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A B S T R A C T

This study aims to quantify the impact of multiscale morphological features on urban heat heterogeneity by
comparing linear (Multiscale Geographically Weighted Regression -MGWR-) and non-linear (eXtreme Gradient
Boosting -XGBoost-) statistical models to decode global-local relationships and develop cooling strategies. The
research followed a five-stage methodology: (1) hexagon-based sample selection, (2) urban heat extraction, (3)
multiscale morphological measurements, (4) application of MGWR and SHAP-explained XGBoost, and (5)
sensitivity analyses. Both models computed the model accuracy by employing three parameters, the coefficient of
determination, the adjusted coefficient of determination, and the root mean square error, enabling the com-
parison of the linear-based and non-linear-based approaches. This framework addressed knowledge gaps related
to model-specificity, statistical model performances, building granularity and urban network parameters impact,
spatial heterogeneity in linear models, and interpretability challenges in machine learning outputs. XGBoost
outperformed at modelling discrete spatial heterogeneity due to its tree-based algorithm, while MGWR effec-
tively modelled continuous spatial heterogeneity. Both models consistently identified ground area ratio (GAR) and
number of plots (UBP) as major contributors to urban heat. GAR and UBP showed a strong non-linear influence on
urban heat. The non-linearity extracted by XGBoost initially showed an upward trend in temperatures, but a
diminishing return at a higher value of GAR and UBP. Although building features showed a low individual
impact, their negative correlation with urban heat suggested a cumulative cooling potential. The research un-
derscores model-specific non-stationary relationships between urban morpho-space and localised urban heat,
promoting a tailored examination of mitigation potentials over a ’one-size-fits-all’ approach, guiding urban
planners to optimise built-fabric for effective heat mitigation and improved urban thermal quality.

1. Introduction

Urban heat island (UHI) is the most evident thermal phenomenon
characterised by elevated temperatures in urban areas compared to the
rural surroundings or suburban areas, resulting from the modifications
in land surface properties [1,2]. The compound impact of rising global
temperatures and exacerbated UHI have become a critical threat to
urban sustainability due to intensified extreme heat exposure [3]. An
increasing number of cities globally have been experiencing this rising
trend in urban heat and heat exposure. Therefore, advancedmechanisms
to understand the driving factors of spatially morphological extent in the
UHI formation have garnered significant attention from researchers [4,
5] as a game changer in battling this new local/microclimate crisis [6].
Furthermore, decision-makers and administration authorities in

metropolitan areas have initiated focusing on localising sustainable
development goals (SDG), particularly SDG11. climate action and SDG13.
sustainable cities and communities, by addressing the impact of urban
morphology on excessive urban heat and promoting heat mitigation
measures to improve the quality of urban life and urban sustainability
[7].

Changes in heat storage capacity, airflow patterns, and thermal
conductivity between surface and atmosphere – stemming from the
spatial layout, architectural morphology, and building granularity –
shape local/microclimates by increasing the positive radiation budget in
urban areas and resulting in urban heat heterogeneity [8–11].
Comprehensive academic research has established a significant impact
of common urban morphology on land surface temperatures (LST)
[11–13]. The most common attributes in the literature are ground area
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ratio as a proxy of the building density in the 2D-morphology [2,14–16],
and building height, building volume, sky view factor, floor area ratio,
canyon geometry factor as proxies of the 3D-morphology [5,8,11,13,14,
17–19]. Several variables regarding green vegetation intensity have also
been included in the studies among the attributes of 2D-morphology [8,
17,20]. Nevertheless, there is a knowledge gap for strong evidence about
the relationship between urban heat, compositional level of building
granularity and urban network enclosures, a black box to explore and
clarify in the urban morpho-space. This gap constraints effective heat
mitigation strategies for promoting climate-sensitive, -adaptive, and
sustainable cities. Therefore, this research focuses on the multi-scale
nature of urban morphology as a holistic urban morpho-space by
adopting research variables belonging to plot layout and urban block
morphology, building granularity and urban network at multi-planar
levels.

Quantifying the relationship between multi-scale urban morphology
and urban heat is challenging due to the complex interactions between
the diverse textures, sizes, shapes and networks in the built environ-
ment, as well as the varying densities and arrangements of buildings
across micro, local, and neighbourhood scales [7]. Literature underlines
the case-specificity—often referred to as spatial non-stationarity—in
quantitative research, which records inconsistent effects of morpho-
logical attributes regarding the impact magnitude and correlation di-
rection (the sign of the coefficient) depending on specific spatial
contexts [14,21,22]. Conventional statistical models generally presume
spatial stationarity, generating variable estimates based on the
assumption that relationships remain constant across space [23]. How-
ever, varying performances of adopted models – mostly conventional
regression techniques – indicate uncertainties referring to the
model-specificity or spatial non-stationary issues.

Relevant studies are widely conducted based on an assumption of
linear relations, such as multiple linear regression models [14,24]. Even
though such conventional approaches effectively model relationships
between variables, they are limited to sensitivity to outliers, and mul-
ticollinearity and also overlook spatial heterogeneity, and spatial auto-
correlation [5,25]. Geospatially adjacent areas often exhibit a certain
level of similarity, whereas, in distinct regions, they demonstrate spatial
variability [26]. Among the spatial statistical models, multi-scale
geographically weighted regression (MGWR) captures spatial hetero-
geneity offering a more comprehensive explanation of the index co-
efficient’s influence, and enhances the model’s prediction capability [8,
26–28].

Nonetheless, owing to the complexity of morphological attributes,
linear models are pressingly insufficient to explain non-linear relation-
ships between urban heat and morpho-metrics. Even though advanced
statistical models, grounded in supervised machine learning (ML) al-
gorithms, such as ridge regression, forest-based regressions, and
regression trees, have been adapted to the UHI studies to enhance the
predictive performance [11,12,15,29–32], only a few have highlighted
such non-linear relationships [21,33–35]. eXtreme Gradient Boosting
(XGBoost), a decision tree-based ensemble learning approach, is a novel
framework to analyse complex non-linear relations and has a significant
potential to explore the impact of morphological space on urban heat
heterogeneity. The model’s overall accuracy is enhanced by the objec-
tive function, which includes the loss function and regularisation terms;
the loss function measures prediction errors, while regularisation miti-
gates overfitting (model bias) by controlling model complexity [17,36].
The model can rank the importance of features, quantify their impact
and allow a deeper understanding of the contributions of various inde-
pendent variables [17,37]. Ma et al. (2024) and Yuan et al. (2024) are
single studies that performed XGBoost in the UHI context to analyse the
influence of urban features on LST with an assumption of non-linear
inter-relations. They, however, did not discuss the linear/non-linear
dichotomy of morphological variables and presented certain limita-
tions regarding the resolution of the indicators and scale dependency of
the morphological metrics. There is a need for further discussion on the

varying performances of the linear and the non-linear relationship be-
tween morpho-space metrics and urban heat heterogeneity which is
another critical knowledge gap that this paper concentrates on.

The last critical knowledge gap in the literature is the challenge of
interpretability in ML compared to spatial statistical models. According
to Li (2022), ML is a black box in which the process and the results are
particularly complex to comprehend. This challenge in geographical
research leads researchers to conduct more interpretable spatial statis-
tical models, even though there are other challenges on model-
specificity, multicollinearity, spatial heterogeneity, spatial autocorrela-
tion, and linear/non-linear dichotomy. Therefore, there is another need
to adopt innovative techniques into ML workflows to present improved
interpretations of ML outputs, providing detailed insights and additional
explanations for feature importance. The cutting-edge development, the
SHapley Additive exPlanations (SHAP) method, effectively illustrates
the interrelations between variables and their impacts [38]. The method
has already been used in environmental-based research, such as air
pollution, energy consumption and hydro-climatological processes [39,
40]. The integration and application of the SHAP method into ML
workflows for UHI-based research represents another novel contribution
of this study.

