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summary

Plastics, known for their lightweight and durability, can pose significant environmental problems when
they become marine debris. Marine animals get entangled in this debris, their habitats are destroyed,
and invasive species are transported to non-invaded regions. With the rapid increase in plastic debris in
the oceans, the impact on human health is not yet fully understood.

A promising approach to monitor marine plastic debris is the combination of remote sensing and
machine learning techniques. Early attempts involved hand-engineered spectral features and simple
machine learning classifiers on satellite images. Subsequently, deep learning methods were employed,
utilizing the full multi-spectral data from satellites. However, these methods require large amounts of
training data, which are not readily available for floating marine debris. Therefore, new models that
can be trained with limited data are needed. One promising approach is the combination of few-shot
meta-learning and active learning.

Active learning involves selecting informative samples for annotation to enhance learning capacity, while
few-shot meta-learning focuses on quickly adapting models to limited labeled examples. By actively
querying and selecting informative samples, active few-shot meta-learning improves generalization
and adaptation capabilities, resulting in better performance and faster adaptation in few-shot learning
scenarios.

In this study, the main goal was to assess the effectiveness of an active learning approach combined
with a few-shot meta-learning model in detecting floating marine debris. Different active learning
strategies were tested alongside the METEOR model, which is specifically designed for various Earth
observation challenges. METEOR utilizes a deep ResNet-12 architecture and a special meta-learning
algorithm to extract important information from extensive land cover classification data. The extracted
knowledge, known as the "meta-model," can then be transferred from previous tasks to the current task
using model-based transfer learning. The study also employed ResNet-18, a widely-used deep neural
network architecture in computer vision tasks, as a comparison model.

The study compared various sampling strategies for creating the support set of the METEOR model,
evaluating their performance compared to random sampling and the ResNet-18 model. Two groups of
sampling strategies were tested: uncertainty-based active learning methods and diversity-based active
learning methods. Uncertainty-based methods measure the model’s uncertainty in predicting sample
labels and select the most uncertain samples, while diversity-based sampling strategies aim to maximize
the diversity of samples in the support set by considering their representation in the chosen feature space.

To evaluate the sampling strategies, the study focused on recall and average precision as metrics, as
accuracy can be misleading in the presence of class imbalance. The results consistently showed that active
learning methods incorporating uncertainty-based sampling, such as entropy and query by committee,
outperform other strategies in terms of recall and average precision. Diversity-based methods employed
in this study struggled to select informative and representative samples, emphasizing the importance
of considering feature space representativeness. The performance of the detection model was also
influenced by regional characteristics, with the ResNet-18 model showing enhanced performance in the
Accra region compared to Durban region. Additionally, class imbalance affected the performance of the
active learning framework, with random sampling showing greater improvements in the Accra region
compared to Durban. Overall, the study contributed to the field of floating marine debris detection by
highlighting the value of utilizing sampling techniques for a few-shot meta-learning model.

The study suggested several directions for future work. While few-shot learning models show promise
for marine debris detection with limited labeled samples, effective sampling and training strategies need
to be developed. Specifically, for cluster-based methods, testing various feature spaces and exploring
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different cluster selection methods could yield better results. Additionally, a custom atmospheric
correction for each region of interest could further improve performance.
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Background & Report Outline

Plastics are used often due to their lightweight and durability. However, these useful traits can
become adversities once plastic objects turn into marine debris and cause significant problems for the
environment [1]. This debris ends up entangling marine animals or destroying their habitats, and
transporting invasive species to non-invaded regions [2]. The amount of plastic debris ending up in the
oceans is increasing rapidly as can be seen in Figure 1.1 [3]. It is not yet understood how this impacts
human health, but it is accepted to be a potential hazard [2, 4]. Given the results of the assessment made
by the Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP) and
the efforts of the United Nations to remediate the marine plastic pollution problem, investments into
research on understanding this problem are warranted [5].
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Figure 1.1: Generation and disposal rates of plastic waste between 1950-2015. Dashed lines after 2015 represent projections of the
previous trends [3].

In the frame of discovering the threats of plastic pollution in the marine environment, significant
clean-up efforts have been made along with implementing measures on limiting the amount of plastic
entering any water body in the first place. Some early methods of plastic monitoring include conducting
impact assessments by analyzing the stomach contents of deceased marine animals, conducting beach
surveys, and implementing large-scale debris collection efforts in coastal regions [6]. These methods
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can indicate how much plastic is disposed on these coastal areas, but are not very effective in detecting
the changes in the total amount of offshore debris [1]. Observations from ships, made both visually and
by net trawls, were also used in more recent studies [7]. The data gathered using these methods can
be useful to a certain extent, but becomes hard to interpret when the complex aquatic dynamics are
considered [1]. Furthermore, the efficacy of these efforts can only be measured if the plastic pollution
can be monitored in target areas. This is a challenging task due to the complexity of temporal and
spatial distributions of debris as much as the marine dynamics [1].

Recent developments in remote sensing point to the promising approach of using satellite data to
monitor marine plastic debris. New Earth observation satellites such as Sentinel-2 started to raise
the bar in how much satellite data can be utilized thanks to improvements in their temporal and
spatial resolutions [8]. Today, remote sensing is one of the most promising ways forward to monitor
marine plastic pollution around the globe and make use of this data for clean-up efforts or mitigation
policies. However, considering the vast amount of data this approach brings with it, automated methods
are necessary to detect plastics using spectral and spatial data on target locations. Deep learning
methods have shown potential for such complex tasks, especially when combined with transfer learning
techniques [9]. The progress on the topic so far suggests that a combination of remote sensing and
machine learning techniques can provide a general method that can be used on a global scale [10, 11].
This is why a literature study was carried out on this topic and led to the thesis research presented in
this report.

This thesis report has the following structure. First, the most relevant parts of the literature study
performed before the research phase will be presented in chapter 2. The goal of including this chapter
in this thesis report is to demonstrate the identified knowledge gap and how this thesis research helps
close it. The research description will be presented in chapter 3 which will explain the main objective
of the research and state the research questions investigated in this thesis. These two chapters will
serve as introductory information before the research paper written for this thesis study is presented in
chapter 4. This chapter will follow the format of a conventional journal article and will be independent
of the rest of the report. Finally, chapter 5 will present how the results of this study answer the research
questions, and finalize this thesis report.



Literature Study

This chapter offers an in-depth analysis of the most recent research on important areas of marine plastic
detection. The first section looks at the earliest studies that used multi-spectral indices and simple
machine learning classifiers for debris detection. The adoption of deep learning models then comes
into focus, which has significantly improved the abilities of plastic detection systems. The chapter
then explores the newly emerging field of active few-shot meta-learning as a promising direction for
improving these systems. The chapter ends by outlining a collection of discovered knowledge gaps in
the field. By providing this overview, this chapter aims to provide useful insights into the development
of marine plastic detection research over time, as well as the current state of the art and potential future
directions.

2.1. Feature Engineering

In the early years of plastic detection research, pioneering studies focused on utilizing multi-spectral
indices as features [12]. Spectral indices are developed using the fact that every matter reflects a different
amount of energy at different wavelengths of the electromagnetic (EM) spectrum. This is visualized
in Figure 2.1, where each line represents the unique spectral signature of a material. A spectral index
represents the relationship between reflectance in various spectral bands, in other words: reflectance at
different points of a material’s signature.

Spectral indices used in plastic detection research included ones that have been utilized in similar tasks
already for many years such as Normalized Difference Vegetation Index (NDVI), and also some new
indices created specifically for the detection of plastics such as Floating Debris Index (FDI) and Plastic
Index (PI) [8, 13]. NDVI leverages the difference between near-infrared and visible light reflectance to
identify areas with vegetation or other objects [14, 15]. FDI and P], specifically designed for detecting
floating marine debris, exploit the unique spectral properties of plastic materials [8, 13]. Studies using
these indices demonstrated the potential of using specific indices as indicators for plastic presence.

To leverage the extracted features effectively, researchers employed machine learning classifiers such as
Naive Bayes (NB), Support Vector Machine (SVM) and Random Forest (RF) [12, 16]. These classifiers
could utilize the selected features to distinguish between floating marine debris and other objects
present in the satellite images. Naive Bayes algorithms make probabilistic assumptions based on feature
independence, while SVMs act as an "hyperplane” that serves to distinguish observations belonging to
one class from another based on patterns of features, and Random Forest utilize an ensemble of decision
trees for classification [17-19].
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Figure 2.1: Spectral signatures for six different materials including plastics. The left-hand y-axis displays remote sensing
reflectance, while the x-axis displays the range of Sentinel-2’s Multi-Spectral Instrument bands. The corresponding reflectance of
timber and pumice are presented on the right-hand y-axis in grey [8].

The studies using simple classifiers with spectral indices as input features employed similar procedures.
The approach of the study from Biermann et al. is a good example for the general characteristics of
these studies [8]. Their procedure starts with exploring the available data which consists of finding the
right subset of data for the chosen study goals. Then, the next step is processing the data which consists
of atmospheric correction followed by applying the spectral indices and extracting the features from the
chosen data. The final step is classifying the data using these extracted features and feeding them into a
simple classifier as input. This procedure is visualized in Figure 2.2.

The evaluation of early studies involved using accuracy as the evaluation metric to measure the
effectiveness of plastic detection algorithms. One study by Mifdal et al. compared several simple
classifiers” performance when they use NDVI and FDI indices as input [16]. The performance of these
classifiers can be seen in Table 2.1. These results demonstrate significant limitations, possibly due to
the reliance on manually engineered features which pose challenges in capturing the full complexity
and variability of plastic materials [16]. The process of manually choosing suitable features frequently
involved subjectivity and called for domain knowledge. Furthermore, the fixed nature of engineered
features constrained their ability to adapt to shifting environmental factors or different kinds of plastic
debris. These issues demonstrated the need for more sophisticated methods that could automatically
discover discriminative features and address the shortcomings of manual feature engineering.

Table 2.1: Accuracy of different classifiers applied on the same data to detect floating plastics, where the input of these classifiers
were NDVI and FDI features [16].

