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A parallel and scalable stochastic Direct Simulation Monte Carlo (DSMC) method applied 
to large-scale dense bubbly flows is reported in this paper. The DSMC method is applied 
to speed up the bubble-bubble collision handling relative to the Discrete Bubble Model 
proposed by Darmana et al. (2006) [1]. The DSMC algorithm has been modified and 
extended to account for bubble-bubble interactions arising due to uncorrelated and 
correlated bubble velocities. The algorithm is fully coupled with an in-house CFD code 
and parallelized using the MPI framework. The model is verified and validated on multiple 
cores with different test cases, ranging from impinging particle streams to laboratory-scale 
bubble columns. The parallel performance is shown using two different large scale systems: 
with an uniform and a non-uniform distribution of bubbles. The hydrodynamics of a pilot-
scale bubble column is analyzed and the effect of the column scale is reported via the 
comparison of bubble columns at three different scales.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Bubbly flows are one of the more complex multi-scale multiphase flow problems which are encountered across many 
fields of physics and engineering. Small scale physical changes in the properties of the different phases can have a huge 
impact on the large scale physics of systems. Such flows are studied at the DNS (Direct Numerical Simulations) level for 
representative systems to derive closures for interactions forces used in simulations executed at larger length and time 
scales. Methods such as the Discrete Bubble Model (DBM) and also the stochastic Euler-Lagrange (E-L) models (among 
which DSMC methods) are examples of classes of methods where these closures are applied. These models (DBM/DSMC) 
have been extensively used across many length and time scales for the simulation of multi-phase flows and have proven 
to provide good results on relatively coarse grids compared to fully resolved DNS, while remaining more accurate than the 
further coarse grained Euler-Euler (E-E) models.

However, due to the large amount of individually tracked objects in large-scale systems, the application of Lagrangian 
Discrete Methods (LDM) in multi-phase flows is complicated due to the high computational effort and memory require-
ments. The limitations can be overcome with effective parallelization of the numerical code, which can be realized using 
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Table 1
List of recent publications on parallel implementations of Lagrangian methods.

Name Type CFD grid size #Lagr. elements Parallelization technique #Cores Efficiency

Ouro et al. [2] CFD+IBM 52.59 · 106 3.57 · 105 MPI+OpenMP 314 ideal
Rakotonirinaa et al. [3] CFD+DEM - 2.304 · 108 MPI 768 90%
Pozzetti et al. [4] CFD+DEM 106 107 MPI 280 70%
Tian et al. [5] DEM - 1.28 · 108 GPU/MPI 256/128 62.59%/20%
Spandan et al. [6] CFD+IBM 2 · 109 2.5 · 104 MPI 1000 78%
Wang et al. [7] CFD+DEM 3 · 105 2 · 105 MPI 64 57.5%
Geneva et al. [8] CFD+IBM 1.6 · 107 7% vol. frac. MPI 580 ideal
Loisy et al. [9] CFD+DEM 1.68 · 107 8 MPI 512 90%
Liu et al. [10] CFD+DEM 1.25 · 105 104 MPI 1000 50%
Yue et al. [11] DEM 2 · 104 8 GPU 2880 x20 speedup
Mountrakis et al. [12] LBM+IBM 1.342 · 108 6.624 · 105 MPI 8192 79%
Ma et al. [13] DBM 6.5 · 104 1.7 · 105 OpenMP 12 99%
Goniva et al. [14] CFD+DEM 2.05 · 105 2.05 · 107 MPI 512 >100%
Berger et al. [15] DEM - 5 · 104 MPI+OpenMP 128 50%
Wu et al. [16] CFD+DEM 1.28 · 105 2 · 106 MPI+OpenMP 128 60%/20%
Niethammer et al. [17] MD - 1012 MPI+OpenMP 65536 82.5%
Liu et al. [18] CFD+DEM 1.6 · 106 5.12 · 106 MPI+OpenMP 256/128 37.5%
Amritkar et al. [19] CFD+DEM - 1.05 · 106 MPI+OpenMP 64 -
Kuan et al. [20] CFD+FT 6.4 · 104 - MPI 128 20%
Kafui et al. [21] CFD+DEM - 5 · 104 MPI 64 58%
Darmana et al. [1] CFD+DBM 6.5 · 106 105 MPI 32 50%
Maknickas et al. [22] DEM - 105 MPI 16 70%
Pohl et al. [23] LBM 1.078 · 109 - MPI 512 75%

stand alone and combined models for distributed and shared memory platforms, such as: Message Passing Interface (MPI), 
OpenMP and programming on Graphics Processing Units (GPU). For an overview of the recent parallelization strategies 
applied to LDM methods see Table 1.

The main drawback of MPI-based codes is in the necessity of keeping an optimal load balance between distributed pro-
cesses, which is often hard or even impossible to reach in a real case scenario. For instance, in the Euler-Lagrange (E-L) 
framework, a non-even distribution of the dispersed phase may lead to reduction of the parallel performance or even idling 
of some processes during execution of the Lagrangian part. This problem is mainly caused by the static domain decomposi-
tion based on the Eulerian grid. The obvious solution is to use a separate dynamic decomposition for the Lagrangian part. 
The coupling between two numerical domains can be achieved by means of a map, that should be reconstructed during 
the update of the Lagrangian domain decomposition. This approach was successfully applied by Pozzetti et al. [24], who 
reported an excellent parallel efficiency of the E-L framework up to 1400 cores. However, in a uniformly distributed system, 
this approach may also lead to extra communications and, therefore, to a decrease in parallel efficiency.

