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Summary

Myelo-Proliferative Neoplasms (MPNs) are a group of bone marrow diseases with potentially lethal
cardio-vascular complications. Two sub-diseases of MPN are Essential Thrombocytosis (ET) and Poly-
cythemia Vera (PV), which are recognised by an abnormal blood count of respectively thrombocytes
and red blood cells.

If an MPN is treated appropriately, complications for patients are reduced, leading to a relative increase
of patients life expectancy. However, MPN is often recognised long after the first clinical signs. 1/4 of
MPN patients already had abnormal blood measurements for longer than 1 year in advance of their
diagnosis.

Therefore, there is the call for methods for earlier recognition of MPN. Screening like methods could
be useful to alert clinicians in case of a suspected case. Although genetic testing is conclusive in
recognising MPN, high costs make that they are only applied in case of already clinically suspected
MPN.

In this thesis, the outlines of a method are proposed for early detection of MPN patients based on blood
measurements in the general hospital laboratory workflow. A two stage solution is proposed:

• Stage 1: Filter on regular blood measurements (combined with demographic data);

• Stage 2: Filter based on microscopy imaging of blood.

The primary scope of this thesis is the development of the first stage for ET and PV subtypes of MPN.
A machine learning algorithm called XGBoost is utilized to develop classification algorithms for ET
and PV in this stage. Patients with elevated blood platelet counts (ET marker) or elevated red blood
cell indicators (PV marker) were separately included in a nested cross validation setup for training and
testing of the algorithms. For ET vs control classification, meanmetrics obtained during cross validation
are AUC: 0.87, recall (sensitivity): 0.74 and specificity: 0.84. For PV vs control corresponding metrics
are respectively 0.86, 0.66 and 0.87.

Regarding the development of methods for stage 2, a first step is set. A XGBoost model using cell
counts from microscopy images as features results in mean AUC, recall and specificity scores of 0.67,
0.78 and 0.80 respectively when trained and tested using nested cross validation. Training a Convolu-
tional Neural Network (CNN) to take microscopy images as input and return MPN vs control classifica-
tion resulted in an algorithm which only predicted control cases. These results give an indication of the
potential of microscopy for automated MPN recognition, calling for further development of the stage 2
filter.

With this proposed laboratory population screening method and the developed blood measurement
based filtering, a next step is set toward early detection of MPN in order to prevent (lethal) MPN related
complications.

ii



Contents

Preface i

Summary ii

Nomenclature v

1 MPN – Clinical background 1

2 Problem and proposed solution 2

3 Stage 1: blood measurement filter 4
3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.1.2 Machine Learning model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1.3 Nested cross validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1.4 Under sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1.5 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.6 Hyper parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.7 Model performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.1 ET classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 PV classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.3 Retrospective diagnostic delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Stage 2: microscopy filter 13
4.0.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Cell counting based XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Image based ResNet50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Discussion 19
5.1 Stage 1: Regular blood measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1.1 Model performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1.2 Important features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1.3 Similar work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2 Stage 2: Microscopy based selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.1 Cell counting based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.2 Image based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.3 Future prospective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.3 Clinical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3.1 Extrapolation to real world situation . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3.2 Next steps toward clinical implementation . . . . . . . . . . . . . . . . . . . . . . 22

6 Conclusion 23

References 24

A Characteristics of laboratory measurements dataset 26
A.1 ET Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
A.2 PV Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

B Boxplot of blood measurement dataset values 32
B.1 Boxplots for ET dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iii



Chapter 0 – CONTENTS iv

B.2 Boxplots for PV dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

C SHAP plots per outer crossvalidation fold in blood measurements filter 40
C.1 ET prediction models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
C.2 PV prediction models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

D ResNet50 with lymphocyte images 51

E MPN Dashboard 52

F Literature review: Machine Learning in Diagnosis and Prognosis of Myeloproliferative
Disorders 53



Nomenclature

Abbreviations
Abbreviation Definition

AP Average Precision
AUC Area Under the receiver-operating-characteristic Curve
BA Basophil
BL Blast
CBC Complete Blood Count
CML Chronic Myeloid Leukemia
CNN Convolutional Neural Network
CRP C-Reactive Protein
eGFR estimated Globular Filtration Rate
EO Eosinophil
ERB Erythroblast
ERC Thrombocyte aggregation
ET Essential Thrombocytosis
GT Giant thrombocyte
HDL High-Density Lipoprotein
LY Lymphocyte
MF Myelo-Fibrosis
MMY Metamyelocyte
MO Monocyte
MPD Myelo-Proliferative Disorder
MPN Myelo-Proliferative Neoplasm(s)
MY Myelocyte
PC Plasma cell
Ph chromosome Philadelphia chromosome
PMY Promyelocyte
PR curve Precision-Recall curve
PV Polycythemia Vera
ROC curve Receiver Operating Characteristic curve
SHAP SHapley Additive exPlanations
SMU Smudge cell
SNE Segmented neutrophil
XGBoost eXtreme Gradient Boosting
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Chapter 0 – Nomenclature vi

Evaluation metrics
Metric Definition

True positives (TP) The number or fraction of positive predictions by a model
which are also really positive (according to ground truth la-
beling)

True negatives (TN) The number or fraction of negative predictions by a model
which are also really negative (according to ground truth
labeling)

False positives (FP) The number or fraction of positive predictions by a model
which are in reality negative (according to ground truth la-
beling)

False negatives (FN) The number or fraction of negative predictions by a model
which are in reality positive (according to ground truth la-
beling)

Precision (TP) / (TP + FP)
Recall (Sensitivity) (TP) / (TP + FN)
Specificity (TN) / (TN + FP)
Accuracy (TP + TN) / (TP + TN + FP + FN)
F1 score (2TP) / (2TP + FP + FN)
AUC Area under the ROC curve; Measure for trade-off between

sensitivity and specificity in model.
AUC = 0.5: random model;
AUC = 1.0: sensitivity and specificity are both 1.0



1
MPN – Clinical background

Myelo-Proliferative Neoplasms (MPN) are a group of bone marrow diseases, caused by a mutated
hematopoietic (blood forming) stem cell. Most common MPN diseases are:1,2,3

1. Polycythemia Vera (PV)

2. Essential Thrombocytosis (ET)

3. (primary) Myelo-Fibrosis (MF)

MPN is sometimes also referred to as Myelo-Proliferative Disorder (MPD). This covers the same dis-
eases, including Chronic Myeloid Leukemia (CML). Although multiple definitions of MPN are used,
some including CML and others excluding CML, in this thesis CML is excluded from MPN. CML is
caused by a well-defined mutation, called the Philadelphia chromosome. This is a translocation of the
long arms of chromosomes 9 and 22, leading to the formation of the BCR-ABL1 fusion gene.4 This
mutation was one of the first DNA mutations found to cause cancer.5 As a result of this knowledge,
CML was one of the first cancer types to be treated through target cell therapy.4,6,7,8 Because of its
Philadelphia (Ph) chromosome mutation, CML is referred to as Ph-positive MPD; whereas PV, ET and
MF are referred to as Ph-negative MPD’s or MPN.

Multiple genetic mutations are associated with MPN. The three most common mutations are the JAK2,
MPL and CALR mutations.9,10 Although most of the MPN patients present themselves with at least one
of these mutations, there are so called ‘triple-negative’ MPN cases.9,10,11 These patients do have the
clinical symptoms of MPN, although the three listed mutations are not found.

Symptoms of MPN are mostly non-specific, such as weakness, headache, loss of weight, sweating,
bleeding and abdominal fullness.1 Examination might show hepatosplenomegaly (enlarged liver and
spleen) due to compensation of the liver and spleens for failing blood cell production in the bone mar-
row.1 Vascular complications might occur due to MPN, such as myocardial, neurological and pulmonary
infarctions.12,13 These complications can be lethal, but with proper treatment complications are reduced
and median life expectancy for PV and ET of 15-18 years is reported for patients older than 40 years
old.10 Younger patients have a life expectancy of 35-37 years.10 For MF, median survival ranges of 4 to
5.5 years are reported, where it is also noted that earlier diagnosis does not influence life expectancy.14

MPN’s can be recognized by elevated counts in one or more cell lines.1 For PV, red blood cells (ery-
throcytes) are increased.15,16 An increased platelets (thrombocyte) count is characteristic for ET.15,16 In
case of MF, there is an increased production of megakaryocytes (a progenitor cell of thrombocytes), ac-
companied by bone marrow fibrosis.15,17 In addition to these typical increased cell counts per disease,
also other less typical cell counts might be elevated in MPN.17,18

Incidence of MPN is reported to be 1.8 to 5.4 per 100.000.18,19,20,21 Specified by disease type, both ET
and PV have an incidence of 1.0-2.0 per 100.000.22 For MF, the incidence rate is approximately 0.3 per
100.000.22 Due to the higher incidence of ET and PV relative to MF, the scope in this thesis is limited
to ET and PV.
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2
Problem and proposed solution

It is known that the delay between first measured blood count abnormalities and actual MPN diagnosis
is relatively long. For an Australian hospital, the median diagnostic delay for MPN patients is reported
to be 723 days (n=142, min/max: 0/8731).23 25% of the patients included in that observation had
potentially preventable thrombotic or hemorrhagic events during diagnostic delay.

In a retrospective analysis in our own hospital, a diagnostic delay is also seen, see figure 2.1. On a
cohort of 534 MPN patients, 122 (23%) patients had abnormal blood counts more than one year prior
to diagnosis (defined as repeated elevated thrombocyte counts for more than 3 months). Diagnostic
delays of more than 3 and 5 years were found for 67 (13%) and 40 (7%) patients respectively. 101
(19%) patients had abnormal blood counts in the year prior to their MPN diagnosis, where 311 (58%)
did not have repeated elevated thrombocyte counts prior to their diagnosis. Median diagnostic delay
in our hospital was 413 days (min/max: 0/6345).

This delay could be explained by the non-specific symptoms of MPN. Additionally, MPN is a relatively
rare disease, which might make that non-hematology specialists are inadequately trained to recognise

Figure 2.1: Diagnostic delay for MPN (ET/PV/MF) patients seen in the Albert Schweitzer hospital. Repeated elevated
thrombocyte counts were defined as periods of repeated elevated thrombocyte counts for longer than 3 months.
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Chapter 2 – Problem and proposed solution 3

potential MPN-like symptoms and laboratory results. Given that thrombotic and hemorrhagic events
can be lethal, the presented diagnostic delays indicate that there are also MPN patients who have
never reached their time of diagnosis due to potentially preventable death.

To prevent diagnostic delay, active screeningmight be performed. The gold standard for MPN diagnosis
is genetic testing for MPN related mutations, such as the JAK2, MPL and CARL mutations.24 Genetic
testing, however, is expensive and it is desirable to find a low cost alternative to detect MPN patients.
In this work we investigate an alternative solution using a multi-stage filter approach.

By automatically analyzing laboratory measurements this might be realized. Here we propose a multi-
stage filtering methodology:

1. In the first stage, a filter should select suspected Complete Blood Counting (CBC) measurements
in the routine laboratory workflow, where false positives are accepted to a certain extent.

2. The second stage consists of further microscopic analysis of the suspected cases, which can be
done using the same blood sample used for CBC. This is a relatively cheap method, aiming to
reduce the number of false positives in the suspected population, while keeping the true MPN
patients.

If a patient’s sample both passes the filters of stage 1 (CBC) and 2 (microscopy), genetic testing can be
performed and/or an explicit notice to the requesting physician can be given that their patient is highly
suspected for MPN and should be seen by an hematologist.

This method supports clinicians in recognising MPN, with only limited impact on normal workflow and
low costs compared to screening-wise genetic testing. It aims to decrease diagnostic delay and thus
reduce potentially preventable complications and deaths.



3
Stage 1: blood measurement filter

Blood measurements, such as a Complete Blood Count (CBC) are often performed in clinical practice.
They give information about blood composition, metabolism and organ function. CBC is performed in a
wide variety of cases, such as suspected infection, inflammatory processes, immune deficiency or ane-
mia.25 Also for pre-operative screening and follow-up of hematology patients CBC measurements are
used.25 The wide variety of indications for blood measurements make that this is a common diagnostic
tool in clinical practice. Also, this means that more information might be present in the laboratory re-
sults than used by the clinician. Because MPN is not always recognised by clinicians, a support system
might help to recognise MPN suspected laboratory results. For that reason, an algorithm is developed
and tested, based on laboratory data, for the detection of MPN suspected laboratory results. Primary
scope of this chapter is the development of this algorithm for detection of ET patients, as secondary
secondary test the same pipeline is also applied for detection of PV patients.

3.1. Methods
3.1.1. Data collection
Laboratory results were retrospectively obtained from the routine workload of the Result Laboratory
Dordrecht for ET, PV and non-MPN patients in the years 2000-2022. Patients age, gender and smoking
status were coupled to the measurements. Two datasets were formed, one with ET and non-MPN
patients (ET dataset), the other with PV and non-MPN patients (PV dataset). Thresholds for laboratory
measurement scores in both datasets are based on the 2016 WHO classification of MPN.26

Data in the ET dataset was filtered based on 4 criteria:

1. Patients age above 17 and below 85;

2. Thrombocyte count in sample should be above 450;

3. Patient had no thrombocyte count below 450 in 3 months prior to sampling date;

4. Patients thrombocyte value prior to selected sample was above 450 and was measured within
one year prior to sampling date of selected sample.

