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Sufimary.
_ Boundary value ‘probléms W1th the wave equatlon

for: harmonic time dependence are transformed by a- one-
sided Laplace transform, into hyperbolic problems with

~ one more dimension., Us1ng asymptotlc properties of the- |
transform, the solution can be found in the form of an
asymptotic series, The method is applled to a pair of
two-dimensional-problems which are mathematically.large-. ‘
1y equivalent, viz. diffraction by a plane screen with -
slit, and the oscillating a1rf01l at high frequencles
(or in near-sonic flow) : S

INTRODUCTION.“;,'
| Recently Kllne (1954) has given a method for the asymp-

totic solution of certain linear, second order hyperbolical pro+
blems, such as to provide the solutlon of wave problems in the form
of an asymptotic series for high frequencles, with the approx1ma—
tion of "geometrlcal optics" as first term. This expansion con-
tains only the zero and positive integral powers of the reclprocal
‘frequency; howeVer, it is known that’ solutions of d1ffract10n pro-
- blems contain.also fractiorial powers of this quantity, and thus
the concludlng remark of Kline is that "the theory of asymptotlc
solution required to treat such problems is not at present adeouate."'

_ The aim of the-: present paper is to sketch, by a few ex-
. amples ‘a method of solving problems of "d1ffract10n" for hlgh
frequen01es. The problems chosen for this purpose have two space
dimensions, but the method may, in orlnclple, be extended to more

dimens1ons. v _
A8 far as previous rigorous results are concerned, only‘
’one d1ffract10n problem has thus far been solved in closed form,
v1z. the problem of d1ffract10n by a perfectly reflecting screen in
" the form of a half-plane, (w1th slight generalizations) which has
been treated by Sommerfeld (1896). Further, -in a limited number: of
plane screen conflguratlons separation of the wave equation is pos< -
sible, and rigorous results have been obtained in terms of series
of special functions, e.g. by Sleger (1908) and Strutt (1931) for

| an infinite slit, and by Bouwkamp (1941) and Meixner and AndeJew-
sky (1950) for a circular aperture., These solutions may be used for-
calculations in the low frequency range, but they are no longer
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serviceable at high frequencies, while also the series occurring .
here are rather unsurveyable. - — ' N

It is therefore natural that in general diffraction pro-
 blems are treated.by methods of approximation., In the regime of high '
frequencies,'the classical method is that of Kirchhoff (1891)
is, however,-subgect to the serious draw-back that only a first ap—
Prox1mation is yielded, while no.systematic method of- obtaining
subsequent approximations is available, Several modifications have
' been_proposed for the Kirchhoff method, and also in the,preSent'pa4
per the form used for comparison, is a variant which is specially
applicable to plane screens, and Whichlmay be traced tO'BouWkamp'
(1941). This modified solution, which is. in the sequel called the
Kirchhoff approximation, should more properly be termed a "Raleigh
solution", after Bouwkamp (1954). ‘ L ‘

' _ Among recent attempts at improv1ng on the Kirchhoff theo- -

ry, is the method of Franz (1950) It consists of a sequence of ap~

prox1mations, in which ad hoc adgustments are made to the trial

solution, using the ‘boundary conditions and the wave equation in.

alternation., Franz's theory is intended to be useful for all wave-

., lengths, and it is not clear that this will yield" something of the
nature of an asymptotic series for high frequencies.‘ :

Also noteworthy in this respect, is the work of Braun-
bek (1950) on plane screen problems. He has made use of Sommerfeld's
‘exact solution for the half-plane problem, in-an attempt at giving
a first estimate of the neglected term in the modified Kirchhoff
solution. Numerical computations give good support to this estimate.

Specially for diffraction by a slit, an older recursion
method is due to Schwarzschild (1902). His method has been shown
by Baker and Copson (1950) to be equivalent to the solution by suc-
cessive substitution of a pair of‘simultaneous integral. equations, -
starting from Sommerfeld's solution for each of the two halves of
the screen separately. Slow convergence of the process for real k
seems to be its main draw-back.

L In the present paper, the tio main problems treated are,
firstly, that of diffraction’of‘a wave train by an infinitely long
“strip or slit, and, secondly, that of a.similar oscillating_aira
foil in subsonic compressible flow. The entire treatment of the dif-
fraction problem is directly applicable to the aerodynamical pro- '
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blem, but an additional complication ariees in therlatter case,
from the occurrence of a singularity .in the acceleratlon potentlal
at the leading edge of the airfoil.

' The first chapter contains the formulation of the d1f-
fraction and oscillation problems concerned, and reference is made
to the physically imbortant quantities in the two cases, viz. the
plane wave transmission cross section and the aerodynamic force and

{ moment derivatives: The results obtained in two-dimensional scalar

« diffraction theory,; have direct rlgorous meaning not only in acous--
tical, but also in e1ectromagnet1c dlffractlon, though in three-
dlmene;onal electromagnetic problems a vector treatment.becomes.ne-
cessary. For comparison with the results of later chapters, this
chapter is concluded by applying a (modified) Kirchhoffwapproxima—
tion to the calculation of the transmission cross section for normal
incidence. Differing resnlts, obtained by substitution in two dif-
ferent rlgorous formulae, yleld a pre11m1nary indication of the or-
der of approximation, . '

In chapter 2 anaoutline is given of the method of solu-
tion and its underlylng theory. Following a suggestion of Prof.uDr.
R. Timman, the glven problem, which is of elliptical character, is
transformed to one which is hyperbolical with one more dimension
and of the nature of a transience problem. ‘The. transformatlon ef-
fectlng this change, may be termed an inverse Laplace transform -
(W1th respect to the frequency parameter),’ ~since the relatlonshlp
is best characterized by viewing it in the’ opposite sense, and stat-
ing that the’original-problem is a one—sided Laplace transform of
3the transformed problem. The ultimate reason for introducing this -
transform is that, by a type of Tauberian theorem, the required be-
hav1our of the solution for hlgh frequencles may be determined from
the transformed solutlon for small values of the newly-introduced

.r'"tlme“ variable.

- The theory of characteristics is applied to the hyper-
bolical problem, and this problem proves to be mathematically equi-
valent to that of a-plate.in the form_of a semi-infinite strip, in
. stationary supersonic flow, under a small angle of attack. The re-
“lations found are therefore in general either equlvalent to- known
formulae in lifting surface theory, such as have been deduced by
Evvard (1950) and Ward (1949), or generalizations of such formulae,
The fundamentalvrelatlon ‘constitutes a direct integral representa-
tion of the solution.in one part of space, while elsewhere it has
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the form of an integro-differential'equation. From the continuity .
and symhetry orooertles of the solution, an additional set of inte=-
gral. equations is obtained, from whlch the derivatives occurrlng in
the integro-differential equation may be solved by a recurrence pro-l
cess, with a finite number of ‘steps- for each finite region. The
details of this whole process, as well as of the back—transforma- '
tion to the orlglnal oroblem, are left over for discussion in the
third chapter. ,

The transformed problem occurs also in the work done
by Fox (1941) on the diffraction of a step-function pulse by a
screen in the form of a >t119 nsing the method of Frledlander (1946),
which was vnlonrd for the »roblam of dlffractlon of a pulse by
a half-plane, - ' ' .
Chanter 3, which primarily contains the aoollcatlon of

the method of chapter 2 to the diffraction oroblem of a slit at
_hlgh frequencles, starts with a check on the rellabllltv of the me-

thod, This 1s afforded by an application to Sommerfeld's half-plane
problem, and the known solution of this problem proves to be cor-
rectly. reproduced In the strip problem, the solution is found as

‘an infinite series, which is shown to be an asymntotlc series for

high frequencles. This solution is applied to the caleulation of
the transmlsslon cross section for normal 1nc1dence,.reta1n1ng the
terms of second and lower order in the reciprocal frequency. The
result shows that the (modified) Kirchhoff approximation. does DpOS-
sess a qualltatlve 1nd1cat10n of the leadlng diffraction term, though
quantitatively it is in error. Numerical values comouted from the

' asymptotic formula, agree surprisingly well with exact results,

even though the available values of Skavlem (1951). pertaln to still
rather low frequencles.

The final chapter contalns the main features in the ex-
tension of the previous solution to the aerodynamical . problem of
the oscillating airfoil in subsonic compressible flow. This pro-
cedure of extension is .necessary to ensure that the correct types

- of slngularlty occur at the leading and trailing edges of the air-

foil, and comorlses some. rather awkward llmltlng orocesses perform-
ed on the Green's function of the dlffractlon problem. The physical -
slgnificance of the frequency parameter in this case 1nd1cates that -

"~ the solution holds not only for high frequencies, but also for near-
‘sonic fllght speeds, as far as the linearization and the two-dl-
.menslonal character of the problem are phys1cally valid in this
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case, A first approximation to the solution of this aerodynamical
problem for high frequencies has been obtained by Timman (1951),
by application of a Kirchhoff approximation.
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~_Chapter 1,

THE BOUNDARY VALUE PROBLEM AND ITS
PHYSICAL SIGNIFICANCE.

1.1, The two-dimensional problem of diffraction by a plane screen.

1.1.1., The differential equation. .

"The velocity field ¥ in a frictionless fluid medium
without external forces is related to the pressure and density in
the medium, by Euler's equation of motion and the continuity equa-
tion, viz.: '

24-(?-?”) v=- e
ot ¢

» (1).

0. (ev)=0
ot

Assume that the pressure is a function of the’density

only:
P=p(),

which is the case when all changes are isentropic; this implies that
the density §, for the fluid at rest is a constant, independent of
position and time. Further assume that the density differs only
slightly from the rest density, so that it is possible to introduce
a small parameter £ by |

f- o= €S -
We write accordingly

=Ev,+0 (%)
and

vp=p'(§Ive
= ($,) vG, +O(€)

where O is the order symbol. Substituting these relations in (1),
and retaining only first order terms in & , and writing ¥ instead
of £v, , etc., and'c® instead of ¢'(g,) , yields: '

0. & ge
2t G
DR

If initially the motion is vortex-free, i.e. if there eiists a po-
tential y such that p, -vy , then the equation.of motion.can be
integrated to:




NATIONAAL

- - ° 1 . P Io2
LUCHTVAARTLABORATORIUM Report F.157 R

which means that the motion remains_vortexpfree and is characterized
by a ve1001ty potentlal

o xw-—/ed* . at
Thns,'finally ' o o : 3
0t Q. o » e C2)
op - o
‘-ﬁ:"‘?oéax o » 1)2 ‘Dx_ o —
.o . |
where ' denotes . the Laplace operator 'Dx2+"o. %2 ox2 ‘;. andthere—; :
fore, eliminating ¢ : S v
' 1 o
A3 Keemo — =0 )
c* ot

viz. the standard form of the wave equatlon. )

The time dependence is assumed to be glven by

= Lket
X= pe

in which the potentials x and ¢ are complex numbers, the real parts
of which are to be taken eventually for physical appllcation° Then @

satisfies Helmholtz's wave equation: ' : _ . !

(A3+k‘)l.p o o o : (3)
If, in analogy with damped mechanical systems, the case

is cons1dered where the equatlon for x has a damping term, viz.

1 X O DX

AgXw o e = — — 20, @30, . | SR
2t 2 ot - _ ' =
the equation for p Dbecomes B .
(A3+k2+|.—>(p o _ _ - (4)
We shall interest ourselves for the undamped case and, taking regard
of the sign of the extra term in (4), interpret (3) as a limiting
;form for real k, reached through complex k w1th p051t1ve values of
Im k. (It.should,be,noted that it is essentially more compllcated,
to regard:the.undamped'case strictly as a limiting form for.vanishing '
%riscosity9 since the Navier-Stokes equation, which applies in the
viscous case, is of higher order than the Euler equation to whlch
it tends). :
. In the sequel it will be assumed that the field is cy-
llndrloal, i.e. that it is the same in all planes perpendlcular to_'
| the z-axis, so that only two space coordlnates Xx and y are needed
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We are thus concerned with solutions cf the wave equation

(Ai—kh) $=0

'in_which .A denotes the two dimensional Laplacian,

1. 1 2 The boundarv condltlons. _ i
If an obstacle 1s inserted into a given 1n1t1al fleld,

the field is modified, and we say that it is diffracted by the ob-

.stacle. The problem of dlffractlon is. 'to determine the: dlsturbed

- field .from a knowledge of the 1nit1al or "incident"®" field (1 €. the

field that would subsist if the obstacle were absent), and . of the

position and nature of the obstacle. ‘ - A
The obstacle will be assumed to be in the form of an in-

finitesimally thin screen in the (x,z) plane, with edges parallel

to the z-axis, thus serving to preserve the two-dimensional charac-

ter of the problem. The part of the x-axis occupied by the'screen,
will be denoted by S, and the rest of the x-axis by S°'.

The boundary conditions are determined by the nature of
the screen. For a perfectly rigid screen, the fluid ve1001ty at the
screen is tangsntial to the surface, sc.that ‘the normal derivative
of the to+al ve1001ty,potent1al.q% vanishes there. For the other
extreme case of a perfectly "soft" screen the fluid motion at the
screen is normal t¢ theasurface,fso that the tangential derivative
of . m - vanishes; this means that P,  is constant on the screen, and

| we may . choose this constant value to be zero. It wi’l be convenient

to consider the velocity potential as composed of the incident. fleld.'
plus a scattered field: : _

lPT LPL LPS

- and the two above cases are thus characterlzed by the boundary con- |

ditions: 5 - 7 _
| ,ﬁé=';jl on S (rigid screen),’
Dy DY - | .
L% - @L omS§ . ("soft" screen),

in Wthh the y-derlvatlve is used because S is on the x-axis.-
Together with the wave equatlon, these boundary condi-
tions, being valid on part of the x-axis, and being the same when
the screen is approached from different sides, impose on ¢ . the
" condition that it be antisymmetrical in y for a rigid .screen and
. symmetrical for a soft screen. For a rigid screen, this is illus-
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, o |

trated_byroonsiderihé ﬁhe'incident wave
| o (5),
| 9, (% DERERN |
N of which .the. y—derlvative vanishes on the screen, so that .the. boun-
dary conditions are automatically satisfled This means that the i
screen causes no dlsturbance, or, ‘since the probiem is llnear, and
“the dlfferentlal equatlon is symmetrlcal 1n Ys
| B, (cig)+ 95 (x,-4) =0 | | .
whlch is the relatlon of antlsymmetry° The symmetry of qg for a soft
.screen is proved analovously by using the difference instead of the
sum in (5). Since it is required that g, and 2% pe continuous
everywhere outs1de S, these symmetry relations ;m%ly the further

boundary ¢onditionss - . - S _ J

|
l
|

5 =0 .' .on 8! ,_‘ (ri gld snreen),
_2.0 on 8" _ . {soft soreen)‘o
"Dg - : :

‘Now first the case of a rlgld strip for which S is the
1nterval|:x|<1 will be considered. The boundary conditions are:

Y. DY, : ' Sy

'.:%= _Jl for %=Ot_,Lx|<l, ’
¢ Y | o

425‘05r - for %,o,_{|x|>1,- 1

Hex+ to these boundary conditions on the x-axis, c0nd1—
tions- must be imposed at infinlty in order to ellmlnate certain phy-
sically unde51red solutions, Since S is bounded, i% is natural to
conclude tnat the scattered wave 9 will behave at large dlstanGES
from the- origin like a cyllndrlcal wave expandlng from the origin,

| .apart from a dlrectlonal factor. We therefore dlgress for a moment

to cons1der suoh waves due to a. 11ne source at the orlgln°
. Gyllndrlcal waves due to a line source at the orlg;n,

‘are given by a solution of the ‘wave equation, singular at the orlgln,

'dependent only cn the distance. [ from the origin, and representlng

an expandrng wave motion. The flrst Hankel function of zerc order and,

w1th argumenf kr, ;, viz. H “)(k ) 9 possesses +these properties, béing

a solutlon of Bessel”s equatlon and behaV1ng like RN

—-&q.r
in the origin and like
: 2 X Lk}‘o . : .
e ‘ S ‘
nLkr ' I
at 1nf1n1ty° Other solutlons, dlfferlng from this one in their be=-
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haviour at infinity, are

. ‘Yo k)~ /2 2 sin (kr-o__
' Ttkr'o

whiohdrepresents standing waves, .and -

Rk~ \ [ e ¥
- Vikn,

‘which represents 1ncom1ng waves, Allowing Im k>o as mentioned in o
(1.1.1), H()(kr) is the only one of the above solutions which re-
'mains finite for large r, . o R

Returning therefore to the wave scattered*from-the‘
strip S, weé shall, following Baker and Copson (1950), initially con-
-sider Im k>0 and impose the condition that. [ ,'together with its
first partial derlvatlves, be bounded, unlformly for all directions,
as r, tends to infinity. This is a s1mp11fied formulatlon of Som-
merfeld's radiation condition. '

Due to the sharp edges of the obstacle, it is found to'
' be'necessary to ensure uniqueness of the solution by imposing some
condition of integrability, which may be derived from energy consi-
‘derations. The sharp-edge is a branch'point of the solution, and,
as noticed.by Bouwkamp (1946, .1954), further solutionsrmay be  cb-
-.tained:by differentiation of a given solution, thus increasing,the,
| order of the singularity at the edge.'Meixner.(1949) has pcinted out

that the order of the singularity is restricted physically by the'

| reasonable condition that the space- energy should be finite. in any
finite region of space, including the vicinity of the edge, i.e. that
the perturbatlon fluid velocity grad qg be quadratlcallyvlntegra—
ble everywhere in gpace, Thig implies that s must bée finite every-
where outside the screen, since an unbounded term in the development
} of-q% at a point would make (grad. g )2 non-integrable. We shall
call this the edge condition, since praotlcally it is eritical only
at the edge of the screen. '
' No strict uniqueness proof seems to have been given for
':thls two-dimengional problem for real k. However, the above condl- '
gtlons are generally believed to determine uniquely the solutlon of
the problemg and we shall therefore adhere to this view in the se- .
quel. (See also (2:1.1) ). ' . »
_  Next con81der the case of a soft screen complementary
~to- the prev1ous one, v1z. an infinite. plane screen on the. x-axis,
w1th a slit S°' on1x1<| o It w1ll be assumed that the 1n01dent fleld
‘orlglnates entlrely in the negatlve half-space (%<o) Slnce the
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|
screen is now infinite, the. c’onditio'ns at infinity for y . are;more
difficult to formulate than in the previous case. We therefore‘rather
use-a different decomposition of o, , suzgested by comparlng the pro-
blem with the case where the slit is absent. Por a soft screen w1th-
out slit the field given by the method of images, is:

g ()= iP-L(x,lg,)-LP-L(x,-%) ~ for y<o-

in accordance with the boundary cond:.tlcn 9= =0 on the screen. The '

vproblem with slit W111 be con31dered as a perturbatlon of ‘the one -

without it, ‘thus ' _ ' i

_ _ "pl‘(Ps=LPT’-‘_‘LP°‘_:LP1 . ‘ » o ‘ _

so that =~ = e L

Qs [0 -9 (x-¢) - for y<o,
"Ps'- (xx‘d')' LPL (xi L}) o : for %>O ’

‘for which

= , _ fcr td, §O.
, DY. D 2y =] '
Thusy the properties of LPs of ¢ ontlnurty in the slit S' and m‘."l sym-

metry apply also to I.P1 o : l
. Keeping in mind that the boundary ccndltlons for Lp are
1n thls cases '

.-_%%_ for y-:o, [E RS K | ' '_
9= 59&. for  y=0%,lx|>|, .

‘we .obtain for 9, the boundary cond1t10n5° | .
' Hd?‘ﬂ for %:Ot,lx[<'l‘, S ' ‘
R 2 . | | . o |
@g=0  for (}:Ot,‘lxl)l, - : - | o
Since . Lp1 is a perturbation due to a slit with. projection
on the x,y-plane finitely situated, the consideratlons on the. beha- '
viour at infinity for the function. LPS »in the case of a strlp, also
hold here, i.e. @ also satisfies the ‘radiation condltlon. Further,
of course, the edge condition also applles., j
- Evidently therefore, the two ‘halves of the function | 191
symmetrlcal in y, are, with adjustment of sign, 1dentlca1 with the
a.ntlsymmetrlcal function. Lps of the previous problem, This. statement

is a. spec:.al case . of Babmet"s prlnc:Lple, which states: that two
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plane screen diffraction problems in which the screens are comple-
mentary, one being rigid and the other soft, may be described by the
same functions.

In the sequel the boundary wvalue problem connected with
the two cases outlined above;, viz. the cases of a rigid strip or of
a complementary soft screen with slit, will be treated. An alterna-
tive pair, also equivalent by Babinet's principle, would be a soft
strip and a complementary rigid screen with slit. Then the problem
is the same as ours , but with the roles of the function and its y-
derivative reversed.

Summing up, the probiem before us is to flnd a function

¢ with the following properties:

1o (A+k) =0 excepting on L&;O, jx)<|

2, PP i) for Y0t [xl<1 ..
oY ik

3, P=0 for g:o,lx1>L

4. p satisfies the radiation condition

2. ¢ satisfies the edge condition.

The factor-%%. in condition 2 is written for later convenience. The
conditions 4 and 5 imply that ¢ is bounded when both the real and
imaginary parts of k are positive.

This problem can be treated analytically by introducing
elliptic coordinates,; which separates the wave equation, and deve-
loping.the. solution in terms of characteristic functions, in.this
case Mathieu functions. This method was followed by Sieger (1908)
and Strutt (19%1) and numerical results were computed by Morse and
Rubinstein (1938). Later Skavlem (1951) independently solved the
problem by a similar method, also presenting numerical values.

In the present treatise, however, interest will be fo-
cussed solely on the domain of large k (high frequencies), for which
the characteristic function method is impracticable, due to slow
convergence of the series and the difficult nature of the functions
involved.

1.2. The transmlssion cross section.

In the dlffractlon problem of an 1nf1n1te plane screen’
with slit, the energy transfer through the slit, more specially for
the case of a plane incident wave, is of physical interest. The
transmlss1on cross section is defined as the ratio of the time mean

f the power transmitted through a certain height of the slit, ex-~
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pressed as power per unit area, to that which falls on the slit per
unit area normal to the direction of the incident wave.
The power AW transmitted at a given moment through an

area df is
dw= (Re p) (Re 'Un) df ' (1)

in which v, is the magnitude of the fluid velocity normal to df,
and p should strictly be the total pressure, but may be taken to
be the perturbation pressure, since the time mean of the transmit-
ted power corresponding to a constant pressure, is zero.