The computational and parallel efficiency of LDMs highly depends on the type of collision detection method employed in 
the algorithm. Particle based simulations, which often utilize a soft-sphere or a force based collision model, employ a single 
loop-based algorithm, thus leading to optimal parallel performance on any platform, as shown by Niethammer et al. [17], 
Pohl et al. [23] and Tian et al. [5], who performed simulation of systems containing 1012, 109 and 108 particles, respectively. 
Most of these works are based on the decomposition of only Lagrangian entities in the domain, which can easily incorporate 
load-balancing with the latest state of the art algorithms.

Historically, bubble-based simulations have often employed a hard-sphere model, which is an event-driven algorithm 
that requires calculation of the shortest collision time between all possible pairs of bubbles. The efficient parallelization of 
the DBM model on distributed memory platforms is impossible due to the necessity of continuous synchronization between 
all processes, while shared memory platforms limit the amount of bubbles that can be simulated. Several recent works also 
reported the use of soft sphere models for bubbly flow simulations. However, these soft sphere models generally require 
determination of a spring constant which defines the amount of overlap that is allowed. This is challenging since a high 
spring constant leads to very small time steps, while a too low spring constant leads to significant over-packing. To avoid 
spurious velocities in dense systems modelled with a soft-sphere model, very high spring constants and, therefore, extremely 
low time-steps are required to resolve the collisions sufficiently accurate. Therefore, the number of works conducted on 
parallelization of bubbly flows at this scale is very limited.

Darmana et al. [25] simulated O(105) bubbles using a mirror domain technique for the Discrete Bubble Model (DBM) 
combined with an MPI-based CFD code. These authors reported only 50% of parallel efficiency on 32 cores. Ma et al. [13]
simulated a bubble column with 6.5 · 104 bubbles using a DBM code parallelized with OpenMP and reported 99% parallel 
efficiency on 12 threads. Sungkorn et al. [26] have reported a 40 m3 stirred bio-reactor with about 15.6 million bubbles 
using a LBM based flow-solver and the bubble phase being solved on GPUs. This approach used a ghost-particle technique 
developed by Sommerfeld et al. [27]. However, the volume displacement of the bubbles is not accounted for in the flow 
solver via the volume fraction term and is only coupled through the volumetric source term in the momentum equations. 
Recently, Kamath et al. [28] have reported a DSMC based stochastic Euler-Lagrange method which accounts for the volume 
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Table 2
Closures for the different types of forces acting on bubbles.

Force Closure Reference

FG = ρb Vbg − −
Fp = −Vb∇ P − −
FD = − 1

2
C Dρlπ R2

b |v − u|(v − u) C D,∞ = max

[
min

{
16

Re
(1 + 0.15Re0.687),

48

Re

}
,

8

3

Eö

Eö + 4

]
C D

C D,∞(1 − εb)
= 1 + 18

Eö
εb [29–31]

FL = −CLρl Vb(v − u) × (∇ × u) CL =

⎧⎪⎨
⎪⎩

min[0.288 tanh(0.121Re), f (Eöd)], Eöd < 4

f (Eöd), 4 ≤ Eöd ≤ 10

−0.29, Eöd > 10

f (Eöd) = 0 : 00105Eö3
d − 0.0159Eö2

d − 0.0204Eöd + 0.474

Eöd = Eö

E
; E = 1

1 + 0.136Eö0.757
[29,30]

FV M = −C V Mρl Vb

(
Dbv

Dbt
− Dbu

Dbt

)
C V M = 0.5 [25]

FW = CW Rbρl Vb
1

D2
bw

|u − v|2nW CW =

⎧⎪⎨
⎪⎩

exp(−0.933Eö + 0.179), 1 ≤ Eöd < 5

0.0007Eö + 0.04, 5 < Eöd ≥ 33

0.179, Eöd > 33

[29,30]

displacement of the bubbles in the Eulerian phase and also has the potential to be parallellized for large scale bubbly flow 
simulations.

This paper presents an efficient highly scalable parallel approach that allows one to simulate dense bubbly flows in a 
Lagrangian formulation using the MPI framework. The bubble collisions are resolved by means of Direct Simulation Monte 
Carlo (DSMC), proposed earlier by Kamath et al. [28]. To the authors’ knowledge, this is the first time a DSMC based method 
is used to simulate dense bubbly flows at this scale. The DSMC operates with a collision probability that can be calculated 
locally and thus the method does not require global synchronizations and demonstrates high parallel efficiency. As a result, 
the fully coupled CFD and DSMC code can be applied to simulations of large scale bubble columns with more than 106

bubbles.
The paper is structured as follows. Section 2 describes the DSMC method applied to bubbles and the governing equations 

for the liquid phase. In section 3, the numerical approach for both phases and their coupling is discussed. The parallelization 
strategy for the gas and liquid phases is described in section 4. In section 5, the verification and validation of the parallel 
code is reported. Section 6 is dedicated to the investigation of the parallel performance. In section 7.1 an example of a 
simulation of a large scale bubble column is shown. Finally, the conclusions are presented in section 8.