Data in the PV dataset was filtered based on the following criteria:

1. Patients age above 17 and below 85;

2. For male patients: hematocrit > 0.49 l/l or hemoglobin > 10.2 mmol/l;

3. For female patients: hematocrit > 0.48 l/l or hemoglobin > 9.9 mmol/l;

4. All known measurements for the patient within 3 months prior to sampling date fit the threshold
for hematocrit and hemogobin;

5. Patients hematocrit or hemogobin value prior to selected sample was above the threshold.

4



Chapter 3 – Stage 1: blood measurement filter 5

Parameter Base value
n_estimators 26
max_depth 6
min_child_weight 10
reg_alpha 3.1
reg_lambda 35
gamma 0.12

Table 3.1: Base parameters of XGBoost models
used for initial feature selection and evaluation of
the effect of hyper parameter values on AUC

outcome.

Parameter Search range
Number of estimators 2 – 200
Max depth 1 – 30
Minimum child weight 0 – 100
Alpha (L1 regularization) 0.003 – 100
Lambda (L2 regularization) 5 – 500
Gamma (min. split loss reduction) 0.01 - 316

Table 3.2: Search ranges in hyper parameter tuning.

For MPN patients in both datasets, only measurements before the date of diagnosis were included.
Multiple measurements per patient were allowed to be included. Ground truth labeling was clinical di-
agnosis, which is based on laboratory results (including genetic testing) and further clinical information,
such as physical examination and imaging. Laboratory measurements performed in less than 1% of
the samples were excluded from the dataset. If possible, unknown values for measurements were
imputed through last-known-data imputation. In case of no older known values, unknown values were
tolerated.

3.1.2. Machine Learning model
An eXtreme Gradient Boosting (XGBoost) algorithm was trained to give an probability score to labo-
ratory measurements (0-1: low-high ET or PV probability). XGBoost is described by its authors as
’a scalable end to-end tree boosting system’.27 The XGBoost algorithm sequentially creates a set of
decision trees (ensemble). The sum of each decision tree’s outcome is used as final prediction score.
Each newly created decision tree is formed in a way aiming to correctly classify those samples which
were not correctly classified by the ensemble of earlier created trees. In contrast to some comparable
algorithms (such as most random forest implementations), XGBoost can deal with missing values. For
each node in the decision trees, branch directions are determined during training for missing values.

The model was trained and evaluated by applying outer cross validation. For each split, the follow-
ing pipeline was used: data preprocessing, initial feature selection, hyper parameter tuning, definitive
feature selection, model training, model performance evaluation.

3.1.3. Nested cross validation
Patients in the full dataset were split by a stratified 5 times repeated 4-fold splitting in train and test
groups (outer cross validation). Inner cross validation on the train groups was performed for feature
selection and hyper parameter tuning, see corresponding sections. Utilizing the selected features and
hyper parameter values, training is done on the outer cross validation train groups. Evaluation of the
trained models is performed on the outer cross validation test groups.

3.1.4. Under sampling
The initial train-test groups are obtained by splitting on patient level. All collected samples per patients
are initially included. Random under sampling is performed to achieve an equal number of control and
ET or PV samples in both the test and train sets.

ET ET patients ET samples Control patients Control samples
Train 91.5 (0.5) 519.8 (33.9) 480.4 (28.6) 519.8 (33.9)
Test 30.5 (0.5) 173.3 (33.9) 159.6 (29.2) 173.3 (33.9)

PV PV patients PV samples Control patients Control samples
Train 43.5 (0.5) 162.0 (10.1) 145.5 (8.9) 162.0 (10.1)
Test 14.5 (0.5) 54.0 (10.1) 49.2 (8.9) 54.0 (10.1)

Table 3.3: Average patient and sample numbers (sd) in outer cross validation train and test sets for ET and PV datasets.
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3.1.5. Feature selection
Feature selection is performed through recursive feature elimination with 5 fold cross validation . For the
initial feature selection, an XGBoost classifier with non-optimized hyper parameters is used, see table
3.1. After hyper parameter tuning using initially selected features, feature selection is again performed
using the XGBoost classifier with the optimized hyper parameters.
At start of the feature selection procedure, all features are included and the model is trained. The
feature with lowest feature importance is removed from the feature set, after which the model is trained
again. This is repeated until only a single feature is left over. The feature set with highest accuracy is
used for further training of the model.

3.1.6. Hyper parameters
Tuned hyper parameters for the XGBoost model are:

• the number of classification trees (estimators) per classifier,

• the maximal tree depth,

• minimum child weight required for the splitting of leafs,

• alpha value (L1 regularization),

• lambda value (L2 regularization) and

• gamma value (minimum split loss reduction).

For training of the models, optimal hyper parameter values were searched for using a 5-fold cross
validated randomized search with folds of 50 iterations. For the search domains, see table 3.2.

3.1.7. Model performance evaluation
Outer cross validation is utilized to evaluate performance metrics. Primary evaluation metric is the Area
Under the receiver-operator-Curve (AUC). Secondary metrics are Average Precision (AP), precision
(positive predictive value), recall (sensitivity), accuracy, specificity and F1 score. Feature importance
and hyper parameter values are analyzed for the trained classifiers.

3.1.8. Experiments
For both the ET and the PV dataset, nested cross validation is preformed using all available data in the
dataset. Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves were created and
performance metrics obtained based on the model performance on the test sets. Feature importance

Figure 3.4: Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves for outer cross validated ET classifiers.
A: ROC’s with corresponding Area Under the Curve (AUC). B: PR-curves with corresponding Average Precision (AP).
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and SHapley Additive exPlanations (SHAP) for each of the outer cross validation folds are obtained and
visualized. SHAP plots visualize the impact of a feature value on the model outcome. Diagnostic delay
in the test sets are analyzed, where diagnostic delay is defined as time between retrospective positive
prediction by our model and actual date of diagnosis. For the ET dataset, distributions of selected hyper
parameters in the trained cross validation models are obtained and visualized.

Using the ET dataset, the effect of the number of included training samples is evaluated. Three times
a random split on the full dataset was performed with a test fraction of 0.3. The AUC values for the
models trained for each split as function of the number of samples actually included (MPN:control ratio
1:1) is evaluated, where both AUC values for the train set and test set are visualized. Also the effect of
hyper parameter values on AUC is evaluated for the ET dataset through nested cross validation. For
this purpose, only single feature selection is performed and the base parameters as defined in table
3.1 are used, except for the variable feature for which the impact on AUC performance is analyzed.

For training and testing as described above, multiple samples per patient are allowed. The same
methods are also applied to train and test the ET classifier in the situation when only the last known
measurement per patient in the ET dataset are included. ROC curve, PR curve and evaluation metrics
are obtained for this setup.

Figure 3.5: Mean confusion matrix of outer cross validation folds (A) and corresponding performance metrics (B) for ET
classification.

Figure 3.6: Importance of features used in outer cross validation ET classifiers and number of ET classifiers using the features.
Total number of classifiers is 20. Feature importance is calculated as the average gain achieved through splits based on that

feature.
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3.2. Results
3.2.1. ET classification
Samples from 122 ET patients and 11962 control patients were collected. A summary of the feature
values in the dataset is provided in appendix A.1. Boxplots for feature values are visualized in appendix
B.1. Average number of patients and samples per group in the outer cross validation are shown in table
3.3.

The mean AUC tested through outer cross validation is 0.87 (sd: 0.02), see figure 3.4. Mean Average
Precision (AP) derived from Precision-Recall curves is 0.87 (sd: 0.02), see figure 3.4. Mean confusion
matrix is shown in figure 3.5; derived values for precision, recall, F1, accuracy and specificity are
respectively 0.82, 0.74, 0.78, 0.79 and 0.84.

The mean feature importance in the models created in outer cross validation are visualized in figure 3.6,

Figure 3.7: Effect of hyper parameter value on AUC with other hyper parameter values fixed on ’base parameters values’ (see
table 3.1) when training and testing on ET dataset.

Figure 3.8: Hyper parameter distributions obtained during inner cross validation and used in the outer cross validation ET
classifiers. Search range is the range of parameter values used during random grid hyper parameter search. Parameter values

are the actually selected values during random grid search.
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together with the number of models actually using the features. Hemoglobin and estimated Globular
Filtration Rate (eGFR) were selected in all 20 models to be used. Features used in more than half of
the models are C-Reactive Protein (CRP), erythrocyte sedimentation rate (’bezinking’), HDL cholesterol
ratio, thrombocytes, iron (’ijzer’) and albumin. SHapley Additive exPlanations (SHAP) plots for each of
the outer cross validation folds are shown in appendix C.1.

Hyper parameter learning curves are shown in figure 3.7. They show the effect of a feature value on the
performance of the XGBoost model. The mean AUC metric obtained by testing on the cross validation
test sets is visualized, together with the standard deviation around the AUC’s mean. Distribution of

Figure 3.9: Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves for outer cross validated classifiers in
the ET dataset when only the last known measurements per patient are used for training and testing. A: ROC’s with

corresponding Area Under the Curve (AUC). B: PR-curves with corresponding Average Precision (AP).

Figure 3.10: Learning curve of ET classification model for number of samples used for training. Blue line shows the mean
Area Under the receiver-operating-characteristic Curve (AUC) values for the data the model was trained on, green line shows
the mean AUC values on the not seen validation data. Semi-transparent lines show AUC values for each of the 3 random data

splits.
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hyper parameters values which are finally selected during hyper parameter tuning for each of the nested-
cross validation folds are visualized in figure 3.8.

For training and testing with only the last known measurement per patient, mean number of patients in
the ET and control groups is 91.5 for both groups in the train sets and 30.5 in the test sets. Mean AUC
is 0.88 (sd: 0.04) and mean average precision is 0.89 (0.04). Corresponding ROC and PR curves are
shown in figure 3.9. Mean precision, recall, F1 score, accuracy and specificity are respectively 0.80,
0.79, 0.80, 0.80, 0.81. Features used in more than 10 out of the 20 outer cross validation folds are
Hemoglobin (20 folds), eGFR (19 folds), thrombocytes (17 folds), CRP (16 folds), previous thrombocyte
count (12 folds) and erythrocyte sedimentation rate (11 folds).

The effect of the number of training samples is shown in figure 3.10, where both AUC values for the
train set and test set are visualized.

3.2.2. PV classification
Samples from 58 PV patients and 2274 control patients were collected. A summary of the feature values
in the dataset is provided in appendix A.2. Boxplots for feature values are visualized in appendix B.2.
Average number of patients and samples per group in the outer cross validation are shown in table 3.3.

The mean AUC tested through outer cross validation is 0.86 (sd: 0.05), see figure 3.11. Mean Average
Precision (AP) derived from Precision-Recall curves is 0.87 (sd: 0.05), see figure 3.11. Mean confusion
matrix is shown in figure 3.12; derived values for precision, recall, F1, accuracy and specificity are
respectively 0.84, 0.66, 0.74, 0.77 and 0.87.

The mean feature importance in the models created in outer cross validation are visualized in figure
3.13, together with the number of models actually using the features. estimated Globular Filtration
Rate (eGFR) was selected in all 20 outer cross validation models. Features used in more than half of
the models are hematocrit, hemoglobin, magnesium, total protein, ferritin, thrombocytes, phosphate,
leukocytes, Red blood cell DistributionWidth (RDW), Vitamin D, Urea, erythrocytes, base excess, anion
gap, bilirubin, lactate andmonocytes. SHapley Additive exPlanations (SHAP) plots for each of the outer
cross validation folds are shown in appendix C.2.

Figure 3.11: Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves for outer cross validated PV classifiers.
A: ROC’s with corresponding Area Under the Curve (AUC). B: PR-curves with corresponding Average Precision (AP).
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Figure 3.12: Mean confusion matrix of outer cross validation folds (A) and corresponding performance metrics (B) for PV
classification.

Figure 3.13: Importance of features used in outer cross validation classifiers and number of classifiers using the features for
PV classification. Total number of classifiers is 20. Feature importance is calculated as the average gain achieved through

splits based on that feature.

3.2.3. Retrospective diagnostic delay
For the MPN patients in the test sets, time to diagnosis and prediction value are visualized in figures
3.14 and 3.15. For the 122 ET patients included, 76 (62%) had at least one positive MPN prediction
more than 1 year prior to their actual MPN diagnosis. 26 out of 58 (45%) PV patients had at least one
positive retrospective model prediction more than one year prior to diagnosis.
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Figure 3.14: Diagnostic delay and model prediction for each unique ET sample in the test sets. Samples on the same
horizontal level refer to one single patient. 76/122 patients have at least one positive ET prediction more than 1 year prior to

their actual ET diagnosis.

Figure 3.15: Diagnostic delay and model prediction for each unique PV sample in the test sets. Samples on the same
horizontal level refer to one single patient. 26/58 patients have at least one positive PV prediction more than 1 year prior to

their actual PV diagnosis.



4
Stage 2: microscopy filter

After selection of suspect cases based on general blood measurements (stage 1), a population with
true MPN patients and false-positives remains. To further increase the specificity to find MPN cases,
we hypothesize that further (automated) analysis of available blood samples using microscopy can
boost diagnostic specificity. The costs of microscopy analysis is higher compared to CBC blood mea-
surements, but significantly lower than the costs of mutation analysis or the intervention of human
expert. Therefore, automated microscopy analysis of (already drawn) peripheral blood might be an
ideal method as in-between analysis; reducing the number of false-positives with preservation of the
true positive MPN patients.