Method Input Accuracy (%)

SVM NDVI + FDI 58.82
RF NDVI + FDI 58.83
NB NDVI + FDI 60.81
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Figure 2.2: Flowchart depicting and summarizing the actions required for detecting, identifying, and categorizing floating debris
in Sentinel-2 imagery using FDI and a Naive Bayes classifier [8].

2.2. Feature Learning

Feature learning represents a significant advancement in the detection of floating marine debris
by leveraging deep learning models to automatically extract features from satellite images. Unlike
traditional feature engineering, which relies on manually selecting relevant features, feature learning
algorithms can learn and adapt to extract discriminative features directly from the data [20]. Figure 2.3
shows an example of how a deep learning algorithm learns features, and how these features get more
complex with more layers. The figure demonstrates that each layer recognizes a feature of the image
such as edges or parts. Then, using these features, the algorithm classifies the image between three
classes: car, person, and animal.

Convolutional Neural Networks (CNNs) have revolutionized image analysis and feature extraction [22].
CNN:ss are particularly well-suited for detecting patterns and extracting relevant features from images.
They consist of multiple layers, including convolutional layers that learn spatial hierarchies of features
[23]. CNNs have been adopted in plastic detection research as well due to their ability to automatically
learn and represent complex patterns present in satellite images.

In the same study by Mifdal et al. which was previously mentioned, a U-Net CNN model which takes
the whole multi-spectral data as input was also implemented [16]. The accuracy comparison of this
U-Net with the simple classifiers can be seen in Table 2.2. These results suggest that the CNN model
performs better than the other classifiers in terms of accuracy. Similar results were achieved by Kikaki
et al. in their study which compared a Random Forest classifier to the U-Net model [24]. On the other
hand, Mifdal et al. also found out that the U-Net model overfits the data more than the simple classifiers,
resulting in a poor generalization performance. The conclusion of the study was that this method alone
was not sufficient for marine plastic detection with the limited amount of training data that is currently
available. A similar conclusion was made by another study conducted by Séle Gémez et al. where two
different CNN models were compared [25].

Carmo et al. [26] presented that a possible solution to poor generalization, especially in the case of
domain shifts, is self-supervised learning which could potentially perform better with less training data.
Self-supervised learning methods can learn visual features without using any labelled training data [27].
This approach was developed due to the expensive and time-consuming nature of the data labelling
process. However, after testing self-supervised learning on various Earth observation tasks, Ruffwurm
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Table 2.2: Accuracy of different classifiers applied on the same data to detect floating plastics with their specific inputs specified

[16].
Method Input Accuracy (%)
SVM NDVI + FDI 58.82
RF NDVI + FDI 58.83
NB NDVI + FDI 60.81
CNN  multi-spectral data 84.28

et al. [9] concluded that it is still not a sufficient solution for poor generalization. This study suggested
that a meta-learning framework could solve this problem better than self-supervised learning. The
framework they developed called "Meta-learning to address diverse Earth observation problems across
resolutions" (METEOR) outperformed self-supervised algorithms and supported their claim.

The ability of few shot learning models such as METEOR to be able to classify large data sets after being
trained on only a few samples is their main advantage. However, as the number of training samples
decreases, the significance of each training sample increases [28]. In the floating marine detection
context, this sginficiance becomes even more important due to the uneven class distirbution. According
to RuSwurm et al., only about 0.05% of the pixels contain marine debris on an average Sentinel-2 image
used in their study for detecting floating plastics [29]. This severe class imbalance is a challenge for
any object detection model, and for a few-shot learning model, makes it crucial for the support set
to have enough representation from each class to perform well. Previous research has demonstrated
that including expertise of some users in the support set selection by developing a human-in-the-loop
sampling strategy increases the performance of few-shot models by optimizing the support set [30].

In conclusion, the state-of-the-art feature learning approaches have significantly advanced the detection
of floating marine debris. By employing deep learning models, researchers have achieved promising
results in automatically extracting relevant features from satellite images. However, the limited
availability of training data poses the biggest challenge since deep learning models depend on a rigorous
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training procedure in order to perform well. One study suggested few-shot meta-learning as the solution
to this challenge, but the problem of the support-set selection remains unresolved. The subsequent
section will explore few-shot meta-learning and active learning as potential approaches to further
understand the current state of research in these fields. This will help evaluate if they could be used for
the floating marine debris detection task.

2.3. Active Few-Shot Meta-Learning

This section delves into the domain of active few-shot meta-learning which combines the concepts of
few-shot learning, meta-learning, and active learning. This new domain represents a promising new
approach to potentially develop efficient and adaptable plastic detection systems. The section will be
presented in two distinct phases: Few-Shot Meta-Learning and Active Learning.

2.3.1. Few-Shot Meta-Learning

Few-shot learning is a rapidly evolving field in machine learning that addresses the challenge of
training models with limited labeled data [31]. Few-shot learning aims to overcome this limitation
by enabling models to generalize and classify new instances based on only a few labeled examples.
Meta-learning, on the other hand, focuses on acquiring knowledge from multiple tasks or datasets to
facilitate rapid adaptation and generalization to new tasks or datasets [32]. In the context of few-shot
learning, meta-learning algorithms aim to train models that can quickly adapt to new instances with
only a small number of labeled examples. By effectively capturing and generalizing from the underlying
patterns and characteristics of data, few-shot meta-learning models exhibit impressive adaptability and
can classify new instances accurately.

In the few-shot meta-learning context, a task refers to a specific learning problem or classification
problem. Each task consists of a small set of labelled samples called a support set, and a query set which
contains unlabeled examples that need to be classified [9, 32]. The support set provides the model with
the necessary information to learn and generalize to the query set.

Model-Agnostic Meta-Learning (MAML) is a popular few-shot meta-learning algorithm [31, 32]. MAML
works by training a model’s initial parameters on a variety of tasks in such a way that it can quickly adapt
to new tasks with minimal data. The model is trained to find an initialization that can be fine-tuned
efficiently using a small support set, leading to improved performance on the query set. During the
training process, MAML optimizes the model’s initial parameters to minimize the task-specific loss
after a few gradient updates on the support set. This enables the model to learn generic representations
and adapt them quickly to new tasks with limited data. By leveraging the shared knowledge from
multiple tasks, MAML enhances the model’s ability to generalize and make accurate predictions on
unseen examples.

Only one few-shot meta-learning model was ever tested for floating marine debris detection: METEOR.
As previously introduced, this model was developed to be used for various Earth observation problems
across various resolutions [9]. This model showed promising results in terms of floating debris detection
capability. Results of this study showed that METEOR outperformed competitor and baseline methods.
However, this study did not analyse the impact of the support set selection on the model’s performance.
Using a few-shot meta-learning approach such as METEOR for floating plastic detection seem promising
considering their ability to adapt to new tasks only with a few training samples. Yet, it should still be
tested how the selection of the support set impacts the plastic detection performance of such a model.
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2.3.2. Active Learning

Active learning is a technique that aims to optimize the annotation process by selecting the most
informative samples for labeling [33]. In the context of detecting floating marine debris, where acquiring
labeled data can be time-consuming and expensive, active learning offers a valuable approach. By
actively selecting samples that are likely to improve the model’s performance, active learning reduces
the annotation effort and enhances the efficiency of plastic detection systems.

Various strategies and techniques have been employed in the field of active learning to enhance the
annotation process and improve model performance. These strategies aim to intelligently select samples
for annotation that would provide the most valuable information to the learning algorithm. Some
commonly used strategies will be presented below.

Uncertainty-Based Sampling:

Uncertainty-based sampling is a widely adopted strategy in active learning [34]. It involves selecting
samples for annotation that are associated with high uncertainty in model predictions. This can be
achieved by measuring the entropy of the model’s predicted probability distribution or using other
uncertainty estimation methods. By focusing on samples that the model finds most challenging
or uncertain, uncertainty-based sampling aims to refine the model’s understanding of the decision
boundary and improve overall accuracy.

Query-by-Committee (QBC) is another popular active learning strategy that falls under uncertainty-
based sampling [34]. It involves training an ensemble of models with different initializations or
variations in the training data. These models form a committee that represents different hypotheses
about the unlabeled data. The committee members then "vote" on which samples to query for annotation.
Disagreement among the committee members indicates uncertainty in the predictions and prompts
the selection of samples for annotation. QBC aims to capture diverse perspectives and address model
uncertainty by selecting samples where the committee shows the most disagreement.

Diversity-Based Sampling:

Diversity-based active learning methods play a crucial role in selecting informative samples that cover a
wide range of instances and improve the generalization capabilities of machine learning models [35].
These methods aim to ensure that the selected samples are diverse enough that they can represent the
whole dataset. One example of a diversity-based active learning method is cluster-based sampling.

Cluster-based sampling involves identifying clusters or groups of similar instances in the dataset
and selecting representative samples from each cluster. By considering the diversity among clusters,
cluster-based sampling ensures that the selected samples span a wide range of variations present in
the data [36]. This approach enhances the model’s ability to generalize effectively by capturing the
variability and distribution of instances [34]. Cluster-based sampling techniques often employ clustering
algorithms, such as k-means, to group similar instances together [36]. The representative samples
selected from each cluster contribute to a more comprehensive understanding of the dataset and can
help address the bias that may arise from focusing on specific regions or instances. By incorporating
cluster-based sampling into the active learning process, models can benefit from diverse perspectives
and achieve better coverage of the data space, ultimately leading to improved performance in tasks such
as plastic detection.

These strategies represent a subset of the wide range of techniques used in active learning. Researchers
continue to explore and develop new approaches that suit specific domains and tasks. The choice of
strategy depends on the characteristics of the data, the learning algorithm employed, and the available
resources.

The combination of few-shot meta-learning and active learning offers a promising approach for floating
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marine debris detection. By leveraging the strengths of these methodologies, this innovative approach
addresses the challenges of limited labeled data. Few-shot meta-learning enables quick adaptation and
classification with minimal labeled examples, while active learning enhances the annotation process
by selecting informative samples. This synergy enhances efficiency, and generalization capabilities,
contributing to effective detection and monitoring of floating marine debris, as well as supporting
environmental preservation.