2. Methodology

2.1. Discrete phase

The discrete phase or bubble phase is solved in a Lagrangian framework where the bubble motion is governed by 
Newton’s equation of motion (equation (1)). The interaction forces included in this model are the gravitational (FG ), pressure 
(FP ), drag (FD), lift (FL), virtual mass (FV M) and wall lubrication (FW ) force (equation (2)). The relevant closures used for 
these forces can be found in Table 2.

ρb Vb
dv

dt
= �F − (ρb

d(Vb)

dt
)v (1)

�F = FG + FP + FD + FL + FV M + FW (2)

The DSMC methods generally employ a parcel approach where a group of discrete particles of the same size and ve-
locity is represented by one simulated particle. The resolution of the DSMC method is also governed by the number of 
discrete phase entities per parcel. In the current work, the parcel size for all simulations is taken as 1, to obtain an accurate 
representation of the Lagrangian phase. Moreover, the extension to larger parcel sizes requires closures determined with 
careful consideration of the different forces acting on the bubbles as a swarm and mapping functions for the calculation of 
the porosity. This is caused by the non-linear trajectory of the bubbles due to coupling with the liquid. The parcel growth 
cannot be assumed to be isotropic. Moreover, parcels of similar size should be able to break-up and coalesce based on the 
fluid-parcel interactions and the induced turbulence in the liquid. This behaviour is complex due to the four way coupling 
and this aspect will be considered in our future work.

The main goal of the DSMC method is to predict the frequency and probability of collisions of particles. This stochastic 
approach is much more efficient than deterministic collision models. The method was initially developed and applied to 
molecular systems that have finite/large Knudsen number with no external force fields affecting the position and velocity 
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of the parcels [32]. The modified Nanbu method is a DSMC type method used by Pawar et al. [33] to simulate small 
droplets in spray modelling with a few alterations. Two modifications are made to the algorithm reported by Pawar et al. 
[33] by Kamath et al. [28]. First of all, the radial distribution function at contact is added to account for the increase in the 
collision frequency and the probability of collisions for dense clusters. Secondly, a nearest neighbour collision check is added 
accounting for discrete phase entities with correlated velocities which are not accounted for by the previously mentioned 
algorithms.

2.2. Liquid phase hydrodynamics

The liquid dynamics are resolved by means of the volume-averaged Navier-Stokes equations:

∂εl

∂t
� +

∫
σ

εlu · dA = 0 (3)

ρl
∂εlu

∂t
� + ρl

∫
σ

εluu · dA = −εl∇p� −
∫
σ

εlτ l · dA + εlρlg� + 	� (4)

where � is the volume of the grid cell, A is the face area of the grid cell, εl is the local liquid volume fraction, 	 represents 
an external source term due to the presence of the gas phase and τ l is the viscous stress tensor given by:

τ l = −μef f ,l

[
(∇u) + (∇u)T − 2

3
I(∇ · u)

]
(5)

where

μef f ,l = μL,l + μT ,l (6)

The μL,l and μT ,l are the dynamic molecular and eddy viscosity, respectively. To close the system we use the subgrid 
scale model proposed by Vreman et al. [34]:

μT ,l = ρl2.5C2
s

√
βb

αi jαi j
, αi j = ∂u j

∂xi

βb = β11β22 − β2
12 + β11β33 − β2

13 + β22β33 − β2
23, βi j = �2/3αmiαmj

(7)

where Cs is the Smagorinsky constant equal to 0.1.

3. Numerical solution method

3.1. Time marching

The numerical solution of the governing equations for our Euler-Lagrange model is obtained using a time-marching 
technique similar to the one reported in Darmana et al. [25] where the equations for the discrete and continuous phase are 
solved sequentially, while accounting for the coupling via the momentum source terms. Three time steps are defined in this 
model: the flow time-step (δt f low ), the Lagrangian phase time step (δtbub) and the collision time-step (δtcoll) such that:

δt f low = Niδtbub, δtbub =
∑

δtcoll (8)

where Ni is fixed for a given simulation such that the time integration of all interaction forces acting on a given bubble is 
carried out in an accurate manner. In this work Ni = 20 to maintain sufficient accuracy for both the force integration and 
also the DSMC collisions. δtcoll is calculated on the fly by the DSMC algorithm from the estimated collision frequency for 
each discrete phase entity, as reported by Kamath et al. [28]. This is explained in more detail in the coming sections. In 
DBM, δtcoll is calculated as the time-step to reach the next physical collision, with which the whole system is updated.

3.2. Coupling

DSMC algorithms have come far in terms of describing the hydrodynamics and heat transfer, when implemented at the 
molecular level or in applications where particle-particle or droplet-droplet collisions are the main physical phenomena 
occurring in the system of interest [32,35,36]. The continuous phase is either absent, weakly coupled or coupled only using 
momentum based source terms, which results in a completely collision driven system. This is not what we encounter in the 
current system of bubbly flows. Apart from the right collision frequency, the phase fraction needs to be evaluated for the 
discretized volume-averaged Navier-Stokes equations (see equation (3) and (4)).
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To account for the inter-phase coupling, the gas-fraction is mapped as well as the computation of the volumetric mo-
mentum exchange rates between the Eulerian and Lagrangian phases. This is implemented along the lines of Darmana et al.
[37] using a polynomial filter function proposed by Deen et al. [38].