This chapter shows the first steps in the development of a blood microscopy based method (stage 2)
for early detection of MPN patients as follow-up to the algorithm described in the previous chapter.
Multiple methods are explored, including an cell counting based XGBoost algorithm and a image based
ResNet50 convolutional neural network (CNN).

4.0.1. Data collection
For training of algorithms in this stage, microscopy images were used form a historical cohort (2014-
2015) of all patients clinically suspected of MPN. For samples genetically tested for MPN related muta-
tions (JAK2, CALR, MPL) in the routine workload of the Result Laboratory Dordrecht, also peripheral
blood smear microscopy images were made. Diagnosis based on molecular diagnostics and further
clinical information was used for ground truth labeling of the samples (MPN / non-MPN). Microscopy of
the peripheral blood samples was performed using a DI-60 digital microscope.

4.1. Cell counting based XGBoost
In clinical practice, peripheral blood microscopy is often used to count the different types of blood
cells. Immature or under/over presented cell types can thus be detected. Already 20 years ago a
algorithmwas presented which was capable of detecting and classifying leukocytes in bloodmicroscopy
images.28 Using cell counts from an automated image classifier, the microscopy images are simplified
from roughly 12 million input values (2000x2000 pixels with 3 color channels) to 10-30 variables (the
number of different cell types detected).

4.1.1. Methods
Machine Learning model
An eXtreme Gradient Boosting (XGBoost) algorithm was trained to predict if the cell count of a mi-
croscopy analysis is positive or negative for MPN.

The model was trained and evaluated by applying outer cross validation. For each split, the following
pipeline was applied:

1. data preprocessing;

2. hyper parameter tuning;

13
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3. model training;

4. model performance evaluation.

Compared to the XGBoost pipeline described in the previous chapter, feature selection is missing in this
pipeline. This is due to the already limited number of leukocyte types counted in microscopy analysis.

Data preparation
Cell counts assigned by themicroscopy software to the scanned blood smears are included in this study.
A random selection of control patients was performed in order to include an equal number of MPN and
control samples. Cell counts were normalized, by scaling the cell count so that the normalized cell
counts per patient sum up to 1.

Nested cross validation
Patients in the dataset were split by a stratified 3 times repeated 3-fold splitting in train and test groups
(outer cross validation). Inner cross validation on the train groups was performed for hyper parameter
tuning. Using the selected hyper parameter values, training is done on the outer cross validation train
groups. Evaluation of the trained models is performed on the outer cross validation test groups.

Hyper parameters
Tuned hyper parameters for the XGBoost model are:

• the number of classification trees (estimators) per classifier,

• the maximal tree depth,

• minimum child weight required for the splitting of leafs,

• alpha value (L1 regularization),

• lambda value (L2 regularization) and

• gamma value (minimum split loss reduction).

The effect of these hyper parameters on AUC-score is analyzed through nested cross validation with
default hyper parameter values, except for the tested hyper parameter. For actual training of themodels,
optimal hyper parameter values were searched for using a 5-fold cross validated randomized search
with folds of 50 iterations. For the search domains, see table 4.1.

Parameter Search range
Number of estimators 2 – 30
Max depth 1 – 15
Minimum child weight 0 – 15
Alpha (L1 regularization) 0.01 – 10
Lambda (L2 regularization) 5 - 150
Gamma (min. split loss reduction) 0.01 – 10

Table 4.1: Search ranges in hyper parameter tuning of XGBoost model for microscopy white blood cell counts.

Experiments
Nested cross validation is preformed using all available data in the dataset. Receiver Operating Char-
acteristic (ROC) and Precision-Recall (PR) curves were created and performance metrics obtained
based on the model performance on the test sets. Distributions of selected hyper parameters and
feature importance in the trained models at outer cross validation folds are obtained and visualized.

Also the effect of hyper parameter values on AUC is evaluated through nested cross validation. For
this purpose, only single feature selection is performed and the model default parameters are used,
except for the variable feature for which the impact on AUC performance is analyzed.
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Model performance evaluation
Outer cross validation is utilized to evaluate performance metrics. Primary evaluation metric is the Area
Under the receiver-operator-Curve (AUC). Secondary metrics are Average Precision (AP), precision
(positive predictive value), recall (sensitivity), accuracy, specificity and F1 score. Feature importance
and used hyper parameter values are analyzed for the trained classifiers.

Figure 4.2: Receiver Operating Curves (ROC) and Precision-Recall (PR) curves for outer cross validated microscopy white
blood cell counts based MPN classifiers. A: ROC’s with corresponding Area Under the Curve (AUC). B: PR-curves with

corresponding Average Precision (AP).

Figure 4.3: Mean confusion matrix of outer cross validation folds (A) and corresponding performance metrics (B) of
microscopy white blood cell counts based MPN classifiers.

4.1.2. Results
The Receiver Operating Curve (ROC) and Precision-Recall (PR) curves are shown in figure 4.2. Mean
Area Under the ROC (AUC) for the 9 outer cross validation folds is 0.67 (standard deviation: 0.08).
Mean Average Precision (AP) is 0.70 (standard deviation: 0.08). Precision, recall, F1-score, accuracy
and specificity based on the mean confusion matrix of the 9 outer cross validation folds are respectively
0.80, 0.78, 0.79, 0.79 and 0.80, see figure 4.3.

The effect of hyper parameter values on AUC in the test set is shown in figure 4.5. Hyper parameter
values selected during hyper parameter selection in the separate cross validation folds are visualized
in figure 4.4.
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Figure 4.4: Hyper parameter distributions obtained during inner cross validation and used in the outer cross validation MPN
classifiers. Search range is the range of parameter values used during random grid hyper parameter search. Parameter values

are the actually selected values during random grid search.

Figure 4.5: Effect of hyper parameter value on AUC with other hyper parameter values fixed to default values.

Mean feature importance of the features in the 9 cross validation folds are shown in figure 4.6. In
this figure also the number of models using a cell type as feature are visualized. Although no feature
selection is performed, it is possible that the classification trees in the XGBoost model do not contain
splits based on a certain feature. Figure shows thus that GT (giant thrombocyte celltype) is used as
feature in all cross validation models, where ERB and PMY (respectively erythroblast and promyelocyte
celltypes) are used in none of the models.
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Figure 4.6: Importance of features used in outer cross validation classifiers and number of MPN classifiers using the features.
Total number of classifiers is 9. Feature importance is calculated as the average gain achieved through splits based on that

feature.

4.2. Image based ResNet50
To use whole microscopy images for MPN / non-MPN classification, a ResNet50 architecture is used
in this section. This Convolutional Neural Network (CNN) contains shortcuts around layers.29 The 50
layers in this architecture provide highmemory and filter capacity for complex tasks, where the shortcuts
make it possible to skip superfluous layers for simpler image recognition tasks.

4.2.1. Methods
Data preparation
Overview microscopy images were used with square dimensions of approximately 2800x2800 pixels
(∼ 600*600 µm). All images were resized to 1024x1024 pixels; after which 15 random patches with
size 256x256 were extracted. Each patch was labeled according to the ground truth classification of
either control or MPN. Patches were randomly assigned to the train or test group (80% train, 20% test).
Random undersampling in both the train and test groups is performed to include an equal number of
control and MPN patches.

ResNet50 setup
The TensorFlow Keras build-in application of ResNet50 was used to build a model architecture. Input
shape of the patches is 256x256x3; the final layer is a dense layer with binary output and sigmoid
activation. Training in 200 epochs is performed using the Adam optimizer with accuracy as evaluation
metric. Training was performed on the train set. After training of the model, model performance is
evaluated using the test set with accuracy as primary outcome.

4.2.2. Results
A total of 3390 patches are included. For a visualization of randomly selected patches, see figure4.7.
After randomisation to test and train sets and undersampling, the train-set consists of 480 control and
480 MPN patches. The test-set contains 120 control and 120 MPN patches.

The accuracy on the train and validation set during training of the model is shown in figure 4.8. The
confusion matrix for model predictions on the test set are shown in figure 4.9, which shows that the
model tends to assign all new patches to the MPN negative control group. Corresponding accuracy is
0.5.
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Figure 4.7: Visualisation of randomly selected patches used as input for the ResNet50 model with their ground truth labels.

Figure 4.8: Accuracy of ResNet50 model evaluated during
training.

Figure 4.9: Confusion matrix for predictions on test set of
ResNet50 model.



5
Discussion

Long diagnostic delays toMPN diagnosismight cause potentially preventable complications and deaths.
In this thesis, methods are explored to assist clinicians in recognising MPN patients earlier. A system
of two filters is proposed, where regular blood measurements are used in a first filtering method. Sus-
pected cases identified by the first filter would subsequently be filtered by a second, microscopy based
filter.

5.1. Stage 1: Regular blood measurements
5.1.1. Model performance
The given metrics for the model show that the model is working as a filter which is capable of detecting
most of the MPN patients in a dataset ( 8 out of 10 patientsamples with a future MPN diagnosis were
retrospectively detected in the test sets). See section 5.3 for an estimation regarding the meaning of
the model metrics in clinical practice. For now however, it can be said that the model is a fairly good
first filter to select a suspected population from the routine laboratory blood measurement workload.
When looking at ET and PV patients, the models were capable to detect respectively 62% and 45% of
the patients more than one year prior to diagnosis.

Depending on the demands of clinicians, the model might still be optimized. The cost and burden of
additional measurements and clinical follow-up for false positive individuals could weight so much that
a low false-positive rate is preferred over a perfect detection of all MPN patients. In other cases it
might be that false-negative findings are seen as unacceptable, even if this means that a lot of false
positive findings should be found. For both situations, the model can be fit to the clinical need in multiple
ways. For the model described in this thesis, the default objective of the XGBoost python package for
binary classification is used (binary logistic objective with a negative log-likelihood evaluation metric).
Re-training could be performed using another combination of objective and the evaluation metric it is
based on, in order to fit the clinical question. A simpler method is to tune the classification threshold;
the XGBoost model returns a value in a range of 0-1 which can be interpreted as an MPN probability
score. By default, a score above 0.5 is classified as MPN and a score below 0.5 as non-MPN. However,
by changing this score, only the very suspected cases could be selected (high threshold) or a higher
sensitivity can be achieved (lower threshold).

It was shown that mean performance of the ET model increased slightly in case of training only using
the last known measurement per patient. The mean AUC increased from 0.87 to 0.88, though it should
be noted that these mean values fall within each others standard deviation (0.02 and 0.04 respectively).
Based on the increasing mean AUC in case of less samples used for training, it might be said that it is
easier to predict if a patient has ET at the very moment a clinician also diagnosis the patient as having
ET. But this does not mean that a model trained using only last measurements before diagnosis fits
the objective of this study. Here, a method is required for early detection in order to reduce diagnostic
delay and potentially preventable complications. Thus a model with a slightly lower AUC performance
is seen as better tool than a model which is explicitly trained to detect MPN at the moment of diagnosis.
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5.1.2. Important features
The most important features found during training of the cross validation ET models are Hemoglobin,
estimated Globular Filtration Rate (eGFR), C-Reactive Protein (CRP), erythrocyte sedimentation rate,
HDL cholesterol ratio, thrombocytes and iron. Thrombocytes are directly linked to ET, because they
belong to the affected cell types. Hemoglobin and iron are key components of red blood cells, which
are elevated in PV, but also a portion of ET patients. The models pick this up by giving a higher MPN
probability for patients with elevated hemoglobin and/or iron levels.

CRP and erythrocyte sedimentation rate are negatively associated with ET. In case of an infection,
thrombocytes are also elevated, but in that case CRP and erythrocyte sedimentation rate are also
increased. Thus, elevated thrombocytes without increased CRP and erythrocyte sedimentation rate
are predictive for ET. As could be expected, this effect is not seen for the PV dataset. Inclusion for PV
is based on red blood cell counts, which are not directly associated with an infection, eliminating the
need of exclusion of infection samples.

Regarding eGFR, renal failure in MPN patients is reported.30 This is also seen in some ET and PV
models where a high renal function is considered as a negative predictor for MPN. However, in most
cases, the absence of eGFR measurement seems to be a negative predictor for MPN. The absence of
data thus seems to contain information. These findings at least suggest that there is a group of patients
who do have increased thrombocyte or red blood cell levels, but are not tested for their renal function.
These patients might for example be patients with a known disease for which it is not needed to monitor
their renal function.

HDL cholesterol ratio might have an metabolic connection with MPN. Cholesterol uptake of leukemic
cells is reported to be abnormal.31 Also suggestions of JAK2 activation by fat molecules are done.32
These findings however do not explicitly explain the impact of HDL cholesterol in ET. Our models sug-
gest a relation between decreased HDL cholesterol ratio and ET probability. A low HDL cholesterol
ratio is considered to be healthy and the control patients more often had a high HDL cholesterol ratio.
The most probable explanation of the predictive value of HDL cholesterol ratio and triglyceride would
thus be that these measurements are used to differentiate between MPN and other (lifestyle related)
diseases which present comparable blood measurements and symptoms. It should however be noted
that HDL cholesterol ratio and triglycerides only have little predictive value compared to features such
as CRP, hemoglobin, thrombocytes and eGFR.

