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We report on a numerical study of the vortex structure modifications and drag
reduction in a flow over a rotationally oscillating circular cylinder at a high
subcritical Reynolds number, Re= 1.4× 105. Considered are eight forcing frequencies
f = fe/f0= 0.5, 1, 1.5, 2, 2.5, 3, 4, 5 and three forcing amplitudes Ω =ΩeD/2U∞= 1,
2, 3, non-dimensionalized with f0, which is the natural vortex-shedding frequency
without forcing, U∞ the free-stream velocity, D the diameter of the cylinder. In
order to perform a parametric study of a large number of cases (24 in total) with
affordable computational resources, the three-dimensional unsteady computations
were performed using a wall-integrated (WIN) second-moment (Reynolds-stress)
Reynolds-averaged Navier–Stokes (RANS) turbulence closure, verified and validated
by a dynamic large-eddy simulations (LES) for selected cases ( f = 2.5, Ω = 2 and
f = 4, Ω = 2), as well as by the earlier LES and experiments of the flow over a
stagnant cylinder at the same Re number described in Palkin et al. (Flow Turbul.
Combust., vol. 97 (4), 2016, pp. 1017–1046). The drag reduction was detected at
frequencies equal to and larger than f = 2.5, while no reduction was observed for the
cylinder subjected to oscillations with the natural frequency, even with very different
values of the rotation amplitude. The maximum reduction of the drag coefficient
is 88 % for the highest tested frequency f = 5 and amplitude Ω = 2. However, a
significant reduction of 78 % appears with the increase of f already for f = 2.5
and Ω = 2. Such a dramatic reduction in the drag coefficient is the consequence of
restructuring of the vortex-shedding topology and a markedly different pressure field
featured by a shrinking of the low pressure region behind the cylinder, all dictated by
the rotary oscillation. Despite the need to expend energy to force cylinder oscillations,
the considered drag reduction mechanism seems a feasible practical option for drag
control in some applications for Re> 104, since the calculated power expenditure for
cylinder oscillation under realistic scenarios is several times smaller than the power
saved by the drag reduction.

Key words: flow control, turbulence modelling, wakes

† Email addresses for correspondence: mhadziabdic@ius.edu.ba, rustammul@gmail.com

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

63
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 T

U
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

, o
n 

16
 Ju

n 
20

20
 a

t 0
8:

06
:1

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

http://orcid.org/0000-0001-7506-1914
mailto:mhadziabdic@ius.edu.ba
mailto:rustammul@gmail.com
https://doi.org/10.1017/jfm.2018.639
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Control of flow around a cylinder by rotary oscillations 237

1. Introduction
Most flows over bluff bodies are featured by unsteady quasi-periodic vortex

shedding, forming the well-known Kármán vortex street (Williamson 1996). The
periodic vortex field is reflected in the pressure distribution and fluctuating drag
and lift forces acting on the body, which can lead to serious structural damage
due to vortex-induced vibrations (Bearman 1984; Sarpkaya 2004). A variety of
active and passive methods have been proposed to control the flow and combat the
undesired flow–structure interactions (Choi, Jeon & Kim 2008). The common aim is
to manipulate the frequency of oscillations and to reduce the amplitude of the drag
and lift forces, both of which are of utmost importance in a wide range of practical
applications.

A vast amount of the research on flow over a cylinder representing a model bluff
body configuration reports on the effect of various control methods leading to specific
changes of the flow features. Among these are the application of steady and periodic
blowing/suction of the fluid through the cylinder wall (Lin, Towfighi & Rockwell
1995; Arcas & Redekopp 2004; Chen et al. 2013), distributed forcing (Kim & Choi
2005; Poncet et al. 2008), various geometric modifications including roughness (Shih
et al. 1993), dimples (Bearman & Harvey 1993), splitter plates (Roshko 1954),
grooves (Lim & Lee 2002), small secondary cylinders (Strykowski & Sreenivasan
1990) and similar means (Lam & Lin 2009; Gao et al. 2017), electromagnetic forcing
(Kim & Lee 2000), hydrophobic surfaces (You & Moin 2007), steady and oscillating
rotation (Okajima, Takata & Asanuma 1975; Mittal & Kumar 2003), in-line and
transverse oscillations (Bearman 1984), etc. While the approaches mentioned above
represent passive and active open-loop control methods (without the feedback), there
is a branch of control theory dealing with active closed-loop methods (Moin &
Bewley 1994; Brunton & Noack 2015) where the controlling devices are activated
according to the information on flow characteristics received from sensors.

A recent example of the application of adjoint-based optimal control of a
low-amplitude rotary-oscillating cylinder at low Reynolds numbers (75<Re< 200) by
Flinois & Colonius (2015) suggested a delicate connection between the phase of the
cylinder rotation and wake oscillations required for a successful drag reduction, as also
discussed by Protas & Styczek (2002) and Bergmann, Cordier & Brancher (2005).
The self-tuning forcing provided by a ‘smart’ optimization procedure seems very
promising for control purposes. However, earlier experiments with feedback control
based on instantaneous velocity point measurements in the wake at Re= 6.7× 103 and
2.0× 104 provided only a minor drag reduction effect (Fujisawa, Kawaji & Ikemoto
2001). Thus, it is not very clear if the practical implementation can be robust and
straightforward at high Reynolds numbers for a fully turbulent motion.

We investigate the efficiency of cylinder rotary oscillations in manipulating lift,
drag and velocity fluctuations in the wake by performing a parametric study in a
wide range of Ω and f values defined below at high subcritical Reynolds number
Re = 1.4 × 105 which is at least an order of magnitude higher than previously
explored in the literature. A simple case of sinusoidal in time rotary oscillations of
the cylinder represents a two-dimensional forcing active open-loop control method
where the forcing targets the boundary layer and not directly the wake region (Choi
et al. 2008). The tangential velocity of the cylinder wall is forced to oscillate in time
according to the following relation:

Uwall
θ =ωeR sin(2πfet), (1.1)

where ωe is the angular velocity representing the amplitude of oscillation, R the radius
of the cylinder and fe the imposed frequency. After normalization with the uniform
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inflow velocity U∞ and diameter of the cylinder D, the wall velocity is:

Uwall
θ /U∞ =Ω∗ sin(2πf ∗e t∗)=Ω∗ sin ϕ∗, (1.2)

where Ω∗ = ωeD/2U∞ = Ωe/U∞ with Ωe = ωeD/2, t∗ = tU∞/D and f ∗e = feD/U∞
is the Strouhal number of the imposed oscillations and ϕ∗ = 2πf ∗e t∗ is the rotational
phase. Further below we drop the superscript ∗ assuming that all variables are given
in non-dimensional forms (scaled by U∞ and D). Thus, the problem is governed by
three parameters, i.e. the Reynolds number Re = U∞D/ν where ν is the kinematic
viscosity of the fluid, the non-dimensional amplitude and frequency of oscillations, Ω
and f = fe/f0, respectively, where f0 is the natural vortex-shedding frequency without
forcing. The parameters of interest are the drag and lift coefficients defined as

CD =
FD

1
2ρU2

∞
D
, CL =

FL
1
2ρU2

∞
D
, (1.3a,b)

where FD and FL are the forces acting on the cylinder (per unit length) along the flow
direction (drag) and perpendicular to it (lift), ρ is the fluid density.