Naturally, one would expect an effect of changing the filter width on the predicted time-averaged axial velocity profiles. 
Fortunately, this was found to be negligible by Lau et al. [39] when a correction to the drag force based on the local void 
fraction is employed. The filter width is responsible for maintaining εl and 	 when a bubble crosses different node points 
in the Eulerian grid.

Two things have to be monitored and applied with caution in the coupling of the DSMC and the CFD: a) The first is the 
correction factor of the drag force due to swarm effects as these are defined well for low and intermediate void fractions 
but not for the dense limit. b) The second is the phase fraction, particularly in the dense regions of the flow, since large 
overlaps will lead to a singularity in the volume averaged Navier-Stokes equations. To counter the over-packing, additional 
measures have been taken in the collision algorithm.

3.3. Discrete phase dynamics and collision algorithm

The bubble phase equation of motion is solved using explicit schemes for equation (1):

vn+1∫
vn

dv =
tn+δtbub∫

tn

∑
Fn

mb
dt (9)

The force integration has been tested with a fourth order explicit Runge-Kutta scheme and a first order explicit Euler 
scheme. The first order scheme is more computationally efficient, when the time-step constraint is due to the collisions. 
Both schemes were checked on a single bubble rise problem (see section 5.2) for many time-steps until the terminal rise 
velocity is established.

The bubbles are moved in time using the time-marching technique described in section 3.1. During each bubble time 
step, the forces (using equation (9)) are calculated at the discrete bubble locations using the quantities mapped from the 
Eulerian grid cells using the polynomial filter described in section 3.2. Due to Newton’s third law of motion, a reaction force 
is collected to be mapped on to the momentum nodes in the Eulerian framework, to be applied at the end of the bubble 
time-step. The collision sequence is then initiated according to the Algorithm 3.1. This is repeated until the discrete phase 
has moved for a full δt f low . The forces collected in the volumetric source term are time-averaged over the flow time-step 
δt f low , since they are calculated multiple times in one flow time-step. The weights for the averaging are calculated based 
on the ratio δtbub/δt f low to achieve the correct momentum balance. With the new bubble positions, the volume fraction in 
each Eulerian cell is calculated using the same polynomial mapping function.

In any particle based technique, the two major steps are the force calculation step and the collision detection step. In a 
hard-sphere collision model, among which the DSMC, the force calculation and the collision detection loops are separated. 
Typically the most expensive step is the collision detection step, especially when done trivially leading to a time scaling of 
the order of O(N2) where N is the total number of discrete phase entities in the system. The application of cell lists and 
neighbour lists reduce the number of comparisons considerably and reduce the time scaling to O(pN) where the factor p
depends on the size of the searching scope or the cut-off distance (rcut ). Even then, populating these data structures takes 
considerable execution time compared to the remaining part of the algorithm. A Verlet list further reduces the number of 
times the above mentioned data structures need to be populated or refreshed depending on the shell distance Rshell . This 
has been implemented and is being utilized in this work for evaluating the neighbours in the searching scopes of different 
bubbles.

The modified DSMC collision detection step is detailed in algorithm 3.1. The main additions relative to the already 
existing algorithm proposed by Pawar et al. [33] are: a) an explicit treatment of nearest neighbour collisions to account for 
correlated and uncorrelated discrete phase velocities, and b) incorporation of the radial distribution function gij to account 
for the increase in collision frequency in dense or clustered arrangements of particles in 3D space [40]. A more detailed 
explanation can be found in the work of Kamath et al. [28]. A speed up in the DSMC algorithm over the deterministic 
DBM from Darmana et al. [25] has been reported by Kamath et al. [28] with minimal loss of accuracy for different collision 
regimes. Moreover, the reason for the speed-up is stated clearly and the serial computational times for a DEM time-step for 
varied number of bubbles and void fractions have also been reported. In this work, an MPI parallelized version of the same 
algorithm is presented.

The term gij is given by Ma and Ahmadi [41] for a mono-disperse system (see equation (10)). This is extended to 
poly-disperse systems by Santos et al. [42] (see equation (11)).

gii = (1 + 2.5εp + 4.5904ε2
p + 4.515439ε3

p)(
1 −

(
εp

εmax

)3)0.67802
(10)

gij = 1

1 − ε
+

[
g(r)contact,ii + 1

1 − ε

]
did j

d̄d
(11)
p p i j
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Algorithm 3.1 DSMC algorithm.
1: for each particle id i do
2: Choose a bubble/particle id i ∈ X such that X = {n : n is a positive integer and n ∈ Ntot } where Ntot represents total number of particles in the 

domain/sub-domain.
3: while t < δtbub do
4: Calculate the collision frequency f i for i based on equation

f i =
∑
j ∈ Rs,i

|vi j |π4 (d2
i + d2

j )
n j

4
3 π R3

s,i

gi j

where vi j is the relative velocity between particles/bubbles i and j, d is the diameter, n j is the parcel size, Rs,i is the searching scope size for 
particle/bubble i and gij is the radial distribution function at contact for discrete entity i with particle type j.

