process similar to (Wang et al., 2013). The dimensions of the 
linkage mechanism and stiffness of the flexible lever-arm were optimized for all 
combinations of preselected motors and gears. 

The exoskeleton should provide solely positive power during the push of. The 
amount of support was therefore captured in the following function: 
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Pj(t) and Ps(t) are respectively the total joint power and the exoskeleton joint power 
and z the parameters to be optimized. The support optimization was formulated as 
the following maximization problem: 

 maximize ( )f z subject to ≤( ) 0g z and ≤ ≤lb z ub  (46) 

g(z) are the electrical and mechanical constraints on the motor and gear. lb and ub 
are the respective lower and upper bounds on the parameters. The optimization 
parameters were given by: 

 { }= 1 2, , ,ψ,m sr r cz x  (47) 

where xm are the stroke trajectory parameters. These parameters represented 16 
points equally distributed over the gait cycle. The stroke function of the actuator 
xm(t) was given by smoothed interpolation between these points. The 
maximization problem was solved by the fmincon numerical solver in Matlab 
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(Mathworks, Natick, MA, US). For comparison, the total mass each motor/gear 
combination was plotted against the amount of power it supplies to the user.  

Electrical and mechanical constraints 
The exoskeleton was subject to mechanical and electrical constraints (Table 17). 
The motor current (Im), voltage (Um) and electrical power (Pm) were calculated 
using the methods of (Wang et al., 2013). The constraint function g(z) combined 
the constraint equations of Table 17 and outputs a vector of which all elements were 
equal or smaller than zero if and only if all constraints were satisfied.  

 

Motor gear combinations 
The motors and ball-screw gears that were selected for the optimization are 
respectively listed in Table 18 and Table 19 along with their relevant specifications. 
The total mass of each motor/gear combination was calculated by: 

 ( ) ( )( )= + + −1 2ˆ max ( ) min ( )tot m g g m mm m m m x t x t  (48) 

Variable Description Constraint equation 

( )mI t ( )mI t
 

Motor current ( ) − <maxmax ( ) 0mI t I  

( )mU t ( )mU t  Motor voltage ( ) − <maxmax ( ) 0mU t U  

( )mP t ( )mP t  Motor power (electrical) ( ) − <maxmax ( ) 0mP t P  

 ( )mq t  ( )mq t  Motor speed  ( ) ω− < maxmax ( ) 0mq t  

( )mF t ( )mF t  Motor force ( ) − <maxmax ( ) 0mF t F  

 ( )mx t  ( )mx t  Spindle velocity ( ) − < maxmax ( ) 0ax t v  

( )ax t ( )ax t  Spindle stroke ( ) ( )− − <maxmax ( ) min ( ) 0m mx t x t L  

Table 17: Overview of the electrical and mechanical constraints on the system. The maximal 

current was obtained from the guidelines of the manufacturer: >=max m nomnom cycle I II I t t

where nomI is the nominal current, 
>I Im nom

t  is the ratio between the cycle time and the time the 

current is above its nominal value per cycle. 
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Spring design 
The lever-arm was required to store large amounts of energy. Therefore 
unidirectional carbon fiber was chosen because of its superior energy density. The 
spring was cut from a plate with a uniform thickness, hence the design parameters 
were the thickness and width profile. The correct dimensions were determined 
using a finite element model of the spring in ANSYS (ANSYS Inc., Cecil Township, 
PA, US). 

Sensors and control electronics 
The exoskeleton used a distributed control architecture that communicated via the 
EtherCAT protocol running at 1 kHz. A NUC computer with Core i3 processor 
(Intel, Santa Clara, CA, US) running Linux, and SOEM (SMF Ketels, Drunen, the 
Netherlands) was used as the EtherCAT master. Matlab/Simulink (MathWorks, 
Natick, MA, US) with E-box (TU/e, Eindhoven, the Netherlands) was used to 
program the high level control. 

Property Symbol RE35 EC32 EC4p22 EC4p22 Unit 

Power rating (electrical) maxP  90 80 90 120 [W] 

Winding voltage maxU  24 24 24 24 [V] 

Nominal current nomI  3.47 2.44 3.88 4.81 [A] 

Motor mass mm  360 270 125 175 [g] 

Rotor inertia mJ  3350 2000 554 891 [g∙mm2] 

Max speed maxω  12000 25000 25000 25000 [rpm] 

Table 18: Specifications of preselected motors. Supplier of all listed motor types is Maxon 
(Maxon Motor ag, Sachseln, Switzerland) 

Property Symbol SH6x2 SD8x2.5 SD10x2 SD10x4 Unit 

Spindle pitch sp  2 2.5 2 4 [mm] 

Max feed velocity maxv  277 260 166 332 [mm/s] 

Max spindle load maxF  1500 2600 3500 5400 [N] 

Nut mass 1gm  25 25 30 40 [g] 

Spindle specific mass 2ˆ gm  0.180 0.320 0.510 0.430 [g/mm] 

Spindle specific inertia ˆ
gJ  0.07 0.21 0.52 0.38 [g∙mm] 

Table 19: Specifications of preselected ball-screw gears. Supplier of all listed ball-screw gears is 
SKF (SKF, Gothenburg, Sweden) 
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The motors were controlled with EPOS3 70/10 EtherCAT motor controllers 
(Maxon). The motor stroke was recorded with a SCH24-200-D-03-64-3-B 
incremental encoder (Scancon, Allerød, Denmark). The ankle angle was recorded 
with an RMB20SC13BC absolute encoder (RLS-Renishaw, Ljubljana, Slovenia). Heel 
strikes were recorded with a FSR-151AS pressure sensor (IEE, Contern, 
Luxembourg) under the heel of the foot. EK1100, EL5002, and EL3104 EtherCAT 
modules (Beckhoff Automation GmbH, Verl, Germany) were used to interface with 
the incremental encoders and pressure sensors. The motors and computer were 
powered by respectively a Zippy Compact 5000mAh 8S 25C and a Hacker Top Fuel 
5000 6S 20C Lithium-Polymer battery. 

8.2.2 Exoskeleton control architecture 
The control of the exoskeleton was separated in low-level control and high-level 
control (Figure 36). The high level control was implemented in Matlab/Simulink 
and regulates the support torque. The separate components of this controller are 
described below. The low level control ran on the EPOS3 motor controllers and 
regulates the motor current. The velocity loop on the motor controllers was used to 
implement motor damping to increase the overall control performance. For the 
walking experiments the controller described below was used. For the benchtop 
tests only the part of the control architecture that performs the force/torque 
control (without feed-forward) was used. 



 The Achilles Ankle Exoskeleton | 123 

Phase detection 
The exoskeleton made a continuous estimation of the gait phase with a phase 
detection algorithm. Inputs to the algorithm were the signals from the pressure 
sensors ( ,left rightp p ) under the heels of the orthoses. The normalized gait phase (ϕ

) and frequency (ω ) were learned by an adaptive frequency oscillator (AFO) (Gams 
et al., 2009). The AFO estimated both signals with a sinusoidal function: 

 ( ) ( )π ϕ π ϕ π= + ⋅ ⋅ = + ⋅ ⋅ +ˆ ˆsin 2 , sin 2left rightp b a p b a  (49) 

The estimations were governed by the following set of differential equations: 
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with: 

 
Figure 36: Exoskeleton control architecture. The high level control, implemented in 
Matlab/Simulink, regulates the support torque (τs). The support algorithm (1) calculates the 
desired support torque (τs,des) based on the gait phase (ϕ), from the phase detection (2), and 
the joint angle (αexo). The actual support torque (τs,act) is calculated from the spring deflection 
(3) that is given by the joint angle and the motor stroke (xm). The torque error (τs,err) is fed to a 
feed-forward (4) and a PI feed-back controller (5). The low level control, implemented on the 
EPOS3 motor controllers, regulates the motor current. The current control is performed by a PI 
feed-back controller (6). The velocity loop of the motor controller is used to add motor 
damping (7). Finally the motor current induces a support torque (τs) that is transmitted to the 
human. 
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 = − = −ˆ ˆleft left left right right righte p p e p p  (51) 

Additionally a phase offset was learned so that the phase was zero at the heel strike 
of the left foot. Every time a heel strike had been detected with one of the pressure 
sensors, the offset value was updated. To prevent abrupt changes in phase 
estimation the offset value was low pass filtered at 0.2 Hz. 

Feed-forward control 
Since human walking is a cyclic motion it was possible to improve the control 
performance by learning a feed-forward signal based on previous steps. This feed-
forward signal was learned as a function of the phase by using an non-linear filter 
that fits a number of primitives to the signal to be learned (Chapter 5). In our case, 
these primitives were Gaussian functions. 