2.4. Knowledge Gap

As mentioned in the previous section, the marine debris detection is a new field of research and this
also means there is a large knowledge gap to be covered by new studies. This also means that there are
various possible directions for research, and any future study should carefully select focus points to
ensure valuable results. This section will identify the most important parts of the knowledge gap within
the field and clarify the choice of research objective for this thesis presented in the next chapter.

G1. Limited availability of training data: The one challenge mentioned by all studies is the limited
availability of training data. Especially since floating debris detection is a niche topic, there is only
a limited amount of available data. Performance of machine learning algorithms heavily depends
on the size and the quality of the training data set. As it is very expensive and time-consuming to
collect more data on marine floating debris, the best approach would be using detection methods
which do not require a large amount of training data to perform well. One such approach is
few-shot meta-learning which makes it possible to train a model on a large set of data from another
application and then fine-tune and apply it to floating debris detection with only a few labelled
samples. This approach has only been tested once for plastic detection so far. Experimenting with
the use of few-shot meta-learning on floating debris detection would therefore produce valuable
knowledge for the scientific community.

G2. Active few-shot meta-learning being unexplored: As mentioned in the previous point, few-shot
meta-learning is a promising solution to limited availability of training data. However, few-shot
meta-learning models are expected to suffer from a low-performance support set if the samples are
not selected to optimize for diversity and representativeness. The literature study suggested that
active learning could ensure that informative samples are selected for the support set. However,
there is no research on using active few-shot meta-learning for plastic detection. Even in other fields,
this is a very novel topic and therefore any new study is expected to benefit the scientific community.

G3. Informative sampling selection challenge: Active learning seeks to identify the most informative
samples from a vast dataset to optimize model learning with minimal data. However, the precise
definition of "informative" and the selection of appropriate active learning methods for specific
applications remain uncertain. Consequently, when it comes to detecting floating debris using
active few-shot learning, the suitability of various active learning strategies remains unclear.
Therefore, it is crucial to explore different methods extensively before drawing any conclusions
regarding the effectiveness of this approach.

G4. Unexplored performance on realistic class imbalance: The proportion of pixels in satellite images
of coastal areas with plastic debris is noticeably low compared to the vast majority of pixels that
represent land or water. Due to their tendency to favor the dominant classes, machine learning
models may find it difficult to recognize and classify the minority class of plastic debris because of
this inherent class imbalance. As a result, little is known about how well these models perform
under a realistic class distribution. The fact that this aspect has not been the subject of in-depth
research suggests that there is a significant knowledge gap. Closing this knowledge gap will aid
in the creation of more effective plastic detection systems.

G5. Poor generalization ability of existing models: Another challenge often mentioned by previous
studies is the poor generalization ability of models. This mainly has to do with the limited
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availability of training data with large spatial coverage. An ideal model should be able to detect
plastics at any location and also at different times at the same location. Future research should
develop advanced methods to improve generalization abilities of detection models and test their
generalization performance.

Analysis of the identified knowledge gaps has provided insightful information about current constraints
and areas that need more research. The research questions and an explanation of how they aim to
address and close the aforementioned gaps will be presented in the following chapter.



Research Description

Considering the knowledge gaps which were identified in the previous chapter, a new research has been
proposed. The primary objective of this research is to evaluate the efficacy of an active learning approach
coupled with a few-shot meta-learning model for the detection of floating marine debris. By incorporating active
learning, the most informative samples for annotation will be selected, maximizing the learning gain of
the model within the limitations of available resources.

The main research question is:

How can informative training images be selected for a few-shot meta-learning model to
detect floating marine debris patches on publicly available satellite data?

The main research question can be further divided into the following sub-questions. The answers to
these sub-questions will combine to provide an answer to the main research question.

SQ-1.
SQ-2.

SQ-3.

How does a few-shot meta-learning model perform compared to a conventional deep neural
network for marine debris detection?

How do uncertainty based and diversity based active learning methods compare for this applica-
tion?

How do the sampling strategies perform when there is a more realistic class imbalance?

Answering these research questions will attempt to close each knowledge gap identified in the previous
chapter in the following manner:

Gl

Limited availability of training data: Using few-shot meta-learning and active learning together
reduces the number of labelled samples needed for training as much as possible. By selecting the
best samples for the model to learn how to distinguish plastics on satellite images, it is ensured
that the model will reach an acceptable performance only with a small amount of training data.
This would address the problem of needing an extensive data collection and labelling campaign
for floating debris detection. With a well-developed few-shot meta-learning model, only a few
labelled samples can be sufficient. All these mean that answering the main research question
directly addresses this knowledge gap.

1
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G2. Active few-shot meta-learning being unexplored: This study will close this knowledge gap
by answering the first sub-question (SQ-1). The comparison between the active few-shot meta-
learning model and a conventional deep learning model will provide insights on how such a
model performs compared to a well-known model. The outcomes of this study will provide new
information on how active learning and few-shot learning can be combined.

G3. Informative sampling selection challenge: Different active learning methods will be compared
as a part of this study to answer the second sub-question (SQ-2). By comparing various active
learning methods, this study will explore which strategies work better with the few-shot learning
model and the data at hand. The performance of these different methods will provide information
on how well these selection strategies can pick informative samples.

G4. Unexplored performance on realistic class imbalance: Answering the sub-question 3 (5Q-3) will
provide information on how a more realistic class imbalance would impact the performance of an
active few-shot meta-learning model. By comparing the performance results in a more balanced
setting to an imbalanced setting will demonstrate the difference and reveal the possible impacts of
the severe class imbalance on floating marine debris detection field.

G5. Poor generalization ability of existing models: While the primary focus of this study does not
specifically evaluate generalization performance in-depth, it indirectly addresses this knowledge
gap. The ability to effectively fine-tune a classification model using only a limited number
of labeled samples and subsequently apply it to a new region would effectively mitigate the
generalization challenges faced by debris detection systems. If the model can be easily fine-tuned
for any region with only a few labeled samples, the issue of generalization would no longer present
a significant challenge.

The study and its results that answer these research questions will be presented in the next chapter.
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Effective support set selection for few-shot detection of
floating marine debris

Dilge Giil, Devis Tuia, Jurgen Vanhamel, Marc RuSwurm
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Abstract: Marine litter, particularly plastic debris, poses a significant environmental challenge globally.
Detecting floating debris in the marine environment using satellite remote sensing remains a complex
task due to the limited availability of high-resolution data and the coarseness of existing datasets.
This study explores the potential of active few-shot meta-learning for improving the detection of
marine debris. The results demonstrate that active learning methods incorporating uncertainty-based
sampling, such as entropy and query by committee, outperform other strategies in terms of recall and
average precision. Yet, diversity-based methods are found to be limited by the poor representativeness
of the feature space used for clustering samples. Additionally, the study highlights the influence
of regional characteristics on detection performance and the impact of class imbalance on active
learning strategies. To further enhance marine debris detection, future research directions are identified,
including training meta-models specifically on marine debris data and tuning decision thresholds. The
suggested methodology shows promise for enhancing the efficiency of remote sensing-based monitoring
of marine debris, thereby assisting environmental management and conservation efforts.

Keywords: marine plastic pollution, floating debris, remote sensing, multi-spectral detection, deep learning,
meta-learning, few-shot learning, active learning

4.1. Introduction

Marine litter is a growing problem caused mainly by human-created trash, and significant amounts
of plastic can be found in the oceans due to the unfiltered discharge of waste into rivers, poor waste
management, or lost fishing nets. According to the United Nations Environment Program, about 70% of
marine litter sinks to the ocean floor, while the remaining, which mainly consists of plastic, floats on the
surface of water bodies and can be aggregated by processes such as river plumes, windrows, oceanic
fronts, or currents [16].

Research on macro-debris detection is recent, but studies on plastic detection using airborne data,
models, and theoretical studies have demonstrated the potential to detect macro-plastics in optical data
[12]. Satellite remote sensing is the leading technique for collecting high-quality, standardized optical
imagery on global scales, but few studies have succeeded in detecting floating macro-plastics in the
marine environment due to temporal, spatial, and spectral coarseness of available data [8]. The currently
available datasets are relatively limited in number and do not usually use open-access high-resolution
satellite data over geographically extended areas. These facts limit the utilization of satellite data to
detect marine debris by machine learning frameworks [24].

Hand-engineered spectral characteristics and basic classifiers on satellite photos were used in early
attempts to combine remote sensing and machine learning to detect floating marine debris [12]. Then,
the next step was to use the full multi-spectral data from satellites together with deep learning techniques.
However, these techniques require a significant amount of training data which is difficult to get for
marine debris. Few-shot meta-learning has emerged as a promising approach for addressing this issue
as it enables the development of models that can effectively learn from a limited number of labeled
examples [9]. Few-shot meta-learning algorithms can quickly adapt to new scenarios by selecting an
effective support set, making them an ideal choice for marine debris detection applications. In this
article, we investigate the use of effective support set selection for few-shot detection of floating marine
debris, demonstrating the efficacy of this approach on a real-world dataset.
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Marine debris detection can benefit from the human-in-the-loop concept, such as active learning, in
addition to few-shot meta-learning. By incorporating human-in-the-loop approaches, the detection
process can leverage the expertise and knowledge of human annotators. With active learning, the model
can perform well with fewer labeled samples by iteratively choosing the most informative samples for
fine-tuning [37]. In the case of detecting marine debris, where there is a lack of labeled data, active
learning can significantly lessen the labeling effort while enhancing the model’s performance. The
few-shot meta-learning framework can be furthered by incorporating active learning to increase the
effectiveness of the detection procedure [30]. In order to improve the effectiveness of machine learning
algorithms in the detection of marine debris, this research analyzes the possibility of human-in-the-loop
approaches in addition to addressing the issue of limited labeled data.