By an obvious modification, eq. (2) of (1.1.1) may be

written 5
X
- = I 2
- | (2),
in which p is the perturbation pressure. Further
X
V= —
2 on
where o~ denotes differentiation normal to df. The real parts of p

and v, are needed.in (1), thus:

(Re -p) (Re 17.,‘) ==$, (Re —_ ( Re -i)
ot on
1 oX DX DX DX X DX
=-—Cy{— " — + —+ — + 2Re|— + —
4 ‘D{: on Dt Dn Tt Dn

S, {-ch p — +ikc P o +2 Re(kc «p__. ﬂkd)}

-

-

i N [N

on on omn

in which a bar over a number denotes the complex conjugate value.
The time mean of the last term :is zero (taken over a period, or over
a large interval). Thus, substijlzlion in (1) and integration over the
whole area considered, yields

el chqo// (tpa-'@ K) df .

The power transmitted through the slit per unit area is therefore

':ln.kc(’ ( ___" _lp.>d | V (3)
8 / ? ? dn ’

in which the path of integration lies in the shadow half-plane Y20
and connects the two edges of the slit, or, more generally, .con-
nects the two halves of the screen; since .0 on the screen itself.
Application of Green's theorem makes evident that W is independent
of the special path of integration which is chosen.
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o , If-weﬁconsider,the plane incident wave with angle of
incidence o 3 o ' : ’ :
} oi.k(:c'si.n e‘+ y cos O') )

I

Y
and 1ntegrate over the p031t10n of the slit, %%r‘becomes?g—', and

8 W /(Zchose)dx.:-AchosG

ch?o -1 ,
Thus the transmission cross section is o o
w' 1 = D VAW ' -
a~(e‘)=; /(n.p 2% p _@_ ds . (4)
' s 0 4ik - o on : )

for g slit of w1dth 2 and a plane wave w1th direction of 1n01dencee
A more convenient expre351on for” G(Q) may be found by ,

use of. Green's function of the first: ‘kind for the half— pace%

To find this, the following lemma, which is Weber S two—dlmen51onal

analogue of the theorem of: Helmholtz, will be used: o
I‘&Jp eatlsfles the two—dimensional wave equatlon

| (8+K) -0 ,
and has contlnuous partial derlvatives of flrst and second order

within and on a sufficiently smooth closed curve ' ; then for every
p01nt (x,y) within.r , holds ' '

2 2 o
t?(x%)-—/ 0 2H @2 ) fas 5,

. < r on on
where — denotes dlfferentlatlon along the outward normal to M,

-on
and r the distance from (x,y) to the element of integrat:.on° For

‘a p01nt outgide. . I" the integral is ZETOo,
This can. be proved for an internal p01nt (x,y) by apply-
ing.Greenfs theorem

S (oa - vag)de dy /(q;a-o 2¢) ds

g to the region.bounded. by.. r and. a clrcle X .of. radrms e. around
' (x,y), and.choosing . |

W e O G
‘The surface 1ntegralmlsmthenmzero,‘eo.that

(15 | I ) S5p O
/ xp_ Hm(k)- —* H, " (kr) ds:/ Y — Ho (kr)- _EHO (kw) t ds -
, r on oh : - or or '
‘and" since the left-hand member is independent of £ , we may lete—0
in the right-hand. s1de° Noting that the Hankel functlon and its de-

rlvatlve behave like ._.fo% € "and 32 .:respectlvely a+ the p01nt
e .
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When (x,y) is an external p01nt Grnen s theorem. may be
applled at once to the whole domaa.n inside r , since no singu.lari-—
ties of the integrand occur in this domain, This yields.the value ze-
{ ro for the line integral, as requlred and ‘the lemma .is. proved

The above result can now be applied to obtain. Green 8
functions for the half space y»o » for the. function. ¢ :with. no sin=
gularities in 405 and satlsfylng ‘the radiatlon condition at. 1nf1—'
nity. - o ‘
_ “Let be the ’ooundary of the semibcircle q>o 9 R<| a
" in which f‘;'-" - are: running coordlnates in the .x,y plane, so that
V(x BY + (y- Q)ﬂ and &.RsinOn-Rcos® . . Then (5) gives

pe Lp=— b { ¢ H“’(k)»» Oyl ae :
i 3 . on 'Dl'!_ _ 71.0'4- » : |
+_ / 2 (kr)- —lp H (kr) odo.

DR

Raa

: The contribution of the curvea part vanlshe° When a. oo 4, 8ince, by
- the radiation condltlon, ¢ and Lg are uniformly bounded. for Im k>O
while both H® () and H“) ()= - kHP (@) are of exponentially

vanishing order. Further,

2 Ho(ﬂ(k):- R4 Hw(kr) _' ' o _ ‘

‘ o oY . S - A
so that finally, maklng Q. > oo ,‘ we have ' ' :

W, . ™D 1) .
LP(x%)-— / {w—H ()« 2P Ww| as

: 4L feo | DY - ‘Drl N=0+ ‘
Aga:Ln, for. LJ<O the line 1ntegra1 is zero, 's0 that replacing y by =¥

(6).

Q
)

.00 ~, |
0-t [ 1w 2wl 20| ay
. 4l Jeo —o.)i# o ‘DQ ‘ N=0%. :
‘ Subtract:.on and addltlon now yield the required results, viz.

-“P(""&)?:—__L‘P("‘s'm) <kM)d§ o 'il(j)'
Lp(x %)-_ /°° "O‘-P(E 0+) (1) <km> d«? : l:l _ (8),

Al Joo
T

demonstrating Green'.s fu.nct:._-o_na of 'tne first and second .k'ind for! the'
~ half-space. y>0 . S L R S L

' If ¢ satisfies cendition 3 of (1.1.2), viz.

L,\p:fo - for Y4=0, 1x)> 1

’ . |
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-exbressjfon (7) becomes . R ’ S '
1 ° O [ 7 2) 4w :
P (x, e — / ¢ (8,04) — H <kv (x-8) + l&)- dg (9)
.. a2y ."ola,' A N - .
' This 'equation will now be used to simplify the expression
for the transmlssmn cross section, and we begin by determining the

| behaviour: of LP at great distances from the orlgin. With x.r, sin O o,
Y=rocos © , (9) becomes: |

B

=_kr°:fse/¢(§m)u ( Vm> \[1__5Ln9+__
i

o kcc:@/q’(go) V: Lk(r\[?na)

en.kre K s 0. /'-P (E, O+)e-|.k§sm6 d-?

' \/" 2L 1 | . ,
Co ' ; . L - : (10')9,

for large r, , by developlng under the s:.gn of 1ntegratlon. ' )
Thus ¢ does in fact behave like an expand:.ng cyllndrl—

-cal wave with a directional factor, as was anticipated in (1.1.2). |
Defining the amplitude A (0) as the coefficient of e*™ iy the de-

velopment of:p for large .5 (10) yields - V”T '

A (6)= V— cosQ /np(go)e“kes‘“e dE - '(11)'

. _ Returnlng now ‘bo eq. (4), choos:Lng the path of integration
‘directly over the slit, and noting that ¢ satisfies there the boun-

dary condition

.1¢-_1&5=Lkws‘~et o tkxsin® - pop $=0+, I1xI<] ,
cr-(@): 1 ik cos 9:./ [-P (x,00) e Llrxslna_l_'?(x’o)e-ukx sin © de
A o
-tkx sin @' | | e
2:056 .Re/lp(x0+)e ‘ dx - - | (12),

so that, from (11),- o L
o (@)-re |[SEAE) L)

This result is due to Lev1ne and Schvunger (1948).
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A more direct but less convenient simplificapion of (4)
 is obtained if wé choose a semi-circle R:-a, Y > as path of 1nte- '
‘gration and make a-»oo, using the asymptotlc property of whlch 1s
expressed by (10) and (11): B _ i B

e ikn,

Nr'c“
™
2

o-(_e)-— 4 ( z_z) edo

P~ AG) for large o | ' (14)

Thus (4) becomes

-3 | _ ]

;iﬂazk/ A(®) A@) de -
4ik o .

ﬁm

1 [ 1a@1 de

;(15).,

»)

sibie flow, : ; ;.
It will now be demonstrated that the problem of 1ndlng
the air forces on a v1brat1ng airfoil in subsonic, compre331b1e flow,
is to a large extent equlvalent to the above diffraction problem,
' We consider a compre351ble fluid medium, w1th the coor-
dinate system Xgy Yp1Zo. » 26 rest W1th respect to the medium° A +wo».
dlmen51onal airfoil 1n the form of a flat plete 51tuated "approxi—
- mately"™ on part of the x,-axis, with edges parallel, to the z, —axis,
moves with constant velocity V 1n the dlrectlon ‘of the negatrve
'X,-axis, such that the Mach number M. Y <1 « Purther the air-
foil executes small oscillations, independent of Z, » but. Otherﬁise_
arbitrarily prescribed. We thus agaln have a .problem. w1tn only two .
" space dimens1ons X, and y, . |

_ _ ~ Both the- veloclty potentlal X and .the acceleratlon PO~
tential x , defined by = o .

o x 2% R | . § B (1)9

ot
where t, is the tlme, satisfy the wave equation, 31nce the 0801113—

tions are. assumed spall, If elther a Galileo transformatlon

. ' | |
1.3. The aerodvnamlcs of a v1brat1ng airfoil in a subsonlo, compres-

i

X'= Xy Vi, , Y = % ot =t o o »p_v f?) .

or a Lorentz transformatlon (w1th'scale factor'a)

'_a.[éx-x +Vi: 01 &Y= ‘d’ ,aP{:=_x+.{ ) | (3)

in whlch!; V1-M2 .1.V’ v+ , is applied, the forward mot...on of the air-
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foil is reduced to rest, while with the Lorentz transformation also
the wave equation remains invariant. : B
Since the oscillations are small, the boundary yalues on
the airfoil will be interpreted as given exactly on the x-axis. If
the width of the airfoil is called 2¢, its position in the Lorentz
coordinates may be taken as y=o,ixli< :§- . Evidently it will be
convenient to choose the scale factor a so as to have the alrf011,
and therefore the boundary conditlons, on the 1ntervallxl<l s Viz.

| | azl |
so that (3) becomes ¥ - |
Lx=x, +Vt°, S Yo s &':C"‘ x, ++_ (3a).
We assume the os0111at10n to be harmonlc and write
X. LP i | (4),
~ in which Lﬁ..ismindependent of ‘t'. Solving (%) and (3a) in the form
x's dx,¢'=4 Sy t':--"&—vi- X+ — t o (5)s
(4) may be written as pc ,P' , ,
L\)-EVx - V22 . o _ (6)
x LP e ﬁxcz Pﬂ . . ) : \ ¥/

while. ‘P is seen to be independent not only of t' ‘but also of t.
ertlng ' ’

L
_ ke — (7)
and - ﬁc. .
WEVe
- l.P: kP e ch-
. Lk-%x ' _
=ye ' o ' (8)7
(6) becomesj ' | - -
Xz LP -iket ' . (9)

with. .. 1ndependent of t; so that satlsfles Helmholtz' s wéve
equatlon '

- .(A+"<*)t9=0, S (10)
which is condition 1 of section (1.1.2), B o

Next .we consider the boundary values.ofvxp , and._inves-

tigate which other conditions..of. (1.1.2) apply. The boundary condi-
tion.is. furnlshed by notlng that.the fluid . particles may. not pene-
trate the airfoil, so that the prescrlbed oscillation. determlnes the
vertlcal velocity component of. the. adaacent fluid. U51ng for the ve-
locity .potential a similar notation. as above for the acceleratlon '
potentlal we thus have o '

32--ur(x) for'%;ot;lxﬂ<{ ,

'-a%
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wvhere the oscillation of the alrf011 is described by 1ts (small)
deV1atlon in the y'-direction, viz.

| L ,
. , ‘w(x,) ~LI¢! . | . ; (11)
- Therefore, as in (8), and using (5), ‘ ' b
| | E—w(!z)e‘-ikix for y=0t, ixic| - (12),
S g 4 . . -
R = W (2 '
o _by which W(x) is deflned Using . (9)9 (1) and (3&), ve obtain |
‘; !
-iket _ oX, &
LPe =X ot i
| s Y BX 12X i
_ f ox 4 ot '
. - {
o o V?_...ch.(b tke
, _{( ox ) ! (13)
Therefore, from (12) the boundary condltion for Y may be wrltten as
E"_%w ()-L’E W (x>, for y=of, ixi<l | ' (14),
'Old, ' o

- which can | be expressed in terms of1u(x ) by use of (i2) viz,

2 Lkv tke . LkV ‘ O
.:"i—%f Var @)+ 4> An)te |

e ver (2 - ““—"‘w (4.:)}&“%-" o
. o t (15).
Again (14) may be'written as | L
2.1t e, for yeof ,ixi<l , (18),
oY ik - _ : : :
as in condltlon 2 of (1.1.2). 1
- By eq. (2) of (1.2) we have (in adgusted notation) i‘

2 31(- x (17).

Thls means that, since the pressare is to be continuous everywhere
outside the airfoil, the same applles to the acceleration potentlal
Slnce again . q is antisymmetrlcal in y, thls means that P also
satisfies condition 3 of (1 1.2) |
ObV1ous1y the radiation condition is also satlsfled,,so
that the validity of only condltlon 5, the edge condltlon, is still
_ to be investigated. Sufflce to remark that at the tralllng edge,'ﬂ
viz. y—O Xx=-1, in general a- quadratlcally 1ntegrable singularity
occurs. The occurrence of a singularity at this edge is made plau51-
ble by remarking that a p01nt of stagnatlon with respect to the|a1r-
- foil occurs there, so that the perturbatlons are no longer small,
ﬂmas required by 1inearlzed theoryo‘

: Y viz, y—O x-1, the Kutta condition may be 1mposed which zequlres
that p and therefore w be flnlue° whereas at the leadlng edge
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Thus..\yp satisfies conditions 1 to 4 of (1% 1.2), together
W1th a modification of 5, allowing a singularity at ‘the leadlng edge.
Thus...@ may be decomposed into two parts= , _ ‘
- $= ‘P + Q ' ' - ’ (18)
such that 'tp" , the "regular" part, satisfies a11 the conditions 1
to 5 of (1.1.2), whereas LP ’ the "singular" part, satisfies these
condltlons with 2 replaced by ' -

_'DLS_ o = for y=of , ixii,

and 5 modified to allow the leading edge singularity.

When y 1is known, the pressure distribution and there-—

- fore the air forces on the airfoil resulting from the vibration,

may be calculated. The pressure jump across the airfoil (downward
thrust pos1t1ve) is, using (17), (4) and (8): ‘

2p (=, o+ t)_—2§'°x(x O+, t)
= -2Q, o' (x,0+)e
=’_2?° LP (xlo+)e

- 1Mk ~ivt’

‘Thefef.or.e the total (complex) downward force F on unit length of
the airfoil is .

-t / t.p(ac'.,o+)¢-,=_-"LMkac dx'
1 .

K=~2§>° e

. =-2Q, 1 /Lp(:c o+)e kX e ] , |
=1 _ . -(19)9
from. (5), a result which is in direct analogy to the expression
(12) of (1.2) for g (68") . The moment about the midpoint (trailing
edge downward) is | o o
| —-2%21 ""‘)Er/:lxl.p(x ot e -iMRx e (20)..
A rigid airfoil may 1execute translatlonal and torsmnal
oscillations, for which the function w(x') in (11): becomes '
w(x)=A (translation) (21)

: Car (x") = Bx' (torsion)-
respectively. These two types of vibration may be characterized by

d1menslon1ess aerodynamic derivatives, introduced as follows:
o ke Ve ™ Ak BR, ] | (22,
‘maeme, Ve [Am, +Bm, |
The above aerodynam1c problem has ‘been solved analytical-
ly by Timman (1946), and a numerical computation of the aerodynamic
_derivatives was given by Timman, Van de Vooren and Greijdanus (1951
and 1954). In the domain of large k, Timman (1951) applied the Kirch-
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"hoff method to obtain a first approxlmatlon to the air forces, and
‘the method of the present treatise may be used to approach the" asymp—
totic behaviour more closely. _ :
The.method presented here yields an asymptotic solution
for large k, and it is'therefore of interest to take note of the
physical meaning of k. By (7), k is.proportional to the frequency
gvHowever, it is customary in this field rather to use the»reduc—

2T ,
~ed frequency w s wWhich is a non—dimenslonal parameter defined. by
and k may ‘therefore be wr1tten, using (7) ard (23), as :
k V Moo i ) ,
o o M . - (24),

From this it is seen that k. is large for high frequencles and also
for small ‘3 9 i.e. for nearosonwc speeds, so that not only does
‘the present theory yield results for oscillations at high reduced
frequency, but it also gives results in linear theory for oscilla~
tions of moderate frequency at high subsonic (near-sonic) speeéds,
though, as is well knOwn, the linearization becomes rather question—
able in this region.
The method of obtalnlng the "regular" part. " of uhe so-

lution will be given in the sequel For the "eingular" part w
" use is made of the Green s function obtained for the regular solutlonp
" The method,-whlch is due to Timman {1954), Wlll now be briefly sketchy
ed. | -
Let the regular solution be written in the form

- P / '?‘Pcfi‘,’)e(x.q %,0) d¥ | (25)

Then the Green's functlon G(x,y; 2, ' M ) with parameters E and "l
sat1sfles. ,

. (a+k?) Gso0
Do for y-of. . Ixi<] 0 (26);
D%- : ‘é-—. -y 1 . 9
G =0 for . y-o0 , Ixi>| L

plus radiatlon condition and edge cond1t10n9 while further G is
symmetrical in (x,y) and (é’,q ) and possesses a logarithmic
singularity where. (x,y) = (&,n ). Therefore the function G with
(§';Q ) = (-1,0), satisfies all conditions imposed on p* , except-
ing that the slngularlty should be of the nature of a branch point.
The nature of the slngularlty may be changed by dlfferentlatlon
'w1th respect toﬁ? G then still satisfies the d1fferent1a1 equa-
tion and boundary values, but the slngularity -becomes of order
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minus one, which is st1ll not what is required. To set this right,
a new coordinate x, is introduced by '

—1+_x1' ' fOI‘ x>t
X= 4 4 ’
__1__1_1-% for x(-'\ f
. 4
or, inversely ,
: ' ‘ 2\[ < for x»>-1
{ B X4= L aV-1- x  for x<-1 ’
so that '
0 \["“"b
LA M4l =
: . 'O!:‘ ToxX .
and 31m1larly g is defined in terms of . 8 , so that

I1+§ E ' (27).
If, now, G is d1fferent1ated with respect to B, instead of B _,
and (rﬁ',_q ) made equal to (-1,0), all conditions prove to be
satisfied by the-result, which may be written as

| $_'f‘“: 3_ G(x,Y4; 8,00 = ?1G(x,l.4,-1 ,0) . . (28).
Since, however, this problem is homogeneous, the solution st1ll
contains an undeterm1ned factor, wh1ch must be determined separate-
ly. : : '
Therefore..y.may be written, taklng regard of (14),

(18), (25) and (28), as
¢ g)= / w (g)-if W(E)]G(x Y z;s,o)d§+ °‘°"_;°§ G(x,4; -1, o) | (29),
-1

1nmwh1ch g 1s st1ll unknown° This formula will first be 31mp11-
f1ed before attempting to determlne x, . We 1ntroduce the function

. " = /W(s)acxg §oydE (30);
which, by (25),. satisfies the boundary condition (12) 1mposed on
d . ‘With this notation, (29) may be written as :

¢ )=y /W‘u;)ecx, g0y e ¢ i P Fraugs-ned  (31).
Further, argu1ng formally, it might be exPected that the first

term of the right-hand side is equal to % -a@ .- This is, how-
N : °ox '

ever; not the case, since differentiation increases the order of
the singularities at the two edges, and in view of this and the
propert1es of (28) it is natural to write

fW (86 (r,y; 8,0V B -ty — ? oIS 10)/(42—?6(::,:4, w0 (32)
in wh1ch_/u.1 and. kg aTe constan%s, andvéﬂ is defined 1n analogy
with- (27), so that S

- ? o - (33)
Evidently both sides of’ ?%2) satlsfygthe differential equat1on (10)
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and have y-derivative equal to W'(x) on the airfoil. The relation

(32) is.in fact proved by Timman (1954) by making use of the known
Green's function for k=0; and of the property of similar behaviour
of solutions of the wave equation and,Laplece's equation at sih-
- gular points. The condition that the singularities at the two edge

points should be the same on the left- and right-hand side of . (32),
determines the two coefficients, viz.

py=- T /W(é)——e(n 0;8,0)dE
'/.L_ 'n:/W(e)_s_.q(‘lo E,o)dg'

»uth:o?2 defined as in (33). Therefore (31) may now be written, as

®

LP(JC,L& s% ‘?D_i_ ike (I) (x,%)J-'E ety _G(:c $; - 1o)+/u.2} —E & (x,y; 1,0) . (35)

The above formulae for ¢ are not sufficient to deter-

mine o¢, , since the physical condition is a pres_crlbed ‘normal ve-
locity on the airfoil, whereas ¢ , which is a (Lorentz) accele-
ration potential, defines the velocity only up to a constant of
"integratlon. Therefore we make use of the relation (13) between

- the Lorentz acceleratlon and velocity potentials, which, may be

interpreted as an ordinary, linear, first order differential .equa-—'

tion in ¢ with s‘oluti:on
’ x L}tc

(e~ .
P ex, %)=_ /e v g eyt - (36),
~ in which § is assumed to be zero atx=-oco . Substltution of (35)
in (36), and partlal integration of the first term, yields

ke
dxp= ¥+ /e il <

dx’ (oz-l-/u..,) —_ G(r‘d., 1o)/u.2 _? Ga(xy; 1,0) (37)
Since 3‘1’ and ‘_':‘I’ both satisfy (12)9 the derivative with respect

to y of the 1ntegral in (37) tends to zero for vanlshlng Yy 1den—
tically for all x W1th 1xi<l , i.e.

lum. ‘D

ke 0
# dx — 5=1,0)+ 6(e'y; 10)(38)
or _%Ll_“ {(o:,,un aC<", ¢ )/"‘2% 'y )}
in which -1 is substltuted as upper lJ.mJ.t of integration since 'the
y-derivative of the 1ntegrand vanishes for vanishing y and 1" <
Therefore flnally I ‘

focf-/#;‘-/d.z Re. ‘ , - (39)
in which . : Ry : , | -
. 12 =1 _%Lk,C'x' B '_' . ‘ . ‘ : O
Re= [_o% -o/oe K _Fé_q(x,g,q,o) dx ]q_:o*_.‘ N (40)
° /7 -ik\‘/:"c' © ac ' 1o)d_3c' (41).
] — . IR —_| .x, ; f B b ] e
Rz . [’Old. -4 © -a$2 %— ] =0+ | )

E‘ndently the differentlation in (40) may not be performed under

(34):
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the sign of integration; since the 31ngu1ar1ty at the upper limit
then becomes non-lntegrable, the evaluation can, however, be done
by taking the "finite part" of the divergent integral thus form-
ed, as defined by Hadamard_(1932)..We shall later return %o this
mattern : '

T, 4 Relationship with electromagnetlc diffraction. .. . . .

