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Suaxy.,
Boundary value problems with the wave equation

for harmonic time dependence are transfOrmed, by a one

slded'Laplace transform, into byperbolic problems with

one more .imension. Using asyptotic properties of the

transform, the solution can be found in the form' of an
asymptotic series, The method is applied to a pair of

two-dimensional problems which are mathematically large-

ly equivalent, viz, diffraction by a plane screen with

slit,' and the oscillating airfoil, at high frequencies

(or in near-sonic flow)',

I1ITRODUCTION,

Recently Kline. (1954) has given a method for the asymp-
totic solution of certain linear, second order hyperbolical pro-
blems, such as to provide the solution of wave prOblems in the. orm'

of an asymptotic series for high frequencies, with the approxima-
tion."of "geometrical optics" as first term. This expansion con-

tains only the zero and positive integral powers of the reciproôal

frequency; however, it is known thàt'solutions of diffraction pro

blems contain.also fractiOnal powers of this quantity, and thus

the concluding remark of Kline is that "the theory of asymptotic

solution required to treat such problems i's not at .present adecuate'."

The aim of the present paper is to sketch, by a few x-

amples ,' 'a method of solving problems of "diffraction" for high

frequencies. The problems chosen for this purpose have two space

dimensions, but the method may, in pririáiple, be extended to more
dimensions.

As far as' previous rigorous results are concerned, only

one diffraction problem has thus far been solved in 'closed form,

'viz, the problem of 'diffraction by a perfectly reflecting screen in

the form of a half-plane, (with slight geneDalizations,).hich has
been treated by Sommerfeld ('1896).'Purther, in a limited numberbf

plane screen configurations separation of the wave equation is poe-.

sible, and rigorous results have been obtained in terms of series

of special functions, e.g. by Sieger (1908') and Stiutt (1931)for

an infinite slit, and by Bouwkamp (1941) and Meixner and Andej ew-
sky (1950) for, a circular aperture. These solutions may. beüsedOr'
calculations in the low frequency range, but they are no longer
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serviceable at high frequencies, while. also th series occurring

here are rather unsurveyable.

Itis thereforenatural that in genei'aI diffraction pro-

blems are treated.by methods of appoximation. In the regime of high

frequencies, the classical method is that of Kirchhoff (1891). It

is, however, subject:to the serious draw-back that only a first ap-

proximation is yielded, while no .systématnic method of obtaining

subsequent approximations is available. Several, modifications have

been proposed for the Kirchhoff method, and also in the present pa-

per the form used for comparison, is a variant which is specially

applicable to plane screens, and which may be traced toBou&amp

(1941). This modified solution,, which is in the sequel called the

Kirchhoff approximation, should more properly be termed a "Raleigh

solution", after Bouwka.mp (1954). .. . .. .. .

Among recent attempts at improving on the Kirchhoff theo-

ry, is the method of Franz (1950). It consists of a sequenOé of äp-

proximations, in which ad hoc adjustments are made o the trial

solution, using the boundary conditions and the wave equation in

alternation. Franz's theory is intended to be'usefül for all ave-

lengths, and it is not clear that this will yield something-o± the

nature Of an asymptotic series for high frequencies.

Also noteworthy in. this respect, is the work of Braun-

bek (i95O) on plane screen problems. He has made use of Sommerfeld's

exact solution for the half-plane- problem, man attempt at giving

a first estimate of the neglected term in the modified .Kii'Ohhoff

solution. Numerical computations give good support to this estimate.

Specially for diffraction bf a slit, an older, recursion

method is due to Schwarzschild (1902.). His method has been shown

by Baker and Copson (1950) to be equivalent tothe solution by suc-

cessive substitution of a pair of simultaneous integral equations,'

starting from Sommerfeld's solutIon for each of the two halves of

the screenseparately. Slow convergence of the process for real k

seems to be itsmaindraw-back.'

In the present paper, the to main problems treated are,

firstly,.that of diffractionofa wave train by an infinitely long

strip or slit, and, secondly, that of a similar oscillating air

foil In subsonic compressible flow. The entire treatment 'of the df-

fraction problem is directly applibable to the aerodynámica.l pro-
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blem, but an additional compliàation arise.s in the, latter case,

from the occurrence of a singularity in the acceleration poteniai
at the leading edge of the airfoil.

The first chapter contains the formulation of the dif-

fraction and oscillation problems concerned, and reference is made
to the physically important quantities in the two cases, viz, the

plane wave transmission cross section and the aerodynamic force and
moment derivatjves The results obtained in two-dimensional scalar

diffraction theory, have direct rigorous meaning not only in acous-

tical, but also in electromagnetic diffraction, though in three

dimensional electromagnetic problems a vector treatment.becomes.ne-

cessary. For comparison with the results of later chapters, this

chapter is concluded by applying a (modified) Kirchhoff.approxima-

tion to the calculation of .the transmission cross section for normal

incidence. Differing results, obtained by substitution in two. dif-

±erent rigorous formulae, yield a preliminary indiOation of the or-
der of apProximation.

In chapter 2 an outline is given of the method of solu--

tion and its underlying theory. Following a suggestion of ro±..Dr.

R. Timinan, the given problem, which is of elliptical character, is

transformed to one which is hyperbolical with one mOre dimensIon

and of the nature. of a transience pi.oblem. The... transformation ef-

fecting this change, may be termed an inverse Laplace transform

(with respect to the frequency parameter), since the relationship

is best characterized by viewing it in.. the opposite sense, and stat-

ing that the original problem is a one-sided Laplace transform of

the transformed problem. The ultimate reason for introducing this

transform is that, by a.type of Tauberian theorem, the required be-
haviour of the solution for high frequencies may be determined, from

the transformed solution for small values of the newly-introduced

"time" variable.. . . .

The theory of characteristics is applied to the hyper

bolical problem,. and this problem proves to be inathematidally equi-

valent to that of a plate in the form of a semi-infinite strip, in

stationary supersonic flow, under asmall angle of attack. There-

lations found are therefore in general either equivalentto'ld'iown

formulae in lifting surface theory, such as have been deduced by

Evvard. (1950) and Ward (1949), or generalizations of such fornulae.

The fundamental relation constitutes a direct integral representa-

tion of the solution.in one part o.f space, while elsewhere it has
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the form of an integro-d.ifferentialequat.iofl. 'rom the cçDntinuit

and symretry properties, of the solution,. an additional set of. in±e

gral. equations is obtained, from which the, derivatives occurring in.

the integro-differential equation may be solved by a recurrence pro-

cess, with a finite number of stepsfor each finite region. The

details of this whole process, as well as of the back-.transforma-

tion' to the original problem, are left over for discussion in the

third chapter.

The transformed problem occurs also in the work done

by Fox (194k) on the diffractionof a step-function pulse by a

screen in the form of a strip, si te method of Priedlander (1946),

which was c9.eve1r1Ded for tha '.roblm of diffraction of a pulse by

a half-lane.
Chapter.3, which primarily cOntains the application of

the method of chapter 2 to the diffraction problem of a slit at

high: frequencies, starts with a check on the reliablity of the me-

thod. This is afforded by an application tO Sommerfeld's half-plane

prOblem, and the known solutiOn Of this problem proves to be cor-

rectly. reproduced. In the strip problem, the solution is found as

an infinite series, which is shown to be an asymptotic series for

high frequencies. This solution is applied to thecalculatiOn of

the transmission cross section for normal incidence., retaining the

terms of second and lower order in the reciprocal frequency. The

result shows that the (modified) Kirchhoff approximation. does pos-

sess a qualitative indicatiOn of the leading diffraction term,, though

quantitatively it is in error. Numerical values computed from the

aèymptotic formula, agree surprisingly well with exact results,

even though the available values of Skaviem (1951).pertain to still

rather low, frequencies. . -

The final chapter contains the main features in the ex-

tension of the previous solution to the aerodynamical problem of

the oscillating airfoil in subsonic compressible flow. This pro-

cedure of extension is necessary to ensure that the correct types

of singularity occur at the leading and trailing edges of the sir-

foil, and compriseè some rather awkward limiting processes perform-

ed on the Green's function of.the diffraction problem. The physical

significance of the frequency parameter in this case indicates that

the solution holds not only for high frequencies, but also for near-

'sonic flight speeds, as far as the linearization and the twô-di-

.mensional character of the' problem are physically valid in this
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case. A first approximation to the solution of this aerodynarnical

problem for high frequencies has been obtained by Timman (1951),

by application of a Kircbhoff approximation.
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Chapter 1.

THE BOUNDARY VALUE PROBLEM A.ND ITS

FFIISICAL SIGNIFICANCE.

11. The two-dimensional problem of diffraction by a plane screen.

1.1,1. The differential eauation,

The velocity field in a frictionless fluid medium

without external forces is related to the pressure and density in

the medium, by Euler's equation of motion and the continuity equa-

tion9 viz.:

(v)2-- !

2!cr. (-)=o
-t*

Assume that the pressure is a function of the density

only:

which is the case when all changes are isentropic; this implies that

the density for the fluid at rest is a constant, independent of

position and time0 Further assume that the density differs only

slightly from the rest density, so that it is possible to introduce

a small parameter by

We write accordingly

and.

vp=-'(ç) vç'

where 0 is the order symbol. Substituting these relations in (1),

and retaining only first order terms in £ , and writing - instead

ofZ , etc., and'c2 instead of (s0) , yields:

EL.c7ç
DE 0

0 -
If initially the motion is vortex-free, i.e. if there exists p0-

tential. q such that vq then.- the. equation.. of motion can be
integrated to:

101
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which means that the motion remains vortex-free and. is characteized

by a velocity potential

Thus, finally o

Dx

(2)

;. and theze-where denotes the Ikaplace

fore, eliminating ç :

Report P. 157

operator
D2

Dx2 D2

1.2

E x. =0
C

viz0 the standard fOrm.of the wave equation.

The time dependence is assumed to be given by
_Lkc

Xtp.e
in which the potentiale.x and L are complex numbers, the real parts

of which are to be taken eventually for physical application. Then

satisfies Hëlmholtz9s wave equation:

(k2)po
If, in analor with damped mechanical systems, the case

is considered where the equation for.x has a damping term, viz.

1D2X aDX- - =0 , GQ
the equation for tp becomes

2crk\(3+k+L)O (4)
We shall interest ourselveâ for the undamped case ánd..taking regard
of the sign of the extra term in (4), interpret (3).as. a limitin
form for real k, reached through complex k with positive values b,f

Im k, (Itshould.be.not.éd that:it is essentially more compliáated
to regard the undamped case strictly as a limiting form forvanishing

viscosity9 since the Navier-Stokes equation, which .pplies in thè.

viscous case, is of higher order than. theEulér equation to which
it tends),

In. the sequel it win be assumed that th field is cy-
lindrical, i.e0 that it is the same in all planes perpendicular to
the z-axis, so that only two space coordinates x and y are.needed..
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We are thus concerned with. solutions of the wave equation

(Ai-k2) po

in which .. denotes the two dimensional Laplacian0

1.i2. The bounda conditions.

If an obstacle is inserted into a given initial field,

the field is modified, and we say that it is diffracted by the ob-

..stacle. The prôblem.of diffractioii is.to determine the.disturbed

fie1d from a.iowledge of the initial or "incident" field (i.e., the

field that would subsist if the obstacle were absent), and of the

position and nature of the obstacle.

The obstacle will be assumed to be in the form of an in-

finitesimally thin screen in the.(x,z) plane, with edges parallel

to the z-axis, thus serving to preserve the two-dimensional charac-

ter of the problem. The part of the x-axis occupied by the screen,

will be denoted by S9 and the rest of the x-axis by 5P,

The boundary conditions are determined by the nature.of

the screen. For a perfectly rigid screen, the fluid velocity at the

screen is tangentialto the surface, sothat the normal derivative

of the total velocity potential LPT vanishes there. For the other

extreme case of a perfectly "soft" screen the fluid motion at the

screen is normal to the surface, so that the tangential derivative

of PT vanishes this means that is constant on the screen,. and

we may choose this constant value to be zero. It will be conve.ient

to eonsi..der the velocity potential as composed of the incident.field.

plus a scattered field:

and the two above cases are thus characterized by the boundary. con-

ditions:

1.3

Dq? Dq.
_...!. .._L on S (rigid screen),
D Dy

= on S ("soft" screen).,

in which the y-derivative is used because S is on the x-axis.

Together with the wave equation, these boundary condi-

tions, being valid on part of the x-axis, and being the same when

the screen is approached from different sides, impose on p5. the

condition that it be antisymetrical in y for a rigid screen and.

symmetrical for a soft screen. For a rigid screen, this is illus-
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trated.by considering the inci.ent wave

I.(X,r)+
'PL

(x,-) (5) 9

o which.the .y-derivative vanished on. the screen, a, that....the ..$un-

dary conditions are automatically satisfied0 This means that the

screen causesno.disturbance, or9 since the problem is linear9 and

the differential equation. j symmetriôai in y,

ip (x, (x -

which is the relation of antisymmetry. The symmetry. of (.p for a soft

screen is proved, analogously by using the difference insteaa of the

sumin (5), Since it is required that and becontinuous
everywhere outside 5, these symmetry. relations imly the furthei'
boundary ôonditions . .

on 3' (rigid screen).,

Q . on 5' (soft screen),

'Now first the case of a rigid strip for which 5. is the

interval.lx1, will.be considered0 The boundary conditions arel:
____5. for u.=O±, lxi :i,,0

'

0 '. for 0 , x >1
Next to these boundary conditions on the x-axis, ôOni-

tions must be imposed at infinityin order to eliminate certain pby-

sica'Ily :'undesired, solutions. Since S is bounded, it 'is natural tb

conclude that the, scattered wave % will behave at large distanc.s

from theorigin like a cylindrical wave expanding 'from he origin,'

apart from a, directional factor. We therefore digress for a moment

to consider such wavös due to a line source at 'the origin,

Cylindrical waves due to a line source at the origin9

are gvenby a solution of the wave equation, singular at the origin,

dependent only 'on the distance from 'the origin., and representing

an ex.panding wave motion, The first Hankel function of zero order and

with. argument kr0,, viz..H('kr.) , possesses these properties, being

a solution.of Bessel' a equation and behaving.like
'

'

' H

oo
'

in the origin' and. 'like , , ' ' ' ' '

e ' ' '

V,'TrLk '

at infinity. Other 'solutions, 'differing from this one in their

Report P.157 1.4
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haviour at infinity, are

Y0 (kr0). \/ sLn. (!cr,_!)

which... represents standing waves, and'

H(kr0')..j
itkr . '

which represents incoming waves0 Allowing Im ko as mentioned in
(i) .

(1.1.1), j4 (kr0) is the only one of the above solutions which re-

mains finite for large r .

Returning therefore to the wave. ip5 scattered 'from the

strip S, we shall, following Baker and Copson. (1950), initially con

eider Im k >o and impose the condition that. , together with its

first partial derivatives, be bounded, uniformly for all directions,

as r0 tends to infinity0. This is 'a simplified formulation of Som-

mérfeld's radiation condition0'

Due to the sharp edges of the obstacle, it is found to

be' necessary to ensure uniqueness of the solution by imposing, some

condition of integrability, which may be derived from enerr consi-.

dèrations. The sharp edge is .a branch point of he solution, and,'

as. noticed by. Bouwkamp. (.1946; 1954) further solutions may be ob-

.tained.by differentiation o.a given solution, thus increasing the

order of the singularity at the edge. Meixner. (1949) has pointed, out

that.thé order of the singularity is restricted physically by the.

reasonable condition that the spaoe:enerr should be finite . in any

finite region, of space, including the vicinity' of the edge, Le0 that

the perturbation 'fluid velocity grad p9 be quadratically integra-

ble everywhere in space. This implies that p9 must be finite every-

where outside the screen, 'since an unbounded term in the 'development

of.. p5 at a point would make (Erad... )2
non-integrable. We 'shall

call this the edge 'condition., since practically. it is ôritical only

at the edge of the screen0 ,

No strict uniqueness proof, seems to have been given for

this two-dirne±isional problem o' real k0 However, theabove côndi

tions are generally believed to determine uniquely the solution of

the problemç and we shall therefore adhere to this view in the se-

quel. (See also (21.i) ) . ' ' .

Next cpnsiderthe case of a soft sôreèn complementary

to the previous one, viz0 an. infinite..plane scren on the.x-ais

w'ih'a..:slit S' onjxl<I Itwil]. be assumed, that the incident.field

originates ent.rely in the negative, half-space (<o). Since;.the

Report P0157
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screen is now.. infinite, the conditions at infiz.ity for aré more

difficult to formulate.than.in the previous case. We therefore. rather

use a different decomposition of tp1. , suggested by comparing tIe.. pro-

blem with the case: where the slit is absent.. Por a soft screenwith.

out slit the field, given by the method of images, is:

p(x,t.)q1 (x,La.) for

'O for

in accordance with the boundary condition tp.O on the screen. The:

problem with Slit will be considered as a perturbation of the qne

without it, thus. .

19

so that

Keeping in mind, that the bound.ary conditiOns for are

inthis case: . .

fOr b°' Ixi.c'

.for.

Report. P.157. I6

we obtain fo.rip1 the boui4 y conditions: .. . .

for
':

for i.:O±,ixI.>. . . . .

Since .. is a perturbation due to a slit ith.;proj.ction

on the x.,y-plane finitely: sjtuated, the.consjderatjone On.the....bha-

viour at infinity for the funotion.p5 in the case of a' strip, also'

hold'.here, i.e. also satisfies the radiation .conditioi.'Purther,

of course, the edge condition also applies.
.

Evidently therefore, the two halves of the function!1

symmetrical in y, are, with adjustment of sign, identical with he

antizymetriva1 functionp of the previous problem. PhiC.státthent

isa . special.. ôase. of Babinet !:s. princip1e ....which. states that.. two'

4 (x,.) L IPL (x,-I.) for

- ..

for which

(x, ) - LPL
(x, ) for

for

Thus, the properties of

metry apply also, to tp. .