Support algorithm 
During walking trials the exoskeleton had two operation modes. Zero torque mode 
where the reference torque in the controller was zero, and a support mode where 
the reference torque was a supportive torque. A support algorithm similar to 
(Caputo and Collins, 2014) was used where the support torque was modelled as the 
torque emerging from the deflection of a virtual spring. The deflection of the 
spring was the difference between the actual joint angle (αexo [rad]) and a reference 

angle (αref  [rad], Figure 37). The reference angle was given by: 
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  (52) 

Where α α ϕ= ( )on meas on  andα α ϕ= ( )switch ref switch at the respectively the last recorded 

instances of ϕ ϕ=( ) ont  and ϕ ϕ=( ) switcht . The desired support torque (τ s  [Nm]) was 

given by: 

 ( )τ α α= ⋅ −s ref exok  (53) 
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where [Nm/rad] is the virtual spring stiffness. The constants ϕ ϕ ϕ 1, , ,on switch off c

and 2c  (Table 20) were tuned so that the power output of the support algorithm 

approximately matched the pattern optimized pattern. The virtual spring stiffness 

was tuned per subject to get a maximal support of 0.4 Nm/kg, approximately 
matching the maximal support used in the study of Malcolm et al. (Malcolm et al., 
2013a). By using this parameterization of the support, the amount of mechanical 
work by the exoskeleton around push-off for each step was approximately the same 
for every step. The amount of energy stored in the virtual spring was mainly 
determined by the change in the reference angle between ϕon  and ϕswitch , so that 

k

k

Parameter Value 

 0.37 

 0.48 

 0.65 

 1.88 rad 

 0.54 rad 

 80-100 nm/rad* 

Table 20: Parameters of the exoskeleton support function. * this parameter is tuned per subject 
to approximately match the results of (Malcolm et al., 2013a). 

onϕ

onϕ

onϕ

1c

2c

k

 
Figure 37 Left: The support torque is represented as the deflection of a virtual spring. The 
deflection is determined by the ankle angle (αexo) at one side and by a reference angle (αref) at 
the other side. The reference angle is a function of the measured joint angle and the phase. 
Right: The support torque is given by the deflection multiplied with the stiffness of the virtual 
spring, in this case a typical value of k = 100 Nm/rad is used. 
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every step approximately the same amount of energy was stored in the virtual 
spring. The release of energy after ϕswitch  was mainly determined by the change in 

the actual joint angle, so that the virtually stored energy was released to the ankle 
joint. This was favored over following a torque reference pattern, which would have 
made the amount of mechanical exoskeleton work highly dependent on the 
angular velocity. The latter approach had led to large step-to-step deviations in 
preliminary tests.  

8.2.3 Evaluation 

Benchtop testing 

Lever-arm stiffness 
The stiffness of the produced spring was compared to the estimated stiffness. The 
stiffness is nonlinear and to obtain the exact stiffness characteristic (Ts(qs)) of the 
spring, a force-travel experiment was performed. The spring was mounted on a 
table edge using the same mounting components as in the exoskeleton. A platform 
was connected to the endpoint of the spring via a cable and incrementally loaded 
with 1, 3, 8, 13, 18, 23, 25 and 35 kg. The travel (xs) of the endpoint was measured 
with a digital caliper with respect to a reference plate that was fixed to the table.  

Stroke tracking 
It was evaluated how well the actuator could track the optimized stroke trajectory. 
During this test the exoskeleton was mounted such that it could freely move and 
the optimized stroke trajectory was sent to the controller. The achieved stroke was 
recorded. The RMS of the tracking error, the difference between the input and 
output value, was taken as the tracking performance. 

 
Figure 38: The actuator of the exoskeleton mounted between two rigid endpoints. 
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Force bandwidth 
The force bandwidth gives an indication of how well the actuator could follow a 
force signal. To test the force bandwidth the series elastic actuator was placed 
between two fixed endpoints (Figure 38). A sine sweep signal from 1 Hz to 30 Hz 
was fed to the controller. The amplitude of the signal ranged from 1 N to 100 N with 
an offset equal to the amplitude (so the maximal force was twice the amplitude and 
the actuator only exerted plantarflexion torques, which is the intended use). For 
each amplitude the crossover frequency (at -3dB) was determined. 

Power 
The mechanical power output of the actuator is evaluated with the same setup as 
used for the force bandwidth test (Figure 38). The test simulates the loading of the 
spring during walking. The test starts with no deflection of the spring. From this 
start point the spring is loaded by sending the maximal allowable input to the 
actuator. The deflection of the spring is recorded. This gives the force in the spring 
(see lever arm stiffness) and the speed of the actuator, the product of the two gives 
the power output of the actuator.  

Human testing 

Subjects 
Seven healthy participated in this experiment of which subgroups of four and three 
subjects participated in different tests. Details are given in Table 21. The Human 
Research Ethics Committee of the Delft University of Technology approved the 
study, and all subjects gave written informed consent to participate.  

Subject Age Length Mass M(ale)/ 
F(emale) 

Speed  Kinetics/ 
Kinematics 

AF Metabolic 
Cost 

unit years 
months 

m kg  km/h    

1 20y11m 1.76 76.9 F 4    

2 20y4m 1.72 67.6 F 4    

3 19y11m 1.71 58.8 F 4    

4 19y8m 1.71 68.0 M 4    

5 20y4m 1.74 64.4 F 3.5    

6 29y10m 1.78 58.8 F 3.5    

7 19y2m 1.78 58.2 F 3.5    

mean 21y5m  1.74  64.7  -- -- -- -- -- 

SD 3y8m 0.03 6.8 -- -- -- -- -- 

Table 21: Overview of subjects and data recordings.  marks that data is recorded for this 
subject.  
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Data recordings 
Kinematics and kinetics were measured by recording segment motions and ground 
reaction forces. Markers placed on the foot and shank segments of one leg were 
recorded with an optical tracking system (VZ4000, Visualeyez, Burnaby, BC, 
Canada). Ground reaction forces were recorded with a dual belt instrumented 
treadmill (Y-Mill, Forcelink B.V., Culemborg, The Netherlands). Kinetics and 
kinematics of the exoskeleton were recorded by the exoskeleton itself. All 
kinematic and kinetic data were (re-)sampled at 100 Hz. An open circuit 
respirometry system (Jaeger Oxycon Pro, Viasys Health Care, Warwick, UK) was 
used to measure the oxygen consumption (  2OV  [l/s]) and carbon dioxide 

production (  2COV  [l/s]). A synchronization signal was recorded by all 

measurement systems to synchronize the data except for the respirometry system 
that was manually synced. Table 21 shows which measurements were taken for 
which subject. 

Protocol 
Three measurement trials were used to evaluate the following conditions: Baseline, 
the subject walked without the exoskeleton; No support, the subject walked with 
the exoskeleton while the exoskeleton operates in zero torque mode; Support, the 
subject walked with the exoskeleton while the exoskeleton operates in support 
mode. The trials were in quasi-random order with the baseline trial always at the 
beginning or the end of the trials. Each trial had a duration of approximately 12 
minutes. Before the measurement trials begun, a practice trial was used where the 
subject could familiarize with the exoskeleton. During the practice trial the virtual 
spring stiffness was tuned. Additionally the practice trial was intended to wash out 
learning effects. The kinematics and kinetic analysis required the recording of a 
standing pose and identification of anatomical landmarks with a probe. The 
metabolic cost measurements required the recording of the metabolism at rest. 
This was done in a 5 minute trial where the subject was sitting in a chair. 

Data analysis 
Kinetics/kinematics: The marker and segment trajectories were reconstructed 
using an extended Kalman filter (Todorov, 2007). The human joint kinematics and 
kinetics were calculated using inverse dynamics. These results were combined with 
the exoskeleton kinetics and kinematics. A 90 seconds sample at the end of each 
trail was used to calculate different measures. A median step was calculated by 
splitting the data into individual strides. The strides were separated at the heel 
strike, as detected by the instrumented treadmill.  
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The exoskeleton and human ankle angle should closely match, otherwise undesired 
deformations or relative movements are present. The Pearson correlation 
coefficient was calculated to quantify the relation of the human ankle angle 
(optical tracking system) and exoskeleton ankle angle (ankle encoder). The work 
associated with the relative motion between human and exoskelet was calculated 
with: 

 ( )α α τ= −∫
0

( ) ( ) ( )
T

exo hum sW t t t dt  (54) 

Where the interval [0 T] is one stride cycle and αhum the (sagittal) human ankle 

angle calculated from the inverse dynamics. 

Augmentation factor: The augmentation factor was calculated based on the 
exoskeleton angle and power using equation (57).  

Metabolic cost: An empirical relation (Collins, 2008) was used to calculate the 

metabolic power E [W]: 

 = ⋅ + ⋅  

3 3
2 216.48 10 4.48 10O COE V V  (55) 

For all walking conditions the metabolic power at rest has been subtracted. The 
metabolic advantage is defined as the difference in metabolic power of one 
condition and the baseline condition ( baselineE  [W]). 

 ∆ = −  

baselineE E E  (56) 

8.3 Results 

8.3.1 Design 
The actuation system was successfully optimized for all combinations of motors 
and gearboxes. The resulting support (f) and total mass (mtot) of each combination 
is plotted in Figure 39. From the three combinations on the Pareto front, the 
middle one was chosen for implementation which is a Maxon EC22 4 pole motor 
with a SH6x2 ball-screw gear. With this drive combination, the actuation system 
can exert up to 192 W of power around the ankle of an 80 kg person. The full power 
characteristics are shown in Figure 40. The mass of the motor and gear 
combination was 218 g. 
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The optimal components and parameters were implemented in a CAD model 
which was manufactured. The mass of the Achilles exoskeleton is 1.5 kg per foot 
and the backpack has a mass of 5.2 kg (Figure 35).  

Augmentation factor 
Based on the optimal performance the theoretical maximal augmentation factor 
was calculated (Table 22). The augmentation factor (AF [W]) is given by the 
following empirical relation (Mooney et al., 2014a): 

 
Figure 39: Simulation results of the support given to the user versus total mass of the drive 
components, where each circle represents an optimization for a motor and gear combination. 
The three red-thick circles form the Pareto front. 

 
Figure 40: Simulation results of the ankle power as a function of stride with contributions of 
the motor and spring. The actuator power and the spring power sum up to the support power. 
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+p [W] and −p [W] are the average positive and negative mechanical power 

transferred to the human during one step. η [] is the apparent efficiency that relates 

exoskeletal power with metabolic power (Sawicki and Ferris, 2008), whereas im [kg] 

are the exoskeleton’s masses connected to the segments and βi [W/kg] the relative 

costs of carrying this masses on the foot, shank, thigh, and pelvis segment.  