Since the diffraction theory for high frequnncy elec-.
tro-magnetic waves approaching optical frequencies; is assuming
anwincreasing importance, it is of interest to point out that the
scalar theory discussed here, is directly applicable to electro-

magnetic. problems. . . _

' An electro-magnetic. field in free space 1is described
by Maxwell's equations for the-electric and magnetic vectors E
and H, viz. (using "rational" Gaussian units):

cwl E=-+28 dw y-o
c ot

corl He 1 PE40E  div Ez0 ,
¢ Dt &

where .c is the velocity of light and ¢ the conductlvrl:yo
Let the time dependence be given by
|  E- OL-L\:CE,H _&-Llrcl: , | |
in Whlch the vector components are regarded as glven by complex
numbers, the real parts of which are to be taken eventually for
physical application. Then Maxwell's equatlons become
el do=tk 4 : , (1),
. w4 (tk-i-“')d- , ' (2).
Both 4 .dand h satisfy the Helmholtz wave equation, as -
is seen by eliminating either from the above equations, e.g.

J

ik (—Lk-i-%-)d. = cr ecurd d
= gmol d.l.'l? d. Agd .
= "As d-
i..e.(As+k’“ ‘_IZE d . =0.

Eaéh cartesian component oflg_and h therefore satisfiés'Helmholtz’s
(scalar) wave equation. | B | | k

In two-dlmen31onal electromagnetlc problems, the gene-
ral d1ff10ul+1es of vector solutlons do not appear, since a two-
dimensional field may be written as the sum of two plare polarized
disturbances: | o ' '

ded,+ "K‘Pli-‘&z,
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where disdeivdyf, =k | g

represents a Wave polarlzed parallel to the z—axls,'whlle

_ dysdy k, R,4R, L+%. },
is polarlzed perpendlcular to the z—axlso _
This separation is significant because the two compo—
nent disturbances individually satisfy Maxwell's equatlons, due |
to the fact that all derivatives with respect to z vanish.
-Further, from a knowledge of 4, , the whole of the .
first wave is determlned by (2), and similarly, using (1), the se-
cond wave follows from a knowledge of d , 80 that the whole’ two—
dimensional field is determined when d and h are given. All in-

terest may thus be focussed on these two components, both of whlch

- satisfy Helmholtz's wave equation, : ‘

- Again the case in WthhO**O; may be interpreted as\a
limiting form of the equation (a+K') ¢=0 for real k, reached
through complex k with positive values of Im k. Evidently this
passage to the limit is more natural here than in the acoustical
case, ‘ o

, The same form of plane- screen is considered as prevJous—
1y. The boundary conditions may be cbtained by assuming that the
screen is a perfect conductor, Wthh 1mp11es that the electrical
vector is normal tc the surface, i.e. that its tangentlal compo—
nents vanish. '

For the wavecil,-ﬂ polarized parallel to the edge of
the screen, the condition on the screen is -
dp=0 . | |
but; since hz determines the whole field,; we write this, using
cur{.{ls(ik-+~%) d,as
' . 28,
: ) —%.0
For the wave dy s %z ’ polarized p%rpendlcular to the edge, the
condition is simply . : : - |
, dy=0 . - . : B
on the screen, | | :
Thus the same type of boundary condltlons occur as pre—
v1ous1y, with softness or rigidity of the screen in the acoustlcal
case corresponding respectively to polarlzatlon perpendlcular or .
parallel to the edge in the eleotromagnetlc case, : ; ‘
Also the radiation condition continues to hold for the ?

perturbation quantltles, and further an approprlate form of the.
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- and this is equal to

edge condition must be applied. The gpace energy is half the sum
of the squares of the electric and magnetic ‘real field strengths,

and the edge condition thereforerrequires*both'@'and h to be qua-

dratically integrable. Since from.d4, or h = the rest of the field
is obtained by using (1) or (2), i.e. by differentiation,; the con-

' dition for 4 ‘or h takes the same form as for the acoustical ve-
locity potentlal ‘

, The general two-dlmen81onal electromagnetlc problem for
a perfectly conductlng screen is therefore fully -equivalent to the
scalar acousticdl theories”for rigid and soft screens. |
Finally, it appears that also the electromagnetlc trans-
mission cross section can be calculated as 1n the acoustical case.
The flow of energy per unlt area per unlt tlme is glven by Poyn-

ting's vector .
c..Re _E_x‘ Re H,

- cRe(Ex H+ExH)
. =C Re(dxi.)q- C§e(dx"&e—ukg£>

]

. of whlch the last term glves a zero time mean, Therefore, u81ng

Maxwell’s equations (1) and (2), the energy vector is o
cRe(d.x-&) Re(——d.xcur{ cL) ' (3)s

| -Re(-—-ﬁ xCUhf'A.) - - (4).
For polarlzatlon in the (x,y) plane, d has only a z-component, of

magnitude d and (3) yields

Re (-._d 'VoT)
in whlch v is the two-d1mens1onal gradlent operator, and this
can be written as ' "

(d. vd, dzvd.)

) The power transmltted through the sllt per unlt area is therefore

' 'Ddz
= /( ——-—.—dz _A ) ds 7
4|Lk

in analogy W1th eq. (3) of (1. 2), and ‘ag in. (4) of (t. 2),

w0 1 /(g ey ) as

- Using. (4) instead . of (3), the same. analysis applied to the case

of polarization parallel to the edge, with hz_replac;ng dzo.
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1.5.. Kirchhoff's theory. of dlffraction.w;H: :

" The classical: theory for: the treatment of dlffractlon
problems for the high frequeneles of optics, is that of Klrch-..‘ _
hoff (1891). Accounts of Kirchhoff's work are. given by Baker and -
Copson (1949) and by Sommerfeld in Prank-Mises (1930), and only
a brief sketch of the method and its deficiencies is given here. .

Kirchhoff's treatment d epends, for the two—d1mens1ona1
case, on Weber's formula (5) of (1.2). In order to discuss our
case of plane screen diffraction, the relevant formulae (6), (7)
and (8) of (1. 2), valid forys>o ; are reproduced here. for reference.

o 1 2 oy u) (1),
el / {tr 2z ck)}n_mdz | ;
tpcx,%)-—_{: 9 (%, 0+) 2 H"’ (Ve-» w)d? (!f?) |
7 op(g,0+) ) RO . _
eyl [ 208 HC* (o) e 3.

(2) “and (3), it is ev1dent that g is determlned in.a general
point if either 17 or_a% 1s given on the whole x-axis, so that

they may not be prescribed 1ndependent1y in (1). Klrchhoff's method
~consists in prescrlblng plauslble boundary values in (1) for both
p and .;%% ;- regardless of the inconsistency arising thus. Klrch-

hoff's theory was supposed'to be valid for a "black" screen and .
~he actually assumed that on the backside of the screen there was
-ne excitation, while on the free pért of the x-axis the incideﬁt'
wave was unaltered an assumption which is suggested by geometrlcal

optics. This means that both v and-ﬁgi are taken to be zero on
the screen, and equal to P andj:ﬁr elsewhere on the x-axis, but

of course the solution obtained by substituting these in (1) ?
cannot be expected to reproduce these boundary values. L

" In the sequel, however, not this original form of the
theory will be referred to, but & mg%}fled form obtained by us1ng

(3) ‘instead of (1) - In our- prpblem %i; is ‘given for Y= c7|xl<| .

On the rest of the x-axis,  is glven to be zero, “but if, in-
stead, 1t is assumed that not T but ¢~ is zero thers (3) becomes

"PK : )__./?‘P(an+> (1) (kV(x )-,.1,‘,)1? : . (4).

This functlon uk 9 whlch is expllcltly determlned and satlsfles
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the é'iven boundary condition fo,x_':‘.‘?—%‘g' but not for ¢ will be call-
ed "the" Kirchhoff approximafioh td our problem,:’

The expression (4) will now be employed to obtain an

approxn.mat 1on o' (o)

of (1 2), viz. .
G (o)

Re 'm“ A(o)
. 2k

/ 1A @) d.e

lll‘

The ampl:.tude is obtained from the value of P far
- from the orlgln’ -

to the transm1ss1on cross sectlon for a normél-
ly incident plane wave on a screen w1th sllt usnlg (13) and (15)

: Lk(r- -E sin 9)

- -'fow(g,o+)
‘PKN l_v. .[ on 1t1kr° , E
e 1 1 op(8,0) e-Lkﬁél'!ed'g |
= = = —_— !
Ve Wamik o on |
and since i A (TN for y=o0, Ix<i,

the amplitude of 9 18

1 .
ik -tkgstn O
A (0): —— . d
K( ) Vz‘]tl.k —{'e ¢

sin (k ain0)
k s-:n 2]

S\ [
Vi
Substltutlon in (5) yields

6 ()= Re\/“" \/_.:

which is identical with the result of geometrical optlcs, and gives

no evidence of diffraction effects.

For the sake of comparison with (8), it is interesting
also to substitute (7) into (6) instead of into (5), obtainlng

1
2 2 sin? (ksin 9) sinfkw  du -
. (0)= —— — d.es— L :
k ©) ,{n:k'o/ sint 6 | rk o ut Vi |
2 sm. kw 2° sind ku sinfku [ 1 q
2 == d“.+ r— -1 du'
_ n:k / ' / o/ wt (141.’ ) )
. _2 /"" sm.xku.d_ -t /- 1-cos£ku-d_u+1-/ 1-cos gku ‘»_ _'1) dw |
pury ) 1l e ol J
- : 4 .
' 2o s 2kw/ 1
e bt VAt A R A e Yl
k| 2 A\ 4 ut L e W 1-w "

(5,

(6).

(7).

(8)
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-1 | du

(e —
Ttk o u." V‘I-U?

in which U(u) is the unit step function. By the principle of sta-
tionary phase, the integral contributes to the asymptotic behaviour
for large k only near u=1, since also the lower limit does not

1 /"" cos 2k | W (1-w)

contribute, so that

1
du
™ (0) 1__1_ / cos 2ku

k w2 w0 ol

1 5Lh(1k+1r) .0 ( --5-)

2 okt (9).
Comparison of (9) with (8) shows that the error in the Kirchhoff
approximation is at least of the order ofk 3 , since both (5)

~ 4=

and (6) are exact.
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2.1.1, The formal transformation, .

-with

1'Chaoter.2w,;

THE METHOD OF SOLUTION..'

1. Iransformation.to a "tran31ent" problemog"hmuﬁ

In the present section we- 1ntend transformlng the boun-

dary value problem, formulated in chapter 1, to a "transient" _pro-

blem. The . original problem_has_the‘form”‘

op ”for g=ot, Ixl<t | (1)
oY ik . o | .
<0 o for =0 ,lxi>l

plus edge condition and radiation condltlono Using the result ( 4)“;'

1 of (1 2), the radiation condltlon, may. be expressed as

Lkr

A (8 for 1arge r=\[x?+ (12),
R L

- o .

o, -ikgsin @

A(@)\/— cos 6 wp(g,oge L§'i§“1a§
ami ) . '

~The. solutlon p 1is a’ functlon of x,y and k, and may be . .
regarded as analytlcally extended over the whole k-prane. From the
radiation condition (1a) it is seen that the half planes of pos1-'
tive and negative Re k- correspond respectlvely to incoming and out-

. Wy‘

| .going Waves, while Im k>0 implies p051t1ve damplng for 1ncom1ng )
’and negative damping for. outgoing waves, (Ev1dently, therefore, on-v
ly the first. quadrant . is. phys1ca11y signlficant though tp - .does -

possess hermltlan symmetry about the 1mag1nary k-axis viz. w( k) W(Q)
troT 7 since (1a) implies that, at least for large ko Q va-

_ nisheswexponentlally-for large pos1t1ve,Im ky we shallufor-conve-”
‘nience call the half plané Im k>0 ' the region of "damped"” values

of y , although. this designation is rather arbltrary in the llght
of the above phys1ca1 interpretation. - - :

' | As' was remarked in (1.1.2), no uniqueness proof is avail-
able for the problem when k is resl. Slnce,_however, we are treat-
ing the problem as & 11m1t1ng case for positive Im k tending to . .
zero, it is of 1nterest to know whether the solution is unigue 1np
th'-"damped" reglon and we shall now show that thls is in fac+ +he

case,
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If more than one solution exist , the difference function
satisfies all oonditions, but with fO=0 in (1), so that the. problem
- for the difference function is homogeneous, We now 1nvest1gate whe-
ther there are values of k (elgenvalues) with Imk>0 , for which the .
homogeneous problem has a non-zero solution, i.e, for whlch the in-
homogeneous problem is not uniquely solubleo_ ' ' .

o Suppose‘that k, and kz are two such values of k for which.
non-trivial solutions 9, and @, of the homogenecus problem.exist.
Then, since both Lp and L& satlsfy the- edge condltlon, Green s
" theorem may be applied to the seml-elrcular reglon o< Rl&>0 ’ and
yleldl, with: obvious notatlon,'s - S _

oY, : 1 (2):
[7@%A% %AWDdT /«1 %E—qi;;>d¢ D - (2).
- The. 11ne—1ntegral vanlshes for large R, viz. the part along the x-
axis for all R by.the boundary conditions, and the curved part for
‘large R by the radiation condition. The surfacenintegral is simpli-
fled by the differential equation in (1), so that (2) becomes

k-k)//%%d’to | SR . (3)

~Now, if k is an elgenvalue, S0 is- k ,'SO that .
'_k2="k1 [}

and fherefore

LP LP17

so that (3)- becomes

(- k)//lL?1l dt-0

ioeo ) ) ‘_1 tk 9.

which means that-Re kf=o ,- Bince welare considering only the half
plane Im k>0 » ' : o
‘ This proves that, unless p0351bly for purely 1mag1nary k,
the inhomogeneous_problem is uniquely soluble in the damped region.
It therefore ohly remains to show that the same is true on the posi-
tive 1mag1nary k-axis,. Let P, 'again'be the difference function be-
longlng with the value k of k. Then, applylng a different form of
Green s thecrem to the same region as above, 9, satisfies

e [0 20 . //{(“ﬂ) e chc L

- Again the line integral dlsappears for large R and (4) becomes |
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i et are //{(ﬂ%)ﬂ (22 }d o,

which means that ¢, vanishes identically, since k, is here assumed
to be purely imaginary, and therefore the uniqueness holds also in
this case, '

Since, therefore, our problem is uniquely soluble in the
half plane Im k>0 , Y possesses no singularities in this half plane.
Phis is a property possessed by every function which is the one-sided
laplace transform of another function, and we are thus led to consi-

der introducing a functioE,\g such that

P (x, 45 k)= /eLkz y (x,4,2) dz (5),

in which Im k is positivéi Since ¥ is unique, any significant solu-
tion obtained via the formally transformed problem'corresponding to
'y 5 will be the correct one.

Working formally, y may be written by Fourier's inver-

sion theorem in the form ia+00
-ikx
Y (x,4,%)= — / e P (x,4:k) dk (5a),
AT La.-o0

in which a is positive (so that the integration goes over "damped"
values of Y ), and in which

Y (x,4,%)=0 for x<o0 : (6)
(The z occurring here is not the third space variable of chapter 1).
The differential equation of (1) is transformed by (5a) formally into

A”’“v—z;q:” | (7)

which is a wave equation of hyperbolic type, in which z plays the.
part of a time coordinate. This juétifies the use of the term "tran-
sient™ in connection with this problem to indicate the property(6).
The boundary conditions in (1) are reproduced by the transformation
(5) if y is subjected to the conditions .

'%z #2) for y=0t,Ixi<l, x>0, (8)
0 for y-o%,Ixl<|, 2<0, (8a)
p= 0 for y-0 ,IxI>1. (9).

(It was for the sake of simplicity of (8) that the factor'-;- was
introduced in (1) and in condition 2 of (1.1.2) ). e

The edge condition may for the moment be left out of
consideration, since any solu@ion obtained can afterwards be tested
for this property. Reference to this point will, however, be made
in (2.2). The radiation condition is imposed by the choice of the
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sign of the exponents in (5) and'(Sa).

2 1.2, The theory of character1st1cs, and appllcatlon° o .
For the purposes of the further .analysis, the notlon of

character1st1c surfaces of a linear, hyperbolic, partial d1fferen-,_
tial equation is needed, and we therefore briefly introduce the es-
sential concepts and propertles° Fuller-discussions are found 1n '
Courant-Hllbert vol. II (1937)9 and Sauer (1952). ‘

A characterlstic surface9 or simply character1st1c,;
of the linear, second order d1fferent1al equation (7), is a surface
g(x,¥,2)=0, such that the second order normal derivative of a. smooth :
- function y satisfying the equation, is not determlned by prescrlb—
ing y and its first normal derivative on the surface, If new ortho-
gonal coord1natesA.(x,y,z),/u (x,y,z) and g(x,y,z) are. 1ntroduced,

vatlve is ;g% ’ and its coeff1c1ent in the transformed dif ferential
9 2 2 3-2
RS (2E) - (38
. Dx oY/ \oz

A1l other f1rst and second order derivatives on the surface ¢-=0" . may

be. directly obta1ned from the prescribed values of p and Zf

equation is

’ since

d1fferent1atlon with respect to A~ and/u_ are inner processes on thls '

surface. Therefore, if N(g): is non-zero, 2%7 is uniquely determlned

by the differential equation, so that the condition for the surface
g(x,y,2)=C to be characteristic is that , :
S @
| =</ *\=y) ~\zx) =° | » -~ (10)
for.all polnts on the surface. If g(x,y,z)—o is solved in the form

z=2z(X,y), the condition becomes

?zf CMY' . - _ -

120 L ‘
(33{1 'DLJ, . . . 7 (10&)
which holds 1dent1cally in x and yo This can also be wrltten in the
form

in which grad denotes the two-dimensional gradient with‘respect to
x and y only. This means that the characteristics of (7) are ruled
surfaces with generators making an anglef% with the z-axis; so that
a characteristic surface pass1ng through the point (x',y' ,z ), touches

there the cone

'z-zi=t\/(x5:')"$(%-%') . e
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This cone itself satisfies (10a). identically and is therefore a cha-
‘racteristic, We may thus say generally that cones of the form (11)
and envelopes of such cones are characteristic surfaces of (7). Ob- -
' viously the]characteristics-are invariant-under transformation of
-coordinates, N R ‘
' The fact that the equatlon (7) possesses real characte-
ristics is expressed by saylng that the equatlon is hyperbollc, in
character1st1cs and 1s termed elliptlc° ‘

The character1st1c condition may also be formufated in
a d1fferent form, Whlch will be useful in app11cat10n..Equatlon {10a)
may namely ‘be 1nterpreted as an orthogonallty relatlon between two

2z X ,.h (oz - Dx
(—'L_+ — 1““) (— L+ — }+k>

X 'Dlé. 20X "Old. =

'vectors9 viz.

. The first of these 1s "directed along the normal n; to the surface
with direction cos1nes (n n, N, ) and the second along the so-called
~ conormaly , with d1rectlon cosines (n1,n2,—n ) The characterlstlc
condltlon therefore states that the conormal is tangential to the
'surface. This means that a d1fferent1atlon in the conormal d1rect10n
is an inner process on. the surface, a property whlch we shall have
occaslon to wuse in the sequel.

The most 1nterest1ng property of characterlstlc surfaces
of an equation, is the fact that d1scont1nuit1es of a special kind
,may occur only on such surfaces. In the first. place, 1f it is requir-
"ed that, on passlng through a given surface, a solution.is contfnuous
| together with its flrst derivatives and all inner derivatives, but
that its second normal derivative should be f1n1te1y d1scont1nuous,-
‘ then evidently, from the def1n1tlon of a character1st1c, this . sur-
"fface can only be a characterlstic A finite d1scont1nu1ty in the =
' f1rst normal der1vat1ve may occur at any surface, s1nce the two.sides
of theé surface may be treated separately in determlning hlgher der1-
vatives, but even here character1st1c surfaces play an exceptlonal

---role. If we namely requlre that a solution with such- a discontlnulty

. be stable in the_sepse that on and near the surface_lt_ls the uni-
form limit of a'seQuence of continuous solutions with continuous'and
_unlformly bounded f1rst derivatives, such that just off the surface
‘also their first and second derivatives tend unlformly to +hose of
the 11m1t functlon, then 1t can eas11y be proved that the surface
must be characterlstlc.3 ' '
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, Discontinuities at characteristics have the important
property that they do, in general, not die out along a generator .
(i.e. in the conormal direction) of the characteristic. This can beiﬁ
shown for instance for a discontinuous first normal derivative by -
writing. the differential equation in coordinates gs A and/u as. above°
. Bince the coefficient N(g) of the second normal derivative. vanishes
on the characteristic surface, only the solution y and .its. inner
derivatiVes;.togethervwith the discontinucus first normal derivative
;%; and a first inner7derivative, which proves to be directed along .

~the conormal, occur in the equation. Subtraction of the two equations
valid on the two sides of the surface9 makes all continuous terms

: vanish and on1y terms With the jump in.%ii and with the conormal de-

rivative of this jump, remain. The resulting linear, ordinary dif-
ferential equation is. therefore of first order and homogeneous, and,
-as is well-known, the solutiop of such an eguation with real coef-.
ficients either vanishes identically, or else not at all in-an or-
‘dinary point. '(Singular points may arise through singular. ‘points
of the characteristic, e.g. the vertex of a cone, and at infinity)

In aecordance with the special role played by characte-
ristic surfaces in the occurrence of discontinuities in.the solutions
of (7), it will be reasonable to consider solutions which are continu-
ous everywhere (excepting of course on the strip where the. boundary
value. of 2 is prescribed) and with first and second derivatives in
general continuous, but possibly containing finite discontinuities
~in the normal derivatives on passing through a characteristic sur-
face. It may be noted in pasSing that this convention is further ex—'
tended by the assumption of the transient character of our. boundary
value problem, In view of the above-mentioned property of persistence
- of discontinuities along generators of characteristics, it is seen:
that, if no disturbance is to enter the half-plane of negative z,

. the discontinuities which may occur in . y -are restricted to such _
characteristics as are formed by cones with ‘the positive sign of the
root in (11)," thus.