II
of continuity in the slit B' and of. sym-
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plane screen diffraction problems in which the screens are comple-

inentary, one being rigid and the other soft, may be described by the

same functions.

In the sequel the boundary value problem connected with

the two cases outlined above9 viz0 the cases of a rigid, strip or of

a complementary soft screen with slit, will be treated0 An alterna-

tive pair, also equivaleirt byBabinet9s principle, would be a soft

strip and. a complementary rigid screen with slit. Then the problem

is the same as ourS
,
but with the roles of the function and. its y-

d.èrivative reversed.

Summing up, the problem before us is to find a function

with the following properties:

1.(&k2) o excepting on ..o, IxkI

2..Lf(x') for O±,IxkL.
Lk

for I,.I.

.p satisfies the radiation condition

50 i.p satisfies the edge condition.

The factor_4.... in condition 2 is written for later convenience. The

conditions 4 and 5 imply that 'p is botmded when both the real and.

imaginary parts of k are positive.

This problem can be treated analytically by introducixig

elliptic coordinates9 which separates the wave eQuation, and deve-

lopingthe.solution Ln terms of characteristic functions, in this

case Nathieu functions. This method. was followed by Sieger (1908)

and. Strutt (1931) and. numerical results were computed by Morse and

Rubinstein (1938). Later Skaviem (1951) independently solved the

problem by a similar method, also presenting numerical values.

In the present treatise, however, interest will be fo-

cussed solely on the domain of large k (high frequencies), for which

the characteristic function method is impracticable, due to slow

convergence of the sries and the difficult nature of the functions

in'olved.

102, The transmission cross section,

In the diffraction problem of an infinite plane screen

with slit, the energy transfer through the slit, more specially for

the case of a plane incident wave, is of physical interest. The

transmission cross section is defined as the ratio of the time mean

of the power transmitted through a certain height of the slit, ex-
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pressed as power per unit area9 to that which falls on the slit per

unit area normal to the direction of the incident wave0

The power dW ransmitted at a given moment through an

area df Is
dW = (e j,) (Re ) cif (1)

in which. ; is the magnitude of the fluid velocity normal to df,

and p should strictly be the total pressure, but may be taken to

be the perturbation pressure, since the time mean of the transmit-

ted power corresponding to a constant pressure, is zero0

By an obvious modification, eq0 (2) of (iii) may be

written
1' DX (2),

in which p is the perturbation pressure0 Further

where denotes differentiation normal to df0 The real parts of p

and are needed in (1), thus g

(e p) (Re 'Lz) = - co (Re
.)

(Re
)

[D('DX DOx 1i,x-ox- + -. - 2 Ref_ . -
i Dn. D Dfl. 'CDE pr.

1 I Dt4 _DI / 2tkcc-_ -Lkcp kc p +Rekc tp_e
L

In which a bar over a number denotes the complex conjugate value0

The time mean of the last term is zero (taken over a period, or over

a large interval)0Thus, substijion in (1) and integration over the

whole area considered, yields

! LkCS30f/ (&piP :!)

The power transmitted through the slit per unit area is therefore

w_Lkcç'0 / (tp_i - )cL5
1

,1D
(3)

8 1 \ -DrL

in which the path of integration lies in the shadow half-plane

and coimects the two edges of the slit, or, more generally, con-

nects the to halves of the screen, since p on the screen itself

Application of Green's theorem makes evident that W is independent

of the special path of Integration which is chosen0
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If we consider the plane incident wave with angle, of

incidence

(xsLn.&'# tf CO5

and integrate over the position of the slit, becomes- , and

8 wf(..2i.kcose')d.x...i.kcose'
Lkcç0 -1'

Thus the transmission cross section is
W' i f( oip/Lp_-p --)dS

.I0cosO' ik I \'
for aslit Qfwid.th 2 and a plane wave with direction of incidencee

A more convenient expression for' u') wy,be found. by

use of.. Green2s function of the first kind for theha1f-spaceO.

To find this, the folloima', whiôh is Weber' s two-dimensional,

analogue of the theorem ofHe1mhbltz, will.be used:

Ifp satisfies'the.two-difrieTlsional wave equation'

(k)tpO
and, has continuous partial derivatives of first and. second order

within and on a sufficiently smooth closed curve r , then for every

point (x,y) withinr , holds

I '
(1) Lp(i)

q4c, ti.) - j .p _, H0 (k) - - H0 (kr) 45 (5)
-on on.

where denotes differentiation along the outward_normal to P ,

and i' the distance from (x,y) to the element ofintegration.' For

a point outside P the integral 'is .zerp.

This can be proved fOr an internalpoint (x,y) by apply-

ing.Green! s. theorem '

to .th.e;region..hour4edbyr and. a circle ' of radius..E.' around
(x.,y), and..choosing '

:
H1 (kr) ' ' '

'The surfac.e integralistheii..zero, so. that

/ { ck) }
as (k

}

ds,

andsince the'left-hand member isindependent Of , we thayletO
in the right-hand side0 Noting that the Hankel function and its de-
rivative bei.ave like. .± EOQ.. 6a

I9

'(4)

aud. .!' respectively at the point
Its ' '

(x,y), this..yieldsth:evalue'. iLLpx,) , as required.
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When (x,y) Is an eiteral point, Greens theorer.... ma be

applied at once to the whole domain inside r , since no singulari-

ties. of the integrand. occur in this' domain. This yelds......the. vJue ze-

ro. for the line integral, as required.9 and theiemma.isproved.'L

The above result can now be appLied to obtainGreens.

functions for t.he.haI spaceo ,.fgr the.function.LQ 'with...no.sin

gularities .ino , and satisfying the radiation condition.at. infi-

nity0 .

.

Let r be the boundary of the semi-circiei3O

in 'which ,

.

- are.:running coordinates in the .x,y plane, so

an& RsLn..O,Tt.RcosG .
. Then. (5) gives

I f I (1 D (j (1)Lp(X,). j ..r.p - H0..(k-)_ k0 (kr)
4(. ...a - -.

It
,e2 D i). . DL (1)

+- J t - H0 (s)- - .
()

oR -oR. R.Q.

The cbntribution of the curved part

the radiation condition.,. .p and
) .

.

-oR
while both H0 (kb) and . H01 (kr) -

vanishing order0 Further,

H0 (k 2. H.(kP)

so that finally, aking o- ,' we have

:'p J H(k). M (k)T.
L - - J i.=o

Again for.. the line integrai is zero, so that replacing. by y,

oJ.. j _(f' ..!. H(k)+ (ki) .. çL

4L -.ao .'
, j Lo+.

Subtraction and addition. now yied the required results, viz.

(x, ) ! J o
(i)

(k V(x -

(o).i (k(
XL!oo .r

demonstrating Green's functiofls of the first and. second

half-space.o a..
, . . . .

I:f L satisfies condition 3 of (.1.1.2), viz.
'. ' for o, IxIi

Report P. 157. I10

RQ.
that

vanishes, when ,. since9 by

are uniformly bounded.forI k>O,

H.1(kt.) are àf exponentially

+) d

(6').

kind for the

(7)

(8),
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expression (7)becomes

(x,.L f (o+ (kx4.4 (9)

This equation will now be used to simplify the expression

for the. transmission cross section, and we begin by determining the

behaviour o± i..p at great distances from the origin. With x t', .si.n G

e , (9) becomes:

p (x,.-! I p (o) H' (kx
X.

velo.pment of:.Lp mr large. , (10) yields

Returning now to eq. (4), choosing the path of

directly over the slit, and noting that satisfies them

d.ary côndit ion

±!LkcosO e5L
wehave

a- (0'): _!_. .k COS

41k

I
- cos 0.
2

so that, from (11),.

cr(9')e
This result is due to

.p (,o4.)
H1(t)

,kCoOf !\J
21 -.1 .

1e0
L

(10)9

for large , , by developing under the sign of integratiori.

Thus tp does in fact behave like an expanding cylindri-

cal wave with a directional factor, as was anticipatdin (1.1.2).

Defining the amplitude A (Q) as the coefficient of ___ in the d e-

I [

Report P.1.57

k1cL

/

-! :sLneJi)rJ0
1kO,.- sn th)

cL

for LO

.2k . .

Levin and. Scbwinger (1948).

cL

ixII

(x,Oi)e p(xO.)e s9

5LTi Q

(ii).

integration.
the boun-

(12),

(13).
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A more direct but less convenient simplification of (4)
is obtained if we choose a semi-circle .R:a, io as, path of inte-

gration and make a-o, using the asymptotic property of t.p whih is
expressed by (10) and (ii):

Lkr0e
for large r (14)

Thus (4) becomes
It

4ik DRR:a.

M
/2

.4(0) A?) d.9
ik -

2

.2
JA()12ctQ

(15).

L. The aerod'namjcs of avibratjn airfoil in a subsonic9 compres-
sible flow0

It will now be demonstrated that the problem of fining
the air forces on a vibrating airfoil in subsonic9 cornpressible flow,

is to a large extent equivalent to the above. diffraction problem0

We consider a compressible fluid med±um, ith the côor-
.dinate system x0,,'z0 , at rest with respect to. the medium. A two-.

dimensional airfil in the form of a flat 'plate situated "approxi-
mat.ely"' on part f the x0-axis, with edges parallel, to the zn-axis,.

moves with constant velocity V in the direction of the negative

.xaxis,. such that the 'Mach number ii . <-i .. ., .Purther the..aii-

foil executes small oscillations, dependent of z0 , but ..otheise
arbitrarily prescribed. We thus again have a prob1em.with..only two
space dimensions x andy0 .

I

Both thevelocity potentil X and.the.acceleration:po
tential.x , defined by .

. (1),

where t0 is the tithe, satisfy the wave equation,' since the oscilla-

tions are, assumed smalL If either a Galileo transformation

x0 V01.= i , .............. (2)

or a Lorentz transformation (witr:scale:.fact-or
a')

in which. p. /i_ 12'. ic2 , is applied,, the. forward motion of the. air-
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and

(6) becomes
- ikc.

wih...tp independent of t', so that t satisfies Helholtzs wave

equation
(-kp=o '. . (10)

'which is eoüdition 1 of section (1.12).
Next we consider 'the boundary value.s.of p , and...inves-

tigat.e which.. Other. conditions....of. . (1 . 1 .2) apply.. The boundary. condi-
t1on... is. . furnished....by noting. that . the. fluid particles not pene-
trate the airfoil, so that. the. prescribed oscillation. deteri es the
vertica. velocity component ô the., adjacent.. fIui4' Using. for 'the ye-
locity.potential...a. similar, notation'....as above. for the acceleration
potentiai, e. thus have . .

w(x') for .=o±,ix)<-e

1,13

(7)

(8),

foil is reduced to rest, whiie.with the Lorentz transformation also

the wave equation remains invariant.

Since the oscillations are small, the. boundary values on

the airfoil will be intorpreted as given exactly on the x-axis. If

thewidth of, the airfoil is called 2, its position.in the Lorentz

coordinates may be taken as .- . Evidently, It will be

convenient to choose the scale factor a so as to have the airfoil,

and'therefOre the boundary conditions, on the intervalixld , viz.

a;!

so 'that (3) becomes

-x=xi-Vt0, -=-x0 (3a).
We. assume the oscillation to be harmonic and write

, IA
e

in which ipT .is....independent oft'. Solving (2,) and (3a) in the form

(4) may be written as

X!;
&C2

4 (5),

L)VX &

.

(6)

while,, tp' is. seen to,be independent not only of t', but also of t.
Writing



where the oscillation of the airfoil is desôribed by its (small)

deviation in the y-direction, viz.

Therefore, as in (a), and using (5),
-.=!u7(-)e C. for O± Ix.R.t

=W(x)
by which W(x) is defined, Using (.9), (1) and (3a), we obtain

a

V -X .1 DX-

-9.

!(vL 1-LIcd
)

e'/(x), for iot,ixI<I
.which can be expressed in terms of w<x') by use of (12) viz,

= - - 1 X)
Dl. Lk

as in condition 2of (1.1,2),

By eq. (2) of (1,2) we have (in adjusted notation)

(13)

Therefore, froth (12) the boundary condition for
p may be writen as

(t4),

Vwr' ((._!)iA, (z)}e
V'u/ (-tx)_ (.e.x)

(15)

Again (14) may bewritten as

I for ueot ,IZVI , (16),

(17),

This means that, since the pressure is to be continuous everywhere

outside the airfoil, the same applies to the acceleration potentiàl,

Since again tp is antisymmetrical In y, this means that p alo
satisfies condition 3 of (1.1.2),

Obviously the radiation condition is älsô satisfied, so

that the validity of only condition 5, the edge ôondition, is spill

to be investigated. Suffice to remark that at the trailing edge, J

viz. y=O, x=-1, in general a quadratically intégrable singularity
occurs, The occurrence o a singularity at this edge is made plausi-

ble by remarking that a point of stagnation with respect to thea1r-
foil occurs there, so that tbe perturbations are no longer.srnali,

as..required by linearized theory0

viz, y=O,x=19 the Lutta condition may be imposed, which requ.res
that p a;d thereforep be finite; whereas at the leading edge

NATIONAAL.
LUCHTVAARTLABORATORIUM Report P.t57
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Thuatp satisfies conditions 1 to 4. Of (11.2)9 together

with amodificatioñ of '5, allowing a singularity at the leading edge0

Thus...- may. be decomposed into two parts:
(18),

such that ( , the "regular".part, satiefies all 'the conditions I

to'S of (1.1.2), whereas
pG

, the "singular" part, satisfies these

conditions with 2 replaced by

o for =ot IxkI
and. 5 modified to allow the. leading edge Singularity.

When is known9 the pressure distribution'and there-

fore the air forces on the airfoil resulting from the vibration,

may be calculated. The pressure jump across the airfoil (downward

thrust positive) is, using (17)9 (4) and (8):

=

.-2 tf (x,O-)e

Therefore th total (complex) downward force P on unit length of

the airfoil is

cix
-.4.

..'T I
-.LIlkX

j q(x,oie ctx
-1 '

from.(5), a result which is in direct analo to the expression

(12) of (.1 .2) for.. c- ., The moment about the midpoint (trailing

edge downward) is
(20).

A rigid airfoil may execute translational and torsional

oscillations, for which the function w(x') in '('ii) becomes

(translation) (21)

-
(torsion)

respectively.. These two types of vibration may be characterized by

dimensionless aerodynamic derivatives,' introduced as follows:'

V2e [Ak Bkb I ' ' () 0.y2e_L [Aili+B1nb]
The above aerodynamic problem has been solved analytical-

ly by T1rnin-n (1946), and a numereal computation of the aerodynamic

derivatives was given by Timinan, Van de Vooren and."Greijdanus (1951

and 1.954). in the domain of large k, T1mmn' (1951) applied the Kirch-
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hoff method to obtain a first approximation to the air forces,, arid

the method of the present treatise may be used to approach the aeymp

toic behaviour more closely.

The method presented here yiel4s an asymptotic solution

for large k, and it is therefore of interest to take note of te

physical meaning of k. By (7), k is.proportionai. to the frequecy

However, it is customary in this field rather to use the reduc-

ed frequency , which is a non-dimensional, parameter defined, by

(23),

and k may therefore be written, using (7.) and. (23), as

(24.),

Prom this it is seen that k is large for high frequencies and '1sO

for small
fl

, i.e. for near-sonic speeds, so that not only dos,,

the present theory yield results for osqillations at high redubed

frequency, but it also, gives results in linear theory for oscilla-

tions of moderate frequency at high subsonic (near-.sonic) speeds,

though, as is well known, the linearization becomes.rathei quetion-

able in this region.

The method of obtaining the 9regular! part. .p' of th so-

lution will be given in the sequel, Por the "singular" part ip6 ,

use is made of the Green's function obtained for the regular solution

The method, which is due to Timm.n (1954), will now be briefly sketeh.

ed.,

Let the regular solution be written in the form

f
Then the Green's function G(x,y;. ,yj ) with parameters and.

satisfies:

plus radiation condition and edge condition9 while further G is

symmetrical in (x,y and ), and possesses a logarithmic

singularity where. (x,y)'= (,rj ). Therefore the..furiction G with

) .= (-1 ,O)', satisfies all, conditions imposed on .tp , except-

ing that the singularity should ,be of the nature of a branch pint.

The nature of the singularity may be changed by differentiation

with respect to;. Gthen still satisfies the differential eq.a

tion and boundary values, but the singularity becomes of order

0

(AfJC&) 40
for =o±.

=o

, IxI<I

,.Ix)I
(26),

for

(25),

9
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minus one, which is still not what is reqilired. To set this right,

a new coordinate x is introduced by

-i+i-x for11 for<-i
or, inversely

{ 2 V+x:
xi= lv

so that

for x>-1
for <-

and , i ) made equal to (-1,0), all conditions prove

satisfied by the'esult, which may be writtenas

_c(x.,I;,o)E _I4(x,i;-i3O) '(28).

Since, however, this problem is homogeneous, the solution still

contains an undetermined factor, which must be. determined separate-

'yo

Thereforep.. may be written, taking.rega!rd of (14),

(18), (25) and (28), as

q(x,l)=! (29),

in which_,0 is still uniown, This formula will first be simpli-

fled. before attempting to determine o . We introduce the function

(30)9
-

whoh, by (25),. satisfies the boundary condition (12) imposed on

With this notation, (29) may be written as

(x,)= _C$ (31).
Piirther, argxingformally, it mightbe expeôted1that the first

term of the right-hand side is equal to .1- . This is, how-

ever, not the case, since differentiation increases the order of

the singularities at the two edges, and in view of this and the

properties of (28 it is natural to write

in which , and.0 are constancs, and- '2 is defined in analor

.L f 1( ;,o)cL-i4.1 i 1,0) (32)

with' (27), so that

= V!1-1 (33)0

Evidently both sides of'32) satisy the differential equation (10)

, so that

(21).

to 'instead of

to be

22_. h+xi -.-
and similarly is defined in terms of..