Previous simulations for relatively low Reynolds numbers were usually performed
using a grid-free Lagrangian approach called the vortex method (VM) or standard
two-dimensional (2-D) or three-dimensional (3-D) direct numerical simulations (DNS)
of the Navier–Stokes equations, while for higher Re numbers large-eddy simulation
(LES) was the usual compromise between accuracy and computing time. As shown
by Poncet (2002, 2004) rotary oscillations effectively suppress three-dimensional
instabilities justifying the use of 2-D simulations at low Re. He et al. (2000)
performed 2-D DNS at Re= 200 and 103 and searched for optimal control parameters
calculating the gradient of the cost function. These authors observed a decrease of
the time-averaged CD of around 30 % and 60 % for two Re numbers, respectively,
with f = 3.8, Ω = 6 and f = 2.61, Ω = 5.5. A similar study has been performed by
Homescu, Navon & Li (2002). Cheng, Chew & Luo (2001) used VM simulations to
support the results of He et al. (2000) showing a 40 % decrease of CD at f = 4, Ω = 3
and Re = 103 and even 60 % at f = 2.61, Ω = 2.75 and the same Re number. The
method has not proven to be very energetically efficient at low Re number (Protas &
Wesfreid 2002; Bergmann, Cordier & Brancher 2006), suggesting that the study be
extended towards higher Re.

For Re = 1.5 × 104, the experiments by Tokumaru & Dimotakis (1991) showed a
dramatic decrease of CD by around 85 % with the optimal values of Ω and f being
around 2 and 4, respectively, attracting more attention to this control method. Shiels
& Leonard (2001) performed 2-D simulations in the range 150 < Re < 1.5 × 104

using VM and qualitatively confirmed the results of Tokumaru & Dimotakis (1991).
However, the maximum reduction achieved was around 70 % at f = 5.3, (The value
is normalized using the natural vortex-shedding frequency taken from Du & Dalton
(2013).) Ω=2 and Re=1.5×104. They showed that the mechanism of drag reduction
caused by a train of detaching vortices in the boundary layer is only effective at
Re> 3.0× 103 due to viscous dumping of separation at lower Re numbers. Sengupta,
Deb & Talla (2007) used a genetic algorithm and 2-D DNS to determine Ω and
f which minimize the drag coefficient at Re = 1.5 × 104. They found the optimal
value to be around Ω = 3.0 and f = 3.6 leading to CD = 0.42 compared to CD =

1.62 in the non-rotating case. Du & Dalton (2013) performed 2-D DNS and 3-D
LES at Re= 150 and 1.5× 104, respectively, sufficiently reducing the drag coefficient
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Control of flow around a cylinder by rotary oscillations 239

down to CD = 0.46 for Ω = 2.0 and f = 2.5 in the latter case. They also pointed
at uncertainties of the indirect method for drag estimation employed by Tokumaru &
Dimotakis (1991) which could lead to underestimation of CD. Shiels & Leonard (2001)
analysed the efficiency of the rotary-oscillation control in terms of the power saving
criterion, defined as the ratio of the power gain by drag reduction versus the power
spent to oscillate the cylinder.

In the following, § 2 provides information on the flow configuration, computational
details and on the verification and validation of the applied Reynolds-stress model
(RSM). In § 3 we present and discuss the computational results for a variety of cases
considered. Section 4 discusses the mechanism of the drag reduction due to rotary
oscillations of the cylinder wall, whereas in § 5 we analyse the potential, efficiency
and benefits of the considered control method in terms of the ratio of the power saved
and power expended.

2. Computational details and model validation
The computations were performed using the in-house unstructured finite-volume

code T-FlowS developed at TU Delft (Ničeno & Hanjalić 2005) and used over the
years for LES, Reynolds-averaged Navier–Stokes (RANS) and hybrid solutions in the
research of a variety of turbulent flows and transport processes. The three-dimensional
unsteady RANS (URANS) solutions were obtained on a mesh containing 2.24× 106

cells using the wall-integrated Reynolds-stress model (RSM) of Jakirlić & Hanjalić
(2002), whereas the dynamic Smagorinsky subgrid-scale model was employed in the
reference LES on a mesh of 13.4 × 106 cells. The computational domain, shown in
figure 1, was Lx × Ly = 25 × 20 in the streamwise and cross-wise directions while
the spanwise length was Lz = 2 for URANS and 3 for LES. (Although the present
spanwise length Lz does not fully resolve the oblique waves (Williamson 1989), recent
studies at Re= 1.3× 105 (Cao & Tamura 2015) suggest that the chosen length gives
sufficiently accurate drag coefficients. Also, the two-dimensionalization due to rotary
oscillations suppressing this kind of instability is described below.) The centre of the
cylinder was placed at 10D from the inflow boundary. Slip conditions were set at the
top and bottom boundaries, the convective outflow condition was imposed at the outlet
and the time-dependent tangential velocity on the cylinder wall was calculated every
time step according to (1.2). Periodic conditions were imposed on the side boundaries
along the spanwise direction. The inflow was defined by the uniform velocity U∞
and zero free-stream turbulence. The time steps in all computations were chosen so
that Courant–Friedrichs–Lewy (CFL) number was around 1. The LES simulations
were conducted with a time step 1t = 5 × 10−4 while for the RSM 1t = 10−3.
For URANS the first grid point satisfied the condition 1r+ < 3 and 1r+ < 1.0–1.8
corresponding to the areas before and after separation, respectively, slightly varying
for different Ω and f . Here the non-dimensionalization was performed in wall units
with the ‘+’ superscript using the friction velocity and viscosity. The cell size along
the cylinder wall satisfied (R1θ)+< 70/40. For LES these numbers were much lower
with 1r+ < 1.4/0.8, (R1θ)+ < 90/35 and 1z+ < 200/100 calculated before/after the
separation point.

In the previous work (Palkin et al. 2016) we assessed the performance of
the second-moment closure model (RSM) described here in parallel with an
elliptic-relaxation linear eddy-viscosity model (EVM), as representative of advanced
EVMs, in a cross-flow over an infinite cylinder with reference to our LES, available
DNS and experiments at two Reynolds numbers, Re= 3.9× 103 and 1.4× 105. The
URANS results show that, despite the conceptual limitations, both models (EVM and
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FIGURE 1. Schematic picture of flow around a rotating cylinder.

0

–0.5

10 0 0.1 0.2 0.3 0.4

–0.4

 –0.5

–0.6

y

0

–0.5

10 0 0.1 0.2 0.3 0.4

–0.4

 –0.5

–0.6

y

x x

RSM

LES

RSM

LES

–0.2–0.6 0.2 0.6 1.0 1.4
U(a) (b)

FIGURE 2. (Colour online) Instantaneous streamwise velocity field from LES and
RSM at the same phase of the lift coefficient showing the multi-point wall-flow
separation/reattachment and multiple vortices in the wall region. (b) Shows a blow up of
the separation region given in (a). Adapted from Palkin et al. (2016).

RSM) reproduced the major flow features, but the RSM proved to be far superior,
replicating closely the LES-revealed subtle details of the laminar separation dynamics,
subsequent transition to turbulence, multiple-vortex systems, their evolution including
the low-frequency modulation, and dynamic characteristics – vorticity intensity,
frequency and amplitudes, as well as their origin, pattern, size and strength, as
illustrated in figure 2. The key of the success of the RSM in the case considered
is the better reproduction of the natural stress anisotropy and of the misalignment
of the eigenvectors of the strain-rate tensor and the traceless Reynolds-stress tensor
– both inaccessible to eddy-viscosity models. This leads to a much lower effective
eddy viscosity in the RSM and consequently to its higher sensitivity and receptivity
to inherent instabilities compared to the EVMs. These findings are believed to extend
to other bluff bodies and other high-Re flows dominated by strong semi-deterministic
vortex structures.