5.1.3. Similar work
From our review of the literature (see appendix F we did not find reports of blood measurement based
MPN vs. non-MPN classification. Kimura et al. have shown that it is possible to distinguish between
MPN subtypes (PV, ET andMF) using laboratory measurements and imaging together with an XGBoost
algorithm.33 With sensitivity and specificity scores above 0.9 and AUC values of 0.97-0.99 their method
was highly successful. In this thesis, a comparable method is applied to distinguish between MPN and
non-MPN patients. The target group in this thesis’ study is far more diverse, due to the fact that the
control group comes from the general hospital population having a large variety of complaints. The AUC,
sensitivity (recall) and specificity scores found for our models are 0.86-0.87, 0.66-0.74 and 0.84-0.87.
These scores are lower compared to the scores in the work of Kimura et al., which can be explained
by the heterogeneous control population and the usage of microscopy imaging data by Kimura et al.,
which was not used in this filter.

5.2. Stage 2: Microscopy based selection
To reduce the number of false positives after initial filtering on blood measurements, usage of mi-
croscopy data was proposed. The results shown in this thesis indicate that this data has the potential
of being predictive for MPN.

5.2.1. Cell counting based
Using the labels provided by the machine learning algorithm of the microscope viewer software, an
AUC of 0.67 (standard deviation 0.08) was found. With a sensitivity (recall) of 0.78 and a specificity
of 0.80, it is proven that an XGBoost model is capable of predicting if a sample belongs to an MPN
patient or not. The algorithm labeling the white blood cells does only take the cell images as input,
which means that the trained XGBoost classifier is fully microscopy imaging based. This also means
that the microscopy images contain information which indicates if a patient might have MPN.
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5.2.2. Image based
The reported results based on the ResNet50 neural network, do however not show the capability of
this model to predict MPN (accuracy of 0.50, model classifies all test samples as non-MPN). Figure 4.8
shows the ResNet50 model was of over-training (train-accuracy of 1.0), which means that the model
at least has the capability of memorizing image features in order to perform perfect predictions on train
data. This indicates that the model architecture is appropriate for the input data, but the lack of any
discernibility shows the input data is not matching the task for this given algorithm.

5.2.3. Future prospective
The patches used for training and testing of the ResNet50 model are overview images, where most
of the area is filled with background and red blood cells; little area is covered by white blood cells
and platelets, see figure 4.7. It might be that these patches do not contain enough information to
be usable for control/MPN classification, or not enough images are included for the model to detect
predictive features (here training was performed on 480 patches per group, which is a relatively low
number for neural network training tasks). Training on the overview images does not provide much
information regarding white blood cells and platelets, whereas the labeled subtypes of white blood
cells have shown to be predictive and platelets are also reported to possibly have changed morphology
in MPN patients.34 Thus, taking features regarding white blood cells and platelets might be used for
MPN detection in future research. The model however should also be improved, for simply feeding
white blood cell images instead of red blood cell patches to a ResNet50 showed the same overtraining
and single output prediction class on test data as observed for the red blood cell patches, see appendix
D for results of lymphocyte images as input for the ResNet50 model.

Where the application of ResNet50 in this study takes images as input and a classification as output,
the study by Kimura et al. took images as input and image features as output of their neural network.33
The features obtained by their network they then fed to an XGBoost algorithm, together with blood
measurement values. This method utilizes the strength of a convolutional neural network for image
feature recognition, but prevents over-training by using a simpler XGBoost model for actual classifi-
cation. This also gave them the possibility to combine blood measurements and microscopy imaging
data in a single prediction algorithm. For further development of a microscopy imaging based algorithm
for MPN detection, a comparable method might be applied. Morphological properties of cells (such as
shape, size and granulation), could be extracted by morphological operations or a neural network. A
mean and standard deviation of the radiomic features for multiple cells of different cell types makes it
possible to combine an unknown number of cells in a structured datatype required for an classification
model. Cell counts, laboratory measurements and demographic information could be added to provide
additional information in order to increase model performance. An XGBoost model has shown to be
appropriate for such an task, both in this study as well as in the study by Kimura et al.33 A separate
neural network taking the radiomic features and additional information as input might also be promising
for this task, due to the capability of a neural network to combine the meaning of multiple features (eg
the given standard deviation of a feature is dependent on the ’real’ spread of the feature value, but also
on the number of samples the standard deviation is calculated on).

It should be noted that ground truth labeling of MPN patients is not a straight forward process. If a
patient has one of the common MPN mutations, the diagnosis is set. However, 10-15% of the MPN pa-
tients have MPN symptoms, but do not present one of the common MPN mutations.35 For the datasets
used in this thesis the diagnosis given by hematologists was used as ground truth, even if no MPN
mutation could be found. This is done because also the patients without MPN mutation need appro-
priate treatment to reduce the risk of cardiovascular complications. Nevertheless his also means that
the MPN dataset was more heterogeneous compared to a dataset with ground truth labeling based on
mutation analysis, due to the possibility that clinicians have diagnosed a non-MPN patient as having
an MPN.

5.3. Clinical implementation
5.3.1. Extrapolation to real world situation
For development of the MPN detection algorithms, balanced groups with an equal number of control
and MPN patients were used. In clinical practice however, only a small fraction of the total population
has an MPN. A multinational registry study showed that the incidence of MPN in a hospital population
is 12-15 per 100 000 hospital patients.36 This does not directly mean that the MPN incidence rate in
the laboratory is 12-15 / 100 000, but it does give an (under)estimation of the true laboratory incidence
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rate. If the given incidence rate would be used and only the ET filter on regular blood measurements
would be taken into consideration, approximately 16 000 per 100 000 patients would be labeled as
positive. Only 9 per 16 000 patients would be true positives, the rest would be false positive. For
each positive patient, around 1800 patients would be false positive. This scenario is not completely
realistic due to the increased MPN probability when a patient both gets blood measurements ánd has
a consecutive increase thrombocyte count. In case this would increase the probability of an sample to
be MPN positive to 500 / 100 000 (5%), then the number of true positives would increase to such an
extend that for each true positive patient, 43 false positives are found.

5.3.2. Next steps toward clinical implementation
Above estimations show that a filter based on blood measurements is not directly useful in clinical
practice due to the large portion of false positive predictions. This supports the need for an additional
filter with high sensitivity to maintain true positive cases and a moderate to good specificity to eliminate
most of the false positive cases. Microscopy based filtering has shown potential for MPN selection
and could thus be further explored in order to create a filtering model. Besides the development of
an appropriate second filter, the first filter based on blood measurements might be optimized for exact
clinical need as described in section 5.1.1.

Before routine clinical implementation of the proposed automated laboratory measurement and imag-
ing filters, both proper validation and workflow integration are required. Validation might be performed
on external data of another hospital and/or in a monitored study situation where new laboratory mea-
surements are fed to the filter(s) and closely monitored by clinicians. Integration in workflow requires
a system where real time data of blood measurements and microscopy imaging can be loaded and
processed. Output of the system is ideally integrated with currently used systems. A dashboard for re-
search purposes has been developed during this thesis project in order to give an impression of a visual
representation of model output, see appendix E. During research and validation this is an appropriate
tool for real time model visualisation, for clinical implementation the dashboard should be integrated in
the systems already used.



6
Conclusion

In this thesis, a two stage machine learning based filter method is proposed for early detection of MPN
in the laboratory workflow in order to prevent a long diagnostic delay and associated complications.

An appropriate first filter on common laboratory measurements has been developed, with a mean AUC
score of 0.87 in outer cross validation testing. This filter is used to select suspected ET / PV cases
from the routine laboratory workflow. A second filter based on blood smear microscopy imaging is
suggested. Microscopy based white blood cell counts show to have a predictive value for MPN, but
the applied neural network in this thesis project was not capable of differentiating between MPN and
non-MPN microscopy images. Further research should be done, developing an microscopy based
algorithm for MPN prediction, in order to have a clinically applicable MPN prediction tool.

This work shows the strength and potential of laboratory data combined with machine learning methods
for early detection of MPN patients and thus the fight for a shorter diagnostic delay, less preventable
complications and ultimately reduction of MPN related mortality.
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A
Characteristics of laboratory

measurements dataset

A.1. ET Dataset
Table A.1: Total number of patients and samples in the laboratory measurements ET dataset (before splitting and

undersampling)

Patients Samples
Control 11962 43226

ET 122 2532

Table A.2: Summary of feature values in the used laboratory measurements ET dataset. The control and ET columns contain
the median and interquartile range of the specified features or the percentage of occurrences in case of binary values. The
column ’n’ provides the number of control / ET samples in the ET dataset for which a value of the given feature is available.

Control n ET
Median (IQR) / % control / ET Median (IQR) / %

ALAT 20.0 (14.0 - 31.0) 39897 / 2368 22.0 (17.0 - 30.0)
APTT 30.0 (27.0 - 35.0) 14562 / 748 28.0 (27.0 - 31.0)
ASAT 20.0 (15.0 - 29.0) 37842 / 2209 20.0 (15.0 - 26.0)
Album/creat 2.0 (1.0 - 5.0) 13235 / 943 1.0 (1.0 - 3.0)
Albumine 34.0 (28.0 - 39.0) 36838 / 2119 39.0 (36.0 - 42.0)
Alkalische Fosfatase (AF) 92.0 (71.0 - 128.0) 37536 / 2178 78.0 (63.0 - 101.0)
Amylase totaal 50.0 (35.0 - 72.0) 9129 / 638 52.0 (44.0 - 72.0)
Anion gap 8.0 (6.0 - 11.0) 11216 / 463 7.0 (5.0 - 9.0)
Bacteriën 100.0 (100.0 - 100.0) 1639 / 109 100.0 (100.0 - 100.0)
Base Excess 1.0 (-2.0 - 3.0) 17246 / 768 2.0 (1.0 - 4.0)
Basofielen 0.0 (0.0 - 0.0) 35313 / 2476 0.0 (0.0 - 0.0)
Bezinking 32.0 (13.0 - 66.0) 35269 / 2155 10.0 (5.0 - 21.0)
Bicarbonaat Arterieel 25.0 (22.0 - 28.0) 17275 / 768 26.0 (26.0 - 28.0)
Bilirubine Direct 5.0 (2.0 - 18.0) 7287 / 247 3.0 (2.0 - 30.0)
Bilirubine Totaal 8.0 (5.0 - 11.0) 36363 / 2148 8.0 (6.0 - 10.0)
CK 61.0 (36.0 - 103.0) 25085 / 1498 69.0 (52.0 - 100.0)
CRP 29.0 (7.0 - 94.0) 41309 / 2305 5.0 (4.0 - 14.0)
Calcium 2.0 (2.0 - 2.0) 35191 / 2096 2.0 (2.0 - 2.0)
Chloride 102.0 (99.0 - 106.0) 24177 / 1290 104.0 (102.0 - 107.0)
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Control n ET
Median (IQR) / % control / ET Median (IQR) / %

Cholesterol 5.0 (4.0 - 6.0) 28381 / 2275 5.0 (4.0 - 6.0)
Cholesterol-HDL Ratio 4.0 (3.0 - 5.0) 24616 / 2227 4.0 (3.0 - 5.0)
Eiwit kwalitatief 0.0 (0.0 - 0.0) 2 / 0 nan (nan - nan)
Eosinofielen 0.0 (0.0 - 0.0) 35353 / 2476 0.0 (0.0 - 0.0)
Erytroblasten 1.0 (0.0 - 1.0) 11494 / 813 0.0 (0.0 - 1.0)
Erytrocyten 4.0 (4.0 - 4.0) 37109 / 2304 4.0 (4.0 - 5.0)
Ferritine 80.0 (26.0 - 238.0) 26735 / 2007 77.0 (33.0 - 135.0)
Foliumzuur 13.0 (9.0 - 23.0) 23298 / 1762 15.0 (11.0 - 23.0)
Fosfaat 1.0 (1.0 - 1.0) 29618 / 1527 1.0 (1.0 - 1.0)
GGT 33.0 (18.0 - 76.0) 38753 / 2278 22.0 (16.0 - 34.0)
Glucose 6.0 (5.0 - 8.0) 37112 / 2395 6.0 (5.0 - 7.0)
Glucose (bloedgas) 8.0 (6.0 - 9.0) 3925 / 20 10.0 (8.0 - 10.0)
Glucose 10 uur 7.0 (6.0 - 9.0) 14327 / 424 8.0 (5.0 - 9.0)
Glucose 14 uur 8.0 (6.0 - 10.0) 14145 / 395 9.0 (8.0 - 10.0)
Glucose 22 u 7.0 (6.0 - 10.0) 7615 / 153 14.0 (10.0 - 14.0)
Glucose POC 7.0 (6.0 - 10.0) 10617 / 428 8.0 (6.0 - 10.0)
Glucose nuchter 6.0 (5.0 - 7.0) 29362 / 2025 5.0 (5.0 - 6.0)
HDL Cholesterol 1.0 (1.0 - 2.0) 25493 / 2235 1.0 (1.0 - 2.0)
HbA1c 45.0 (39.0 - 55.0) 14398 / 928 42.0 (38.0 - 51.0)
Hematocriet 0.0 (0.0 - 0.0) 42521 / 2529 0.0 (0.0 - 0.0)
Hemoglobine 7.0 (6.0 - 8.0) 43198 / 2529 8.0 (8.0 - 9.0)
IJzer 7.0 (4.0 - 13.0) 22159 / 1646 14.0 (10.0 - 20.0)
INR 1.0 (1.0 - 3.0) 15678 / 569 2.0 (1.0 - 3.0)
INR Trodis coaguchek 3.0 (2.0 - 3.0) 2033 / 18 4.0 (3.0 - 4.0)
IgA 2.0 (2.0 - 4.0) 12184 / 964 2.0 (2.0 - 3.0)
Innametijd 14.0 (13.0 - 18.0) 6187 / 202 14.0 (12.0 - 21.0)
Kalium 4.0 (4.0 - 4.0) 41529 / 2417 4.0 (4.0 - 4.0)
Kalium bloedgas 4.0 (4.0 - 4.0) 4147 / 42 4.0 (3.0 - 4.0)
Kreatinine 71.0 (57.0 - 89.0) 42328 / 2516 74.0 (62.0 - 90.0)
LD 266.0 (193.0 - 368.0) 37434 / 2427 234.0 (192.0 - 328.0)
LDL Cholesterol 3.0 (2.0 - 4.0) 24536 / 2209 3.0 (2.0 - 4.0)
Lactaat 1.0 (1.0 - 2.0) 11823 / 356 1.0 (1.0 - 2.0)
Leucocyten 11.0 (9.0 - 15.0) 43105 / 2523 9.0 (7.0 - 11.0)
Leukocyten est. 500.0 (38.0 - 500.0) 23 / 26 25.0 (25.0 - 25.0)
Lymfocyten 2.0 (1.0 - 3.0) 35354 / 2476 2.0 (1.0 - 2.0)
MCV 88.0 (83.0 - 92.0) 42369 / 2489 92.0 (87.0 - 101.0)
Macrocytose 1.0 (1.0 - 1.0) 1 / 0 nan (nan - nan)
Magnesium 1.0 (1.0 - 1.0) 22014 / 883 1.0 (1.0 - 1.0)
Microalbumine in urine 10.0 (5.0 - 29.0) 16009 / 1289 8.0 (5.0 - 23.0)
Microcytose 1.0 (1.0 - 1.0) 14 / 0 nan (nan - nan)
Monocyten 1.0 (1.0 - 1.0) 35337 / 2476 1.0 (0.0 - 1.0)
Natrium 137.0 (135.0 - 139.0) 41538 / 2415 139.0 (137.0 - 140.0)
Natrium bloedgas 137.0 (134.0 - 140.0) 4177 / 42 138.0 (131.0 - 138.0)
Neutrofielen 7.0 (5.0 - 11.0) 35352 / 2476 5.0 (4.0 - 7.0)
Nitriet 1.0 (1.0 - 1.0) 8 / 0 nan (nan - nan)
Prostaat Specifiek Antigeen 2.0 (1.0 - 4.0) 5811 / 337 1.0 (0.0 - 3.0)
Protrombinetijd 11.0 (11.0 - 12.0) 12894 / 781 11.0 (10.0 - 11.0)
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Control n ET
Median (IQR) / % control / ET Median (IQR) / %