In short, this study addresses the following gaps in UHI research: (1)
lack of strong evidence on the relationship between urban heat hetero-
geneity, building granularity and urban network enclosures, (2) over-
looking the impact of spatial heterogeneity in the linear statistical
models, (3) model-specificity regarding the varying performances of
conventional-linear and advanced-non-linear models, and (4) the chal-
lenge of interpretability in ML outputs. Therefore, the research aims to
better quantify the impact of multi-scale morphological features on
urban heat heterogeneity by encouraging comparative evaluations of
linear and non-linear statistical models to decode global and local re-
lationships and develop relevant solutions. It employs a spatial statisti-
cal model, MGWR, and a SHAP-explainedMLmodel, XGBoost, to discuss
the better-fit model for describing the complexity of urban landscapes
and the cooling benefits of the relationship between urban morphology
and heat heterogeneity. Results fill the critical knowledge gaps in urban
climate literature and enlighten the urban planning and design recom-
mendations to regulate the urban thermal environment.

2. Methods

The research was conducted in five main stages: (1) hexagon-based
sample selection, (2) urban heat extraction, (3) multi-scale morpho-
logical measurements, (4) employment of the spatial statistic model,
MGWR, and the SHAP-explained ML model, XGBoost, and (5) sensitivity
analyses, SHAP scores for XGBoost and Monte Carlo Simulation for
MGWR results (Fig. 1).

2.1. Case area and hexagon-based sampling design

Istanbul (41.0◦N, 28.9◦E) is a metropolitan city located northwest of
the country on two continents: Asia and Europe. The Black Sea sur-
rounds the city on the north and the Marmara Sea on the south, which
creates a certain cooling impact on the coastal areas (Fig. A.1). Ac-
cording to the Köppen climate classification, the city is a part of the hot
and dry summer zone (Csa) [41]. Long-term averages in Istanbul
demonstrate that the mean temperature is 25.5 ◦C in July, which is the
hottest, and the heat island formation is the most prominent time,
annually [42]. The city has been suffering from exponentially increased
urban heat [43–45]. Morphologically heterogenic spatial patterns are
seen as the principal factors of thermal conditions in urbanised areas [5,
16].

A Hexagon unit was employed for the sampling design structure of
the research. Accordingly, the metropolitan area was divided into
hexagons with a side of 150 ms which covers several urban blocks and
enables multi-scale evaluations through the morphological variables at
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Fig. 1. Research design scheme.
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the building, plot, and urban block scale. Although the square grids are
the dominant spatial analysis unit in the current studies [46], the
hexagons were employed for the research as they reduce sampling bias
caused by edge effects of grid shapes [47,48]. Furthermore, adminis-
trative boundaries are subject to change over time, and spatial dynamics
do not necessarily adhere to such rigid boundaries. Therefore, hexagons
were selected over administrative boundaries due to their superior ca-
pacity to exhibit spatial variation.

Then, a pre-defined elimination procedure of 3-main-stages,
exclusion-clustering-random selection, was applied to the hexagons
through the following rules in an order:

(a) The exclusion stage consisted of the exclusion of the hexagon
units outside the residential areas to eliminate the heterogeneity caused
by land-cover variability, the exclusion of the hexagon units having hilly
topography with an average slope over 25 % and the hexagon units
located less than 1 km from a large water mass to eliminate the impact of
natural drivers on hexagons [5].

(b) The clustering stage consisted of spatial clustering to identify
natural clusters among the variables [49]. The analysis was conducted
using the K-means algorithm [50], which does not require pre-classified
features to detect clusters in the dataset. The K-Means algorithm is an
unsupervised learning and clustering algorithm. Unsupervised learning
is an ML technique whereby the model is not supervised; instead, it is
required to work autonomously to discover information. In this context,
the research used the GAR and FAR parameters, which indicate density
in the second and third dimensions, to capture density-based spatial
heterogeneity and represent morphological diversity in an urban land-
scape. Respectively, the following formulas were utilised during this
analysis:

Pseudo F − statistic =

(
R2

nc − 1

)

(
1− R2

n− nc

) (1)

where:

R2 =
SST − SSE

SST
(2)

and SST reflects between-cluster differences and SSE reflects within-
cluster similarity:

SST =
∑nc

i=1

∑nt

j=1

∑nv

k=1

(
Vk

ij − Vk
)2

(3)

SSE =
∑nc

i=1

∑nt

j=1

∑nv

k=1

(
Vk

ij − Vk
t

)2
(4)

where n represents the number of features, ni shows the number of
features in cluster i, nj expresses the number of clusters, nv indicates the
number of variables used to cluster features. Vk

ij is the value of the kth

variable of the jth feature in the ith cluster, Vk denotes the mean value of
the kth variable, and Vk

t exhibits the mean value of the kth variable in
cluster i.

Accordingly, three clusters are identified for the sample selection as
follows:

• Cluster 1 - 3513 hexagon units: TAKS ranges 0.10–0.32, KAKS ranges
0.10–1.74

• Cluster 2 - 1297 hexagon units: TAKS ranges 0.13–0.72, KAKS ranges
1.25–9.26

• Cluster 3 − 3016 hexagon units: TAKS ranges 0.11–0.54, KAKS
ranges 0.38–3.23

(c) The random selection stage consisted of the sample size

determination and random selection of feature subsets for each of the 3
clusters. The method of subset features is fundamentally an optimisation
problem, implicating exploring the potential feature combinations to
identify the optimal or near-optimal subset based on specific criteria
[51–53]. According to the determined sample size with a confidence
level of 95 % and a margin of error of 5 %, 343 hexagon units from
Cluster 1, 297 hexagon units from Cluster 2, and 341 hexagon units from
Cluster 3 were selected. Finally, 981 hexagon units in total were sub-
jected to heat extraction, morphological measurements and statistical
evaluations.

2.2. Urban heat extraction and pindex calculation

Urban heat heterogeneity was extracted from NASA’s remotely
sensed Landsat-8/9 multispectral data recorded on 26th July 2023 with
0 % land cloud coverage [54,55]. A series of algorithms to estimate the
LST values were as follows [56–62]:

• Conversion to Top of Atmosphere (TOA) Radiance: Digital numbers
(DN) of pixels in the thermal band (Band10 in Landsat-8/9) were
converted to TOA spectral radiance by using rescaling factors (5).

Lλ = MLQcal+ AL (5)

where Lλ is the TOA spectral radiance (watts/(m2*srad*μm)), ML is the
band-specific multiplicative rescaling factor, AL is the band-specific
additive rescaling factor, Qcal is the quantised and calibrated standard
product pixel values (DN). Owing to the calibration uncertainty of Band
11 (11.50 - 12.51 µm), solely Band 10 (10.60 - 11.19 µm) was utilised in
this research [20,63].

• Conversion to Atmosphere Brightness Temperature (BT): The ther-
mal band data were transformed from spectral radiance to top-of-
atmosphere brightness temperature utilising the thermal constants
(6).

T = K2/(ln((K1 / Lλ)+1) − 273.15 (6)

where T is the TOA brightness temperature in kelvin (K), Lλ is the TOA
spectral radiance, K1 is the band-specific thermal conversion constant,
K2 is the band-specific thermal conversion constant.

• Normalised Difference Vegetation Index (NDVI) calculation by using
the near-infrared (NIR) and red bands (7).

NDVI = (NIR − Red)/(NIR+Red) (7)

where NIR is the band 5 and Red is the band 4 for the Landsat-8/9.

• The proportion of vegetation coverage (Pv) calculation by NDVI
values (8).

Pv = ((NDVI − NDVImin)/(NDVImax + NDVImin))
2 (8)

• Land surface emissivity calculation to scale the blackbody radiance
(Planck’s law) for emitted radiance prediction (9).

eλ = ev λ ∗Pv+es λ (1 − Pv)+Cλ(if NDVIs< =NDVI< =NDVIv) (9)
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where ev is the vegetation emissivity, es is the soil emissivity, and C is the
surface roughness (C = 0 for homogenous and flat surfaces).

• The emissivity corrected LST calculation by using BT and eλ (10).

Ts = BT/(1+ (λ ∗ BT/p) ∗ ln(eλ))

(p = h ∗ c/q ≈ 143.8mK) (10)

Fig. 2. Morphological variables of the building envelope, plot and urban block. (Small figures include the number of units concerned. α shows the angle of
orientation.).
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where λ is the wavelength of emitted radiance (for which the peak
response and the average of the limiting wavelength (λ≈10.895), q is the
Boltzmann constant (1.38 × 10− 23 J/K), h is the Planck’s constant
(6.626 × 10− 34 J s), c is the velocity of light (2.998 × 108 m/s).

