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Scalable reinforcement learning for large-
scale coordination of electric vehicles
using graph neural networks

Check for updates

Stavros Orfanoudakis 1 , Valentin Robu 2,3, E. Mauricio Salazar3, Peter Palensky 1 &
Pedro P. Vergara1

As the adoption of electric vehicles (EVs) accelerates, addressing the challenges of large-scale, city-
wide optimization becomes critical in ensuring efficient use of charging infrastructure andmaintaining
electrical grid stability. This study introduces EV-GNN, a novel graph-based solution that addresses
scalability challenges and captures uncertainties in EV behavior from a Charging Point Operator’s
(CPO) perspective.We prove that EV-GNN enhances classic Reinforcement Learning (RL) algorithms’
scalability and sample efficiency by combining an end-to-end Graph Neural Network (GNN)
architecture with RL and employing a branch pruning technique. We further demonstrate that the
proposed architecture’s flexibility allows it to be combined with most state-of-the-art deep RL
algorithms to solve a wide range of problems, including those with continuous, multi-discrete, and
discrete action spaces. Extensive experimental evaluations show that EV-GNN significantly
outperforms state-of-the-art RL algorithms in scalability and generalization across diverse EV
charging scenarios, delivering notable improvements in both small- and large-scale problems.

Efficient utilization of Electric Vehicles (EVs) is crucial for complying with
the current energy transition goals1. The adoption of EVs accelerates the
challenges associated with maintaining a reliable and efficient charging
network, which have become increasingly significant2. Ensuring the optimal
useof existing charging infrastructure is essential tomeet thedemandsof the
growing number of EVs3. Addressing scalability concerns is essential to
supporting the widespread adoption of EVs and preventing congestion in
distribution networks4,5. Congestion in electricity networks leads to sig-
nificant economic inefficiencies, higher energy prices, and increased
operational costs, with total costs varying by country, energy market
structures, and congestion severity. For instance, U.S. transmission con-
gestion costs rose from $13 billion in 2021 to around $20 billion in 20226.
These rising costs underscore the need for Charge Point Operators (CPOs)
to implement scalable solutions for efficiently dispatching large numbers of
EVs, helping to alleviate distribution network congestion and minimize
associated socioeconomic impacts7.

Smart charging is a complex optimization task, often formulated as a
mixed integer programming (MIP) problem with many decision variables,
constraints, and uncertainties in energy generation, consumption, and EV
arrival/departure times. Stochastic optimization approaches address EV
behavior uncertainties, such as arrival times, to maximize grid load factors8.

MIPmodels have been applied tooffline andonlineEV scheduling, typically
for single stations9. Multi-stage algorithms aim to minimize costs while
balancing supply and demand10, and event-triggered scheduling handles
uncertainties but may struggle with real-time execution for many EVs11.
Chance-constrained optimization improves efficiency using distributed
algorithms such as the alternating direction method of multipliers12. When
it comes to real-time decision-making, model predictive control (MPC)
methods, including robust variants, have been employed for real-time
scheduling of EVs, achieving near-optimal profit and meeting charging
requests even under high uncertainty13,14. However, these approaches face
challenges as the number of decision variables and constraints increases, a
common issue in practical contexts where CPOs must frequently rerun
optimization algorithms, typically every 5 minutes. This operational
demand, especially with the anticipated adoption of EVs in the near future,
presents a significant operational challenge.

Reinforcement Learning (RL)15 is a powerful technique for solving
sequential decision-making problems. RL algorithms offer particular
advantages for the EV dispatch problem, such as non-linear modeling,
better uncertainty quantification, and faster execution speed compared to
traditional mathematical programming methods16. Classic RL approaches,
which model problems as Markov Decision Processes (MDPs), have been
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successfully applied todecentralizeddecision-making forEVchargingusing
algorithms, such as Deep Deterministic Policy Gradient (DDPG)17, Soft-
Actor-Critic (SAC)18, and batch RL methods19. However, these methods
often lack constraint satisfaction guarantees and struggle with scalability as
state and action spaces grow20,21. Safe RL frameworks aim to address these
limitations by formulating the problem as constrained MDPs, ensuring
constraints are met but often at the cost of optimal performance and
scalability22,23.Multiagent RL (MARL) approaches, such as those employing
the centralized training decentralized execution paradigm, attempt to
reduce state and action dimensionality by distributing decision-making
across agents24,25, where each agent could be a single charging point, a
charging station, an aggregator, etc. Despite these efforts, MARL methods
still face convergence challenges as thenumberof agents increases and issues
with achieving optimality in complex environments26. To address these
issues and better utilize graph-structured data, RL methods have been
integrated with Graph Neural Networks (GNNs)27. GNNs have primarily
been used as feature extractors in the EV charging context, particularly for
EV charging station recommendation28 due to the graph-like nature of
transportation networks. However, to the best of our knowledge, no study
has fully developed a comprehensive end-to-end RL GNN approach to
leverage the unique properties of the GNN architecture for solving opti-
mization problems29–31 in the context of EV charging.

Through close collaboration with commercial CPOs in the Nether-
lands, it has become evident that the current charging approaches are
inefficient when it comes to managing more than a few hundred EVs at a
time.However, with the growing demand, they are now facing the challenge
of handling thousands of EV charging requests simultaneously. In this
study, we introduce EV-GNN, an innovative approach that combines a
novel graph MDP formulation of the EV charging problem with dynamic
end-to-end GNNs, enhancing the scalability features of state-of-the-art RL
algorithms.

EV-GNN not only enhances the scalability of state-of-the-art RL
algorithms but also empowers them to handle the complexity and scale of
real-world EV charging scenarios. Unlike conventional methods such as
stochastic optimization, MPC, or traditional RL approaches, which often
struggle with large-scale problem instances, EV-GNN enables efficient and
robust decision-making, opening the door to practical applications in large-
scale environments. Our approach applies to any optimal EV charging
problem from the perspective of a CPO thatmanages charging stations.We
prove in this study, that EV-GNN significantly enhances classic RL algo-
rithms’ scalability and sample efficiency. We demonstrate with extensive
experimental evaluations the improved capabilities of our approach over
state-of-the-art RL algorithms across various EV charging scenarios,
including continuous, and multi-discrete action spaces. Our approach
shows significant performance improvements in both small and large-scale
optimal EV charging problems, which is possible due to the proposed end-
to-end GNN architecture. Furthermore, we provide explainability experi-
ments that illuminate the mechanisms behind our end-to-end RL GNN
approach’s enhanced sample efficiency, offering valuable insights into the
workings of our novel approach.