RDW 15.0 (14.0 - 17.0) 42120 / 2484 14.0 (13.0 - 17.0)
Reticulocyten 1.0 (1.0 - 2.0) 16722 / 1203 1.0 (1.0 - 2.0)
Sediment 0.0 (0.0 - 0.0) 48 / 14 0.0 (0.0 - 0.0)
TSH 2.0 (1.0 - 2.0) 31101 / 2160 2.0 (1.0 - 3.0)
TYBC 60.0 (48.0 - 73.0) 19791 / 1443 64.0 (57.0 - 72.0)
Temperatuur 37.0 (37.0 - 37.0) 17082 / 768 37.0 (37.0 - 37.0)
Totaal eiwit 38.0 (1.0 - 71.0) 18786 / 1276 60.0 (1.0 - 72.0)
Transferrine 2.0 (2.0 - 3.0) 20754 / 1594 3.0 (2.0 - 3.0)
Triglyceriden 2.0 (1.0 - 2.0) 26437 / 2244 1.0 (1.0 - 2.0)
Trombocyten 523.0 (479.0 - 606.0) 43226 / 2532 568.0 (506.0 - 679.0)
Troponine I 0.0 (0.0 - 0.0) 7422 / 507 0.0 (0.0 - 0.0)
Ureum 6.0 (4.0 - 8.0) 37557 / 2109 6.0 (4.0 - 7.0)
Urinezuur 0.0 (0.0 - 0.0) 12237 / 1323 0.0 (0.0 - 0.0)
IJzerverzadiging 13.0 (8.0 - 21.0) 18973 / 1425 22.0 (15.0 - 29.0)
Vitamine B12 294.0 (211.0 - 446.0) 26317 / 1894 295.0 (219.0 - 427.0)
Vitamine D 51.0 (31.0 - 69.0) 17009 / 1125 51.0 (33.0 - 68.0)
Vrij T4 15.0 (13.0 - 17.0) 17971 / 1501 15.0 (13.0 - 16.0)
eAG 7.0 (6.0 - 9.0) 14330 / 928 7.0 (6.0 - 8.0)
eGFR (CKD-EPI) 78.0 (60.0 - 90.0) 19556 / 2335 73.0 (56.0 - 87.0)
eGFR (MDRD) 60.0 (60.0 - 60.0) 31429 / 2402 60.0 (60.0 - 60.0)
p-amylase 17.0 (12.0 - 26.0) 15224 / 876 20.0 (15.0 - 24.0)
pCO2 6.0 (5.0 - 7.0) 17498 / 800 6.0 (5.0 - 7.0)
pH 7.0 (6.0 - 7.0) 27319 / 1698 6.0 (6.0 - 7.0)
pO2 10.0 (8.0 - 15.0) 13004 / 499 9.0 (7.0 - 11.0)
sO2 1.0 (1.0 - 1.0) 13068 / 488 1.0 (1.0 - 1.0)
Diagnose 0.0 (0.0 - 0.0) 43226 / 2532 1.0 (1.0 - 1.0)
Leeftijd 65.0 (52.0 - 75.0) 43226 / 2532 64.0 (52.0 - 73.0)
prev trombos 524.0 (480.0 - 607.0) 43226 / 2532 567.0 (505.0 - 682.0)
Male 35.0% 15055 / 677 27.0%
Female 65.0% 28171 / 1855 73.0%
Smoking 10.0% 4169 / 191 8.0%

A.2. PV Dataset
Table A.3: Total number of patients and samples in the laboratory measurements PV dataset (before splitting and

undersampling)

Patients Samples
Control 2274 8932

PV 58 180
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Table A.4: Summary of feature values in the used laboratory measurements PV dataset. The control and PV columns contain
the median and interquartile range of the specified features or the percentage of occurrences in case of binary values. The
column ’n’ provides the number of control / PV samples in the PV dataset for which a value of the given feature is available.

Control n PV
Median (IQR) / % control / PV Median (IQR) / %

ALAT 27.0 (20.0 - 39.0) 8709 / 173 28.0 (23.0 - 35.0)
APTT 30.0 (27.0 - 34.0) 3913 / 29 28.0 (28.0 - 31.0)
ASAT 24.0 (18.0 - 31.0) 8416 / 157 22.0 (16.0 - 27.0)
Afnametijd 10.0 (8.0 - 15.0) 2193 / 11 14.0 (14.0 - 14.0)
Album/creat 2.0 (1.0 - 7.0) 3924 / 69 2.0 (0.0 - 2.0)
Albumine 39.0 (35.0 - 42.0) 8017 / 143 40.0 (38.0 - 43.0)
Alkalische Fosfatase (AF) 82.0 (67.0 - 104.0) 8325 / 149 75.0 (58.0 - 95.0)
Amylase totaal 51.0 (37.0 - 76.0) 2489 / 33 63.0 (53.0 - 100.0)
Anion gap 8.0 (6.0 - 10.0) 3410 / 7 3.0 (3.0 - 7.0)
Bacteriën 100.0 (100.0 - 100.0) 296 / 0 nan (nan - nan)
Base Excess 1.0 (-1.0 - 3.0) 4959 / 36 3.0 (1.0 - 3.0)
Basofielen 0.0 (0.0 - 0.0) 7785 / 177 0.0 (0.0 - 0.0)
Bezinking 7.0 (3.0 - 16.0) 8119 / 159 5.0 (2.0 - 6.0)
Bicarbonaat Arterieel 25.0 (23.0 - 28.0) 4966 / 36 28.0 (26.0 - 30.0)
Bilirubine Direct 7.0 (2.0 - 22.0) 2322 / 5 1.0 (1.0 - 1.0)
Bilirubine Totaal 10.0 (8.0 - 14.0) 8163 / 151 8.0 (8.0 - 11.0)
CK 82.0 (51.0 - 137.0) 6448 / 119 66.0 (45.0 - 108.0)
CRP 5.0 (5.0 - 19.0) 8608 / 169 5.0 (3.0 - 5.0)
Calcium 2.0 (2.0 - 2.0) 7737 / 145 2.0 (2.0 - 2.0)
Chloride 103.0 (100.0 - 106.0) 6044 / 72 104.0 (102.0 - 105.0)
Cholesterol 5.0 (4.0 - 6.0) 7417 / 175 5.0 (4.0 - 6.0)
Cholesterol-HDL Ratio 4.0 (3.0 - 5.0) 6816 / 175 4.0 (4.0 - 5.0)
Doseeradvies antibiotica 21.0 (13.0 - 27.0) 22 / 0 nan (nan - nan)
Eosinofielen 0.0 (0.0 - 0.0) 7793 / 177 0.0 (0.0 - 0.0)
Erytroblasten 0.0 (0.0 - 1.0) 2267 / 43 0.0 (0.0 - 1.0)
Erytrocyten 5.0 (4.0 - 6.0) 7422 / 154 6.0 (5.0 - 6.0)
Ferritine 107.0 (42.0 - 228.0) 4955 / 152 80.0 (22.0 - 144.0)
Foliumzuur 14.0 (10.0 - 22.0) 4371 / 152 15.0 (10.0 - 23.0)
Fosfaat 1.0 (1.0 - 1.0) 6791 / 79 1.0 (1.0 - 1.0)
GGT 35.0 (22.0 - 62.0) 8502 / 167 26.0 (20.0 - 32.0)
Glucose 6.0 (5.0 - 8.0) 8297 / 169 5.0 (5.0 - 6.0)
Glucose (bloedgas) 8.0 (6.0 - 10.0) 1299 / 0 nan (nan - nan)
Glucose 10 uur 7.0 (6.0 - 9.0) 3015 / 1 9.0 (9.0 - 9.0)
Glucose 14 uur 8.0 (6.0 - 10.0) 3086 / 1 12.0 (12.0 - 12.0)
Glucose 22 u 7.0 (6.0 - 9.0) 1707 / 1 12.0 (12.0 - 12.0)
Glucose POC 7.0 (6.0 - 10.0) 2866 / 26 6.0 (5.0 - 6.0)
Glucose nuchter 6.0 (5.0 - 7.0) 6892 / 163 5.0 (4.0 - 6.0)
HDL Cholesterol 1.0 (1.0 - 1.0) 6973 / 175 1.0 (1.0 - 1.0)
HbA1c 45.0 (39.0 - 52.0) 4081 / 71 39.0 (37.0 - 41.0)
Hematocriet 0.0 (0.0 - 1.0) 8909 / 180 1.0 (0.0 - 1.0)
Hemoglobine 10.0 (10.0 - 11.0) 8932 / 180 10.0 (10.0 - 11.0)
IJzer 12.0 (6.0 - 18.0) 3670 / 119 15.0 (8.0 - 20.0)
INR 1.0 (1.0 - 3.0) 3608 / 29 3.0 (2.0 - 3.0)
INR Trodis coaguchek 3.0 (2.0 - 3.0) 478 / 7 4.0 (3.0 - 4.0)
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Control n PV
Median (IQR) / % control / PV Median (IQR) / %