Table 1 shows a comparison of the main statistical properties of the flow obtained
from LES and URANS demonstrating the accuracy of the URANS approach for this
flow. Especially important for the present study is that the RSM reproduced a drag
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FIGURE 3. (Colour online) Comparison of RSM (solid line) and LES (dashed) results for
f = 2.5 and Ω = 2. (a) Mean streamwise velocity profiles at x/D= 0.5, 1.0, 4.5. (b) The
time evolution of the drag coefficient fluctuations C′D and lift coefficient CL.

CD −Cpb θs Lr f0

LES 1.27 1.27 90.8 0.67 0.229
RSM 1.24 1.37 85 0.67 0.217

TABLE 1. Comparison of the mean drag coefficient (CD), pressure base coefficient (Cpb),
separation angle (θs), recirculation zone length (Lr) and vortex-shedding frequency ( f0)
obtained from LES and RSM at Re= 1.4× 105 without rotation.

coefficient CD = 1.24 that agrees very well with the experimental value CD = 1.23
reported by Cantwell & Coles (1983). We further performed several additional LES
simulations for the cylinder with rotary oscillations in order to assess the URANS
approach for this particular set-up. We simulated the set-up which produces high drag
reduction f = 2.5 and Ω = 2 on the same mesh used for LES of flow over a stagnant
cylinder as well as even a higher-frequency forcing with f = 4 and Ω = 2. Some
results for f = 2.5 and Ω = 2 are compared in figure 3 where the oscillating cylinder
URANS shows a similar level of accuracy as reported by Palkin et al. (2016) for
the unforced cylinder flow. The URANS reproduces successfully the mean velocity,
figure 3(a), but also the dynamic flow features illustrated by the oscillations of the
drag and lift coefficients, shown in figure 3(b). A close agreement for the drag
coefficient is obtained with CD = 0.25 provided by LES and CD = 0.28 by URANS.
For the case with f = 4 and Ω = 2 the drag coefficient is also well reproduced
with CD = 0.18 (LES) and CD = 0.16 (URANS). This validation confirms that the
RSM approach is a reliable tool to simulate a rotary-oscillating cylinder in cross-flow,
justifying its use in the further parametric studies of a number of cases with different
imposed frequencies and amplitudes of the forced rotary oscillations.

3. Results and discussion
To visualize the flow changes imposed by rotation, figure 4 shows the isosurface of

the Q-criterion computed from RSM for non-rotating case and f = 2.5, Ω = 2 where
Q = (ΩijΩij − SijSij)/2, with Ωij and Sij being the symmetric and antisymmetric
components of the velocity gradient tensor. While the flow over a stagnant cylinder
produces three-dimensional coherent structures and a relatively wide wake, the rotation
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(a) (b)

U
0 0.4 0.8 1.2 1.6

FIGURE 4. (Colour online) Isosurface of Q= 0.5 for (a) non-rotating case and (b) f = 2.5,
Ω = 2 coloured with instantaneous streamwise velocity from RSM.
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FIGURE 5. (Colour online) Comparison of time-averaged squared vorticity based on two
components h= (ω2

x +ω
2
y)/2 (upper halves) and spanwise velocity fluctuations ww (lower

halves) from LES for the unforced case, Ω2− f 2.5 and Ω2− f 4.

suppresses three-dimensional evolution of large-scale structures and enforces the
Kármán vortex street, keeping the rolls almost two-dimensional. Figure 5 shows the
sum of time-averaged squared x and y vorticity components and spanwise fluctuations
supporting the tendency towards two-dimensionalization with the addition of rotary
oscillations compared to the unforced case. Further, we discuss the results for some
of the considered cases with eight different rotation frequencies, f = fe/f0 = 0.5,
1, 1.5, 2, 2.5, 3, 4 and 5, and three rotational amplitudes, Ω = 1, 2 and 3. The
computations are denoted as ΩX − fY , where X is the non-dimensional value of the
forcing amplitude and Y the forcing frequency.

3.1. Unforced cylinder
The URANS and LES of flow over a stationary cylinder at the same Re number
have been presented and discussed in detail in Palkin et al. (2016). However, before
analysing the effects of the cylinder rotation on flow modifications and drag reduction,
we recall briefly some salient features of the flow dynamics around a stagnant cylinder.
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FIGURE 6. (Colour online) (a,b) Instantaneous and (c,d) mean fields of streamwise
velocity and pressure for the unforced case.

This dynamics is governed by the periodic vortex shedding at the top and bottom
of the cylinder. At the subcritical Re number considered, the flow separation is
laminar and transition occurs in the shear layer downstream, reinforced by the fluid
recirculation. The vortices formed in the shear layer coalesce with neighbouring ones,
forming large vortex structures that interact with their twins from the other side of
the cylinder. The process is quasi-periodic as the incoming flow periodically supplies
more streamwise momentum to the top or bottom side of the cylinder, as shown in
figure 6(a,b). The side of the cylinder with excessive momentum is characterized
by eddies with higher vorticity due to the more intensive shear. The large vortex,
generated by the coalescence of small vortices, acts as an obstacle for the incoming
fluid and, as a result, more momentum is supplied to another side of the cylinder.
The natural shedding frequency f0 is the frequency of appearance of the large vortical
structures that switch the momentum imbalance from one to another side of the
cylinder. For high Reynolds numbers the drag coefficient is almost entirely due to the
difference in the pressure in the front and back sides of the cylinder. The low-pressure
zone is determined by the presence of strong vortical structures in the wall vicinity,
as seen in figure 6(b). Figure 6(c,d) show the fields of the mean streamwise velocity
and pressure. The mean recirculation bubble is symmetric with a length of 0.67D
for the present flow parameters. The mean pressure field shows a low-pressure zone
starting at the mean position of the initial separation point and extending to the rear
of the cylinder. However, the minimum mean pressure zone appears away from the
wall further downstream at the location where the large-scale structures reach the
maximum size.

3.2. Rotary oscillations: forcing frequency f = 1
The selected integral characteristics of the flow with forcing frequency equal to that of
the natural vortex shedding for three forcing amplitudes are listed in table 2. The mean
drag coefficient is not much different (within 5 %) for all three cases compared to the
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FIGURE 7. (Colour online) Mean streamwise velocity and pressure fields for f = 1 and
different amplitudes.

Case Ω CD Crms
L Lr

Non-rotating 0 1.27 0.45 0.67
Ω1− f 1 1 1.29 1.18 0.38
Ω2− f 1 2 1.24 1.08 0
Ω3− f 1 3 1.36 0.85 0

TABLE 2. Mean drag coefficient (CD), root mean square of the lift coefficient (Crms
L ) and

the recirculation zone length (Lr) for different rotational amplitudes and forcing frequency
f = 1.

unforced case. It slightly increases for amplitudes Ω = 1 and 3, and decreases for
Ω = 2 compared to the reference non-rotational value. Du & Dalton (2013) reported
an increase of 18 % in CD for the same forcing frequency and Ω = 2, but for an
order of magnitude smaller Reynolds number. Interestingly, the small differences in
the mean drag coefficient do not reflect the observed significant change of the flow
pattern and its dynamics compared to the non-rotating case. Note that fluctuations of
CL significantly increase for oscillating cases, table 2. Figure 7 shows mean fields
of streamwise velocity and pressure for three forcing amplitudes. The recirculation
zone is reduced by approximately 40 % for the lowest amplitude Ω = 1, while the
recirculation bubble disappears completely for Ω = 2 and 3. The mean pressure fields,
shown in the lower halves of figure 7, reflect the changes in the velocity fields due
to the oscillations. For all three forcing amplitudes the low pressure zone is attached
to the cylinder, but spreads more and more laterally as the amplitude increases. The
pressure distribution is markedly different from that in the non-rotating case where the
low pressure zone is located on the centreline behind the cylinder further downstream,
figure 6(d). In the rear of the cylinder the mean pressure is still negative for Ω = 1,
but it becomes close to zero for Ω = 2 and positive for Ω = 3. Surprisingly, the
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FIGURE 8. (Colour online) Instantaneous fields of spanwise vorticity for three amplitudes
and f = 1.

lateral shift of the negative pressure zones apparently does not affect the mean drag
coefficient as shown in table 2.