-o _____-of.
If, now, G is differentiated with respect
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c34)

in which. . is assumed to be . zero at x', Substitution of (35)
in (36), and partial integration. of th first term, yields

V '
,)+feVX dx' (x'.; i,o) 37)

Since and ± both satisfy (12), the derivative with respect-Dy.

to y of the integral in (37) tends to zero for vanishing y, idn-

ticafly for all 'x with...ixi<i , i.e0

0= / e
4c

x' c.;-i,o)j.2

in which -1 is substituted as upper limit of integration sinee.the

y-derivative of the integrand vanishes for vanishing y and -ic'<X

Therefore fina.Ily.

(39)

-i Lkcx'
R1= / e 4Cz',14;-1,O) ciX'

i _Lkcc'
.[L/.e....V' .--,GCx';1,o)d' 1

, , .. J O+

Evidently the differentiation in (4O)''ay not be performed under

in which

and have y-derivative equal to W'(x) on the airfoil0 The relation

(32). is.in fact proved by T1mm.n (1954) by making use of.the ktiown

Greenes function for k=O and of the property of similar behaviour

of solutions of the wave equation and, Laplace's equation at s91_

gular points. The condition that the singularities at the two edge

points should be the same on the left- and right-hand side of (32),

determines the two coefficients, viz.

'.4A r/ W()2_4( i,o;,o)d.
?Ml (..i,o;,o)cL

1- I

-1'
with- defined as in (.33)0 Therefore (31) 'may now be. written as

i" i,o) 35)

The above formulae for are not sufficient to detèr

mine o since the physical condition is a prescribed normal ve-

locity on the airfoil, whereas p which is a.(Lorentz) accelè-

ration potential9 defines the velocity only up to a constant

integration. Therefore we make use of the relation (13) betweei.

the Lorentz acceleration and velocity potentials, which, may be
interpreted.as an ordinary, linear first order differential .edua-

tion in with solution
X

- . . (x, ii.) / e V. x', i) cLc'
Y-oe

(36),
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the sign of integration, since the sinu1arity at the upper limit

then becomes non-'imtegrable; the evaluation cai, however9 be done

by taking the "finite part!' of the divergent integral thus form-

ed, as. defined by Hadamard. (.1932).. We shall later return to this

matter0

1.4 Relationship with electromagnetic diffraction0

Since the diffraction theory for high frequency elec-

tro-magnetic waves approaching optical frequencies, is assuming

an iicreasing importance, it is of interest to point out that the

scalar theory discussed here, is directly applicable to electro-

magnetic, problems,
An. electro-magnetic. field in free space is described

by Maxwell9s equations for the e1ctic and magnetic vectors

and. H, viz. (using "rational" Gaussian urits):

cut'e -

cu f. .1 E=o-
where.c is the velocity of light and a the conductivity.

Let the, time dependence be given by

E=d..e
in which the vector components are regarded as given by complex

numbers9 the real parts, of which are to be taken eventually for.

physical application. Then Maxwell's equations become

..........cr4.Lk (1),
cut & (2).

Both d.nd h satisfy the Helmholtz wave equation, as

is seen by eliminating either from the above equatipns, e.g.

k (_iki.!) a cut-i c.iji d.
e pLcc9

=
i..e.(A3+k&# Lka-) ci. =

Each cartesian component of and therefore satisfies Helmhclt&s

(scalar) wave equation. .

In two-dimensional electromagnetic problems, the gene-

ral difficulties of vector solutions do no appear, since a two-

dimensional field may be writtefl as .the sum of two plane polarized

disturbances:
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where
-& k-1 L, i C --

represents a wave polarized parallel to the z-axis9 while

42=k,
is polarized perpendicular to the z-axls.

This separation is significant because the two comp-
nent disturbances individually satisfy MaXweflts equations, du
to the fact that, all derivatives wth,respect to z vanish0

Further, from a knowledge of & , the whole of the
first wave 5 determined by (2), and similarly, using (1), these-
cond wave follows from a knowledge of so that the whole: two-

dimensional field is determined when d and. h are given. All in-

terest may thus be focussed on these two components, both of w1iclh
satisfy wave equation, I

Again the case ii which a---.-o, may be interpreted as a
limiting form of the equation (.i-k2) po for real k, reached
through complex k with positive values of in k. Evidently this

passage to the limit is more natural here than in the acousticl
case0

The same. form of plane. screen is considered as previous-
lye, The boundary conditions may be obtained by assuming that the

screen is a perfect conductor, which implies that the eleótrical

vector is normal to the surface, i' e. that' its tangential compo
nents vanish, '.

For the wave , polarized parallel to' the edge o
the screen, the condition on the screen is

d.,=o

but9 since li determines the whole, field, we write this, using

cur.-&(ik$)d,as

For the wave ç , polarized perpendicular 'to the edge, the
condition is simply

cLZO
on the screen, '

Thus the, same type of boundary conditions occur as pre-
viously, with softness or rigidity of the screen in the ácoustiàal

case corresponding, respectively to polarization perpendicular or
parallel 'to the dge in the' electromagnetic case.

Also the radiation condition continues to hold for tie
perturbation quantities, and further an appropriate form,of the

1020



edge condition rnust:be applied.. The space. energy is. hà.lf the .s.0

of the squares of the electric and maneticreal.fieldstrengths,

and the edge condition therefore .requires-bothd and h to be qua-

dratIcally integrable. Since from.d or h the rest of the field.

is obtained by using (1.) or: (2), i.e0 b differentiation, the con-

dition for d. or h takes the same form as for the -acoustical ye-

locity potential.

The eneral two-dimensional -electromagnetic problem for

a perfectly conducting sczeen is therefore fully equivalent to the

scalar -acoustical theories for rigid and soft-screens.

Finally, it appears that also the electromagnetic trans-

mission. cross section- can be calculated as in. the acoustical case0

The flow of energy per unit area per unit time is given by Poyn-

ting's vector .

c. Re x Re

and. this is equal to

cRe(Ex 1i+ExH)

=c Re(dx&3. cRe(dx4ei)
of wh-ich.the last term gives a zero time mean. Therefore, using.

Maxwell's equations (1) and (), the energy vector is

- c. R e .x cui (3),

-

. Re(- XCUI.t.) .
- (4)0

For polarization in the (x,y) planet, d. has only a z-component, of

magnitude d and (3.) yields -

-

Re (dvd)
in which v is the two-dimensional gradient operator, and this

can be wrItten as . .

- k- ( d-d
The power transmitted through the slit per .mit area is therefore

- f... -
-

.

f(ct .)d.s
-

\- - k /
in analogy-with eq.. (3) of (1.2), and, as_ in. (.4)-

r (i)- /(
z- as.-

1.
--

Using (4) instead of (3), the same analysis applied to the case

of polarization parallel to the edge, wIt) h replacing d. -

of (1.2),

- -I .21
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ja. Xj±choff's theo1'Y.Of d.iffráOtiofl, ..

The classical theory fOr the treatment of diffractiOn

problems for the high frequencies ofoptics, is thatof Kirch-i

hoff (1891). Accounts of Kirch ofVsgork are given by:Baker and

Copson (1949) and by Sommerfeld in Prank-Mises (1930)9 and only

a brief sketch of the method and its defiOiencies is given here0

irchhoff's treatment depends9 for the two-dimensional

case, on Webér's formula (5) of (1.2). In order to discuss our

ease of plane screen diffraction, the relevant formulae (6),.(:T)

and(S) of (L2), valid for.t..>o are reproduced.:here. for reference:

p / q' !. (icr)#' !! k (kr) ct
1400

j
T Oi

(x)= / '4' (o+') k (2)

P(,O+) 4) (kVx-) . .

.

:By (2) and (3)', it is evident that p is determined in.a general

point if either L or is given on the whoie x-axia, so that

they may not be prescribed independently in (1), Kirchhoff's method

consists' in prescribing plausible boundary values in (1) for both

4,an4.. ,.regardless of the inconsistency arising thus. Kirdh-

hoff's theory was supposed to be valid for .a "black" screen and

he actually assumed that on the. backside of the säreen there was

no excitation, while on. the free part of the x-axis the incident H

wave ws unaltered, an assumption which is suggested by geometiical

optics, This means that both and are taken to be zero on

the screen, and equal to 4,. and!L elsewhere on the x-axis, butL:
.9- '

of course the solution obtained by substituting these in (1)

cannot be expected to reproduce tése boundary values0

In the' sequel howeve, nbt this original form of the

theory will be referred to, but a thodified. form obtained by using

(3) intead of (1)...In ourproblem is'given foro,iI<.I

On the rest of the x-axis, p is given to be zero, but if, jn

stead, it is assumed that not_p but is zero thet (3) becomes

'k (x,W. Lf -ip(q,o#)
H ( \/

(xyz) d. (4)

This function
, which is ex.plioitly determined and satisfies'



NATIONAAL
LUCHTVAARTLABQRATORIUM

the given boundar condition but nOt for p , will. be call-

ed ttthe" Kirchhoff appoximatIon to our problem.:

he expresithi (4) w.lI now be employed to obtain ai
approximation GK(o) to the transmission cross section for a normal-

ly incident plane wave on a screen with slit, using (13) and (15)
of :(1.:2), viz

a-(o) = Re\J!E A(o)

et A(ectG
The amplitude is. obtained from tie value of

from the origin:

and since

the amplitude

1k

Substitution in (5) yields

Report P.1:57

ip(,o+)
' LIcO'-

ci
D1

1. j D' ( e sLr e

scik
:'

DT

A Ce) / e
LI.titLk 1

I f sin (k sine)

ksLrLQ

Re
\PEi

\1f=
1

which is identical with the result of geometrical optics, and gives

no evidence of diffraction effects.

Por the sake of comp.rison with ($), it is interesting

also to substitute (7) into (6) instead of into (5)., obtaining
It I 1.

£ ti 5.n.2(ksLnø) £ , gi.n .cu d.u.
a- (o) - I = - JK si.n2& o u

0 siit&ku. °°
srku. 1 sirt2ku.1

-._ j. d.u/ cLu.4./
1 o L J

..-&Ik I sLriku.
cLLL_± /1CCS cLu.1 / icos&ku.f

irk[e 14. Li u.

I

¶k1 .2 a. jL a u \IIi-u.t

for o, Ix<I

1.23

(5),

(6).

far

0
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1 7 oS2ku. U.(i-u.')=1__ I
irk I

in which U(u) is the unit step function. By the principle of sta-

tionary phase, the integral contributes to the asymptotic behaviour

for large k only near u=1, since also the lower limit does not

contribute, so that
I

I / cos.tku. d.u.1-- J

i sLn(k.i-)0 (ki)
2 y (9).

Comparison of (9) with (8) shows that the error in the Kirchhoff

approximation is at least of the order of k , since both (5)

and (6) are exact.

cLu.

1.24
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plus: edge condition and

of (1.2), the radiation

L'v

with

A (
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TEE METHOD OF. SOLUTION.

2i, Transformation:t.o a "transient":problem0

2 1 1 The formal transforthation. ..

In the presentsection weintend transforming the boun-

dary: value problem, fortiiated. in chapter 1, to a "transient" pro-

blem. The.original problem has the form..

DL

:Lk

(O
radiation

condition,

eo
A (e)

Chapter 2.

for O±11xI<I

for ,=O ,xbI

condition. Using the result

may be expressed as

for large =

.( 14)

k -Lk'Lfl.9- coS & fLP (,o+) e .d. .

The. solution .p is a function of x,y andk, .nd may be

regarded as analytcally extended over the whole kpiane. Prom the

radiation.condition (la) it is seen that the half planes of p051-
tive and negative Re cooi'respond respectively to incoming and out-

going waves, while Im k.>O implies positive damping for incoming

and negative damping for outgoing. waves. (Evidently, therefore, on-

lyhe'.firstquadrant.iS..PhYSi0aliYSig11ifiCaflt, though. tp".doe,s.

possess' hermitian symmetry, about the imaginary k-axis viz, i.p(.. k)= 4'( )

Since (la) implies that, at least for large
,

tf Va-
nishesexionentially for large posilive .Im k, we shall.for conve

nience call the hal.plané Im 1>o : the region of "damped" valuee.

of i.p , although this designation is. rather. arbitrary' in the ight

of the above physical interpretation.

As was remarked in (1.1.2), no uniqueness proof is avail-

able for the problem. whé k is real. S.ince,...hojever, we are treat-

ing the problem asa liitin case for positive ith k tendlng to

zero, it is of interest to know whether the solution is unique in

the. "damped" region and. we shall nOw show that this is in''fac the

case.
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If more than one solution exist , the difference function

satisfies all conditions, but with fxEO in (1)9 so that the.problem

for the difference function is homogeneous0 We now investigate whe-.

ther there are values of k (eigenvalues) with Im.k>o , for which the.

homogeneous problem. has a non-zero solution, i0e. for which the In-

homogeneous problem is not uniquely soluble0. .

Suppose that k1 and k are two such values of k for which.

solutions and of the homogeneous problem exist.

both and ip satisfy the edge condition, .Green!s

be applied to the semi-circular.region , and.

yields, with. obvious notation, . .

- A 9) cit
=

ip .) d. (2)

The line-integral vanishes for large .R, viz0 the part along thex-

axis for all R by. the. boundary conditions, and the.curved part for

large R by. the radiation condition0 The surface integral is simpli-

fiedby the differential equation in (1), so that (2.) becomes

dt=O

Now, if 1 is an elgenvalue, so is-k so that

k2-k1

and therefore . -
(p

so that (3).becomes

non-trivial

Then, since

theorem may

(k )J/ 12 i-=o

k1=±k1 ,.i.e.

Report F.157 11.2

which means thatRe k10 ,.since we are considering only.the half

plane Im k,O . .

This proves that, unless possibly. for purely imaginary k,

the inhOmogeneous problem is uniquely soluble in the damped region0

It therefore ohly remains to show that the same is true on the pbsi
tive imaginary k-axis. Let again be the difference function be-

lbnging with the value of k. Then, applying-a different form Of

Green's thedrem to the. same region as.above, satisfies

dt -iT +(i) 1
0TL

. LDX TJ

j.
Again the lIne integral disappears .f or large R, and (4) becomes

(4)0
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k ff at + (iV
}
dt 0,

[t%.02J

which means that vanishes identically, since k1 is here assumed

to be purely imaginary, and therefore the uniqueness holds also in

this case.

Since, therefore, our problem is uniquely soluble in the

half plane Im k>O , t.p possesses no singularities in this..half plane.

This is a property possessed by every function which is the one-sided

Laplace transform of another function, and. we are thus led to consi-

der introducing a function y such that

(x,;k)zfe (x,,z)Z (5)

in which Im k is positive, Since ip is unique, any significant solu-

tion obtained via the formally transformed problem corresponding to

9) , will be the correct one.

Working formally, may be written by Pourier9s inver-

sion theorem in the form

i / -ijcx4)(X,(.,X)= J e (5a),
'zlt

11.3

in which a is positive (so that the integration goes over "damped's

values of L ), and in which

for xO (6)

(The z occurring here is not the third space variable of chapter 1).

The differential equation of (1) is transformed by (5a) formally into

(7)

which is a wave equation of hyperbolic type, in which z plays the.

part of a time coordinate. This justifies the use of the term "tran-

sient" in connection with this problem to indicate the property(6).

The boundary conditions in (1) are reproduced by the transformation

(5) if is subjected to the conditions

P! Iffx for ij.=0±IxI<I,x>o, (8)
D.

for 0±,xI<t,.z<O, (8a)

o for L.O ,xJ> . (9).

(It was for the sake of simplicity of (8) that the factor -- was

introduced in (1) and in conditiox 2 of (1.1.2) ),

The edge condition may for the moment be left out of

consideratioii, since any solution obtained can afterwards be tested

for this property. Reference .to this point will, however, be made

in (2.2). The radiation condition is imposed by the choice of the
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sign of the exponents in (5) and (5a).

2.1.2. The theory of characteristics9: and application..

For the purposes of the further analysis, the notion of

characteristic surfaces of a linear, hyperbolic, partial differen-

tial equation is needed,, and we therefore briefly introduce the es-

sential concepts and properties,.' Fuller'discussions are found in

Courant-Hilbert, vol0 II (1937), and Sauer (1952).

A characteristic surface, or simply characteristic,

of the linear, second order differential equation (7), is a surface

g(.x.,y,z).=O, such that the secord order normal derivative' of a.sooth

function ii satisfying the equation, is not determined by prescrib-

ing.,tp and itS' first normal derivative on the surface0 If...new.ortho-

gonal coordinatesX (x,y,z),,p.., (x,y,z) and g(x,y,z) are. introducé.,

the transfoçmation being non-singular, then the Second normal deL1..-

vative is , and its oefficiént in the transformed,differ.ential
- . . '. . .

'equation is

N ()
()2 ()2
9.

Z-Z

11,4

All other.first and, second order derivatives on the surface c.=0" may

be directly obtained from the prescribed values of
.p

and , since

differentiation with respect to X' and, are inner processes on this

surface0 Therefore, ifN(g)is non-zero, is uniquely determined.

by the differential equation, so that the o%nditión for the surface

g(x,y,z)=O to be characteristic is that(\f
-: ( o . .

.

(10)"

for:.all points on th surface. If g(x,y,z)=0is. solved in the ±om

z=z(x,y), the condition becomes
(z\2 (z'.
7X/

which holds identically in x and y This can also be written., in the

form . ' . . . .

in which grad denotes the two-dimensional gradient with respect to

x and. y only. This means that the characteristics of (7) are ruled

surfaces with generators making an angle with the .z-axis, so that

a characteristic surface passing through the point (x',y,z'),' touches

there the cone ' . '
' .