• Validation of LST values by in-situ measurements of fixed meteoro-
logical stations [64].

Afterwards, the percentage of LST measurement area within the
hexagon (Pindex) was calculated to eliminate the mismatch resulting
from the resampled spatial resolution and a shape edge effect of hexa-
gons [65,66]. Employing the Pindex disables the mismatch of LST pixel
sizes in 30 m × 30 m resolution, enables cooperation with the thermal
characteristics of the surroundings beyond the boundaries of hexagons
and improves the accuracy of the research model. An index value of 1.0
signifies that the shape fully encompasses all the LST pixels, represent-
ing the optimal condition within the model. The Pindex calculation in this
research revealed no noteworthy pixel issues (Pindex ≈ 1.0 for all
hexagons).

2.3. Multi-scale morphological measurement

The research employed fourteen morphological variables to analyse
the multi-scale heterogeneity in urban morphological space [67]. These
metrics are categorised into four different morphological scales: (1)
building, (2) plot, (3) urban block and (4) network (Fig. 2). To perform
spatial analyses, each parameter is aggregated on hexagons.

2.3.1. Building – building envelope
To ascertain the impact of various building-level parameters [68] on

the research outcome, six of them, building length, building width, building
orientation, number of buildings, verticality, and continuity were computed.
Building length (BLL), as one of the fundamental parameters, refers to the
longer side of the building. The length of a building, together with the
width, serves to define the building’s perimeter. This, in turn, influences
the spatial configuration of urban fabric. Building width (BLW) is the
shorter side of the building footprint. It serves as a complementary
parameter to building length. Together with building length, it config-
ures the overall dimensions of a building. The orientation of a building
(BLO) is defined as the angular expression of the direction that the front
facade or the main axis of a building faces, measured relative to a fixed
reference direction, typically true north. The number of buildings (BLC)
guides the entire count of individual building units within the hexagon.
In urban morphology, the number of buildings indicates urban density,
which has significant implications for urban planning and design [69].

The verticality (VER) metric is defined as the ratio between the total
height and the footprint area of the building. It is important to note that
the verticality of a building can be perceived as a subjective indicator in
urban morphology, as the perceived height of a building can vary
considerably depending on the surrounding context [69]. However, it
can be measured with the mathematical definition:

Verticality =
hj

Afj
(11)

where hj is the height of building j, Afj is the total area of the building
footprint for building j.

The continuity (CON) indicator, related to the grain of the urban
fabric [69], basically quantifies the rate of the total count of individual
building units to the total number of building envelopes within the
urban fabric. Correspondingly, it is formulated as:

Continuity =
Nbld
Nenv

(12)

where Nbld is the total number of buildings and Nenv is the total number
of envelopes in a given area.

2.3.2. Plot
For the plot, the research calculated two complementary density

parameters, floor area ratio (FAR) and ground area ratio (GAR), to pro-
vide insight into the two- and three-dimensional nature of the built
environment. GAR is the proportion of the built-up footprint area of a
building to the area of the plot where the building is on it [70]. It is
calculated as the ratio between the building footprint and the total plot
area, formulated as follows:

GAR =
Afj
Aj

(13)

where Afj is the coverage (footprint) of the building on plot j, and Aj is
the area of plot j. It also represents the overall figure-ground relationship
of an urban fabric. FAR is defined as the ratio between the total building
floor area to the area of the plot. It is quantified as:

FAR =
Atfj
Aj

(14)

where Atfj is the total floor area of the buildings on plot j, and Aj is the
area of plot j. In another way, it can be calculated by multiplying the
GAR by the number of floors. FAR is a significant parameter for the built
environment as it correlates with habitable volume density and land use
efficiency.

2.3.3. Urban block
Two parameters, the number of urban blocks (UBB) and the number of

plots (subdivisions) (UBP), were calculated to evaluate the relations in an
urban block scale. UBB refers to the total count of distinct, bounded
areas within a given site, typically framed by street patterns or natural
boundaries. The parameter is significant to comprehend the built fabric
configuration. On the other hand, an urban block consists of several
plots, each of which has a distinct size and shape. In this sense, UBP
explains the total count of individual parcels within the given urban
block. Since the number of subdivisions also directly indicates the
building density, this parameter also provides information about the
granularity of the urban fabric.

2.3.4. Urban network parameters
The research employed the following four network centrality pa-

rameters in the analysis; reach, gravity index, betweenness, and closeness
[71]. These measurements are operated to quantify the significance of
each node in a network. The reach (REA) describes the extent to which a
specific point can be accessed from other locations or nodes within a
given distance or time threshold. This concept is essential for compre-
hending the connectivity and accessibility of different areas within an
urban environment. The factor can be parametrised as follows:

Reach [i]r =
∑

j∈G− {i};d[i,j]≤r

W[j] (15)

where d[i,j] is the shortest path distance between origin i and destina-
tion j in graph G, and W[j] is the weight of a destination j. As originally
coined by Hensen [72], the gravity index (GRA) is one of the most visited
accessibility parameters. In contrast to Reach, Gravity does not merely
consider the number of destinations within the specified network radius.
Instead, it divides each destination (or destination weight) by the travel
cost required to reach it [73]. It is measured as follows:

Gravity [i]r =
∑

j∈G− {i};d[i,j]≤r

W[j]
eβ.d[i,j] (16)

where W[j] is the weight of a specific destination j that is accessible from
i within the threshold of radius r. Also, β represents a user-specified
exponent that directs the steepness of the distance decay on each
shortest path between i and j. The betweenness centrality index (BTW) is a
measure of the importance of a node in a network, considering the
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frequency with which it appears on the shortest paths between other
nodes. A higher value expresses that a node (or building) acts as a sig-
nificant hub within the urban network [69].

Betwenenness[i]r =
∑

j∈G− {i};d[i,j]≤r

njk.[i]
njk

.W[j] (17)

The formula serves to quantify the phenomenon [71]. Herein, njk is
the count of the shortest path from node j to node k in G which is the
other accessible node. njk.[i], on the other hand, is the number of those
shortest paths that pass-through node i, having j and k in the network
with r radius from i. W[j] is a weight factor associated with node j. As
formulated by Sevtsuk and Mekonnen (2012), the closeness index (CLS) is
a metric that quantifies the average distance from a specific building to
all other buildings in a network. In this way, it allows one to measure,
how quickly and easily one can reach other nodes from a given location.
It is calculated by employing the following equation, which computes
the inverse of the total distance from node i to all other accessible nodes
in radius r within graph G.

Closeness[i]r =
1

∑
j∈G− {i};d[i,j]≤r(d[i, j].W[j])

(18)

2.4. Statistical models

Before the statistical models, a multicollinearity diagnostic proced-
ure was conducted to ensure the validity of the predictions and enhance
the robustness of the models. The Variance Inflation Factor (VIF) served
as a tool for detecting multicollinearity, assessing the increased variance
of an estimated regression coefficient when variables are correlated [74,
75]. Since residential land use which was kept by eliminating other land
use in the hexagon-based sampling step typically has one building per
plot, there was a multicollinearity expectation between number of plots
(UBP) and building counts (BLC). However, Istanbul’s urban fabric has
residential plots with more than one building on a single plot. Thus,
statistics, values below the VIF threshold 10, showed no strong corre-
lation between UBP, BLC, or other independent variables.

To assess the impact of the independent variables on LSThexmean,
two statistical models were incorporated into the research: (1) MGWR
and (2) XGBoost. Additionally, the research benefited from SHAP
analysis to further investigate the black-box nature of the XGBoost by
offering insight into the model findings through additional analysis and
visuals. Before applying the statistical models, Z-score normalisation
was performed on the dataset, ensuring that each feature had a mean of
0 and a standard deviation of 1, thus standardising the data. It is
quantified as follows:

Xscaled = (X − μ)/σ (19)

where X is the original value, μ is the mean of the feature, and σ is the
standard deviation of the feature.