Results
RL for optimal EV charging
Developing scalable RL methods is crucial for efficiently dispatching large
numbers of EVs andpreventing congestion in distributionnetworks32.With
the rise of distributed energy resources (DERs) such as photovoltaic (PV)
systems, wind turbines, and EVs, grid control has become increasingly
dynamic. The presence of uncertain components requires efficient energy
distribution to all connected loads. Power setpoint tracking (PST) is a key
challenge for CPOs, involving the fair and efficient allocation of grid
capacity to EVs while minimizing the gap between available and actual
charging power in real-time. This real-time decision-making, occurring
usually every 5 minutes with limited information, is complicated by DER
uncertainties and energy market volatility. Inaccurate power tracking can
result in significant costs for CPOs and market operators.

The PST problem is divided into discrete time periods T , where each
t 2 T . A fixed number of charging stations C, connected to a transformer
w 2 W, serve EVs that dynamically connect to charging points (CPs),
denoted by j 2 J , at charger i. The goal is to align actual power usage (Ptot)
with procured power (Pset) in real-time, minimizing the cumulative PST
error:

min
X
t2T

Pset
t � Ptot

t

� �
; ð1Þ

while ensuring transformer safety, voltage stability, and reliable power
supply.

Centralized EV charging optimization is often modeled as a single-
agent learning task, where the CPO acts as the agent, and the state space S
grows linearly with the number of charging points. Typically, this state is
represented by a long vector containing similar variables, such as the state of
charge (SoC) for each connected EV, and zeros for unoccupied points.
However, such long vectors make it difficult to extract useful features using
traditional neural networks such as Multi-Layered Perceptrons (MLPs).

The learning process of the RL agent is further complicated by the
dynamicnatureofEVarrivals anddepartures, leavingmanychargingpoints
unoccupied for long periods33. Classic RL formulations assume a fixed-size
action spaceA 2 RjJ j, leading to computing actions for unoccupied CPs.
While manageable in small-scale cases, this issue significantly impedes RL
performance in larger-scale settings due to invalid actions34. Addressing
these challenges is essential for improving the scalability and efficiency of
RL-based EV charging solutions.

End-to-end RL GNN architecture
Optimal EV charging problems can be visualized as a collection of charging
stations, either grouped together or directly connected to the electrical grid
via a transformer. EVs arrive and depart based on drivers’ preferences, such
as overnight home charging or public charging while shopping. This setup
can be formalized into a mathematical programming (See Section ?? for
more details) problemwhere the CPO controls each charging station’s (dis)
charging power to minimize the PST error, reduce load peaks, maximize
profits, etc. At the same time, the optimal EV charging problem is subject to
constraints such as maximum power limits and ensuring that EVs reach a
desired SoC by their departure time.

To efficiently handle the challenges of dynamic EV charging, a graph-
based state-action representation is introduced, as shown inFig. 1a.Without
this graph structure, managing the complexity of dynamic state repre-
sentation would be inefficient and less scalable. The problem is modeled
using a graph-based approach where EVs and chargers are organized at the
transformer level, managed by a CPO. In this graph, EV nodes connect to
charger nodes via CPs, and charger nodes link to transformer nodes,
representing grid connections. To improve RL training, branches not
leading to EV leaf nodes are pruned, simplifying the graph and focusing on
valid actions, with only relevant connections retained in the pruned
graph G ¼ ðN; EÞ.

Graph G consists of N nodes, including Nev EV nodes with features
Xev 2 RNev × Fev

, Ncs charger nodes with Xcs 2 RNcs × Fcs , Ntr transformer
nodes withXtr 2 RN tr × Ftr , andNcpo CPOnodes withXcpo 2 RNcpo × Fcpo . As
shown in Fig. 1b, the GNN feature extractor processes nodes by type using
node-type-specific MLPs. Each node type p ∈ {ev, cs, tr, CPO} has its raw
features X(p) transformed into embeddings eXðpÞ

via:

eXðpÞ ¼ σ WðpÞ � XðpÞ þ bðpÞ
� �

; ð2Þ

where σ(.) is the ReLU activation function, WðpÞ 2 RFðpÞ × F0 and b(p) are
trainable parameters. This results in a homogenized graph feature matrix
X0 2 RN × F0 , where F0 is the feature dimension. Then, the actor NN
(Fig. 1c) processes the homogenized graph by applying L layers of a Graph
Convolutional Network (GCN)27. GCNs operate directly on the graph
structure, leveraging the connectivity and relationships between nodes.
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GCNsperformmessage-passing among thenodes, enabling the aggregation
of information from neighboring nodes to update each node’s representa-
tion defined as:

Xl ¼ σ D�1=2SD�1=2Xl�1Θl

� �
; l ¼ 1; . . . ; L ð3Þ

where S is the adjacencymatrix of the graph G, andD is the diagonal degree
matrix with Dii ¼

P
j¼0Aij for normalization. The learnable weight

matrices of GCN layer l are represented by Θl 2 RFl�1 × Fl and σ is a non-
linear activation function, such as ReLU, that enables the approximation of
complex problem dynamics.

The EV-GNN approach supports both continuous and (multi)-dis-
crete RL problems. For continuous actions, the actor’s last GCN layer has
FL = 1, and for multi-discrete actions, it has FL ¼ jAj, followed by a Soft-
MAX layer, where jAj is the number of discrete actions per node. For
example,with jAj ¼ 3, an EV’s actions could be 0 for do-nothing, 1 for half-
power charging, and 2 for maximum charging. In the end, the EV node
features XL are mapped to the action vector a 2 RjJ j, while pruned nodes
take action 0 for no charging.

The critic network, shown in Fig. 1d, calculates the action-value
function Q(s, a) by using the homogenized feature vector X0 (state s) con-
catenated with the actor’s last GCN layer output XL (action a). After K
sequentialGCN layers, a globalmeanpooling operation converts node-level
features XK 2 RN × FK into a graph-wide embedding eXK 2 RFK , ensuring
symmetry and efficient learning of shared representations. The mean

pooling is defined as:

eXK ¼ 1
N

XN
n¼1

XK;n: ð4Þ

This graph embedding, invariant to the graph size N, is passed through an
MLP to compute the Q-value, with the last layer outputting a single value.