(1Oa)
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This cone itself satisfies (lOa).. identically, and is therefore a cha-

racteristic0 We may thus say generally that cones of the, form (11)

aid envelopes of such cones are characteristic surfaces of (7)0 Ob-

vioüsly the. characteristics are invariant under transformation of

coordinates0

The fact that the equation (7) pos?ésse real characte-

ristics is expressed b,y sayiflg that the equation is byperb.oic, in

contrast. to the oriirial equation in (1), which has only complex

characteristics and is termed elliptic0

The characteristic condition may also be formulated in

a dIfferent form, which 'ili be useful in application0 ...Equaiion..(lOa)

may namely be interpreted as an brthogonality relation between two

vectors9 viz0
/Z 7.Z \ (Dz -pz '\- (- L+-4-kk
\ - 'r,c -

The first of these is directed along the normal to the surface

with direction àosines (xii ,n2 ,n3.) and the second along the so-called

eonornal , with direction cosines (n19n,-n3). The characteristic

condition therefore states that the conormal is tangential to the

surface. This méars that; a differentiation in the conormal direction

is an inner process on the surface, a property which we shall have

occasion to use in the sequel.

The most interesting pro,perty of characteristic surfaces

of an equation, is the fact that discontinuities of a special kind

ma.y occur only on such surfaces. In the first placer if it is requir-

ed that, on passing through a given surface, a solution.. is continuous

togethr with its first derivatives and all inner derivatives, but

that its second normal derivative should be finitely discontinuous9

then evidently, from the definition of a characteristic, this sur-

face can only be a characteristic. A finite discontinuity in the

first normal derivative may occur at any surface, since the two sides

of the surface may be treated separately in determining higher deri-

vatives, but even he'e characteristic surfaces play an exceptional

role. If we namely require that a" solution withsuch'a discontinuity

be stable in the sense that on and near the surface it is the uni-

form limit of a sequence of continuous solutions with contInuous and

uniformly bounded fftst derivaties, such that jus't off the surface

also their first and secpnd derivatives tend uniformly to those of.

the limit function, then it can easily be proved that the surface

must be characteriâtic. ,
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Discontinuitjes at characteristIcs have the important

property that they do, in general, not die out along a. generator

(i0e0 in the conormal direction) of the characteristic,. This can be,
shown for instanOe for a discontinuous first normal derivative by

writing.the differential equation in coor4i'nates g, A and,,was..above,

Since: the coefficient N(g.) of the second normal derivative..vani.shes

on the characteristic surface9 only the solution and ..its...inner

derivatives9 together with the discontinuous first normal .d.erivative

and afirst inner derivative, which proves to be directed.along

theconormai, occur.in the equation, Subtraction of the two equations
valid on the two sides of the surface, makes all continuous terms
vanish and only terms with the jump in and with the conormal dé-

rivative of this jump, remain0 The resulting linear, ordinary dif-

ferential equation is therefore of first order and homogeneous, and,

as is well-known, the solutioi of such an equation with real coef-
ficiénts either vanishes idenically, or else not at all in an

dinary point, T(Sinlar points may arie through singu.lar:points
of the Oharacteristic, e0g0 the vertex of a cone, and at infinity)0

In accordance with the special role 'played by. characte-
ristic surfaces in the occurrenc.e of discontjnuitjes in..the solutions

of (7), it will be reasonable to consider solutions which are cóntinu-

ous everywhere (excepting of cOurse on the strip where the boundary

value.of is prescribed) and with first and second derivatives in
general contInuous., but pOssibly'containing finite discontinujtjes
in the normal, derivatives on passing through a characteristic sur-
face, It may be noted in passing that this convention is further ex-
tended by the assumption of the transient character of our.bound.ary

value problem, In view of the above-mentioned property of perèistence
of discontinuities along generators of characteristics, it is seen
that, 'if no disturbance is to. enter the half-plane of negative z,

the :djscontlnujtjes which may occur in. are restricted to such

characteristics as are formed by cones with the positive sign of the
root in (11),'thus. . .

;II

We shall now sketch briefly that allowing discontinuous
behaviour of the solution

q, ,as is proposed above, is. compatible.

with the requirement that the solutIon of 'the boundary va.ué. problem
be unique0 Assume..that...jj.' and its normal derivative ar.e.prescribed

on an initial..surface...z=h(x,y), If, in a given.regio.n', the,. solution

Z-Z' +\J(x_x')+ (-t')
(ha)
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is. not unique, the difference of two solutions will also....satisfy the
diffe±'ential equ.ation...and...will vanish together with its .normal..deri-
vat.ive on z=h(x.,y)0 Therefore, if vanishing of a solutiori..and.i.ts
normal derivative on z=h.(x,y), implies vanishing o,f the solution in
a given region, the solution of the above initi&l value problem is
.lmique in this region0 In fact, 'it will, be proved that. y ,y! ,z')
is. dependent only op the values of '..J and' its normal deriv.tive 'which
are given on that part of the initial surface which lies inside the
sing±e c1aracteristic 'cone with (x'.,y',z') as vertex:

z-z' V(x-x ' ...:' . .
'(1 ib)

whichw.ill .be called the forward characteristic .cone' from (x.! ,y ,z')
The proof depends on Gauss2

divergence theorem, and the divergence
expression
/2( V4) -the \ p - (0q1 \ -0 /-oq 013J i D F fro4A f'o4A2 tp4)

+ - -) - - - .___)4.__l__ -)-- 1- _1+I__)+(__). . (12)
0X OId DZ 0Z ox DZ - jZ tZ [V0Zj \DI. DZ

J

is used. for.the...purpose0..Pirst;consider' Only solutiona..whieh...are.con-.

tinuou together withtheir first and. second derivatives0 Then, i
(12) is integrated . over the region G bounded by the. cone. (1 1 b.)9 and
the initial.surface z=h(x,y), the volume integral, in Gauss2 theorem
vanishes ..by.the differential equation, and the surface integral over
the part .ofthe.initial surface involved, vanishes by yirtue of the
null' initial conditions0 Therefore '

/1
-ot op o. y J (.))Z (D4 ç04))L[ 0Z

a (13)

'1

DZ DX. 0fl. Z 014. Ori. £ 1 -
- -oz j Dr -

in which N. denotes. the part of th conic surface (lib) Out off by the
-oinitial surface, 'and the differentiation is directed along the nor-

mal to L Using the relation

.'-

()& (f -

which holds because N is characteristic, the integrand can be writ-

which :meafls that the two. squared terms are se.arately.. equal to zero
on N, since '-T from.(llb)0 But th'e'e two terms areiiidepen-
dent inner derivaties on N, so that this means that, q is constant
on M, and therefore zero bycontiruity and the initial values, so
thát.a1so' at (x,y',z'Yiti zero, and,by using smaller conical
regions., also.. in all. othr points of G. Thus the unique 'dependence
of.i ip apoint on initiál'values.on.' only that part of. the initial.
surface within the forward character'istic cone frOm the point9 'is.

ten as 'i f/-o4-oz. D4 Dx.\ /oq.' 0z. -H----i-(---- -
DX DY). 0Z rL) -ox ort ;14)
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egu.lar behaviour0

ossihilit.y of discontinuity. i.the. normal

ristic surface is allowed, this .,surface

two parts0 In the part furthest from the

, the above proof applies, yielding tie

dividing surface0 Integration over the

n integral of the, form (13), since it was

grand contains only inner derivatives, of

face,wh.ieh are therefore zero on the di-

esult as previously thus follows in the

stic of discontinuity, and evidently, on

e repeatedly, also in the presence of more

n that p in iiy point is entirely-deter-

inside its fOrward characteristic...c.oné,

its region of dependence. Evidently. t.e

dependence..a...given.point (x,.,y' ,z..) iè

the so-called backward chara.c.teristió

ented.....In. (.1.la)..and this. cone.w,i11.,..the±e-

of Influence0 It.should further.be stress-

ations are no longer valid for discontinui-

ces, so that for instance a region of de-

ed to include the strip on which the boun-

ed.

ye the consistency of the initial values

ntly, however, if a point on the initial

f the surface in its region of influeice,

on between the initial values, and the func-

tive may. not be prescribed arbitrarily.

y be verified, when the initial. surface

j 1
plane y=O on which the boundary....value (8)

ed., and it is therefore reasonable. th.t
.

ernately on different parts . of ..the....piane

be content with this remark, and
. not prove

s theorem foi our problem9 since the im-.

er transformation, the conditions of he,

e satisfied.,.

such....discontjnuitjes.

Thus it is see

mied.by.values.precribéd

which.... is. therefore called

pointsi...whose.. region. of
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surface has otiei,, poi.ts o
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tion and its normal dériva

This..happens, as can easil

z=h(.x,.y) satisfies

f-o&\ (
l.l# L-
.voI '-
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of our, problem is prescrib
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an existence and. uniquenes
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The boundary condition (8a) has been imposed in order

to represent the transient character of the problem, but it will

be convenient to use the conditions

4). for z=O (is)
in its stead. These conditions may be imposed in keeping with the

transience condition, because z=O is no characteristic, so that both

tp and are continuous on it. In this way.the region of depen-

d.ence of a point can be considered as bounded by the forward charac-

teristic cone from the point, and the two planes y=O and z=O.

Evidently the characteristic surface of discontinuity

approaching nearest to the initial plane z=O, is the envelope of

backward characteristic cones from the points of the line segment

z=O, y=O,Ix<l , where the prescribed boundary values are discontinu-

ous0 Let this surface be presented by z:Z0(x,) . Then, from the uni-

queness theorem for the initial value problem, is naught, not on-

ly forz<o , but also for all z.z0(x).

2.1.3. The inverse transformation.

With the foregoing results on characteristic theory a-

vailable, and under the imposed convention about the ocuurrence of

discontinuities, we may now return to the formal transformation,

and- examine whether this convention is compatible with the require-

ment that (5) transforms the equation (7) into the original.equation

of (i).

Consider a line parallel to the z-axis. Since =O for

negative z, the characteristic surfaces of discontinuous behaviour

which.cross this line are assumed to be

with rLzo,1,
Formal differentiation of (5) with respect to x now gives, remem-

bering that for z<z0
00
1 LkX D4)_-je

-Dx zo

in which no- extra terms occur, since is continuous. In the next

di9erentiation, however, the discontinuities in the gradient of x

do contribute:
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..
0X DX 11O

Zfl+1
(

LkX
(e

.-D4)'\
i- / e .kz th1J

m:o x \ .,c1z=x1 c x)xx,
- je LkX

ciz-
.Lkx ix p z=z1.+

X.

The same 'treatment holds for the 'y-derivatives, while par.tial..,inte-.

gration is need&.in the case of the: z-derivatives.,' viz.

Z41 4)/ LkZ ':-- dz >' / e '-
o ,_=O Zit

ILkX 04) Zfl41 -
Lkz 4'.

=
'

j e -. k J e - cLz
rLo I. .DZ t)Z

L fl fl
°°

Lkz .Dqi ° Lkx Z9) ZX4-
-Lk.J'e cLze

0 -o .TLO ZIXr

- k2 7°e j d.z- 5 eUJ
[DP }xZfl+

0 rLO bZ Z2X
Therefore application of the transformation (5) to the diff.er.etial

equation(.7), yields

O = le z.kzj
1

I
I

tZ DZJ

- - rLo _Dc -ox Z)j ox

(4+k&)

since the expression inside the square brackets is a derivative in

the,,co1ormaI direction of the characteristic surface Xx(x,.) ,

and, therefore an inner, derivative, which means that It is continu-

oils. Thus it..is seen. that a continuous sOlution of the boundary! value

.problem.for q , 'may have discontinuous behaviour, of 'the nomal gra-

dient, at characteristic surfaces, and yet be formally equivalent,

via, the transform (5), to the solution of the problem for.

We are .thërefor,e now ready to attack the original, pro-

blem.. by' solving theboundary value p'oblèm (7), (8), (9), (15).

This problem' appears to be equivalent to-that..of deer-

mining.the linearized veloàity potential in.a supersonic .str.eam..flow-

in&..steadily in..he..posItive z-directionat Mach numberyT pasta

thin .plate.of re9tangu.lar plan-form and with prescribed' local.arigle

of attack0 What ié, however, somewhat unusual from the aerod.ynarnical

Report F.157
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1) B. Sauer' (1954) refers to forthcoming publication 0
in which....Schwar.z,'s theory will be consistently used

point of view, is that the chord of this supposed plate has to be

thought of as infInitely long; this means On . the one hand that there

is ño,.wakebehind the plate, but on the other hand that the pattern

of interact ion between the regions, next to the plate, becomes rather

complicated.

The linearized problem of steady supersonic lifting..,, sur-

face tbeo'y. for general plan-forms has been treated by Evvard.. (.1 950)

and... Ward (194.9). 'The derivation of the formulae of solution..deperid
in principle on.. solving. the. initial value problem. for the...wave equa-

t±n.(.7) with given.values of the function and its .:normal...derivative

on a fixed...initial..sface. We shall therefore consider this..problem,

called problem, in the next 'section.

It should be noted here that Pried.lander (1946) and Pox

(1948) have used a similar method as in the present treatise to solve

the .problems o djffraction of .a pulse.at a half-plane and at a. slit,

but that no work seems to have been done along these lines to. ob-

tam an asymptotic solution or wave trains of:high frequency0

which assuines prescribed values of .' and its normal derivative on

a given surface
(2),

f DorTher,

2,2, The soltion of Cauch.y's problem.

The problem of determining, a solution

quat ion Dq.' t)q) g,

o ( - .4- - - =07J. -.2

'I) of th e-

(1)



D t. q) D\
. / D4 ZX\ - / .4) DX'

- - bL) oc. ) ox \ bz -ox

dLU (X o4-R. '- a.cL-R.. x)

cW

in which the aymbol gradh is defined as the vector operator..D .
qt'adR. =. L - i- - - k -

(3.)

Dq.. --az
Gauss theorem states that, for "sufficiently reSu.lar functions and

region,

,7di.v.b cLVf/b.rLcL5 .

in. which the sul a.ce integral is xtended over the surface bounding

the legion of integration of the volume integral, andnn1 k

is the unit outward normal to this surface, The nOrmal .com.poneit

of gradh is equal to, . .

- V D
= ( _- + - -.T - .) j-ox, -

which., is the derivative of in the oonorrnal direction
m3 k , as deflned in (2.12). Therefore the required

analogy of Green's theorem can be written as

/jy av=;(x )as
. (4)

In this result the bounding surface need not be every-

where smooth:. itmay consist of a finite number of smooth part.

The result is valid..ii. p
,. x , and their first derivatives ae

continuous everywhere in the region and:integrable on..the. boundary,
and. if. the second derivatives of (p and. X are sectionally eontinu-
ous. In our problem, everywhere outside the. boundary value strip
(uO z,O, IxL<.1) , is. cpn.tmn.uaus, while on the surfaces of
discontinuity of its gradient, is continuous. Therefore, if x..

is well-behaved, the theorem.. may be appIied..as long as this.. strip
does not, cross the region... of in.te.grat.i.on. and. if remains: irité-
grable everywhere on the boundary. This condition of integrabili-ty

on the boundary is applicable to. the edges.. of.the boundary vali.e
sti, and is the counterpart of. the edge condition .. in. the.. original
problem.

Again in analogy, with the treatment of :the potential
equation,, x. may he taken to bean "elementary solution" 'of (1), viz0

£
j(5)

NATIONML
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which. is....sih1ar...on the. characteristic cone

(

from. the point P : (x,y, z) and.. imaginary outside it Here. ,
1) ,

denote . rumling. coordinates. Following our considerations on

regions of dependence., the obvious region of integration.to consi-

der, is the region G bounded by the forward characteristic cone

from P, and. the initial surface (2), Evidently, however, (4) then

contains.divergent integrals, due to the sIngularity of (5) on the

surface of the cone (6), so that a more elaborate analysis. is needed

to obtain the sOlution of the initial value problem.

Pollowing Riesz, we therefore introduce .into () com-

plex. parameter. oc , thus . .

and. evidently, . when Re is large eugh, (4) contains no divergent

integrals, and...is....analytical. in... ..Otir task is .therefor.e.to obtain

an analytical continuatiom up to o- 0 of (4) with G as regon of

integration, 4) satisfying.(1).,and...% given by (7)°
. .

Of. cóurse..X) does not nOw satisfy (1) for .a. general.

In fact

:; (o-i) ç' (x-)

çzC.l .-(-i) ?o(3 +(.-i)(o-) r:-s (x-)2

-gk.. i) - (o-3)(x-

= .(o(.-i)

so that

Report P.157

Therefore (4) becomes, for Re ,

oo-1)f/9) c03avz/(f1 ()a5, (8)

a (). .
- )

{

a (o )

- of.. (o-i) .

11.13
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in which it is assumed that the cone (6.) is truncated by the part S

of the initial surface (?) No integral over the surface of the

cone appears, since the .integrand. of (4) vanishes there for Re3

Firstly tie .left-h.nd side must be iritten in a fär

which is significant also for cO Since G is partly bounded by

the cone (6)9 it is natural to introduce conical coordinates ',jJ
eby . . -

x-=r(1_,u)co5. 9

Then

and if we-'rite.

and. ass'ume

the left-hand side

Report P.157.

'V

(i') = 3 (,e)
the initial surface (2) to be represented by.

1t1
(2-,u-), .(1,w)

/ cLt'

9)
1

4,rs cLiv

cx)1LO /)L (1-,M.)/ t'° cLt

by partial integration with repect to1 . The first

but the second contains the expression

o-1 di',
and this integral diverges when vanishes0 Partial

yields . .

term vanishes,term vanishes,

t'0 (,M,e)

integration

9 )
.

integration

with .the Jacobian

- (i-,u.)cosO -
D

t(i-,u)srt9 -.'('i-u)cos.G 0

rcos9 0
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4)

wherè...the.

o/3-1 dr=[r°'
i:

0/PO

1

symbol (

,°'a
-or,

o(I) i f . t
- . ç d. S - (crn) ff q.' d. 5,

before the second integral idicates that the

(14)

ana.iy.tical.continuatiofl for oo is. meant.