2.4.1. Multi-scale geographically weighted regression (MGWR)
The research employed MGWR due to its greater flexibility and

advanced framework in compared to prior models like GWR. It allows
for the spatial relationship analysis between dependent and independent
parameters at different spatial scales [76]. This analysis framework
provides more significant adaptability for the model that can aid in
minimising over-fitting and collinearity, and decreasing bias in param-
eter estimates [77]. In this context, the MGWR is quantified as follows
[28]:

yi = β0(ui, vi) +
∑p

j=1
βj(ui, vi)xij + εi (20)

where β0(ui, vi) represents the local intercept of the i th observation, βj
(ui, vi) denotes the parameter associated with the j-th independent

variable xij. Finally, εi symbolises the random error term, and (ui, vi)
displays the spatial coordinates of the i th observation. The MWGR
model utilised the LST as the dependent variable and the fourteen
morphology and network indicators as the independent variable.

The model outputs coefficient statistics to build the linear function
and interpret results better. The mean coefficients capture the average
influence of each independent variable across all spatial locations,
assuming stable and consistent relationships between dependent and
independent variables, making them suitable for generalising effects
through a uniform equation applicable across the study area. The stan-
dard deviation provides insight into the variability of coefficients across
spatial locations, emphasising the extent to which relationships between
dependent and independent variables differ regionally. It quantifies
uncertainty and spatial variability, offering a measure of how the
model’s behaviour fluctuates across different areas. Mean coefficients
are appropriate for constructing the final MGWR function, offering a
simplified and generalisable equation for making predictions uniformly
across all spatial locations. The model also computes the model accuracy
by employing three different parameters: (1) the coefficient of deter-
mination (R2), (2) the adjusted coefficient of determination (Adj. R2),
and (3) the root mean square error (RMSE).

2.4.2. eXtreme gradient boosting (XGBoost) and shap analysis:
understanding the black-box

XGBoost, a novel approach, utilises a series of decision trees to
provide accurate predictions, ensures a robust ground for preventing
overfitting, and missing value handling, and supports parallel and
distributed computing. It is a widely used method for quantifying the
relationship between urban spatial features and land surface tempera-
ture [78–81]. In this context, this research run XGBoost with LST as the
dependent variable and the fourteen morphology and network in-
dicators as independent variables. To train the XGBoost model, the
sample data were divided into training and validation sets. Subse-
quently, SHAP (SHapley Additive exPlanations) scores were computed
to interpret the model’s predictions, as they provide clear insight into
how each variable affects the model’s output. The model computes the
model accuracy by employing three different parameters: (1) the coef-
ficient of determination (R2), (2) the adjusted coefficient of determina-
tion (Adj. R2), and (3) the root mean square error (RMSE).

The SHAP method, utilised in this research to better explain the
XGBoost model results, provides quite useful ground to explicate and
interpret the prediction of the model. It has proven success [4,81] in
demonstrating the importance of several variables to the urban heat
island. In this sense, the research introduced the additive feature attri-
bution method [38]. The method propounds the prediction of a model,
expressed g(ź ), as a sum of contributions derived from each variable.
This is formulated as follows:

g(ź ) = ∅0 +
∑M

i=1
∅i źi (21)

where, ∅0, as a base value, expresses the average estimation within the
entire dataset and ∅i is a SHAP value that indicates the contribution of
variable i to the prediction, quantifying how much this feature increases
or decreases the predicted value. źi is a binary indicator that shows
whether feature i is present (1) or absent (0) in the specific instance
being explained and M represents the total number of variables in the
model that are used to make predictions.

To conclude the model explanation, the research also computed the
SHAP [82]. The SHAP value for the selected variables demonstrates the
average contribution of that variable among every possible subset of
combinations for the variable. It is calculated as follows:

∅i =
∑

S⊆N\{i}

|S|!(|M| − |S| − 1)!
|M|!

[fx(S
⋃

{i}) − fx(S)] (22)
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where S is the total number of variables, N\{i} is a set of all possible
combinations of variables, S is a feature set in N\{i}, f(S) is the model
prediction with variables in S, and f (S ∪ {i}) is the model prediction with
variables in S. SHAP is a crucial approach in the explanation the ratio-
nale behind XGBoost models, offering a comprehensive understanding
of the influence of individual features on model predictions, ensuring
both accuracy and transparency. In this research, SHAP values assist in
understanding the impact of urban morphology and network variables
on LST, thereby providing a more comprehensive picture of the model.

2.5. Sensitivity analyses

The study employed sensitivity analyses using Monte Carlo simula-
tion and Tornado Diagram for MGWR and SHAP scores for XGBoost to
assess how the uncertainty in model outputs can be attributed to various
sources of uncertainty in the model’s input parameters. Sensitivity an-
alyses demonstrated the impact of varying independent variable values
on a dependent variable, within the constraints of a specified set of
assumptions.

2.5.1. Monte Carlo simulation for MGWR
Monte Carlo simulation is a widely used method for sensitivity

analysis in machine learning [5,83] allowing models to respond to
randomly generated inputs through a resampling approach. In this
research, 10.000 design scenarios were generated with varying quanti-
tative combinations of normalised independent variables. The model
estimated the distribution of random variables and assessed the model’s
stability and robustness, particularly the sensitivity of the model output
(LSTmean) to changes in independent variables. Measures of central
tendency, variability, skewness, and kurtosis were analysed to evaluate
the dataset, while a Sensitivity Tornado Plot assessed the impact of in-
dependent variables on temperature variations.

2.5.2. SHAP scores for XGBoost
The research operated the sensitivity analysis on the XGBoost model

by using SHAP values to understand feature importance and perturbing
features to observe changes in model predictions for LSThexmean. This
sensitivity analysis aims to reveal the influence of each parameter on the
output of the model and the identification of the most impactful pa-
rameters. The research used a 10 % perturbation factor to perform
sensitivity analysis.

3. Results

3.1. Urban heat heterogeneity in Istanbul

In Istanbul, land surface characteristics are divided between natural
landscapes in the north and urbanised areas in the south and along the
Bosphorus shores. The land surface temperatures in 2023 followed this
north-south division and tended to increase towards the south. The only
overheated area in the European north, the Istanbul Airport, has led to
the degradation of forestry-water lands and induced a warming trend
towards the northern natural areas, with the airport exhibiting tem-
perature levels comparable to urbanised regions (Fig. 3).

The quantitative results of Istanbul’s LST demonstrated a significant
increase and a clear overheating trend in the city since LSTmax was
around 51 ◦C in 2023, but 48 ◦C in 2021 [65]. Moreover, LSTmean,
around 34 ◦C, was almost 10 ◦C higher than the long-term average (25.5
◦C in July) [42]. The findings indicated that 51 % of Istanbul has an
average temperature of 37.01 ◦C, which is 3 ◦C higher than the LSTmean.
Istanbul’s urban landscape also offered hotspot urban fabrics in which
temperature exceeds the LSTmean up to 6 ◦C.

The heterogeneous urban landscape of Istanbul demonstrated
discrete surface temperature patterns in the metropolitan area (Fig. 3).
Proxies of Istanbul’s urban area, hexagon units, indicated an urban heat

heterogeneity with a temperature range between 33 and 43 ◦C. The
LSThexmean was around 39 ◦C, 5 ◦C above the LSTmean (Table 1). The
results showed that 3 % of hexagon units experience temperature
anomalies above LSTmean by 1 ◦C, 9 % by 2 ◦C, 11 % by 3 ◦C, 14 % by 4
◦C, 17 % by 5 ◦C, and 45 % by 6 ◦C or more. A notable level of spatial
variability in LSThexmean was observed even among adjacent hexagon
units.

3.2. Spatial heterogeneity of morphological features

The research investigated fourteen morphological variables in four
categories: building, plot, urban block and urban network. The analysis
of the spatial heterogeneity of morphological parameters revealed sig-
nificant variability across Istanbul, as evidenced by the descriptive sta-
tistics for each variable (Table 1). To establish a balanced overview of
the statistical distribution of the variables, the research normalised all
morphological parameters, illustrating the distribution pattern with the
box plot (Fig. 4).