The instantaneous spanwise vorticity field, figure 8, shows that for all three tested
amplitudes the cylinder releases one vortex per cycle. For all three amplitudes the
wake structure is synchronized with the cylinder oscillation which persists downstream
beyond the domain length of 15D. However, only for Ω = 3 does the boundary
layer near the cylinder laminarize due to strong rotary oscillations suppressing the
smaller-scale vortical dynamics which allows to detect a lock-on regime, as described
below. This type of wake organization corresponds to mode II of Tokumaru &
Dimotakis (1991). The flow shares some common characteristics for all three tested
amplitudes. As reported by Cheng et al. (2001), Du & Dalton (2013) among others,
an oscillation frequency of the cylinder that is close or equal to f0 produces much
stronger vortices due to the additional vorticity generated by rotation. This resonance
leads to higher values of the root mean square of CL compared to the non-rotating
case, see table 2. A large vortex structure is shed every cycle and does not strongly
interact with neighbouring vortices in the wake with opposite vorticity. The wake
width becomes larger due to stronger vortex structures in the shear layer. Once the
cylinder changes its rotational direction, a thin vorticity layer starts to grow between
the wall and rotationally generated separation bubble that was attached to the wall
until that moment, see the inset in figure 8(b). As the bubble and the newly formed
layer have opposite vorticity signs, the separation bubble detaches from the wall and
evolves into the main vortex, figure 8.

In order to understand the impact of rotation on the drag and lift coefficient,
we look into the instantaneous fields of the spanwise vorticity component in the
near-wall region. For convenience, the cycle of the oscillatory rotation is divided into
the four phases defined in table 3, where a typical time history of CD, CL and Uwall

θ

is also shown. Note that there is a phase shift between the oscillatory behaviour of
these coefficients resulting, for example, in a non-zero value of CL for Uwall

θ = 0.
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FIGURE 9. (Colour online) Instantaneous fields of spanwise vorticity and pressure for
Ω1− f 1.

Phase I II III IV

C-D

0

π
Ç

2π0

d
Uœ

wall

c

b

a

CL

CD

TABLE 3. Specification of the characteristic cycle phases. Plot on the right shows the
typical time history of CD (red line), CL (blue) and Uwall

θ (black) against the rotation
phase ϕ.

Figure 9 shows the instantaneous vorticity and pressure field for Ω = 1 in the
near-wall region at the end of each phase, denoted by dots in the sketch in table 3.
The flow stabilizes due to rotation where the wall tangential velocity is aligned with
the bulk flow (stable side) because the shear becomes smaller, while it is destabilized
in the opposite case promoting instabilities (unstable side). The picture is complicated
by the fact that the cylinder does not rotate with a constant angular velocity, but
oscillates in the direction and magnitude. Figure 9(a) shows the end of phase I
(point a) when Uwall

θ reaches its maximum value as the cylinder increases its angular
velocity. The upper half of the flow near the cylinder wall, stabilized in the previous
phase with favourable rotation, starts to destabilize due to the opposite rotation and
generation of small-scale wall eddies, figure 9(a). At the lower half of the cylinder
two counter-rotating wall-attached vortices are present in the near-wall region at the
location previously occupied by the large vortex that is detached from the wall and
convected downstream during phase I. Shiels & Leonard (2001) found the vortex to
be formed on the stable side where the maximum shear occurs due to the co-existence
of two vorticity layers with opposite signs. One is generated in the previous phase
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when the rotational direction was opposite and a new one is generated in the present
phase. During phase II the newly formed wall-attached positive vorticity layer spreads
to the upper half separating the existing negative-sign vorticity layer from the wall.
At the same time, the lower part of the cylinder is stabilized with a laminar-like
flow around the cylinder, figure 9(b). The change of rotational direction in phase III
results in bursts of the boundary layer in the upper half of the cylinder leading to
the formation of the main vortex away from the wall. The instabilities grow on the
previously stable lower side resulting in the formation of the wall-attached vortex
visible at the end of phase III, see figure 9(c). In phase IV the vortical structure that
is formed on the unstable side grows, but stays attached to the wall as long as the
rotation supports its growth. The stable side is not fully stabilized at the end of phase
IV, as seen in figure 9(d). It is interesting to notice two different ways in which the
main vortex is generated during phases I and II in the upper half and during phases
III and IV in the lower half. In the first case (upper half) the main vortex is detached
from the wall already in phase I. It grows away from the wall before it is shed
downstream. In the second case the main vortex grows attached to the wall through
phases III and IV before the change of the rotational direction causes its detachment
from the cylinder and convection into the near wake. In the corresponding pressure
fields the low-pressure region is determined by the presence of large-scale vortex
structures at the end of phases II and IV, and by a high streamwise velocity at the
top and bottom of the cylinder at the end of phases I and III, respectively. As the
strength and position of the main vortex are not the same from cycle to cycle, the
appearance and size of the low-pressure region vary between cycles. As shown below,
this results in uneven amplitudes in the lift and drag coefficients.

The increase of the rotational amplitude to 2 provides a more regular flow, figure 10.
The negative-sign vorticity layer formed during phase I, see figure 10(a), grows into
a large vortical structure during phase II, see figure 10(b). The wall-attached bubble
of the opposite vorticity sign is formed at the end of phase II and grows rapidly at
the beginning of phase III. The burst of the boundary layer that takes place at the
beginning of phase III drags also the positive vorticity of the main vortex forming
a multipole vortex structure. A similar dynamics is reported by Shiels & Leonard
(2001) but for a much lower Reynolds number, where they observed a rapid growth
of the multipole vortex structure triggered by separation, which is quickly pulled
outside the boundary layer. Once the rotation changes its direction (phase III), the
large-scale structure gets detached from the wall and convected downstream, as is
visible in figure 10(c). The same mechanism leads to the formation of the main vortex
during phases III and IV. The flow structures developed in phases III and IV are very
similar in size and location to the vortices generated in phases I and II. The increase
of the amplitude changes the positions of the attached vortices. While for Ω = 1 the
large wall-attached vortices migrate along the cylinder wall occasionally reaching the
rear of the cylinder, for Ω = 2 the attached vortices do not go further than θ = 130◦
(θ = 180◦ corresponds to the rear point) as they are quickly shed downstream. The
changed position of the main vortex and its quick removal from the cylinder prevents
the formation of large-scale separation in the wake which results in the disappearance
of the separation bubble in the mean velocity field. The corresponding pressure fields
show fewer differences in the distribution of the low-pressure zone for the same
events as the flow becomes more regular. Stronger vortices result in a lower value
of the pressure in the low-pressure region but at the same time there is a significant
increase of the pressure in the rear.

An increase of the rotational amplitude to Ω = 3 leads to a further enlargement
of the wall-attached separation bubble visible in figure 11(a). The increase of the
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FIGURE 10. (Colour online) Instantaneous fields of spanwise vorticity and pressure for
Ω2− f 1.
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FIGURE 11. (Colour online) Instantaneous fields of spanwise vorticity and pressure for
Ω3− f 1.

separation layer produces a larger and stronger wall-attached vortex. The flow becomes
more regular as the stable size of the cylinder is further stabilized, figure 11(b). The
flow structures are reduced to the main vortex with no other visible instabilities. The
instantaneous vorticity fields in phases I and II are almost identical to the fields
in phases III and IV, respectively, with flipped top and bottom halves indicating a
significant reduction in turbulence-induced fluctuations. The position of the main
vortex, a moment before it is shed away from the wall, is moved further away
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FIGURE 12. (Colour online) (a) Drag and (b) lift coefficient for frequency f = 1 as well
as their power spectra shown in (c), (d), respectively.

from the centreline towards the top and bottom positions, while the pressure in the
low-pressure region gets lower. There are no other significant differences from the
previous case of Ω = 2.