8.3.2 Benchtop testing 

Lever-arm stiffness 
The predicted and measured lever-arm stiffness is shown in Figure 41. A third-
order polynomial was fit through the experimentally obtained data points. The 

Segment weight [kg] β Augmentation factor [W] 

Waist 6.0 3.3 W/kg -19.8 

Shank 2 x 1.2 5.6 W/kg -13.4 

Foot 2 x 0.3 14.8 W/kg -8.9 

Support [W] η  

p+ 35.8 0.41 87.4 

pdis 0.0 0.41 0 

Total   45.3 
Table 22: Calculation of the theoretical augmentation factor based on the optimization results 
and the actual weight of the exoskeleton. 

 
Figure 41: Graph of the force-travel of the lever-arm. The theoretical curve is obtained from 
the finite element model. The thin line is a 3rd order polynomial fit through experimentally 
obtained data points. 
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maximal deflection difference in the evaluated working range of the spring 
between the predicted stiffness and the measured data was 0.92 mm at a force of 30 
N. 

Stroke tracking 
Figure 42 shows the tracking performance of the actuator. During this test the 
actuator tracks the optimized stroke trajectory. The RMS of the tracking error was 
2.3 mm.  

 
Figure 42: Experimental results of stroke tracking of the actuator. The reference trajectory is 
the optimized stroke trajectory. 

 
Figure 43 left: Experimental results of the power test. right: The energy stored in the spring. 
The small decrease after the energy peak is peak is caused by the release of kinetic energy 
when the motor inertia decelerates. 
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Power test 
The mechanical power of the actuator is shown in Figure 43. The peak power of the 
actuator was 80.2 W. This is 85.9% of the 93.4 W peak power that was predicted in 
the simulation. The maximal amount of energy that was stored in the spring is 6.28 
J at 34.6 mm deflection. If the average positive power in the augmentation factor is 
scaled with 85.9% the corrected maximal augmentation factor reduces from 45.3 W 
(Table 1) to 32.9 W. 

Bandwidth test 
The force bandwidth was between 8.1 Hz and 20.6 Hz (Figure 44 and Figure 45). 
The lowest bandwidth was measured at the highest amplitude (100N). 

8.3.3 Human testing 

Ankle kinetics and kinematics 

 
Figure 44: Bode magnitude and Bode phase plot from bandwidth test with an amplitude of 1N. 
The bandwidth is determined by the point where the magnitude plot crosses the -3dB line. 

 
Figure 45: Experimentally determined force bandwidth of the actuator at different force 
amplitudes. 
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The ankle angle and torque averaged over the subjects are shown in Figure 47. The 
maximal torque exerted by the exoskeleton in the no support condition was 0.15 
(standard deviation (SD) 0.08) Nm/kg and in the support condition 0.40 (SD 0.02) 
Nm/kg. The most notable difference in kinematics is the plantarflexion angle 
around and after toe-off. The maximal plantarflexion angle around toe off is 13.6 
(SD 3.2), 3.0 (SD 3.5), and 6.5 (SD 2.8) degrees for respectively the baseline, no 
support, and support condition. The difference between the baseline and no 

 

Figure 47: Joint angles and joint torques averaged over the subjects. The torque plots from the 
exoskeleton only (dashed lines) are obtained from the exoskeleton data. 
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Figure 46: The human angle vs. the exoskeleton angle for a representative subject. All cycles 
within a 90 second sample are shown. 
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support condition is statistically significant (paired t-test p < 0.05).  

Differences in the recorded human angle and exoskeleton angle are shown in 
Figure 46. The correlation between the human ankle angle and the exoskeleton 
ankle angle in the no support condition (r = 97.7 (SD 0.01)) is significantly higher 
than for the support condition (r = 0.88 (SD 0.06), p = 0.039 paired t-test). The 
work associated with these angular differences is 2.16 (SD 0.42) J for the support 
condition and 0.14 (SD 0.41) J for the no support condition.  

Augmentation factor and metabolic power 
The augmentation factor and metabolic power for the different subjects is shown in 
Table 23. The results of the Achilles exoskeleton are compared to the results of 
others in Figure 48.  

8.4 Discussion 

8.4.1 Design 
The Achilles exoskeleton is an exoskeleton with a high power-to-weight ratio. The 
high power-to-weight ratio was achieved by a minimalistic design. The choice for 
the motor, transmission and spring characteristics was based on optimization 
results. The spring in the SEA acts as an energy buffer similar to the Achilles 
tendon. Power losses caused by friction are low due to the use of a ball screw 
transmission. This largely reduced the required motor power resulting in a weight 
of the motor and transmission of only 218 g. The elastic element of the SEA and the 
lever arm function were combined in one leaf spring. This made it possible to make 
a minimalistic and lightweight design for the interface. Batteries and control 

 Walking 
speed Baseline No support Support 

subject v [km/h] [W] AF [W] [W] AF [W] [W] 

1 4.0 -- -48.5 -- -24.1 -- 

2 4.0 -- -48.3 -- -24.0 -- 

3 4.0 -- -46.6 -- -33.2 -- 

4 4.0 -- -45.4 -- -28.6 -- 

5 3.5 122.4 -47.4 142.8 -27.4 150.5 

6 3.5 144.9 -45.0 186.4 -26.0 164.0 

7 3.5 154.3 -44.2 160.5 -27.1 170.6 

Mean (SD) 
3 subjects 3.5 140.5(16.4) -45.6 

(SD 1.67) 
163.2 
(SD 21,9) 

-26.9 
(SD 0.74) 

161.7 
(SD 10.2) 

Mean (SD) 
7 subjects 3.8 -- -46.5 

(SD 1.67) -- -27.7 
(SD 3.14) -- 

Table 23: Augmentation factor and metabolic power (if available) for Achilles. For all 
conditions the energy metabolic power at rest has been subtracted. The augmentation factor 
during baseline is zero by definition.  

E E E
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electronics are carried on the back where the weight of these components have a 
much smaller effect on the metabolic cost of walking than if they were placed at the 
foot or shank. 

8.4.2 Actuator performance 
The performance of the exoskeleton was assessed in multiple tests that simulated 
the operation conditions of the exoskeleton. The actual spring stiffness was very 
close to the spring stiffness in simulation. The actuator was able to track the 
designed stroke trajectory. The maximal power output in the bench top test was 
85.9% of the predicted maximal power output and a corrected maximal 
augmentation factor is 33 W, which is equal to the result by (Mooney et al., 2014a). 
The bandwidth of the device is, depending on the amplitude, between 8.1 and 20.6 
Hz. We expect this to be sufficient for human walking where frequencies are typical 
in the in the range up to 6 Hz. Based on the actuator performance we expect the 
exoskeleton to be capable reducing the metabolic cost of walking. 

 

Figure 48: Augmentation factor versus metabolic advantage. Values between brackets are the 
walking speeds used in the experiments with the exoskeletons. The diagonal line represents 
the empirical relation found by (Mooney et al., 2014a). The vertical line is the corrected 
maximal augmentation of Achilles that is based on the actuator power test results. References: 
Donelan et al. (Donelan et al., 2008; Mooney et al., 2014a); Malcolm (Malcolm et al., 2013a; 
Mooney et al., 2014a); Mooney et al. (Mooney et al., 2014a); Norris et al. (Norris et al., 2007); 
Sawicki and Ferris (Mooney et al., 2014a; Sawicki, 2009); van Dijk and van der Kooij  (van Dijk 
and van der Kooij, n.d.); Walsh et al. (Walsh et al., 2007) 
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8.4.3 Kinematics and kinetics 
The ankle kinematics during stance and total ankle torque are similar for all 
conditions. In the support and no support condition the plantarflexion angle after 
toe of is respectively 7.1 and 10.0 degrees smaller than in the baseline condition. 
This difference is mostly sustained throughout the swing phase. A possible 
explanation is that the perceived inertia of the exoskeleton is high with respect to 
the inertia of the foot. This is due to the amplification of the motor inertia trough 
the transmission, and only partly compensated by the exoskeleton control. The 
high perceived inertia might limit fast plantarflexion just before toe-off, resulting 
in a smaller plantarflexion angle at toe-off. The effect is less prominent in the 
support condition, during this condition plantarflexion is supported which might 
reduce the effect. 

The correlation between the human ankle angle and exoskeleton ankle angle is 
smaller in the support condition than in the no support condition. This makes it 
likely that the deviation in ankle angle occurs if force is transmitted from the 
exoskeleton to the human. The deformation can occur from soft tissue deformation 
at the human side, deformations in the exoskeleton structure or relative movement 
between the human and the exoskeleton. 

8.4.4 Augmentation factor and metabolic cost 
For all conditions the augmentation factor is below zero, therefore it was not 
expected that the exoskeleton would offer a metabolic advantage. The 
augmentation factor predicts that the metabolic power in the support condition 
would be 18.7 W lower than in the no support condition.  

However, for only one of the three subjects the metabolic power was lower. For the 
other two subjects the metabolic cost was higher. In studies of (Sawicki and Ferris, 
2008) and (Malcolm et al., 2013a) a respectively 17 and 10 W increase in 
augmentation factor led to a measurable reduction in metabolic cost. However, 
only for the second study this change was significant. The fact no decrease was 
measured in our experiment might have been caused by the relative low walking 
speed. Previous studies have shown that the ankle power increases with walking 
speed (Hansen et al., 2004). It might be possible that reductions in metabolic 
power with an exoskeleton might be easier to achieve at higher walking speeds, 
since nominal ankle torques are higher (Sawicki, 2009). Furthermore the relative 
changes in human angle and exoskeleton angle might be (partially) caused by 
deformations that induce energy losses, leading to an overestimation of the 
augmentation factor. 
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The augmentation factor in our study (-18.7 W) is low given the maximal 
theoretical augmentation factor (33 W) and the augmentation factor in other 
studies with similar exoskeletons (10-33 W). The following effects may have 
contributed to the relative low augmentation factor. 