5: λi = |vi |
f i

6: �tp,i = min

[
λi

3|vi | , δtbub − �tcompl

]
where �tp,i → discrete phase time step, λi → mean free path, �tcompl → completed time within the time frame of δtbub

7: Rnew
s,i = max(|vi |�tp,i , |vi j |max�tp,i)

8: Choose a random χ = {x ∈R | 0 ≤ x ≤ 1}
9: j = int[χ Ni ] + 1 where Ni → number of neighbours in Rs,i

10: Pij = |vi − v j | π
4 (d2

i + d2
j )

n j�tp,i
4
3 π R3

s,i
gi j

11: if χ >
j

Ni
− Pij & (vi − v j) · (ri − r j) < 0 then

12: Collide discrete phase entities i and j

13: else if Stkbub = τbub

τl
< 1 then

14: Check for nearest neighbour collision
15: else
16: no collisions
17: end if
18: Update ri and dri

19: if |dri | > Rshell then
20: neighbour list rebuild = true
21: else
22: neighbour list rebuild = false
23: end if
24: t = t + �tp,i

25: end while
26: end for

where d̄ represents the Sauter mean diameter of the particles within the searching scope, and εp is the average solids/bubble 
volume fraction in the neighbourhood of particle i.

3.3.1. Fluid phase numerical scheme
All numerical simulations from the present work are performed using FoxBerry - an in-house developed framework for 

solving unified transport equations. The discretization of the governing equations (3) and (4) is done on a structured grid 
with staggered arrangement of variables2 using the Finite Volume method. The SIMPLE algorithm is used for the pressure-
velocity coupling, as described by Patankar [43]. All convective fluxes are discretized with the second order Barton scheme 
[44] and all diffusive fluxes are discretized with the second order central difference scheme. To keep the numerical stencil 
compact, a deferred correction method is applied to convective fluxes, resulting in a 7-diagonal matrix in a 3D case. The 
time integration is carried out using the first order backward Euler method. All discretized terms are treated implicitly, 
except source terms originating from the discrete phase, which are considered explicitly.

All linear systems are solved by means of an in-house BiCGStab(2) method [45] and the solution of the Pressure Poisson 
Equation (PPE) is additionally accelerated with the multilevel ML solver [46] from the Trilinos library [47].

4. Parallelization strategy

4.1. Domain decomposition

To obtain the optimal parallel performance, the developed code utilizes a full 3D decomposition instead of the often 
used pencil or stripe decompositions. This allows for reduction of the sub-domain interface A3 proportionally to its volume 
V , which helps to decrease the communication message size between sub-domains and, thus, the communication time. 

2 Discretized scalar fields are stored at the center of a control volume, while components of vector fields are stored at face centers.
3 To simplify further explanation and discussion, the internal sub-domain cells are referred to as the computational volume V , whereas the cells adjacent 

to the neighbour sub-domain are called the communication surface area A.
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Fig. 1. An example of a full 3D decomposition for various number of processes (p). Sub-domains are coloured randomly for better visualization.

Fig. 2. Distribution of on-edge momentum cells between adjacent processes �1 and �2. Red points represent a copy of blue points which belong to the 
�2 process.

An example of the cubic domain decomposed with different number of processes is shown in Fig. 1. The decomposition 
algorithm (Algorithm A.1) is shown in Appendix A.

4.2. Parallelization strategy fluid solver

Due to the staggered arrangement of variables, two adjacent sub-domains �1 and �2 share one layer of momentum 
cells (see Fig. 2), which results in the duplication of the matrix rows during the assembly step of the momentum matrix. To 
preserve the initial size of the distributed matrix and to reduce the potential increase of the solution time and the number 
of iterations of linear solvers, the rule of the “positive owner” is applied. Thus, all shared momentum points on the positive 
(right) side of the �1 sub-domain are considered as an extra layer of halo cells, while their physical representation belongs 
to the �2 sub-domain.

The application of the “positive owner” rule results in an extra communication step during the assembly of the Pressure 
Poisson Equation (PPE), caused by the direct dependence of coefficients in the PPE matrix on the central coefficients of the 
momentum matrices [43].

To simplify the access to this data, every sub-domain performs a search in its neighbouring sub-domains to determine 
the ownership of the required elements. This operation is performed once and its result is stored in the form of a hash table, 
which maps the locally missing and remotely detected elements with the information on corresponding remote process ID. 
The constructed hash table is used at every iteration of the SIMPLE algorithm to obtain the off-process data and to populate 
the local vectors of the diagonal elements from the momentum matrices.

4.3. Parallelization strategy DSMC

Parallelization strategy for the DSMC part follows the same domain decomposition technique as the fluid solver men-
tioned above. Generally particle based simulations follow their own domain decomposition as described in Abraham et al.
[48]. Such a decomposition can be uniform or non-uniform, based on the dynamics of the problem itself. Darmana et al. 
[25] have reported a mirror domain technique to decompose the domain. The advantage of such a method lies in its load 
balancing, due to an even distribution of bubbles across all domains. The parallel efficiency of such a technique lasts until 
a maximum within 50 processors, as shown in the same work [25]. As the system becomes larger, the amount of com-
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Algorithm 4.1 Bubble phase calculation steps in a sub-domain P .