The EV-GNN architecture handles MDPs with both static and
dynamic state graphs and integrates seamlessly with various actor-critic RL
algorithms, such as TwinDelayedDDPG35 (TD3), Soft-Actor-Critic (SAC),
and Proximal Policy Optimization36 (PPO). Figure 1c–d illustrate the actor
and critic networks for the DDPG and TD3 algorithms. Notably, the final
GCN layer in the actor NN can be adapted from a single layer predicting
actions to two parallel GCN layers-one predicting the mean and the other
estimating the standard deviation of the action distribution, as seen in SAC
andPPO.Minor adjustments to the actor and criticNNarchitectures enable
the use of EV-GNN with the most state-of-the-art deep RL algorithms.
Furthermore, depending on the specific problem and RL algorithm, the
actor and critic networksmay either share a feature extractor or use separate
ones tailored to their respective functions.

Making RL algorithms scalable
Scalability, understood as the capability of an RL algorithm to handle large
state and action spaces, is an important feature in the context of city-wide
smart charging of EVs. Figure 2 demonstrates the need for a novel, scalable
RL approach by comparing the maximum reward achieved across various
experiment sizes (number of CPs) for the PST problem and a set of RL
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Fig. 1 | The concept and architecture of EV-GNN. aThe EV charging optimization
problem is modeled as a graph, with nodes representing components (EV, charger,
transformer, CPO) and their unique features. The graph is simplified by pruning
branches where no actions occur, such as charging stations 3, 4, 6, and 7 with no
connected EVs. bHeterogeneous node features are processed through node-specific
MLPs to transform them into higher-dimensional, homogeneous node embeddings
of the same size F0. c The actor NN consists of L sequential GCN layers with Fl

features, which process the graph and reduce each node’s feature to 1 for continuous
actions or jAj for multi-discrete actions. EV node features are then selected and
mapped to a fixed-size action vector representing the power injection or absorption.
d The critic NN concatenates the actor’s action features with the node state features,
processes them through K sequential GCN layers with Fk features, and then mean
pools the high-dimensional node features into a fixed-size graph embedding. This
embedding is finally fed into an MLP to compute the Q-value.

https://doi.org/10.1038/s44172-025-00457-8 Article

Communications Engineering |           (2025) 4:118 3

www.nature.com/commseng


algorithms. Additionally, the optimal (oracle) reward is shown with a ver-
tical line, which is obtained by solving the mathematical programming
problem under the assumption that the model has knowledge of future
events, which is impossible to achieve in real-time scenarios. Nevertheless,
this comparison provides a measurement with respect to the theoretical
optimal reward. In this study, four different experiment scales are defined
based on the number of CPs a CPO controls. A smaller number of CPs (25)
represents a simpler optimization task with fewer decision variables and
constraints, while larger numbers (100, 500, 1000) present increasingly
complex and challenging city-wide optimization problems that are difficult
to solve in real-time.

Advantage Actor Critic37 (A2C), DDPG, Trust Region Policy
Optimization38 (TRPO), Truncated Quantile Critics39 (TQC), SAC, and
TD3 are state-of-the-art RL algorithms that use fixed-size state and con-
tinuous action spaces. These algorithms rely on state information similar to
the GNN approach but represent it as long vectors with zeros for features
corresponding to unconnected EVs. For each combination of training
algorithm and experiment scale, at least five training runs were conducted
with different random seeds and similar hyperparameters. SAC and TD3
emerged as the best-performing algorithms and were selected for compre-
hensive testing and validation with both the proposed end-to-end GNNRL
architecture (EV-GNN) and a comparative middle-ground approach (FX-
GNN). FX-GNNemploys the graph formulation solely as a feature extractor
to provide high-quality features for subsequent MLP layers, demonstrating
that merely using GNNs as feature extractors is better than classic RL
algorithms but is insufficient for high-quality solutions Table 1.

Enabling scalability in RL algorithms
Figure 2 illustrates that classic RL algorithms consistently achieve lower
rewards compared to their FX-GNN and EV-GNN counterparts. Specifi-
cally, SAC EV-GNN improves the reward by approximately 10.000 units
over the classic SAC in the 25 CPs case and more than doubles it in larger-
scale scenarios. Similar performance gains are observed when comparing
TD3 with TD3 EV-GNN. These results clearly demonstrate that EV-GNN
enhances scalability across all cases. Additionally, the FX-GNN feature
extractor method outperforms standard SAC and TD3, emphasizing the
importance of graph-based state representation and the end-to-end GNN
architecture for scalability in the PST problem. For more results, see Sup-
plementary Section 2.1.

Performance comparison for a large-scale experiment
Evaluating performance metrics beyond reward is crucial in optimal EV
charging. Accurately following the power setpoint is essential to avoid grid
instability, but user satisfaction is also key. In our problem set-up, user
satisfactionmeasureshowclosely the SoCof anEVat departurematches the
desired (See the definition in Methods Section Eqs. (25–27)). Our colla-
boration with Dutch CPOs showed us that current methods can not effi-
ciently handle more than a few hundred EVs, despite needing to manage
thousands simultaneously. Table 2 shows the results for the 1000 CP case
after 100 evaluation episodes, comparing heuristic algorithms, charge As
Fast As Possible (AFAP) and Round Robin (RR), with RLmodels and their
FX-GNN and EV-GNN variations. More details on the implementation of
AFAP and RR are in Supplementary Section 1.
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Fig. 2 | Maximum episode reward obtained as a function of RL algorithm and
experiment scale. The scalability of classic state-of-the-art RL algorithms is com-
pared with the proposed GNN-based approaches, demonstrating the limitations of
traditional methods as the action and state spaces increase. The maximum reward

achieved after 5 training runs with different seeds is presented. The results
emphasize the superior performance of the EV-GNN versions, showcasing how
significantly better they perform in comparison to the classic RL algorithms.