Providing significant local variability, the building-level parameters
and indicators exhibited different statistical distributions (Table 1).
Accordingly, BLC had a mean of 119.46 with a substantial standard
deviation (SD) of 82.86, indicating a wide range from 2 to 565 buildings.
BLW, with a mean of 17.76 and an SD of 7.38, showed moderate vari-
ability with values ranging from 9.29 to 66.36. Similarly, BLL, which
had a mean of 11.41 and an SD of 3.61, ranged from 5.77 to 41.34. BLO
and VER also exhibited spatial heterogeneity. BLO had a mean of 89.1◦

and an SD of 21.75, with values ranging from 24.53 to 152.9. VER, with
a mean of 0.14 and an SD of 0.06, ranged from 0.01 to 0.42, reflecting
notable variability. CON, with a mean of 2.22 and an SD of 1.81, ranged
from 0.92 to 16, indicating significant variability.

FAR and GAR, both plot parameters, demonstrated moderate to
broad spatial heterogeneity. GAR had a mean of 0.32 and an SD of 0.14,
ranging from 0.1 to 0.72. FAR showed a mean of 1.33 and an SD of 0.82,
ranging from 0.16 to 7.44. Among urban block parameters, UBP showed
a mean of 111.76 and an SD of 93.81, ranging from 1 to 615. UBB, with a
mean of 20.86 and an SD of 13.46, ranged from 1 to 104 indicating
widespread influence. Both urban block parameters indicated moderate
spatial variability.

Urban network parameters demonstrated a mix of consistent and
extensive influences. Among the parameters, REA had a mean of 19.51
and an SD of 16.87, ranging from 0 to 181.48, indicating a consistent
distribution across the research area. BTW, with a mean of 217.26 and
an SD of 439, ranged from 0 to 7528.39, showing significantly lower
spatial heterogeneity. CLS, with a mean of 0.01 and an SD of 0.04,
ranged from 0 to 0.87, also suggesting limited variability. Representing
diverse spatial heterogeneity, GRA had a mean of 0.1 and an SD of 0.08,
ranging from 0 to 0.5.

3.3. MGWR results

To assess the performance of the model, the research utilised four
metrics: the R-squared value (R²), the adjusted R-squared value (adj. R²),
the corrected Akaike information criterion (AICc), and the sigma-
squared (SS). The R² indicated that the MGWR model explains approx-
imately 88 % of the variability in LSThexmean, which revealed that the
independent parameters are highly relevant to LSThexmean. Further-
more, the adj. R2 value of 0.86 validated the goodness of fit of the model,
indicating that the model remains robust even after adjusting for the
degrees of freedom. A relatively low AICc, 1061.96, indicated that the
model exhibits an optimal balance between the model complexity and
goodness of fit. This meant a significant aspect of avoiding overfitting
while keeping the model statistically meaningful. The SS value of 0.13
provided further evidence of the model’s accuracy. It represented the
variance of the residuals and indicated that the model’s predictions were
close to the observed values (Table 2).

The model provided the mean coefficient values of morphological
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Fig. 3. Urban heat distribution in Istanbul on 26th July 2023. (a) LST map (b) the LSTmean values in hexagon units.
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features, quantifying the average effect and impact direction of each one
on the urban heat (Table 2). In this case, the fitted MGWR function for
LSThexmean predictions in Istanbul’s urban fabrics are as follows (∊ is the
error term in the model):

LSThexmean = 0.0906 − 0.0746∗BLC − 0.0462∗BLL − 0.0153∗BLW
− 0.0112∗BLO − 0.0779∗VER+0.0799∗CON+0.5603
∗GAR − 0.1064∗FAR+0.2140∗UBP+0.0315∗UBB
− 0.0579∗BTW+0.0129∗CLS+0.0085∗GRA+0.0256
∗REA+∈

(23)

Results implied strong positive correlations of GAR (coefficient:
0.56), and UBP (coefficient: 0.21) with LSThexmean, which means the
dominant impact of plot and urban block variables creates a warming
trend with an increase in values. FAR (coefficient: − 0.11), the other plot
parameter, also had a dominant impact on LST variations, but in a
negative direction which means higher vertical density created lower
temperatures in Istanbul’s urban fabric. CON (coefficient: 0.08) was on
the 4th raw in the overall impact on LSThexmean. It had not only the
highest impact but also was the only one positively correlated among the
building parameters. Hereafter, the impact level ranged as VER, BLC,
BLL, BLW, and BLO in building scale. They showed negative correlations

with the LSThexmean and indicated a strong potential for heat mitigation
in urban morpho-space by features related to the building granularity.
Among the network parameters, BTW (coefficient: − 0.06) was the most
influential variable and the only one with a negative correlation with
LSThexmean. It was followed by REA, CLS and GRA which had an impact
on increasing the LSThexmean with a positive correlation to the urban
heat (Figs. 5, 6).

The standard deviation and the difference between maximum and
minimum values of explanatory variables indicated the level of spatial
variability of related variables whether is consistent in the global scale of
Istanbul or has a local impact on the urban fabric. Among the multiscale
morphological nature of buildings, plots, urban blocks, and networks,
building parameters - BLC, CON, VER, and BLL - had the highest spatial
variability in Istanbul, which shows a higher local value on urban heat in
topological sub-regions. However, BLO and BLW demonstrated more
global impact among the building parameters with relatively lower
standard deviation values. Due to Istanbul’s topographical structure,
buildings traditionally tend to be located with consistent orientation and
width features (Fig. A.1).

In the overall model, GAR (std.: 0.002) emphasised a consistently
strong positive influence on LSThexmean throughout Istanbul, with
minimal spatial variability. However, the higher spatial variability of
the FAR (std.: 0.03) signalled that the strong global negative influence
may tend to differentiate in some topological sub-regions. Nevertheless,
the lower spatial variability of FAR among overall model variables
constructs it more consistent in creating a mitigation impact on LST
(Figs. 5, 6).

Among the urban block parameters, UBP (std.: 0.08) had higher
spatial variability than the UBB (std.: 0.003) but was lower than the
building parameters. In residential areas, the context of this research,
while the number of plots may vary to the topological sub-regions,
typically a single building exists on a single plot, and the number of
blocks remains constant. However, since Istanbul’s residential charac-
teristic hosts more than one building on a single plot in particular to-
pological sub-regions, the spatial variability of UBB remained at a
medium level and negligible compared to other variables. Therefore, the
positive influence of both urban block parameters is consistent locally
and globally in Istanbul’s urban landscape. Higher values of UBP and
UBB create a tendency for higher urban temperatures (Figs. 5, 6).

In the urban network parameters, REA (std.: 0.001) and CLS (std.:

Table 1
Descriptive statistics of morphological features.

Variables
(n = 981)

Unit Variable Code Mean SD Median Min Max

Dependent Variable
Land Surface Temperature ◦C LSThexmean 38.83 3.27 39.09 32.98 43.41
Independent Variables
Building Parameters ​ ​ ​ ​ ​ ​
Building Count number BLC 119.46 82.86 102 2 565
Building Width meter BLW 17.76 7.38 15.26 9.29 66.36
Building Length meter BLL 11.41 3.61 10.39 5.77 41.34
Building Orientation degree BLO 89.10 21.75 88.86 24.53 152.9
Verticality – VER 0.14 0.06 0.14 0.01 0.42
Continuity – CON 2.22 1.81 1.52 0.92 16
Plot Parameters ​ ​ ​ ​ ​ ​
Ground Area Ratio – GAR 0.32 0.14 0.31 0.10 0.72
Floor Area Ratio – FAR 1.33 0.82 1.23 0.16 7.44
Urban Block Parameters ​ ​ ​ ​ ​ ​
Number of Plots number UBP 111.76 93.81 92 1 615
Number of Urban Blocks number UBB 20.86 13.46 18 1 104
Network Parameters ​ ​ ​ ​ ​ ​
Reach – REA 19.51 16.87 15.33 0 181.48
Betweenness – BTW 217.26 439 90.16 0 7528.39
Closeness – CLS 0.01 0.04 0 0 0.87
Gravity – GRA 0.10 0.08 0.10 0 0.50

- variables without any dimension.
SD: Standard deviation.

Fig. 4. Box plot of the morphological parameters based on normalised values.
(BLC: Building count, BLL: Building length, BLW: Building width, BLO: Building
orientation, VER: Verticality, CON: Continuity, FAR: Floor area ratio, GAR:
Ground area ratio, UBP: Number of plots, UBB: Number of blocks, REA: Reach,
BTW: Betweenness, CLS: Closeness, GRA: Gravity).
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0.002) demonstrated the highest consistency across the model, whereas
BTW (std.: 0.06) and GRA (std.: 0.01) exhibited moderate to negligible
spatial variability. Consequently, while REA and CLS consistently
exerted positive influences across Istanbul, the negative influence of
BTW was more localised. Overall, increases in network variable values
corresponded with a consistent positive correlation to rising LST. Spe-
cifically, as reach, closeness, and gravity values increased, a concomi-
tant increase in LST was observed.