1 Low positive power: The average positive power in the tests with human subjects 
was low compared to capabilities of the actuator shown in the benchtop tests. This 
was done deliberately to match the results of (Malcolm et al., 2013a). Reference 
(Mooney et al., 2014a) have used significant higher powers that will be targeted in 
future experiments. 

2 Exoskeleton weight: Although the foot parts of the exoskeleton was optimized for 
low weight the backpack of the exoskeleton was not. The relative heavy computer 
and industrial controllers in the backpack caused the weight of the backpack on its 
own to decrease the augmentation factor by 19.8 W.  

8.4.5 Future work 
Future work will focus on the improving the augmentation factor. On one side this 
is done by using the actuator closer to its power limits. One the other side this is 
done by slimming down de backpack by replacing the heavy industrial control 
components. Once the augmentation factor is improved, the exoskeleton testbed 
can be used to evaluate different controllers and conditions (e.g. walking on slopes 
or with a backpack) to further understand how human walking performance can be 
improved by exoskeletons.  
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9 Conclusions, Discussion, and 
Future Directions 

The goal of this dissertation was to improve exoskeletons that reduce the metabolic 
cost of walking. To achieve this goal, three key challenges were defined. These 
challenges will form the guidelines for this chapter. The chapter will start with the 
main conclusions of these three challenges. In the subsequent paragraphs, the 
three challenges will be discussed in more detail. The chapter ends with a look 
forward, where future directions of the research field will be indicated. 

9.1 Conclusions 

9.1.1 Challenge 1: Improving knowledge of human–exoskeleton 
interaction 

In this dissertation we explored exoskeletons where a load, in this case walking, is 
shared between the human and the exoskeleton. The exoskeleton should be 
designed such that the load sharing between the human and the exoskeleton is 
optimized. Therefore, a prediction of how the human and exoskeleton interact is 
required. Based on this prediction, design specifications can be made. 

For the XPED and Achilles exoskeletons described in this dissertation, the design 
specifications were based on the kinematics and kinetics observed in normal 
walking. Evaluation of the exoskeletons revealed that kinematics, and to a lesser 
extent also kinetics, were altered by the exoskeleton. These alterations contributed 
to an incorrect estimation of the metabolic cost of walking. A decrease was 
predicted, but not measured in experiments for these exoskeletons. I therefore 
conclude that design specifications of exoskeletons cannot be based solely on the 
kinetics and kinematics of normal walking. 

Alternatively, a prediction of the human exoskeleton interaction can be made on 
forward simulations. In this dissertation, the muscle-reflex model of Geyer and 
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Herr (2010) is used to model the human dynamics and muscular control. The 
exoskeleton dynamics and control were based on the experimental results of Cain 
et al. (2007). The muscle reflex model can adapt to walking with an exoskeleton. 
However, the changes in gait kinematics and kinetics of this model, due to the 
external support, do not yet accurately represent the changes found in 
experimental data. Consequently, at this time, it cannot be used to predict human-
exoskeleton interaction and aid the formulation of exoskeleton specifications. 

Different models exist that predict human walking. These models have not been 
validated for other cases such as walking with an exoskeleton. The models can 
therefore not be used to predict exoskeletal walking. The current knowledge of 
human–exoskeleton interaction is mostly empirical and based on studies with 
previous exoskeletons.  

9.1.2 Challenge 2: Improving exoskeleton hardware and control 
Generally, exoskeleton performance increases with additional power and decreases 
with increasing weight. This leads to conflicting requirements since more powerful 
actuators are generally more heavy than less powerful actuators. In this 
dissertation, two methods are described that can be used to design powerful, yet 
lightweight, exoskeletons. 

Analogous to muscle-tendon mechanisms found in human and animal legs, 
passive mechanisms in exoskeletons can temporarily store energy and distribute 
energy across joints. The Achilles and XPED used springs to reduce, or eliminate, 
the power required from actuators. However, the performed experiments with 
these exoskeletons did not show a reduction in metabolic power. 

The second method that is proposed to reduce exoskeleton weight, is to select 
mechanical components and dimensions by using numerical optimization. The 
interplay between the different exoskeleton components can be captured in an 
(electro-)mechanical model of which the model parameters can be optimized. 

The exoskeleton control should adapt to the human movement which, can induce 
delays. Since the intended task is walking, the cyclic nature of this task can be used 
to improve the performance of the controller. Adaptive frequency oscillators and 
kernel-based non-linear filters can be used to improve force tracking and attenuate 
undesired effects of the exoskeleton passive dynamics. 
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9.1.3 Challenge 3: Fast and detailed evaluation of exoskeleton 
concepts 

In this dissertation, exoskeleton performance is primarily evaluated through the 
measurement of the metabolic cost of walking with and without the exoskeleton. 
As mentioned above, the relation between metabolic cost and other variables is not 
exactly known.  

These relations can be investigated through experiments in which different 
conditions (e.g. walking speeds, support levels) are evaluated. In that process, it 
can thereby be beneficial to measure additional parameters, like gait kinematics 
and kinetics or muscle activation (EMG). 

To evaluate multiple support conditions, versatile exoskeletons are required. The 
type and amount of support the exoskeleton provides should be well defined in 
order to generalize the results. On the Achilles exoskeleton, different support 
algorithms can be implemented with precise force control. 

Measuring gait kinematics and kinetics is of special interest. Current measurement 
protocols are susceptible to noise and measurement errors. These problems 
increase when walking with an exoskeleton, since joint centers cannot exactly be 
determined and optical markers might not be visible due to obstruction by the 
exoskeleton. Current measurement protocols do not explicitly require consistent 
kinematics and kinetics. This dissertation describes a new method, the Multibody 
Kalman Filter (MKF), that adds this requirement. It is shown that this method 
makes more effective use of data redundancy. The MKF eliminates the need to 
identify joint centers by anatomical landmarks and reduces noise. Furthermore, 
the MKF allows for real-time data analysis. 

9.2 Discussion 

9.2.1 Improve the knowledge of human–exoskeleton interaction 
It is difficult to predict human–exoskeleton interaction. Exoskeletons are believed 
to work based on the assumption that sharing a load of a task between the human 
and the exoskeleton reduces the metabolic cost of performing that task. This is a 
valid assumption for tasks with a pure dissipative load like cycling. Here, the 
metabolic cost and the load are coupled via the muscle efficiency (Coyle et al., 
1992). 

For walking this relation is less obvious. There is a continuous exchange of 
energies, and loads have been defined in different ways (power, torque, body 
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weight support). In this dissertation, it is shown that the following 
characterizations of the exoskeleton support are insufficient to make an estimate of 
the reduction in metabolic cost: 

1. Support definitions based on the superposition principle. The superposition 
principle assumes that the joint angles and the total torque (human and 
exoskeleton) are invariant under the load (e.g. van den Bogert, 2003). This implies 
that the human performance with an exoskeleton can be calculated based on the 
exoskeleton torques subtracted from the total torques. Chapter 7 has 
experimentally shown that joint angles, and in a lesser extend total joint torques, 
can be dependent on the exoskeleton torque. A similar result was found by Kao et 
al. (2010a). Consequently, using the superposition principle leads to a false 
estimation of the exoskeleton performance. In case of the XPED exoskeleton, this 
was a large overestimation of the metabolic advantage given by the exoskeleton.  

2. Support definitions based on interaction forces. The exoskeleton performance 
cannot be understood just from the interaction forces between the human and the 
exoskeleton. The design of the controller used in the Achilles exoskeleton was 
based on the results obtained with the exoskeleton of Malcolm et al. (2013a). Both 
exoskeletons had similar supportive torques. Still, the exoskeletons had different 
performance results (personal communication). 

These findings show that there is no linear relationship between load and 
metabolic cost. Other experimental studies have confirmed this and have shown 
that small differences like triggering (Cain et al., 2007) and timing (Malcolm et al., 
2013a) of the support have a large influence on the human performance. 

This non-linearity is due to different aspects of the muscular dynamics. Bi-articular 
muscles can transfer power between joints, and tendons can temporary store 
energy. Farris et al. (2013) have shown that a reduction in joint power does not 
necessarily lead to a reduction in muscle power. Furthermore, the metabolic cost is 
dependent on the length and velocities of the muscle fibers (Umberger et al., 2003). 
As a result, models that describe the load on joint level are not sufficient to 
describe the relation between load and metabolic cost. In order to do this, models 
that incorporate the muscular dynamics must be used.  

In the ideal case, the human–exoskeleton interaction is predicted through full-
scale models of the exoskeleton and human, including the musculoskeletal system. 
Different studies have shown that human walking dynamics can be simulated 
(Geyer and Herr, 2010; van den Bogert et al., 2011). In Chapter 3, the muscle-reflex 
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model was used to simulate walking with an exoskeleton. The model did 
qualitatively predict some changes in metabolic and muscle activations. To improve 
this method its validity should be better studied. A main part of this validation 
would be to compare the model against multiple experimental conditions. Once 
the validity of the model is known, it might be necessary to refine the model on 
certain aspects. 

Alternatively the human–exoskeleton interaction could be predicted through 
empirical relations. Efforts have been made to establish these relations. The effect 
of the added weight to the leg is described by Browning et al. (2007), and the effect 
of the support power is studied by Mooney et al. (2014a). Based on these relations, 
general design guidelines for exoskeletons can be formulated. The most important 
one is that the metabolic cost of walking decreases with the mechanical positive 
power output of an exoskeleton and increases with the weight of an exoskeleton. 
However, these relations do not capture the effect of fine differences between 
support functions, such as the earlier mentioned triggering of the support. 