2=+ (G e (g . | (11a) |
We shall now sketch briefly that allowing d1scontinuous f
behaviour of the solution ¥ j,as is prorosed above, is. compatlble.
with the requirement that the solution of the boundary value problem | -
be unique° Assume .that ¢y and its normal derivative are. prescribed _
on an inltlal surface z=h(x,y). If, in a given region, .the. solution . .
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.is.not unique, the difference of two solutions will alsc. satisfy the
“differential equation and will vanish together with its . normal.deri—
vatlve on z—h(xgy) Therefore, if van1sh1ng of a solutlon and . its

' normal derivative on z=h(x,y), 1mp11es vanishing of the solutlon in

a glven reglon, the solution of the above initial value problem is
unique in this region. In fact, ‘it will. be proved that (x RANYAD
is. dependent only on the values of vy and 1ts normal derivative Whlch
are. glven on that part of the initial surface which 11es 1ns1de the
"s1ngie characterlstlc cone with (x',y',z') as vertex: '

: -z =- \m")"’(% P . (1)
which will be called the forward character1st1c cone from (x',y%,2').
The . proof depends on Gauss“ d1vergence theorem, and the d1vergence

.expresslon : -
(B P w)w > (2 2), _<v_w-o_v)_1_1{(°) ( v) _w)*} (12)
Dxlr'Okd, ox'/ox  ox\oz ox/ oY \Tx DY/ 2 D% oy '
is used for.the purpose.. First. ‘consider only solutlonsﬂwhlchmare_con—,-
tinuous . together with their first and second deriirativ:es° Then, if-
(12) is 1ntegrated over the reglon G bounded by the cone. (11b), and
the. initial surface z=h(x,y), the volume integral in Gauss“ theorem
- vanishes - by the differential equation, and the surface integral over
the - part of the. initial surface 1nvolved, vanlshes by v1rtue of the -
null initial conditions. Therefore o ‘
. /47 oY DY X oY DY oy 1 (?gr (D¢Y.( ¢)
DX DX -an+'oz'-og.-on 2 ~ox'+;t;+-oz on
in whlch M denotes the part of the conic surface (11b) eut osf by the

' in1t1a1 surface, -and the d1fferent1atlon-—— is directed along_the nor-|
mal to M, Using the relation ’ ' L

.

=0 :

on on on o )

Wthh holds because M is characterlstlc, the 1ntegrand can be writ-
ten as oy (om oz oY Dx>2 (vw oz DY v%>

¥

dT=0. (13)_

X

: - §14)
which means that the two squared terms are separately.equal to zero
' 1 L . ,
on M, since ‘gi-gvg ~ from. (11b)., But these two terms are.indepen-
~ dent inner derivatives on M,- SO that this means that ¢y 1is constant

X 'Dn. DX "oh ?ld. o ©Ox ©Onh

on M, and - therefore zeroy, by contlnulty and the 1n1t1a1 values, S0
that also at (x',y',2") it is zero, ‘and, - by uS1ng smaller ccnical -
reglons, also.in all other points of G~ Thus the unique dependence
of .y in a- polnt on initial:values. on only that part of the initial .
surface within the forward characterlstlc cone from the poln‘t9 1s
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‘proved for functionswith.regular behaviour. _
1f, ‘now, the possibility of discontinuity in.the normal

' der1vat1ve at one characteristic surface is allowed, this . surface
divides -the region G into two parts. In the part furthest from the
vertex (x!,y',z').of (11b), the above proof applies, yielding tne '
. value»naughtmfor y on the dividing surface. Integration over the
seccnd part ‘again yields an infegral of the form (13), since it: was
‘seen-in (14) that the integrand contains only inner derivatives of

Y on a characterlstlc surface, - which are therefore zero on the di-
viding surface. The same result as previously thus follows in the
presence of one characteristic of dlscontlnulty, and ev1dent1y, on
applying.-. ‘the ‘same procedure repeatedly, also in the presence of more
such.discontinuities. = : . SR
’ - Thus it is seen that w ~in any p01nt is entlrely-deter—-
mined by -values. prescribed inside its forward characteristic. cone, -
which.is therefore called its region of dependence. Evidently. the
points:in.whose. region: of dependence a given point (x",y' z') lS
situated, are. contalned in the so-called backward" characterlstlc
cone from this point, presented in (1ia).and this cone will there-
fore be called its region of 1nfluence. It should further. be stress-

ed .that the above considerations are no longer valld for d1scont1nu1- o

ties along arbitrary surfaces, so that for instance a region of. de-
pendence must not be allowed to 1nclude the strip on which the boun—
'~ dary velue (8) is preseribed. .

In all the above the consistency of the initial values
‘were. not. cons1dered Ev1dently, however, if a point on the 1n1t1al
‘surface- has cther p01nts of the surface in its reglon of 1nf1uence,
this.fact imposes a relation between the initial values, and the func-
tion ‘and its normal derivative may‘not be prescrlbed arbitrarily.
This happens, .as can easlly be ver1f1ed when the initial surface
z=h(x,y) satisfies

B E

This. is the case W1th the plane y-O on which ‘the boundary. vaiue (8)

of our problem is prescrlbed, and-1t,1s therefore reasonable that y.
v

and. - are prescribed alternately on different parts of the.plane,
and not together, We shall be content with this remark, and not prove-
an existence and unlqueness theorem ‘for our problem9 since the im-
portant point 1s that, after transformatlon, the condltlons of the .

!

-orlglnal problem for Q are sat1sf1ed
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The boundary condition (8a) has been imposed in order
to represent the transient character of the problem, but it will
be convenient to use the conditions

= -—:O fOI‘ z=o (15)

in its stead. These conditions may be imposed in keeping with the
transience condition, because z=0 is no characteristic, so that both

y and %;% are continuous on it. In this way .the region of depen-

dence of a point can be considered as bounded by the forward charac-
teristic cone from the point, and the two planes y=0 and 2=0.

Evidently the characteristic surface of discontinuity
approaching nearest to the initial plane z=0, is the envelope of
backward characteristic cones from the points of the line segment
z=0, y=0,ix|<] , where the prescribed boundary values are discontinu-
ous. Let this surface be presented by z-=x,(x,y) . Then, from the uni- -
queness theorem for the initial value problem,  is naught, not on-
ly for <0 , but also for all z<zx,(xy).

2.1.3. The inverse transformation.

With the foregoing results on characteristic theory a-
vailable, and under the imposed convention about the occurrence of
discontinuities, we may now return to the formal transformation,
and examine whether this convention is compatible with the require-
ment that (5) transforms the equation (7) into the original . equation
of (1).

Consider a line parallel to the z-axis. Since y=0 for
negative z, the characteristic surfaces of discontinuous . behaviour
which cross this line are assumed to be _

X=X (Cy) with mn-=0,1,......
Formal differentiation of (5) with respect to x now gives, remem-
bering that =0 for z<z, ,

i:/eLkz?—qLdz,

X Z, X

in which no extra terms occur, since ¢ 1is continuous. In the next
differentiation, however, the discontinuities in the gradient of x
do centribute: '
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' ' Zns1
o i DZpyq < ikx ap) : (Lkz vw) / Lz 'DA‘P
L fm | ox | ox/zezfg, ox DX jR=xy o -ox‘
27 ikx © ik D
2 / e _i_w dz- i._e" *n O%n _tp
e}

X=Zp+ ' ]
ox* n=o ox | ox

Z=2Zq - .
The same treatment holds for the y-derlvatlves, while partial. 1n1;e—.
gratlon is needeﬂ 1n the case of the z-derlvatlves, viz.

- ] OO ’ ZTL'H -D )
/e‘ “—2 =S / e 4y
1 - zZ . ) 1 :
eo - ikx mp 41 . n+1 ik Y. . |- o
E e _ik / e — dx}. o
n=0 . DZ zﬁ ' Zn . ox . "
oo Lkz ‘Dq) z’z'n."'
.= -Lk /e _‘— Z- E e n [-— ] .

» ﬁ.:o ox AaZX, "
o0 ikx., [PW ]X=Znt o
--k/e wdz-Ze"’?— .

: 1 OX | xa z =

‘Therefore appllcatlon of the transformatlon (5) to the dlfferentlal
equation. (1), yields -
20 2 2
- 0= eLkz{'aq2+bq) qu)}d.z
o DX 'DLJ. oxt

X Z t

Loty ot 2 oo ikz, |oz ' oy 'oz oy DY
=—kp+—q’+k2q>.,+- S [Zn X P X T ;
; oxt ok ' nzo ‘DX Ox = ’Dﬁ. x| Ziz -

~ since +he express1on 1n31de the square brackets is a derlvatlve in
the. conormal direction of the characteristic surface z=2%lkt&),
and therefore an inner derivative, which means that it is continu~
ous. ‘Phus it-is seen that a: contlnuous solutlon of the. boundarylvalue
.problem. for: (T may have dlscontlnuous behav1our of the normal’ gra-
dient. at characteristic surfaces, and yet be formally equlvalent
via the- transform (5), to the solutlon of the problem for © .§

We are therefore now ready to attack the orlglnal pro-
blem by solving the boundary value problem (7), (8), (9), (15) ..

‘ - This problem appears to be equlvalent to .that .of deter-
mining-the linearized ve1001ty potential in a supersonic stream;flow-.
ing. steadily in. the positlve z-dlrectlon at Mach numbez‘Vﬁ past a
thin plate. of:rectangular plan-form and with prescrlbed_local.angle
of attack. Whaﬁ is, however, somewhat unusual from the aerodynamical
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point of v1ew, is that the chord of’this supposed plate has to be _
thought of as 1nf1n1tely long; this means 6n the one hand that there
is no.wake-behind the plate, but on the other hand that the pattern- '
of 1nteract10n between the reglons next to the plate, becomes rather‘
complicated. ' : . _
The linearized problem of steady supersonlc llftlng sur-
face theory. for general plan-forms has been treated by Evvard. (1950)
* and Ward (1949) ‘The derivation of the formulae of solution deperd

in principle on. solving the. initial value problem for .the.wave equa-
tion (7) with given values of the function and its. normal.derivative
on a fixed initial. surface. We shall therefore consider this. problem,
'called Cauchy's problem, in the next section. ' S
_ It should be noted here that Frledlander (1946) . and Fox
(1948) have used.a s1m11ar method as 1n the preSent treatlse to solve
the problems of dlffractlon of a pulse at a half-plane and st a. s11t
but that no work seems to havé been done along these lines to. ob—
.tain an- asymptot1c solution for wave tra1ns of ‘high frequency.

2.2. The solutlon of Cauchy'sipgoblem. .
‘ o - The problem of determining a solution w of the wave e-
uation ' v ] :

q | of@g,s_*i,+sﬁ_,;,ﬁ_=o. “),

thlCh assumes prescrlbed values of q) and its normal derlvatlve on -

a given surface o : B
S eGg®=0 (@,

has been solved by. Volterra (1892) and by Hadamard (1932) by diffe-~

rent methods. The method of Hadamard was reflned by M. Riesz (1949)

by replaclng the process of plcklng ‘out the "finite part“ of a di-

vergent integral, as defined by Hadamard, by ‘the more elegant method

of. analytlcal continuation with respect to a parameter. A stlll

further refinement of the method is offered by the theory of dis-

'trlbutlons due.to L. Schwartz (1950, 1951), but since the gain seems

- to be mainly in elegance, the sketch glven in the present treatise

- will follow Riesz in maklng use of analytical contlnuatlon}) ,

The divergence theorem of Gaus¢ is the startlng point

for the method of solutlon. In analogy with the derlvatlon of Green's

theorem in the case of - the potent1al equatlon, use is made of the

dlvergence expre851on° ' ' ' )

1) R. Sauer (1954) refers to a8 forthcoming publication of Dorfner,

_ in,which Schwarz's theory will be consistently used.
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| oy DX\ D/ DY ox oy DX »
xaf (w) LpaZ' (x)-—— (x—_-«p -—'.>+;—-<x — -y ._>- — (x. — Y —> |
’Dx _'D:; 'o:c Y -o% D oz .‘o:_( oz : o
‘ = d_-Lv (xgro'.c'i-K. p- 'y gm_d&;x-.),

-div b, - ()

|
in Whlch the symbol gradh is deflned as the vector operator i -
: o : 1
‘ %I‘adﬂ_L—i-l -uz
_Gauss° theorem states that for ufflclently regular functlons and
region,

///dw b aVe //“b nds

1n.wh1ch the surface integral is extended over the surface boundlng
the region of integration of the . volume 1ntegra1 and n= n1L+n }+n k
is the unit outward normal to thls surface° The normal . component
of gradh ¢ is equal to - ' : : f

. 3rad-ﬂ up (ma+n2%-n33. Y= _%% y l
 which is .the derlvatlve of y in the conormal direction |
.i=n3£+7& I"nb k5 as defined in (2.1.2). Therefore the requlred
analogy cf Green's theorem can be written as

/4 {x.x (¥)- wo'f(x)} dva /](x ‘_"_"’_,q).-‘lf)ds E (4)

: In this result the bounding surface need not be every-_
where smooth: it may consist of a finite number cf smooth parts.
The result is valid. if. q: s x » and their flrst derlvatlves are
oontlnuous everywhere 1n the reglon and. 1ntegrable on.the boundary,
-and if the second derlvatlves of q» and X are sectlonally contlnu-
ous. In our problem, everywhere outside the boundary value strip
(L& =0, z>0, lxl(l) s y is conj;o:bnuous, while on the surfaces of
discontlnulty of its gradlent, oy 1S continuous. Therefore, if x .

‘is well behaved the theorem may be applled as long as this. Strlp

does not cross the reglon of 1ntegratlony arnd if -75 ‘remains 1nt°~
°

grable everywhere on. the. boundary. This condltlon of 1ntegrab111ty
on the boundary 1s appllcable to the edges of .the boundary value _
strip, and is the counterpart of the edge conditlon 1n.the orlglnalp-
problem. v '
Agaln in analogy w1th +he treatment of the potent1a1
equatlon, X may be taken to be an "elementary solutlon" of (1), viz,

_ 1 |
%i( (x E) - (- ’1) ] AR ]_(b),_r 1

i
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which. is- s:thular .on, the characterlstlc cone
(=~ ) Cx ?) * (4- fl)

from the po:Lnt P: (x,y,z) and 1mag1nary dutside it. Here & ,m
; denote the -running coordinates. Follow:.ng our con31deratlons on :
. regions of .dependence, fbhe obv1ous region of integration to . cons:L-—
der, is the -region G bounded by the forward c_ha_racteristlc cone -
-z;-z-_,\/(g N gt RO
- from P, and the initial surface (2). Evidently, however, (4). then
' contains. divergent integrals, due to the singularity of (5) on the
surface -of the cone (6), so that a more elaborate analys1s is. needed

_ to obtain. the solution of the inltlal value problemn.,
Follow1ng Rlesz, we therefore introduce 1nto (5) a ‘com-

plex parameter o ’ thus . o ,
o1 . ' e .
X = § o : (N
and evidently, when Re o¢ - is large enough, (4) contains no divergent |
B 1ntegrals, and. is. ana],vtical in o¢ . -Our task is therefore. to obtain
an analytlcal contlnua.t:l.on up tox:0 of (4) with G as. regn.on of
integratlon, ¢ satisfying. (1), and . X g:l.ven by (7). S
of. courseoZ’(X) does not now satisfy (1) for.a. generalo< o

In fact
o
;ﬁg ._ = @x ﬁ ? Cx E) .

%‘f P a-(ot-1) e 34 (et)(ot- o G- e‘;)’
R R L IR T
o o« - |
= =@ De” e’-<°<f5_>fxf®"
- _D_?;Z e e {é"_«»-_(g,-_s)('z-__z‘r)?

‘ so tilat | | : -d | " .

-oc(oc 1}?

n

Therefore (4) becomes, for Re o<.>3 .

o (e 1>//‘q}¢c£~ dv. //(eou 'aw.v -__‘ o1 d.S _'(-8)
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in which it is assumed that the cone (6) is truncated by the nart So
of the 1n1t1a1 surface (2). No integral over the .surface of the _
cone appears, since the integrand of (4) vanishes there for Reoc>3 o
- Firstly the lef'c-hand side must be written in a form
Wthh 1s signlflcant also for x=0 , Since G is partly bounded by
the cone (6), it is natural to introduce conical coordlnates r,/u, ,

8 by | ' S ' S ' o l
o 2 gar . _ | - i |
x-g:h(-l./.d‘)cosva o ) !
Y=n=r (1-p) sin @ :

with the Jacobian ‘ L o - o

O Gw)wse saysae c1|
2(&,n.%) : ;

I = f(1—,u) _s'mO -v‘r-(1.-/u-)cos‘.0 0 |

§ K rews ~  Psin®  Of :

= (1-/U.) .

Then | N ¢ = \/1- (1/.;.) \//u. (2/44.) ,

and if we-write -

v (B, n‘q) w(r/ue)

and agsume. the initial surface (2) to be represented by

: | o (M0,
.tne left-hand side of (8) becomes
g t_&_é ' (/u.,e) o t
o (o=, / de //u, (,Q/u.) Q‘Ié(-t/.c)d./u. / “ dr
: ° e &-3 P 1
2T 2 Fo (M ) L
-_o( (< - 1)0/ do. [ :- (2 /J.) 2 (1/“') / “ 1d," o

' 2L BMO) .
-zoc/de //u. {(2/;)“15 (1/u.)/ 4 )qu- drt du

- by partial 1ntegrat10n with respect to/u. . The first term var;iishes,
but +he second contalns ’che express:.on : "

o / a.pr- ~de | N
and this. integral d:.verges when x vanlshes., Partlal :-.ntegratl;on
ylelds ' o S : L |
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a(./ oro d.r-a[ “]o ,-:j/on'?g p> dr
. 40 o or : .
(10)-
. and. thls, substltu.ted in.the. second member of (9), makes. that. inte-
gral .convergent for«=0 ., The derivative occurring. there, -when mul-

— Lp (o,/u,(-)) when oc—vo )

tiplied by o , becomes for «—0

'-—"’—{@- 3E ) 5 (ome))
(T e o)

7 _3 e _
=@M [% (1/“') (2/‘“‘)] (O,#re)ﬁ(ﬂyu.-) 2 (1) D___‘VE:;/‘:'_G)'_
5 - ) s
1<2/“') (“/“-) b (0,,41-,9)4» (2 ,u) (1- M_ . -
.,_,D/u' o (1)

ThlS expression can be s:.mpllfled flrstly by not:.ng that r=0 cor-
responds to § MN=%=0 s SO that '

90 ,9)'w<xc¢2), N G F O
1 and secondly by. us:.ng the relatlon

-a-hcosef_n-enna.—_o_ .,
T €. on ‘ |
“which. impl:.es No'ﬂ ® .o (13)
Tom -

- Substitution of (11), (12) and (13) in (9) glves, fora.-»o ,

tv(:c l.d.,Z) / de //u. (z/u.)g (1-074.)d.}1.
. 1
=21tw('x,g,z) [/U (2u) E ]
oot o
H] 21tnp (=, ld.,X) ’

wh1ch is the analytioal cont:.miatlon of the left—hand 51de of (8)
forogl_o . We may thus write (8) in the form

YD //;‘;e d.s,.%.t (c,‘) //q, s Tas, 0 (14)

where the symbol. (q,) before the second 1ntegral :Lndlcates that the

analytical.continuation for x:0 1s meant,

' , This result holds under the suppositlon already mention-
ed, that S, .totally truncates the forward characteristic cone. from

.'the' point P: (x,y,2). In the case where'the volume G which.s, cuts
out of this cone, does not include ‘P, this volume may be regarded -

- as. the. dlfference of two- volumes 11ke the above, which do- contaln P

o
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and then of course the left-hand side of (14) vanishes.

It has thus been shown that, if a solution of.the wave
equaticn is continuous and has a continuous gradient, excepting for
possible finite jumps in the normal gradient across characteristic
surfaces, and if the conormal derivative is integrable on the boun-
dary, then
» oY 1 2 -1 ) Y (%4, ) (14)
o !c’/ae ds “d)s/o/%—o? ds ] |

(15)
in which (14} refers to the case where the sectionally smooth sur-
face s, truncates the forward characteristic cone from (xX,y,z);
while (15) applies when s, cuts off from the surface of this.cone
a closed area not including the vertex (x;y,z).

Evidently (14) renders, in principle, the solution.of the
Cauchy problem. In the deduction of this solution the notation of
distributions of Schwartz (1950, 1951) is extremely elegant, since
his introduction of so-called distributions; which is an extension
of the notion of measurable functionsyallows the systematic use of
Dirac's delta "function® & and its derivatives. This makes it pos-
sible to include boundary value terms in the differential equation
itself, and to write for instance Greern's theorem without explicit
occurrence of the surface integrals. For the sake c¢f interest a few
of his notations may be given here. The basic property of the del-
ta distribution is represented by

SeT=T
in which T is any distribution, and the star represents the product
of compnsitionQ The differential equation may be written as

A¥T=8B 1
in which T represents the required solution, A the differential
operator, and B the boundary conditions. Then the.left-hand side of
(14) may be written as

ExB,
in which E is the "elementarzmsoluxion"

E= 3
2T \/z’- x2_ %2 ’

which. satisfies
AsE=A .

Green's theorem becomes,; for this case,
(E¥A)sT-Ex (AsT)=0 .,
go that the wvalidity of (14) may be illustrated by
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ExB-E%(AsT)
:(E!'A)ﬂT
=1S*T
=T,
2.3. Application to the boundary value problem.

We now return to the bo_undafy value problem as express-
ed in (3), (5), (6) and (15) of (2.1):

A«p—%ﬁo : (1)
%:F(x) for y=o%,|xi<l,z>0 (2)
y =0 for y=o,Ixi>l, (3)
Z%:(p:o for =0 (4)

together with the conditions of continuity formulated in (2.1.2)
and the condition of integrability formulated in connection.with
the use of formula (4) of (2.2).

Pirstly consider a point P:(x,y,z), for which both y
and z are positive, and such that the forward characteristic cone

from P, 1
Fox-\[ g e g | (5)

is truncated by the half-planesZ:=0 ,n30andn.0,&'30 , in which again
g, » & are running coordinates in the x,y,z directions. The
truncating surface thus consists of two parts: the first part, is
the major segment of a circle on the plane £=0 ; the second, which
we call D, , is part of the hyperbola

s z-\/cx-‘e)‘+ y* (6)

n=0-. _
On the negative side of the plane =0 , a further bounded region is
cut .out of the cone (5) by the planes =0 and 1-0 , and.in this
case the bounding surface consists firstly of the minor segment of
the same circle as above in the plane F=0 , and secondly of (6),
which will in this connection be called D_ . The difference of no-
tation in D, and D_ is intended to convey that surface integrals |
over (6) are concerned with limiting values of the integrand, approach

ing from the side of positive and negative n Trespectively.
Formulae (14) and (15) of (2.2) may now be applied to
the two bounded segments referred to above, which have the cone (5)
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;
and parts of the planes -0 andy-0 as bounding surfaces. Evidently
the boundary condition (4) makes the- contrlbutlons on the plane;i :

vanish, while on the plane'q o the conormal coincides with the

(outward) normal, i.e.