4.2. Related Works

There are two main fields that are relevant to this paper’s research topic: few-shot meta-learning and
active learning. These two fields are relevant since the goal of this research is to analyse how the support
set of a few-shot meta-learning model could be selected effectively using active learning methods. Below,
some background information on these two topics is provided.

Few-shot meta-learning: While machine learning has been successfully used for many applications,
it often fails when the amount of training data is limited. Few-shot meta-learning has recently been
developed to tackle this problem [31]. The goal of few-shot meta-learning is to mimic the ability of
humans to adapt to new concepts using their prior knowledge [38]. In the context of few-shot detection
of floating marine debris, few-shot meta-learning can be used to quickly adapt to new detection tasks
with limited labeled data. To apply few-shot meta-learning, a meta-model is trained on a large set
of tasks with few labeled examples or one task with large amount of training data first [9]. Then, a
task-model is created by fine-tuning the meta-model for the desired task using a few labeled examples
as a support set. The model is able to generalize to the new detection task by learning the underlying
patterns or "meta-knowledge" from the initial training step. The quality of the few labeled samples in
the support set has a significant impact on the performance of the model [28].

Active learning: Another approach to machine learning that seeks to improve the efficiency of the
learning process is selecting the informative samples for the training of models. This approach is called
active learning, and it introduces the human-in-the-loop concept as a human annotator is actively
labelling new samples and feeding them to the model as the training progresses [30]. Two active
learning categories are uncertainty-based and diversity-based learning. Uncertainty-based methods
involve selecting samples with high prediction uncertainty, while diversity-based methods focus on
maximizing diversity in the selected samples [28]. In the context of few-shot detection of floating marine
debris, active learning can be used to further reduce the number of support set samples required for
fine-tuning of the meta-model. At any point during fine-tuning, the support set can be enriched by
samples which are actively selected and this process can be repeated iteratively to improve the model’s
accuracy. Ideally, the active selection will ensure the selection of most effective support set samples
earlier in the process and will always outperform a randomly selected support set with the same size.
Active learning has shown promising results in various computer vision tasks, and can be combined
with few-shot meta-learning to further improve the detection accuracy while minimizing the labeling
cost [39].

Despite the potential of active few-shot learning in floating marine debris detection, its application
in this field has been largely unexplored. Both active learning and few-shot learning techniques have
yet to be utilized for the specific task of detecting marine debris. Initial studies in the field relied
on hand-engineered spectral features and simple classifiers, which were constrained by the limited
informativeness of these manually crafted features. Subsequently, researchers introduced deep learning
models to extract more complex features for marine debris detection. However, this approach heavily
relied on the availability of extensive training data, which is often lacking in the context of floating
marine debris. The scarcity of labeled training data poses a significant challenge and calls for innovative
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approaches, such as active few-shot learning, to address the limitations and enhance the effectiveness of
floating marine debris detection.

4.3. Materials

This section will present the materials used in this study, namely the data and the models. This study
uses the RefinedFloatingObjects data archive as floating marine debris data [29], which will be presented
in more detail in subsection 4.3.1. The chosen few-shot deep learning methods for this research is the
METEOR ("a METa-learning framework for Earth Observation problems across different Resolutions")
[9]. A ResNet-18 trained for this application in a fully supervised way is going to be used as the
comparison model since it provides a high accuracy example. More information on these models will
be presented in subsection 4.3.2.

4.3.1. Data

There are six datasets from six distinct regions used as part of this research. These regions are Lagos
(Nigeria), Marmara (Turkey), Venice (Italy), New Orleans (United States), Accra (Ghana), and Durban
(South Africa). These datasets are from the RefinedFloatingObjects archive created by Ruffwurm et al.
[29]. Part of this archive is created by re-annotating a subset of the FloatingObjects archive created by
Mifdal et al. [16] in Google Earth Engine (GEE) to reduce label noise. This part consists of the regions
Lagos, Venice, New Orleans and Accra. The other two regions, Marmara and Durban are added for the
validation of the model developed by the study of RuSwurm et al. [29]. The selection of all six regions
was done by exploring news items or social media posts that pointed to existing floating marine debris
on the sea surface. The same applies for the dates and time the data was retrieved since the existence of
debris depends on the dynamic motions of ocean currents, and the location or the shape of the debris
can change over time.

This study will use the same approach as to how the scenes in the RefinedFloatingObjects archive are
sampled for training or validation. Using this approach, 128 px x 128 px patches centered on each
annotated point will be extracted, each labelled either as marine debris (class 1) or other /non-debris
(class 0). To provide their model with diverse set of non-debris examples, which are anything but
marine debris, the class 0 contains various objects or materials such as water, land, coastline, and ships
[29]. It is important to note that the nature of debris is different in each dataset. Marine debris refers to
any floating object on the surface of sea water, but the floating objects can still be anything from natural
debris to plastic litter. This brings significant diversity to the characteristics of pixels labelled as marine
debris.

The Sentinel-2 imagery retrieved and labeled for the creation of the RefinedFloatingObjects archive
includes two different formats: L1C (top-of-atmosphere) and L2A (bottom-of-atmosphere). L2A data
undergoes atmospheric correction using the Sen2Cor processor, reducing noise and improving quality
[40]. Whenever available, L2A data was used due to its higher quality. However, for the Marmara and
Accra regions where L2A data was not published, L1C data was used. Preliminary tests demonstrated
that combining L1C and L2A data did not significantly impact model performance. Hence, the
RefinedFloatingObjects data is used as it is. However, it is recommended to employ specialized processing
with atmospherically corrected data for optimal model performance if resources and time allow.

The Sentinel-2 Multi Spectral Instrument (MSI) consists of 13 spectral bands, ranging from visible
to near infrared and short-wave infrared, at various spatial resolutions, with the highest being 10 m
[41]. Therefore, the RefinedFloatingObjects used in this study includes these 13 spectral bands as well.
However, band 10, which does not provide bottom-of-atmosphere information, is excluded from L2A
data, making it possible to use L1C and L2A data together. The information from the remaining 12
spectral bands is utilized, as multi-spectral data enhances detection performance by providing detailed
scene information and enabling the detection of subtle differences between debris and non-debris pixels
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Figure 4.1: Red Green Blue (RGB) visuals of debris samples from each region. The samples are visualized using multi-spectral
data, highlighting the differences in appearance attributed to the unique spectral characteristics of each location. [World map
from https://www.maptorian. com]

[16].

The ResNet-18 model used in this study for comparison follows the same training procedure as
performed by RufSwurm et al. for their study’s model [29]. The four regions Lagos, Marmara, Venice
and New Orleans are used to train the model while regions Accra and Durban are used for testing. The
summary of all information on the six datasets presented in this section can be found in Table 4.1.

Table 4.1: Information about the datasets used in this study including the type of data, size of datasets, nature of debris at each
region and whether the dataset was used for training or testing of the ResNet-18 model.

ID Region Type Size  Nature of debris ResNet-18 split
0 Lagos L2A (corrected) 678  Plastic, pumice, and other debris Training

1 Marmara L1C (raw) 197  Floating algae (sea snot) Training

2 Venice L2A (corrected) 569  Sea foam with plastics and other debris Training

3 New Orleans L2A (corrected) 1029 Mostly other debris Training

4 Accra L1C (raw) 1506 Sea foam with pumice, plastics and other debris  Test

5 Durban L2A (corrected) 701  Sargassum patches with entangled plastics Test

The experiments will include testing the performance of all the methods on a more realistic class
distribution as well. According to RuSwurm et al., on a Sentinel-2 image that is used in the FloatingObjects
data archive, only about 0.05% of the pixels contain marine debris [29]. Looking at Table 4.2, it is
evident that the data utilized in this study deviates significantly from a realistic class distribution. The
training data for ResNet-18 contains a higher proportion of debris pixels to non-debris pixels compared
to a realistic scenario, and the test regions also show an unrealistic distribution. Consequently, it is
important to assess the performance of the approach developed in this study under a more realistic
class distribution. While the severe class imbalance poses a challenge for any object detection model,
evaluating their performance under such conditions is crucial as it can reveal specific areas of difficulty
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and inform future improvements.

Table 4.2: Class distribution of all training and test regions. "%Debris" represents the percentage of debris out of the total size.

ID Region Total Size Debris Non-Debris %Debris
0 Lagos 678 336 342 49.6%
1 Marmara 197 62 135 31.5%
2 Venice 569 197 372 34.6%
3 New Orleans 1029 275 754 26.7%
Total training set 2473 870 1603 35.2%
4  Accra 1506 740 766 49.1%
5 Durban 701 163 538 23.3%
4.3.2. Models

This section will present the two models that are used as part of this study: METEOR which is the
few-shot meta-learning model, and ResNet-18 which is the comparison model. These models will be
presented in three subsections: the first one introducing their architectures, the second one describing
their pre-training procedures, and the third one explaining their fine-tuning processes.

Model Architectures

The METEOR model is based on a deep ResNet-12 neural network architecture, which has been
designed to address various Earth observation problems across different sensors and geographies,
including marine plastic debris detection. METEOR utilizes a model-agnostic meta-learning algorithm,
which enables the extraction of meta-data from extensive land cover classification data. This extracted
meta-data forms the "meta-model" of METEOR. This meta-model can effectively encode knowledge from
source task and transfer it to a target task, a process referred to as model-based transfer learning. The
meta-model is then fine-tuned into a task-specific model for a particular target task, such as the detection
of deforestation or urban scene classification. This fine-tuning process, known as few-shot learning,
requires only a few labeled images for adaptation. The overall process of METEOR is summarized in
Figure 4.2.

ResNet-18 is a widely used deep neural network architecture that has shown remarkable performance
in various computer vision tasks, including remote sensing and Earth observation applications [42].
However, training such deep models can be challenging because the information flowing through the
layers can become very weak and difficult to learn from. To overcome this problem, ResNet-18 uses a
technique called residual learning [43]. Instead of trying to directly learn the complete transformation
from input to output, the model focuses on learning the difference between the input and the desired
output. This difference is called the residual.