Exoskeleton studies would therefore greatly benefit from expanding this empirical 
knowledge. This has two additional requirements for exoskeleton design. First the 
exoskeleton should offer certain flexibility in the support it provides. Secondly, the 
exoskeleton dynamics should be well described in order generalize the results. 

9.2.2 Improving exoskeleton hardware and control 
In this dissertation, different exoskeletons were developed to test specific 
hypotheses about exoskeleton support. These exoskeletons were subject to the 
design requirements set in the previous section: 

• High power-to-weight ratio 
• Exact description of the dynamics 
• Flexibility in the provided support 

This led to several exoskeleton designs that are described in Chapter 6-8, as well as 
different design tools that can be generally used to design exoskeletons. The use of 
passive elements and numerical optimizations focus on increasing the power-to-
weight ratio. Transparent control focuses on an exact description of the dynamics. 
The support strategy focuses on the flexibility of the support and an exact 
description of the dynamics. 
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Passive elastic elements 
During walking, there is a continuous exchange of energies. At joint level, high 
positive and negative power peaks are observed. An exoskeleton that supports 
walking is likely to have to provide power peaks with the same order of magnitude. 
If these powers have to be directly provided with actuators, this would require very 
heavy actuators. However, the average power during walking is much lower than 
the peak power, and power peaks between joints are not synchronous. This opens 
the opportunity for buffering energy and redistributing energy across joints. 

This can be achieved by passive components such as springs and linkage systems. 
The use of springs in exoskeleton design has been proposed and applied in 
different studies. These studies include springs in series with or parallel to a single 
joint actuator (Hitt et al., 2007; Wang et al., 2011), complete passive exoskeletons 
with springs in series with a single joint (Wiggin et al., 2011), and springs with a 
linkage system that spans multiple joints (Elliott et al., 2014; van den Bogert, 2003). 

Passive mechanisms were implemented in the XPED and Achilles exoskeletons 
(Chapter 6-8). The passive mechanism in the XPED exoskeleton was based on the 
exotendon concept of van den Bogert (2003). In the Achilles exoskeleton, a series 
elastic actuator at the ankle was used, similar to the concept of Hitt et al. (2007). 
The configuration of the Achilles was analogous to the Achilles tendon and soleus 
muscle. Experiments showed that for a given type of support, passive elements can 
be used to reduce, or even eliminate, the required power from the actuators. This 
can reduce the weight of the actuators and consequently the exoskeleton. As 
discussed above, the support provided by these exoskeletons did not result in a 
reduction of the metabolic cost of walking.  

A drawback of the use of passive mechanisms is that they must be tailored for a 
specific walking pattern. This compromises the flexibility of the provided support. 
In the XPED exoskeleton, the support was entirely determined by the passive 
mechanism. The support could only be altered by the changing the presets for the 
lever arm lengths and slack length of the exotendon mechanism. Also for the 
actively controlled Achilles exoskeleton, the flexibility is compromised. The 
temporal energy storage works best for a specific walking pattern, and the elastic 
characteristics of the series elastic actuator determine the bandwidth of the 
controller (Vallery et al., 2008). 

Numerical optimization 
The weight and power of the exoskeleton are determined by the selection and 
dimensioning of its components. There is considerable interplay between the 
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exoskeleton components. In other words, choices made for one component directly 
influence the requirements for other components. This makes it difficult to make 
design specifications on a component level. The selection and dimensioning of the 
components should be balanced, such that there are no components that have 
excessive weight or components that hinder the effectiveness of others.  

In this dissertation, a method is described that solves this problem with an 
optimization routine (Chapter 6-8). The routine assumes that the structure of the 
exoskeleton is known. Based on this structure, a parameterized (electro-) 
mechanical model of the exoskeleton is made. The model parameters, like 
component dimensions or spring stiffness, are optimized using numerical 
optimization techniques. Optimization criteria can for example be the exoskeleton 
weight or the maximal power output. 

The method assumes known joint angle and torque trajectories. As mentioned 
earlier, these trajectories are dependent on support and typically not known 
beforehand (Chapter 7). However, it often suffices to make an estimate on an upper 
and lower bound of these trajectories. This data can, for example, be obtained from 
other exoskeleton studies (e.g. Kao et al., 2010a). By simulating with different angle 
and torque trajectories, it can be verified that the proposed design has enough 
flexibility in the provided support. 

Transparent control by exploiting the cyclic nature of walking 
As mentioned earlier, exoskeleton research benefits from an exact description of 
the exoskeleton dynamics. Part of this is that the effect of the exoskeleton support 
can be isolated from other unwanted effects. These unwanted effects include the 
effect of weight and inertia of the exoskeleton, tracking errors, and friction. These 
unwanted effects can be identified by studying the transparent mode of the 
exoskeleton where the support is turned off. Ideally this transparent mode is close 
to normal walking. 

In Chapter 5 describes how the transparent mode can be improved. This method 
applies to actuated exoskeletons where a controller can be designed to attenuate 
unwanted effects. Because walking is cyclic, a controller can use information from 
previous steps to improve its performance in upcoming steps. This dissertation 
describes a general method that uses adaptive frequency oscillators and kernel-
based non-linear filters. This method estimates a repetitive signal by fitting a 
number of primitive functions on any periodic input signal and can learn and 
predict this input signal. Furthermore the time derivatives of the predicted signal 
can be analytically obtained (Gams et al., 2009). This can be used to attenuate the 
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tracking error and to compensate for the exoskeleton dynamics. The latter requires 
a model of the exoskeleton dynamics. 

The method can also be used improve controller performance on devices other 
than exoskeletons as long as there is some form of cyclic motion. The sensitivity of 
the controller to gait changes was not investigated yet. The controller could handle 
small deviations that occur during treadmill walking of healthy subjects. The 
performance is likely to drop if deviations become larger, as, for example, happens 
when walking on uneven terrains.  

Support strategy 
The support strategy largely determines the relative change in metabolic cost, that 
is; the difference between exoskeletal walking with support switched on and off. In 
this dissertation we have looked at two support strategies: the exotendons of the 
XPED exoskeletons and the virtual spring of the Achilles exoskeleton.  

The XPED support was based on the exotendon concept of van den Bogert (2003). 
In this concept, different joints are coupled by elastic cables that could temporarily 
store energy and redistribute energy over the joints. The amount of energy stored 
in the exotendons is directly dependent on the joint angles. In the Achilles 
exoskeleton, the ankle push off is supported with a series elastic actuator. The 
amount of support is determined by deformation of a virtual spring. This 
deformation is the difference between the actual ankle joint angle and a reference 
joint angle. 

Experiments showed that the support offered by the XPED and Achilles 
exoskeletons did not result in a relative reduction of the metabolic cost. This was 
against our hypotheses. In contrast, other exoskeletons studies did find a reduction 
in metabolic cost. The XPED and Achilles exoskeletons will be compared against 
those. However, a direct comparison is limited because other exoskeletons might 
have a significantly different working mechanism of which an exact description is 
typically missing in the literature. Nevertheless, some general trends can be 
observed, as will be discussed in the following paragraphs. 

Passive exoskeletons 
The XPED is a passive exoskeleton. This group of exoskeletons has been less 
successful in reducing metabolic cost than active exoskeletons. So far, only one 
exoskeleton has shown that a relative reduction in metabolic cost is possible 
(Wiggin et al., 2012). Passive exoskeletons can only redistribute energy. Providing 
positive power at one point is only possible if negative power is provided at another. 
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Studies with other exoskeletons suggest that support is most successful if only 
positive power is provided (Malcolm et al., 2013a; Mooney et al., 2014a). 

Parametrization of the support 
This dissertation and others have shown that walking with an exoskeleton enforces 
a new equilibrium that results in different walking kinematics. It is shown that 
adding parallel assistance to the leg can disturb otherwise-efficient leg dynamics 
(Farris et al., 2013). The changed walking pattern should therefore be seen as an 
intrinsic consequence of exoskeleton support, rather than an unwanted side effect 
that should be avoided. The parameterization of the support should therefore allow 
for these changes in the walking pattern. For the XPED and Achilles exoskeletons, 
improvements could be made on this point. 

The support of the XPED exoskeletons was highly sensitive to changes in the 
walking pattern. The force in the exotendon, and thereby the support given by the 
exoskeleton was directly dependent on the joint angles. Changes in the joint angles 
affected both the timing and the amount of the support. Furthermore, the 
coupling with the hip motion unintentionally allowed the user to increase and 
decrease the support with the lean angle of the torso. As a result, the real support 
of the exoskeleton was very different from the expected support based on the 
simulation. Others triggered the support with a clutch, which made the support 
less dependent on the changes in the walking pattern (Wiggin et al., 2011). In the 
Achilles, the timing issue was addressed by triggering the support based on 
detected heel strike events. 

The support of the XPED and the Achilles exoskeleton was based on the idea that 
the support was optimal if the joint kinematics during normal walking were 
maintained during exoskeleton walking. However, the observed changes in the 
walking pattern, mostly increased plantarflexion, resulted in a decreased support. 
Other studies suggest that this choice is too conservative. Exoskeletons of Sawicky 
and Ferris (2008), Malcolm et al. (2013a) and Mooney et al. (2014a) provided high 
levels of support even when gait changes are present. 

The Achilles exoskeleton allows the implementation of different controllers. Still it 
is difficult to copy results of other exoskeletons since, as mentioned before, a 
detailed description of the exoskeleton dynamics is not given. 