IgA 2.0 (2.0 - 3.0) 2672 / 47 2.0 (2.0 - 2.0)
Innametijd 14.0 (13.0 - 19.0) 1685 / 22 22.0 (14.0 - 22.0)
Kalium 4.0 (4.0 - 4.0) 8774 / 167 4.0 (4.0 - 4.0)
Kalium bloedgas 4.0 (4.0 - 4.0) 1300 / 0 nan (nan - nan)
Kreatinine 81.0 (66.0 - 98.0) 8888 / 180 81.0 (72.0 - 93.0)
LD 287.0 (208.0 - 368.0) 8294 / 177 234.0 (204.0 - 321.0)
LDL Cholesterol 3.0 (2.0 - 4.0) 6700 / 173 3.0 (2.0 - 3.0)
Lactaat 1.0 (1.0 - 2.0) 3638 / 14 2.0 (1.0 - 2.0)
Leucocyten 9.0 (7.0 - 11.0) 8892 / 180 9.0 (8.0 - 11.0)
Leukocyten est. 20.0 (20.0 - 20.0) 6 / 0 nan (nan - nan)
Lymfocyten 2.0 (2.0 - 3.0) 7793 / 177 2.0 (1.0 - 2.0)
MCV 91.0 (88.0 - 95.0) 8830 / 179 89.0 (84.0 - 97.0)
Macrocytose nan (nan - nan) 0 / 0 nan (nan - nan)
Magnesium 1.0 (1.0 - 1.0) 5163 / 39 1.0 (1.0 - 1.0)
Microalbumine in urine 13.0 (6.0 - 46.0) 4574 / 74 14.0 (10.0 - 30.0)
Microcytose 1.0 (1.0 - 1.0) 10 / 0 nan (nan - nan)
Monocyten 1.0 (1.0 - 1.0) 7793 / 177 1.0 (1.0 - 1.0)
Natrium 139.0 (137.0 - 140.0) 8773 / 167 139.0 (138.0 - 140.0)
Natrium bloedgas 138.0 (135.0 - 140.0) 1307 / 0 nan (nan - nan)
Neutrofielen 6.0 (4.0 - 8.0) 7793 / 177 6.0 (5.0 - 9.0)
PSA 1.0 (1.0 - 3.0) 3002 / 89 1.0 (1.0 - 2.0)
Protrombinetijd 11.0 (11.0 - 12.0) 3673 / 25 12.0 (12.0 - 12.0)
RDW 14.0 (13.0 - 15.0) 8773 / 175 15.0 (14.0 - 18.0)
Reticulocyten 1.0 (1.0 - 2.0) 2448 / 83 2.0 (1.0 - 2.0)
Sediment 0.0 (0.0 - 0.0) 3 / 0 nan (nan - nan)
TSH 2.0 (1.0 - 2.0) 7454 / 159 2.0 (1.0 - 2.0)
TYBC 64.0 (55.0 - 74.0) 2983 / 114 63.0 (58.0 - 69.0)
Temperatuur 37.0 (37.0 - 37.0) 4936 / 36 37.0 (37.0 - 37.0)
Totaal eiwit 24.0 (1.0 - 72.0) 4791 / 62 68.0 (1.0 - 74.0)
Transferrine 2.0 (2.0 - 3.0) 3274 / 119 3.0 (2.0 - 3.0)
Triglyceriden 2.0 (1.0 - 2.0) 7024 / 173 2.0 (1.0 - 2.0)
Trombocyten 269.0 (221.0 - 332.0) 8861 / 180 544.0 (440.0 - 702.0)
Troponine I 0.0 (0.0 - 0.0) 2339 / 54 0.0 (0.0 - 0.0)
Ureum 6.0 (4.0 - 8.0) 8191 / 123 5.0 (5.0 - 6.0)
Urinezuur 0.0 (0.0 - 0.0) 3573 / 112 0.0 (0.0 - 0.0)
IJzerverzadiging 19.0 (10.0 - 28.0) 2866 / 110 22.0 (10.0 - 29.0)
Vitamine B12 302.0 (219.0 - 446.0) 5386 / 154 300.0 (252.0 - 391.0)
Vitamine D 48.0 (32.0 - 67.0) 3823 / 47 42.0 (30.0 - 54.0)
Vrij T4 15.0 (13.0 - 17.0) 4273 / 88 16.0 (13.0 - 18.0)
eAG 7.0 (6.0 - 9.0) 4072 / 71 6.0 (6.0 - 7.0)
eGFR (CKD-EPI) 73.0 (57.0 - 88.0) 5432 / 178 77.0 (62.0 - 85.0)
eGFR (MDRD) 60.0 (60.0 - 60.0) 7928 / 164 60.0 (60.0 - 60.0)
p-amylase 17.0 (12.0 - 27.0) 4213 / 43 15.0 (14.0 - 16.0)
pCO2 6.0 (5.0 - 7.0) 5001 / 36 6.0 (5.0 - 54.0)
pH 6.0 (6.0 - 7.0) 6905 / 98 6.0 (6.0 - 7.0)
pO2 10.0 (8.0 - 13.0) 4104 / 30 10.0 (10.0 - 10.0)
sO2 1.0 (1.0 - 1.0) 4150 / 30 1.0 (1.0 - 1.0)
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Control n PV
Median (IQR) / % control / PV Median (IQR) / %

Diagnose 0.0 (0.0 - 0.0) 8932 / 180 1.0 (1.0 - 1.0)
Leeftijd 64.0 (54.0 - 72.0) 8932 / 180 63.0 (53.0 - 72.0)
Male 72.0% 6410 / 131 73.0%
Female 28.0% 2522 / 49 27.0%
Smoking 15.0% 1369 / 32 18.0%



B
Boxplot of blood measurement dataset

values

B.1. Boxplots for ET dataset
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B.2. Boxplots for PV dataset
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C
SHAP plots per outer crossvalidation

fold in blood measurements filter

SHapley Additive exPlanations (SHAP) plots for each of the outer cross validation folds of the blood
measurement filter. Gray points indicate unknown measurement values (measurment not performed),
blue-red points indicate low-high feature value. Positive SHAP values indicate positive predictive
value of feature value for prediction, negative SHAP values indicate negative ET or PV predictive
value. A larger deviation from 0 means a larger inpact on model outcome.

AUC scores for the test set are shown together with the SHAP plot for each fold.

C.1. ET prediction models

Fold 0 (AUC: 0.90) Fold 1 (AUC: 0.85)

;

40
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Fold 2 (AUC: 0.89) Fold 3 (AUC: 0.87)

;

Fold 4 (AUC: 0.86) Fold 5 (AUC: 0.82)

;
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Fold 6 (AUC: 0.90) Fold 7 (AUC: 0.90)

;

Fold 8 (AUC: 0.88) Fold 9 (AUC: 0.88)

;
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Fold 10 (AUC: 0.88) Fold 11 (AUC: 0.86)

;

Fold 12 (AUC: 0.89) Fold 13 (AUC: 0.89)

;
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Fold 14 (AUC: 0.88) Fold 15 (AUC: 0.87)

;

Fold 16 (AUC: 0.89) Fold 17 (AUC: 0.82)

;
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Fold 18 (AUC: 0.90) Fold 19 (AUC: 0.92)

;

C.2. PV prediction models

Fold 0 (AUC: 0.82) Fold 1 (AUC: 0.85)

;
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Fold 2 (AUC: 0.82) Fold 3 (AUC: 0.88)

;

Fold 4 (AUC: 0.89) Fold 5 (AUC: 0.88)

;



Chapter C – SHAP plots per outer crossvalidation fold in blood measurements filter 47

Fold 6 (AUC: 0.90) Fold 7 (AUC: 0.74)

;

Fold 8 (AUC: 0.91) Fold 9 (AUC: 0.93)

;
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Fold 10 (AUC: 0.88) Fold 11 (AUC: 0.81)

;

Fold 12 (AUC: 0.97) Fold 13 (AUC: 0.83)

;
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Fold 14 (AUC: 0.81) Fold 15 (AUC: 0.85)

;

Fold 16 (AUC: 0.91) Fold 17 (AUC: 0.86)

;
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Fold 18 (AUC: 0.94) Fold 19 (AUC: 0.85)

;



D
ResNet50 with lymphocyte images

Figure D.1: Visualisation of randomly selected lymphocyte images used as input for the ResNet50 model with their ground
truth labels (0: control, 1: MPN).

Figure D.2: Accuracy of ResNet50 model evaluated during
training with lymphocyte images.

Figure D.3: Confusion matrix for predictions on test set of
ResNet50 model with lymphocyte images.
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E
MPN Dashboard

This dashboard is developed as an example of visual output of a blood measurement based filter. The
used filter is an earlier version of the blood measurement filter as described in chapter 3 of this thesis.

Figure E.1: MPN dashboard
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F
Literature review: Machine Learning

in Diagnosis and Prognosis of
Myeloproliferative Disorders

A literature review was conducted prior to this master thesis project to identify the usage of machine
learning in diagnosis and prognosis of Myeloproliferative Disorders (MPD; a combination term for MPN
and Chronic Myeloid Leukemia (CML)).

See next pages for the review text.

Note that this review is already assessed and not part of this master thesis project.
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Machine Learning in Diagnosis and Prognosis of Myeloproliferative Disorders 

Paul Nijsse, intern Technical Medicine,  

Medical Physics department Albert Schweitzer hospital, the Netherlands  

p.nijsse@asz.nl 

 

Abstract 
Introduction: Myeloproliferative Disorders (MPD’s) are a cluster of disorders related to increased 
proliferation of mature blood cells. The most frequent MPD’s are Chronic Myeloid Leukemia (CML), 
Polycythemia Vera (PV), Essential Thrombocythemia (ET) and Primary Myelo-Fibrosis (MF). Diagnosis 
is based on blood counts, microscopy and genetics. Machine Learning (ML) might help in dealing with 
the increasing data obtained during the diagnostic process. 
Methods: A search in the PubMed database was performed to systematically select articles relating to 
machine learning in diagnosis or prognosis for MPD’s. 
Results: 20 articles were included in this review, of which 14 describe ML in diagnostics and 6 in 
prognosis for MPD patients. 
Conclusion: Several machine learning methods have been developed for diagnosis and prognosis in 

MPD patients, mainly relying on deep learning or tree based algorithms.   

Keywords 
Myeloproliferative disorders; Machine learning; Diagnosis; Prognosis 

 

Introduction 
Myelo-Proliferative Disorders (MPD’s) are a cluster of disorders related to increased proliferation of 

mature blood cells(1). This is caused by a hematopoietic stem cell located in the bone marrow (myelum) 

with increased proliferation rate, mainly because of an acquired mutation(2). The World Health 

Organisation (WHO) defines the following disorders in the cluster of Myeloproliferative neoplasms(3):  

- Chronic Myeloid Leukemia (CML) 

- Chronic neutrophilic leukemia 

- Chronic eosinophilic leukemia 

- Polycythemia Vera (PV) 

- Essential Thrombocythemia (ET) 

- Primary Myelo-Fibrosis (MF) 

The most common diseases form this list are CML, PV, ET and MF(1). In 1960, Nowell and Hungerford 

discovered a chromosomal aberration in CML patients, which was not present in patients with other 

types of leukemia(4). This chromosome was named after the city where it was found: Philadelphia(5). 

This Philadelphia (Ph) chromosome was one of the first proofs of genetic causes in cancer. The 

translocation between the long arms of chromosomes 9 and 22 leads to a fusion gene of BCR and ABL 

(BCR-ABL1), which encodes for a unregulated tyrosine kinase causing cancerous cell growth(6). Knowing 

the molecular mechanism, targeted therapy through tyrosine kinase inhibitors is possible. This leads 

for most CML patients to a normal life expectancy(7). 

Polycythemia Vera, Essential Thrombocythemia and Primary Myelofibrosis belong to the Ph-negative 

MPD’s. To distinguish them from CML, these diseases are grouped together in this and other papers 

as Myelo-Proliferative Neoplasms (MPN’s)(1, 8). PV is characterized by an increased production of 
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erythrocytes (red blood cells). In ET there is a overproduction of thrombocytes (blood platelets). For 

MF the bone marrow becomes fibrotic, due to increased megakaryocyte proliferation. All three MPN 

types have in common that in a majority of the cases a JAK2 mutation is found(2, 9, 10). Next to JAK2, also 

CALR and MPL mutations are found in MPN patients(2). A small number of patients has the phenotype 

of an MPN, without a JAK2, CALR or MPL mutation (2, 11). These are referred to as triple-negative MPN’s.  

Symptoms of MPD’s are generally non-specific, such as headache, weakness, sweating, bleeding, 

weight loss and abdominal fullness(12). Abdominal fullness is caused by an increased liver and/or spleen 

volume, due to accumulation of blood cells in these organs. Additionally, vascular problems might 

occur such as erythromelalgia, (transient) ischemic attacks, myocardial infarctions, pulmonary emboli 

and arterial thrombosis(12-14). 

Diagnosis of MPD’s is based on blood counting, microscopy and genetics. These processes have been 

automated more and more over the last decades. With the advent of flowcytometry based Complete 

Blood Counting (CBC) machines in the second half of the 20th century, more blood counting is 

performed(15, 16). This has assumably lead to earlier diagnosis of MPD(17-20). Microscopy of peripheral 

blood smears and bone marrow is also performed for blood cell counting and is additionally used for 

morphological characterization of blood cells and bone marrow(21-23). Ongoing robotization of 

microscopy and automation of image analysis has shown to be useful in hematology(24-26). Genetics has 

probably known the fastest growth in the last decades. Where Nowell and Hungerford applied manual 

karyotyping when they found the Philadelphia chromosome in 1960, 60 years later new techniques 

have been developed, with the possibility to analyze whole genomes through Next-Generation 

Sequencing (NGS)(4, 27, 28).  

With the advent of these novel diagnostic techniques, the amount of available diagnostic data has 

increased. Machine Learning (ML) has been proposed as a method to automate (parts of) the 

diagnostic decision-making process(26, 29, 30). Machine learning is the field of algorithms which are 

trained to find structures in data(26). Based on the trained ‘experience’, artificially intelligent outputs 

are given(31) . This makes ML one of the methods used in Artificial Intelligence (AI), which is the field of 

science aiming to automate intelligent processes(31).  

Different approaches are applied in ML such as Random Forest (grouped decision trees), Support 

Vector Machine, Bayesian Networks, and Nearest-Neighborhood classifiers(32). A specific, upcoming 

field within ML is the application of Deep Learning (DL)(26). This makes use of neural networks, inspired 

by information processing of neurons in a living brain. Generally spoken, conventional ML algorithms 

are (to some extend) explainable, whereas DL is often seen as a ‘black box’ algorithm(26). To help users 

to understand what the algorithm does, explainable AI is introduced(33). This is a set of methods which 

help users to either understand how the model works or which features where important for the 

model to come to the given output. Examples of this are SHapley Additive exPlanation (SHAP) values 

(a measure for features to show in which extend they contributed to the models outcome) and Class 

Activation Mapping (CAM; highlighting areas in an image which were important for the model to 

classify an image as it did)(34, 35). 

The common workflow for development of ML algorithms is based on three datasets: train set, test 

set and validation set. The train and test set are used for the development of the model. Training data 

is used as input data for the algorithm to learn what it should do, the test data is used to measure the 

performance of the algorithm. This process can be repeated multiple times for different algorithms 

and parameters. When a final algorithm is chosen, it is validated on a non-seen dataset. Preferably this 

dataset is provided by an external party (external validation) to show the generalizability of the 
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algorithm. In practice however, often only internal validation is performed or even only the 

performance is reported for the test set. 