1: for n < δt f low
δtbub

do
2: Set tbub = 0.
3: Calculate interface forces and velocity of bubbles ∀ i ∈ Ntot

4: Bubble/particle removal from the sub-domains/domain
5: Bubble/particle transport
6: Bubble/particle introduction into the sub-domains/domain
7: if neighbour list rebuild = true then 
 see operation 19 in Algorithm 3.1
8: Refresh cell-linked lists and neighbour lists ∀ i ∈ Ntot

9: else
10: Do not update cell linked lists and neighbour lists
11: end if
12: Transfer real bubble data to neighbouring halo cells
13: Execute Algorithm 3.1 ∀ i ∈ Ntot + Nghost

14: Calculate volume of bubbles in different cells and map them to the Eulerian sub-domain.
15: Apply data reduction to halo cells of current sub-domain to real cells of neighbouring sub-domain for the bubble volumes and the momentum 

source terms.
16: end for

munications for such a technique will get larger due to timely synchronizations among processes and as such the parallel 
efficiency drops quite quickly.

Another important disadvantage of the mirror domain technique is the memory requirement. This is especially apparent 
when the problem sizes go up such that there are 106 − 107 bubbles in the system or even more. Every process should hold 
enough memory to maintain at least 7 doubles for position and velocity vectors and bubble size, as well as memory for the 
complex data structures which include the cell linked lists and neighbour lists.

4.4. Algorithm

The overall discrete phase algorithm is described in a combination of Algorithms 4.1 and 3.1. The DSMC algorithm uses 
the domain decomposition of the Eulerian part itself to avoid extra overhead due to communication of the Eulerian data 
required for the force calculation. Moreover the two communication steps that are mentioned in Algorithm 4.1 are only 
between the neighbouring domain processes. The additional performance gain is also due to the fact that local DSMC 
processes can run almost independently of each other in the sub-domains, unlike the mirror-domain technique employed 
for the discrete bubble model (see [25]) where the smallest collision time-step across all domains has to be determined and 
broadcast to all processors.

4.4.1. Data structures and flagging
Cell linked lists and Verlet lists are very well known for collision detection in several particle based techniques [49]. 

They are always used to minimize the number of particle-pair comparisons to resolve interactions among the particles 
themselves. The cell linked list used in the current implementation is stored in 2 arrays: one is a list of head ids and the 
other is a list of linked ids. An adjacency list is used to store the Verlet list. Apart from these, a particle id → cell id map 
is also stored to avoid unnecessary cell id calculations. The cell ids are then further used to identify the location type (using 
the cell flags) or the neighbourhood of the particles in question.

The memory allocations for these data structures are kept contiguous to avoid excessive refreshing of the CPU cache. 
Moreover, the id storage in the memory for the neighbour list is done in the order of its distance from the particle under 
consideration. Quick access to these variables for the distance calculation (during the collision frequency calculation) results 
in as many cache hits as possible (see Fig. 3). This is necessary because the collision frequency calculation is the most 
expensive step in Algorithm 3.1. SIMD vectorization operations have also shown to improve performance drastically for 
large numbers of particles [50]. These will be considered for further performance improvements in our future work.

A map of flags on cells is used to identify the location type of the bubbles/particles and also for the boundary detection 
(see Fig. 4). This map is necessary for boundary detection (like walls) and halo cells, preventing extra checks for the bub-
bles/particles in the bulk. This flagging is done once during initialization of the simulation, either based on the boundary 
conditions from the Eulerian part or based on explicit boundary conditions provided for the Lagrangian part.

4.4.2. Bubbles in the halo region
Since the DSMC process in every sub-domain is independent, it is important to check the consistency of the physics 

in the form of momentum conservation across sub-domains. Several stochastic methods in literature are known not to 
conserve momentum at the individual particle level (see [27]) but rather at an overall statistical level. Fig. 3 shows a 
2D representation of a single layer particle decomposition across neighbouring sub-domains, including the halo regions in 
colour.

For the pure DSMC algorithm, the exchange of momentum between real and halo particles/bubbles in the current process 
need not be exactly the same as between the particles/bubbles of halo and real cells of a neighbouring process. This will 
only happen if the chosen collision pairs are exactly the same across the neighbouring sub-domains. Since the process of 
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Fig. 3. Decomposition (1 layer of ghost cells) of the discrete phase shown in connected 2D sub-domains with a verlet list illustration at the top and the 
neighbour-list memory allocation pattern shown at the bottom. Grey cells represent the internal cells and coloured cells represent corresponding halo cells.

Fig. 4. Map of DSMC flags shown for a sub-domain for a domain decomposition of 5 cores. The flags are numbered based on the type of cells: 1. Internal 
cell 4. Wall 7. Near a boundary 8. Halo cells 9. Near a process boundary.

collision pair selection is random, the net amount of momentum loss or gain is also random. To minimize the momentum 
exchange errors, a nearest neighbour collision is used near sub-domain boundaries.
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Table 3
Physical properties of the discrete phase and numerical properties of the simulations used in verification 
tests for the impinging particle stream problem I1.