=9° ] oﬁND+'
so that, finally, we get , ' | l
W(xt&z).. _[ /-*oq) 10‘-?4; (Ca() //‘P—(" d?‘iz; (“7)
0- L {/f"’"’ L dg dr- (e /fqz -1 d?d; - (8)

Since, on the same arguments as for ¢ . in (1 1.2), y .is. antlsym-
metrlcal_ln"ypqr.q s We may.wrlte

: v (E,O-l-',;)t W(E’o,-,g)ﬁo

WEOHE)  W(EF0mD) , OW(EORE)
B T

. Therefore sebtraction of (7) and (8), and wrltlng D for elther!
or p_ glves - . » |
: I’

tp(:: cd,z) ':t //.[M % ]Tl o+ld.§d2; o |

D. _VQ;‘?Y-(x Ef -yt | (9)

ﬁ|4

which .is.valid. forc*>o and is in accord with the formula. found by
_Evvard (1950) for the velocity. potentlal on a lifting surface 1n
'steady, supersonic Tflow. The value for negative y follows froq.
_ the property of antlsymmetry ’ :
‘ch %, X)=~ ‘-P(‘JC;"%, z) -
Pormula (9) is not yet ‘the. solutlon of the problem,'be—
Y.
o

cause tHe value of occurrlng in the 1ntegrand is prescrlbed in

(2) only -for Igl«| , whereas the hyperbola sector D does certalnlj.

...extend beyond this if; for instance, z is large enough. The area D,

situated -on-the plane'q © , (compare (6) ), may be written, |

D z—;’:\/(é:“é'-)«f%il"(x,tg.;E'_)E«P(E)'7 L ’(%10)
Fro0 o
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which serves as deflnltlon for the express1onr(§). This area is
therefore to be divided into parts namely the part D' for whlch|§’|<| 9
and the rest, called D", whlch may or may not exist, prejecting
beyond this- strln for a fixed point P: (x,y,z) The formula (9)

~ then. becomes oY (5,0.%) 4z dz; ‘
Yexg -1 // epaE o A = - (1)

Ve 2@ ® g V&t

which is a- soluxlon of the problem for positive values of z. smaller :
than.both r(-1) and.r(+1),. (s1nce then D" vanishes), but which is

| an. 1ntegro—d1fferential equatlon in ¢ for more general polntso

In order to determine the unknown value of ;ﬁ% in the .

seoond'integral use is made of the boundary value (3), which, when

_substituted.in. (11), yields o ' ,
$(®)dELT ' W(:s 3 dgd?
0 // § v ———— - (12),

- V0T e-g® o\ (x-3)- (-t
which is’ valld for ix 1>l . The domain of integration D which is in
.general a;hyperbola sector, is now degenerated into a triangle. On
i condition that the entire domain D" in (12) lies on one and the
same .side of the str1pl§l<l (which is the case when 0<x-1<z<x+1
S Or . 0<=X~1¢Z<=X +1 ); then (12) can be simply solved analytically

for. 2Y . These values: can be used in the second term of (11), thus
on
increasing. the . range of. polnts P for Whlch (11) gives the. value of

¢ ; but the ‘same values . of-—E- .also 1ncrease the range of points

- for which q) may be obtalned from (12) Thus, repeated application
of (12) ylelds, in succession, the requlred values of Q over a

larger‘and-larger'domaln of the plane;q=o , thus contlnually extend-
ing the range-of usefulness of the formila (11). The process becomes
rather laborlous after a few steps, but in principle the solution
of ¢ over the whole space can thus be found in the form of an
- .integral recursion formula. . -
| On applying the Laplace transform (4) of (2, 1, 1), it _
appears that domains for Whloh”¢ is successively found by the pro-
cess.sketched above, yield contributions to the value of ¢ - which
are of decreasing order for large values'of the frequency}parameter
" k. It is-in this circumstance that the value of the present method
lies, since:only.a‘finite number of steps of'the’recursion'process
are required to yield a result Which'is asymptotically‘validito a
specified .order in k. ' . o -
The detalls of the process are deferred t111 the. next
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chapter, where they will become plain in the course of the appli-

cation to twoc examples.,
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Chapter 3.

APPLICATION OF THE METHOD TO
DIFFRACTION PROBLEMS.

3.1. - Sommerfeld's haif-plane diffraction problem.
3.1.1, Solution by the Laplace transform method. & @ ,

As a prelimihary illustration of the application of the
method, the dase is treated where the screen; which is assumed to
be rigid (or perfectly reflecting or conducting), takes the form of
a half plane, instead of a strip as was described in chapter 1. We
shall again require that only the two space dimensions x,y occur,
so that the screen may be assumed to be situated on the positive
half of the x-axis, thereby implying that the edge coincides with
the axis of the third space variable.

There are certain advantages in starting with this pro-
blem. Firstly, the results obtained in this relatively simple case
are directly applicable to the first stage of the more elaborate
problem of a strip, and, secondly, it is an example of the only
type of diffraction problem that has been solved in closed form,
namely by Sommerfeld (1896), which thus afford a valuable check on
the correctness of the method. .

The boundary value problem for the perturbation veloci-
ty potential may be formulated as

(Ai-kz) LP:O . (1)
o S U . R Joe y=ot , x>0 (2)
oY oY tk

=0 for ¢4=0 , x<0 (3),

together with the edge condition and the conditions of continuity
of ¢ and its first and second derivatives, excepting on the po-
sitive x-axis. We impose also the fadiation condition, but the fact
that the region of (2) stretches to infinity, implies that this
condition is only satisfied if the incident wave may be regarded
as originating in a bounded domain of the half planecé<o s Which
means that no plane waves occur. In case plane waves do occur, the
solution may be regarded as a limiting case in which the source re-
gion tends to infinity, so that even plane wave behaviour may be
obtained from a treatment which imposes the radiation condition.
Evidently, the problem thus formulated is directly analo-
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_. — — - - . . - - - " I
gous- to our problem for a strlp, and the transformed nroblem takes'
the form ' ‘ '

A‘P-.—q;zo— BN Y
_ y- o . - ‘ . b
-%_ Fe for y-ot » %>0, 250 - (5)
- y=0 . for Yy=0 ; x<0 | (6)
.o 7 for zeo - |
?% . . . ’

with the-same conventions regardlng continuity and 1ntegrab3_11ty
as in (2.3). - - : : _ : ,!

' The fundamental relatlon for obtainlng the solution lS -
formula (9) of (2.3), which may be written as

"op(E.0,%) dE d;’

wrg D=L Jf V(;’“ e e (O,

with [ | o i

P®)s \/cx ;) gt

and the surface of integration D glven by the hyperbola sector,
o D: 0$F<€xb(F) | | | O (B).
- Again. the values for negative 'y follow by antlsymmetry, and we there— .
fore henceforth need cons:u.der only the case of positive y. '
' The reglon in which vy is non—zero, (cf. end of (2.,-.,2)),
is the Wedge z> 1yl in the half spacexso, supplemented by . the. half
of. the backward cone from the origin whlch lies in the other. half \
. 8pace, Vviz.x»>r (0) ,x<0 . In analogy to the division represented '
by (11) of (2. 3), this reg:.on of non-zero y 1s ‘divided into two

parts, viz. firstly, the part for whose points. ‘the surface of :mte—
'gratlon D in (7) is such that only values of zlr"l given in (5) oc-

cur, so that W is dlrectly determ:.ned ‘and secondly, the part for

‘which some of the values of ?aqr; occurrlng in (7), are not given by (5) ,

Evidently the flrst reglon consmts of points (x,y,z) w1th
z> 1yl and x>0 and for ‘which the hyperbola sector (8) 11es entlrely
in the half plane of pos1t1ve § s This is the case if z<r- o) and
- of course x>yl and x>0 which 1ndlcates the region for pos:LtJ.ve D¢
.which is 31tuated between the wedge surfacez Iyl ‘and the backward
-cone from the. orlglnz O \/W o We_ may thus write, using (17),_

and. (5), ' ‘.
' '. x+VZ£ ,_é!' _ z—r‘(?) o d;’ L .
i} #(®)d ' 9)s
vcx%z) e / ? ? \/73‘7"'(?) SR )

x- zx % - 0 n,.., .,,,.-J
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valid in the region
O<y£xLr@E , x>0 (10).

The second part consists of the rest of the region of
non-zero y , viz. the inside of the backward cone from the ori-
gin, z>r (o) - In this case (7) and (5) yield

:c\,?_—‘ l‘() W(:;IOZ) ? : (11),

X, U, _.._ f- d
P0e, 14, 2)= o (®) E/ \,—-—( oy 1t/ ey o
in which D" is the part of (8) for which ® 1is negative.
'_-gl over the region D" may be deter-
mined by using condition (6), as was indicated in equation (12) of
(2.3). We therefore apply (7) to a point for which y=0 andx<0O ,

so that the region (8) of integration degenerates into the triangle

Now the values of

0P sx-Ix-Fl.

Since y is identically zero for z<r (o) and x<o , i.e. forz<-x,
we further choose x>-x , and the triangle reduces to the trapezium

0£T S x+x -8 for o0 (8a)
~Esy s x-1x-Bl for g<o
Introducing new coordinates by
0= ;i-? (12)’
| TeF-E
and writing
0;:24-1
T‘I =xz-X
v (%,0,%)
O® = —7—
f (@T) = 'F(E)

(7) and-(6) yield

‘r‘ s LA LY
T ~T
_d_o: _'_F Fl wndt (13),
/ e |- VE,T

valid in the region y--O x<0 and z+x>o ’ that is in the region T, >(
and @, >0 . This is the equivalent of equation (12) of (2.3). Now
since (13) holds identically in 0; in the range 0<@<T, , the expres- -
sion in brackets must be identically zero, thus yielding the simple
integral equation

I b | (14),
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'j<5) ot (2 1.1) to (9) and (16),

valid for 0<0<T - It now proves to be poss‘ible to eliminate. %%
from the second.. term of (11). without even solv1ng (14). Remember

ing
thatq) o forz< Xy the domain D" reduces to
D" ?,‘<z r(l;»’)
in whlch the boundarles are :
| §+§o §O,andz;’r-($)‘
ol, in the coordinates ¢ and T of (12), :
020, 0= and (G-O3(-D)-ylsO0. o
Therefore the secor}d term of (11) becomes g '
@) %= -0' . ‘l’n d-t L 3O 4o heh a-T __‘Vn_di_ 5
/dfr/ ——/;Tr/ m. ¥\
[(G-0(T,-T)-¢* am g (&0 ¢ -_ N |
. - = - '
: ) S
z=re) bc' : - . ‘
dar 4 dT :
—_ : 4
re)- d¥ '
=1 /"‘°’¢(§)cu$ / ¥ (15),

\[(2—2:)“— M)

whlch is a statement of equlvalence between two integrals of -_-:;%

- with a fixed weight function, over different areas. This is: .'an 'ex-

tension of Evvard's method of equlvalent areas. L
' Substitution of (15) in (11) yiel‘ds . |

L x+\/zz_‘éz' Z-h @) ,_(o) E ‘_.
o<y, )_-- - +(8)d¥ ¢( )d.§ ~(!16).,
‘nyz o/ o/ = ?), h(‘) 'n: / / \r_"cz_;,), TS Lol

validr for Z>p (o) and Y4>0, The problem of determlnlng y is there—
fore completely solved by (9) and (16). This is possible. because —“"
is given by (5) for a whole quadrant of the plane y=0, so that only
in.one trlangular area oc-x<x of this plane extra values must be
determlned for the application of (7). In our more general problem
in. Whlch 9- is given on a strlp, two such tr:.angular areas occur,

‘and. interaction. Dbetween them prevents the solutlon to be. obtalned
"in closed. form as . above.

The. required solution ¢ - of the problem (1), (2), (3)
is now- .obtained from: Y by appllcatlon of the Laplace transform _

i
|
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kx

W<,y = /“ei' ¢ (%, 4, %) dx

0
r(o) " x+V z2f z-r(@) 47
[ eTdx [ t@dw [ )
L 2-\2-4T ° (=-5)- 1 ()
/.

. x+Vz&..‘,ﬂ z- l“(?) d: z-r() X-Ko)-B d
e dx | / f(B)de / _L - /‘ @) d¥ / d

1
e o \/(; 7y-ri(y) © o \[G=xr-r@
o0 o .. - ( ) o0 Z-P()-?
-2 / $(5)de / elkzd.z.z/rg @ . / ”“dz/o i A
to | ) \/(z-%’)“-fz(k') rcow o \@ntre)

ikx l.kz

- g [ sy [e [ (1
k1r : 7)
T ) \/ iy ) re) v \/ z% r’(@* ’
by partial integration with respect to z, since
'D Z~ il /
\f(z 4‘)‘ 2 ' Tl (g r‘(«?
\ 2%+ (&)
for c 1ndependent of z. Finally (17) becomes, by using (2),
7> ¢ (%,0) OE e dx (18)
IP(I, )="1 d e — 9
% / arl E / z! r.x(E)
or, remembering that (cf. § 6. 13 of Watson (1944)),
oo dx
) ikne _7
Hg (kr-)-‘m/e e
e Vet (18a)
(17) may be written as
% p(5,0) (19).

.,o

1 )]
5°(=¢,g-)=zi-o/ = d-§[“ [k"m)]"'— "°)+‘ ‘[ 2 "2(5.
This affords an interesting comparison with the result
that would be obtained by applying the Kirchhoff method, (cf, for-
mula (4) of (1.5), in which |g! sl ingtead of0¢®<ec ). The correct
Green's function for the problem proves to be an "incomplete" Han-
kel function, instead of the Hankél function occurring in Kirchhoff's
formula, and the error in the Kirchhoff formula is given by the se-
cond term of (19).
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.1.2. Equivalence to Sommerfeld's solution, ,
Sommerfeld's solution was obtained for the case of a
plane incident wave, and we shall here illustrate its equivalence
to the solution (18) for the special case of the normally incident
plane wave

P, = elkg.

3
The boundary condition (2) in this case takes the form

2% ..tk for y =0t , x>0
oy ,
so that (18) becomes (foryso),
o O)*'E dz
LP(‘I ld.):L—k o/d.E / VZ‘IP_R(E)‘ (20).

Our aim is now to prove that thls is equal to Sommerfela s result

ekt T oot g T
(g, W=- — da+ S dA (21)
1 4 kd') \/ET T/ T/ ’
in which T, and T are most convenlently written in terms of polar

coordlnates T, and @ with

Xa=t, sin O
Y=t co5 0 ,

viz.

Ty \[BF s %u\[m

This result may be found for instance in Baker and Copson (1949),
in a somewhat different notation,

We now simplify (20) in an obvious way, always keeping
both x and y positive, and noting that rted=r,

i °‘+W ik °° R L) s
L! d + — d_z
e ‘eD / € dax x_\rp-“ V 22yl ~(2-%) z z-/r'o Vz’- $- (x5

"B
Ll Kobo=-2
_Lk/e"kzdz+_v/e‘kz{?sm1 — ] dx
(4 4
150 ik o -1 x- + 3 “e‘ x(fx)-y° dx
K3 Ve |y ® g @y 20 (x-ro)

2°
iy 1 \/ iz M
- + - e dx ,
T r./ .(zz_“z)v X-h (22),
since y!=r'-x* , Using the relations |
x-(h-x) :.d,+(r°-=c) Y- (k-2
= +

oyt g (zey) 2y (z-9)
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Y+ (Py-x) Vg - (\ﬁ- +X+ \[F - :c)
¢ Ve V(o0 () Vor=
s Yhex + \n-x
- W5 « V=Y
= \lz(taﬂp, )

R

for ¢ >0

and

Vh+x - \[h -

sg O \/T[N—x V% -x)"
5g(x) Ve (o9

n

changes (22) into

__otkg, Vhiy tkz ax tkx __dx
ot T [ B o e

Now, in order to 81mp11fy this, let I(k,y) Fe defined by

k TR S
1 k' = L % e |
(. §)=e '6/ (=z+y) (27T
Differentiation with respect to k gives
oI o qu_ / en.kz dx .___\ ’E o tR(rry)
2k z-r, ik
which, on integratlon, yleldsa .
| | AE et (Rt
T (oy) V-T k/e |

(23).

s
.S
.2 T / eLK d-l

VL(I‘O'H‘.) Vi (h+y)

in which the upper boundary is determined by the condition

oo

| I(O,l*): / —;dz—— = T
k (zﬂd,) V x-r vtbq-g.'

Substituting in (23) yields

- ~iky T o thy RN
e, S by G [,
Y (x4 + — o e ‘,+ == o e .
or, making use of
1 7 i
— e d-h =1 ’
= L
this becomes oo 0o
e"’h} / 'em'z'd.l_ e‘LM / ei.f.’ dx

(24) =
WAl ERR I VL .

valid for both x and y positive, and equal to (21) for this region.
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Consider now the case where y is still positive, but x
negative. Then (20) becomes simply

:al:+—va't’l 2

ik r ka
x-r V -yt (x-§f

P+x kx X- (hg-2) dx

-‘
= “ (z’—l,}‘)v,r-r;
PLIES

_ ey Jetr__dx
(x+*4> VT moh @yl

-ik T e ik o0 3
_ e e da - et™¢ et da ,
Vi (H+y) \I Ti -4,

again equal to (21) for negative x and positive y.

Thus it has been proved that (20) is equivalent to Som-
" merfeld's solution (21) for positive y and all x, and therefore
for all x and y, since both solutions are antisymmetrical in y.

3.2. | Diffraction by a strip.
3.2.1. The initial stage.

We now come to the solu‘luon 0of the. diffraction problem
formulated in chapter 1. The two-dimensional elliptical bounda-
ry value problem

(A-i-k") xp_
7.:3. —? for y=of, Ixl<| 1)
p=0 for l&:O , Ixl>)

with continuity, rédiation and edge conditions, is replaced by
the three-dlmensmnal hyperbolical problem

ay- ?z‘i =0 | (2)
_D*= £ for y=ot, Ixi<l x>0 (3)
=0 for y.o , Ixi> (4)
q):_z_"’=o for x-o | (5),

with continuity and integrability conditions, as was described
in chapter 2. Again formula (9) of (2.3) is the fundamental re-
lation to be used in solving the problem, viz.




NATIONAAL -
LUCHTVAARTLABORATORIUM Report F.157 - II1.9

w(E,oZ{) . ,
daid for yro  (6),

tv(x.g,z)— L //

(z-zﬁ“ P2 (g)
with
P& = |/ (x-B) +y? (7,

and the surface of integration D given by the hyperbola sector

- D:os F&x-r(g) (8).
We also again need consider only positive values of y, due to the
antisymmetry in y.

Before proceeding to obtain the solution, we congider
briefly in which fashion the subdivision in different regions ta-
kes place., This division is done on the basis of which part of
the plane n=0 is covered by the domain D of integration in (6).

Firstly, if D is situated entirely on the boundary value
strip 181<1 , the solution is directly determined by (3) and (6).
This is the case when the point

P:(x,y,x%)
lies outside both of the backward cones from the two corners of
the boundary value strip, viz. the cones z=r(-1) and z=r(1),but,
of course, still inside the region of non-trivial values; thus
-P satisfies

x<r(=1) and x<r()
and also - i<t and x> 1yl .
This may (for y » O) be written in the form

0'<%<z<hc—1) for -1<x<go (9).

o<y<z<r (1) for osgx<n
Next, if P does lie inside either one of these cones

but still outside the other, that is, if either

Pt)<x<r (1)  Which implies x<o© (10a)
or r(y<z<pr(-1) Wwhich implies =x>o0 (10b)
then D protrudes beyond the strip Igi<i on only one side, and the
situation is identical with that which occurred inside the cone
z > r(0) in the half-plane problem of the preceding section. The
solution obtained there therefore applies directly, with the ne-
cessary ad justment of notation. However, the region of applica-
bility of the results of the half-plane problem is larger than is
suggested by these considerations. The criterion is namely in
what region an equivglence relation of the form of (15) of (3.1.1)
is valid. The region of integration of its right-hand side is a '
triangle with hypotenuse starting at the point where the hyper-
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bola of D leaves the boundary value strip (or quadrant, previous-
1y), and with gradient 45°. Therefore, as soon as the region D
includes either of the points (-1,0,2) or (+1,0,2), this triangle
protrudes beyond the boundary’value strip, and the validity of the
equivalence relation, of the form of (15) of (3.1.1), ceases., Evi-
dently this means that the point P is situated inside the region
of influence of either of these two points, i.e. inside either of
the backward cones z=r(-1)+2 and z=r(1)+2. Thus the results of the
half-plane problem are directly applicable also in certain cases
where the region D of integration protrudes on both sides of the
boundary value strip Igl<t viz. in the region _
P<X<r (-1)+2, x<0 (11)
PED<x<r (D +2 x >0
- To summarize, it is thus seen that the solution outside
the cones z=r(-1) and z=r(1) is either trivial (i.e. zero) or else
is found directly by substituting the boundary values (3) in the re-
lation (6). Then comes a region bounded on one side by the previous
one, and on the other by the two cones z=r(-1)+2 and z=r(1)+2, in
which the solution is not fully determined by substitution, because
part of the values of ;?L occurring in (6) are not contained in the
prescribed boundary values, but in which the solution can be com-
pleted by direct elimination of these values. |
The above is indicative of what happens when the solu-
tion is sought in the rest of space: the situation changes every
time a member of either of the two sets of coaxial cones, z=r(-1)+2n
and z=r(1)+2n, is crossed. However, before passing on to consider
this in more detail, we shall sketch here the deduction of that
part of the solution which corresponds to the result for the half-
plane problem. .
Firstly, then, in the region (9), direct substitution of
(3) in (6) gives
4 ' x+\fz‘-_g’*‘ x-0(3) a7
yox, g, x)=-1 [ t(@)dy [ 2,
\ex-3)-v2 )

m x- [T s
as in the half-plane problem.

In order to apply the rest of the resultsof (3.1.1),
notably (15) and (16) of that section, we first introduce a new co-
ordinate x' (with "running" coordinate g' ), viz.

v X'a 14x; g4 1+8 (13).
In accordance with this, primed coordinates are introduced also in
the (¢, T) system (cf. (12) of (3.1.1)) by

(12),

-

-
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0..1= 0—-+1 (=z+x') 5 G' =Q+1 (= ;*’?‘) ' (14)
T =T,-1(=2-%) 5 T =T-1 (=F-¥) |

Then the situation inside the cone z=r(-1) and outside z=r(1) is
the same with respect to the primed coordinates as it was in (3.1.1)
inside ‘the cone’ z=r(0) in unprimed coordinates. Pherefore, writing

Lp @t - -&:’?m and £ (q", )=,
we obtain, as in (13) of (3,1.1), -

jﬁ da’ ¢ 4 'l:')d.‘t' T Y @'TH dt (15)

0= 4 Voi-o* Ve & Voot |
for y=0, x'<o and 2>x+x'>0c , that is for ft:“-va‘,’ >o and 2>6G'»0
identically in a;' . (The only extra feature, due to the strip-
character of the boundary values in the present case, is the condi-
tion2>q ). As in (14) of (2 .1.1) we obtain the integral equation

[ ' 1 @

/ H@T)dT / U_Zﬂ (153{

& Voo o V-1

valid this time in ‘t,'-d">o and 2>0'>0 . For the sake of later

convenience ¢, may be replaced by ' and the integration varia-
ble called t', thus .

v T v )

/cr (@ t)dt / Wy (@) di
o -a! V T;-T' ¢’ T’-¢'
valid in t%-¢'>0 and 2>a¢">0 , that is in ' > ¢ >0 and

250" . In unprimed coordinates this becomes
01§ (01, t)dt T-1 v, @+, ¢)dv
fam,t)dt n

_ °=_G-.1 V‘t- 1-¢' G+l \/ T-1-4%'

T

g2 flr+1,t-1)dt (C+1,t-1)dt

i .
- T-t T+2 T-t
g+2 #(a,t)dt T Wn @ t)dt

-/ =/

<« \T-* G+2 T-t . (16)
with region of wvalidity T-1>gq+1 >0 and |»¢ . Returning to the

analogy with the previous section, and noting that, by (7),
r(g)= \ﬁx-g)"uf': VE’-;')H&"
P 1= PE s

relation (15) of, (3.1.1) corresponds to

x-n(-1) ¢ f (o THdT

| © g =y TG M @ENT g XD
= ¢f Ve -o)m-o-¢ 4{ V- (-t -¢
x-P(=1) x-r(-0-§ dzr
el Hg-1)d .
‘ T é/ E o/' \[(z_y)ﬂ _p? (§)
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- z"r(/) 1+(e)ou§'z-”-f)"1‘z il - 0n.
T VE-2-r2 @
- This is valid in the reglon for whlch the integration with respect
to & concerns only values given by (3), viz. the region
P=1)<X <P (-1)+2 (18),
which is situated between two coaxial cones.