9.2.3 Fast evaluation of exoskeleton concepts 
Expanding the empirical knowledge of human–exoskeleton interaction requires 
many well-conducted experiments. This is only possible if the experiments can be 
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conducted within a short amount of time. This dissertation describes several 
techniques that allow for fast evaluation of exoskeleton concepts that will be 
discussed here.  

Exoskeleton platforms 
The development of new hardware is time consuming. In that perspective it would 
be beneficial to evaluate multiple exoskeleton concepts on one platform. Such a 
platform should have a certain amount of flexibility to allow the simulation of the 
mechanics and control of different exoskeleton concepts. Chapter 8 describes an 
ankle exoskeleton that allows the implementation of different controllers. Chapter 
5 explores how existing rehabilitation robots can be used to evaluate new 
exoskeleton concepts. The chapter describes a controller that increases the 
transparency of the robot. Synchronous to this controller a controller can be used 
that simulates the dynamics of the new exoskeleton concept (Koopman and Van 
Dijk, 2011). 

Evaluation techniques 
Performing gait analysis can give insight into how the task is shared between the 
human and the exoskeleton. There are some key differences between a standard 
gait analysis setup and gait analysis with an exoskeleton. In standard gait analysis, 
the subject’s healthy, or impaired, gait pattern is analyzed in order to give a good 
parameterized description of his or hers of gait. In exoskeleton research not only is 
a description of this gait required. The intention is to actively alter the gait to 
increase human performance. Based on the results of the gait analysis, the 
exoskeleton can be tuned.  

Current methods for marker-based gait analysis have at least one of the following 
problems. 

1. The gait analysis is not performed real time. If data was available in real 
time, it would be possible to tune the exoskeleton on the spot.  

2. They require palpation of specific anatomical landmarks. These landmarks 
might be covered by the exoskeleton. 

3. They are vulnerable to marker noise and marker occlusion. 

The MKF presented in this dissertation addresses all these problems at the same 
time. The method was compared to a commonly used gait analysis protocol. Both 
protocols performed equally well in terms of data quality. However, the MKF is less 
dependent on the skills of the experimenter. It is not dependent on regression 
equations for joint centers, and could therefore be used to identify bone 
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abnormalities. With the MKF, the quality of the recorded gait data can be 
evaluated on the spot, and it can therefore be avoided that experiments have to be 
done twice. The use of the MKF has large potential, not only for exoskeleton 
research. 

9.3 Future directions 
In the past, exoskeleton research has mainly been an engineering challenge. For a 
large part of the exoskeleton research, the single goal was to reduce the metabolic 
cost of walking. The strict weight and power requirements led to innovative 
solutions. This is reflected in the large diversity of exoskeletons, which ultimately 
led to exoskeletons that actually reduced the metabolic cost of walking. Much of 
this pioneering work has been done and to improve exoskeletons performance their 
designs need to be further optimized. 

This optimization is a difficult task since the influence of changes in the 
exoskeleton on the metabolic cost of walking is difficult to predict. Furthermore, 
exoskeletons are very diverse and often not thoroughly evaluated, or evaluated with 
different protocols. This makes it is difficult to compare exoskeleton results. The 
often-superficial evaluation of exoskeletons is arguably one of the main deficits in 
exoskeleton research. Many existing tools can be used to greatly improve our 
understanding of how exoskeletons exactly work. 

9.3.1 Simulation and modelling 
To better understand human–exoskeleton interaction there is a large demand for 
modelling and simulation. The MKF framework is suitable for parameter 
estimation. In this dissertation, this framework has been used to estimate segment 
lengths and joint positions. In future work it might also be used to estimate other 
parameters (e.g. mass distributions) as well. In that case, the MKF might give 
additional insights in the human and exoskeleton dynamical systems. 

Kinematic and kinetic analysis can be expanded with musculoskeletal simulations 
like computed muscular control (Thelen and Anderson, 2006). This might give 
additional insights in the changes that occur in the musculoskeletal system and 
how these changes might be related to changes in metabolic cost (Umberger et al., 
2003). 

The mentioned models have been used for normal walking. To further develop 
these models towards a design tool the focus should be on validating these models 
for altered walking patterns. 
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9.3.2 Design 
The exoskeletons that are presented in this dissertation have a design based on 
classical mechanical engineering methods. Functions are assigned to parts, and the 
combination of the parts form a linkage mechanism. In Chapter 8 shows how sush 
a mechanism can be optimized. One of the results is that the actuator takes only a 
small portion of the total weight of the exoskeleton. The majority of the weight is 
taken by the interface between the actuator and the human. 

Alternative interface concepts can further reduce the weight of exoskeletons. For 
example, the human skeleton could provide a large part of the structural integrity 
of the exoskeleton. Such ideas have been explored by other researchers. Mooney et 
al. (2014a) presented an exoskeleton where there is no physical connection between 
the foot and shank part of the exoskeleton other than a string that transfers the 
load. Asbeck et al. (2014) present exoskeletons where a soft suit provides anchor 
points for actuators. All these exoskeletons are very lightweight at the distal part of 
the leg. Therefore, these weight reduction techniques are essential to further 
decrease the weight of exoskeletons. 

9.3.3 Control 
This dissertation has shown that the performance of passive exoskeletons can easily 
be overestimated. This is also partly reflected in the research of Mooney et al. 
(2014a), which suggests that performance solely increases with positive power. It 
seems that human performance can best be augmented with active exoskeletons. 
Passive exoskeletons are likely to be only beneficial in very specific applications 
(e.g. when supporting a specific subtask of walking (Bregman et al., 2012)). 

How these exoskeletons can be controlled best is still open for debate. This 
dissertation and other research focused on the design of a controller for continuous 
walking. The general trend is to design a support function. This support function is 
synchronized with the walking pattern via the detection of discrete events, such as 
heel-strike. Other strategies exist, such as the EMG feedback algorithm (Sawicki 
and Ferris, 2008). Small differences in these support functions can have a large 
effect the walking metabolism. Consequently, fine-tuning these algorithms can 
further improve exoskeleton performance. Also, complete new algorithms be 
developed in the future. For example, Geyer and Herr (2010) have shown that many 
walking characteristics can be described with low-level controls. These control 
rules could form a basis for new, human inspired, exoskeleton controllers.  

For real-life applications, an exoskeleton should also be able to handle movements 
other than continuous walking. This might be achieved by developing in a 
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universal controller that works for all movements. Another, more likely possibility 
is that the exoskeleton switches between different controllers based on an 
intention detection algorithm. For such applications, the adaptive frequency 
oscillators and non-linear filters of Chapter 5 can play an important role. The 
adaptive frequency oscillators and non-linear filters can detect deviations from a 
repetitive signal, and make the controller change to another state. 

9.3.4 Comparing concepts and parameter sweeps  
The exoskeleton studies described in this dissertation evaluated only a limited 
number of conditions. To establish empirical relations between walking 
metabolism and other gait characteristics, more data points are needed. These 
additional data points can be obtained by performing parameter sweeps, as, for 
example, has been done to assess the effect of added mass to the leg (Browning et 
al., 2007). During such a parameter sweep, many conditions are evaluated that are 
only different by one parameter. Candidate parameters for parameter sweeps are 
parameters that could easily be generalized across different exoskeletons, or 
parameters that can directly be used as design input for future exoskeleton designs. 
A distinction can be made between walking parameters such as walking speed, 
slope, or step length and support parameters such as amount of energy that is 
added per step, or the dependency of the support torque on the joint angle 
(stiffness). The exoskeleton platforms of Chapters 5 and 8 are suitable to perform 
parameter sweeps to determine the influence of different support parameters. 

9.3.5 Final thoughts 
The exoskeletons presented in this dissertation did, not yet, reduce the metabolic 
cost of walking. Other studies with different exoskeletons have shown that such a 
reduction is possible. These exoskeletons induced a reduction in metabolic cost of 
8 percent for walking with a backpack (Mooney et al., 2014a) and a reduction of 6 
percent for normal walking (Malcolm et al., 2013a). These are the first exoskeletons 
for which it was shown that a reduction in metabolic cost is possible and it is likely 
that this number will increase over time. 

Despite these promising results, it is unlikely that the cost of transport, the 
metabolic cost of the human per travelled distance, of exoskeleton walking can 
compete with other forms of transportation in the near future. Cycling is for 
example 2.5 times more efficient than running at the same speed (Davies, 1980). 

The use of exoskeletons is therefore likely to be limited to other specific 
applications where other modes of transportation do not suffice. This includes 
walking in indoor environments and on rough outdoor terrain. Another significant 
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application will be the support of specific subtasks of walking that have been 
affected by trauma or disease. 

To achieve these goals, exoskeleton designs should be almost as excellent as the 
human body they interact with. The difference between a good and a bad 
exoskeleton can therefore be very subtle. With this dissertation I hope to have 
provided new tools and insights to identify these subtleties.  
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10 Appendix: MKF and Equations 
of motion 

This chapter gives a more in-depth explanation of the workings of the Multibody 
Kalman Filter (MKF). This chapter is divided into three parts. The first part 
contains a detailed description of the equations of the MKF. The second part 
contains the equations of motion used by the MKF. The last part contains the 
anthropometric measurements that were used for initialization of the filter. 