Interestingly, the change of the flow topology does not influence much the mean
values of the drag coefficient. However, the histories of the drag and lift coefficients,
shown in figure 12(a,b), reveal the strong impact of the rotation on the instantaneous
values of CD and CL, which is in agreement with the results for lower Reynolds
numbers (Cheng et al. 2001; Du & Dalton 2013). The amplitudes in both signals
increase compared to the non-rotating case. High Ω values lead to a decrease of
the irregularities in both signals, as seen in figure 12(a,b). While for Ω2 − f 1
some low-frequency modulations of the signal can still be traced, the Ω3− f 1 case
produces almost perfect periodical oscillations of both CD and CL with a constant
value of the oscillation amplitude (lock-on). Contrary to CD, the amplitude in the
CL signal decreases for high Ω . As already mentioned above, the time histories of
CD and CL and their spectral analysis indicates that the lock-on phenomena, i.e. the
synchronization of rotation dynamics and vortex shedding resulting in one dominant
spectral peak with the frequency of rotation, is most pronounced at high Ω with
the flow becoming quasi-laminar and almost perfectly periodic. The low-frequency
modulation effects were also seen in the 2-D simulations of Choi et al. (2008),
who showed that the modulation was related to the vortex-merging process in the
wake further downstream. It has been reported in the literature (Mahfouz & Badr
2000) that, below a threshold value of the forcing amplitude, the lock-on region
diminishes to zero. Further, below, we compare all our regimes with the results of
D’Adamo, Godoy-Diana & Wesfreid (2011) at Re= 100 and Cheng et al. (2001) at
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FIGURE 13. (Colour online) Mean streamwise velocity and pressure fields for f = 2.5 and
different amplitudes.

Case Ω CD Crms
L Lr

Non-rotating 0 1.27 0.45 0.67
Ω1− f 2.5 1 0.57 0.30 0.68
Ω2− f 2.5 2 0.28 0.13 0
Ω3− f 2.5 3 0.42 0.07 0

TABLE 4. Mean drag coefficient (CD), root mean square of the lift coefficient (Crms
L )

and length of the recirculation zone (Lr) for different rotational amplitudes for forcing
frequency f = 2.5.

Re= 200 indicating that only for Ω = 3 and all f is the wake dynamics quasi-laminar
close to the cylinder wall and synchronized with the rotation of the cylinder further
downstream, see figure 19.

3.3. Forcing frequency f = 2.5
The increase of the rotational frequency to 2.5 leads to a significant reduction of the
mean drag coefficient as well as the root mean square value of the lift coefficient, see
table 4. The mean drag coefficient is reduced by almost 80 % for amplitude Ω = 2,
while for Ω = 1 and 3 these values are 55 % and 67 %, respectively. Tokumaru &
Dimotakis (1991), Shiels & Leonard (2001) and Du & Dalton (2013) reported a drop
in the drag coefficient for frequencies larger than the natural frequency. Du and Dalton
found the largest drop of 57 % for f = 2.5 and Ω = 2 for several tested frequencies.
Indeed, we observe a solid trend of further drag reduction when the Reynolds number
is increased.

Figure 13 shows the mean fields of the streamwise velocity and pressure for three
forcing amplitudes. As in the case for f = 1, the main separation bubble disappears
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FIGURE 14. (Colour online) Instantaneous fields of spanwise vorticity for three amplitudes
and f = 2.5.

for amplitudes Ω = 2 and 3 while a reduced bubble is still present for Ω = 1. The
mean velocity fields do not show much variation from the corresponding fields for f =
1, while the mean pressure shows remarkable differences. The main difference from
the previous case appears especially in the rear of the cylinder where the pressure
dramatically increases for all Ω . It is interesting to note that this pressure increase is
the highest for Ω = 2, while for Ω = 3 the low-pressure zones at the top and bottom
of the cylinder extend further towards the centreline.

The most striking difference in the wake organization, shown in figure 14, is a high
sensitivity of the wake structures to the imposed amplitudes compared to the previous
case when f = 1. While for f = 1 different Ω produce the same wake pattern, for the
increased frequency each amplitude produces a different wake structure. The lowest
amplitude, Ω = 1, results in a flow that is much more irregular and unstable compared
to the corresponding case with f = 1. The two competing frequencies, the natural
and the imposed rotational frequency, produce near-wall eddies at both halves of the
cylinder simultaneously which coalesce and evolve into a single large vortex. The
cylinder releases two vortices per cycle of approximately equal size, one vortex per
half-cycle. The multipole vortical structures interact in the wake once they detached
from the wall, leading to a good deal of cancellation of the opposite-sign vorticity. In
the process these vortices become less distinct and after a distance of 3D downstream
no coherent structures are visible. The wake organization resembles to some extend
the mode III defined by Tokumaru & Dimotakis (1991). By increasing the amplitude
to 2, the wake synchronizes again to the cylinder rotation and becomes more regular,
figure 14(b). The increased rotational amplitude is now strong enough to periodically
stabilize the boundary layer on one half of the cylinder. The cylinder again produces
one vortex per cycle. However, what makes this case interesting is the one-column
organization of the wake, making it significantly narrower compared to all previous
wake patterns. While the way the main vortices are generated in the shear layer is
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FIGURE 15. (Colour online) Instantaneous fields of spanwise vorticity and pressure for
Ω1− f 2.5.

not much different from f = 1 case, the higher frequency reduces the size of the
vortices ejected from the wall as they have less time to grow supported by rotation. A
further increase of the amplitude to Ω= 3, restores the two-column wake organization,
figure 14(c). The main vortex increases in size due to thickening of the boundary layer
out of which the main vortex is generated. The wake widens as the main vortices are
displaced laterally due to a strong stream of fluid generated by rotation but it is still
narrow compared to the corresponding case with f = 1.

Figure 15 shows the instantaneous vorticity fields in the near-wall region at the
end of the four phases. At the end of phase I, figure 15(a) reveals a large number
of small-scale structures contrary to the case Ω1− f 1 where the corresponding flow
field contains the main vortex and only a very few small eddies. The change of the
rotational direction at the beginning of phase I leads to the formation of a vortex at
the lower half of the cylinder (stable side) that grows as the rotation speed increases.
The upper half (unstable side) is populated by two counter-rotating vortices that are
attached to the wall. This is another profound difference compared with the lower-
frequency case where the unstable side was without visible vortical structures at the
end of phase I. During phase II the vortex in the lower half moderately grows and
stays close to the wall. At the same time the counter-rotating vortices on the other side
detached from the wall as new vortices appear in the wall region of the unstable side,
figure 15(b). The change of the rotational direction in phase III causes a coalescence
of small vortical structures in the upper half (now stable side) that results in the
formation of a new main vortex visible at the end of phase III, figure 15(c). In the
meantime, the large vortex in the lower half is detached from the wall and convected
downstream. The phase III ends with two dominant vortical structures at the bottom
and top of the cylinder, both detached from the wall, but there are also a large number
of small-scale vortices present in the flow. During phase IV, new wall-attached eddies
appear at both halves of the cylinder. It is interesting to notice that the main vortex is
frequently formed away from the wall as the separation bubble is detached from the
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FIGURE 16. (Colour online) Instantaneous fields of spanwise vorticity and pressure for
Ω2− f 2.5.

wall by the opposite-sign vorticity layer generated by the rotation. This can be seen in
the upper half during phases I and II (figure 15a,b), and in the lower half in phases III
and IV (figure 15c,d). There are a very few locations where the low-pressure zones
are attached to the wall as the vortices responsible for the low-pressure regions are
efficiently removed away from the wall. Additional reduction of the low-pressure zone
comes from the diminishing of the vortices size.