Parameter Symbol I1 I2

Solid density ρl (kg/m3) 2000 2000
Particle diameter dp (mm) 2 2
Particle time step δtp (s) 5 · 10−5 5 · 10−5

Nozzle diameter Dnozzle (m) 0.25 0.1
System size L × W × H (m × m × m) 0.5 × 0.5 × 0.5 0.25 × 0.25 × 0.25
Inlet mean velocity vmean (m/s) 2.5 2.5
Standard deviation v ′ (m/s) 1.0 1.0

5. Parallel verification and validation

In our previous work [28], we verified and validated the developed DSMC method for two limiting conditions: first for 
a pure DEM (with no background fluid phase), and second for a fully coupled gas-liquid system. This also included mono-
disperse and poly-disperse cases. The calculation of the total number of collisions and also the collision frequency was 
verified for varying solids and gas fractions. For validation, a comparison was made with the deterministic Discrete Particle 
Model (DPM) and Discrete Bubble Model (DBM), respectively.

In the current work, similar test cases have been set up to verify the parallel implementation of the DSMC algorithm. 
Naturally, it cannot be expected from a stochastic algorithm to execute the exact same sequence of collisions when run mul-
tiple times, even when run on a single core. This is possible in the deterministic cases when the initial particle distribution 
is identical every single time. However, for a stochastic algorithm the statistical properties of the collisions and momentum 
exchange should not change upon parallelization. The following problems are set up for the verification:

• Impinging particle streams
• Single bubble rise across sub-domains
• Bubble columns

5.1. Impinging particle streams

The system consists of two injection nozzles oriented such that they partly face each other. The solid particles flow into 
the system through these nozzles. The system boundaries act as exits for the particles. The domain is decomposed based on 
the number of processors provided. The solid particles are provided with inlet velocities based on the overall mass flow rate. 
To obtain a velocity distribution, a fluctuating velocity, based on a Gaussian distribution is added to the average velocity. 
The width of the distribution is varied to obtain different velocity profiles from the nozzles. Two test cases, I1 and I2 have 
been setup (see Table 3 for the simulation parameters) with following goals,

1. To verify with varying number of cores, consistency in the collision frequency and also its independence from the 
domain decomposition. (I1)

2. To quantify momentum errors that occur across the neighbouring sub-domains because of a mismatch in collision pairs 
due to independently running DSMC loops. (I2)

A schematic of the problem setup for I1 with different decompositions is reported in Fig. 5. The comparison of the serial 
version of the method with the deterministic method (DPM) has been reported in Kamath et al. [28] for both mono-disperse 
and poly-disperse cases at varying solid fractions.

The simulation has been executed for 5 decompositions: 12 cores, 23 cores, 24 cores, 48 cores and 96 cores. The overall 
collision frequency, the instantaneous collision frequency and the total amount of collisions occurring in the system are 
reported in Fig. 6. The results are almost independent of the number of cores used with a maximum relative error of 
0.2%. Note that this algorithm does not use the nearest neighbour collisions as the Stkp → ∞ without any continuous fluid 
medium.

A smaller representative system of the same problem is simulated (I2) on 5 cores to evaluate the momentum conserva-
tion error across neighbouring sub-domains (see Table 3). This error is expected to reduce in time for the DSMC algorithm 
with respect to the absolute amount of momentum transferred across the sub-domain due to the randomization of the 
particle ids, collision partners and secondly because the searching scope is isotropic.

A schematic representation of the problem along with the process id numbering is shown in Fig. 7. The relative errors 
are calculated for momentum conservation in each sub-domain with all of their neighbours as follows:

�mom = |pa + pb| (12)
|pa|
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Fig. 5. Impinging particle streams problem setup with different decompositions (I1).

Fig. 6. Collision properties for the impinging particle stream case I1 with the number of cores ranging from 12 to 96.
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Fig. 7. Impinging particle streams problem setup decomposed into 5 processes (I2).

Table 4
Momentum conservation errors across processes due to domain decomposition for 
the DSMC algorithm reported for the problem I1. Note: This analysis is carried out 
for a domain decomposition of 5 processes and the errors reported are at the time 
of 2.0 seconds.

Process boundary % Error Process boundary % Error

0 ↔ 1 1.108 1 ↔ 3 0.331
0 ↔ 2 0.553 1 ↔ 4 1.272
0 ↔ 3 4.921 2 ↔ 3 1.485
1 ↔ 2 5.747 3 ↔ 4 1.204

where pa represents the momentum stored in the part of the halo region of sub-process a that is shared with sub-process 
b and similarly pb . These momentum errors (�mom) are reported in Table 4 and shown for process id 0 in Fig. 8. It can be 
seen that the maximum errors reported are for process ids 0 ↔ 3 and 1 ↔ 2. It should be noted that the overlap between 
these specific sub-domains is a single row of cells along the diagonal (see Fig. 7b). The net amount of momentum exchanged 
or the amount of collisions occurring here are nearly two orders of magnitude lower than at the other process boundaries. 
The cumulative error with respect to the amount of momentum exchanged reduces as more collisions occur.

Nevertheless, to reduce this error, a nearest neighbour collision is forced near the process boundaries in the case of 
bubbly flows. This reduces the momentum error significantly (to less than 0.5%) as the bubble positions are communicated 
across the process boundaries and thus the relative distances are the same for a given pair in each sub-process.