ResNet-18 includes special connections called shortcut connections to make learning easier [43]. These
connections allow information to skip one or more layers and directly reach further layers. These
shortcuts help the model by providing alternative paths for information to flow through the network.
They ensure that important information from earlier layers is preserved and that the model can effectively
learn from it. The main advantage of these shortcuts is that they prevent the information from getting
too weak or disappearing altogether as it passes through many layers. By keeping the information flow
strong, ResNet-18 can learn intricate patterns and achieve high accuracy even with a large number of
layers. So, these shortcut connections are like shortcuts that help the model learn better and handle
deep networks successfully.

The architecture of the ResNet-18 model used in this study is depicted in Figure 4.3.
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Figure 4.2: Concept of METEOR summarized. The left side shows the model’s pre-training on land cover classification, and the
right side shows the implementation of the model on other tasks [9].

Pre-Training Procedures

For the METEOR model, the pre-training process involves training the meta-learning algorithm on
extensive land cover classification data. A deep ResNet-12 neural network was trained using 16 photos
from the Sen12MS dataset, which contains imagery with 15 input channels representing two radar
bands from Sentinel-1 and 13 spectral channels from Sentinel-2 [44]. The meta-model was pre-trained
on four randomly selected land use and land cover classes from a specific geographic area [9]. The
resulting meta-model captures the knowledge from the land cover classification task and serves as the
basis for subsequent fine-tuning.

Unlike METEOR, the ResNet-18 model follows a conventional supervised pre-training procedure. It
requires a large amount of labeled training data to perform well on a classification task. In remote
sensing applications, ResNet-18 has been utilized for various tasks, including land cover classification,
object detection, and semantic segmentation [14]. While ResNet-18 has demonstrated high accuracy and
robustness in similar applications, it has not been directly applied to floating marine debris detection.
Nevertheless, it is expected to perform well in this domain, given its track record and ability to handle
changes in image quality and environmental factors [14].

Fine-Tuning Processes

Fine-tuning involves updating the model parameters using a limited number of labeled samples from
the target task. For METEOR, the fine-tuning process focuses on transforming the meta-model into a
task-specific model using few-shot learning techniques. The fine-tuning is facilitated by the knowledge
encoded in the meta-model, allowing for effective adaptation to the debris detection task. A few labelled
samples from the test set is used to fine-tune the meta-model, and then the model is used to classify the
rest of the test set. On the other hand, ResNet-18 comparison model does not have a fine-tuning process
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Figure 4.3: Architecture of the ResNet-18 model where (both the solid and dashed) arrows between layers represent the shortcut
connections [43].

in this study. The pre-trained model is directly tested on the test samples.

Overall, in spite of their shared architecture, the METEOR and ResNet-18 models have unique qualities
that should be emphasized. The different training goals of these models have a big effect on how they
are supposed to be used and deployed. Additionally, each model’s fine-tuning procedure differs due

to their various pre-training regimens. As a result, there are significant functional and optimizational
differences between the METEOR and ResNet-18 models.

4.4. Methods

In this study, the main goal is to test and compare various sampling strategies to sample the support
set of METEOR. The strategies will be compared to random sampling as well as to the performance of
the comparison model ResNet-18. To design a fair comparison experiment, all strategies will be tested
using the same procedure. The basis of this procedure is explained by Algorithm 1

Algorithm 1 Basis of sampling procedure

1: Initialize METEOR meta-model

2: Select 1 random sample from each class

3: while support set size < desired value do

Pick 2 samples using the sampling method

Add those 2 samples to the support set

Fine tune the model with the extended support set

Test on remaining samples and update evaluation metric

The selection of a sample represent the user labelling the samples picked by the sampling strategy to
feed them into the model in the real life use case. Similarly, for the first step, the user is supposed
to select one sample from each class (debris and other) and label them to create the initial one-shot
support set. This selection can be made deliberately if the user has experience in selecting representative
samples. However, for the experiments in this study, these two samples will be picked randomly.

There are two groups of sampling strategies that will be tested and compared in this study: uncertainty-
based active learning methods and diversity-based active learning methods. The uncertainty-based
methods refer to selecting samples that the model is most uncertain about their class prediction.
Two common uncertainty-based sampling strategies that will be used in this report are entropy and
query-by-committee methods. The diversity-based sampling strategies select samples to optimize their
diversity. This study will use different feature space mappings as the representation of samples and

select the ones that maximize diversity in the support set using a clustering based method. This section
will explain the principles of these sampling strategies.
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4.4.1. Uncertainty-Based Sampling

For uncertainty-based sampling methods, the first sampling step consists of measuring the uncertainty
of each sample’s prediction in terms of the chosen metric. Then, the most uncertainly classified samples
are added to the support set and the prediction uncertainties are updated once the model is fine-tuned
by the extended set and evaluated on the test set. This procedure is visualized in Figure 4.4.
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two chosen
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about
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Figure 4.4: The diagram showing the procedure used for uncertainty-based sampling methods.

In this study, two distinct uncertainty-based sampling methods will be tested, each employing a different
metric to quantify the model’s uncertainty regarding a sample’s prediction: entropy and disagreement
among a committee of classifiers.

Entropy Based Sampling

Entropy is a measure of uncertainty, and is the most common uncertainty metric used in uncertainty-
based sampling [34]. This study defines entropy of the k" sample as follows:

H(px = = (pixlog(pik) + (1 —pix)log(l-pir)) (4.1)

where p;  is the confidence score predicted for class 1 and hence making 1 —p; ; the confidence score
for class 0 in the binary classification setting [45].

The entropy value will be interpreted as follows: If the entropy is close to 50%, it means that the model
is very uncertain. However, if the entropy is close to 1% or 99%, it means that the model is fairly certain
about its prediction.

To actively sample using the entropy metric, the value for the entropy will be calculated for each sample
at every step, and the samples with the highest uncertainty will have priority when the support set is
being extended.
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Query-By-Committee Method

Query-by-committee method involves the use of a committee of models which use different subsets
of the training data and therefore each represent a different hypothesis about the underlying data
distribution [34]. For active selection of the samples, the disagreement between the committee members
are used as the uncertainty metric. In this study, the disagreement is defined as the highest standard
deviation of predictions made by all committee member models, where there is three of them. This
metric can be formulated as follows:

(4.2)

where N is the number of committee members and p; x is the confidence score predicted for class 1.

The samples with the highest standard deviation between class probabilities will be selected and labelled
by the user to extend the support set.

4.4.2. Diversity-Based Sampling

This study is going to employ a clustering method as the diversity-based sampling strategy. The main
difference between the uncertainty-based and clustering based methods is the additional aspect of
considering the relationship between different samples for diversity-based models. These methods use
the location of samples in the chosen feature space to make sure the support set represents all "kinds"
of samples in the training set. This adds another layer to the sampling procedure. At each step, not
only the specific samples but also the clusters the samples belong to are selected. The clustering is done
before the sampling starts, so each sample belongs to a cluster. The sampling strategy is then to pick
samples looking at both their uncertainty in prediction and cluster label. The diversity-based sampling
strategy is visualized in Figure 4.5.
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Figure 4.5: The diagram showing the procedure used for the most advanced diversity-based sampling method which picks the
most uncertain samples from the least represented cluster at each step.
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Since a few-shot learning model only sees a handful of samples before making predictions on the whole
dataset, it is crucial that the support set represents the whole dataset. It is expected that the model
will predict more accurately if the support set is diverse and therefore can represent every part of the
data distribution [35]. Cluster based sampling is a method that aims to maximize diversity among the
samples in the support set. Increasing diversity increases the representativeness of samples as well [46].
Unlike uncertainty-based sampling methods, cluster based methods explore the parts of the feature
space that is not in close proximity to the classification boundary. The difference can be visualized as
such in Figure 4.6. In this figure, the gray area is where uncertainty-based methods are likely to explore
as it is the region the model is most uncertain about [46]. diversity-based methods are able to explore
the green and blue regions at the same time as both regions would increase the diversity in terms of
different locations on the feature space. Furthermore, the blue region might never be explored unless
diversity is considered since it does not contain any existing samples and is also far from the decision
boundary. This is why diversity-based methods often outperform uncertainty-based methods [46].

Figure 4.6: Example feature space where blue line is the classification boundary and the red samples are the labelled ones. The
gray region can be explored by uncertainty-based sampling, while the green and blue regions can be explored by diversity-based
sampling. The visual is inspired by [46].

Exploring a larger area of the feature space is useful for better generalization of the model. However, it
also increases performance by preventing the model from overfitting [47]. Figure 4.7 shows how using
clustering methods for actively sampling training data can improve classification performance. This
improves the model’s generalization performance as well.

: ground truth distribution

calibrated distribution Q

few-shot features Y

features sampled from
calibrated distribution

class boundary —
Classifier trained with Classifier trained with features
few-shot features sampled from calibrated distribution

Figure 4.7: The left side shows how the model overfits when only a few samples are provided while the right side shows how the
performance improves when more training points are sampled using cluster based selection [47].

In this study, the clustering based sampling will be performed as follows. First, the samples need to
be clustered in terms of their representation. This representation is chosen as a randomly initialized
ResNet-18 model’s features. Once the features are extracted for each sample, the feature space will be
divided into clusters using k-means clustering. K-means algorithm is a simple and popular clustering
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algorithm in machine learning [48]. These clusters are used to ensure that samples from different
clusters are selected while sampling, hence increasing diversity in the support set.

This study will explore three different cluster based sampling strategies. The first one is a random
selection strategy and is performed mostly as a comparison case. In this cluster sampling, first a random
cluster is picked, and then a random sample within that cluster is added to the support set. This strategy
is different than selecting random samples from the complete dataset since now the probability of
picking any cluster is uniformly distributed.

The second cluster based method still samples a random sample from the picked cluster, but this time
the clusters are picked according to how well they are represented in the support set. This strategy
prioritizes selecting samples from the least seen clusters. This way, it is ensured that each cluster is
represented int he support set, maximizing diversity of clusters.