Similarly, introducing double-primed coordinates

x"= 1-x ;3".—.1~E

M= Tl (22ex™)  CT=TH (FeET) (19),
. T'aG-1 (=z-x") ;T=0-1 (:7-8") '
the above argument may be repeated, with the notation adjusted by

oty -aq'(§1o!¢) and _F (a-" T" = )
wz.'l @ vt )— —T 2 ? ) (§ 9

“R

thus yielding

A x-p(1) do™ 7 --G;'TG"' Wzl'l (G"’T") de" o1 x7 f0-§ )d.g" "}')‘F dy
l’ltl & " V(qﬂ_q-")(t’n_tw)_ldi T d K (l-;‘)’-"‘lc‘>
o . : ‘ ! X=r()-1+8 dy

1 20
= —z+{c1)+1 Ha)dg gf (z-ZY-rt @) (20),

again valid in a region between two coaxial cones, viz.
rP@A)<Z<P(1D+2 (21).,
The solution in the three regions (10a), (10b) and (11)
may now be written down, in analogy to (16) of (3.1.1). The first
follows directly by use of the prlmed variables x' and E ’ viz.

. Kry x242 x-r@ _  dF z—r-(~1) z-r-(—1)-q
POy Da-2 / +(e Ndg' / - ra(g) / §(g™-Na¥’ W)

2% z-h x-PE1)- z-r(-1)-1-§ ol
;.tx 1/ “;(E)d@ /ﬁm * /) fe)de j Vi@ h‘()(22),
in which the second 1nteg_ral is signl?icant only in (18), while the
first requires that also z<r(1), thus yielding an over-all signi-
ficance in region (10a), to which, of course, is to be added the
condition y > 0. (The expression represents -y for y< 0). Simiiarly',

using double primed variables, we obtain
1

1
-r@ _ d¥ xr(i)-145___d¥
V(&qd)"' h H?)d'g / (=-2) - (@ ;1!: z+{C1)+1 #5)dB of \/(Z";’)*-"n(g) (23),

for pos1tive y in the region (10b). In the case where P lies in (11),
the domain of integratlon (8) protrudes on both sides beyond the
strip gI<l , but since the conditions for application of both

(17) and (20) are satisfied, we may write at once

‘I




E————an = T BEEhiio e

NATIONAAL :
LUCHTVAARTLABORATORIUM Report PF.157 IIT.13

1 xr@  dE x-r(1)-1 P o d%
=-1  [iEd 1 —_—a
e, gp2d=-2 ’1/ (B)lg o/ o i w [ f®aE o/ V(=-Z) @)
. .

-1
1 z-r()-14+8 —— 22 2
+E -z+-t£1)+1 *(E)AE f \/(z-z;)"- r2 ) ( 4 )

-4

for positive y in the region (11). The formulae (12), (22), (23)
and (24) represent the solution in the whole region outside the two
cones z=r(-1)+2 and z=r(1)+2, and, as has been remarked, inside ei-
ther of these cones the integral equation corresponding to (16)

has to be actually solved to ensure further progress.

At this stage it will be convenient to introduce a sim-
plification of notation. The function f(x), which, by (3) is pre-
scribed in the interval jxI<! , may be continued beyond this inter-
val by requiring

' f(x)=0 for ixl>i (25).
This convention allows integrals over #£(g) to be interpreted for
all real values of the limits of integration; for instance the in-
tegral in (12), which as it stands becomes meaningless as soon as
z>r(-1) or z>1r(1), may now be interpreted in the whole region
x>yl e Moreover, the respective first terms of (22), (23) and
(24) may all be represented by the same formula as in (12), viz.

x+ V22-¢* ' x-r(@) dz
2 s/ ' (26).
LR - o \/(z-—;‘)"- rt ()

Now, what is needed ultimately, is the Laplace transform of ¢
which means that we have to integrate with respect to z while keep-
ing x and y fixed. In this process, the values of ¢ which are suc-
cessively encountered with increasing z, are given, for instance
for both x and y positive, by the formulae (22), (24) and (25),
followed by more extensive formulae which still have to be deter-
mined, Written in the unifying notation suggested here, each for-
mula is identical with the previous one, but with an extra term
added. In this way (26) may be regarded as a first approximation

to the solution in the whole region of non-zero ¢ , and the extra
terms which are added for the successive regions, as so many cor-
rection terms. Our task in the sequel will be to determine what or-
der of approximation to the value of the required solution ¢ of
the original problem is represented by each of these correction
terms; in fact, it will be shown that they are of descending order .
for large k, and therefore suited to serve the purpose of oBtaining
an asymptotic expansion for large k.
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We shall now show what contribution to the solutione
is rendered by the part of the solution y which has already been
determined above. Since ¢ is given by

Py = / etk * W, g, 2y dz (27),
the contribution of the first term (26) is
0o - +Vz&_y¥ -p(2) d
_1— /eLkzd.Zx/z l" KE)d-E 27 ;
"y x- VA ¢ Nzt
co Pl -r(§) d7
:—1_ ‘F(E)d.? f eLkz d.z x P —————
”-ofo r(%) / V-2~ r2(®)

e THedg [ets X

L H() Vi () |
by partial integration, as in (17) of (3.1.1). Using (18a) of (3.1.1),
and also (1) and (25) above, this becomes
L/ 2ED 1 | (9 | d¥ | (28),
which is identical with the Kirchhoff approx1mation«p given in (4)
of (1.5). This means that all further contributions are correction
terms to the Kirchhoff approximation,

The next contribution is obtained by applying (27) to
(23) and (24) for positive x and ¥, and excluding the first term,

thus _
oo 1 x-r(1)-1+§ d7
1 [e®dz [/ «mdg /

rC1) ~X4P(1)+ ° V(z-2)" -+ (@)

. x-r(=1)-1 X~ rw(.1)-1_§ d_;
1 etkxdx $(g)dg ‘
i r-c[D -1/ o/ V&-2)"-r (@
1 o0 . x-r(1)-1+§ a0 X-r-1)-1-%
=11r / f(@dg{ / eL‘_‘zd.z / —d; + / e*dy / L
-1 hr(1)+1-% o Vz-ZP-r(8) rentieg o (- t4¢ )

using (25). Integrating partially with respect to z as in (17)
of (3.1.1), and substituting for £(&) from (1), this becomes

4 0 oo .
oY(g,0) dg ka dx e‘k‘ olx (29).

. /
* / o r()+1-¥§ Vxt r-‘(g) PE)HIHE Vz“-r*(@;
This result has been deduced for positive x (and but if (23)

is replaced by (22), the same result is obtained, so that (29)
is valid for all x (and posrtlve y).

:§ 2.2, The integral equations and thelr solution.
The next stage is to generallze the 1ntegra1 equation
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(16), and to solve this (generalized) equation in the form of re-
currence relations, for the sake of applying the solution to find
@ in a general point.

The integral equations concern those values of-——-need—
ed in (6) to find ¢¢ , namely the values pertaining to the wo la-
teral quadrants formed by removing the boundary value strip |x|<|
from the half-plane z >0, y=0. Since ¢ is zero for z < r(-1) if
x< -1, and for z<r(1) if x> 1, the two'quadrants reduce to sec-
tors viz. -

Z>-x- _ for x<-1
and z> x-4 for x4,
which may be written in the (0,T) system, using the running coordi-
nates, as ' '

g>-1 for tT-0>2
T>-1 for CG-17>2,
or rather
T-1>G+41>0 ‘ (30)
| T-4>T+4>0 (31).
(Written in primed coordinates these become
T'>0"'>0
™" >0">0).

Either of these two regions may be respectively referred to as the
"Jeft" or "right" lateral region, and the fact that the roles ofa
and T are commuted in the two cases, will allow a simple transfer
of results from one to the other. T

Now, before proceeding to the more general case, we shall
first solve (16), which renders 5% near the "front" edge of the
left lateral region, i.e. in that part of (30) for which 6<1 . The
integral equation (16) is of Abel's type, and may be simply solved
analytically. For the sake of later application (16) is written
in the slightly more general form, a

P t)dt |
0=/’ __f(ot)dt /L‘uf“'_)_ . (32),
V-t -
where in this case evidently X=-0 and P=Y¥=0+2 . The solu-

tion of this Abel equation in Wn is obtained by multiplying by the fac-
‘Uor\l-Ti—;( in which P is for the moment still undetermined) and inte-

grating with respect to T from & to T, thus

T
o=/- dt F(a‘t)dt / q.»nort)dt




NATIONAAL

LUCHTVAARTLABORATORIUM Report F.157 III.16

P T T T
- d dt
= A @n (Gt) dt
“/ fe )d;/ @Ot }[ TN @06

p
=02(/ f(o,t) a.zctcm\ B’- dt+1'r/ wq (0 t) dt.

Differentiation with respect to T gives |
0- =L /’ F(a,t) _U_Vdfnrq;n(a"r) - - (33).
T- o6 '

Substituting in (33) foro¢, p and ¥ , and choosing T to be equal
toT, yields
a+2
—— ' J;ﬁ—’_* t
@n (O t)= P _0_/ f(G,t) — a . (34),
which is therefore the solution of (16), valid for t-1>0+1>0
and <1 , This may be simplified by noting that f may be written
in the form '
£(E)=F () (35).
F@1)=F(E)=F (3
This means that
thus suggesting the substitution _
t=a'-zll ’ (36)
in (34), which yields

2Nz [Ty Lisu
n (1= T -0-2 -1 ) T-0+z2u cu (37) ’
a result Whlch is valid in the region

-

T-1>0+1>0 and g<1 v
The above considerations leading to (34) also apply with

the roles of ¢ and T commuted, and we get
T+2
W@ D=-—=t= [ f(s1) 1=22 4 ,
w\e-T-2 ¢ o-s
while in this case, §ince the exchange of ¢ and t changes the

sign of £ in (35), the substitution (36) is replaced by

S=T+2 U,
yielding |
@ ) = - f(u E du
¥n (%) s 0'-1: 2 / “ T-0-2Uu (38),
and this is valid if ‘ _
0-1>t+j>o and T<1 (39).

The identities (37) and (38), together with the bounda-
ry condition (3), explicitly determlne—a-% in a connex region con-
sisting of three strips, viz. two strips along the front edges of
the lateral regions, and the boundary wvalue strip. Now the proce-
dure leading to (16) is no longer limited by the condition that
the domain of integration of (15) should not protrude beyond the
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boundary value strip, but by the less stringent condition that it
should not enter the region of unknown 2%- , which lies between
the boundary value strip and (39). This condition is fulfilled if
the point (6y,Ti) in (15) lies outside the domain of influence of
the point where these two stripe meet, viz. the point where
| -1 and T=1 ,. -
which becomes, in the (¢ , t.) notation,

’ g=T=2 and T=1

i.e. . @=3, = Tz

The domain of 1nfluence of this point in the plane m=0 is bounded
by the lines d=3 and T=1 Therefore evidently the integral equa-
tion (16) may be extended to :i,nclude on its left-hand side values
ofcp @) known from (38), so as to cover a region of points (o, T)

such that '
‘L' 1>G'+4>0

and | 3>0'>‘1 .
This means that if the integral equatlon thus found is solved, the
domain of known values ef«s% is extended by widening of the front
strip in the left lateral region. The same reasoning holds with
the roles of primed and double primed coordinates inverted, so that
also the strip of known-g% in the right lateral region is widened,
symmetrlcally with the left—hand gide.

. The above evuiently p01nts 0 a recursion process, in
wh:Lch strips of the left a.nd right lateral regions, respectively
of the form 2m+1>0>2n-1 © “and 2n+1>T>2n-1 , in which n is
e non-negative integer, are successively added to the domain of
explicitly known values of 3% . Since the formulae obtained for%%
may be expected to differ in the different regions, it will be con-
venient to use a different notation for the function —g-:l{-
region. For this purpose the reglons will be numbered as follows:

in each

' L =1>T+1>0 ‘
region n {2n+1>0‘>2n 1 (Mm=0od,........)
i : r (40)
region n" U'—1>T+1>0 t
2Nn+1>T>2Nn-1 (-n 04, ........) ]
as is indicated in the f igure on the—next page.
We then denote 5% as follows: '
‘ DY (E0L) _ q;nco-fj_, ;pﬂ (0.7) in region n'
on : '('t ¢) - in region n" (41)

{(g-)awrca:ft) = w"(t,7), for |E|<1 ,-rl_=o,;‘>o
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The different order in which the arguments ¢ and T are written,
ag well as the different notations for f( E ) are introduced to at-
tain that all formulae pertaining to either the left or the right
lateral region may be applied to.the other simply by commuting pri-
mes with double primes and o with T .

+1

=4

Now we are in a position to set up the general integral
equations for determining the different w,y's and w,r%. For this

. purpose we return to. (16), and ‘note $hat in the general case it

~ 1s necessary to replace f(Git) by a set of different symbols for
gl'l along the path of integration in accordance with the notation

introduced above in (41). We note first that%‘-&-:O for x>1 and
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z<r(1), and therefore more specially for the part z <x-1 of the
right lateral region, i.e. for the region T4<-1 . This means that
for (o;t) in that part of the left lateral region where a>1 (i.e.
just the part which is excluded in (16)), the lower limit of inte-
gration of the first integral is -1 instead of -o . We may there-
fore write the following generalization of (16) for n 1:

f ‘u’n (qt)dt

g+2 \‘1‘ t

TP AT wmettdt | wgrgedt, P wTadt (42)
o 2m-1 \]T*{ an-3 \'t—t' a’!z‘ \,t-t'

. in which the paths of integration may be vizualized as 1y1ng along
the line s=¢ , as indicated in the figure. Equation (42), as it
stands, is valid for (6,;t) in region n', However, we may suppose
that each of the formulae for the different functions is inter-
preted in the whole region backwards of the region in which it re-
presents _% , as was done previously in (25) and (26). Then equa-
tion (42) is also significant if (o ,t ) lies in the regions p'
with p»n, though of course the solution w,@,1) would not there
represent the true value of%’—‘,‘i— ’ since%‘,'{-=w.,,-(a',t) in region p'.

- This extension allows (42) to be compared with the corresponding
equation for wg, .y (et) , viz.

_ j-T Wy (T54) At
O+ =

n-a  2med w,,r(t a') at Wen-gy’ (et T2 w”ct <r) dt
-"‘%O 2m-1 [ F
Subtracting this from (42) then yields

_ ft Wy (@8- Wen- @)
T-t

2nf}3,“.-‘.wcn_2)n (t,o)dt . /Q‘— w(.,,__i)"(t )t / U9 - ;) ’(t o) at
5

- 2n=5 T-t -3
. j-"z Win-1)" (+.9) - Wen-2y" (4,9) ot
- 2n-3 V T"*—
Introducing the notation
Sw.(0,T)a Wy (0, T) : for n=o0
| Wy (0. T) ~Wp gy (U, T), for n»1 L (43),
Sw, r(t,0)= ] w,"(t0) for n=0
w7 (T.9) ~Wen-1)” (T.9), formn>zt |.

this becomes
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a T )
O= 92 Aw(‘n 1)"(t a) dt + / Aw""- (G.1) olt (44)
2143 V-t ' oz ([Tt .
in the regions p' with p>n, i.e. in
T>F+2>2me1, where my1 (45).

Now if Aw(.n_,)" is assumed to be known, (44) is an integral
equation in. duw,' , of the form given in (32), and with solution

,of the form (33). Therefore, substituting foro , p, ¥ -and T ,

and replacing the functions f and.q:,,1 occurring in (33) by the dif-
ference functions in (44), we obtain

g-2 A '
dwg @O L, Sy

valid in the region (45). The corresponding result for the right

lateral region is 2
Jw,." (t,0)=- Awm_”- (S,T) IE'.E;S' ads

'Tz 27-3

wiee) 2R (46),

(47),

which is wvalid in
G >T+2>2m+1, where nri .
In the notation of (41) and (43), the solutions (37)
and (38) obtained for 2% in the regions O' and 0", are

a
Awov(a',‘t) - 21,_0__2 _f flu) Tt%ugd-u (48)
) awoncr,@:-g}% S e e a (49),

and, using (25), these remain significant for all regions p' or p"
respectively, with p>»>0, i.e, in the whole left or right lateral
region. The set of relations (46) to (49) above, form an integral
recursion system which completely determines the difference func-
tions dw,rand dw,” for all positive n. This is in fact the solution
of the problem of obtaining 2% in the plane n=0 , (as is required
for the application of (6) to obtain ¢ everywhere in space),

since evidently, by (41) and (43), 5% may be written as

o, ' ‘
'B‘V(:ﬁ_‘;) = q.:,l@rr) Z Awm @,T) (50)
if (o, T) lies in region n', and as

M— Z Swn" (1.9) (51),

for (¢,t) 1in the reglon n"

3.2.3, Completion of the solution.

The above results may now be used to complete the solu-
tion of the problem of determining ¢ and therefore eventually ¢ .
We have already obtained the first two approximations to the final
solution @ , viz. firstly the function (28), which is identical
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with the Kirchhoff approximation, and secondly the correction terms
(29), which were obtained by elimination from (6) of what is evi-
dently the two functions that are now called qwy and dw, . , as de-
-fined in (41) and (43). The values from which these first terms in
the solution of ¢ were obtained by applying the transformation (27),
represent the correct values of y only if the point P:(x,y,z) lies
outside both of the cones z=r(- 1)+2 and z=r(1)+2, which is the re-

gion for which the only values of ¥ Q contalned in (6) are £, LA

and w If P lies further backwards, (6) contains also values of

ot e
-_2—?1 which are composed, by (50) and (51), of terms &w , and 8w
with m2 O,
We therefore consider a general point P in this further

region, and note that it satisfies the conditions

PED+AN, KX S P (-D)+2 (Ny+1)

P(1)+2n, <X &P (1) +2 (ng+1)
in which now both n, and n, are at least equal to 1 (while their
difference is at most 1). Then y may, by using (6), be written

in the form x+VF:? 2r ) L2

2T, yY,x)=-2 [ #dg —_——
x- R " / V-9 () &
Z-rM=-1)~1 do 'l:, & ¥q ¥n (4D dT ;-m)-id %% Wn (6, T) o

-1/ T+ 2 V (¢|°¢)(T‘l "T") cr!g \/EG; ~0')(‘L'1 -T)- “‘! '

which, by (50) and (51), becomes
a\fxfg® o zr) dy
anyiy=-2 [ {@dE
x-v;‘-% 2 0 (X-;’) = 2

X=P-1)-1 Ty-=—a x- r-(q) 1 G.—— Swue (T, de
/ e Ui (Cl“t)d.‘r / dt 1 j,'l: _°__
m VCU“-@CTrt) T I ce2  V(@G-0)(T,-T)- 4t
X-rE1)-1 § Aw ,(G't)d:r: - (1)-4 ‘d"" Aw o (T0) da
M d TR — n" dr G TT € (52).

il

«.%1 am-1 ﬂfz V(cr c')('r,-fr)nﬂa m-1 amaa / \/(0‘,-0')(1: “t)-¢}
The first three terms have been treatecf in (3.2. 1), ylelding the

results (17) and (20) for the second and third respectively. The
rest of the terms may be similarly treated by means of the integral
equations(44) and its counterpart for (¢ ,T ) in the right lateral
region. It is sufficient to do so for only one of the two sums,
since the other follows by commuting ¢ with T and primes with
‘double primes. The general term of the first sum in (52) then yields:
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.j 2-71')-:13 11-%¢ &?m(cq;t)d:r___ 2= h(=1)-1 wr ':-‘-'o__a_ &"” e (BT
N R SR AR -y e Ve -c~{a'v (- ag)-T
| | . . ' - =+.z,r}—i)d do- 0] Sw(m_.,)u (z, @ ot
B T Vtr,-q' 2ma,v (%, - i 2ot

=P (-1)-1 =2 Sw(m_.‘)" (T, 0' )d-‘t _
o= / d.ﬂ' l — ]
. am-1 ;2m-3 . \[(cr c)(t -'t) %

by a.pplica‘t';ion_-ofl (44). Therefore flnally the J.dentlty (52) becomes '

1 PINTAI z-b(8) . d o : : s
CAamy(xy0=-2 [ HE)d. / , :
ST g (z-2- r%(s) . -
CzeRGN1 xer)-mg Ay T Z-rE)-148 a7

+-2 e +c§>¢t§ / ,——(x e %-z-!-r{"l )“*(é)ds_ I
Myt zeRED-1 @R &wm,,éccr)d:: -n,- z.h(1) 1 T-2. Sw (RU)dT | :
A e AV R e L
 M=0 et . am-1 @G-O(C, Dy mao 2m+1 2m-1 (q—o')('t,-‘t) gt S
In this expressioh the values’bordering the hyperbola zaz-r(@) have
been eliminated ex‘rerywher’e exceptiﬁg in the first term, (so that
also the highest value among the index numbers m occurring in the _
functi’ons dw- ' and dw. ',,, has Been decrease'd by 1)',- and 'z-occurs% li-

nearly in the llmlts of integration of the remaining parts. The a-
bove process is also best vizualized. by referring. to the figure.
"In (53) the point P lies outside the cones z=r(- 1)+2(n +1)
~ and z—r(1)+2(n2+1), which. cond:L'l::Lons are reflected in the occurrence

of functlons &wm,' and 8w oM for only such values cf m which are at

" most equal to n2-1 or n, 1. respectively. That thls should be the
" case, is evident, because the domain of influence of for 1nstance
the region n' is easily seen to be the 1ns:|.de of the cone z=r(- 1*)+2n.'