This result holds under the supposition already mention-

ed.,.. that 5 totally truncates the, forward characteristic...cone. from

the' point P: (x,y, z).. In the case where, the vOlume G which.. s, cuts

out.of this cone, dOes not inOiude'P, this volume may be regarded

as. the....difference of two volumes like' the above., which dO contain p,

(o,,,u,0) , 4fn O , (10)

and...thi.s,.suhstituted.:ifl.the.Se0Qfld member.of (9), makes...that... inte-

gral..convergent fbro=O . The derivative occurring there, when .mul-

t1pliedby.o , becomes for--O

D1
1-,AL) Q (o,,u.,G)

(i)- ()} Q (o,,:))(i)
=..1(2u.) (1+ji.) (op.,e)s. (2,u.)2 (1,44.) D9) (o,,u.,e)

(11)

This expression can be s1implif led, firstly b noting that r=0 cor-

respondsto r1.2'o , so that

(12)

ath secondly.by using the relation
._r,cose_1-t'SLYLe-

which implies
-o,u.,e).0 .

(13)

Substitutlon.of (ii), (12) and(1.3) in (9) gives, foro-o ,

Lit 1

W(x,,X)/ ef,u

w4J(x,I,z) {1U.i (LM-)
0

which ,js'the.analytical continuation of the left-hand side of (8)

foro .o , We may thus write (8) in the form
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and then of course the left-hand side of (14) vanishes.

It has thus been. shown that9 if a solution of.the wave

equation is continuous and has a continuous gradient, excepting for

possible finite jumps in the normal gradient across characteristic

surfaces and if the conormal derivative is integrable on the boun-

dary, then
-

(14)

1/ j f1 as - (ca) // _
SQ S0 10 (15)

in which (14) refers to the case where the sectionally smooth sur-

face truncates the forward characteristic cone from (x,y,z),

whiie.(15) applies.when S0 cuts off from the surface of this. cone

a closed area not including the vertex (x1y,z).
Evidently (14) renders, in principle, the solution.. of the

Cauchy problem0 In the deduction of this solution the notation of

distributions of Schwartz (1950, 1951) is extremely elegant., since

his introduction of so-called distributions, which is an extension

of the notion of measurable functionsallows the systematic use of

Dirac's delta lifunction and its derivatives0 This makes it poe-

ible to include boundary value terms in the differential equation

itse1f and to write for instance Greens theorem without explicit

occurrence of the surface integrals, For the sake of interest a few

of his notations may be given here, The basic property of the del-

ta distribution is represented by

TT
ia. an distibution.., and the star represents the product

of com.osition. The di11erenti1 sQuat 1cm may be written as

A*T=B
in which. T repres.en.ts. tha. r.equired. so1ution A the differential

operator, ath B the. boundary conditions, Then the.. 1eft-haru side of

(14) may be written as

E*B
in which E is the "e1ementary...so1ution'

I

Dir/z2_x2 2

which.., satisfies V

Green°s theorem becomes, for this case,

(E;A)sT-F (AT)=o
so that the validity 01. (14) may be illustrated by
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from P,

E*(A*T)

=

2.3. Application to the boundary value problem.

We now return to the boundary value problem as express-

ed in (3), (5), (6) and. (15) of (2.1):

(i)4ii:0
-Dzz

for 0±,IxIcI,z.o (2)

0 for =o,lx>I , (3)

for z...o (4)

together with the conditions of continuity formulated in (21.2)

and the condition of integrability formulated in connection with

the use of formula (4) of (2.2).

Firstly consider a point P:(x,y,z), for which both y

and z are positive, and such that the forward characteristic cone

Report P.157 11.17

(5)
is truncated by the ha1f-planeso ,v>,oandro,'>,O , in which again

,. , are running coordinates in the x,y,z directions. The

truncating surface thus consists of two parts: the first part, is

the major segment of a circle on the plane ço ; the second, which

we call , is part of the hyperbola

On the negative side of the plane rt=o , a further bounded region is

cutout of the cone (5) by the planes 4°0 and 11=0 , and.inthis

case the bounding surface consists firstly of the minor segment of

the same circle as above in the plane -0 , and secondly of (6),

which will in this connection be called D_ . The difference of no-

tation in and. D. is intended .to convey that surface integrals

over (6) are concerned with limiting values of the integrand, approac1

ing from the side of positive and negative ri respectively.

Formulae (14) and (15) of (2,2) may now be applied to

the two bounded segments referred to above, which have the cone (5)

z- (6)



NATIONAAL
LUCHTVAARTLABORATORIUH

I,)

Report F01 57

and parts of the planes =o andio as

the boundary condition (4) bakes the

vanish.9 while on the plane .qo the conormal coincides with the

(outward) normal, 10e0
-D on

Ofl.D

so that, finally., we ge

// .1 (c)/fqiL(1cL d.'

b

Since9 on the same arjuments..as for in (1.1.2), t is
metrical in..y....Qr.TL , we ay.write .

-.

-. ..

Ther.efore:subtraction of (7.) and. (8), and writing D for either

or. 9 gives.

f-

k(-',it') 1 -1

oq,Q,)
cL cL=tJ/ -.., . 4

D. -

bounding surfaces. Evidenly

contributions on the plano.

ant iyn-

thich...is.-.Yal-id...for4.>O and i.s ip accord. with the formula found 'by

Evvard:(.19.50). for the velocity -potential on a iifting.surface
steady, supersonic flow0 .The value fr negativey follcws froth

the property of antisymmetry -

Pormula (9) s not yet the.solution of the problem, be-
Qaus.e.the vale of ' occurring in the integrand is prescribed in

(2) only-for I{<L ,
whereas the-hyperbola' sector D does certainly

extend beyond this i for instance, is large enough. The ara D,

situatedOn....the plane-=o , ('compare (6).), may be written,

D z_V1(x-1.' P(x,L.;)EI'()
I

04.

(9 )
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which.serves- as definition for the expression r () '. This area Is
therefore to be divided into parts namey the part D' for whichIRI,
and the rest-, called D", which may or may not exist, projecting
beyond this strip for a fixed point P:(x,y',z). The formula (9)
then...becômea

. _o4)( ''
- (X 11

c()ad. _i It (11)''
c V (x-° - (

which. is' a- soiut.ion. of. the. prob.l.em for positive values .of z.smaller
than...hoth r(-i) and ..r(+1 ),. (since then D" vanishes), but.. which is
an..integro-differential equation ix for more general points0

In order to determine the unknown value of in the
second integral, use is made of the boundary value (3), which, when
substituted.in (ii), yields . (q )

.c()dd if. ..
A'.

Vz-- (x-)2 D" \/ (r-.q)2- (x )R

which.is va-lid for ixI>.I The domain of Integration D: which is in
general a....hyperbola sector, is now degenerated into a triangle. On
condition that the entire domain W' in (12) lies on one and .th
same..side of the stripIRI , (which is the case wheno<x-1<z<+i
or. c<-x-i<z<- ), then (1,2) can be simply 'solved analytically
for....! . These values can be used in the, second term of (11), thus
inreas-ing. the range. of... points P for which (ii) gives the, value of

; but the same values of . also increase the range...of points

for which may be. obtained from (12). Thus, repeated...application
of (12) yields, in succession, the' required values of over a

larger a-nd larger domain of the .plane=O , thus continually extend-
ing -the range of usefulness of the formuLla (11) The process becomes
rather laborious after a few steps, but in principle the.solution
of q over the whole space can thus.be found in the form of an
integral- recursion formula. ; , .

On applying the Laplace transform (4) of (21.1), it
appears that domains for whiqh. . is successively found by the pro-
cess..sketohed above, yield 'contributions to the value of p whiOh

are.of decreasing order for large values of the frequency-parameter
k. It is in this circumstance 'that the value of the. present method
lies., since .only.a finite number of steps of the' recursion proces.s
are. required to yield. a result which is asymptotically valid to a
specified ..orderin k. '

.

The detailsof the process. are deferred till the, next'



chapter, where they will become plain in the course of the appli-

cation to two examples.
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Chapter 3.

APPLICATION OP TI THOD TO

DIFFRACTION PROBLEMS.

3o1e Sommerfeld's haif-olane diffraction problem,

3,1.1. Solution by the Laplace transform method.

As a preliminary illustration of the application of the

method, the dase is treated where the screen, which is assumed to

be rigid (or perfectly reflecting or conducting), takes the form of

a half plane, instead of a strip as was described in chapter 1. We

shall again require that only the two space dimensions x,y occur,

so that the screen may be assumed to be situated on the positive

half of the x-axis, thereby implying that the edge coincides with

the axis of the third space variable.

There are certain advantages in starting with this pro-

blem0 Firstly, the results obtained in this relatively simple case

are directly applicable to the first stage of the more elaborate

problem of a strip, and, secondly, it is an example of the only

type of diffraction problem that has been solved in closed form,

namely by Sommerfeld (1896), which thus afford a valuable check on

the correctness of the method,

The boundary value problem for the perturbation veloci-

ty potential may be formulated as

(A4.kZ) Ci)

(x)
, for bt=O±rx0 (2)

-o(.
D. 1k

for io , x<c

together with the edge condition and the conditions of continuity

of p and its first and second derivatives, excepting on the po-

sitive x-axis. We impose also the radiation condition, but the fact

that the region of (2) stretches to infinity, implies that this

condition is only satisfied if the incident wave may be regarded

as originating in a bounded domain of the half plane.Id.<o , which

means that no plane waves occur. In case plane waves do occur, the

solution may be regarded as a limiting case in which the source re-

gion tends to infinity, so that even plane wave behaviour may be

obtained from a treatment which imposes the radiation condition.

Evidently, the problem thus formulated is directly analo-

(3),

NATIONAAL
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gous to our problem for a strip, and the transformed problem taikes
the form

'

for o± , x>O, z>O

qO for x<o

for' z<o,.'.
with the V same conventions regarding continuity and integrabilit
as in (2.3).

The fundamental relation for obtaining the solution is
formula (9) of (:2.3), which may be written as

d'd.
- .i_. // V-

V for

with

' 2 2' z-r()
I. f()d0,

x_Vx2_ 2'

and the sur±ace of. integration D given by, the hyperbola. sector,
D: (8)0

Again the values for negative y follow by antisymmetry, and we there-
fore. henceforth need consider only the case of positive Ye

The region in which is nOn-zero, (ef. end of (2.i,2).),
is the wedge z> in the half spacex>o, supplemented. .bV the... half
of, the. backward cone from the origin which lies in the other haf
space, viz, x>r co) ,x<o In ana10 to the division represented
by (ii) of (2.3), this region of non-zero p is divided into twa
parts,. viz, firstly, the part for whose points.the surface Of iite-
gration D in (7) is such that only values of P!. given in () oë-
ciii', so that p is directly determined, 'and secondly, the part, for.
which some of the values of occurring in, (7), are not given by (5)

Evidently the first region consists of points (xy,z with,
z.iyl andx>o and for which the hyperbola sector (8) lies entirely
in the half plane of positive. , This is the case if <(o) arid
of course z>;.: andz>o , which indicates the region for positre x
which is situated between the wedge surfacez= II and the backward
cone from the .originzp.0 \/x2? . We may thus write, using (7)
and,(5)
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valid in the region
O<.x(o) , x.>o (io).

The second part consists of t1e rest of the region of
non-zero 4) , viz, the inside of the backwa
gin,z>.(o) . In this cas.e (7) and (5) yield

x- Vz*- 2 r() cLç
tp(r,1,x)-1 / /

01 V r'( )
in which D" is the part of (8) for which is negative.

Now the values of over the region D" may be deter-
mined by using condition (6), as was indicated in equation (12) of
(2.3).. We therefore apply (7) to a point for which y=O andx<O
so that the region (8) of integration degenerates into the triangle.

O3'r-Ix-I
Since is identically zero forzi' () andx.<o , i.e. forz<-x,
we further choose z,-x , and the triangle reduces to the trapezium

for
for < 0

and writing
a;

z-x

(a'r)=

(7) and(6) yield

7
o Vc-a -r

' Vcç-r0- V'r1.t'
valid in the region y=0, zco andx+x,o , that is in the region't.'G
and This is the equivalent of equation (12) of (2.3). Now
since (13) holds identically in in the range oa<; , the expres- -
sion in brackets must be identically zero, thus yielding the simple
integral equation

Cmcav T1

_/yI_ / V-'

rd. cone from the on-

(ii),

(14),

Introducing new coordinates by
}

(8a)
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valid foro<a-<'r it..now proves to be possible to eliminate.

from theseoond..termof (ii). without even soivin(14), Rememb4riig

that..qo forz<-x, the domain D" reduces to

in which the boundaries are

- qo, q=o , and. V
or, in the coordinátea- and: t of(12),

GrO, G=t and

Therefore the secoi1d term of (11) becomes
2''Vz-I'o, 4) dt zr(o) 1 G-C1

I' I V-airt-
.z / y /

\I

z-'(o) a-

/ V(\/
v1 c-1-a-i

X-I(o)
.t

/
t () d J R

(ç)
(15),

which is a statement of equivalence between two integrals of

w.ith.a flxed...weight function, over different aras, This isan ex-

tension of Evard's method of equivalent areas.

Substitution o (15) in (ii) yields

x,,X)=-.! I#
(ii 6),

0 o

valij for x o) and...>o The problem of determining q. is thee
fore completely solved by (9) and. (16). This is ossible;because

'is given by (5) for a whole quadrant of the, plane y=O, so that only

irt.one trianilar areao<-e<'z of this plane extra values must be

determined for the application of (7). In our more general problem

in.which is given on a strip, Iwo such triangiiar areas, occur,

an&.. interaction...betweeli them prevents, the solution to be..ohtainéd.

in closed, form as above.
I .

The. requred..solution 'p of the' problem (1), (2), ()

is. now....obtainedfrom q.' by'appIieation o,f the Lap1ace.transfor

(.5.)o'.(.1.i).to (9)and.(16), ' '

from (14),
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/ e q(x,i,x)d.z
0

ct°

by

it

[x+V2:2 z-r) . z-t(o) x-o)-
. e ik dx j / f()cL / / f()d/

1cc' ° V- 0 0
V

(z_)2 ,.. ()

00 1 r-) , x-P(o)-

L r )a1 / e dz/ e
'rd I

0 1 a V
t.2(5 r(o)

. V
.2()

i'(o)

Ice. 00,
/ e J eIx

t(q) yz&-r2g) P(o)4- V
partial integration with respect to z, since

for c independent of

p(x,)=_.! /
or, remembering that

"(0) x#\[x&4' z-'C)
kz d.z /___ )cL /

(17),

-Dr-C
-z,x / (zo)2 , ()

z

Z / y q2 R

z. Finally (17) becomes, by using

d.z
ci. j e

(of. 6.13 of Watson (1944)),

(i) (kr) 2
°

LJcrx
dxfe

4' Vz2i'
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j Vz-4°- ,2 ()

(2),
(18),

11105

(1 8a)

(17) may be written as

p()/ o)d[ ['11 JeJ).
}

(19).

This affords an interesting comparison with the result

that would be obtained by applying the Kirchhoff method, (cf. f or-

mula (4) of (1.5)9 in which qII instead of oa.o ) The correct

Green's function for the problem p'oves to be an "incompletett Han-.

kel function, instead of the Hankél function occurring in Kirchhoffts

formula, and the error in the Kirchhoff formula is given by the se-

cond terinof (19).

2
°

Ic
d.x

ir L Vt&

LkIt
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3.1.2. Equivalence to Sommerfeld's solution.

Sommerfeld's solution was obtained for the case of a

plane incident wave, and we shall here illustrate its equivalence

to the solution (18) for the special case of the normally incident

plane wave

The boundary condition (2) in this ease takes the form

_k for

so that (18) becomes (for.>o),

dz

- / cL / e' v- (20).
Our aim is now to prove that this is equal to Sommerfeld's result

T
fe cLX (21),

in which T1 and T2are nost conveniently written in terms of olar
coordinates r0 and with

X = T SLTL 0

= t,o CO 0 ,

viz.

T1-V3 sLn.=±Vk(t-
T2= \J1i cOS

This result may be found for instance in Baker and Copson (1949),

in a somewhat different notation.

We now simplify (20) in an obvious way, always keeping

both x and y positive, and noting that(o)=r0 :

i.I °° x+ z-1x) / edr/
VZ22 f / ed.z/

0.
k / Lk / LIx i 'I

e cZ+ e y&.fcLz
1Lk e_.i1 Lkz ..j X-t,-X I LICX

axi - e
2

SLTL
x2- (z&i) Q(x+r0)(x-r02

-e
It

since

\
/x'

7°ei.kx
X(lcX)

'4' -i- (xi- t) \f -

Using. the relat ions

x-C-x) +(t-) .-(,-x)
4.

.(xi.) 2.(z-.)

cLz

I Il 6

(22),



this becomes

v
a

t,ti +

- VF,-)

I

rr Je'cLXi

for

(23).

00

e J iX2 e 1p (Lj.)
- fii' V (+)'

valid for both x and y positive, and equal to (21) for this region.

=

and

V+x - yr,-x
=

S(X) 2

changes (22) into

p()eIk# Lkz dx i/i Lkrfe
Lit

fe (x)x-t'
Now, in order to simplify this, let I(k,y) be defined by

I a' Je

Differentiation with respect to k gives

kuá. Te -±- =-\Iii' e LL(I'0+t.)-
Dk Vk

which, on integration, yields
°° (Pt)),I. cA4.I(k,.)\[' I..'.

JI2J_ I e'cLX
i L(tii yk(I+j

in which the upper boundary is determined by the condition

Z(o,'.) / Cx.)yz-t If+w:
Substituting in (23) yields

00 00

.p (x. ) = - e'd' e* / e' LX+
e I e'' d.X,Vt' VkOi \flEI' Vk(i-

or, making..use of

NATIONAAL
LUCHTVAARTLABORATORIUM Report P.157 111.7
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Consider now the case where y is still positive, but x

negative0 Then (20) becomes simply

(X,%- JeCdz cL

x_t,c,

Je x.. Q0-x) d.z
It V (z-jf')z_P

d.x. Liz d.x

I cIA 7° e ' d.X,vr ykct+y \ft' kci-.y

again equal to (21) for negative x and positive y.

Thus it has been proved that (20) is equivalent to Som-

merfeld's solution (21) for positive y and all x, and therefore

for all x and y, since both solutions are antisyn3nletrical in y.