The final cluster based sampling strategy again picks the most unseen cluster at each step, but to build
upon that, it also considers the uncertainty of samples in each cluster. Once the least seen cluster
is picked, the entropy of the samples in that cluster is used to pick the ones that the model is most
uncertain about. Therefore, it is ensured not only that all clusters are represented in the support set, but
also that the model learns the labels of the samples it is least confident about.

4.5. Experimental Setup

This section provides an overview of the evaluation metrics and hyper-parameter tuning employed
in this study. It delves into the evaluation metrics used to measure the effectiveness of the model and
the process of hyper-parameter tuning to enhance its performance. By systematically examining these
aspects, the study aims to ensure robust and reliable experimentation, leading to meaningful insights
and advancements in the field of floating marine debris detection.

4.5.1. Evaluation Metrics

This study will focus on comparing the models and the sampling strategies in terms of recall and
average precision. The selection of the evaluation metric was done after a short study of various
potential metrics. Accuracy is the most common evaluation metric to compare machine learning models.
However, especially when there is a significant class imbalance in the data, accuracy can be meaningless.
If a model is predicting only one class in a binary classification setting, it would still have high accuracy
but the model would not actually be performing well in terms of detecting both classes. This is why it is
often necessary to look into recall and precision as well, which are calculated as shown in Equation 4.3
and Equation 4.4.

True Positives
Recall = 4.
€@~ True Positives + False Negatives (*3)

Precision True Positives (4.4)
ision = — — .
True Positives + False Positives

For this study, recall represents how much of the total debris was detected by the model while precision
represents how much of what was labelled as debris by the model was actually debris. Since the goal
of this study is to build towards a model which can detect floating plastics for cleanup purposes, it is
prioritized that all plastics are detected. Only then, the marine environment can be plastic free. This
would mean that recall is a prioritized evaluation metric. However, only focusing on recall would mean
that the precision is not considered. This could lead towards a model that is predicting too many false
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positives. Therefore, it is important to have another metric that can be used to check the balance between
recall and precision. This study will use average precision as this metric.

Average precision is equal to the area under the precision-recall curve which is constructed by recall
and precision values at different thresholds [49]. By using the weighted mean of precision values
achieved at different thresholds, average precision becomes independent of the specific threshold used
for predictions [50]. This is a very useful characteristic especially when the distribution of classes in the
dataset is very imbalanced. Marine debris detection is such an application as explained previously in
this section. As a metric which summarizes the trade-off between recall and precision in one value,
average precision is useful as an additional metric to recall considering the goal of this study to prioritize
recall without risking too low of a precision.

Experimenting on the performance of ResNet-18 and METEOR with various sampling strategies make
it possible to compare them with each other. However, none of these numbers represent what the
highest achievable performance is. Therefore, a Single Shot Oracle (SSO) method, inspired by the Single
Instance Oracle [37], will be included in the results. The SSO will test various additions to the support
set at each step and pick the ones that increase the chosen metric, in this case the average precision, the
most. The performance of SSO will represent how much performance improvement can be expected
from an "ideal" sampling strategy. This will both ensure that the expectations are kept realistic, and also
how well each sampling strategy is actually performing compared to what is achievable.

4.5.2. Hyper-Parameter Tuning

In order to optimize the performance of the active few-shot learning model, the following hyper-
parameters were considered and tuned.

¢ Number of shots: Up to how many shots the experiments will run and the step size have been
picked considering the real use case the method is being developed for. The main goal for using
a few-shot meta-learning model with active sample selection methods is to keep the labeling
effort to a minimum. Therefore, the upper limit to how many shots have been tested has been
selected as 20. This represents a number that is low enough that labeling effort is reduced but is
also large enough of a support set size to compare with lower number of shots. The step size has
been chosen to be 2 since few-shot approach often increments one sample from each class while
extending the support set.

¢ Number of random initializations: As introduced in section 4.5, the randomness due to different
initializations were also accounted for in the experiments. To reduce the bias, each method has
been run 20 times and the mean results of all the runs have been used as the output. The number
20 was selected as a result of the trade off between variance and bias.

* Number of clusters for diversity-based methods: For the selection of this hyper-parameter, 2 to 5
number of clusters have been tested. The final value was determined based on this comparison
study based on manual experimentation and the monitoring of performance on a validation set.
Even though there were no large differences in the maximum accuracy reached by models using
different numbers of clusters, some of them showed faster convergence. Using 4 clusters yielded
the fastest convergence speed and therefore has been chosen as the number of clusters to be used
throughout the rest of this study.

4.6. Results and Discussion

In this section the results of the study will be presented and discussed. Table 4.3 showcases the
performance of different sampling strategies, comparison sampling methods, and the ResNet-18 model
in terms of recall and average precision on the Durban dataset.
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Table 4.3: Recall and average precision of various methods on Durban region with different sizes of support sets. These results
are for the original distribution of the two classes. The values represent the mean value of 20 different random initializations.

3-shots 5-shots 10-shots 15-shots

Recall
ResNet-18 0.22 0.22 0.22 0.22
Single Shot Oracle 0.40 0.41 0.43 0.45
Random 0.34 0.24 0.22 0.26
Entropy 030 022 025 026
Query by committee 0.25 0.23 0.25 0.29
Random clusters & random samples 0.29 0.29 0.21 0.19
Unseen clusters & random samples 0.23 0.18 0.23 0.21
Unseen clusters & uncertain samples 0.20 0.15 0.14 0.12

Average Precision

ResNet-18 0.63 0.63 0.62 0.63
Single Shot Oracle 0.35 0.40 0.48 0.50
Random 0.29 0.31 0.36 0.41
Entropy 031 034 039 042
Query by committee 0.32 0.35 0.40 0.43
Random clusters & random samples 0.29 0.33 0.38 0.40
Unseen clusters & random samples 0.27 0.28 0.33 0.37
Unseen clusters & uncertain samples 0.29 0.29 0.29 0.28

These results suggest that ResNet-18 does not perform very well in terms of recall, even though it
reaches to 82% accuracy in the original class distribution. Recall represents the amount of samples that
were successfully labelled as debris out of all debris instances. Therefore, the lower recall of ResNet-18
suggests that the model is not necessarily good at detecting every debris in the data. This could mean the
model is not suited for this task, but it could also be that the threshold is not selected well considering
the class imbalance. The classification threshold refers to the probability or prediction score above
which an instance is assigned to one class, and below which it is assigned to another class. In this
particular setting, a threshold of 50% is used, where a prediction score above 50% indicates debris (class
1) with greater certainty than class 0. The precision of ResNet-18 can be up to 97% in the original class
distribution. This suggest that almost all the samples labelled as debris by the model actually contain
debris. Reducing the threshold would mean reducing the precision while increasing the recall. This
would happen because the model would start labelling samples as debris even when it is not at least
50% sure that it actually is debris. On the other hand, since recall is priority for this application, this can
be a way to improve ResNet-18’s detection performance.

In this study, the Single Shot Oracle method has been used for the average precision metric. This
method’s performance does not necessarily represent the upper bound in terms of recall since it is
optimized for average precision, but it is still a valuable comparison method for the recall results.
Optimizing for recall is intentionally avoided since it could mean the model is only predicting the
positive class, debris. Therefore, SSO that uses average precision is more reliable. The results show
that the SSO method outperforms ResNet-18 model in terms of recall, but cannot compete with it in
terms of average precision. This is due to the fact that ResNet-18 outperforms SSO method in terms
of precision. Just the way it would improve the ResNet-18’s performance, tuning the threshold could
potentially improve the average precision performance of the SSO method.

Comparing the different active learning methods, it seems that the best performing one is the query by
committee method. Both recall and average precision results show that uncertainty-based methods
(entropy and query by committee sampling) outperform diversity-based methods (cluster sampling).
Between the two uncertainty-based methods, query by committee sampling performs slightly better
than the entropy sampling method. However, neither of these methods perform significantly better than
the random sampling method which is the lower bound of the selection strategies. This suggests that
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using random sampling instead of a more advanced selection strategy is not necessarily a disadvantage.
On the other hand, the SSO method shows promise as the upper bound. This concludes that more
advanced sampling strategies are needed to reach that upper bound of performance with active learning.
Figure 4.8 shows the behavior of the query by committee method compared to all the comparison
methods over the increasing number of shots.

Recall erage Precisior

Figure 4.8: The graphs showing the performance progression over increasing number of shots of query by committee (QBC)
method and the three comparison methods in terms of recall and average precision.

This figure suggests that the QBC method is placed right in the middle of random sampling and SSO
methods’ performance, which is expected. ResNet-18 stays above any of these methods for any number
of shots. For recall, the situation changes. ResNet-18 is the worst of them in terms of recall. QBC is still
placed in between random sampling and SSO, but only after the 10-shots mark. Before this point, it
shows very poor and diminishing performance.

On the other side of the performance spectrum, the diversity-based methods are doing very poorly. This
suggests that either the feature space used for the clustering step is not representative or the selection
made from the clustered samples are not done well. To understand the feature space that is being used
for these methods, a 2D t-SNE plot of the features were made. This plot can be seen in Figure 4.9. The
distribution in this plot shows that the samples are indeed not separable by clustering them. The debris
and non-debris samples are scattered around without following any specific pattern. This suggests that
the randomly initialized ResNet-18 model used to obtain the features for samples cannot capture the
characteristics of different classes. These results explain why the cluster based methods perform poorly.

The recall and average precision results further suggest that some sampling methods do not show
a consistent behavior as the number of shots increase. For example, the recall of random sampling
goes down from 5 to 10-shots. This could mean that addition of low-quality samples to the support
set can actually hinder the model’s ability to detect debris. The same negative trend is visible for all
diversity-based methods as well. One possible explanation for this can be that the sampling strategies
sample too many non-debris samples, resulting in the model not being able to learn how to distinguish
debris sufficiently. In order to confirm this, additional tests are performed.