3.4. SHAP-explained XGBoost results

XGBoost demonstrated robust predictive capability for urban heat,
achieving an R-squared value of 0.56, indicating that the model explains
56 % of the variance in the LST heterogeneity. The adj. R-squared value
of 0.53 accounts for the complexity of the model and confirms a mod-
erate fit to the data by incorporating multi-scale morphological features
of buildings, plots, urban blocks, and networks. The model’s RMSE of
1.20 suggests that, on average, the predictions deviate from the actual
values by approximately 1.20 units. These validation results demon-
strate a reasonable predictive performance, with the SHAP analysis
providing a valuable understanding of feature contributions and their
interpretability (Table 3).

Gain, cover and weight are primary outputs to evaluate the feature
importance in the XGBoost model. Gain values quantified the contri-
bution of features to the model accuracy by assessing their effectiveness
in data splitting at each node, with higher gain values indicating greater
importance in reducing the loss function and enhancing the predictive
power of the model. Cover assessed the influence of the features on the
number of observations, providing insight into the proportion of data
affected by their splits; a high cover value signified that the feature
frequently impacts a substantial portion of the data. Weight signified the
frequency with which the features split data in the model’s decision
trees; a higher frequency indicated the feature was crucial in reducing
the loss function. The metric offered a clear understanding of feature
importance by revealing how often each feature guides decision-making
in the trees, thus identifying those most utilised.

Given the morphological features in the model, GAR, UBP, BLC, and
CON exhibited notably higher gain values and feature importance,
which was highly consistent with MGWR results. While FAR had rela-
tively lower feature importance, urban network parameters distinctively

indicated the least feature importance values in XGBoost model results.
The cover values of features in the model showed that GAR, BLC, and
VER are of relatively higher importance. According to the weight values,
BLC had higher feature importance which emphasises the dominant
impact of building scale on urban heat heterogeneity (Table 3).

The contributions of urban morphological features on urban heat
were assessed by global (Fig. 7a) and local explanations (Fig. 7b) of
SHAP values. Fig. 7a ranked the global contributions of features on
urban heat from the top (the highest contribution) to down (the lowest
contribution). Accordingly, a plot parameter, GAR, had the highest
contribution to the model and was respectively followed by UBP, BLC,
CON, and FAR. The least global contributions were from CLS, REA, BTW,
BLL, and GRA. Urban network parameters exhibited a relatively low
impact on urban heat globally, and the building length (BLL) was
similarly included in the feature set with minimal influence. According
to global explanations, BLC was the highest and BLL was the lowest
contributor among building parameters, while GRA was the highest and
CLS was the lowest in network parameters (Fig. 7a).

A SHAP beeswarm plot (Fig. 7b) summarised the local importance
and the effects of all features in the model. Local explanations with the
beeswarm plot demonstrated the feature importance based on individ-
ual SHAP scores, the horizontal distribution to understand how much
the SHAP values vary for different datasets, and the correlation di-
rections of morphological features. GAR made a significantly higher
contribution than other variables, with a contribution level of 65 %. It
was followed by UBP at 37 %, BLC at 26 %, CON at 20 %, and FAR at 19
%. In the third group, there were UBB and VER with contribution values
of 13 %, and BLO and BLW with 12 %. The least contributing ones were
GRA with 7 %, BLL with 6 %, BTW with 5 %, and REA and CLS with 3 %
for each. Network parameters and building length again exhibited a
relatively low impact on urban heat at the local level. Local explanations
indicated that BLC is the highest and BLL is the lowest contributor in
building parameters, while GRA is the highest and CLS is the lowest
contributor among urban network parameters, consistent with global
explanations (Fig. 7b).

The SHAP dependence plot showed the relationship between a single
morphological feature and the SHAP values of that feature across the
dataset (Fig. 8). The plot indicated the SHAP values of a specific
morphological feature on the y-axis and the feature values (independent
variable) on the x-axis. The value on the Y-axis stood for the effect of the

Table 2
Summary statistics for MGWR model results and coefficients estimates.

Statistics MGWR

R-Squared 0.88
Adjusted R-Squared 0.86
AICc 1061.96
Sigma-Squared 0.13
RMSE 0.37

Explanatory Variables Mean Standard Deviation Minimum Median Maximum Neighbours (% of Features) *

Intercept (Scaled) 0.0906 0.5924 − 1.0915 0.0116 1.5913 30 (3.06)
BLC − 0.0746 0.1199 − 0.3287 − 0.0784 0.2860 88 (8.97)
BLL − 0.0462 0.0756 − 0.1896 − 0.0704 0.2067 123 (12.54)
BLW − 0.0153 0.0033 − 0.0203 − 0.0156 − 0.0098 981 (100.00)
BLO − 0.0112 0.0039 − 0.0162 − 0.0123 − 0.0024 981 (100.00)
VER − 0.0779 0.1025 − 0.3007 − 0.0817 0.2734 60 (6.12)
CON 0.0799 0.1406 − 0.1705 0.0377 0.4326 144 (14.68)
GAR 0.5603 0.0024 0.5566 0.5602 0.5655 981 (100.00)
FAR − 0.1064 0.0318 − 0.1454 − 0.1134 − 0.0564 671 (68.40)
UBP 0.2140 0.0817 0.0627 0.2055 0.3671 360 (36.70)
UBB 0.0315 0.0038 0.0264 0.0320 0.0376 981 (100.00)
BTW − 0.0579 0.0620 − 0.2058 − 0.0299 0.0035 426 (43.43)
CLS 0.0129 0.0022 0.0085 0.0135 0.0165 981 (100.00)
GRA 0.0085 0.0116 − 0.0053 0.0052 0.0306 842 (85.83)
REA 0.0256 0.0011 0.0237 0.0257 0.0278 981 (100.00)

* This number in the parenthesis ranges from 0 to 100 %, and can be interpreted as a local, regional, or global scale based on the geographical context from low to
high.
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Fig. 5. Spatial distribution of variable coefficients for MGWR-I. BLC(a), BLW(b), BLL(c), BLO(d), VER(e), CON(f), GAR(g), FAR(h).
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feature on LSThexmean. The plot revealed how changes in the feature
value affect the prediction. The SHAP value in the plot also exhibited the
inflection zones where there is a change in direction or slope to indicate
when the relationship between the feature value and urban heat shifts
from linear (steady increase or decrease) to non-linear (i.e., levelling off,
reversing direction, or showing diminishing/increasing returns).

According to the plots in Fig. 8, CON and REA showed more linear
behaviour, suggesting a straightforward relationship with urban heat,
where changes in the feature values have a consistent impact on the
model output. CON exhibited a linear trend, with increased continuity
leading to a consistent reduction in urban heat, likely due to enhanced
airflow or shading, while REA demonstrated a steady rise in heat levels
as urban areas became more accessible. On the other hand, GAR, UBP,
FAR, BLC, BLO, VER, UBB, BLL, BLW, GRA, BTW, and CLS exhibited

non-linear patterns, indicating that their impact on urban heat is
context-dependent and complex.

Accordingly, GAR showed a strong non-linear influence on urban
heat. There was a sharp increase in heat at low values of GAR, which
suggests that increasing the ground area ratio dramatically increases
heat at lower levels, but the effect diminishes as the ratio increases
further. The non-linearity of UBP showed an upward trend initially,
meaning more plots increase heat. However, the SHAP values flattened
out at the inflection point, suggesting a diminishing return - a downward
trend in heating or an upward trend in cooling - at a higher number of
plots. The U-shaped curve in the SHAP plot for FAR indicated a clear
non-linear relationship with LST that both very low and very high FAR
values lead to reductions in urban heat, with intermediate values
contributing more to heat.