. Diffraction by a strip.

3.2.1. The initial stage.

We now come to the solution.ofthediffraction problem

formulated in chapter 1. The two-dimenaionai elliptical bounda-

ry value problem
(*kL) po

op, fCx)

-- -j- for o±, ii< 1

for o , (xI>1

with continuity, radiation and edge conditions, is replaced by

the three-dimensional hy?erbolical problem

=0 (2)

for =oi, IxkI ,zo 3)

= o for o , IxI,1 (4)

for z=o (5),

with continuity and. integrability conditions, as was described

in chapter 2. Again formula (9) of (2.3) is the fundamental re-

lation to be used in solving the problem,. viz.

Report P.157 111.8



NATIONAAL
LUCHTVAARTLABORATORIUM

X,,z)=- Jf for (6),
0 () I

with
(7),

and. the surface of integration D given by the hyperbola sector
(8).

We also again need consider only positive values of y, due to the
antisyininetry in y..

Before proceeding to obtain the solution, we consider
briefly in which fashion the subdivision in different regions, ta-
kes place. This division is done on the basis of which part of
the plane o is covered by the domain D of integration in (6).

Firstly, if D is situated entirely on the boundary value
strip iia , the solution is directly determined by (3) and (6).
This is the case when the point

P:
lies outside both of the backward cones from the two corners of
the boundary value strip, viz, the cones z=r(-1) and z=r(1),but,
of course, still inside the region of non-trivial values; thus

-P satisffes
and x<r(1)

and also .
and z>

This may (for y> 0) be written in the form

Next, if P does lie inside either one of these cones
but still outside the other, that is, if either

tC-1)<x-r(1' which implies c<O (lOa)
or which implies x>o (lob)
then D protrudes beyond the strip l<l on only one side, and the
situation isidentical with that which occurred inside the cone
z > r(0) in the half-plane problem of the preceding section, The
solution obtained there therefore applies directly,.with the ne-
cessary adjustment of notation. However, the region of applica-
bility of the results of the half-plane problem is larger than is
suggested by these considerations. The criterion is namely in
what region an equivalence relation of the form of (15) of (3.1.1)
is valid. The region of integration of its right-hand side is a
triangle with hypotenuse starting at the point where the hyper-

Report P.157 111.9

O<x'r(-1)
O<xr(1)

for_x.$o
for oc<i

(9)
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bola of D leaves the boundary value strip (or quadrant, previous-
ly), and with gradient 45°, Therefore, as soon as the region D
includes either of the points (-1,0,2) or (+1,0,2), this triangle

protrudes beyond the boundary value strip, and the validity of the

eqi4valence relation, of the form of (15) of (3.1.1), ceases. Evi-

dently this means that the point P is situated inside the region

of influence of either of these two points, i0e. inside either of

the backward cones z=r(-1)+2 and z=r(1)+2, Thus the results of the

half-plane problem are directly applicable also in certain cases

where the region D of integration protrudes on both sides of the

boundary value strip lI<I , viz, In the region

x<o
(ii).

tion is sought in the rest of space: the situation

time a member of either of the two sets of coaxial

and z=r(1)+2n,. is crossed. However, before passing

}

To suimnarize, it is thus seen that the solution outside

the cones z=r(-1) and z=r(1) is either trivial (i.e. zero) or else

is found directly by substituting the, boundary values (3) in the re-

lation (6). Then comes a region, bounded on one side by the previous

one, and on the other by the two cones z=r(-1)+2 and z=r(1)+2, in

which the solution Is not fully determined by substitution, because

part of the values of occurring in (6) are not contained in the

prescribed boundary values, but in which the solution can be com-

pleted by direct elimination of these values.

The above is indicative of what happens when the solu-

changes every

cones, z=r(-1)+2n

on to consider

this in more detail, we shall sketch here the deduction of that

part of the solution which corresponds to the result for the half-

plane problem.

Pirstly, then, in the ±egion (9), direct substitution of

(3) in (6) gives

c&I ()cL f f
(12),

It x-
as In the half-plane problem.

In order to apply the rest of the resulof (3.1.1),

notably (15) and (16) of that section, we first introduce a new co-

ordinate x' (with "running" coordinate
' ), viz.

(13).

In accordance with this, primed coordinates are introduced also in

the (r,'t') system (cf. (12) of (3.1,1)) by
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convenience may be replaced by 't
ble called t', thus

1 (f" ') '
- 7 9' (cr' t') d.4.'

-°-' \j V'-k''
valid in v'..a-o and .z,r'.o ,

that is in 'r' , :r' >0 and
V In unprimed coordinates this becomes

ai.1 c, (a-+i, 4.') d.4.'

0= 1 + I
(cri,t-i)d.4.

+ I (O+i,t-i)d.

-a-
ytt

7 f(Tt)d.t

+
"ITt

-a- cT+2 V'rt

with region of validity 't-i > >0 and >o- Returiiing to the
analor with the previous section, and noting that, by (7),

r'(q)= \/(x)+= V('-')''?
I'(-i)

relation (15) of(3.1.1) corresponds to

_i... ' do-'
i'--'

l,TtcQYt)a.1tT x-r(-1)z-r(-i) ' / '-')(t -r') -
01 - o -0

x r( 1) z-P(-1)- d- t,oY JT p

It t- r2 ()

(16)

9

ç1 (=zi-x1)
;

cr =r+i (=z'+')
'1

(14),
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(1 )
--i.

F (EcL / V (x . .2

This is valid in the region for which the integration with respect

to concerns only values given by (3), viz, the region

(18),

which is situated between two coaxial cones.

Similarly, introducing double-primed coordintes
x'=i-x ;

=4-i
a-I! r1+i (=+x") ; a-"='t+l (4'r)

(19)
- V1t -1 (= x -x") ; a--i (

!T) 9

the above argument may be repeated, with the notation adjusted by

q 'v")- DLO,) and. F (cr",'r")= FC)
-

-

,, )_
Q'Vt( 21(G't) dt1' fl)ff zP1rv

RIt /
a-,, V ('-cr")(-'r")- o

(20)
It -xirCi)+i

')4 i i (!)
again valid in a region between two coaxial cones, viz,

(21),

The solution in the three regions (lOa), (lob) and (ii)

may now be written down, in analogy to (16) of (3.1,1), The first

follows directly by use of the primed variables x' and
'

, viz.
x'+1z2 cL2' z-(-.i) z-(-i)-'z-± / +(j'-i)d' / VZ_)2_c 4 / '-i)d' / V (z-_ I')

C+ y'x x-P() d ' X- -i)-1 z-F-i)-14 (22)
=4 1 4 j /

in which the second integral is significant only in (18), while the

first requires that also z<r(1), thus yielding an over-all signi-

ficance in region (lOa), to which, of course, is to be added the

condition y>O. (The expression represents - for y< 0). Similarly,

using double primed variables, we obtain
I It z-r(q) cL1' (

X)- r(c)'4 /V-cq -x(11' /
23

for positive y in the region (lob). In the case where P lies in (11),

the domain o:integration (8) protrudes on both sides beyond the

strip Ii<) , but since the conditions for application of both

(17) and (20) are satisfied, we may write at once

thus yielding

Report i'.157 Ifl.12
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Xf- Vx*-

- I
x_

Now, what is needed ultimately,

Report P. 157

1 xIr(q) L4' X-r.(-1')-1 X_P(-1)-1- cL'
L / f()d. / V(x-Y_ t()L)(X,,Z>i /f()ct / V(zt2(

I z-I(i)-1# d.q (24)I-- I q)d
1 -.z#P(1)+1

for positive y in the region (ii). The formulae (12), (22), (23)

an((24) represent the solution in the whole region outside the two

cones z=r(-1)+2 and z=r(1)+2, and, as has been remarked, inside ei-

ther of these cones the integral equation corresponding to (16)

has to be actually solved to ensure further progress.

At this stage it will be convenient to introduce a sim-

plification of notation. The function f(x), which, by (3) is pre-

scribed in the interval ji<I , may be continued beyond this inter-

val by requiring

f(x)=o for xI>I (25).

This convention allows integrals over f() to be interpreted for

all real values of the limits of integration; for instance the in-

tegral in (12), which as it stands becomes meaningless as soon as

z>r(-1). or z>r(1), may now be interpreted in the whole region

z> Moreover, the respective first terms of (22), (23) and

(24) may all be represented by the same formula as in (12), viz,

(26).

° V(z--!
is the Laplace transform of q.'

which means that we have to integrate with respect to z while keep-

ing x and y fixed. In this process, the values of q.' which are suc-

cessively encountered with increasing z, are given, for instance

for both x and y positive, by the formulae (22), (24) and (25),

followed by more extensive formulae which still have to be deter-

mined. Written in the unifying notation suggested here, each for-

mula is identical with the previous one, but with an extra term

added. In this way (26) may be regarded as a first approximation

to the solution in the whole region of non-zero q. , and the extra

terms which are added for the successive regions, as so many cor-

rection terms, Our task in the sequel will be to determine what or-

der of approximation to the value of the required solution p of

the original problem is represented by each of these correction

terms; in fact, it will be shown that they are of descending order

for large k, and therefore suited to serve the purpose of obtaining

an asymptotic expansion for large k.
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We shall now show what contribution to the so1ution.p

is rendered by the part of the solution y which has already been

determined above. Since q is given by

p(x,) /e x,,z)d.z (27),

the contribution of the first term (26) is

x+Vx2I
-.1 / e LkZ / 4() /lt x-yz&2

00 e2dzZ/
-

Te
- Vz_1.2(q)

by partial integratiQn, as in (17) of (3.1 1). Using (1 8a) of (3.1 1),

and also (i) and (25) above, this.becomes

i. j -w(w,°) H01 Ic()} cL (28),

which is identical with te Kirchhoff approximation tpK given in

of (1 .5). This means that al]. further contributions are correction

terms to the Kirchhoff approximation.

The next contribution is obtained by applying (27) to

(23) and. (24) for positive x and y, and excluding the first term,

thus
00 1 x
/ ecLz / f()d - /P(1) -Z4S(1)+1

d4'41 J ed.x / ffq /I'(-l) -1

00 xr&1)-1-E oLJ ectz /4 / (q)4q I eLkz / Vx--cq4. *i)+1q 0 Vx--cc 1

1 00

P(1)4-1-. 0

Report P.157

using (25). Integrating partially with respect to z as in (17)

of (3.1.1), and substituting for f() from (1), this becomes

j. j d.{ f e 7' e

}
(29).

ti(1)+1- Vx*_r*q) C-i+1+q
This result has been deduced for positive x (and y), but if (23)

is replaced by (22), the same result is obtained, so that (29)

is valid. for all x (and. positive y).

3.2.2. The integral equations and their solution.

The next stage is to genralize the integral equation
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(16), and. to solve this (generalized) equation in the form of re-

currence relations, for the sake of applying the solution to find

1n a general point.

The integral equations concern thosQ values ofneed-

ed in (6) to find , namely the values pertaining to the wo la-

teral quadrants formed by removing the boundary value strip xI<I
from the half-plane z>0, y=O. Sincec,.s is zero for z<r(-1) if

x< -1, and for z < r(1) if x 1, the two quadrants reduce to sec-

tors viz.

for x<--i

and z, x-1 for x,i,
which may be written in the(cr,'r) system, using the running coordi-

nates, as

0---, for t--cr)z

for Q-r>2.
or rather

1--1 )0+1 >0 (30)

(31).

(Written in primed coordinates these become

T'- O'0
T"cr"0).

Either of these two regions may be respectively referred to as the

"left" or "rightt' lateral region, and the fact that the roles of a-

and T are commuted in the two cases, will allow a simple transfer

of results from one to the other.

Now, before proceeding to the more general case, we s1all

first solve (16), which renders near the "front" edge of the

left lateral region, i.e. in that part of (30) for which G<1 . The

integral equation (16) is of Abel's type, and may be simply solved

analytically. For the sake of later application (16) is written

in the slightly more general form,

0= [ (32),
4 Vr-t

where in this case evidentlyo-a and =ai-2 . Thesolu-

tion of this Abel equation in is obtained by multiplying by' the fa

ior_ (in which T is for the moment still undetermined) and inte-

grating with respect to T from è to T, thus

dr (
f(cr,)dt +

If MT-f \fr-t J t-
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T T +jrT diffC)/j(T_r.ti cCGf)

T
2/ f(o,f)a.ctQn\

T d{TJ4(ct)dt.\ t

Differentiation with respect to T gives

I f'f(ut)''d+ircv71(crT) (33).
\J T- T-t

Substituting in (33) for 0, ( and. ' , and choosing T to be equal

toT, yields
0+2

4'., (cr,t)=-

which is therefore the solution of (16), valid for t-1O+1O

and 0<1 This may be simplified by noting that f may be written

in the form
.fCoT)c()=c(02T) (35).

This means that
f(aa--2 )f(),

thus suggesting the substitution

(36)

Report P0157

in (34), which yields
2\J rc(a) 'fl d.LL
ft.-0-2 J-

a result which is valid in the region

(37),

r-s and. c:r<t

The above considerations leading to (34) also apply with

the roles of a- and. t commuted, and we get
T+2

- [ cs,r.

while in this case, Since the exchange of a- and r changes the

sign of in (35), the substitution (36) is replaced by
5=r4-2u,

yielding -i
2\J2 f (U) V-i-u a

(38)5r/cT-t-2 - cT-2 U
and this is valid if

crj>t>o andt<-1 (39).

The identities (37) and (38), together with the bounda-

ry condition (3), explicitly deterinine- in a connex region con-

Si8tiflg of three strips, viz, two strips along the front edges of

the lateral regions, and the boundary value strip. Now the proce-

dure leading to (16) is no longer limited by the condition that

the domain of integration of (15) should not protrude beyond the
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boundary value strip, but by the 1es stringent condition that it

should not enter the region of unknown , which lies between

the boundary value strip and.(39). This condition is fulfilled if

the point (cr',t) in (15) lies outside the domain of influence of

the point where these two strij,s meet, viz, the point where

and. c1 ,
which. becomes, in the (c , v) notation,

and r=i
i.e. .

The domain of influence àf this point in the. plane rj=o is bounded

by the lines a=3 and'r.-S ..Thérefole evidently the integral equa-

tion (16) may be ext eided to ,nclude on its left-hand side values

of known from (38), so as to cover a region of points (cr , 'r)
such that

and 3>0>-1

This means that if the integral equation thus found is solved, the

domain of known values of4 is extended by widening of the front

strip in the left latera region. The same reasoning holds with

the roles of primed and double primd coordinates inverted, so that

also the strip of known in the right lateral region is widened,

symmetrically with the left-hand side.

The above evidently points to a recursion process, in

which.strips of the left and right lateral regions, respectively

of the form it+a>2n-i and 2ni>t>2r-1 , in which n is

a non-negative integer, are successively added to the domain of

explicitly known values of . Since the formulae obtained for

may be expected to differ in the different regions, it will, be con-

venient to use a different notation for the function in each

region. Por this purpose the regions will be numbered as follows:

region n'

region n"

as is indicated in

We then denote

f)-1)-2fl-1 (n=o,1.........)
the f ±guxe on the -next page.

as follows:

in region n'

in region n"

()t'(E7t)= w"(r,o), for

t'-i>crf-1

[21o>2?1- (ii=o4
(40)

(41)
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The different order in which the arguments O and T are written,

as well as the different notations for f( ) are introduced to at-

tain that all formulae pertaining to either the left or the right

lateral region may be applied to.the other simply by commuting pri-

mes with double primes and 0 with ¶

Report P.157 111.18

Now we are in a position to set up the general integral

eqations for determining the different ur'5 anxi For this

purpose we return to.(16), and note that in the general case it

is necessary to replace c(0t) by a set of different symbo..s for

along the path of integration in accordance with the notation

introduced above in (41). We note first that for x i and
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z<r(1), and therefore more specially for the part zx-1 of the

right lateral region, i.e. for the regiont4(-i . This means that

for (or) in that part of the left lateral region where a>i (i.e.

just the part which is excluded in (16)), the lower limit of inte-

gration of the first integral is -1 instead of -a- We may there-

fore write the following generalization of (16) for n. 1:

112 2 r7+f w,,..'(+,c')dt + ? Wn.jf'(Eø)dt (42)
2 '1-1 \f 2-3 \J O?2

in which the paths of integration may be vivalized as lying along

the line o- , as indicated in the figure. Equation (42), as it

stands, is valid for(cr,t) in region n'. However, we may suppose

that each of the formulae for the different functions is inter-

preted in the whole region backwards of the region in which it re-

presents j_
, as was done previously in (25) and (26). Then equa-

tion (42) is also significant if (cr , -r ) lies in the regions p'

with pn, though of course the solution wvcT,T) would not there

represent the true value of.- , since ô.p'Ca,t) in region p'.

This extension allows (42) to be compared with the corresponding

equation for u1)'Car) , viz.

rT ça I) df
V

fl.3 2m+1 -u,(,cr)d.f G-2
(l%Z)"Ct,c1)dl r2 w".a)d+

irtO + £3
Subtracting this from (42) then yields

wi (crt)- ii,._'(ot) d
cr+S

0-2-2 1.O(,.1)"(tfl)dt r 11P(, .t) 'Ct,cr) attt,cr
21-S

0-2 C°)

Introducing the notation

w.,' (or) iA,' (0 t)
Iw' (Qt)-W)r3r),

Tii"(t,cT)
-t%' (t,a),

this becomes

for n=o 1

for-n.,i
(43),

for n-_o

for n'i1
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U.. 2

0= j S1ø(1L.f)u(t.o).dt .p
(cr±)

a+g V-t.-t (44).

in the regions p' with p.n, i.e. in

't,G-+?t4-1, where 'rL.>l (45).