- We shall now analyse the general term :Ln the second sum

of (53), viz. .. _ T L

‘ : czerey-1 - TR Swo, (@D de T . '
o #mf., Veomog e,

in: Wthh dw ot 'is ‘given by the recursion system (46) to (49), whlch

4

- may be rewrltten in sllghtly different notatlon as o S

Vit e ).
v a- -—__ $ —_ d o ‘
Sw" (s° 51) 'n:Vs -55-% /1' (u' s,-s +2u. : * . ' :
AT s R E
&w,.. cs, s,)_ e ey J #-w e o |
: U BN L VB
o »l&".Dn' (Sn. s'n.+1)- x S.;“"-:S = / w(n 1)" (s, Sp-10 -n)- _.,‘”_5.,‘__1 n-1 - »(55) _‘

VS Snoq T
n GniSped=- —v——- Sw ' <sn. . sn) n cdsy,
'"' o s’“"'-.s"'? 21\./-. “‘ 1) ! 5"& - 511-1 :
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In qrder to demonstrate explicitly the influence of the boundary

values f(x), the function & Wy WAy be written, for m» 1, in extend-
ed form, thus '

- -5 +2 S -2
S VT Sm-2 dSm . Som. = Sm-1 m-1”
w,“‘! (Sm, 5 +1) = / ————
T —_—
Q) v Smsr~Sm-2 2Mm-3 Smir~Sm-1 | Sm-Smq?
S., -2

/ ds, Sy-5o+1 7}{‘_)1““_] we
1 Sg- 5o Sy 92 -1 5y-5,+2U

am-1

Therefore the expression (54) becomes, with ¢ and T replaced by
s, end s_,, respectively, o

2V zre1 -

/ i s.m7-2 ds.m Sm-%  dSmer | [Sm-Sma*? /
L T+ +1 aeef
") 2m+1 ™ am-1 \[51"_...1‘5 -2 V(z+x s.m)(z-x 5‘m+1)"‘&‘2m-s St Sme1 | SmSme -2

\}51 5°+z' &{C I"" du
1 5% % -1 8-S ¥ 2L

- r'(1) 2m—s x- r(1)-2m-3 z-r(1)-2m-1 ) ’s, XXy z-r(1)-1m+1 Sg=5¢+
-1

( )"M1 w 0 +2‘ 5,-5o+2u | 552 s.,u s,- Sq- s,-z
z-r(1)-3  ds,,

\ [m=Sm-1*2

Sm-1*?  Sp-Sm.g

X~ "(1)-1 d9m+1

Sm-Sm42  Sm*? - (5mﬂ.'5m-1)'V%+1‘%-é \ﬁzu:-s.m) (-%-Sma)-¢*

by chariging the order of integration. Making the substitutions

S‘P‘ {1-r(1)-2(m-1:)-5} "t-mn-p
this becomes ‘ R
VX' z-r(1)-a2m-3 S dbuuoam;:-u diy | [hn-tett R A W /
¢ Ve de [ b, [f—2 Je——— [T\ T [
(_“)mﬂ _1/ {_ "-] _/ S / t, it 6“,,.&,“. o/ t,m‘-i.,MH tm-tma

' RNV T 4
...... / N‘\/ﬁ v e

(+x+3eky) (r01) - xm-t, 2 (5 6)'

The recursion system (55) may therefore be replaced by a simpler
ohe which is independent of f(x), viz.
Do(t,rtyi%:4) =

Vi,-t TP(1)+=+5+£1)(!-(1) X+1et,) s 4

\’ K 'd'.s 4 ' .
Dn (tn.'l m!x"9= it *t“‘ tn D a1 (tn_,,, n,x,u) 'LM, —_—n-T (57)
nﬁ- n 1
In this notation (56) becomes
‘ add L) Am-3 X-b(1)-AmM-3-4 iy, D‘lﬁ(*m-*mﬂ‘- %U) (58)
()™ _[ {() u-} i du °/ dt g / TSR dt,, ,

whj.ch is therefore the fqm which the géneral term (54) assumes

when the influence of the boundary values is made explicit. This
is valid for all m2O0.
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In order to obtain the contribution of (58) to the final
solutiony , it has to be laplace-transformed (ef. (27)). Since
this term does not occur unless z>p1)+2(m+1) , the lower limit of
integration is r@)+2 (m+1) , and the transform is therefore

vz oo . z-r(1)-2m-3 Z-r(1)-2M-5-U tmer Dm (s tamen 'x'y,)
xS [oru Ve aw 7 aty, Ji ST
O™ r)+ame2 -1 _ ° 3 b~ tmta U
Wz iy b x-r{1)~gm-3-u Lm 1 Dm (t‘m 1tmers x’g') ‘
e / f {(—)mu.} 1+u du / e_"kzclz / * Ay /+ dt .,
(“@mﬂ -1 rD+F2MEILU 1 m+1 - +‘m +2+2U
T ! - *m1 Ot o )
a *{'.(1)+2m+5} HoM CJ& 1w du d;““;“ dt e ! (59) ’
+1
(‘“)m -1 o ‘Em +1-tm+2 +2u

by introduction of the wvariable
M=Z- {r-(1)4-9.m+3+u}
and in which the upper limit of 1ntegration with respect to u is
, by (25). The expression (59) may be further simplified by par-
tial integration with respect to 4 . Doing this, and substituting

-

"u=g
and ‘E,m_z A 4
ield v
ylelv—s- 'k } 1 ke ® . M Dm(l,/u;x,y,)
_ 2ya2 e [ {"(1)+2m+3 /#E)eil. \ ht? d‘E /el./.l-d/.‘/ A § (60)
(-ﬂ)m_" tk -1 ° : o M- A+2(1L8) ’

in which t g is written to indicate py™g .

The corresponding result for the general term of the

flr?/_z sum of (53) 1s e D

'V a.k 1)+2Am+3 ¥ A5 X,
(-Tt)"“"»k {M) } /*@e J‘E\/? dﬁ/e*“dﬁo/ J-A+2(138) (61,
in which # 8 denotes()’"‘“g :

We can now write down the formal solution of the boun-
dary value problem (1) for ¢ . The identity (53) contains the ge-
neral solution of ¢ , from which ¢ follows by applying the Laplace
trensform (27). The transforms of the first three terms of (53)
have been obtained in (3.2.1), and are given in (28) and (29), while
the contributions of the general terms of (53) have been obtained
above, and are represented in (60) and (61). Therefore finally we
may write, on substituting for #+(g) from (1), an expression of the
form

1 o9(g,0)
c.p(z,g)=/ o G(x,y;§,0) dB (62),

=1
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in which G is the Green's function for the problem, viz.
1 oo tkz dx oo i.kZ dx
GOy BO)S = n® {kr@}+1 S/ et + et _——
¥ o e T r)+1-8 Vzfop? (3) h(-1){1 +3 Vz&_p? (g)

__Vz esi.ki g2tkm e'._k{.-(-n).r(.)"“g} \/‘*Tf“_é /ooet'y‘d,u 7& Dy (X, 05 X,4) A
w m=o m™ ¢ ¢ -nif{r+e™g}

L rEdr™ g} Veg 7.3”‘/‘ d,nf Dyn (A j-2,) -
; S ; /L-7L+2{1¥(-)m“$} (63)

in which the functions D are given by (57). Here the infinite
sum is for the moment written purely formally, and the task of the
next section will be to indicate in which way the formal series oc-
curring here should be interpreted. The problem is therefore for-
mally solved in terms of a Green's function consisting of a sum
of terms, of which Kirchhoff's kernel is the firsst.

3.2.4. The asymptotic character of the solution., .

Since what we have set out to find, is the solutiony
for large values of the (eventually real) parameter k, the formal
series occurring in (63) need not converge to be useful. The pro-
perty which is needed,is that successive terms should be of de-
creasing order in k, in other words that the series should be a-
symptotic in the sense of Poincaré. We shall now justify the work
of the preceding sections by showing that this is in fact the case.

" A glance at the series in (63) shows that the general
term has a factor e21¥® which is due to the fact that the regions
of action of the functions Sw,, and dw_, (cf. (41) and (43)), lie
progressively further away from the plane z=0. It should be noted
that for complex k this factor plays a dominating role, but that
in the case in which we are eventually interested, viz. the case
where k is real, this factor becomes purely oscillatory, so that
a closer analysis is needed to determine the order of each term

for large k.

Evidently the asymptotic behaviour of the general term
of the solution ¢ 1is sufficiently represented by considering the
slightly simplified expression '

1‘3«?(5,0) ik ik D (A 3, u) A
T V1+'§ dE/e/‘dyu./ h/u' 4 (64)
- =R el (1+B) ,
We shall allow for the p0851b111ty that °¢e$“” contalns a factor

e*@D¥ | in yhich a is a constant, which is, for illustration,

chosen to be positive, and write
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""’f_;{—@_%@)e.‘k@")g for 1gi«! (65)
where £(%) is assumed to be a polynomial in & and k, of degree q
in k. This choice is in accordance with a common type of boundary
value occurring in both diffraction and aerodynamic problems, and
is sufficient for our present purpose. In actual fact, however,
much wider classes of functions may be allowed. Substitution of
(65) in (64) yields

1, oo ., AU )d.l
ika® 4 Bm( Mix Y
_/e 'ﬂ('g)\/;;d.ﬁ /e"ls“d./; o/ prvryeres (66).
Following a suggestion of J.Berghuis, the substitutions
#8=2uX, and Aoud, (67)

transform thls 1nto
b 2 Pm@yuixy)

7 etk / dx, /™ du / dre Lk’““"ga'x‘)"t(ti)&

1'R1+4 X1
which, by the further su'ostltutlon
plirza X)) =p, (68).
becomes 3 . :
. o0 2a.+ /u.., D'“(Ay4‘,’x,|d_)
\/—' ~Ltka d-x x‘d. dh I.L/l-, ‘P\.( ) .
V2 e o/ / M / e §)"1 (22 xf Arax, (69)

in which only the single oscillatory factor et occurs. For the
sake of simplicity of analysis we still suppose that Re k is posi-

tive, and use 1
2a.+§1 oo b adi
7 Tl
Then (69) becomes, by 1nvert1ng the order of integration,

X 1 (A p5x,4)dA
ZVE'e"I‘“l / e“""./‘«‘ dty f 409 al Bkl tdni

o (1+20-X-D'§ ./ 1-A 44 Xy
F XtdX, 1 Dp(gusx,yddd,

/edw‘/“rd'/ﬁ / +®

B @ax)i 8 1-hy+4 X,
-itka ik x, dax 1 Dm(A,/dA;x,A.)d.l1
=2V2' e Pl id ‘R.(?) 1
/ - / (‘“‘2‘-""’(1)‘i o/ 1-A + 4 X,

dx, Dyn (A 14 5 20)d
R Lk“/e 5 g ol sy A0 2 F O,
° (M X, +2a.); o (- X +4(70)

where the substitutions
| puqmtatu, and x, =#‘ | (71)
are used in the second term,

Now, the integrals occurring in (70), considered as in-
tegrals over My and u, respectively, have the well-known property
that their asymptotic behaviour for large k is entirely determined
by the behaviour of the integrand near the origin. This is a state-
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ment in what is generally called the domain of Tauberian theorems. '

The prototype of the above situation is formulated by Doetsch

(1937) for complex k (theorem 1 of his 8 12.3), but when k becomes

real, the position is more difficult. The general ideas occurring
here are at the basis of the method of stationary phase of Kelvin
(1887), and rigorous theorems in this field have been proved by
Watson (1918) and Van der Corput (1934, 1936).

We therefore need the asymptotic development near m,=o
or y, .0 , 0f D (\u;xy), Wwhich may be written, by (67), (68) and
(71)9 as Ak Ng Ay

Dy (4%, )= Oy (1+za.x, " wtax, ' % '#)

(phy %o Xy (0 4M9) Mg Xy (204 4rp) (72),
= 'm( 3"’%)

Mg Xg+ 22 ' ugX +2a
so that what is néedalis the development of Dm near the origin in

both arguments u and A . It is convenient to simplify the function

D, of (57) by introducing the variables
o= P ()4 (1-X)
' Bqy=r @) -(1-2) ] (73)

so that Do becomes
1

(t t,; =
R Gatyimg) Vit VAo ol tr@rBt 4t t,
We now perform in the recursion relations (57) the substitutions
bz | (74).
: ty = i, for o<n<m ]
The formulae (57) therefore become
A

VauG-£) Yao e foc +(a+p)t + /ut'.}

for m=o0 (75)

D, (kg b Xyi4 )

D, G&,,t,;x for m21 (75a)

I, I
P \V/ TGRSR R/ m ac,{;‘*,+(4+|;1)t;7;.t',-t:

prdtn,,
Aoy -t )+

and

P (bratnyg -,x,g).\/

(], )4

/‘L—T.;- / Dipg (g st 3%04)
HMCgy-ta) o : |
1 W\Fﬂ-‘ /.A(t',m-t"nj tn Dy (t.,t_,,_i,l_-,x,g)dlz"n-, (76)
* g"‘lﬂ ‘*"'n ara 1*:‘,/"“;.4-1 't'-n.-d)

14

N En |
.% — / Dpq (b rtriXy)dty 4 0 )
1, %, :

for g<n<m , while the formula for o<m=-m , written in extended

form, becomes
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D‘m ('t-mnj"-'.xu'é)
()| [ \/ﬁwn-sm-s

R 1'-£"m. o 11--/u.(1-+..m 1) ton- t"m-1 é

| L, Wi ) / dt!
{1+ to)}\/t' -t Vaa.,«;u {ot )+ (aep Yt Q ' (77)

A cL{ tm.q ty '°
e BT oA
T Vst 4 Ve, ! 64, 0 V-8 Vamppuda )+ @ep) )
m+1

In this, A is O(u +1) ifo+0 , and 0(/u. 2)if =0 , for small Values of
. Substitutin
M ituting Iy

/J" 1+2G—X1
me _Mim= MmN
in accordance w1th (72) and (74), it is seen that
Dy (A ;5% .t&)=9(,u1?) med
for small u, , unless &,=0 , in which case it is O(m, *) . There-
fore the factor of the exponential in the first term of (70) is

Oy mi_s) or O(m, 2 "’1) y So that, taking (66) into account,
. _m3Ss _m34
the first term of (70) is G(ka' mi_) for £, 20 , and O(qu : )

foro(.1=o . Similarly, using the substitutions

o MaXe (2a+u,)
/u " /u,,_x, + 2a
A - tm ’

it is seen that the second term is of order k'} times that of the
first. : ‘
Therefore the series occurring in (63) is an asymptotic
series for large k, not necessarily convergent, but such that a
finite number of terms give an approximation to the solution ¢ ,
becoming increasingly more accurate for large k.

3.2.5, The transmission cross section,

As an example of the more detailed application of the
results of the preceding section, the transmission cross section
for a normally incident plane wave e "kd "k(’""h) on a soft
screen with slit, will now be calculated. The result may then be
compared with the Kirchhoff approximations obtained respectively
in (8) and (9) of (1.5), viz. ' |

L (78a)

. k E _2-
0 ©) = 1-1—2- s-vz—rJl-u:: + )+0(k ) (78b).
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Using formula (13) of (1.2), we may write
a(o)=Re\| T A(o) (79),
in which A(0) is the amplitude in t_?e direction of the positive
y-axis, being the coefficient of e N in the asymptotic expansion
\l o
of ¢ for large rb=\’x‘+y‘¢

The boundary values are given by

2%(1%'0) = a‘:Pl(rlE O)"k for | x|<f.

With this substituted in (62) and (63), the first term, (being the
Kirchhoff approximation), yields, by using (79), the value 1 for
large k, without any powers of k in the developmént (cf. (78a)
above).

Next we consider the second term of (62) and_(63), viz.

ik o - V_FZI_. 80).
/ {l’(-l)+1 x*-r2(§) r(1)+1+; U -r fii} (80)

Again it is sufficient to treat only the first of these two inte-
grals, since the second follows by replacing x and § by -x and
-& respectively. Substituting, therefore,

. z=p+{r(1)+1-§}
in the first integral of (80), we obtain for the root in the inte-
grand

\l (p+r(1)+4-g)‘-cx-g)‘-y"¢ \l A2 (r(1)+1-8) +2(1-§) (r(1)+1-x)'
=\[p.‘+p.(a'.,+[51+2-2;)+20¢1(1-g) l
in the notation of (73), while the integral itself becomes

'dr{r-a)-m} 4-ik 7 ik : dp
€ "_1/‘e §d§ o/e s \lpz+p(o{4+[b.,+2-z5)4-20(_1(4-';)

1 v
ikre) 2ikx ikp oy :
€ o/.e d’fa/e . \ﬁlz+p.(0¢4+[54+hx)+40(1x

by the substitution

4—§=2X
Putting now first X:,.LX" and then p(-n-.zx').,p,’ , we obtain, (again
assuming, for convenience, that Im k is positive),

. gt ﬁ' k. (+2X") = poljt
zelikr() / clx’ / e M - V-p“+p.(0(1+f51 +up X') +.4,0<.,P.X'

zkrc-tl/ k/"" | \/I:?d u '
12X’ V’J’(‘H‘l X") e @+pyeacs X' )(1+2 X")
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2eiJ<r(1) / e i"?“' d./U- / dx

: (#2 X )V (144X°) + (¢, # By +a06 X') (1+2X7)

[T = |

AX NG oA X )+ Gy ¥ B, 40 KO(#2X3

i.kr@) 7otk V—." 7 dx’
/ W / (42X I\ ! (144 X7+ be g+ p+404 X' (10 2X" )

_2e Ll:{r-(m-z} / u‘/""/,," \[!4-—\ 09".' / dx" (81), ‘

(/U-X +2)W X" (2471-")(,“-" X"i'Q}F {(1'*{31)/‘"”1*4“1} O“'" xvv+25

where in the second integral

/uf'.-_ u'-2  and x"=+x;
The amplitude A(0), which is needed in (79), applies to values with
x=0, i.e. with &« .p -2 , from (73). We therefore put x=0 in (81)

and obtain, eliminating ‘a

k(o 1) 7 ket | " d 7 dx'
2 1
¢ /e \//T /uo/(ﬂz)()\/zd“(ﬂz}()‘i-@-héx )/u. -2(+2xX")

AR N o] dx”
) 2+
. / N S / (X" 2V as, (X2 e "{ 2o )(ﬂ-"x"*"') 2(p"X"+2)
ik
e (“1 1) {/ ehk/“-\’ 'd /

' l\( " d‘x'

/ e T Varu °5“ PRI
o (/U- X"+2)

for large Oy = 1+Y \/1+ — y i.e. for large y. Evaluating the in-

ner integrals, ‘this ylelds

wVE

G2 x')’

thy
o VI ' 1 @ik [ thut” d
\a \@,{ UV du-L e /e \/";‘ -
Lkg. ;”—t- o u' ' e!l.k ”e-u'u, (1.. )}d,u,
-VT = ,{zki 7 z\/_‘l:‘,/ 21k
ey Weﬂ: +eh +O0™)
\/" 2\T ki
for large k. Therefore, the two integrals of (80) being identiecal ——

for x=0, the contribution of the e:&pression (80), viz. of the se-~
cond term of (63), to the value of A(O) is
\/..| Mqt:l. ﬂ.th
:uk{ e - }+O(k"‘)

VT k¥ Iy

. H ™
== e'% + et(zk+r)+0 (x*)
YRk rtk

Substitution of this in (79) gives the contribution to i) , Viz.

!
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- ".ﬁ-l“tltk B 'V
Re\.ﬂe“'{- e % * ¢ +T)}]+G(k i) ,

2k \ark ftk
' .,Ré[_i',, ﬂj} O(R'E)
| 1 2k \/mk’ _
sin(ak+: !I) +0(k i) ' . T . - . - | (82)0

2tk _
‘ - Now the contribution of the terms under the summat:.on
sign in (63) to the transmission cross section cr(o) may Vbe deter-
mined., Aga:.n the parts constituting each term of the sum are iden--
tical for x-O i.e. for o -By=2 and the ent:.re first term. be-—
' comes _
z\/_' IJ( ..l:(at,u) &E\/—' ;l;u. ' dx
e we dB /e
e . / / éu/ {';;-l+a(1+5)}\0;-h\ﬁ;u,wz,ﬂ.ﬂzm,)l%k
which corresponds to (66) with a.=-&(§) 1 and m=0 , 80 that, using
(70) and (75), we get 1 dl; |
8k ~k@c1+1> ik, 3 g X 2Xy ] . . § ——
- prd 7 /u /u'1 / (142 X); (1-11~|-4X,)\[/L(1al1svzid1W{d1+(2+“'1)l1>ul1}
: +%e"l‘6‘1+5/e%(2%)%/4#‘ 1 X;aLX /4 _dA4
Japmnt {w/ax.+«}w<msw«1w{o4+(u«ow~} (83)

" in which is to be put /u" /‘-z"z(“/“a)
( /)u. WX, Aeuy X
in accordance W:Lth T2 For lar e x, we have ; .
| [404 + {°‘1+(2+041)7t t k,}] z woc {i/’-ﬁ:?u)}i 1(29‘) o -
ke e ! 2oco{asm (1+7\,) '
50 that the contribution of (83) to the a.mpl:.tude A(O

2k $° IJE/L1 gd. X.‘id.x,
8tk 2 / M /“"/ (“_“1); /(’ X+ aXy ) 24 C1 7:5 ,u.,(«-)..)

142Xy
&k oAkt Xl e e
' / »w,d;u./m = /{w ‘“’}W "’”f;f. :w(“u,) o).

| Considerlng the first term of this expression, it is seen that the
behav1our of the non-exponential part of the 1ntegrand near . =0

is represented/__pv . d?\- | o
5&(1 ‘ 1 . . o X . .o o
ir ! c«-h1+«x1>\/T1- 1*00")« B (e
' Evaluat:.ng this 1ntegra1, we get TR : .
’ / 1d-x1 / / a.t-d:a.n ZVT' dx
(waxY' 4 ("11*‘“"1)\/ A 8 (1+zx:)’ !
a.rd:a.nz‘/-' ' dx, - :

! BT ] ° T.i -.,/ (1+2X,)(1+4x1)\/_‘
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so that the first term of (84) behaves, for large k, like
—% eik %(\P-i):i—za[e?‘fudu+®(k'2)

_-—zi;(\["a):fﬁ(k 2)

The non-exponential part of the second term of (84) is, near pyz=o ,

equal to V_ '
dexz
y

( = / ,/ " airzd24§x11) ro(ut?)
th? S \Kedksr0 (u )

3
=-fi“zg +0 (:U"')’
go that the term itself becomes, for large k,
. 51r :
8ik _uik 1 i reo T -~
—5 " / e u? du+0(k~%)

12
kY 5

e tC4k-F) -
- R vo(k-%).