10.1 Nomenclature 

10.1.1 Latin (lower case) 
a  accelerations in global coordinates (linear and angular) 

na  linear acceleration of segment n in global coordinates 

f()  time update function 

intf  internal forces and moments 

extf  external forces and moments  
g()  measurement function 
m  masses 
p  global (inertial) position (location and orientation) 

np  location of segment n in global coordinates 
 
q  generalized coordinates 

fixq  positions (time invariant) 

floq  positions (time variant) 

r  measurement noise 
s  state vector (MKF) 
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u  generalized velocities 
v  velocity in global coordinates (linear and angular) 

nv  linear velocity of segment n in global coordinates 
 
w  process noise 

nx  location of segment n relative to its parent in its own coordinate 
system 

z  measurement vector 

Latin (upper case) 
A  f( , ) 'd dx w x  
B  projection of the state update function on the state 
C  topology matrix 
D  measurement noise covariance matrix 
G  g( , ) 'd dx r x  

I  identity matrix 
J  rotational inertia matrix in the segment reference frame 

K  Kalman gain 
O  zero vector or matrix 
P  error covariance matrix 
Q  process noise covariance matrix 

j
iR  rotation matrix from segment i  to j  

S  acceleration matrix 
T  velocity matrix 
W  f( , )d dx w w  

Greek 

nα  angular acceleration of segment in global coordinates 

nθ  angle of segment n in global coordinates (quaternion) 

nφ  angle of segment n relative to its parent in its parent coordinate 
system (quaternion) 

nψ  angular velocity of segment n relative to its parent segment in its 
own coordinate system 

nω  angular velocity of segment n in global coordinates  
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Operators 

  time derivative 

  skew symmetric matrix of a 3x1 vector 
×  cross product, ( ×AB C might be interpreted as ABC ) 


 quaternion product 

Other 
i  vector index 



 , j  vector sub-index  

k
 time step k  


  a priori estimate of x or P  
̂

 a posteriori estimate of x or P  

10.2 The multibody Kalman filter 
The MKF is a special application of the extended Kalman, and an extension of the 
filter developed by Todorov (2007). The MKF performs alternating time and 
measurement updates. The time update predicts ahead, resulting in an a priori 
estimate (denoted with ˜) of the state and its error covariance matrix. The 
measurement update corrects the estimates when new measurements are available, 
resulting in an a posterior estimate (denoted with ˆ) of the state and its error 
covariance matrix (Figure 10).  

10.3 The system state and state updates 
The extended state ( s ) vector is defined by: 

 

 
 
  =  
 
 
  

fix

flo

int

ext

q
q

s u
f
f

 (58) 

fixq is a vector with time-invariant spatial variables. These are the model 

parameters such as segment lengths and local joint orientations of which the value 
is unknown. Estimation of these parameters is done by modelling them as time-
invariant variables in the MKF so they can change until they converge. floq is a 

vector with time-variant spatial variables (e.g. joint angles). u  and intf  are vectors 
with generalized velocities and forces (e.g. joint velocities and moments). extf is a 
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vector with external moments and forces acting at the center of mass of each 
segment in the multibody system (e.g. ground reaction forces).  

10.3.1 Quasi-state 
An extended Kalman filter linearizes the multibody system around the current 
state s through the calculation of Jacobian matrices, which are described below. In 
our application, the 3D rotations are described with unit quaternions to avoid 
gimbal locks, which results in a non-minimal set of coordinates and extra 
constraint equations. To ensure that the filter respects these constraints, we defined 
a quasi-state ( ′s ) which is minimal and can be used for small state updates, but 
does not make sense for large state updates. 

 

′ 
 ′  ′ =  
 
 
  

fix

flo

int

ext

q
q

s u
f
f

 (59) 

The quasi-state is used to perform small state updates leading to a new state ( +s ). 

Matrix ( )B s  is used to project the quasi state onto the real state: 

 + ′= + ( )ss s B s  (60) 

( )B x depends on the application. In our application matrix ( )B x  is defined as 
follows: 

 

 
 
 =
 
 
 



1 1( )

( )
( )N N

B q O

B s
B q

O I

 (61) 

In the case iq describes a 3D rotation (quaternion) 

 

− − − 
 − = ⋅
 −
 
−  

2 3 4

1 4 3

4 1 2

3 2 1

1
( )

2

n n n

n n n
n n

n n n

n n n

q q q
q q q
q q q
q q q

B q  (62) 

For other joint types:  

 =( )i iB q I  (63) 
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Note that equation (62) is the same as the matrix mapping velocities (3-vector) to 
quaternions (Schwab and Meijaard, 2006). The different types of joints, the 
generalized coordinates, and the ( )B x  matrix is described in full detail the section 
on the equations of motion. 

10.3.2 Time update 
The time update function (

−1f( , )ks w ) of the state 
−1ks  is given by: 

  

 − − −= + ∆ =1 1 1( )f( , ), N( , )k k k kts s B s s w w O Q  (64) 

With: 
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 (65) 

Where ∆t  is the time step, k and − 1k  are, respectively, the indices of the current 
and previous time frame. fixq is unchanged because it is time invariant. floq is 

updated with the velocity. u  is updated with the acceleration. The acceleration is 
calculated with the equations of motion. intf  and extf  are updated with the process 

noise w . w is assumed to have a normal distribution with zero mean and 
covariance Q . The matrix B accounts for the quaternion constraints. The a priori 

estimate of 
 ks  is made using the a posteriori estimate 

−1
ˆ

ks  while assuming zero 

process noise: 

 
− − −= + ∆  1 1 1

ˆ ( )f( , )k k k kts s B s s O  (66) 

Note that we have used the quasi state here to update the state. An a priori estimate 

of the error covariance matrix ( kP ) is made using the a posteriori state estimate 

−1
ˆ

ks and error covariance matrix −1
ˆ

kP : 

 − − −= +

1 1 1
ˆˆ ˆ( ) ( )T T

k k k kP A s P A s WQW  (67) 
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With: 

 = + ∆
f( , )

( )
d

t
d
s wA s I B
s

 and =
f( , )d
d
s wW
w

 (68) 

A is the identity matrix combined with Jacobian matrix A containing the partial 
derivatives of f( , )s w to the quasi state ( ′s ). W is the Jacobian matrix with the 

partial derivatives of f( , )s w to the process noise ( w ). A  was derived by using the 
following property: 

 

( )

( )

′+
′

′= ⋅ +
′

=

f( ( ) , )

f( , )
( )

f( , )
( )

d
d

d d
d d

d
d

s B s s w
s

s w s B s s
s s

s w B s
s

 (69) 

10.3.3 Measurement update 
The measurement function ( g( , )s r ) provides a new measurement ( z ) at each 

time step. The measurement is a function of the state ( s ) and the measurement 
noise ( r ): 

 = =g( , ), N( , )z s r r O D  (70) 

Where r  is assumed to be normally distributed with zero mean and covariance D . 
The measurement Jacobian ( G ) contains the partial derivatives of g( , )s r  to the 

quasi coordinates ( ′s ): 

 =
′

g( , )
( )

d
d

s r
G x

s
 (71) 

Which is the same as: 

 =
g( , )

( ) ( )
d

d
s r

G s B s
s

 (72) 

It is not required that every time step all signals are measured, this accommodates 
for missing data. Therefore g( , )s r and R may be different for different time steps. 

The Kalman gain ( K ) is calculated as follows: 

 ( )−= + 

  

1
( ) ( ) ( )T T

k k k k k k k k k kK P G s G s P G s D  (73) 
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The Kalman gain is used to perform the measurement update resulting in the a 
posteriori estimate of the state and covariance matrix: 

 = + − ˆ ( g( , ))k k k k ks s BK z s O  (74) 

 = − 



ˆ ( ( ))k k k k kP I K G s P  (75) 

10.3.4 Measurements 
The MKF can be used for different applications where kinematics and kinetics need 
to be estimated. We use the filter for gait analysis with an optical marker system 
and an instrumented treadmill. In our case, the measurement function g( , )s r

provides the marker positions ( g ( , )m s r ) and ground reaction forces ( g ( , )fp s r ): 

 
 

=  
 

g ( , )
g( , )

g ( , )
m

fp

s r
s r

s r
 (76) 

with the corresponding measurement Jacobian: 

 
 

=  
 

( )
( )

( )
m

fp

G s
G s

G s
 (77) 

The measurement Jacobian for the optical markers ( mG ) can be directly derived 

from the topology matrix ( mC ) and velocity matrix ( mT ) used in the equations of 

motion, as will be explained later in the section on the equations of motion. 

 
( ) [ ]= =

′
( , )

( ) ( )
d g

d
m

m m m

s r
G x C T q O

s
 (78) 

The external forces ( extf ) are defined around the centers of mass of the multibody 

system. The force plate measurements are (or can be easily be transformed to) the 

forces ( 0f ) and moments ( 0τ ) around the origin of the global coordinate frame. 

This yields the following measurement function: 

 
    = = +   
     

0
3 3

, ,0
3

( )
g ( , )

( )( , )
i

i i
ii

fp ext

I Of r
s r f r

p q Iτ s r
 (79) 

i  denotes the number of the force plate. ip  is the center of mass position of the 

segment where the external force is applied in global coordinates. The 
measurement Jacobian is:  
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( ) ( ) ( )
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i

i i ii

d
d

   
= =     ′ −     
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O I OI O
G x f

p q Ix f CT q p q I





 (80) 

10.4 3d multibody dynamics with a minimal set of 
generalized velocities 

10.4.1 Introduction 
The equations of motion will be derived for systems that have a tree structure (no 
loops) with hinge, ball, slide or translational joints. To avoid gimbal locks, 3d 
rotations are described with unit quaternions. Accounting for the quaternion 
constraints is done in a similar way as accounting for constraints in a non-
holonomic system (Kane and Levinston, 1985).  

10.4.2 Kinematics 
The kinematics are described in a recursive way. Throughout this document it is 
assumed that the multibody system has a tree structure, the terminology of the 
multibody structure is given in Figure 49. We describe the kinematics of a body n
that is a child of body m . 