Now if is assumed to be known, (44) is an integral

equation in Lw,' , of the form given in (32), and with solution

of the form (33)0 Therefore, substituting for cx , , and T ,

and. replacing tbe ±'unct ions f and. c occurring in (33) by the dif-

ference functions in (44), we obtain

Si,7, Ccyr)
C

S19()_1)"Ct.r) kr2-t (46),

valid in the region (45), The corresponding result for the right

lateral region is
-2

Sw," (r,cr) =
- -

'M(vt-1)' (s,r) d.s
(47),

which is valid in

6)-t2>z7L+1, where ni1

In the notation of (41) and (43), the solutions (37)

and (38) obtained for In the regions 0' and 0", are
02

T-0-2 / f(u) Vi+u
t-0+2 U

(r,O I fOL) du (49)

and, using (25), these remain significant for all regions p' or p"

respectively, with p>,0, i.e. in the whole left or right lateral

region. The set of relations (46) to (49) above, form an integral

recursion system which completely determines the difference func-

tions eS'and for all positive n. This is in fact the solution

of the problem of obtaining in the plane rjO , (as is required

for the application of (6) to obtain everywhere in space),

since evidently, by (41) and (43), may be written as
D4)(,o,) -qJ (crt) Z e3w,?'(cr,-r) (50).

if(cr,T) lies in region n', nd as

-. :v -2 e3uL"(t,a) (51),

for(o,t) in the regionn".

3.2.0 Completion of the sOlution.

The above results may now be. used to complete the solu-

tion of the problem of determining w and therefore eventually cp

We have already obtained the first two approximations to the final

solution q' , viz, firstly the function (28), which is identical

(48)
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with the ICirchhoff approxjination, and secondly the correction terms

(29), which were obtained by elimination from (6) of what is evi-

dently the two functions that are now called &, and 2WJfl , as de-

fined in (41) and (43). The values from which these first terms in

the solution of were obtained by applying the transformation (27),

represent the correct values of' p only if the point P:(x,y,z) lies

outside both of the cones z=r(-1)+2 and z=r(1)+2, which is the re-

gion for which the only values of contained in (6) are f, w0,

and w01,. If P lies further backwards, (6) contains also values of

which are composed, by (50) and (51), of terms and

with m 0.

We therefore consider a general point P in this further

region, and note that it satisfies the conditions

<t (-i)+2 (n1i-i)

. z (1) 4-2 (n+1)

in which now both n1 and n2 are at least equal to 1 (while their

difference is at most i). Then ti.' may, by using (6), be written

in the form
cL

.ZWp(x,,x)=- f ()cL / Vx'*- r2 ()
x..I.(-i)-1 ,a,v)dv £-t'(l)-1 W,1, cQ;tr) d.r

do-
- A 1h

which, by (50) and (51), becomes
d

z1t,z)=-2 / f()d.q
/

£ o

x-*1)--1 1OT 4&W. Cot) d.'t
z-l'()-1 a 'Wn (t,ir) d.0

I-1

- (a,v)cLv it x- tCi)-i £ta,, (t r) dir
n1

/
r1- / ç-v (52).

,n-i .h (ar)(t1.fr).t
i ,

The first three terms have been treated in (3.2,1), yielding the

results (17) and (20) for the second and third respectively. The

rest of the terms may be similarly treated by means of the integral

equations(44) and its counterpart for (q- , 'r) in the right lateral

region. It is sufficient to do so for only one of the two sums,

since the other follows by commuting with and primes with

double primes. The general term of the first sum in (52) then yields:
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ilL. 22

Z!'(..1)1 jtc4X .t1)-i - w,(Qt)cLV

a-a '

Q-2 .

L1 V: 2L3 V1--
z-r' (i)1 cr-2 i, (t,O)cLdt

7 . f
Zm-i m- . V (ç-) Ct - - . ..

by application o (.44)0 Therefore finally tie identity (52.) becomes

..........................
21r(x,,z)-2 J )q I

I V r.* ( ..

d.4°/'(q)d' I +2 I')' f.......l () -xi-P(1)+1
. . V

)& rZ()

n.-i z-l*')-1 0-Z j xtO-i v-2dfj .1-. J (53)
nO .p1 Lin-, 2in+1 ....I

In this expression the values bor&ering the hyperbola çx-) have

been eliminated everywhere excepting in the first term, (so that

alsO the 'highest yalue among the, index imbers m occurring in the

functions dWm and dw,,, has been decreased by 1), and M',qccurs li-

nearly in the limits of integration of the remaining parts. The a-

bove process is also best vizualjzedby referring.to the figu.re'
In (53) the point.P lies outside the cones z=r(-1)+2(n1-i-1)

and z=r(1)+2(n2+1), which conditions are reflected in the occurrence

of fUflCt1OflSWmt and.wm,, for only such values of m which are 4t

most equal to n2-1 or n1-1 respectively. That this should be the

case, is evident, because the domain of influence of for instande

the regionn' is easily, seen to be. the inside of the cone z=r(-1)+2n.

We shall xow analyse'the enera1term in the second sum

Of (53), viz.
x-I'c1-1 . t& (W (t)ao- -'
2L1 'i V-r-'t-

in:whichwm, is'given.by the recursion system (46) t

may be rewritten in slightly different notation as

) .

-1 51-50+21L

.. :..
° .

- .

. 0,
-1

, I s-t
.(- s,,) dS

+1 Ii ri3 t+1 -1

S&Il%?T (s, s+- it 2L3
Pt-1' ) Vn

(54,
(49), 'whih

(55)
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In order to demonstrate explicitly the influence of the bowidary

values f(x), the functionwm, may be written, for m1, in extend-

ed. form, thus

d.S \
ftSVL14t S,1

laJL7. (S,,.,
=

(-n) 2- \ ss1-2
5i_2 \/Si-Se+

7
.f(_fYLu.}

I s_s0 V -50-.Q -1

Therefore the expression (54) becomes, with r and tc replaced by

and
8m+1

respectively,,

2/i x.P(i)-1 s,.4-t
\

2+1 2m-i V+1 -5- V (X+X-S)(ZX --2()?fl+1 J /
* 1v57

\ ss0+'

-1

ji
zr(O-2,n-

z. .(1)-2in-3 .z-r(i)-lin-1
cts, \J

s-2 zO4"' \5fSl /If-
-1 52 s1-0+2u. S-%-1 3S0 5_S2?ftt1 I

.z-l.(i)-3 dSm
\

in5m.i2'

5m_5-1_2

this becomes
xVF I i I-J,n#1

(Jrt) -

(s,, --)\J
\/(z+x-s.y) (z-x-5,,11)-

by changing the order of integration. Making the substitutions

5.= j-.r(1)-.2(1fl-1)5 -t1,1

1ft d.41-1

1nl_ / inm-i
&

.II x+$4.)

The recursion system (55) may therefore be replaced by a simpler

olie which is independent of i(x), viz.
I

1c0 \/(1)xcI.ca)-x+1+te)_
\I 0

(57).
On r:. '"i / -1 n-i' '

In this notation (56) becomes
*.V? x-,'(i)-Zn- X-)(i)-2fl-3-I&

(.4)1fl41 I [c-ru vz thL / / ?ft+i
a (58),

which is therefore the form which the general term (54) assumes

when the influence of the boundary values is made explicit. This

is valid for all nl?O.
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In order to obtain the contribution of (58) to the final

solution , it has to be Laplace-transformed (cf. (27)). Since

this term does not occur unless x,ri)+2c'm+1) , the lower limit of

integration is 'i) (mi-I) , and the transform is therefore

LVF
k

z-(1) -Lan-S x- r(i)-2m.4-u. + D, ('c,,, t.,,1 X, ,)
Z

d.z / j()ln4 Vi th&. / Jje
LU'(W)"41 Ø)+2m2 -1 e ,

LVi1 oc x-P(1)-7fl-3-U. +.j%4j +1X,)j {-u.Jc th.t / ed.z / '+1 I(ffWl i I'(i)4.2it+3+IL o - 2 1- £14.

Lkj1.tt)t13} ){c-)'u.} ecii ] Lci,u fci.+ j n (9),e
.yn.44

-i

by introduction of the variable

I/u. =z-

and in which the upper limit of integration with respect to u is

1, by (25). The expression (59) may be further simplified by par-

tial integration with respect to,,u. . Doing this, and substituting
()l?LLL

and

yields

- e J)e' j;;:j'
cL 7Q4.4A. 7

Dan(X,,LLX,)
(60),

C-it) tk -1 ,u.-X#2(1t)
in which ± is written to indicate

The corresponding result for the general term of the

first sum of (53) is

J)e" \ dfe"cLjL/ -' (61),

in which denotes(-)1.

We can now write down the formal solution of the boun-

dary value problem (1) for tp . The identity (53) contains the ge-

neral solution of q. , from which tp follows by applying the Laplace

transform (27). The transforms of the first three terms of (53)

have been obtained in (3.2.1), and are given in (28) and (29), while

the contributions of the general terms of (53) have been obtained

above, and are represented in (60) and (61). Therefore finally we

may write, on substituting for .F(q) from (1), an expression of the

form
I

"1

(62),
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in which G is the Green's function for the problem, viz.

1 11 LkZ4-- ,/ e + / e

Lc1)1_
\z&..t.* (-i)#i+q

,U D,,CX,,/.LX,)GLL
-

e fed /
Ira =o (-it) t.

. ,44.-7u.2[1#c-f}

kj(-i)+(-)}
V1i.o"1 1

(X,,,u ,-x,)dx

I
(63)

in which the functions are given by (57). Here the infinite

sum is for the moment written purely formally, and the task of the

next section will be to indicate in which way the formal series oc-

curring here should be interpreted. The problem is therefore f or-

mally solved in terms of a Green's function consisting of a sum

of terms, of which Kirchhoff's kernel is the first.

3.2.4. The asymptotic charac-ter of the solution.

Since what we have set out to find, is the solution p

for large values of the (eventually real) parameter k, the formal

series occurring in (63) need not converge to be useful. The pro-

perty which is needed,is that successive terms should be of de-

creasing order in k, in other words that the series should be a-

symptotic in the sense of Poincaré. We shall now justify the work

of the preceding sections by showing that this is in fact the case.

A glance at the series in (63) shows that the general

term has a factor e21fl, which is due to the fact that the regions

of action of the functions tu andw,, (ci'. (41) and (43)), lie

progressively further away from the plane z=O. It should be noted

that for complex k this factor plays a dominating role, but that

in the case in which we are eventually interested, viz, the case

where k is real, this factor becomes purely oscillatory, so that

a closer analysis is needed to determine the order of each term

for large k.

Evidently the asymptotic behaviour of the general term

of the solution Lp is sufficiently represented by considering the

slightly simplified expression

)
e '.J d /ecLi.f ' (64).

We shall allow for the possibility that contains a factor

e01 , in which a is a constant, which is, for illustration,

chosen to be positive, and write
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for rq<i (65)
-p1.

where (q) is assumed to be a polynomial in and k, of degree q
in k. This choice is in accordance with a common type of boundary

value occurring in both diffraction and aerodynamic problems9 and
is sufficient for our present purpose. In actual fact, however,
much wider classes of functions may be allowed. Substitution of

(65) in (64) yields
00. ,L1. Dm (XyU; x, ) dXr ik

1

-VcL fe4ua,u. / AX Ci+)je
Following a suggestion Of J..Bergbuis, the substitutions

1+2,uX1 and X.,u.X1

transform this into

e' Tax1 JXI
d,a. !Ae 1+2a.X1&()X) D,n(XA4. ;w

which, by te further sustitution 11
,i.(1I-.2a. X1)=,u1

I

becomes

1eLka/ d.x1 / X1
cLJL1 I dJt1ei

,,u

o -. (1+2a.X

in which only the single oscillatory factor e91 occurs.

sake of simplicity of analysis we still suppose that Re k
tive, and use

Then (69)

LV? e

00'xl
/ I- Ji.

e .
becomes, by inverting the order of integration,

00 00 x1ctx1 1/ & / -&() /
1° .

o

I DCX,u,)dX1/
LLLL. ', d.X1

x13 dx
7e 4u., 5

20. ,M-2a.
o0_2V1' e°je %M

,
(i+20.X1)10 0 0

Report P.157 111.26

00 I x d. x2 I D 0 MLk0., A
/1LC) /

-2e je
0a

where the substitutions

ti and x1

are used in the second term.

Now, the integrals occurring in (70), considered as in-
tegrals overA and , respectively, have the well-known property

that their asymptotic behaviour for large k is entirely determined
by the behaviour of the integrand. near the origin. This is a state-

(66).

For the

is p081-

(71)
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ment in what is generally called the domain of Tauberian theorems.

The prototype of the above situation is formulated by Doetsch

(1937) for complex k (theorem 1 of his § 12.3), but when k becomes

real, the position is more difficult. The general ideas occurring

here are at the basis of the method of stationary phase of Kelvin

(1887), and rigorous theorems in this field have been proved by

Watson (1918) and Van der Corput (1934, 1936).

We therefore need the asymptotic development near,u.1=O

, of c(xu;x) , which may be written, by (67), (68) and

f,4L1X1 '1
i&fl 1#2aX1' i+2o.X1

x1i.)

(,a.L2X,X1 (o+,u.) , x (la.+,u.2) (72),

so that what is neds1is the development of near the origin in

both' argumentsj4. and X . It is convenient to simplify the function

of (57) by introducing the variables

1P(1)-(1-X)
so that D0 becomes

I

1'

We now perform in the recursion relations (57) the substitutions

(74).
for orLin

The formulae (57) therefore become

£, (L;
Y,u(it,') 14oC.1f,U

I
for ,n=O (75)

(75a)I for Tn100 G0,L1 ,x ,i)=
%/,4L(, - \I4 c+J3+tt;*.'}

or .0
(71), as

and

D, (n,yt+i ;x)=\

Report P.157

L1.(+1 I ;- (- ,
,t4t',11 +t1)+

I /ICn41

1+(tfl)
I.

I t,n

0

D1 ,t, ;x,)dl.1

1#fu.(tt4I -c..,)

111.27

(76)

' /
0

forocy,crn , while the formula for o1:n ,written in extended

form, becomes

}

(73)
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D (t.yy,M.;x,.)
I

I

1#z)J.(1.t1j f
(\fl()fl

\J

' frn Cmt
\J

-tn..i) /tI Z / I -1 'jf (i -t_1) - t_1 o

at;\ I1+)A.(ç .) Ii 1-40)V ; / V#p,)+Mt;
cL4,1 *nt1 d

1n yi / / L - 10 1 0V
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(77)

'Ptf I

In this, A is
Ø4l)

if o*o , and ecu. ) if o , for small values of

Substituting

I+2o..X

in accordance with (72) and. (74), it is seen that

D,,(X,U.;M)IO

for small unless o=O , in which case it is O(,L) . There-

fore the factor of the exponential in the first term of (70) is

&(u )
or , so that, taking (66) into account,/ I

the first term of (70) is ) for o( o , and. O(k
£

)

foroo Similarly, using the substitutions

JL

it is seen that the second term is of order k times that of the

first.

Therefore the series occurring in (63) is an asymptotic

series for large k, not necessarily convergent, but such that a

finite number of terms give an approximat1on to the solution 14? ,

becoming increasingly more accurate for large k.

.2.5. The transmission cross section.

As an example of the more detailed application of the

results of the preceding section, the transmission cross section
- LkCt jjç(c..d)

for a normally incident plane wave LPLe e on a soft

screen with slit, will now be calculated. The result may then be

compard with the Kircithoff approximations obtained respectively

in(8)and(9)of(1.5),viz.
Ji

5 (78a)

O(o) 1_ij
fl2k+)(jç 2)

(78b).
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Using formula (13) of (1.2), we may write

Oo)=Re\fco) (79),

in which A(0) is the amplitude in the direction of the positive

y-axis, being the coefficient of in the asymptotic expansion

of q for large ro=\Jx1yeo V

The boundary values are given by

for JxI<T.

With this substituted in (62) and (63), the first term, (being the

Kirchhoff approximation), yields, by using (79), the value 1 for

large k, without any powers of k in the development (cf. (78a)

above).

Next we consider the second term of (62) and (63), viz.
c° 1

J e jt + f e
4 { r(4)1- r(-1)+1

2rZ(g)' (80).

Again it is sufficient to treat only the first of these two inte-

grals, since the second follows by replacing x and by -x and

- respectively. Substituting, therefore,

z z #{r(1)

in the first integral of (80), we obtain for the root in the inte-

grand
(r(1) +-)2-Cx--)2-Y2 .\j Lt+2 t (r(s)f-)+2(t-) (r(1)fi-3C)

= +2-2)+2tX1(I-)
I

in the notation of (73), while the integral itself becomes

ik[I.(1)41} d TLkj.L
-1 of \ +fL (+?&, *2-.

zeikr fe2 x/eik
0

by the substitution
1-2X

Putting now first XX' and then I.L(12X54 , we obtain, (again

assuming, for convenience, that In k is positive),

2e,.Cfl /' /142') J.L

0

___ e''2etkr) II i2X' /
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2 and X:
The amplitude A(o), which is needed in
x=0, i.e,. with OCi1t , from (73).
and obtain, eliminating

7

Report P.157

Jcr.C1).j
CO 0°

cLxfe t
(i+ x') (1+4X')#(o 1fO X')(i+2 X')0

ax'! /(+L X')V(1+ X') X')(i+2X'52

ax'
X')(i# ')# Pii X')(ix')C (14k0

I d.x1 ,e k{(i)+2}
o (X+2)Xn1(2+/r)(n +2)C

where in the second integral

'/ '7 /o

111.30

I

(79), applies to values with

We therefore put x=0 in (81)

1 cLX"-2e17e 24)' /J ("x"#)J0

&k(pI) f oO _______ d.X"-e fe00_____

/
tt.1u íu/

(,,d' XT?+R)2}V' L / (ltzxT)2 /

for large - i+. !' , i.e. for large y. Evaluating the in-

ner integrals, this yields

Lkr
'/

,4L 4}
Lo

e re- O0eI1_d[L +____ d.u.}VT zi.k)

- e' I \,Qe e2
.i-.O(k3)J

-___ _____
for large k. Therefore, the two integrals of (80) being identical

for x=0, the contribution of the expression (80), viz, of the se-

cond term of (63), to the value of A(0) is
iti.