Table 1 | Table of Abbreviations

Abbreviation Meaning Abbreviation Meaning

EV Electric Vehicle SAC Soft Actor-Critic

CP Charge Point DDPG Deep Deterministic Policy Gradient

CPO Charge Point Operator TD3 Twin Delayed DDPG

PST Power Setpoint Tracking Problem TRPO Trust Region Policy Optimization

AFAP (charge) As Fast As Possible PPO Proximal Policy Optimization

RR Round Robin A2C Advantage Actor-Critic

MPC Model Predictive Control TQC Truncated Quantile Critics

RL Reinforcement Learning MLP Multi-Layer Perceptron

MDP Markov Decision Process GNN Graph Neural Network

GNN-FX RL + GNN feature extractor EV-GNN RL + End-to-End GNN
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Existing systems used by CPOs often rely on heuristic methods, which
face scalability challenges. For instance, the RRmethod achieves only 90.7%
user satisfaction and results in a 33 MWh energy error, underscoring its
limitations in large-scale applications. Classic RL models (A2C, DDPG,
TQC, SAC, TD3) show high energy errors, ranging from 17 to 54 MWh,
with TRPO performing the worst. FX-GNN improves performance, redu-
cing SAC’s and TD3’s energy error down to 13 and 12MWh, and boosting
user satisfaction to 98.5% and 97.7%, respectively. The best results come
from EV-GNN, which achieves user satisfaction of 98.7% (SAC EV-GNN)
and 98% (TD3 EV-GNN), while reducing the energy error to 11 and 13
MWh, respectively.As shown inTable 2, decreasing thePST error indirectly
enhances user satisfaction. Therefore, user satisfaction was not explicitly
included in the reward function inEquationEq. (10). These results highlight
that EV-GNN significantly enhances the scalability and effectiveness of RL
algorithms for large-scale optimization problems such as optimal EV
charging with PST.

Explaining sample efficiency
The overall performance comparison shows that EV-GNN consistently
achieves significantly higher rewards, enabling RL algorithms to deliver
high-quality solutions for the PSTproblem in real-time. To understandwhy
EV-GNN performs so well, Fig. 3 provides an explainability analysis from
twodifferent perspectives. Figure 3a compares the algorithmoutputs for the
TD3 algorithm and the TD3 EV-GNNwhen presented with the same state.
Notably, the classic TD3 algorithm generates actions even for CPs without
any connected EVs, such as CP 3, 4, 6, and 7, which can lead to invalid
actions. In contrast, TD3 EV-GNN inherently avoids generating actions for
unoccupied CPs, thus enhancing sample efficiency during training. More-
over, TD3 EV-GNN provides more diverse and personalized actions, ran-
ging from 3 to 10 kW, compared to the classic TD3’s less flexible approach.
Figure 3b offers a broader view of normalized charging power (action)
distributions across different SACapproaches (classic, FX-GNN,EV-GNN)
and varying numbers of occupied CPs for the 25 CP PST problem. The
classic SAC algorithm exhibits highly polarized action patterns (higher
density around 0 and 1), while the FX-GNN approach modifies the action
distribution for SAC. Most importantly, EV-GNN introduces substantial
changes in SAC’s action behavior. This results in a higher chance of selected
actions (between 0.2 and 0.8), enhancing control precision and overall
performance in the optimal EV charging problem. This effect is further
illustrated by the probability P(0.2 ≤ x ≤ 0.8), which ranges from 13% for
classic SAC to 46% for SACEV-GNN,whenmore than 67%of the charging
stations are occupied, highlighting themodel’s adaptability to high-demand
scenarios.

Generalization to unseen environments
Deploying RL models in real-world settings frequently necessitates
retraining, as differences in state transition probabilities P between simu-
lators and real environments—or shifts in input distributions, such as
changes in EV behavior—can impact performance. Therefore, evaluating
the generalization of end-to-end RLmodels in environments with different
state transition probabilities is essential. Figure 4a shows the marginal and
joint probability distributions of key variables such as time of stay, arrival
time, state of charge at arrival, and departure time. Three new evaluation
environments—small, medium, and extreme variations were created to
simulate different degrees of deviation from the training environment, such
as applying an RL model trained in one city to another with different
charging patterns.

The generalization capabilities of AFAP, SAC, TD3, and their FX-
GNN and EV-GNN variations are evaluated in the 500 CP scenario
(Fig. 4b). As expected, greater deviations in the environment lead to lower
episode rewards for all methods. However, EV-GNN consistently outper-
forms the others, showing superior generalization. For instance, in extreme
environments, TD3 EV-GNN achieves more than two times better reward
than classicTD3. In contrast, SACFX-GNNandTD3FX-GNNshowworse
or similar generalization compared to their classic versions, likely overfitting
to the training environment. This pattern holds across all environments,
highlighting that while FX-GNN improves feature extraction, it does not
address the broader challenges of scaling and adaptation that the full EV-
GNN approach effectively manages.

EV-GNN for multi-discrete problems
The optimal EV charging problem with PST involves controlling the
charging current for CPs, ranging from zero to a maximum value, typically
modeled as a continuous action space a ∈ [0, 1]. However, practical con-
straints often limit this to discrete current levels based on charging station
technology40, such as aType-2 chargerwith levels Ich∈ {0, 6, 8,…, 32}.When
only discrete actions are possible, thePSTproblem is representedby amulti-
discrete action space A ¼ A1 × � � � ×AJ , whereAj ¼ f0; Ich; Ichg defines
the discrete set for each CP j ∈ J. A2C, TRPO, PPO, Mask PPO41, and
recurrentPPO42 areRLalgorithmsdesigned formulti-discrete action spaces,
whereas TD3 was not initially intended for such problems. However, by
incorporating EV-GNN, TD3 can be adapted for use in multi-discrete and
discrete action spaces. In experiments comparing TD3 EV-GNN with
classic multi-discrete RLmethods, Fig. 5 shows TD3 EV-GNN significantly
outperforms thebaselines. For 25CPs,TD3EV-GNNachievesaround three
times higher reward than the second best (TRPO), and for 100 CPs, the
increase is even higher. This highlights the scalability and superior perfor-
mance of TD3 EV-GNN in multi-discrete scenarios.

Application to V2G profit maximization
Up to now, our experiments have focused solely on solving the PST problem.
However, a CPO can face problems with multiple objectives as charging
technology advances. Currently, most EVs rely exclusively on the power grid
for charging. However, with the anticipated increase in bidirectional EVs and
chargers capable of vehicle-to-grid (V2G) interactions, the landscape will
change. In the near future, EVs will not only draw energy from the grid but
also return it, constituting invaluable flexible loads to support the operation
of the grid while earning compensation for these services43. This evolution
means that CPOs will need to optimize EV charging schedules while also
considering factors such as energy costs and grid loads.