First of all, to understand the selection behavior of the SSO method as the high-performance upper
bound, a random run of this selection strategy was evaluated. It was observed that the steepest increase
in average precision happened in the first 4 steps. The samples that were added to the support set
as a part of the SSO method in the first 4 steps are visualized in Figure 4.10. These results show that
the SSO method tends to pick one debris and one non-debris sample to be added to the support set.
Furthermore, it is also seen that the average precision increases rapidly when this happens. This further
supports the hypothesis that a few-shot model such as METEOR depends on a good selection of support
set samples to reach a high performance.
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Figure 4.9: 2D t-SNE plot created using the feature vectors of the randomly initialized ResNet-18 which are used for the clustering
based sampling methods.

To further analyze these outcomes, several runs of the query by committee method were manually
compared. It was observed that the number of debris samples added to the support set was visible as
an increase in the recall performance. Table 4.4 shows three example runs and how the performance of
the model was affected by the selection of samples. Each run corresponds to the query by committee
sampling strategy which is initialized with a different random seed. This means that the first two
samples that are fed to the model were different, while the selection strategy was exactly the same in
each case.

Table 4.4: Comparison of model performance across different random seed initializations in the query by committee method,
highlighting the impact of sample selection on recall and average precision (AP) values. Debris samples are represented by their
class value of 1, and non-debris samples are similarly represented by a 0.

#1 (Seed =18) #2 (Seed =19) #3 (Seed = 20)
Additions Recall AP Additions Recall AP Additions Recall AP
1,0 038 0.24 1,0 0.62 026 1,0 0.17 025
0,0 0.02 023 0,0 048 0.34 1,0 0.65 0.26
0,0 0.02 024 1,0 054 0.32 1,0 0.82 028
0,0 0.02 024 0,0 039 0.32 1,0 096 0.25
0,0 0.03 024 0,0 0.06 0.25 0,0 0.77 0.26

~

The results displayed in Table 4.4 highlight notable differences in recall performance as a consequence
of the varying number of additions to the support set. For instance, in the second run (#2), it is seen that
the recall drops when a pair of non-debris samples are added to the support set, but goes up again
when a non-debris sample is added in the next step. The third run (#3) demonstrated a steady recall
increase as long as the addition of samples consisted of one debris and one non-debris sample. These
findings indicate a clear relationship between the number of debris samples included in the support set
and the resulting model performance, specifically in terms of recall. The performance change is less
visible in terms of average precision. For example, the third run (#3) shows that the AP values did not
change significantly while the recall values did as more samples were added. This indicates that the
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Figure 4.10: The first 4 set of samples which are picked by the SSO method in a single run. The average precision of the model at
each step is indicated under the visuals of the added samples.

precision of the model went down as the recall went up. Even though the priority metric was chosen
as recall for this application, it is important to evaluate the cost of low precision for the future marine
debris monitoring missions using such models. On another note, it is seen that the starting recall values
are very different for these three example runs despite all of them starting with one debris and one
non-debris sample. Such observations emphasize the significance of sample selection for a few-shot
meta-learning model like METEOR and its impact on overall model effectiveness.

As explained in subsection 4.3.1, the number of debris pixels on a satellite image compared to the
non-debris pixels would be very little in reality. To evaluate how the models perform in a more realistic
class distribution setting, the experiments were also performed on a modified test set. This test set has
reduced number of debris samples so that they only amount to 5% of the total number of samples in the
set. The results for the Durban region on this more realistic setting are presented in Table 4.5.

Table 4.5: Recall and average precision of various methods on Durban region with different sizes of support sets. These results
are for the more imbalanced distribution of the two classes. The values represent the mean value of 20 different random
initializations.

3-shots 5-shots 10-shots 15-shots

Recall
ResNet-18 0.24 0.18 0.25 0.13
Single Shot Oracle 0.14 0.11 0.12 0.11
Random 0.13 0.08 0.04 0.03
Entropy 033 043 035 045
Query by committee 0.51 0.59 0.41 0.41
Random clusters & random samples 0.15 0.08 0.03 0.02
Unseen clusters & random samples 0.18 0.08 0.06 0.04
Unseen clusters & uncertain samples  0.15 0.10 0.04 0.02

Average Precision

ResNet-18 0.52 0.38 0.45 0.29
Single Shot Oracle 0.08 0.11 0.14 0.16
Random 0.07 0.07 0.08 0.08
Entropy 007 009 010 012
Query by committee 0.09 0.09 0.13 0.18
Random clusters & random samples 0.07 0.07 0.07 0.08
Unseen clusters & random samples 0.07 0.07 0.07 0.07
Unseen clusters & uncertain samples  0.07 0.07 0.06 0.06

The comparison of the random sampling, QBC sampling and SSO methods in the original and realistic
cases are visualized in Figure 4.11.
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Figure 4.11: Comparison of sampling strategies in the original and realistic class distribution cases. The top row is in terms of
recall while the second row is in terms of average precision.

According to these findings, ResNet-18 performed worse than it did in the initial experiments. This
decline primarily reflects the model’s capacity to identify debris samples because the same model was
applied in both instances. Recall and average precision are directly impacted by changes in the test set,
demonstrating the ResNet-18 model’s limited ability to identify debris samples in this particular dataset.
Additionally, in contrast to its relatively stable performance in the initial experiments, ResNet-18’s
performance changes with an increase in the number of shots in this realistic scenario. This finding
suggests that the evaluation of a model’s detection performance is influenced by the number of debris
samples included in the entire test set.

These results also show that the SSO method performs more poorly both in terms of recall and average
precision in the more realistic setting. Furthermore, the random sampling method performs significantly
worse in this realistic setting compared to the original experiments, while the QBC method shows a
better performance than the random sampling in the realistic setting. This suggests that a non-random
sampling strategy is needed more in the realistic setting, while just randomly sampling was sufficient
when there is a more balanced class distribution in the dataset. Additionally, the QBC method performed
better in terms of recall and worse in terms of average precision compared to the original experiments,
meaning that the precision in the realistic case must have been significantly below than the precision in
the original case for this method.

The final experiment performed in this study was to apply the same procedures on a different test
region, Accra, to see how the performance of various methods changed when the characteristics of the
data changed. The results for the original class distribution for the Accra region can be seen in Table 4.6.

Table 4.6: Recall and average precision of various methods on Accra region with different sizes of support sets. These results are
for the original distribution of the two classes. The values represent the mean value of 20 different random initializations.

3-shots 5-shots 10-shots 15-shots

Recall
ResNet-18 0.96 0.96 0.96 0.96
Single Shot Oracle 0.80 0.86 0.93 0.93

Continued on next page
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Table 4.6: Continued
3-shots 5-shots 10-shots 15-shots

Random 0.73 0.85 0.90 0.92
Entropy 076 083 08 088
Query by committee 0.51 0.67 0.78 0.77
Random clusters & random samples 0.78 0.83 0.90 0.91
Unseen clusters & random samples 0.47 0.42 0.57 0.73
Unseen clusters & uncertain samples  0.51 0.67 0.67 0.71

Average Precision

ResNet-18 0.96 0.96 0.96 0.96
Single Shot Oracle 0.88 0.95 0.97 0.98
Random 0.82 0.93 0.95 0.96
Entropy 080 088 094 095
Query by committee 0.86 0.92 0.94 0.95
Random clusters & random samples 0.85 0.89 0.96 0.97
Unseen clusters & random samples 0.73 0.75 0.81 0.88
Unseen clusters & uncertain samples 0.73 0.82 0.89 0.92

These findings demonstrate an overall improvement in performance for all methods in Accra compared
to Durban, as indicated by both recall and average precision metrics. The ResNet-18 model exhibits
enhanced performance in Accra, suggesting that its ability to detect debris is influenced by the specific
characteristics of the region. Notably, the SSO method showcases considerable advancement in terms of
both recall and average precision in Accra, reinforcing the notion that it serves as a reliable upper bound
for performance evaluation.

Furthermore, it is worth noting that the random sampling method demonstrates a more substantial
improvement in the Accra region, compared to its performance in Durban. This observation suggests
that the non-random sampling strategies, such as query by committee and entropy-based sampling,
may play a more critical role in enhancing performance in scenarios with imbalanced class distributions,
as encountered in Durban.

The results presented in Table 4.7 provide further insights into the performance of various methods on
the Accra region with respect to the more imbalanced class distribution.

Table 4.7: Recall and average precision of various methods on Accra region with different sizes of support sets. These results are
for the more imbalanced distribution of the two classes. The values represent the mean value of 20 different random initializations.

3-shots 5-shots 10-shots 15-shots

Recall
ResNet-18 0.89 0.89 0.90 0.93
Single Shot Oracle 0.30 0.46 0.64 0.60
Random 0.19 0.06 0.10 0.10
Entropy 098  1.00  1.00  1.00
Query by committee 0.99 1.00 1.00 1.00
Random clusters & random samples 0.16 0.17 0.11 0.15
Unseen clusters & random samples 0.32 0.15 0.07 0.05
Unseen clusters & uncertain samples ~ 0.38 0.24 0.20 0.17

Average Precision

ResNet-18 0.54 0.56 0.48 0.57
Single Shot Oracle 0.34 0.49 0.61 0.65
Random 0.18 0.18 0.21 0.22

Continued on next page
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Table 4.7: Continued
3-shots 5-shots 10-shots 15-shots

Entropy 0.20 0.24 0.28 0.26
Query by committee 0.27 0.19 0.12 0.08
Random clusters & random samples 0.15 0.22 0.18 0.22
Unseen clusters & random samples 0.19 0.20 0.24 0.28
Unseen clusters & uncertain samples ~ 0.18 0.26 0.32 0.33

The recall values demonstrate the effectiveness of the uncertainty-based methods, with both entropy
and query by committee sampling achieving high recall scores across different support set sizes.
Notably, these methods consistently outperform other strategies, including the ResNet-18 model and
the random sampling approach. The entropy sampling method achieves near-perfect recall, indicating
its ability to identify debris instances accurately. Similarly, the query by committee method exhibits
exceptional recall performance, reinforcing its effectiveness in selecting informative samples. On the
other hand, the diversity-based methods, such as random clusters and random samples, as well as
unseen clusters and random samples, show relatively lower recall values, suggesting their limitations
in identifying debris instances accurately. Furthermore, the average precision values highlight the
trade-off between precision and recall. The uncertainty-based methods, particularly unseen clusters
and uncertain samples, demonstrate higher average precision scores, indicating their ability to make
more precise predictions. Conversely, the query by committee method exhibits lower average precision
compared to other strategies, emphasizing the challenge of balancing precision and recall in the context
of marine debris detection.