This systematic review aims to explore the use of machine learning in diagnosis and prognosis for 

myeloproliferative disorders. 

 

Methods 
A search in the PubMed database was performed on the 18th of January 2023. Articles mentioning  

terms related to both machine learning and myeloproliferative disorders in their title or abstract were 

queried (see appendix for the full query). These articles were first screened on title and abstract, 

possible eligible articles were subsequently screened on full text. Inclusion criteria were that the article 

should be on one or more myeloproliferative disorders and it should describe the use of machine 

learning methods in the diagnostic or prognostic process of MPD’s. Reviews, articles without 

description of used ML method and articles describing techniques which are not specifically developed 

for the use in MPD were excluded. Only full text available articles were included. 

 

Results 
The search query in the PubMed database resulted in 213 

results. A flowchart of the article selection is shown in 

figure 1. 46 articles were selected after title and abstract 

screening. 20 articles remained after full text screening(8, 36-

54). An overview of the ML methods and their performance 

described in these articles is shown in table 1. 

 

Microscopy diagnostics 

Nine included articles describe Machine Learning algorithms 

using microscopy imaging as input(36-43, 47). One article did not 

solely use microscopy, but also added CBC data and is thus 

covered at the ‘Multi-input diagnostics’ section(47). In 

general, the papers regarding microscopy can be classified in 

two ways. For the first classification, we see that some 

articles use peripheral blood smears(38, 42, 43), where the 

others use bone marrow biopsies as imaging samples(36, 37, 39-

41). Another classification of the articles is the way they apply ML to the imaging data. In most of the 

cases, segmentation of individual cells (eg leukocytes, megakaryocytes and red blood cells) is 

performed, followed by cell-based analysis(37-39, 41, 42). This is comparable to manual microscopy analysis 

and is thus integrable in the manual workflow. Others use the whole microscopy image as input for 

their classification algorithms(36, 40, 43). 

Swolin et al. used blood smear microscopy, performing an initial segmentation and classification of 

white blood cells (leukocytes), followed by a classification of normal versus abnormal leukocyte 

counts(42). Segmentation of cells is done using conventional techniques such as applying a threshold 

and watershed. Calculated image features of the cells were fed to an artificial neural network, which 

assigned a type to the leukocyte. Counts of cell types per sample were used to distinguish between 

Figure 1: Flowchart of article selection 

Chapter F – Literature review: Machine Learning in Diagnosis and Prognosis of Myeloproliferative
Disorders 56



Table 1: Overview of machine learning methods and performance in included articles 

First Author Input Data Output ML Algorithm Train/Test/Validation Method Performance 

Swolin 
(2003) 

Blood smear microscopy 
imaging 

Leukocyte counts, 
normal/abnormal classification 

Artificial Neural Network Validation on 322 blood samples Sensitivity: 97.9% 
Specificity: 82.2% 

Egelé 
(2015) 

Blood smear microscopy 
imaging 

Teardrop cell detection Artificial Neural Network Validation on teardrop blood 
samples (n=46) and normal blood 

samples (n=10) 

Sensitivity: 100% 
Specificity: 45% 

Ballarò 
(2008) 

Bone marrow biopsy 
microscopy imaging 

Megakaryocyte classification 
(normal/ET/MF) 

Nearest neighborhood clustering Leave-one-out validation Sensitivity: 88.2 - 90.2% 

Sirinukunwattana 
(2020) 

Bone marrow biopsy 
microscopy imaging 

Megakaryocyte segmentation 
Reactive versus ET / PV / MF 

classification 

Deep Neural Network 
(Single Shot Multibox Detector); 

U-Net; 
Autoencoder Neural Network; 

Random forest classifier 

5-fold cross validation; Population: 
reactive (n=43), ET/PV/MF (n=88) 

AUC: 0.96-0.98 

Zhang 
(2022) 

Bone marrow biopsy 
microscopy imaging 

Megakaryocyte segmentation 
Healthy versus CML 

classification 

conditional Generative Adversarial 
Network (cGAN); 

Linear Support Vector Machine 
classifier 

3-fold cross validation; 
Population: CML (n=58), control 

(n=31) 

AUC: 0.84 

Ryou 
(2023) 

Bone marrow biopsy 
microscopy imaging 

Fibrosis indexing 
Reactive versus ET / PV / MF 

classification 

Learning To Rank algorithm (RankNet) 
with Convolutional Neural Network; 

Random Forest Classifier 

Train (n=39), Test (n=18) Reactive versus MPN: 
AUC: 0.62 

Huang 
(2020) 

Bone marrow biopsy 
microscopy imaging 

Direct classification of Healthy / 
AML / ALL / CML 

Convolutional Neural Network 
(DenseNet-121) 

3:1 Train/test split (n=380) Accuracy: 95.3% 

Bibi 
(2020) 

Blood smear microscopy 
imaging 

Direct classification of Healthy / 
AML / ALL / CML  / CLL 

Convolutional Neural Networks 
(ResNet-34 & DenseNet-121) 

Unknown Accuracy: 99.6 - 99.9% 

Hauser 
(2021) 

Health record data Classification of Healthy vs CML 
at different time points to 

diagnosis (range 5 to 0 years 
before diagnosis) 

Extreme Gradient Boosting (XGBoost); 
Least Absolute Shrinkage and Selection 

Operator (LASSO) 

N=1623, of with 6.2% CML 
positive; 

80-20% training-validation 
randomization 

XGBoost - AUC: 0.55-0.95 
LASSO - AUC: 0.52-0.96 

Radakovich 
(2021) 

NGS, 
Health record data 

Classification of MDS / 'MDS-
MPN/CMML' / MPN / ICUS / 

CCUS 

Extreme Gradient Boosting (XGBoost) Multi-center train-test set 
(n=1190) with 5-fold cross 

validation 80-20% train-test splits 
Another centers data used for 

validation (n=1509) 

Validation AUC: 0.92-0.94 

Kimura 
(2021) 

CBC, 
Blood smear microscopy 

Classification of PV / ET / MF Convolutional Neural Network; 
Extreme Gradient Boosting (XGBoost) 

Training group: PV (n=23), ET 
(n=101), MF (n=36) 

Test group: PV (n=9), ET (n=53), 
MF (n=12) 

AUC: 0.97-0.99 
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Table 1 (continued): Overview of machine learning methods and performance in included articles 

First Author Input data Output ML algorithm train/test/validation method Performance 

Ni 
(2013) 

Neutrophil 
Immunophenotyping data 

Classification CML versus 
Normal 

Support Vector Machine Training group: CML (n=9) and 
healthy (n=9) 

Test group: CML (n=24) and non-
CML (n=43) 

AUC: 0.97 
Sensitivity: 95.8% 
Specificity: 95.3% 

Liu 
(2019) 

Single Cell Mass 
Spectroscopy of cultured 

CML cells 

Classification CML cells 
adhering to fibronectin yes/no 

(resp. phenotype I or II) 

Random Forest (RF); 
Penalized Logistic Regression (PLR); 

Artificial Neural Network (ANN) 

Samples: Phenotype I (100 cells), 
Phenotype II (108 cells); 

80-20% training-validation 
randomization 

RF - AUC: 0.95 
PLR - AUC: 0.99 
ANN - AUC: 1.00 

Faisal 
(2019) 

Bone marrow biopsy 
sequencing data 

Classification aCML vs CMML Logistic Regression Leave-one-out cross-validation; 
Population: aCML (n=26), CMML 

(n=59) 

Correct classification:  
73% for aCML, 92% for CMML 

Banjar 
(2017) 

Health record data Classification responders vs 
non-responders to imatinib 

treatment 

Regression tree Internal train/test/validation: 
responders (n=102), non-

responders (n=71); 
External validation: responders 
(n=78), non-responders (n=31) 

Sensitivity: 55% 
Specificity: 35% 

PPV: 68% 
NPV: 24% 

Hoffmann 
(2021) 

Artificially generated data Relapse prediction after 
treatment for CML or AML 

Mechanistic models; 
Generalized Linear Model; 

Neural Network (bidirectional Long-
Short-Term-Memory) 

10-fold cross validation Accuracy 'up to 70%' 

Yen 
(2022) 

Microfluidic quantitative 
miRNA PCR and Colony-

forming cell assay 

Classification responders vs 
non-responders to Nilotinib 
treatement in CML patients 

Random Forest; 
Naïve-Bayes 

10fold crossvalidation train/test 
cohort (n=58) 

Random Forest - AUC: 0.72 
Naïve-Bayes - AUC: 0.74 

Sasaki 
(2021) 

Health record data Hazard ratio for overall survival Extreme Gradient Boosting (XGBoost) 3fold crossvalidation train/test 
cohort (n=524); 

Valdiation (n=126) 

AUC: 0.82 

Shanbehzadeh 
(2022) 

Health record data Prediction of 5-year survival 
chance for CML patients 

Extreme Gradient Boosting (XGBoost); 
k-nearest neighborhood (KNN); 

pattern recognition network (PRN); 
probabilistic neural network (PNN); 

multilayer perceptron (MLP); 
support vector machines (SVM); 

J-48 

10fold crossvaliation on dataset 
with 5-year survivers (n=740) and 

non-survivers (n=97) 

XGBoost - AUC: 0.76 
KNN - AUC: 0.69 
PRN - AUC: 0.69 
PNN - AUC: 0.70 
MLP - AUC: 0.76 

SVM - AUC: 0.83-0.86 
J-48 - AUC: 0.83 

Mosquera- 
Orgueira 

(2023) 

Health record data Overall and leukemia-free 
survival in myelofibrosis 

patients 

Random Forest Train/test 500 cycles of 75%-25% 
crossvalidation  (n=1109); 

Validation (n=277) 

Overall survival - c-index: 0.74 
Leukemia free survival - c-index: 0.70 
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normal and abnormal leukocyte presentation, based on a set of reference values. Another article 

describes the same method of cell segmentation and classification, applied for red blood cells 

(erythrocytes)(38). Here Egelé et al. mention the number of image features extracted from the red blood 

cell segmentations and fed to the artificial neural network to be 80. Examples of these features are cell 

size and circularity. Sensitivity for normal/abnormal classification of both the leukocyte and the 

erythrocyte algorithms was high, respectively 97.9% and 100%. Specificity was lower, especially for the 

red blood cell abnormalities with a value of 45%; specificity for the leukocyte classification was 82.2%.  

Three articles described segmentation of megakaryocytes in bone marrow microscopy for diagnostic 

classification(37, 39, 41). Ballarò et al. used morphological operations and wavelet transforms to segment 

the megakaryocytes(39). In contrast to the conventional techniques used by Bollarò et al., Zhang et al. 

and Sirinukunwattana et al. used deep learning methods for megakaryocyte segmentation. Both 

applied a U-Net architecture. Sirinukunwattana et al. first applied a detection algorithm called Single 

Shot Multibox Detector which predefined which areas contained megakaryocytes; these areas were 

used as input for the U-Net to segment the megakaryocytes(37). Zhang et al. fed the whole microscopy 

images to the U-Net for segmentation(41). 

In all of the three studies on megakaryocytes, features from the segmentations were extracted and 

used to give a diagnostic classification. Ballarò et al. used a 3-nearest neighbor algorithm to classify the 

megakaryocyte as being normal, ET or MF and achieved a sensitivity of 88.2% for ET and 90.2% for MF. 

Sirinukunwattana et al. implemented a combination of an autoencoder neural network for feature 

extraction, a Principal Component Analysis (PCA) for reduction of feature dimensionality and a random 

forest classifier for reactive/ET/PV/MF classification. Their pipeline resulted in a classification 

algorithm with an Area Under the receiver operating characteristic Curve (AUC) ranging from 0.96 to 

0.98. Zhang et al. achieved an AUC of 0.84 for classification in classes healthy versus CML, applying a 

linear support vector machine classifier on size, density and cell counts of segmented megakaryocytes.  

In three selected articles, no segmentation of individual cells was performed, but the whole 

microscopy image was used for diagnostic classification(36, 40, 43). An algorithm to grade the degree of 

fibrosis in bone marrow was developed by Ryou and colleagues(40). The algorithm pipeline was as 

follows: microscopy images were split into small tiles, a U-Net was applied to detect and exclude bony 

structures, followed by a learning to rank method making use of a Convolutional Neural Network 

(CNN). This resulted in a ranking of microscopy tiles based on their degree of fibrosis. Statistics of the 

fibrosis throughout the sample was used to make a reactive/ET/PV/MF classification, using a random 

forest classifier. Although this method intuitively has the most potential for detection of MF, no 

statistics are given for reactive versus MF classification. Distinguishing Reactive from MPN samples 

(subgroups ET, PV and MF combined) resulted in a AUC of 0.62. Ryou et al. also combined their work 

with the earlier discussed work of Sirinukunwattana et al. by combining megakaryocyte and fibrosis 

features for diagnostic classification. This addition gave a boost to the AUC scores for classification, but 

there was only little difference between solely using megakaryocyte properties and the combination 

of fibrosis and megakaryocytes (AUC scores of 0.97 and 0.96 respectively for healthy vs. MPN). Also in 

this combined case, no analysis was performed on healthy versus MF classification. 