Pherefore, by application of (79), the contribution of the term
with m=0 in (63) to the transmission cross section is

(uk
ReVI-z'_E ”T{' k(r 1)+ %;,,—k)?]+ O (k=3)

Re { (V_ L(zk ) ‘N_'g'uk }+e[k'3) .

=-(V;‘,)stn§z::g) +;:9;t +0(Kk™?) (86).




NATIONAAL _ :
LUCHTVAARTLABORATORIUM Report P.157 ITI.33

The next step is to consider the term with m=1 in (62)
and (63). Evidently this is

2Y7 ik J:(ot,m) Lkg\/r—‘dé en.lsu. ,/u.-?u-‘c
34 / ' / '-9‘-/ 7&+2C1+E) =X .

o -

A dt,

/ (-t ) VAt Vaotg + 00 A+ (2400 £ o+ Ak,
with contrlbutlon to A(O) equal %o

27ik
5"’( o:e"l(§ +E d Jy"' \ ’ pAva
/ \/_E & / W //u-l+2(1+‘§) /(/L-i *-‘4)\/_' tVatA+t,

3% eAL'!/.oelk/lk1 1%% /°o \/X-,Id.)q / d.l| 4+ M.—X.‘(“-A‘) )
g 4 o (wax)id FMEaXe\ )

4 Moy M A 1+2.X1 (-2 )
qtlh &*" +0(k-ﬂ) (87) ]

° w12y
in whlch the order symbol refers to the second term of (70) for m=1.

Again the behaviour of non-exponential part of the integrand near
Meqe© is required, and this is given by
\/-'d.X1 : 2\/-1-: d.l1 ;
/u. 1 / (mx,)i / Q- axq)\1-2 ,/ a\[1 +0(’“ )

VK dX, T
/u‘ / (1+2x.‘)§ / 1-A,+qx1\/ ot 0(/4,&)

7 Vi dy, stds
=/u.1 / (1+:.x,)5£ (1#88) (144X +4 X S2) + D(/ui)
Vi WdX1 oo 1 14 4 %4
=/“1 / (,,,_xoﬁ / {‘ 145 + 1+4X1+4x151} ds + O(,u_‘i)

\

8T g 1555 0 0h
A HC I HEo R MRS

Therefore (87) becomes, Lor 1arge k,

81;k 4ik 11: (V—"“‘) e l~| / % u id.w-b-O(k-z)

VE'-1 L(‘lk-%)+ O (k%
.2(frr:l<)9sl ¢

~which contributes to the transmission cross section an amount
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Re Ee"g Va1 e t(ak 4)+0(k-i)
2k Ari)H
= Re \/2-11 < “k O(k-i)
PAVER 43
1\ cos4k -5
= \t=-=r +0 (k
( W9 2mk? ) (88)

Finally adding the contributions (78a), (82), (86) and

(88), we get

s
Tt - SNCKT) | wosak o ()7

Vi

21 k2

(89).

This affords an interesting comparison with the second form of the
Kirchhoff approximation, viz. (78b), showing that the form of the
term in k is correct, but that its coefficient is only half of the
actual value. Thus the conclusion of (1.5) that this term was in
error, is confirmed, but, on the other hand, the marked resemblance
with the correct value is in accord with the success of Kirchhoff's

method in physical optics.

The result (89) is valid asymptotically for large k,
and the question naturally arises how small k may be taken to s$till
obtain a reasonable approximation. In this respect the exact results
of Skavlem (1951) afford an interesting comparison. In the table
below, ¢ (exact) denotes Skavlem's values, and ¢ (asymptotic) the

values computed from (89):
k

QW 0O J O & A N -

-—

¢ (exact)
0.5454
1.1843
0.9720
0.9424
1.0499
049956
0.9717
1.0233%
1.0020
0.9822

G¢ (asymptotic)

0.6992
1.1932
0.9627
0.9484
1.0519
0.9935
0.9726
1.0240
1.0011
0.9823

Thus, evidently, the range of significance of (89) reaches down to

values of k below 10.
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Chapter 4.

THE AERODYNAMIC PROBLEM AND THE "SINGULAR"
SOLUTION.

4.1. Recapitulation.
The results of the preceding chapter may now be applied

- 0 solve the problem of the two-dimensional airfoil with chordd ,
oscillating in subsonic compressible flow. This problem has been
discussed in (1.3) and we shall flrst brlefly recapitulate the
main features. .

The Lorentz acceleration potential ¢ was shown to sa-
tisfy the differential equation

(a+k*)y=0 ' (1)
with boundary values
o9 ke
_a-q--i-wm z W (x) for *aotl,-lxkl (2),
$=0 for y=o0, lxi>1

in which W(x) is defined by
Wix) = wr (-Ez)e"kﬂ"' for jei¢1 . (3),

where the normal velocity of the airfoil due to its prescribed os-
cillation is, in Galileo-coordinates, |

‘l‘,’(x’) LQL (4)0
The parameter k was shown to be :
ke 2 | - (5),

which means that it is large for high frequencies and for near-so-
nic flight speeds.

, Further, in (1.3) @ was split into two parts " and
¢® . Of these the "regular" part y" satisfies the differential
equation (1) and the boundary values (2), together with the edge
and radiation conditions, exactly as was the case with @ in the '
diffraction problem of (3.2). Therefore, as was written in (25)

of (1.3),

1
Wy = / '%{wéfx.g—;v.wde
-1
1 . ,
=/{Vw @- X W(E)]G(z \ 6,048 (6),
by substitution of (2) In th:.s the Green's function G is given for

large k by (62) and (63) of (3.1.3). On the other hand, the "sin-
gular" part gps satisfies (1), while in (2) both conditions are ho-

-
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mogeneous, and also ¢° possesses an integrably infinite singulari-
ty at the leading edge x=-1, y=0. Thus ¢° was shown (cf (29) of
(1.3)) to be the function

v . B 7
CPs(-‘l'.g)=9-"‘-§— 'DPE G (x,4:~10) (7)
in which
ag = l1+§la! ' (8)
vhile o4 is given by (39), (34), (40) and (41) of (1 3)9 i.e.
“0"—"‘"‘1 'J.z 21 (9)
with '
pim-r W) 5, G E10;5.0)dlE (10)
pran/ W) B GGot.00dE )
4 _;kz' T 11
R1 E—Q-Le T%‘G (x g,--i.o)dx']% .
R2=[ f e —E?FGC:: y; 1,0)dx’ -0+ (12).
Here the coordinate &, is glven by |
_.E-_. l4~ g (13)9

while x, and 12 are the flxed coordinates corresponding to §, and
%, respectively. _

Thus it is seen that the function ¢ , and with it the
pressure distribution and airforces on the airfoil, are fully de-
termined from a knowledge of G. Therefore what is to be done in the
present chapter is simply an application of the previous work, no-
tably of the formulae (62) and (63) of (3.1.3), from which we may
write

P
G (x.yi§.0) ~ iy H {‘"' (F’} [’l'(-i)! -3 © Vz‘ ;Q) * r(-n{w; "Vz‘-r}?;}}
: ik 22 2ikwm ik )™ oo ik M Dea(A,1;x,4)dr
_% 3 Zga .E(_RT"_ {el {l‘(")f( g]’ \’14.(-1);“;[e [ d}*£ Aea ‘“{')"‘f}

. met o0, 44 P
e tk{h(-1>+('). 9}.‘,”@)“'50/?5“" du [ _2:\ (iz 3 *x('“) 7
(14),

in which - r(E) =\’Cx-’f)z’521

Since the determination of ¢" presents no new aspects, .
we may at once proceed to a few considerations on obtaining % .

4.2. Lne singular solution.
The main step in determining @°* is to evaluate

i%‘q (x.4:-10) = ‘éi‘_‘_“_1 lﬂ-g'l% G(x.y: &,0)




NATIONAAL

' LUCHTVAARTLABORATORIUM Report P.157 .. . | 1%3

“ard we 'shall now sketch this calculat:.on, and show that in the re-
sultlng series the asymptot:.c property is preserved. Since G is de-

fined primarily for 1§1<1 Ly We sha.Ll in the sequel always suppose '

- B to satisfy !El<1 s 850 that +he above expressmn becomes

'DE GG g 103-2‘"‘1\/1—@_0 (2,4, 8,0) o - (15).

Startlng with the flrst term of (14), i.e. with the Kirch—

hoff kernel, we may write

'aE o {""(5)} .. hp {k (ﬁ)} n;(é) |

-2 e

- ’::_‘) H m{kr( 1)} - when B i

~and therefore . :
v 3 ] o .
which means that from Klrchhoff's approx1matlon no contrlbution to :
. Lp 1s obtalned
We proceed, therefore,, to the next term of (14), and
get, by partial :Lntegratlon of either of its two integrals,

| _:::: ? tl:z dx ____ Lk{p(+1)+1:§}msh_1 nEIFE & T ke X g -'
"(11)"'1;5 YA (B) "'Cé) C pE1)+1F8 L p(8)

in which again, for convenience, Im k has been assumed to be posi-—‘
tive. Therefore, considering the first integral,

- T A ..
. -ag PE-B © m }
u - -5}-r(e)
TLOTE JPOH-B (X E){r'(1)+1 €
{ D+ 5}[L|< oosh . M. B ""(§)V{"(")“ E} P’(ﬁ)

o] et SO hww T .
~tke 5h }.(‘e) r.! (é) h(1){l § "Z’- "‘2(3).

(I+1){ (1) +2} R(_.‘) _ "'f (x+1) oo ex

z(-15 {r-(1)+:z’l r-*(.s) r}.z(ﬂ) h(1)+2: ? \/zx ,.z(_ )'

| J_f_§..,,_ 9 and flnally - ’

o ' Cdim g 1+§‘—o ) e"tkz——dz 20 .-

_ -1 1 DB h(1)+1-§ YR r’l(é =T

so that also his integral does not contr:.bute to - (15) and +here-

- fore to o.p. Its counterpart, (the: second 1ntegral of the second .
term of (14)), does, however, contribute. -Differentiation in this

.case y_i'e]_.ds ,
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‘o [ ikx dx

o8 r'\(e-1)_{1+.'§'e, Va2-r2(g)
. ei.k{_r-(e1?+1.+’§} (:_s‘-?)i{!_'f(ﬂ_)fj}é}ﬂ"(ﬁ) ik (x-%) | .
h’(ﬁ)\/{‘ﬁh(-1)+1+'§}2-rz(g)ﬁ (%) h(—1)+1+§ Nzt (8)

and if -1 the first term of this expression becomes 1nf1nite,»
.while the second remalns finite. The contribution to (15) is there=-

fore _Bim 4 ;k{h(-1)+1+'§} - BY rs145} e () ;

gt ® VT : r‘(é)\/{r(—i)nré}‘-hi(é')- | : (16)

In this, we may write

{N-1)+1+E} r‘(g),.zc«‘@){»c-o»,xn}

, ikx

xdx .

.

|
c
|

sc that (16) becomes ,
- dim 1 ‘];:"' el.‘tl"( -1) h(-1 +x+1
1 ® ; rc—1)\/}c1+§){hc-1)+x+1}
1 \/r(-1)+::+1' ‘ Lkr-(-ﬂ _ L -(1.)
Ve r(-1) - ' ' 170,
As in (73) of (3.2.4) we 1ntroduce the notatlon '
- PE)#(1-X) = & R ' ' ' . |
SR -(1-%) = (31 ' : .
R S RYQ TS S IR o v (18)

o 5 Pe) - (142) 2 B4
. so that (17) may be wrltten as
j Yooy xkr-(-1)

T 5
2"'[32
’l‘urn:.ng now %o the general term in (14), we have to eval-

uate expressions of the form a y : |
It ik iks °m Mt XY
5_’“}1,/_@' { ?\{11 ! / et My / /u. Yoy ol

but those in whlcn E o¢curs with the negative sign are eVJ.dently
zero; The terms which are to be 1nvest1gated therefore contain ex—
pressions of the form

T e Fobeg

’.

P N

/

4 eAe2 (1+8)

§--1 LkE\Fﬁ‘;? (L‘t+—)[F/ellSAAde/ M DA it xy) d.l} .

,u, “A2(14+8)
mO\/A,tx,%) I
. -h+d § ]

e e "’““)“/ ' 9,

‘using the coordinaté §1 of (8) The passage to the limit in (19‘)
may not be performed under the inner sign of 1ntegration, s:ane the
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denominator in the integrand causes the integral
/ Dm(k.ﬂ-,tx,tp (20)

tc diverge at its upper llmlt JL_/u. o Moreover, the function oc-

curring in the numerator has a factor (/u..h) I , as is apparent from

the recursion relations (57) of (3.2.3) defining D.» viz.
_ "

3

Polortii) = Vi, \fanpeolty s (By# Db+t
(21)

1
Doloti-%g) = rg, \/quzo-a(li NI

. - {'1“,1 ‘kn+‘d an (tm.-ntn 1tx1%)
D{l(in,{.nd_-l ’tx,‘d) / n+1— 'hn_-' +‘l d"h o”

We have to determine the behaviour of the Tunctions p, (A u;txy)
when A tends to u , and therefore put

_/‘_ (1 s) (22) °
Writing o, u) to indicate e1+her D (l,,u.,+r,g) Or D, (A, mi-X,4) s
and ¢ , f-,\ to denote either o s P1 OT oLy o Pz , and supposing « %o

be non-zero, we obtain
1

D, ,u(1-s),/u.}= VusYaocsfoce (Brad(t-8) e (1-90}
| 1 "
T Vs \aous Gt pradueard - us (Bra+an)

1 1
== + 0 |
Yus {V““"(“"P“ﬂﬂ-‘)‘" o 5)} | (23)

for small s orau , anc

(+-5) (1=
AR <=L T

J“‘T}l—s’  AL(1-5) dfo
(et v (-8, Y 4o O (- De(Pri) Lot o (1-5)
Substituting in this ° ropiep o/

s (1)t
yields

. ] T M (1-6) dity .
D’{/u -y } V / {aspou (st I fu Goed-8) \/40L+}L(1-s){cc+(|3+4)t',+7u(1-s)t'°}

- (“9“5)(1-5) / . _dt 7

v s {A#yl.(ﬂl’,)bu.‘st;}vrt': Vet pufocr (Bod¥, put ] - s focr(prdk, sty |

|

= dt, '
2F{/ 7 - .+ O(us) (24).

ysﬁ-t;)] \/1-{:‘ \[ 4o tp {ou (pradt, + /u.i:'o}
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 Generally, for m>1, we obtain
_ u+us 7o dt g Y4 l1-S)~tm-q  rtm-1 Om_altm-gitonq)

m{#(* N7 \%/ q+,.:ftm - y(i-s)—t:-1 _[ Ut (1-8) -tz  m-2

which, by the substltutlons

n:PC" 5){ (25)
becomes, when written in extended form,

\l%u @-9) -tym-4)
u+p.—g(4-5)tm_, o A=ty

Dy fu(s-5), 1} ’:\J’H—Lsﬁ pE -9 % /

tm-i v
[ dtm-2 Yy 1—p(1~$)(t.m_, /‘
) e (1-8)(4-tn_3) fm-1-f-m- 3
v L: ]
/ 2 dt] [Hf'.l(‘l-s)(t'g-f:r'
.......... ST \ ST

ity ' dtl
- e [ o+ (4= 81 ("= 3515 (itep-a){outi (R +4) e pl-) -]

’
!%:1( - ‘? 4 ’ ’ ) tont ta dt iy ({_' -t
2 4-S) . dt . Y (1=t :41_- 2 12
=t [ st e L [ wp(G-E)\ -

A T db +0 s)]
- / {Q+P(t’.'t1)} V"“*F{“*ﬂ(P“)ta*}Ltgt’} a‘" (26)0

The results (23), (24) and (26) may all be written in the form
. Dpa {1 (4-5),. 1) = s¥ pﬂlﬂ Fon {p(-t-s),p.} (27)
with : e , .
. , )
Foo {B01-5). B} = fo () +5 §, () +5* f2 (5 1) | (28),
where fo, f1 and f2 are O if either s or u tends to zero, except-
ing for m=0, in which case f, and f, are O(u) for smallp .

Returning now to the expression (19), the inner integral
takes the form

F. 'D‘"\ 20
[ Pplit e[ i

%
- “‘1% e -4 dn S ]
?
[° Ei axctan E&ﬁ{ Eﬁ"d"‘ £, } a[‘ s‘*fi:s]
i zg&»_ o BB, el g ® 05
| (29),




o a—r——ra —

NATIONAAL
LUCHTVAARTLABORATORIUM Report F.157 - Iv.1

for small values of. B, for m> 1, while for m=0 the factor of the
order—term is 1, and not ,u-1 . The g, - derivative is of the form
D A Bm(uddr S Dm{,ua-eo,,u}
g, o/ M- el El - °/ ( sel gf)! y
ms1 \/-'d.s 1 s%hds
--E1 [ / )l +;/ 1wt / 1 lﬁ]
Qus+2§1 Vs (us+d E’) (us+18))

mi 'y Vau 2
=- 14l —— arcta -
s [ {ﬁs - " A ' g (el §1z)}
; Ve Vau . 1 g¥4ds
+t, {-——3 arctan + —
1{ Ev“'” B /“(/“%E,’)} (us+d Ez)sz]
o1, { NEpE peran W o ﬁ} . /u"'f‘"‘.aco (30)
é: E‘l .§1 3 ’

for small values of § , if' m>1, while again for m=0 the factor
of the order-term is 1.

Therefore we may write

(Gwmesg)[e ] famA ]

M-A+l §
Dm(lt/“'itrv‘é)
‘3% [§1/ prenra d.l] +/u. 0()
! B A itxy) 2 1 Pmu;txy) ki
YA Akl i) | ~ d\ 0@, »
°/. /‘“7“’%3: +§' —o§1 5 /L-7t+!i§:' A &

which, by using. (29) and (30), becomes

!”}ﬁ -1 4 ¢1+5'F _
{"VE/; ° arctan %ybﬂr/ Y3 - dS]
- {z\/i'/;.‘rf-, arctan %f 2 T*,] +}‘~?-1 0(&,)

1

4 'F+s

=/u.m. { 28, + [ 5}1-/41.?-1 0(%,) (31).

The same qualification about the order-term as previously, continues
to hold here and in the sequel. By using (28) and (22), this ex-
pression may be written as

pE[1tngre] G Fnbucopgtmgu]] o ot ogg)

me1 A dA ' : %‘1 o
M TI.szQ‘w)+v;/(’"_Wi{Fm(AW)-Fm(/“#)ﬂV‘ 0E,) - (32),

which, by using (27) in the form
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m
/u.'!
P (yp) = {0 Fm O
becomes o, . |
C dim [, [P Mo o ey O-EX O R 1T
l"/“[ N ] e w R (33).

The integral occurring here is identical with Hadamard's "finite
part" of the divergent integral (20), and we may for convenience
write® (33) symbolically as

-\/_,[\j——iD Ot,/u.)] +7l

Remembering that this expre331on represents
(A )
(e 5)[s [ o5 2
and substituting in (19), we get
k Ak Dy (A )
"e"/ "S‘Ld./u{ \/_.[\/ Dm(l/u)] P d.l}
S0 that the general term ofu(14) contribust to the function

';E;G (:c,l#,-‘l O)

(A, -
°"‘ 2 n e 0 (34).

an amount
. em‘m M&,h e | »Dm@;/‘;tr,s)dl}
/e /“osu{ 7 %‘A#'*"“’]A..;f AN

o ™
1
. Vi"(- )mn

in which + is to be interpreted as (—)m° We may therefore write for-
‘mally, using (17a) and (35), .

(35),

e o5 il 205

2 G0gi-1,0) - Vacty e“tg(#) 1 otk ft ei.k{h(h)q-zm}
m=0

g, BTN O
. [etm {.— VAR DOty  + § TN d).}
o/ 09“ V,&[Iu ™ /J. %]h,y, f M=
The asymptotic character of the series thus formed,
follows as for the "regular" solution; by noting froqﬂ(31) that the
non-exponential part of the integrand in (35) is OO* )fof small/u ’

(36).

so that the whole expression (35) is B(k'mp) for large k.

We shall now calculate explicitly the term for m=C.
From (21) we may write

D, O‘/“'!’l‘#)l= V_' 4041+0Lyu.+(ﬂ,+")&"/“ ’

so that (33) becomes
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T YA Vaoty + (ot Brad gt
[ il S *
- -
o (u)* Vadpot put (BHOMuR Vg k(o + B+ a) it (37).
Evaluation of the indefinite integrals gives
' dA i} 2 0Ly (4sp) + (B +4+ )X
q / (/«..7\)%l ‘/“1(“7‘)‘.“51%7‘)7\ &y (a+/4.)+qz1+q+-/na)/4.¢ ) /u-h
an
da R
/ ( -l)” = /u. !
so that the deflnite integral in (37) becomes
. . 2 1 — N 7 ]}"
‘mﬂ"‘(‘7‘1"P«"“‘)/""")“‘t [V/"‘h" {V“J“%)"(P{"‘l"'/")h \/4“11.(“1”3#4)/“/‘ } o
- 2 {\/ot, (4tm) -~ \/4;14-(9(14-[514-4)/4-4-,4.«."}
\//:{49(1 + (d1+|31+4)/u+y.¢"} ;
Therefore (37) is equal to
VK1 (4+m)
: | 4olyt (oly + Py +4) phtad
so that (35) becomes W Yoo e '}
ki) Ll‘f."(ﬂ*"}/e o o (38).
ct {4«1 +(oty+ Byraduipt]
We may therefore write (36) as
D Gyt - A glkre), ey ki) 7 / Vags du
og, 1t(°‘a+Pa) VR {ac o pea)pramt
+O(k7) - (39).

This function may now also be used to determine «, in
(7), thus completing the "singular" solution. From (9) it is evi-
dent that for this purpose the function

'D_ch Yy o) (40)
occurring in (12), as well as
2-G(-1,0;%,0) and 2. 6 (1,0;§,0) (41)
X2

in (10), still have 1‘l:o be determined.
Evidently the function (40) is the symmetrlcal counter-
part with respect to x of the function just determined, thus

Vax, i.kr(q” xk{r(-1)+z} e ks Vatu dm N
-035(""3 3400 - 1t(°‘v+l31)e P 7 4¢,+(¢,+p,+4)/u.+/u.'~} (42).

Speoial care should, however, be taken here; since the above results
have been deduced for ¢# 0 , while in (11) and (12) the values are
needed for y=0 and x< -1, which means, from (18), that
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| o =fz0.
Further, the funetlons (41) may be directly found from the previous
'results, by maklng use of the symmetry of the Green's function in
the points (x,y) and ('g »n ). Thus, these two functions are fouﬁld
respectively from : ' o '

S ?%6 (x,0;~1 o),:,_,_ ‘ 5and '-_f— a(x, 0'1'0)' o ‘

by replacing x by. §-. In thls case the 1ntegratlon 1s over value.s
for whlch 12 o and 1BIK1 ., Wthh corresponds to

F Pz- """ -

|
l.
l
i
!

B
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