Fig. 6. Spatial distribution of variable coefficients for MGWR-II. UBP(i), UBB(j), BTW(k), CLS(l), GRA(m), REA(n).
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The relationship between BLC and urban heat also demonstrated a
distinct non-linear pattern. Initially, as the building count rose, SHAP
values increased, indicating a rise in urban heat. However, after reach-
ing the inflection point, this trend stabilised, reflecting a diminishing
return effect, which suggests that while the building count significantly
influences heat at lower levels, its impact saturates at higher levels,
making the relationship non-linear. Similarly, BLO showed varying
impacts on urban heat as building orientation shifts, indicating that
building orientation affects heat depending on specific configurations
and surrounding conditions, leading to a complex, non-linear influence.
VER displayed a consistent non-linear and negative trend, where
increased verticality initially reduces urban heat, though variability at
higher verticality levels makes the relationship less predictable. BLW
initially contributed negatively to urban heat, but extreme building
widths showed a slight warming effect, reflecting complex interactions
with building layout or open space. BLL had an inverse effect, with
shorter building lengths cooling the environment, but longer buildings
leading to warming, indicating a non-straightforward relationship.

Among the network parameters, GRA also showed a sharp increase in
SHAP values at lower values, levelling off at higher values. BTW fol-
lowed a concave curve, where intermediate values reduce heat, while
extreme high or low values increase it. Lastly, CLS exhibited a highly

non-linear U-shaped curve, where lower values contribute to cooling,
but very high closeness results in a slight warming effect.

3.5. Monte Carlo simulation results

The Monte Carlo Simulation, conducted to assess the sensitivity of
the MGWR results, revealed that the distribution of the simulated
dataset closely aligns with the training dataset derived from 981 sample
hexagons (Table B.1). The histogram confirmed the normal distribution
of this test dataset, a critical factor in evaluating the robustness of
parametric estimation models. Additionally, the box-and-whisker plot
illustrated descriptive values of the simulated dataset, highlighting its
variability. Despite a few outliers, the dataset’s overall spread, as indi-
cated by the box length, remained consistent for each variable (Figs. A.2,
A.3)

The tornado diagram confirmed the MGWR results in terms of the
significance and direction of influence (positive or negative) of the in-
dependent variables at a 95 % confidence interval (Fig. 9). According to
the diagram, GAR and UBP emerged as the strongest, positively corre-
lated contributors, while BLO and GRA had the least influence on the
prediction model. The analysis reveals that LSThexmean values were
more sensitive to variations in GAR and UBP than other morphological
features. CON was also identified as having a significant positive effect
on LSThexmean, while variables like BTW, FAR, VER, and BLC exhibited a
relatively high impact on urban heat but in a negative direction. The
only discrepancy between the MGWR results and the Tornado Diagram
was the significance of BTW; although MGWR indicated a lower impact,
the Tornado Plot demonstrated a higher model sensitivity to BTW
(Fig. 9).

3.6. Sensitivity of XGBoost results

Sensitivity analysis for XGBoost focused on how much predictions
change when a particular feature is varied, holding other features con-
stant. It highlighted the model’s responsiveness to individual features
and proved those with the greatest short-term impact on predictions.
Sensitivity analysis and SHAP values differed because sensitivity focuses
on the immediate impact of changing individual features while holding
others constant, highlighting short-term responsiveness. SHAP values,
however, provided a holistic view of feature importance by considering
the average contribution of each feature across the entire dataset, ac-
counting for interactions between features.

In this sense, the sensitivity analysis revealed that LSThexmean is
highly responsive to changes in several key parameters. CON and FAR

Table 3
SHAP-explained XGBoost model results.

Statistic XGBoost

R-Squared 0.56
Adjusted R-Squared 0.53
RMSE 1.20

Independent Variables Model Performances SHAP Scores

Gain Cover Weight

Building BLC 0.14 0.10 0.15 0.27
BLW 0.04 0.06 0.06 0.12
BLL 0.04 0.06 0.08 0.06
BLO 0.06 0.08 0.09 0.12
VER 0.06 0.10 0.09 0.13
CON 0.12 0.09 0.08 0.20

Plot FAR 0.08 0.09 0.07 0.19
GAR 0.16 0.12 0.08 0.65

Urban Block UBP 0.15 0.07 0.07 0.37
UBB 0.05 0.06 0.06 0.13

Network REA 0.02 0.03 0.2 0.03
BTW 0.03 0.06 0.06 0.05
CLS 0.02 0.04 0.06 0.03
GRA 0.04 0.04 0.06 0.07

Fig. 7. SHAP values of multi-scale urban morphological metrics. (a-left) The graph of global feature importance, and (b-right) the beeswarm plot of local contri-
butions of metrics on urban heat heterogeneity.
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Fig. 8. SHAP dependence plot of multi-scale urban morphological metrics (the purple frame shows the rough inflection zones for each variable).

Fig. 9. Sensitivity Tornado Plot.

Fig. 10. Sensitivity of the model to the morphological features.
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demonstrate the greatest sensitivity, indicating that variations in these
parameters cause the most significant shifts in LSThexmean values. This
highlighted the strong influence of urban connectivity and building
density on surface temperature predictions. GAR and UBP also show
considerable sensitivity, suggesting that changes in footprint coverage
and plot density significantly affect LSThexmean. Building scale param-
eters, such as BLC, BLW, and BLL, exhibited moderate sensitivity,
implying that LSThexmean is influenced by the geometry of buildings,
though to a lesser extent than connectivity and density factors. Param-
eters such as BLO and VER displayed lower sensitivity, meaning
LSThexmean is less affected by these features. Network-related variables
like BTW, CLS, and GRA exhibited the least sensitivity, indicating min-
imal impact on LSThexmean (Fig. 10).

4. Discussion

The research employed a comparative framework of conventional
linear – MGWR – and advanced ML-based non-linear – XGBoost – sta-
tistical models to quantify the influence of multi-scale morphological
features on urban heat heterogeneity, discuss the optimal model for
capturing the complexity of urban landscapes and explain the cooling
benefits associated with the urban morphology and spatial heteroge-
neity of urban heat. The frame facilitated the exploration of knowledge
gaps concerning model-specificity, focusing on the varying perfor-
mances of statistical models, assessments of building granularity and
urban networks, the impact of spatial heterogeneity in linear models,
and the interpretability challenges in machine learning outputs. The
discussion proceeds by evaluating models’ performances, analysing
feature importance and contributions, examining coefficient directions,
and assessing morphological features’ warming or cooling impacts on
urban LST.

Global performances of both models showed that the MGWR model
demonstrates higher predictive power with 0.86 adj. R2 value than
XGBoost with 0.53. MGWR also had higher predictive accuracy and
lower root mean squared error compared to the XGBoost model. How-
ever, spatial statistical models like MGWR, while effective under their
specific assumptions, may struggle with complex data processes, over-
look non-linear effects, and result in biases. Therefore, despite the
relatively lower prediction level, ML is more advantageous and robust
with fewer assumptions [4,84,85]. Moreover, XGBoost is more adept at
modelling discrete spatial heterogeneity owing to its tree-based algo-
rithm that favours distinct boundaries [4], while MGWR is good at
modelling continuous spatial heterogeneity [26,86,87]. Even so, the
satisfactory range of model fitness levels varies around and above 50 %,
which exhibits strong evidence for the overall contribution of urban
morphology parameters to the urban heat [5,8,15,17,30]. Unexplained
effects within the models are presumed to stem from natural factors,
such as solar radiation levels, humidity, wind profiles, and the green
vegetation coverage in the hexagon units as urban proxies.

MGWR and SHAP-explained XGBoost results effectively showed the
importance of urban morphological features and their contributions to
urban heat heterogeneity ranked from high to low. Even though the
XGBoost model did not directly provide regression coefficients similar to
MGWR, SHAP values identified correct interactions and revealed feature
contributions in global and local contexts. Models were consistent on the

dominant impact of GAR and UBP on urban heat with a minimum spatial
variability [88,89]. While MGWR revealed a positive dominant rela-
tionship within a linear relationship between GAR-LST and UBP-LST,
XGBoost was able to extract the non-linear relationship between the
pairs. Consistent with the research conducted with linear models widely
used in the literature, MGWR signified that an increase in horizontal
building density represented by GAR and the number of plots in an
urban area created a certain upward trend in urban heat [5,16]. How-
ever, the non-linearity extracted by XGBoost showed an upward trend
initially, but a diminishing return at a higher value of GAR and UBP.
Variations in building density distinctly influence urban heat by
manipulating solar radiation exposure, and air circulation [90,91].
Determining the inflection points of this non-linear influence (either
increase or decrease) quantitatively is crucial in decision-making pro-
cesses to create climate-sensitive urban environments.