£k I vc;' e +0 (k)

.Ir
e e(2k4)

4 40(1(2)
itk

Substitution of this in (79) gives the contribution t06to) , Viz.
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Re _!_eLL e + e'4i .e(ki)Itkj

Report P.157

sLn.(2ki-.) 0(k1) (82).

Now the contribution of the terms wider the smmtion

sign in (63) to the transmission cross section Oo) may be deter-

mined. Again the parts constituting each term of the sum are iden-

tical for x=O i.e. for ., and the entire fir8t.term.be-

comes
LyTik Jc(i+2)) 4' -. dx

- e e 14 e d71

which corresponds to (6) with -R.c)i and y*t0 sothat, using

(70) and. (75), we get

81k k@#i) r' 00 x1 A
ia e

' "! (142 X1)

XLX1 -i
. (auX2) I ),%x,td1)V (83)

in which is to be put.
, 1x2c,)

in accordance with (72). For largea1 we have,4j)

so that the contribution of (83) to the amplitude. A(OT is

- {iøii_i+xl} ji_ i(14. +

- Z+,L41 X

- e/e)',4Li4AJ.i/
(1+2Xi)

i. eJe 2))44I I/xj(xl)1VW*i) (14.Xi
(64).

Considering the first term of this expression, it is .seen that the

behaviour of the npn-ex.pQnenti.a]. part of. the integrand near

is represented by._ 4

r Vxax; / (85).V1ii ciI (1Xi+Xi)V'' +

Evaluating this interal, we get

7 'dX, 7 ax1
0

/ (i#2xt I ( 1+4X1)f1 I
I. 1 ° r

1. Q(14.2X1)' ] 2 1 (1+ax1)(14.ixj)V7

Ré
1.--4- ei i.O(kl)

\/.1tk52Jc
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- I &+zs)(1.I-4S1)

0

ir ds cds
=i;- +J ,+29z 2J 1j45L

0 o

r ir itT 1T

so that the first term of (84) behaves, for large k, like

e 2Lk
irLk (I_l) + 0(k_Z)

The non-exponential part of the second term of (84) is, near

equal to
(L2) j4 ci aX,

0

3
f Ti2 Jdx26(Ll)

=jL/ (!d),
so that the term itself becomes, for large k,

.Lk eLI u du+O(k)
0

2e(4kE 3'e(k4)s,rIt Li

)

e1*)+&(k4-)

Therefore, by application of (79), the contribution of the term

with m=O in (63) to the transmission cross section isek(t)
}+
O(k)

.Re (i eC2I) +- - 21T

C&9'fJ( +e(k-3)
'12flk ji'wk

Report P.157 111.32

(86).
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The next step is to consider the term with xn=1 in (62)

and (63). Evidently this is

a7 Lk
e

00 JA. Ix'
1 V ,t-X
Je

A ct40

1'
with contribution to A(0) equal to

.tyTLk
y ct Tes,st 7 cLX Ix+ 'e_____

-1 e ,AL.XI-2(1+)V 1L-X /
,4L1SLk LkJC T VcLx1 dX1- e

(12x1)l / 1-X1+X1
(i-X1)

1+2. X

0 0'I i +:3\J;;.
Ic

in which the order symbol refers to the second

Again the behaviour of non-exponential part of

,u-o is required, and this is given b
° dx iV ax1

(iax1) / (1 1#4X1)ç / +
(1J)

800Vdx1 ax
it1/(j+2x.1) / O(,uI)

I v
+

(i+x1% I (i+s')Ci+
0

x1+X1S)

& /cb(.,
00 i 1 1 + 1

(i+aX1)* / 41 j ds + 0

=

00
cLXj w t

1 4-0 (,uJ),M.
0 (1+&c1) xl

j

.i I r / X1 \fl 00 r I11-x1\ 1=jU.ij.j { cl2X1) j 1i+xiT j
ut (/i'.i) +O(j)

Report P.157

Therefore (87) becomes, or large k,

! (1i'i) e
It 11 II 0

e (k)
2(itk)3

which contributes to the transmission cross section an amount

111.33

(87),

term of (70) for m=1.

the integrand near
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Retfie r' e+O(k)
V .2k

.Re
VT-i e#O(k4

1ka

cos'ik(_ i.'O(k Z
'q [j/

.21tk2
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(88).

Finally adding the contributions (78a), (82), (86) and.

(88), we get
cs'k .i.O(k)
21tk (89).

This affords an interesting comparison with the second. form of the

Kirchhoff approximation, viz. (78b), showing that the form of the

term in k is correct, but that its coefficient is only half of the

actual value. Thus the conclusion of (1 .5) that this term was in

error, is confirmed, but, on the other hand, the marked. resemblance

with the correct value is in accord with the success of Kirchhoff's

method in physical optics.

The result (89) is valid asymptotically for large k,

and the question naturally arises how small k may be taken to still

obtain a reasonable approximation. In this respect the exact results

of Skaviem (1951) afford an interesting comparison. In the table

(exact)below, a- denotes Skaviem's values, andG (asymptotic) the

Thus, evidently, the range of significance of (89) reaches down to

values of k below 10.

values computed from (89):

k a- (exact) cr (asymptotic)

1 0.5454 0.6992

2 1.1843 1.1932

3 0.9720 0.9627

4 0.9424 0.9484

5 1.0499 1.0519

6 0.9956 0.9935

7 0.9717 0,9726

8 1.0233 1.0240

9 1.0020 1.0011

10 0.9822 0.9823
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Chapter 4.,

THE AERODYIW'IIC PROBLEM AIW THE "SINGULAR"

SOLUTION.

j. Recapitulation.

The results of the preceding chapter may now be applied

to solve the problem of the two-dimensional airfoil with chord -t ,

oscillating in subsonic compressible flow. This problem has been

discussed in (1.3) and we shall first briefly recapitulate the

main features.

The Lorentz acceleration potential was shown to sa-

tisfy the differential equation
(i)

with bomidary values

for (2),

for o , xi>i

in which W(x) is defined by

for )z.k1 (3),

where the normal velocity of the airfoIl due to its prescribed os-

cillation is, in Galileo-coordinates,

u(x') (4).

The parameter Ic was shown to be

(5),

which means that it is lar for high frequencies and for near-so-

nic flight speeds.

Purther, in (1 .3) iç was split into two parts
pP and

Of these the "regular" part_tp" satisfies the differential

equation (1) and the boundary values (2), together with the edge

and radiation conditions, exactly as was the case with, ip in the

diffraction problem of (3.2). Therefore, as was written in (25)

of (1.3),
otpC,o)

z (6),

by sbetitution of 2). In this the Green's function G is given for

large Ic by (62) and (63) of (3.1.3). On the other band, the "sin-

gular" part satisfies (i), while in (2) both conditions are ho-
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mogeneous, and also cpc possesses an integrably infinite sing.ilari-

ty. at the leading edge x=-1, y=0. Thus cp5 was shown (of (29) of

(1.3)) to be the function

x,&)± G (x,J;-1,o)
in which

(8)

i'hile 04, is given by (39), (34), (40) and (41) of (1.3)9 i.e.

R1
(9)

LL.._rçJW() 14(fO;Mct

pi/W() 4(4,o;o)ct

R1=[-. LeT*_4x:W;_1.o)dx]s-.ot
1

R,4*Je M-r4(x;;1p)dx' j*o.

Here the coordinate is given by

while and are the fixed coordinates corresponding to and

respectively.

Thus it is seen that the function cp , and with it the

pressure distribution and airforoes on the airfoil, are fully de-

termined fxom a knowledge of G. Therefore what is to be done in the

present chapter is simply an application of the previous work, no-

tably of the formulae (62) and (63) of (3.1.3)', from which we may

write
d.zjo).-..j H' fk!()J+* f1.1+C JzZ_r*C) e Vrt.r*(jJ

_'Ie! {eult ')"cJ V1(_1)' d14.
jrIL D,(A, ;x)d

-'.,

1
+e

{ -1)4+) q} I 4L-2j1+C-) +içj

}

in which

Since the determination of qf presents no new aspects,.

we may at once proceed to a few considerations on obtaining q

j. .i.ne sinu.lar solution.

The main step in determining cp' i to evaluate

\Ii+I 4(x.V;,o)

Report P.157. IV 2



NATIONAAL
WCHTVAARTLABORATORIUM

-:
d.x

in which again, for

e
LIc{r'C±l)+i } CO5k

t'(±1)41

convenience, Ink I.as
first integral,

(X-){ t1(1)+1-}- t'()

Lk /
eco9h'1__dx

been assumed to be posi-.

tive. Therefore, considering the

7 ikx4X,:
..-

r'C)+ .

ii
= e ILk 5h1 .

)V{t,l)+lz

r ., 1 .kiy'(i)+i-J' .-i dcCx-) /. . LkX- e . - .

- i'C) .,
- : 2 () '(1)+1- e

(x+1){t'(i)2}_ P'2(i) Lk(x+1) -
' LkX

XGLZ

,&(_,)y/{p<j)
+2r_ r(_1) P (-1) )'(j)4-2

e
Vx- t'2 C-i5

if_.,,,_ t , and finally

It t t'(i)+i- Vx-p'( '

'so that also chis integral does not contribute to (15) -and there-

fore to .ip! Its counterpart', (theseôond integral of the Cecond

term of, (14)), does, however, contribute "Differentiation in this

case yields -

zd.z

=

D

-. I4[kr

1

k'(')}

'.=0

when.

.. .

.

x+'l
'(-1)

(i)f
N0

ard. we &iall now sketch this calculation, and show that in the re-

sulting series the asypto.tic property is preserved. 'Since. G is de-
fined, primarily for ,we shall in the sequel always suppose

to satisfy:.tk1 , so that the. above expression becomes

ji jG(xaá.;',O) (15).

Starting with the first term of. (14), i. with the Kirch-

hoff kernel, we may write

* w fkrC)}

and. therefore

-- I -
14-b

which means that from Kirohhoff' s approximation no contribution to

is obtained0 .

We proceed, 'therefore., to the next term of (14), and

get, by partial integration of either df its two integrals,

Report P,0157 IV..3



p(-1)#1
e

(1)#1.1.}4.p1L() Lk(x) 7 kx

p.2 () p'(-i)*ti.

and if -,.-i the first term of this expression becomes infinite,

while the second remains finite0 The contribution to (15) is there

fore
14:q et11}It p.&(q)s/{p(.1)4.1 +}2 p,&

In this, we may write

1) #1 £

that (16) becomes

-
V' e"'.-1 t

I /i'(-i)+xv? ik'(-i)
'(-i)

e

As in (73) of (324) we introduce the notation

= -. -

t'(l)-(l-x) =
-

so that (17) may be written as

!
r' i.Ip'C-i)

now to the general term in (14)9

uate expressions of the formj je± V 1e'7 DA

but those in which ocurs with the negative sign are evidently

zero0 The terms which are to be investigated.therefore contain x-

pressions Of the form

-vc; {eL/z Tec! Dm(x,,u.;±x,W.)

0 - >u.-XR ci+g)

e
0 0

ax

using the coordinate of (8) The passage to the limit in (19)

may not be performed under the irmer sign of integration, since the

(16).

(i7a)

we have to eval-.-

NATIONML
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denominator in the integrand causes the integral
(X,,/J± X1l)

to diverge at its upper limit9 X,p. Moreover, the function oc-

curring in the numerator has a factor ça...X' , as is apparent from

the recursion relations (57) of (32,3) defining Dm9 ViZ
I

Report P.157

D0,41;x1)

1

vcc V 2Ii1 t
it Dyi.1 (t.11t3tx,u.)

/

= /qac+(o+f31.'4),u..+,A.ê ..J4.S

\
+0

for sniall 8 ox' , an

b1 {,L1.(15);fr}
Do{to,,LL(t_s)1

,ALSI
ciA0

0

(-t0.)ui-9- /I ,u.(1_)+(J3+4) t4-t0)A. (1-5)
Substituting in this

1:4, Ci-) t,
yields

Di{fr(15)} _J
L(I-S)GL4

4 AL-,u(I-s)f.0} (i.$)(i-4) I./4l>u.(1s){o+ (+ii) 1:' ,u (i-s)

'4 cL1:

- V s

cL40

=2 I{it \J+ {o4 ) }

IV. 5

(21)

We have to determine the behaviour of the iunctions D(X,u.;tx,)
when . tends tott , and therefore put

(22).

Writing to indicate either or

and to denote either or
2 12

and supposing to

be non-zero, we obtain
f

=
u.{oT+ ((i.4)(i_5)I,u.(i_S)f'

I

(23)

(24).
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Generally, for in >1, we obtain

Ji44.JS (_ d.t.,_.f t....j Qy,j_(pv._,t,,j)
= j 1)t7y1_1 f -t 4n-2

which, by the substitutions

(25)

becomes, when written in extended form,

D f(i-s),L} \ILI.Lr JL (f-s) !L/ d4
! \(

4.pf.5) (i-t. )

If',at;
- +L(1-S)(f'5t) '4

1t

-' i 4.I.L (f-S)C*'-

2k(4_5) 5 P. d.t...q tiv....4 dIP

- I 4+f.L(1-L1) \I f-t!,., 1.fgA(t)Y t2-t1

f +(t-;)J -L a+,L[cxf +4)t*,it
+33LS) (26).

The results (23), (24) and (26) may all be written in the form

with
D, fj.t _s)..=54 F,, (27)

F. {.ao-s).Lj=f0cJz) +sf.q.i)+sfzCs,gA) (28),

where f0, f1 and f2 are 0(1) If either s o± p. tends to zero, except-

ing for ni=O, in which case and f2 are for small ji.

Returning now to the expression (19), the inner integral

takes the form

çtL DAj)cpf1 D,4j1(1-5),14 ds-' (j&sL)z

P4

,As+: o' 'TTI
J2 V;'4 cI 4 slftcLslL1 fr actayi +1 46t

2&'ILfo o.ctyi \I;;; 41'i'J4 i'&
0

(29),
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for small values of , for in 1, while for m=O the factor of the

order-term is 1, and not The - derivative is of the form
,1. (XLLX i

ds
' e' (,t.S+j)

I as t V?cts

[V+1M4 1f j&)2

arco.n. -4=-L'

I- aJ'ctaIt-4 1+ i
)1 I

___ .0(i)

for small values of ifm1, while again for m=O the factor

of the order-term is 1

Therefore we may write

-o r Dm(AL;,)(kw1)I1f
L e j

1 Dm(A,,l.L;tx,I)
d.Xl +,, O()

(XM. ,±x) O / ±
a +1.1.¶ 0(q1),a'!

which, by using.(29) and. (30), becomes

J i?JfIf.5.c.tr-' ds
1. q, vs J

1fl1

O()1
fit-I

(30),

The same qualification about the order-term as previously, continues

to hold here and. in the sequel. By using (28) and (22), this ex-

pression may be written as

Fm
+J

dS{
LM.(15)./U}FincU#L1)J]

T1&()

,4L Fm 4
CL

{TL (x#M)FncuL)}]+iu 0(q) (32),

which, by using (27) in the form

Report P0157 IV.7
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qrL

D1(X4.)=

becomes
-tI.'nr

A1-I_t
[2[tDin(Xi,/L)f D(X) D(X1,fr)

O()
(33)0

The integral occurring here is identical with Hadamard ' a "finite

part" of the divergent integral (20), and we may for convenience

write'(33) symbolically as

D,,

Remembering that. this expression represents

(i
%\f ' D1.,(Xp.)

b& )L1 J

and ubstituting in (19), we get'
,4L D(AAL)

1

e /ec4.uJ? [:: x)] + / axJ

so that the general term 01(14) contribus to the function

2G (x,;-1,O)

an amount

(34)0

{ \[. e ' ejLc -- \/ + / cL

It2 (-It) 21 ,4L-X

00I {i' D,(X1pL;tx,)J4./ d.A
--

0

in which ± is to be interpreted as
(_)m0 We may therefore write for-

mally, using (1 7a) and (35), -

G (x,.,-i,o)
2

e Lkti(t1)#2rn1
m o

/fi D(A,4.t;±x,)
d.x1I (36).fecf/;iZ D

hM. 0

The asymptotic character of the series thus formed,

follows as for the "regular" solution, by noting from (31) that the

non-exponential part of the integrand in (35) is O(p.) for small,,u. ,

so that the whole expression (35) is for large k,

We shall now calculate explicitly the term for m=00
Prom (21) we may write

I

D0 (X,t;x,)=
+

so that (33) becomes
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- (i+c1'Oj"t
,u.4Xi I I

o (&?i.)

Evaluation of the indefinite integrals gives

c (1,0; ,0)

so that (35) becomes"'
ik4(i)44j- e / e

o +(o(i +),utu}
We may therefore write (36) as

.. (x,lã;1,o),_ '' e'"4 Y

'1t(oc+I3) lt& I

This function may now also be used

(7), thus completing the "singular" solution0

dent that for this purpose the function

1,0)

occurring in (12), as well as

G (-1,0 , , o) and
in (10), still have to be determined.

Evidently the function (40) is the symmetrical
part with respect to x of the function just determined, thus

'it(p)

to determine cx in

From (9)

e (42).{o+p t',4L +,u&}

it is evi-

(40)

(41)

counter-

Special care should, however, be taken here, since the above results

have been deduced foroo , while in (ii) and (12) the values are

needed for y=0 and x -1, which means, from(18), that

I dX

and
('i) ('). i V

so that the definite integral in (37) becomes

+ ()_.M [:' 'oi - \/40ci1 (o1#

+ (i+1+i+fi} [
(+,L1 V"i

Therefore (37) is equal to
.z.V1 (t.u)

Report P.157 IV. 9
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Further, the funcions (41)may be directly found from the previous
results, by rnakin use of the symmetry of the Green's function 4.n
the points (x,.y) and ). Thus, these two functions are fotthd

respectively from

:and cS(x,o;1,o)

by repIacingxby ..1n this case the .integration.is

forwich.io and..i'ii., which cOrrespónd.sto

13z0

over, values

NATIONAAL
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