In this section, we show that the EV-GNN approach extends beyond
the PST problem and can efficiently address more complex EV charging
challenges, such as V2G profit maximization. This problem involves
managing residential loads, PV contributions, anddemand response events.
Two sets of experiments were conducted to evaluate the performance of
various approaches: one on a smaller scale with 25 CPs and another on a
much larger scale with 500 CPs. Figures 6a, b illustrate the training per-
formance of thesemethods, focusing onmaximum and average rewards. In

Table 2 | Performance comparison of 100 evaluation runs for
the complex large-scale 1000 CPs case

Algorithm Energy
Charged (MWh)

User Sat. (%) Energy
Error (MWh)

AFAP 49.8 ± 0.7 99.9 ± 0.0 22 ± 0.5

RR 21.7 ± 0.4 90.7 ± 0.3 33 ± 0.5

A2C 23.3 ± 0.5 87.9 ± 0.4 32 ± 0.6

DDPG 23.4 ± 0.5 87.9 ± 0.4 32 ± 0.6

TRPO 1.3 ± 0.0 78.4 ± 0.5 54 ± 0.8

TQC 28.9 ± 0.5 91.1 ± 0.3 27 ± 0.5

SAC 39.5 ± 0.6 95.9 ± 0.3 17 ± 0.7

TD3 42.7 ± 0.6 97.1 ± 0.2 17 ± 0.6

SAC FX-GNN 45.5 ± 0.6 98.5 ± 0.1 13 ± 0.5

TD3 FX-GNN 43.3 ± 0.7 97.7 ± 0.2 12 ± 0.4

SAC EV-GNN 44.9 ± 0.5 98.7 ± 0.1 11 ± 0.3

TD3 EV-GNN 42.3 ± 0.6 98.0 ± 0.1 13 ± 0.4
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line with the findings from the PST problem, both TD3 EV-GNN and SAC
EV-GNN significantly outperform their classic counterparts in terms of
maximum reward. The FX-GNN methods also demonstrate superior per-
formance compared to classic SAC and TD3 in the 25 CP scenario. Addi-
tionally, Fig. 6c presents the average performance results from 100
evaluation runs for the 500CP case. This comparison includes two heuristic
algorithms (AFAP and RR), two mathematical programming methods
(MPC and Optimal), as well as the RL methods. This comprehensive ana-
lysis highlights the relative strengths and weaknesses of each approach in
handling large-scale CP management.

As anticipated, the AFAP and RR methods yield lower profits since
they do not utilize discharging capabilities, resulting in approximately 5
MWh of overloads. Despite this, they achieve 100% user satisfaction. In
contrast, the EV-GNN methods excel in maximizing profits with minimal
overloads, though this comes at the expense of user satisfaction. FX-GNN
and classic RL methods generate about half the profits compared to EV-
GNN approaches, but offer roughly 10% higher user satisfaction. Among
the non-heuristic methods, MPC performs second only to EV-GNN in
terms of profits and provides the highest user satisfaction. However, MPC
struggles with transformer overload constraints due to its extensive search
space and time limitations. This complexity is underscored by the problem’s
scale: 500CPs, 35 transformers, anddemand response events that last 1hour

per day and can reduce available transformer capacities by up to 15%.
Notably, MPC requires approximately 5 minutes per step to generate a
charging schedule, whereas RL methods can produce results in less than a
second. This significant time advantage highlights the importance of RL
methods for real-time optimal EV charging.

Discussion
Our results highlight EV-GNN as an effective solution for large-scale EV
charging optimization, addressing the limitations of traditional methods.
While mathematical programming approaches are computationally
intensive and classic RL methods fail with complex, high-dimensional
dynamics, EV-GNN facilitates real-time decision-making by leveraging a
GNN-based architecture suited for large state-action spaces. For CPOs
managing thousands of EVs daily, balancing grid stability and user SoC
requirements, EV-GNN represents a practical advancement, enabling
scalable, high-quality solutions that outperformconventional approaches in
both efficiency and applicability.

Our experimental results show that EV-GNN scales more effectively
and generalizes better to unseen environments compared to traditional RL
algorithms, a crucial ability for real-world applications where systems must
adapt to changing conditions. EV-GNN’s improved scalability and gen-
eralization stem from its end-to-end GNN architecture, which efficiently

Percentage of Occupied 
Charging Stations

0-33%0-33%

34-66%

67-100%

Fig. 3 | Explainability analysis for EV-GNN in the 25CP case. aComparison of the
actions generated by classic RL algorithm (TD3) and its EV-GNN extension (TD3
EV-GNN). Through graph pruning, EV-GNN ensures that only valid actions are
produced, avoiding impossible actions such as chargingwhen noEV is connected. In
contrast, the classic TD3 generates actions that may not be feasible, e.g., classic TD3
assigns charging power to charging stations 3, 4, 6, and 7 even when there is no EV
connected. bVisualization of the normalized action probability density functions for

three distinct state groups, categorized by EV occupancy levels at charging stations
(up to 33%, 66%, and 100%). This shows how the EV-GNN approach enables RL
algorithms to generate more diverse and state-specific actions, highlighted by the
probabilityP(0.2≤ x≤ 0.8) of an action fallingwithin the [0.2, 0.8] range. This unique
capability of EV-GNN enhances the model’s effectiveness in achieving learning
objectives.
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filters irrelevant information, such as zero values for absent EVs, enhancing
sample efficiency during training. Additionally, the GCN architecture
leverages graph symmetries, allowing it to generalize across similar structures
by focusing on node features and connectivity, regardless of spatial
arrangement. For instance, a branch with a transformer connected to three
chargers, each with one EV, is symmetrical to other branches with the same
configuration but potentially differing locations or arrangements. This allows
the GCN to generalize effectively across similar structures within the graph.

This paper demonstrates that the EV-GNN methodology excels in
both continuous andmulti-discrete settings, and is also adaptable to discrete
problems. The successful integration of TD3 with EV-GNN highlights its
scalability and effectiveness in handling complex multi-discrete domains.
Importantly, the EV-GNN approach is highly versatile, making it compa-
tible with a wide range of deep RL algorithms, whether they involve con-
tinuous or discrete control. Notably, EV-GNN can achieve higher rewards
in the challenging V2G profit maximization scenario, which incorporates
loads, PV, and demand response events. This performance underscores the
methodology’s robustness and ability to tackle complex real-world pro-
blems efficiently.