The increase of the forcing amplitude to Ω = 2 dramatically reduces the number of
small-scale structures and consequently makes the flow pattern more regular. The end
of phase I, shown in figure 16(a), is characterized by a large vortex that is attached
to the wall and located on the stable side (lower half) with no visible eddies on the
unstable side (upper half). The opposite-sign vorticity layer is present at the end of
phase I in the stable region between the main vortex and the wall. During phase II
this layer grows and efficiently removes the main vortex from the wall and drags it
downstream while on the unstable side a wall-attached narrow separation bubble is
formed, figure 16(b). The same scenario repeats during phase III but on the upper
side. The separation bubble evolves into an eddy during phase III and it is removed
quickly by the fast growing opposite-sign vorticity layer, figure 16(c). The phase IV
ends with an almost identical vorticity field as in phase II but with exchanged upper
and lower sides. The pressure field shows an increase of the pressure at the rear of
the cylinder while the vortex-generated low-pressure region reduces further in size.

As the amplitude further increases to Ω = 3, figure 17, the main vortex formed on
the stable side is already detached from the wall at the end of phase I as the new
vortex with opposite vorticity sign appears between the wall and the large vortical
structure. The wall-attached separation bubble considerably increases in size during
phase II compared to Ω = 2 and it evolves into the main vortex once the rotation
changes direction. At the end of phase II and IV large vortical structures that are
generated in the wall vicinity are efficiently removed away from the wall. This is
visible in the pressure field as well. The phase II ends up with a large low-pressure
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FIGURE 17. (Colour online) Instantaneous fields of spanwise vorticity and pressure for
Ω3− f 2.5.

zone located in the region occupied by the wall-attached separation bubble which
extends further down to the centreline. The low-pressure zone also exists on the
opposite side of the cylinder generated by a large rotational amplitude.

The evolution in time of CD and CL, figure 18, shows very different patterns
from those presented in figure 12 for f = 1. Contrary to the f = 1 case where the
amplitudes of the CD and CL oscillations increase with rotation, the higher frequency
( f = 2.5) results in a reduced amplitude of the CD and CL signals for all three
forcing amplitudes, especially for the case Ω2− f 2.5. As was the case with a forcing
frequency f = 1, the drag and lift coefficients show a more regular oscillating pattern
as the forcing amplitude increases. The CD and CL signals get nearly sinusoidal
already for a forcing amplitude 2, with a modulation in the Ω2− f 2.5 case. For the
higher amplitude Ω = 3, the CL spectrum corresponds to a quasi-laminar flow and
has a dominant peak at f = 2.5 as opposed to the lower amplitudes still having a
lower-frequency signal. Thus, we can point again to the lock-on for high-amplitude
modulations with Ω = 3 and f = 2.5.

3.4. Forcing frequencies f = 3, 4 and 5
The results for forcing frequencies, f = 3–5, are discussed together since they do
not differ much from the f = 2.5 case described above. Even a small increase of
the frequency, from f = 2.5 to 3, leads to a further reduction in the size of vortical
structures. The mechanism described earlier applies here as well. As the rotational
frequency is increased, the time needed for vortices in the shear layer to grow is
reduced, leading to the decrease of the main vortex size for all three tested amplitudes.
The wake organization for f = 3 stays very similar to the f = 2.5 case. A further
increase of the rotational frequency ( f = 4 and 5) does not bring significant change in
the overall flow dynamics. The reduction in the vortex size with increasing frequency
is visible for all amplitudes although it is less pronounced for Ω = 2. The impact of
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FIGURE 18. (Colour online) (a) Drag and (b) lift coefficient for frequency f = 2.5 as well
as their power spectra shown in (c), (d), respectively.

Case Ω CD Crms
L Lr

Non-rotating 0 1.27 0.45 0.67

f = 3
1 0.45 0.19 0.58
2 0.19 0.06 0
3 0.39 0.04 0

f = 4
1 0.38 0.16 0.69
2 0.16 0.04 0.05
3 0.34 0.07 0.13

f = 5
1 0.30 0.12 0.47
2 0.15 0.04 0
3 0.31 0.10 0

TABLE 5. Mean drag coefficient (CD) and length of the recirculation zone (Lr) for
different rotational amplitudes Ω and forcing frequencies f = 3, 4 and 5.

the high frequency on the drag coefficient is discussed in the next section. Table 5
summarizes the values of CD for the above discussed higher frequencies for all three
amplitudes.

3.5. Lock-on diagram
Figure 19 shows a lock-on map for the explored set of forcing frequencies and
amplitudes based on the power spectra of the lift and drag coefficients. The lock-on
regime is characterized by a single peak in the CD and CL power spectra while the
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f

FIGURE 19. (Colour online) The diagram in f −Ω space where filled circles correspond
to the lock-on regime while a hollow circle denotes the non-lock-on regime for the present
set of simulations. The blue solid and red dashed curves show the boundaries between
these two regimes for Re= 100 and 200 obtained by Cheng et al. (2001) and D’Adamo
et al. (2011).

non-lock-on regime is denoted when, apart from the dominant peak at the forced
frequency, there is an additional peak at another frequency or some broadband
dynamics due to small-scale vortices. Thus, the criterion for the lock-on is the
absence of low-frequency modulation due to the vortical dynamics downstream and
the laminarization of the boundary layer near the cylinder due to strong enough
rotation. A significant increase of Re number in the present study compared to the
previous work leads to the observation of the lock-on regime in the sense defined
above only for Ω = 3 (shown with filled circles in figure 19). The results of previous
research on laminar flows reported by D’Adamo et al. (2011) for Re = 100 and
Cheng et al. (2001) for Re = 200 are also presented in figure 19 showing a strong
dependence on the frequency of oscillations while for the present case the governing
parameter is the amplitude. However, our results are consistent with LES spectra
presented by Du & Dalton (2013) for Re= 1.5× 104 and Ω = 2.

4. Drag reduction mechanism due to rotary oscillations
We now discuss the drag reduction mechanism for the forcing frequency f = 2.5

and higher, as well as its absence for relatively low f . Figure 20 shows how the
drag coefficient varies with the rotational frequency f for three different amplitudes.
A significant reduction occurs for f > 1. With a further increase of frequency, CD
continues to decrease but at a slower pace. There is a notable difference in the drag
reduction for different rotational amplitudes. The highest decrease of CD occurs for
Ω = 2 and the lowest for Ω = 1, while for Ω = 3 it falls in between, but closer to
the CD values for Ω = 1.