These findings further emphasize the need for customized active learning approaches that account for
the specific characteristics of each region, including the class imbalance and environmental conditions.
By tailoring the sampling strategies and considering the unique context, it becomes possible to optimize
the performance of marine debris detection models. Such insights will be invaluable in future marine
debris monitoring missions, where accurate identification and localization of debris instances are
essential for effective environmental management.

4.7. Conclusion

The objective of this study was to evaluate various sample selection techniques to achieve high
performance in floating marine debris detection using a few-shot meta-learning model. Since being
able to detect all debris samples in a new region is the most important aspect, recall was the primary
evaluation metric while average precision was the secondary evaluation metric. The comparison study
using these two metrics concluded that the active learning methods incorporating uncertainty-based
sampling, such as entropy and query by committee, consistently outperformed other strategies in
terms of recall and average precision. These findings highlight the effectiveness of leveraging sample
uncertainty to select informative data points, resulting in improved debris detection performance.

One reason for the limited effectiveness of diversity-based methods was the poor representativeness
of the feature space used to cluster the samples. The study revealed that the clustering of samples
based on certain features did not adequately capture the underlying variability and distribution of
debris in the target regions. As a result, the diversity-based methods struggled to select informative
and representative samples, leading to sub-optimal performance in debris detection. These findings
emphasize the importance of considering the representativeness of the feature space when employing
diversity-based approaches and highlight the advantages of uncertainty-based methods in identifying
informative samples for improved debris detection performance.

Additionally, the study revealed the influence of regional characteristics on the performance of the
detection model. Specifically, the results indicated that the ResNet-18 model exhibited enhanced
performance in the Accra region, suggesting that the specific environmental conditions and debris
characteristics of the region influenced its ability to detect debris accurately. This observation emphasizes
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the importance of considering regional variability and tailoring the detection framework accordingly to
achieve optimal performance in different areas.

Furthermore, the investigation of sampling strategies highlighted the role of class imbalance in the
performance of the active learning framework. The random sampling method showed more substantial
improvements in the Accra region compared to Durban, indicating its effectiveness in scenarios with
imbalanced class distributions. On the other hand, the non-random sampling strategies, such as query
by committee and entropy-based sampling, demonstrated superior performance in the presence of
imbalanced classes encountered in Durban. These findings suggest that the choice of sampling strategy
should be carefully considered based on the class distribution characteristics of the target region.

Ultimately, by offering important insights into the efficacy of various sample selection techniques, this
study makes a contribution to the field of floating marine debris detection. The findings emphasize the
value of utilizing uncertainty-based sampling techniques and the necessity of adjusting the detection
framework to take into account regional variation and class imbalances. These factors can be taken into
account to improve the few-shot meta-learning models’ ability to detect floating marine debris, aiding
in efficient environmental management and conservation efforts. To continue enhancing the precision
and effectiveness of marine debris monitoring, various research directions can be identified for future
studies, which will be presented in the next section.

4.8. Future Work

Several potential directions for future studies can be identified in the light of results and conclusions of
this study. Especially considering the novelty of the topic of using few-shot active learning in marine
debris detection, there are many possible areas to be further investigated. This section will list the most
relevant research directions which were identified as a result of this study.

1. Atmospheric correction: One potential avenue for improving the performance of the proposed
method is to incorporate atmospheric correction techniques. This study made use of L1C and
L2A data together, and did not perform any additional atmospheric correction techniques. By
accounting for atmospheric effects in the remote sensing data, it may be possible to mitigate their
influence on the detection performance of the classification models. Especially if the atmospheric
correction is performed using local in-situ measurements for each region, the quality of data can
be increased substantially, improving reliability of the detection models as well.

2. Alternative active learning methods: In this study, the SSO method showed the upper limit of
how a sampling method could perform, and even if this might be too unrealistic, it is still possible
to find or devise a sampling strategy that performs better than the ones already tested. This could
be other uncertainty or diversity-based methods. Further comparative studies involving various
other techniques can help identify the most suitable methods for the specific task of marine debris
detection.

3. Feature space exploration: The only feature space that was used for the clustering of the samples
for diversity-based sampling methods was of a randomly initialized ResNet-18 model. However, a
more representative feature space could improve the performance of diversity-based methods.
For example, METEOR’s own feature space could be used. At each step, this feature space would
evolve as the task-model is fine-tuned further for a given region. This dynamic use of feature
space shall be further investigated in a future study. Another option is to add spectral indices
designed to detect debris such as FDI to the features and evaluate if they help with improving
detection performance. A more advanced diversity-based sampling strategy has the potential
of outperforming the uncertainty-based methods since it can explore a larger part of the sample
space, as explained in subsection 4.4.2.

4. Cluster selection strategies: Investigating alternative cluster selection strategies can be beneficial
for the diversity-based sampling methods. For instance, considering different selection criteria
such as prioritizing the largest cluster first, can provide valuable insights into improving the
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diversity-based sampling methods’ performance. Evaluating and comparing the effectiveness of
various cluster selection approaches can lead to more informed decisions in the development of
effective sampling strategies.

5. Training the METEOR meta-model using marine debris data : In this study, METEOR meta-
model trained on land cover classification data was compared to a ResNet-18 model trained on
floating marine debris data. This difference in the training process of the two models raise question
marks on how fair this comparison can be. A comparative study between METEOR and ResNet-18
both trained on marine debris data would be insightful. This analysis can shed light on the most
suitable architecture for marine debris detection task.

6. Threshold tuning: This study used average precision as an evaluation metric which measures
recall and precision at different thresholds. This metric sometimes is used to hand pick the
threshold when there is a desired level of recall or precision to be reached. Experimenting with
different thresholds can provide valuable information, especially considering the significant class
imbalance in marine debris detection task. Therefore, an important future step would involve
tuning the threshold on a test region and subsequently evaluating the model’s performance on a
separate validation region. This approach will allow for a more rigorous assessment of fine-tuning
the decision threshold for optimal performance.

By addressing these points in future studies, it is anticipated that the proposed methodology can be
further enhanced, leading to improved effectiveness in marine debris detection using remote sensing
data.



Synthesis

The aim of this research was to evaluate the efficacy of an active learning approach coupled with
a few-shot meta-learning model for the detection of floating marine debris. The main research
question together with sub-questions were formulated in and presented in chapter 3. This chapter will
demonstrate how the research presented in the journal article answered these research questions.

SQ-1. How does a few-shot meta-learning model perform compared to a conventional deep neural
network for marine debris detection?

In terms of recall, METEOR model outperformed the ResNet-18 model in the original class distribution.
Just random sampling method was enough surpass ResNet-18’s performance. However, no method was
able to compete with ResNet-18 in terms of average precision. This indicates that Resnet-18’s precision
was better than the METEOR model regardless of which sampling strategy was employed.

In a more realistic setting where there is a stark class imbalance, the METEOR model outperformed
ResNet-18 in terms of recall but not in terms of average precision. On the other hand, only the SSO
method came close to ResNet-18’s average precision. While this means that METEOR is a promising
model to compete with ResNet-18 with the right selection of support set samples, the right sampling
strategy for this has not been discovered yet.

Another important consideration is the labelling effort. It should not be forgotten that ResNet-18 model
has seen thousands of marine debris data before being tested on the Durban and Accra datasets, while
the METEOR model has only seen a handful of samples that make up the support set while fine-tuning.
Therefore, even if the METEOR model does not reach ResNet-18’s performance, it still has a significant
advantage in terms of reducing the labelling effort and the ability to be fine-tuned for a new region with
only a few samples.

SQ-2. How do uncertainty based and diversity based active learning methods compare for this
application?

The results of this study demonstrated that uncertainty-based active learning methods, such as entropy
and query by committee, consistently outperformed diversity-based methods in terms of recall and
average precision. This finding suggests that uncertainty-based sampling strategies are more effective in
selecting informative samples for the detection of floating marine debris.

On the other hand, as explained in subsection 4.4.2, diversity based methods has a promising advantage

that they can explore regions of the data space that is farther from the classification boundary. This is
why this study suggested further studies on different diversity based methods, especially using various
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feature spaces. The exact methods used in this study performed very poorly but it was discovered that
the selected feature space for the clustering step was not very representative. Developing better diversity
based methods still holds a promise of being able to compete with or outperform uncertainty-based
methods.

SQ-3. How do the sampling strategies perform when there is a more realistic class imbalance?

Every sampling method tested in this study performed worse in a more realistic class distribution
setting compared to the original class distribution. This is due to the limited number of debris samples
in the dataset once it is reduced to make it more realistic. When the classes are so imbalanced, the
sampling strategies struggle selecting samples from both classes. This results in a weakened ability to
detect marine debris samples in the test set compared to the original class distribution case.

Developing representative feature spaces and using more advanced cluster based methods are therefore
an interesting topic for future studies. If a sampling strategy can keep the number of debris and
non-debris samples in the support set balanced, then the METEOR model will not be impacted by the
class imbalance as much.

By answering these sub-questions, the results of this study were able to answer the main research
question:

How can informative training images be selected for a few-shot meta-learning model to detect
floating marine debris patches on publicly available satellite data?

This study highlighted the effectiveness of the active learning approach coupled with the METEOR
model for selecting informative training images for the detection of floating marine debris. The findings
provided insights into the comparative performance of different models and sampling strategies,
pointing towards the potential of uncertainty-based methods and the need for further exploration of
diversity-based methods. Furthermore, the study emphasized the impact of class imbalance and the
importance of developing strategies to address this challenge for improved detection performance.
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