The significant improvements in performance, scalability, and gen-
eralization shown in this study open promising avenues for future research
in optimal EV charging and beyond. EV-GNN’s success in both PST and

V2G profit maximization problems suggests further evaluation is needed in
other EV charging scenarios. Future work could also apply EV-GNN’s
dynamic graph and end-to-end GNN principles to resource allocation
problems with dynamic state spaces, such as vehicle routing44, portfolio
optimization, and production planning45. Additionally, enhancing EV-
GNN to ensure constraint satisfaction, potentially by integrating mathe-
matical programming46 or Safe RL strategies47, could improve its practical
applicability for real-world optimization challenges.

Methods
Graph MDP for optimal EV charging
The centralized optimal EV charging problem, from the perspective of the
CPO agent using PST, is formulated as an MDP within the graph domain
and is represented as:M ¼ ðS;A;P;RÞ, where S is the state space,A the
action space, P the transition probability, andR the reward function. The
state space S is defined as the graph G ¼ ðN; EÞ at step t, consisting of
observations for each type of node in the problem. Each EV node, repre-
senting an EV connected to CP j, charger i, and transformerw, has a feature
vector:

xev ¼ ½z; E � Earr; t � tarr; j; i;w�; ð5Þ

Fig. 4 | Generalization analysis for out-of-training-distribution environments.
a Joint and marginal probability density functions of key environmental variables
affecting state transition probabilityP, including EV time of stay, time of arrival, SoC
at arrival, and departure time. The cases depicted are: Original (the environment
used for training), Small,Medium, and Extreme, which represent increasing degrees

of variation from the original environment. b To assess the generalization cap-
abilities of the proposed methods, all algorithms were trained on the environment
using the original distribution and then evaluated on its modified versions. The box
plots show the mean and standard deviation of the achieved rewards after 100
evaluation runs across four different environments for the 500 CP case.
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where z is a binary variable indicating whether the EV is fully charged,
E − Earr measures the energy transferred to the EV since connection, and
t − tarr measures the time elapsed since the connection of the EV. The
variables j, i,w serve as unique identifiers (port, charger, transformer group)
to distinguish each EV node from others of the same type. Note that in the
realistic public PST problem, the CPO is unaware of the SoC and the EV’s
arrival and departure times, as the communicationprotocol between the EV
and the charger does not share this information. Each charging node,

representing a charger i, is characterized by the following feature vector:

xcs ¼ ½I; I; jJj; i�; ð6Þ

with I and I denoting the minimum and maximum charging currents that
the charger can handle, and ∣J∣ indicates the number of CPs available on the
charger. These features are crucial as they define the charger’s operational
limits and capacity. A simpler feature vector represents transformer nodes:

xtr ¼ ½P;w�; ð7Þ

where P is the maximum power capacity of the transformer, and w is the
unique transformer identifier. This information is essential for controlling
the transformer’s power usage, ensuring it does not exceed its capacity.
Finally, the CPOnode is described by amore comprehensive feature vector:

xcpo ¼ d
7
; sin

h
48 � π

� �
; cos

h
48 � π

� �
; P set

t ; Ptot
t�1

� 	
; ð8Þ

The day d and hour h encoding allows the model to learn daily and hourly
variations in energy demand and EV availability. P sett indicates the power
setpoint for the current time step, whileP tott�1 reflects the actual power usage
from the previous time step, acting as important feedback for adjusting
future power allocations, thereby enhancing the efficiency of power
management.

The CPO agent’s action space A is represented as a dynamic vector
with a size equal to the number of EV nodes in the graphG. Each element of
this vector corresponds to the charging current allocated from CP j to its
connectedEV. Specifically, for eachEV, the actionaj is a continuous variable
taking values in the interval [0, 1]. The actual charging current Ij supplied by

Fig. 5 | Maximum episode reward obtained for classic multi-discrete RL algo-
rithms and TD3 EV-GNN. The maximum episode reward is the best reward
achieved by each algorithm after 5 training runswith different random seeds. For the
TD3 EV-GNN approach, the last GCN layer is configured with three features per
node (FL = 3), corresponding to the number of discrete actions allowed.

Fig. 6 | V2G profit maximization with loads, PV, and demand response events.
a Training performance of baseline and enhanced RL algorithms for 25 CPs,
showing the best and average rewards achieved by variousmethods, includingGNN-
enhanced approaches. b Training Performance in a large-scale case study with 500
CPs. c Performance comparison for 100 simulations with 500 CPs in the V2G Profit
Maximization problem. This panel compares various approaches, including heur-
isticmethods (AFAP andRR), baseline RL algorithms, GNN-enhanced RLmethods,

an MPC method, and an optimal solution assuming future knowledge. Key metrics
include total profit, user satisfaction (reflecting how closely the EV's SoC at depar-
ture meets the desired level), transformer overloads, and execution time, which
indicates how long each algorithm takes to produce an optimization solution. The
boxes show the quartiles of the results while the whiskers extend to show the rest of
the distribution, except for points that are determined to be “outliers”.
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the CP to the EV is given by:

Ij ¼ aj � I; ð9Þ

where I is the maximum allowable current that the CP can provide. For
instance, ifaj=0, it indicates thatEVwill not charge at that time.Conversely,
if aj = 1, it implies that the EV is receiving the maximum charging current
available from the CP. This continuous range of action values allows for
flexible and precise control over the charging process.

The intricate dynamics of the coordinated EV charging process are
captured by the state transition probability function,P. Although it is often
unknown and challenging to model P explicitly, the RL agent learns it
through continuous interaction with the environment. In detail, P models
the uncertainty and variability inherent in the system, including factors such
as the arrival and departure times of EVs, the specific characteristics of each
EV, and fluctuations in charging prices based on the wholesale energy
market.

The reward functionR plays a vital role in guiding the learning process
of RL algorithms, and it directly alignswith the objective of the optimization
problemas it is designed todrive the system towarddesired outcomes. In the
PST problem, the reward function is defined as:

Rðs; aÞ ¼ � Pset
t�1 � Ptot

t�1

� �2
: ð10Þ

The reward function evaluates the actions’ performance by penalizing the
squared error between the setpoint and the actual power usage. A lower
squared error results in a higher reward, encouraging the system to more
accurately match the setpoint to the actual usage, which is crucial for
effective PST. In our scenario,minimizing the tracking error naturally aligns
withmaximizing theSoC for all controlledEVs, provided thepower setpoint
is sufficiently large. As a result, the reward function does not require an
explicit term to maximize user satisfaction.