As at high Reynolds number CD is governed mainly by the pressure force, the key
to understanding the drag reduction mechanism is to understand the way the low-
pressure zone is generated and distributed in the region near the cylinder wall. The
instantaneous vorticity fields shown in the previous sections reveal that the dynamics
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FIGURE 20. (Colour online) (a,b) Drag coefficient and root mean square of the lift
coefficient for different rotational frequencies and amplitudes obtained from simulations
at Re= 1.4× 105. White points show the simulated cases. (c,d) The same data compared
to data from the literature at lower Reynolds number for Ω = 2 (Tokumaru & Dimotakis
1991; Du & Dalton 2013).

of the near-wall vortices has a profound effect on the low-pressure region in the wake.
At low frequencies the flow features a set of main vortices which are amplified in
strength and size and formed in the shear layer. An inspection of the instantaneous
values and time variations of the drag coefficient and the corresponding vorticity fields
for the case Ω2− f 1 shown in figure 21(a) reveals that CD grows to its maximum at
the end of phases II and IV in which the main vortex, enhanced by rotation, grows
to its maximum size either in the cylinder wall vicinity or attached to the wall (see
also figure 10b,d). The value of CD begins to decrease when the main vortex starts
to move away from the wall during phases I and III. The drag coefficient reaches
its minimum when the main vortex is shed downstream, while the new main vortex
is still not formed, figure 21(b). Although the CD signal is very different from the
non-rotating case, the mean drag coefficient does not change much. The distribution
of the mean pressure coefficient Cp = 2(P − P∞)/ρU2

∞
around the cylinder wall is

shown in figure 22, where P∞ denotes the pressure far from the cylinder. For Ω =
1, the mean pressure over the circumferential segments from θ = 120◦ to 180◦ is
not changed much compared to the non-rotating case, where θ = 180◦ corresponds
to the rear point. As the rotational amplitude increases to Ω = 2 and Ω = 3 the
minimum pressure in the low-pressure region during phases II and IV becomes lower
due to rotational enhancement of the main vortex, see figures 10(b,d) and 11(b,d).
The low-pressure region for Ω = 2 and Ω = 3 is located around θ = 135◦ and 120◦,
respectively, reflecting the position of the main vortex at the end of phases II and IV.
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FIGURE 21. (Colour online) Instantaneous vorticity fields and short-time variation of the
drag coefficient for (a,b) Ω2− f 1 and (c,d) Ω2− f 2.5.
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FIGURE 22. (Colour online) Distribution of the mean pressure coefficient Cp around the
cylinder wall for f = 1, 2.5 and 4. Symbols show LES results for Ω2− f 2.5 and Ω2− f 4.

The higher rotational amplitude completely suppresses flow recirculation. As a result,
at the end of phases I and III the pressure is much higher at the rear part of the
cylinder wall, see figures 10(b,d) and 11(b,d), as also visible in figure 22. The absolute
values of both the minimum and maximum mean pressure increase but the resulting
drag coefficient does not differ much from the mean non-rotating value.

With the increase in f , a significant drag reduction occurs when the rotational
frequency f reaches 2.5. The main flow feature at this frequency is a smaller size of
the rotation-enhanced vortex on the unstable side due to a shorter time available for
the vortex to grow. As for f = 1, the main vortex is formed in the vicinity of the
wall at the end of phases II and IV but compared to the Ω1− f 1 case it is removed
faster from the wall and shed downstream, resulting in the absence of a wall-adjacent
large low-pressure zone behind the cylinder. Figure 15 shows the pressure fields that
have a few small low-pressure regions, mostly detached from the cylinder. This is a
very different picture from the pressure field observed in the Ω1− f 1 case (figure 9).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

63
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 T

U
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

, o
n 

16
 Ju

n 
20

20
 a

t 0
8:

06
:1

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.639
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Control of flow around a cylinder by rotary oscillations 259

The reduction of the low-pressure zone attached to the wall results in a significant
55 % drop in CD. Higher rotational amplitudes Ω = 2 and 3 make the flow more
regular with fewer or almost no small-scale structures. The increase of Ω generates a
sufficiently strong opposing layer of vorticity to suppress instabilities in the boundary
layer of the stable side (see the inset in figure 8b). Now, the main vortex is not
formed from an initial wall-attached eddy or by coalescence of small-scale structures
generated in the near-wall region, but out of a narrow wall-attached separation bubble.
While the main vortex is formed on one side of the cylinder, the opposite side is
void of vortices and the fluid smoothly passes over the cylinder. The efficient supply
of momentum to the rear region of the cylinder further increases the pressure in this
region. Figures 16 and 17 reveal that the low-pressure zone is mainly located at the
top and bottom of the cylinder, whereas behind the cylinder the pressure increases.
This produces a further reduction of CD which for the case Ω2 − f 2.5 reaches a
dramatic 78 %. Figure 21(c,d) confirms that the local maximum and minimum in the
drag coefficient signal are related to the position and size of the main vortex. The
maximum tested amplitude (Ω = 3) produces a larger wall-attached separation bubble
which evolves into the main vortex. Consequently, the low-pressure zone at the top
and bottom of the cylinder expands towards the centreline region at the back of the
cylinder as shown in figure 17. This produces lower drag reduction (67 %) compared
to the case with Ω = 2.

Figure 22(b) shows the distribution of the mean pressure coefficient along the wall
for f = 2.5. The main difference for two rotational frequencies occurs in the rear
region from 140◦ to 180◦. The higher frequency produces significantly higher pressure
at the rear of the cylinder for all rotational amplitudes. As the time for growth of the
tangential velocity in the boundary layer is reduced for higher frequency, the boundary
layer in the rear is much thinner. In addition, the higher frequency leads to a reduction
of the main vortex and its fast removal away from the wall. These effects of higher
frequency result in a higher value of pressure in the rear part. The dip in the pressure
that occurs around 120◦ in the Ω3− f 2 case reflects the wall-attached local separation
bubble responsible for the increase of CD compared to the maximum drag reduction
observed for Ω = 2. We can conclude that the reduction of the wall-attached low-
pressure zone, resulting from the smaller size of the main vortex and its efficient
removal from the wall in combination with lower values of the wall-tangential velocity
in the boundary layer for f = 2.5, lead to a significant drag reduction that occurs for
Ω = 2.

As noted above, figure 20, CD continues to decrease with a further increase of
the rotational frequency beyond f = 2.5 but at a slower rate. The reduction of the
main vortex size with the increase of f is visible in the instantaneous vorticity fields
at different amplitudes and frequencies. Figure 23 clearly demonstrates that the drag
reduction is related to the weakening of the main vortex generated in the initial shear
layer and its efficient removal from the cylinder wall. The same figure shows why the
rotational amplitude Ω = 2 is optimal for the drag reduction: the amplitude Ω = 1 is
too weak to stabilize the flow at the stable side and to diminish the main separation
bubble in the wake, but Ω = 3 produces a thick separation layer attached to the
cylinder wall in the rear region that leads to the formation of the main vortex which
exceeds in size the main vortex in the cases with Ω = 2.

To close this section we discuss the effect of Re on drag reduction. A compilation
of the present results for Ω = 2 and f = 5, the data from Shiels & Leonard (2001) for
Ω = 2 and fe = 1 ( f ≈ 5) and non-rotating experiments by Roshko (1954) is shown
in figure 24. Indeed, as the Reynolds number increases, the forcing becomes more
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FIGURE 23. (Colour online) Instantaneous spanwise vorticity and streamlines for all cases
considered.

efficient. At fixed amplitude and high forcing frequency we can approximate CD(Re)
using the following function:

CD(Re)= 3.047− 0.836 log Re+ 0.053 log2 Re. (4.1)
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FIGURE 24. (Colour online) The drag coefficient as a function of Re. Black line
corresponds to the experimental data obtained by Roshko (1954) for the non-rotating case.
Red squares denote the results by Shiels & Leonard (2001) for Ω = 2 and fe = 1 ( f ≈ 5)
while green diamond shows the present result for Ω = 2 and f = 5. Blue dashed line
serves as a fitting curve expressed by (4.1). Vertical red dashed line shows the critical
value Re∗ ≈ 6760 when the control method becomes efficient based on the calculations
described in the next section.

One interesting observation is that, according to this expression, CD approaches zero
at Re≈ 5.2× 105. At the end of the next section we use CD(Re) to estimate Re when
the method becomes energetically efficient.