MGWR, then, highlighted the negatively correlated FAR and
XGBoost also confirmed this negative impact of FAR on urban heat. The
cooling impact of FAR, which naturally means higher FAR values lower
LSThexmean, followed a non-linear trend and urban heat did not steadily
decrease with the increase in FAR. Both very low and very high FAR
values led to reductions in urban heat, with intermediate values
contributing more to heat [8,16,34]. Particularly, GAR and FAR are
substantial decision components in urban planning; therefore, defining
the ranges of marginal effects to positive or negative is vital for planning
and design practices to improve the thermal quality of urban life.

The features associated with the architectural morphology of build-
ings had a relatively low individual contribution to both models; how-
ever, results showed that they have the potential to create a cumulative
cooling impact on urban heat. Particularly, CON was the dominant
feature that both models agreed on its linear impact on urban heat
formation. According to the MGWR, the positive correlation between
CON and LST meant that an increase in the number of individual
building units created a tendency for urban cooling, consistent with the
evidence for urban block and plot features. Thus, rather than attached
buildings, a molecular layout design with more gaps between buildings
reduces sun exposure and radiation absorption by 3D surfaces, facilitates
air circulation in the neighbourhood, and balances urban temperatures.
This implies that rearrangements of the building architecture, building
dimensions, building granularity and layout design, responsively to the
background climate, can significantly mitigate urban heat. For instance,
orienting the narrow sides of buildings to minimise solar exposure re-
duces heat absorption and consequently lowers residual heat contrib-
uting to increased urban temperatures [92]. However, throughout the
reconfiguration of urban layout and building design, the GAR value
needs to be constant or decreased; otherwise, an increase in GAR may
create a marginal effect to increase the urban heat.

The models also showed that the urban network has relatively
limited local influence on urban heat. However, considering the global
impact of the urban network parameters in MGWR, city-scale mobility
and transport policies can deliver effective results for the mitigation
strategies, acting as a complementary feature for multi-scale morpho-
logical parameters. Besides, the non-linear relations between urban
network parameters, except REA, and LST support the characterisation
of threshold values in the urban planning policies and practices to create
climate-sensitive environments with reduced urban heat.
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Model-specificity facilitates a broader examination of mitigation
potentials, moving beyond a ’one-size-fits-all’ approach. Certain models
demonstrate a superior fit based on the morphological variables and
their relationships with the dependent variable utilised in the analysis.
In this study, both models have inherent strengths and limitations.
MGWR captured spatial heterogeneity, provided localised insights,
identified spatial clusters, and assessed the effects of urban features on
urban heat. It also required a multicollinearity test to carefully inter-
pretation of local coefficients, and was computationally intensive for
large datasets. XGBoost effectively handled non-linear relationships and
interactions between features, offered high predictive accuracy,
managed large datasets efficiently, and was robust to outliers. Since the
complexity of tree-based models and the interpretation difficulties in
feature importance, XGBoost required an interpretation method, SHAP,
to clarify the results. This study, by comparing an ML model and a
spatial statistical model, instils compelling evidence for employing ML
in future urban planning research for spatial data analysis and bridges
the gap between researchers who favour machine learning and those
who prefer conventional spatial statistical models in urban climate as-
sessments. Researchers can adopt a hybrid approach by using MGWR to
validate and interpret spatially explicit patterns while relying on
XGBoost to explore non-linear relationships and interactions. This dual
approach ensures a more comprehensive understanding of the under-
lying phenomena. Decisions can be guided by integrating the know-how
of professionals, prioritising variables with high relevance to the study
context, and involving stakeholders to align the outcomes with practical
applications.

The research lies on a methodological limitation of surface thermal
anisotropy which relates angle-dependent atmospheric path lengths and
the limited field of view of sensors on satellite platforms. Surface ther-
mal anisotropy may cause directional variations in retrieved LST
depending on the viewing angle and shaded or obscured areas in the
three-dimensional urban environment, resulting in an "angular effect" or
"anisotropy" of the LST measurements [93–96]. The unavailability of
alternative satellite imagery for the same date in Istanbul entailed this
unavoidable limitation which should be considered in future methodo-
logical settings.

5. Conclusion

This research highlighted the non-stationary relationships based on
model-specificity between multi-scale urban morphological features and
localised urban heat heterogeneity. Urban morpho-space, including the
building, plot, urban block and urban network, undoubtedly stimulated
linear or non-linear influences on urban heat at varying weights.
Therefore, future urban planning and design agendas, both in devel-
oping new urban areas and in urban regeneration processes, need to
control the urban thermal environment by regulating the spatial con-
figurations of the urban fabric through morphological components.

Notably, embedding the SHAP method into XGBoost enhanced the
interpretability of research outputs, providing a clearer understanding
of feature influences on UHI dynamics. In this sense, the research

approach increased methodological comprehension and offered opera-
tional efficacy, translating results into actual urban contexts. As a rele-
vant solution to uncover the black-box nature of the ML algorithms, this
effort has the potential to address the explainable AI in UHI studies.

Correspondingly, results encourage urban planning practitioners to
optimise the complex urban ecosystem of multi-scale morphological
features by presenting the range of their marginal effects (in terms of
warming/cooling) on urban heat. Therefore, the research provides a
practical ground to create urban design codes among effective climatic
planning strategies for mitigating urban heat and enhancing the thermal
quality of urban life. Such design codes necessitate an evaluation of
individual urban features and their interactive effects, thereby high-
lighting the importance of local strategies for optimising urban morpho-
space features [8,26].

Two research lines carry the potential to be further explored in the
future. As a follow-up study, the quantitative base of the research will be
expanded to validate the generalisability of the research findings by
including parametric urbanism in the model framework for measuring
the impact of generated hypothetical urban settings on UHI. Addition-
ally, future research could incorporate further significant variables, such
as envelope reflectivity, surface materials and vegetative coverage,
which are crucial components of passive cooling strategies at the urban
level. Addressing these factors would offer a more comprehensive un-
derstanding of urban heat mitigation strategies. Another discussion can
proceed to develop inclusive methodologies to transfer analytical out-
puts of the research into actionable insights by effectively communi-
cating with stakeholders and urban planners to facilitate relevant
strategies for urban heat mitigation. Continued interdisciplinary
collaboration will be essential to address given challenges, fostering a
deeper understanding of the reciprocal relationships between urban
design and climate resilience.
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Appendices

Fig. A.1. Istanbul’s land cover map on 2023 (a), and elevation map (b).
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Fig. A.2. Histograms of the simulated dataset.
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Fig. A.3. The Box and Whisker Plots of the simulated dataset provide insights into data variability and highlight the presence of outliers for each variable.
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Table B.1
Descriptive statistics of the simulated test dataset, generated by the combinations of normalised independent variables.

Explanatory Variables Count Average Std. Minimum Maximum

LSThexmean 10.000 0.203388 0.715894 − 2.29163 2.76932
BLC 10.000 1.26194 1.48665 − 1.40724 5.35637
BLL 10.000 1.71828 1.742 − 1.14481 6.53147
BLW 10.000 2.17552 2.19553 − 1.55472 8.21935
BLO 10.000 − 0.0071875 1.20289 − 2.94206 2.85568
VER 10.000 0.7088 1.45403 − 2.30536 4.57465
CON 10.000 2.16745 1.92379 − 0.701269 7.43024
GAR 10.000 0.389854 0.895423 − 1.50001 2.72579
FAR 10.000 1.98966 1.97008 − 1.39003 7.4092
UBP 10.000 1.30689 1.44212 − 1.16842 5.3299
UBB 10.000 1.49668 1.67962 − 1.45038 6.07726
BTW 10.000 5.25096 4.03934 − 0.483057 16.5635
CLS 10.000 7.10822 5.13958 − 0.250927 21.47
GRA 10.000 1.19461 1.40733 − 1.34944 5.05676
REA 10.000 2.74145 2.42781 − 1.14581 9.56453

Std: Standard deviation.

Data availability

Data will be made available on request.
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