 
Figure 49: Terminology of a tree structure. The tree structure originates at the root. The tree 
can split but not reconnect so there are no loops in the structure. The direction towards the 
root is called proximal; the direction away from the root is called distal. The parent segment is 
the first segment proximal of a segment. A child segment is the first segment distal of a 
segment (a segment can have multiple children). Ancestors are all segments proximal of a 
segment, descendant are all segments distal from a segment.  
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The position 
The position of a segment ( np ) is consist of its location ( np  ), a 3x1 vector, and its 

orientation ( nθ ), a unit quaternion. The position of segment (n) is a function of the 

position of its parent (m) and its position relative to its parent. 

 
 + 

= =   
   

1( )n
n m n n

n
n m n

p p R θ x
p

θ θ φ
 (81) 

nx a 3x1 vector describing the location of segment n relative to its parent in its own 

coordinate system. ϕn is a unit quaternion describing the orientation of segment n 

relative to its parent in its parent’s coordinate system. 1( )n
nR θ  is the rotation matrix 

from the global frame to the segment frame.  

The velocity 
The velocity of a segment ( nv ) consists of its linear ( nv ) and angular velocity ( nω ), 

both 3x1 vectors. The velocity of segment (n) is a function of the velocity of its 
parent (m) and its location and velocity relative to its parent.  

 

1
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1

1 1

1
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( )
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d
dt

 
  + + = =     +  
 + × +

=  + 

R θv v x R θ xv
ω

ω R θ ψ

v ω R θ x R θ x
ω R θ ψ





 (82) 

In above equation we used the property that: 

 = ×1
1

( )
( )

n
nn

n n

d
dt

R θ
ω R θ  (83) 

nx and nψ are linear and angular velocity, both 3x1 vectors, relative to their parent 

in the coordinate system of the segment.  

The acceleration 
The velocity of a segment ( na ) consists of its linear ( na ) and angular velocity ( nα ), 

both 3x1 vectors. The acceleration is obtained by differentiation of formula(82).  

 
 + × + × ×

   = = + +   
   + + × 
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1 1

1 1

1 1

( ) ( ) ...

2 ( ) ( )
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n n
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n n n
n n n n n n

n n n
m n n n n n

a ω R θ x ω ω R θ x
a

a ω R θ x R θ xα
α R θ ψ ω R θ ψ

 (84) 
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10.4.3 Generalized coordinates 
We use a set of generalized coordinates ( q ) for the positions and a set of 

generalized speeds for the velocities ( u ). For our derivation of the equations of 
motion the set of generalized speeds is required to be minimal, the set of 
generalized positions is not necessarily minimal. Segment positions are a function 
of the generalized coordinates: 

 ( )nx q  and ( )nθ q  (85) 

The velocities can be functions of q and u , but to prevent the complexity to 
get out of hand we assume linear relations for the velocities. 

 = =( ) ( )n nx u X u ψ u Ψ u  (86) 

Which is sufficient for many applications, but the proposed method can be 
extended to allow for non-linear relationships. Definitions for hinge, ball, slide or 
translational joints are given below. The generalized coordinates and speeds are 
linked via the following equation: 

 = ⋅ ( )q B q u  (87) 

Velocity 
The equation for the velocity (82) can be written as a function of the generalized 
coordinates: 

 
 × + 

= +   
   

1 1

1

( , ) ( , ) ( ) ( ) ( ) ( , )
( , ) ( ) ( , )

n n
m n n n

n n
m n

v q u ω q u R q x q R q x q u
v

ω q u R q ψ q u
 (88) 

Substituting equations (85) and (86) we can see that the second term is a linear 
function of u . 
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 (89) 

with: 
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Acceleration 
The acceleration as a function of the generalized coordinates becomes: 

 ×
 

+ × ×   = +   + × +   
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 (91) 

If we again substitute equations (85) and (86):  
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  (92) 

Here we have used the property that: 
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Please note the special use of the angular velocity function. In ( , )ω q u we have 

substituted the generalized velocities ( u ) with the generalized accelerations ( u ). 

10.4.4 Kinematics of the total system 
To calculate the motions of all links we define a topology matrix C : 
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N NN
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C

C C
 (94) 

Where N  is the number of segments in the system, = 6ijC I if =i j or segment i is 

a descendant of segment j  , otherwise = 6ijC O . So the velocities of the multibody 

system become: 

 = ( )v CT q u  (95) 

and the accelerations become: 

 = +( ) ( , )a CT q u CS q u  (96) 

With: 
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10.4.5 Equations of motion 
The equations of motion are derived using the virtual power principle: 

 ( )δ  − = 
 

0T d
dt

v f Mv  (98) 

δ v̂ can be substituted using (95): 

 ( ) ( )δ  − = 
 

( ) 0T d
dt

CT q u f Mv  (99) 

Since the generalized speeds are independent of each other we can write: 

 ( ) ( ) − = 
 

( ) T d
dt

CT q f Mv O  (100) 

The first term ( ( )( ) TCT q f ) are the generalized active forces (Kane and Levinston, 

1985). We subdivide this in internal forces ( intf ) and external moments ( extf ). For 

our application we want to estimate intf  and use them in their generalized form. 

 ( ) ( ) + − = 
 

( ) T
int ext

d
dt

f CT q f Mv O  (101) 
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After rewriting and substitution the equations of motion become: 
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  (102) 

Where: 
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10.5 Forward dynamics 
To solve the forward dynamics problem the following set of ordinary differential 
equations can be integrated 
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And 
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10.6 Joints 
For our application we implemented four types of joints: translational, sliding, 
rotational and hinge joints. 
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10.6.1 Translational joint 
A 3d translation 

  =  1 2 3( )
T

n n n n nq q qx q  and [ ]= 1 0 0 0 T
nφ  (108) 

 = 3X I  and = 3nΨ O  (109) 

and 

 = 3nB I  (110) 

Sliding joint 
A sliding joint along axis l  

 =( )n n nq qx l  and [ ]= 1 0 0 0 T
nφ  (111) 

 =X l  and [ ]= 0 0 0 T
nΨ  (112) 

and 

 = 1nB  (113) 

10.6.2 Ball joint 
A 3d rotation. Note that for this type of joint the number of generalized position 
coordinates is higher than the number of generalized velocity coordinates (Schwab 
and Meijaard, 2006). 

 [ ]= 0 0 0 T
nx  and  =  1 2 3 4( )

T

n n n n n nq q q qφ q  (114) 

 = 3nX O  and = 3nΨ I . (115) 

and 
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10.6.3 Hinge joint 
A hinge joint along axis l with unit length: 
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 [ ]= 0 0 0 T
nX  and =( )n nuΨ l  (118) 

and 

 = 1nB  (119) 

10.6.4 Implementation 
We have implemented the derivation of equations (105) in a series of Matlab 
scripts. The ( ), , ( ), ( )B q C M q T q and ( , )S q u matrices are derived symbolically. The 

inversion of ( )M q is performed numerically. 

10.7 Human anthropometrics 
The performance of the MKF improves if the initial estimate of the state of the 
filter is closer to the real state. An initial estimate of the time invariant spatial 
variables can be made based on anthropometric data. Table 24 shows the 
anthropometric data that was used to make the initial estimate. Data from the 
same sources was also use to estimate the mass and inertia properties, these were 
not estimated by the MKF. 

 Distance [ ] Mass [ ] Longitudinal  
CoM [ ] 

Sagittal r [ ] Transversal 
r [ ] 

Longitudinal 
r [ ] 

Gender1 F M F M F M F M F M F M 

Thigh1 0.212 0.243 0.148 0.142 0.361 0.410 0.369 0.329 0.364 0.329 0.162 0.149 

Shank1 0.249 0.249 0.048 0.043 0.442 0.446 0.271 0.255 0.267 0.249 0.093 0.103 

Foot1 0.132 0.148 0.013 0.014 0.401 0.442 0.299 0.257 0.279 0.245 0.139 0.124 

Hip width2 0.191 0.191           

HAT1 0.495 0.486 0.537 0.553 0.551 0.563 0.514 0.532 0.510 0.525 0.428 0.450 

Table 24: Anthropometric data used for the initial state of the filter and mass and inertia 
properties. F = female, M – male. Sources 1: Leva, 1996, 2: Winter, 1990. The measures are 
normalized to the subject’s length and the subject’s weight. 
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Propositions 
1. It cannot be determined in advance if a new exoskeleton concept is 

successful. 
 
2. The best exoskeleton research is done without actually building an 

exoskeleton. 
 
3a. Reducing your total carbon dioxide production, carbon footprint, is 

easy but uncomfortable. 
3b.  Reducing your total carbon dioxide production during walking, 

with an exoskeleton, is difficult but comfortable. 
 
4. An exoskeleton does not need an own skeleton. 
 
5. The danger of artificial intelligence is not recognizing it. 
 
6. Editing Wikipedia is a bigger contribution to science than writing 

articles for scientific journals. 
 
7. A nuance is more valuable than a proposition. 
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Stellingen 
1. Van te voren is niet te bepalen of een nieuw exoskeletconcept goed 

is. 
 
2. Het beste exoskelet onderzoek doe je zonder een exoskelet te 

bouwen. 
  
3a.  Het reduceren van je CO2 voetafdruk is makkelijk maar 

oncomfortabel 
3b. Het reduceren van je CO2 uitstoot tijdens het lopen, met een 

exoskelet, is moeilijk maar comfortabel 
 
4. Een exoskelet heeft geen eigen skelet nodig. 
 
5. Het gevaar van kunstmatige intelligentie is het niet (h)erkennen 

ervan. 
 
6. De wetenschap zou er bij gebaat zijn als men in plaats van 

artikelen te schrijven voor wetenschappelijke tijdschriften 
Wikipedia zou aanvullen. 

 
7. Een nuance is waardevoller dan een stelling. 
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