Direct classification between healthy and leukemia subtypes (including CML) on microscopy imaging 

was done by the groups of Huang and Bibi(36, 43). In both projects, a CNN was applied called DenseNet-

121, where Bibi et al. also tested another CNN: ResNet-34. Huang et al. used microscopy imaging of 

bone marrow biopsies and achieved a accuracy of 95.3%(36). An accuracy of 99.6-99.9% is reported by 

Bibi et al., who used blood smear microscopy images(43). 
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Molecular diagnostics 

Molecular diagnostics was mentioned in 4 included articles(8, 44-46), one article also used demographics 

and blood counts and is thus covered in section ‘Multi-input diagnostics’(8). Ni et al. applied a Support 

Vector Machine method to classify the results of Single Cell Mass Spectroscopy on neutrophils as CML 

or normal neutrophils(45). Training on data of 9 CML patients and 9 healthy controls, they achieved a 

sensitivity of 95.8% and a specificity of 95.3% in a test population with 24 CML and 43 normal cases.  

Liu and colleagues differentiated between two CML phenotypes, using Single Cell Mass 

Spectroscopy(46). As ground-truth, these phenotypes were defined by the capability of cells to adhere 

to fibronectin (a glycoprotein in extracellular matrix). Those cells adhering to fibronectin belonged to 

phenotype I and those not adhering belonged to phenotype II. For classification, they compared three 

ML algorithms, namely  Random Forest, Penalized Logistic Regression and Artificial Neural Network. 

AUC scores of 0.95, 0.99 and 1.0 are reported for the respective algorithms.  

Another subclassification of CML was performed by Faisal et al., they used Next Generation Sequencing 

data to distinguish atypical CML (aCML) from Chronic Myelo-Monocytic Leukemia (CMML)(44). Genetic 

analysis op patients was fed to a Logistic Regression algorithm which classified the patients as either 

aCML or CMML. Using Leave-one-out cross-validation on a population with 26 aCML and 59 CMML 

cases, they achieved a correct classification of 73% and 92% in the aCML and CMML cases, respectively.  

 

Multi-input diagnostics 

Three studies used multiple modality data as input for diagnostic classification algorithms(8, 47, 48). They 

all made use of extreme gradient boosting (XGBoost), which is a classification algorithm based on the 

Random Forest technique.  

Radakovich et al. used clinical data and mutation analysis to differentiate between myelodysplastic 

syndromes (MDS), MPN, CML, Idiopathic Cytopenia of Undetermined Significance (ICUS) and Clonal 

Cytopenia of Unknown Significance (CCUS)(8). Data of two centers was used for training and testing the 

XGBoost algorithm (n=1190), validation was performed on data from a third center (n=1509). All 

included patients were known to have one of the mentioned diseases. AUC for test and validation sets 

were 0.93-0.97 and 0.92-0.94 respectively. (Note that the validation results are very probably confused 

in the article by calling them accidentally training results. The corresponding author is asked for 

clarification, but without response.) A method for explainable AI is applied, providing visualization to 

the user regarding the impact of input variables on individual classification results. 

Kimura et al. developed a CNN to segment and classify blood cells in blood smear microscopy(47). The 

output of this CNN was combined with Complete Blood Count (CBC) variables and fed to a XGBoost 

machine. Doing this, they were able to subclassify MPN patients to PV, ET or MF with a AUC of 0.97-

0.99 in a test group of 9 PV, 53 ET and 12 MF patients.  

A healthy versus CML classification based on health record data was proposed by Hauser et al., where 

they retrospectively analyzed their results on data grouped by time to actual diagnosis ranging from 5 

to 0 years before CML diagnosis(48).  Health record data was defined as ‘laboratory results, patient 

demographics, and clinical encounter information’. Besides the use of XGBoost, also a logistic 

regression approach named LASSO was used. AUC for XGBoost at different times before diagnosis were 

0.55-0.95, for LASSO the AUC values were 0.52-0.96. Best AUC’s were found for datapoints taken at 

time of diagnosis, with generally decreasing AUC values when time to diagnosis became more.   
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Prognostic modeling 

Six included articles reported the use of Machine Learning in prognostic modeling for patients with 

MPD diagnosis(49-54). These articles could be divided into two groups: articles on prediction of survival 

and articles on prediction of response to therapy.  

Three articles reported models to predict treatment response in MPD patients(49-51). Yen and colleagues 

developed classification algorithms to predict response to Nilotinib treatment in CML patients, based 

on micro RNA expression(50). Both a Random Forest and a Naïve-Bayes classifier were applied. In a 

cohort of 58 patients, using 10 fold cross-validation, AUC scores of 0.72 and 0.74 were achieved for 

the Random Forest and the Naïve-Bayes classifier respectively.  

Response to imatinib treatment in CML patients was predicted by Benjar et al., using a regression 

tree(51). They made use of demographic, clinical and laboratory data and imputed missing data through 

linear interpolation. Testing on an external dataset (78 responders and 31 non-responders), they found 

a sensitivity of 55% and a specificity of 35%. Compared with conventional scores (Sokal, Hasford and 

EUTOS scores), the specificity of the new model is higher (35% versus 6-19%), but a lower sensitivity 

(55% versus 83-92%).  

Hoffmann et al. predicted relapse after treatment in AML and CML patients, using artificially generated 

data(49). Applying mechanistic models (making use of biological knowledge), generalized linear models 

and neural networks, they report accuracies ‘up to 70%’, specific accuracies per model type are not 

given. 

Three other articles described models to predict survival of MPD patients, making use of health record 

data(52-54). For myelofibrosis patients, Mosquera-Orgueira et al. applied a Random Forest for prediction 

of overall and leukemia free survival, using clinical and laboratory data(54). On a validation cohort of 

277 patients, c-indices of 0.74 and 0.70 were found for overall survival and leukemia free survival. 

Overall survival is defined as the time from myelofibrosis diagnosis to death, and Leukemia free survival 

was defined as the time from myelofibrosis diagnosis to either leukemia diagnosis, death or last 

contact. Kaplan-Meier curves in the article however show a higher leukemia free survival probability 

compared to overall survival, which is contradicting the definition of both survivals (leukemia free 

survival has added requirements for survival, making the probability of survival at least equal or lower 

to overall survival). It might be concluded that leukemia free survival is thus in fact defined as the 

leukemia freeness, given that the patient is still alive. This probably inadequately described definition 

creates unclearness regarding methodology and meaning of results. 

Survival of CML patients was predicted by Shanbehzadeh et al., based on clinical history, clinical 

measurements and lab results(52). They simplified survival prediction to survival after 5 year as a binary 

outcome (surviving or not surviving). To select their features, they used a minimal-redundancy-

maximal-relevance approach. This does not select the best features with highest individual 

predictiveness, but iteratively adds the feature with best added predictiveness to the feature selection 

until the desired amount of features is reached(55, 56). Multiple networks were applied, namely XGBoost, 

k-nearest neighborhood (KNN), pattern recognition network (PRN), probabilistic neural network 

(PNN), multilayer perceptron (MLP), support vector machine (SVM), and J-48. Mean evaluation metrics 

after 10-fold cross validation were highest for SVM and J-48 with AUC values of 0.83-0.86.  

Sasaki et al. predicted overall survival for several treatment options in CML patients, to recommend 

the best treatment option (defined as treatment with highest hazard ratios for overall survival)(53). 

Survival prediction was performed using XGBoost, based on health record data. Performance on their 

validation cohort (n=126) resulted in an AUC value of 0.82. In order to make individual predictions 
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more interpretable for clinicians, visual plots showing the effect of input variables on prediction were 

created, using SHAP values(57).  

 

Discussion 
In this review, an overview of literature regarding machine learning for diagnosis and prognosis of MPD 

is given. Both for diagnosis as well as for prognosis, literature stating adequate performance using 

machine learning is found.  

Due to the variety of use cases, methods and evaluation measures, comparison of model performance 

is irrelevant. However, assuming that the best models are published, analysis of used models for 

different use cases is relevant. It gives an indication of the best models for given situations. In 8 out of 

9 articles using microscopy images as input for diagnostic classification, deep learning is used(36-38, 40-43, 

47). The main purpose of these DL algorithms is image segmentation. In some cases also classification 

is performed using the DL algorithm. In only 3 of the remaining 11 papers DL was also applied(46, 49, 52). 

These three papers also provide performance for non-DL algorithms. Only Liu et al. showed a superior 

performance of deep learning compared to other ML methods(46). The most commonly applied group 

of ML methods is that of the tree based algorithms (e.g. random forest, XGBoost), which are used for 

classification tasks in 11 of the 20 included papers(8, 37, 40, 46-48, 50-54). In a comparison between different 

methods for survival prediction, Shanbehzadeh et al. show that Support Vector Machines (SVM) can 

also be of good value(52). However, SVM is only applied in two other articles(41, 45). The reason for low 

adoption of SVM methods might lie in the fact that SVM’s can only deal with numerical data, whereas 

tree based models can also deal with categorical data.  

Regarding the used algorithms, it might thus be concluded that DL methods are currently the best 

models to deal with images in classification tasks. Tree based models, with XGBoost as the prince, can 

deal best with classification tasks based on non-image data. Given the low number of cases included 

in the described studies (ten to hundreds of cases) and the need for ‘big data’ in DL, it does not surprise 

that DL is mainly adopted for image segmentation and not so commonly for classification tasks in the 

described articles. 

In the included articles, there is a wide range of methodological quality. External validation was only 

applied in two studies(8, 51). Most articles only report their cross-validation results, without validation 

on completely unseen data(37, 39, 41, 44, 49, 50, 52, 53). This makes that most of the described performances 

should be considered as overestimations of the actual clinical performance.  

Also patient populations were chosen in different ways. Two articles on diagnostic modelling only 

include proven patients, without a non-MPD control group(44, 47). Most articles on diagnostic modeling 

for CML do involve a healthy control group. For MPN, only control groups are included when bone 

marrow microscopy was used for diagnosis(37, 39, 40). A bone marrow biopsy, however, is only performed 

when there is a high a priori chance to find an MPD(12). This makes that these diagnostic models can be 

used in the later diagnostic process of MPD, but not for screening-like applications. Models using 

health record data or CBC results for automatically diagnosing MPN versus healthy have not been 

found in this search.  

Explainable AI was integrated in the workflow of Kimura et al., Radakovich et al. and Sasaki et al.; they 

all used SHAP values(8, 47, 53). These values help to understand which variables influenced the decision 

made by the model. Adding explainable AI methods to the standard ML workflow would be of great 

added value, especially to let clinicians adopt ML methods in a responsible way in their clinical practice. 
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However, the wide variety of methods for the development and testing of ML applications described 

in the included papers show that there is no generally adopted workflow for ML development.  

Concludingly, several Machine Learning methods have been developed for diagnosis and prognosis in 

MPD patients, mainly relying on DL or tree based algorithms.   

 

Lessons Learned for Project 

- No laboratory measurements based healthy vs. MPN algorithm is presented in current 

literature. 

- Based on the results of models performing MPN subclassification and models classifying CML 

vs MPN, it is reasonable that a healthy vs. MPN algorithm based on laboratory measurements 

if feasible. 

- The XGBoost algorithm currently seems to be the best method for laboratory measurements 

based classification. 

- Deep Learning methods (e.g. CNN’s) currently seem to be the best method for microscopy 

imaging based classification. 

- Application of explainable AI, such as SHAP values might be of additive value for proper model 

interpretation for developers and users.  
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Appendix - PubMed search query 

("artificial intelligence"[MeSH Terms] OR ("artificial"[All Fields] AND "intelligence"[All Fields]) OR 
"artificial intelligence"[All Fields] OR ("machine learning"[MeSH Terms] OR ("machine"[All Fields] 
AND "learning"[All Fields]) OR "machine learning"[All Fields]) OR ("automate"[All Fields] OR 
"automated"[All Fields] OR "automates"[All Fields] OR "automating"[All Fields] OR 
"automation"[MeSH Terms] OR "automation"[All Fields] OR "automations"[All Fields] OR 
"automation s"[All Fields]))  
AND  
("myeloproliferative disorders"[MeSH Terms] OR ("myeloproliferative"[All Fields] AND "disorders"[All 
Fields]) OR "myeloproliferative disorders"[All Fields] OR ("polycythaemia vera"[All Fields] OR 
"polycythemia vera"[MeSH Terms] OR ("polycythemia"[All Fields] AND "vera"[All Fields]) OR 
"polycythemia vera"[All Fields]) OR ("primary myelofibrosis"[MeSH Terms] OR ("primary"[All Fields] 
AND "myelofibrosis"[All Fields]) OR "primary myelofibrosis"[All Fields]) OR ("thrombocythemia, 
essential"[MeSH Terms] OR ("thrombocythemia"[All Fields] AND "essential"[All Fields]) OR "essential 
thrombocythemia"[All Fields] OR ("thrombocythemia"[All Fields] AND "essential"[All Fields]) OR 
"thrombocythemia essential"[All Fields]) OR ("chronic myelogenous leukaemia"[All Fields] OR 
"leukemia, myelogenous, chronic, bcr abl positive"[MeSH Terms] OR ("leukemia"[All Fields] AND 
"myelogenous"[All Fields] AND "chronic"[All Fields] AND "bcr abl"[All Fields] AND "positive"[All 
Fields]) OR "bcr-abl positive chronic myelogenous leukemia"[All Fields] OR ("chronic"[All Fields] AND 
"myelogenous"[All Fields] AND "leukemia"[All Fields]) OR "chronic myelogenous leukemia"[All 
Fields])) 
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