5. Efficiency and practical implication of rotary oscillations
Although the rotary oscillations lead to significant drag reduction, the question that

arises is if the method has a practical relevance and if it is economically feasible. In
other words, can the power saved by the drag reduction exceed the power needed to
rotate the cylinder in some realistic scenario. Shiels & Leonard (2001) defined a power
saving ratio (PSR) as a ratio of the power saved over the power expended to rotate
the cylinder against the skin friction, i.e.

PSR=
Psaved

Pexp
. (5.1)

However, they did not account for the power needed to rotate a cylinder with a non-
zero mass. Depending on the material, this contribution can dominate. Here we expand
the analysis to account also for the cylinder mass.

The power saved due to drag reduction and power needed to rotate the (massless)
cylinder against skin friction are defined as

1Pd =
1
2ρU3

∞
D1CD, Pτ = 1

2ρU3
∞

DΩCM sin ϕ. (5.2a,b)

The non-dimensional moment coefficient has the following form:

CM(t)=
1

Re

([∫ 2π

0
ωwall

z dθ
]
− 8πΩ sin ϕ

)
, (5.3)
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FIGURE 25. Schematic picture of flow around a rotating hollow cylinder.

where the phase of rotation is ϕ = 2πfet as introduced above. It can be shown that
the power needed to rotate a cylinder with a certain mass is

Pm =
1
4ρcU3

∞
DπfeΩ

2, (5.4)

where ρc is the density of the cylinder material. Thus, it is obvious that this
contribution will dominate over the friction forces, reducing the overall efficiency
of the method. One way to overcome this difficulty is to use a hollow cylinder, as
shown in figure 25. In that case the rotational power obtains the form

Pm =
1
4ρcU3

∞
DπfeΩ

2(1− r)2(1+ r2), (5.5)

where r is the ratio of the inner and outer diameter, i.e. Di/D. Further we consider a
realistic wall thickness of r= 0.9 made of aluminium to optimize the power spent on
the cylinder rotation. Table 6 shows the main characteristics concerning drag reduction
for water flow over a hollow cylinder made of aluminium. Apart from CD and 1CD

compared to the non-rotating case, we analyse PSRτ following Shiels & Leonard
(2001) who used Pexp = Pτ meaning that only the friction force is accounted for in
the expended power. More relevant is to compute PSRtot where Pexp= Pτ + Pm which
is also shown in the table. Note that, due to high Re, the friction force is low, thus,
Pτ � Pm. From a practical point of view PSRτ appears to be irrelevant. Note that Pm

varies linearly with f and quadratically with Ω . This implies that the drag reduction
with high frequency is more efficient than the drag reduction with high amplitude.
Table 6 confirms this, showing that the highest PSRtot (= 11.1–16) is obtained for
Ω = 1 and various, especially high, frequencies (see the figure accompanying table 6).
Admittedly, Ω2− f 2.5 and Ω2− f 3 also show good results with PSRtot= 5.7 and 5.2,
respectively. This clearly demonstrates the practical potential of the drag reduction
mechanism by rotary oscillation of the cylinder.

Another issue is the threshold value of Re∗ at which the method becomes
energetically efficient. We can use the fitting curve for CD(Re) defined by (4.1)
and data from the literature, figure 24, to estimate this value in terms of 1CD(Re).
The efficiency criterion follows from the 1Pd = Pm condition. Thus, for the Ω2− f 5
case and data from Shiels & Leonard (2001) the oscillating aluminium hollow
cylinder with r = 0.9 becomes efficient at Re∗ ≈ 6760. However, we can speculate
that attractive energy benefits come at Re > 104 and lower frequencies of rotation
( f ≈ 2.5).
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TABLE 6. Drag reduction for the water flow over a aluminium hollow cylinder with r=0.9.
The plot on the right summarizes the results for PSRtot in a f −Ω diagram. White points
show the simulated cases.

6. Conclusion

We performed three-dimensional unsteady simulations of flow over a rotary-
oscillating infinite cylinder for a set of non-dimensional frequencies f = 0.5, 1,
1.5, 2, 2.5, 3, 4, 5 and amplitudes Ω = 1, 2, 3 at a high subcritical Reynolds
number, Re= 1.4× 105, and analysed the effects of cylinder oscillations on the flow
modification and drag reduction. The study confirms the significant drag reduction
for the frequencies larger than 1, which for f = 2.5, Ω = 2 reached 78 % and even
88 % for f = 5, Ω = 2. These finding are qualitatively in accord with those of Du
& Dalton (2013) and Tokumaru & Dimotakis (1991) who also reported a significant
drag reduction with a maximum effect of 55 %, but for an order of magnitude lower
Re number, Re = 1.5 × 104. The analysis confirms the expectation that the rotary
oscillation control reduces the drag with an increasing efficiency with an increase of
the Re number. The main findings are summarized as follows:

(i) For f 6 1, there is no positive effect in the drag coefficient decrease for almost
all tested amplitudes. The amplitude in CD oscillation increases as the size and
strength of the main vortex grows due to the imposed rotation. The increase of
the mean pressure at the rear part of the cylinder is compensated by a decrease
of the mean pressure at the location of the main vortex which results in a mean
drag coefficient that is not much different from the non-rotating case.
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(ii) The increase of the rotational frequency to 2.5 leads to a significant reduction
in the drag coefficient for all tested amplitudes. The highest drag reduction of
78 % occurs for Ω = 2. An additional increase of f results in a further decrease
in the drag coefficient, though at a slower pace, with the highest drop of 88 %
obtained for the same amplitude Ω = 2, but for a double high frequency, f = 5.

(iii) The drag reduction is attributed to the redistribution of the pressure field behind
the cylinder, which is caused by dramatic changes in the vortex dynamics
associated with the rotation-induced formation of an oscillating boundary layer
around the rear cylinder surface.

(iv) The rotary-oscillating cylinder with f larger than 1 produces smaller-scale
vortices in the boundary layer that are efficiently removed away from the wall.
This leads to shrinking of the low-pressure region in the rear of the cylinder
which results in reduction of the drag coefficient.

(v) The detachment of the main vortex from the cylinder wall is controlled by
the rotational frequency since the vortex is detached from the cylinder by
a rotation-generated buffer layer with an opposite-sign vorticity layer placed
between the wall and the main vortex. The rotational amplitude determines the
strength and thickness of the vorticity layer that grows around the cylinder wall
with an increase in the speed of the rotary oscillations. This layer is responsible
for stabilization of the stable side but at the same time it also dictates the size
of the main vortex that is generated out of the wall-attached separation bubble
that grows as a result of cylinder rotation.

(vi) Analysis of a realistic scenario that accounts for the power needed to rotate a
cylinder with non-zero mass proves that rotary oscillations of the cylinder is a
feasible way to reduce drag. The power saving ratio (PSR) is 5.7 for Ω = 2,
f = 2.5 resulting from a decrease of the drag coefficient by 78 % and it goes as
high as 16 for Ω = 1, f = 2.5 with a drag reduction of 56 %. The drag reduction
wat high frequency is more efficient with high amplitude as the rotational power
varies linearly with f and quadratically with Ω .

(vii) Using the present results for Ω2 − f 5 and data from Shiels & Leonard (2001)
we derived an expression for CD(Re), which fits the data in a wide subcritical
range of Reynolds numbers. As an example, for a realistic case of a hollow
aluminium cylinder with r = 0.9, the drag reduction 1CD(Re) evaluated from
data of Roshko (1954) gives a threshold value of Re∗ ≈ 6760 when the method
becomes energetically efficient. We argue that for lower frequencies of rotation
( f ≈ 2.5) a solid energy benefit comes at Re> 104.
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