Simulation environment
Accurate experimentation with optimal EV charging and RL necessitates
the use of a simulator based on real-world data. This ensures that the
results obtained are relevant and reliable for assessing the performance of
the algorithms, thereby providing meaningful insights into their practical
applicability and effectiveness. For this reason, the EV2Gym simulator
environment48 was used to model the EV charging problems and run the
RL simulations. EV2Gym leverages real EV charging transactions
from ElaadNL49, incorporates real EV characteristics50, and uses actual
electricity prices51, ensuring that the simulations closely reflect real-world
conditions.

Each simulation run for the PST problem consisted of 115 steps, each
lasting 15 minutes, starting at 05:00 in the morning. Each run commenced
on a different day of the year, resulting in variations in prices, power set-
points, EV behavior, and EV characteristics. The power setpoint was gen-
erated at the start of the simulation to ensure enough energy for all EVs to
charge by shifting their loads over time in a price-based manner. This
generation process was randomized for each run, leading to distinct power
setpoints and numbers of EVs every time. The experiments were structured
by dividing the CPs into transformer groups: three groups for the 25 CP
case, seven groups for the 100CPcase, thirty-five groups for the 500CPcase,
and seventy groups for the 1000 CP case.

Training and parameterization
The training of RL models continued until learning plateaued. In practice,
the training process consisted of around 20,000 epochs, eachwith 112 steps.
After every 300 runs, 100 evaluation runs were conducted to assess per-
formance. The RL models were frequently evaluated during training, and
the best-performing model from these evaluation rounds was selected.

Training epochs were empirically validated through repeated evaluations,
confirming that additional epochs did not yield improved performance.

RL training was performed on the Delft Blue HPC system52,
which enabled large-scale simulations with up to 1000 EV chargers
and allowed us to explore substantially larger state-action spaces. For
our most intensive experiments, we required around 120 GB of RAM
to store the RL algorithms’ replay buffer, 2 CPU cores, and a single
GPU. Importantly, these simulations can also be run on smaller systems
by implementing more efficient memory management or batch processing
techniques, such as offloading portions of the replay buffer to a hard
drive. This approach optimizes resource utilization and makes high-
fidelity simulations accessible even without a full-scale supercomputer,
albeit at the cost of additional computational time depending on the specific
application.

The experiments used the StableBaselines3 implementation of the
classic RL algorithms53, while the code for the FX-GNN and EV-GNN is
provided. Python 3.11, PyTorch 2.3.1, and PyTorch Geometric 2.5.3 were
used for training theNNsandGNNs,whileGurobi 11.0.2wasused to derive
the solutions for the MPC and the Optimal algorithms.

The classic RL algorithms, the FX-GNN, andEV-GNNvariations used
the same default hyperparameters for learning rate, batch size, etc. The
classic RL algorithms employed actor and criticNNswith two hidden layers
of 512 nodes each. Various configurations with different numbers of layers
and hidden nodes were tested, but these changes did not result in better
learning performances. SAC FX-GNN and TD3 FX-GNN used indepen-
dent GNN feature extractors with F0 = 32 for the 25 and 100 CP cases and
F0 = 64 for the 500 and 1000 CP cases. These were followed by three GCN
layers with feature dimensions Fl ∈ {64, 128, 256} and two fully connected
layers with 512 nodes each. The EV-GNN algorithms adopted the same
feature extractor architecture (F0) as FX-GNN but included L GCN layers
for the actor and K GCN layers for the critic. For the 25 and 100 CP cases,
K = L = 3, with actor feature dimensions Fl ∈ {64, 32, 1} and critic feature
dimensionsFk∈ {64, 128, 192}. In the 500CPcase,K=L=3withF0 =64, the
actor’s GCN layers had feature dimensions Fl∈ {128, 64, 1}, and the critic’s
dimensions were Fk ∈ {128, 256, 384}. In the 1000 CP case, optimal per-
formance was achieved withK = 6 and L= 5, with F0 = 64. The actor’s GCN
feature dimensions Fl ∈ {128, 256, 384, 256, 128, 1}, and the critic’s
dimensions Fk ∈ {128, 256, 384, 512, 640}.

In all cases, the critic network in EV-GNN was followed by two fully
connected layers with 512 nodes each. End-to-end GCN architectures are
significantly more lightweight, resulting in significantly fewer trainable
parameters compared to full MLP architectures. For instance, in the 1000
CP case, the actor NN of SAC EV-GNN had only 256, 514 trainable
parameters, whereas the classic SAC had 2, 826, 704.

MIP formulation of optimal EV charging
PST is the problemwhereCPOsmanagemultiple chargers, either procuring
energy in advance or operating under limited capacity contracts, and strive
to adhere to the power setpoint for efficient and fair energy distribution.
While the arrival and departure times, as well as the SoC are unknown, it is
assumed that an EV is fully charged when no energy exchange is measured
through the CP. Therefore, the PST problem can be formulated as an MIP
problem described by Eqs. (11–24), for allw 2 W, j 2 J , i 2 C, and t 2 T .

min
Ichj;i;t ;Idisj;i;t

X
t2T

Pset
t � Ptot

t

� �2
ð11Þ

Subject to:

P tott ¼ P
i2C

P
j2J

P chj;i;t þ Pdisj;i;t

� �
8j; 8i; 8t ð12Þ

P chj;i;t ¼ Ichj;i;t � Vj;i;t �
ffiffiffiffiffiffiffiffi
ϕj;i;t

q
� ηchj;i;t � ωchj;i;t 8j; 8i; 8t ð13Þ
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Pdisj;i;t ¼ Idisj;i;t � Vj;i;t �
ffiffiffiffiffiffiffiffi
ϕj;i;t

q
� ηdisj;i;t � ωdisj;i;t 8j; 8i; 8t ð14Þ

Ej;i ≤ Ej;i;t ≤ Ej;i 8j; 8i; 8t ð15Þ

Ej;i;t ¼ Ej;i;t�1 þ ðP chj;i;t þ Pdisj;i;t Þ � Δt 8j; 8i; 8t ð16Þ

Ej;i;t ¼ E arrj;i;t 8j; 8i; 8tj t ¼ t arrj;i;t ð17Þ

I chj;i ≤ Ichj;i;t ≤ I
ch
j;i 8j; 8i; 8t ð18Þ

I disj;i ≥ Idisj;i;t ≥ I
dis
j;i 8j; 8i; 8t ð19Þ

I csi;t ¼ P
j2J

I chj;i;t � ωch
j;i;t þ Idisj;i;t � ωdisj;i;t

� �
8j; 8i; 8t ð20Þ

I csi ≤ Icsi;t ≤ I
cs
i 8i; 8t ð21Þ

PEVsw;t ¼ P
i2Cw

P
j2J

P chj;i;t þ Pdisj;i;t

� �
8w; 8j; 8i; 8t ð22Þ

P trw;t ≤ P
EVs
w;t þ PL

w;t þ PPVw;t ≤ P
tr
w;t � PDRw;t 8w; 8t ð23Þ

ωchj;i;t þ ωdisj;i;t ≤ 1 8j; 8i; 8t ð24Þ

This formulation aims to minimize the squared power tracking error,
defined as the squared difference between the procured or setpoint power
P sett and the actual power P tott at time t. The current of a single CP j is
modeled using two decision variables, Ich ⋅ωch and Idis ⋅ωdis, where ωch andωdis

are binary variables, to differentiate between charging and discharging
behaviors. The charging current and power (Ich and Pch) are positive, while
the discharging current and power (Idis and Pdis) are negative. Equations (13)
and (14) define power relationships of currents with CP phase voltage V,
number of phases ϕ, and (dis)-charging efficiency η, while (15–17) address
EV battery constraints during operation with a minimum and maximum
capacity of E, E, and energy Earr at time of arrival tarr. Equations (18) and (19)
impose current charging and discharging limits (with minimum current I
and maximum I) for each EV and CP, with (21) applying to the entire
charger. The transformer power constraint is specified in (23) as a function of
total EV load PEV, inflexible loads PL, PV generation PPV and curtailed power
due to demand response (DR) events PDR. To prevent simultaneous
charging and discharging, the binary variables ωch and ωdis are constrained
by (24).

Furthermore, the following evaluation metrics are used in this study.
The user satisfaction metric measures how closely the SoC of an EV at
departure matches its target SoC*. For a set of EVsM, user satisfaction is
given by:

User Sat: ¼ 1
jMj �

X
m2M

SoCm

SoC �
m

� �
� 100%: ð25Þ

Energy errormeasures the discrepancy between the procured power and the
actual power used for charging, and is defined as:

Energy Error ¼
X
t2T

∣P sett � Ptott ∣ � Δt; ð26Þ

where Δt is the duration of each time step. Additionally, the total energy
charged represents the total amount of energy supplied toEVsover time and

is defined as:

Total Energy Charged ¼
X
t2T

P tott � Δt ð27Þ

MIP and MDP for the V2G profit maximization problem
V2G profit maximization is the second problem explored, which aims
to maximize the profits of a CPO while fully meeting the demands of
EV users. Unlike the PST problem, this scenario assumes that when an
EV arrives at charging station i and CP j, it communicates its departure
time t

dep
j;i and desired battery capacity at departure E�

j;i. Additionally,
the battery capacity Ej,i,t of each EV is known while it is connected to
the charger. These assumptions are typically made in research because
this information can be obtained from EVs as more advanced commu-
nication protocols are developed. The objective function, detailed in
(28), depends on the charging (cch) and discharging prices (cdis) for each CP
j, i.

max
Ichj;i;t ;Idisj;i;t

X
t2T

X
i2C

�P chi;t � cchi;t þ Pdis
i;t � cdisi;t

� �
� Δt ð28Þ

Subject to constraints from Eq. 15–28 (main text) and:

Ej;i;t ≥ E
�
j;i;t 8j; 8i; 8t jt ¼ t

dep
j;i;t

ð29Þ

V2Gprofitmaximizationwith loads ismore complex than thePSTproblem
due to the added uncertainties of PV generation and demand response
events. These events are communicated only half an hour before they occur,
making it challenging to comply with all the problem constraints.

With V2G technology enabling precise communication, CPOs will
always have up-to-date information on the SoC of each EV and their
departure times54. Consequently, the state information for the EV feature
vector in this problem changes and is defined as follows:

xev ¼ ½SoCt ; t
dep � t; j; i;w�; ð30Þ

where tdep − t is the steps remaining until the EV departs, and j, i, w are
unique identifiers referring to the CP, charger, and transformer group the
EVbelongs.The charging stationand transformer feature vectors,xcs andxtr,
are the same as the PST problem, as shown in Eqs. (6, 7), while the CPO
node features are defined as:

xcpo ¼
d
7
; sin

h
48 � π

� �
; cos

h
48 � π

� �
; ccht ; Ptott�1

� 	
; ð31Þ

with ccht being the electricity price for charging at step t, while the price
for discharging is a linear combination of the charging price, in
our experiments cdist ¼ �1:2 � ccht . In the V2G profit maximization
problem, discharging is possible. Hence, the action space takes values in
[ −1, 1] with negative values signifying discharging and positive charging
relative to the maximum CP capacity. Finally, the reward function is based
on existing literature on V2G profit maximization48 and is defined
∀ w, ∀ j, ∀ i as:

Rðs; aÞ ¼ ct � 100 � ϵovt � 100 � exp �10 � ϵusrt

� �
; ð32Þ

where ct are the total costs and profits obtained by charging and discharging,
ϵovt is the amount of power exceeding the limit of power
transformer overload during the passed step in kW, and ϵusrt represents the
user satisfaction score of EVs departing at the current step, defined as the
ratio of the current SoC to the desired SoC*, indicating how closely the
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EVs’ charge levels match their target. This reward function motivates the RL
agent to maximize profits and user satisfaction while heavily penalizing
overloadings.

Data availability
All experiments were conducted using the EV2Gym simulator48, and the
results are reproducible via the configurations provided at: https://github.
com/StavrosOrf/EV-GNN.

Code availability
Access the open-source code, along with trained models, at https://github.
com/StavrosOrf/EV-GNN and https://github.com/distributionnetworks
TUDelft/EV-GNN.
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