5.2. Single bubble rise across sub-domains

For the second test, a single bubble is initiated in the middle of a domain with six no-slip boundary walls. The test case 
differs from the previous as the Lagrangian part here is coupled with the flow-solver. Note that because there are no other 
bubbles to collide with, the purpose of this test is to check whether the domain decomposition has an influence on the 
momentum coupling between the Lagrangian and Eulerian phase. The simulation settings are specified in Tables 5 and 6.
Two tests are carried out to check:

1. the temporal accuracy of the force integration scheme with respect to the chosen time-step.
2. the spatial stability of the force calculation with changing sub-domains.

The temporal accuracy of the first order explicit Euler scheme is checked with a fourth order explicit RK4 scheme 
(see Fig. 9a). There are negligible differences which indicate the sufficiency of the flow time-step division into different 
bubble time-steps. It is clearly seen from Fig. 9b that the bubble passes through the sub-domains without any jump in 
velocity arising due to entry or exit from the sub-domains, which indicates proper communication of flow velocities and 
the pressure field across sub-domains.

5.3. Bubble columns

Finally, the four-way coupling of the Lagrangian and Eulerian phases is verified via simulation of two tall square cross-
sectioned bubble columns (see Fig. 10). Apart from the dimensions, the nozzle distribution in the sparger for both problems 
is different, ultimately inducing different kinds of flows in both systems. Problem setup parameters are listed in Table 7.
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Fig. 8. Cumulative momenta in the three directions collected in the halo regions of the cells belonging to the neighbouring processes of process id 0. Note: 
CI → Cumulative Impulse and SI → Sum of the Impulses collected in the halo cells of the respective ids containing common edges (pa + pb).

Table 5
Physical properties of the discrete phase and numerical properties of the simula-
tions used in verification tests for the single rising bubble problem.

Parameter Symbol Value

Bubble diameter dbub 4 mm
Bubble time step δtbub 5 · 10−5 s
Box size L × D × H 0.15 × 0.15 × 0.15 (m × m × m)

Grid cell size �x 5 mm

Table 6
Physical properties of the gas and liquid phases and numerical properties 
of the simulations used in verification tests.

Parameter Symbol Value

Liquid density ρl 1000 kg/m3

Liquid dynamic viscosity μl 1.002 · 10−3 kg/m · s
Gas density ρg 1 kg/m3

Gas dynamic viscosity μg 1.85 · 10−5 kg/m · s
Bubble diameter db 4 mm
Surface tension σ 72.86 · 10−3 N/m
Flow time step δt f 10−3 s
Bubble time step δtb 5 · 10−5 s
Tolerance – 10−8

In both cases, the bubbles are introduced into the domain through a number of nozzles arranged in a square cross-
sectional arrangement and placed at the bottom of the domain. The superficial gas velocities remain constant during the 
simulations. On all vertical and bottom walls, a no-slip boundary condition is imposed, whereas the top wall has a free-slip 
boundary condition mimicking a free surface. To avoid problems with mass conservation when the bubbles are introduced 
and removed from the system, all vertical walls have an extra slit with a prescribed static pressure outlet boundary condition 
to facilitate outflow of excess liquid or inflow of liquid into the vacuum created by outflow of bubbles. The slits’ locations are 
symmetrically placed near the top of the columns. The length and height of the slits is equal to one third of the domain’s 
length and one grid cell, respectively.
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Fig. 9. Single bubble rise velocity with time.

Fig. 10. Computational domains for the T1 and T2 test cases. Black zones at the top of the columns indicate outlet slits. Black spheres at the bottom 
represent the sparger. In both cases, the width of the slits is equal to 1/3 of the domain’s width, whereas the height of the slits is equal to one and two 
grid cell sizes for the T1 and T2 cases, respectively. The black line in figure (a) corresponds to a height of H = 0.25 m and represents the line along which 
data is collected.

Table 7
Geometry and sparger properties for the verification tests performed on the square bubble columns. 
Here, dp represents the pitch distance, vb is the superficial gas velocity and Db is the bubble diam-
eter. Dimensions L, D and H correspond to x, y and z axes, respectively.

Case L × D × H , [m] #nozzles Pitch dp , [mm] Db , [mm] vb , [cm/s]

T1 0.15 × 0.15 × 0.45 49 6.25 4 0.49
T2 0.2 × 0.2 × 0.6 625 8 4 1 to 5

The results of the T1 case are compared with time-averaged experimental measurements of Deen et al. [51] and results 
from the serial code reported earlier [53]. Fig. 11 shows the distribution of the time-averaged axial liquid velocity along 
the x-axis at a fraction of the column height H of z = 0.56H and fraction of the column depth D of y = 0.5D . It can 
be seen from Fig. 11 that the simulated velocities are in good agreement with the experimental measurements and with 
the reference data from the serial code. The minor deviations between simulated curves from the present work can be 
attributed to the stochastic nature of bubble collisions in the DSMC and thus, slightly different behaviour of the plume for 
each realization. The maxima at approximately x/L = 0.5 of the time-averaged axial liquid velocities are slightly higher than 
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Fig. 11. Time averaged t = 10 − 200 s axial liquid velocity profiles. Comparison of execution of the parallel and serial code with experimental measurements 
of Deen et al. [51].

Fig. 12. Dependency of the integral gas hold-up on superficial gas velocity. Comparison of simulated data with reference simulations of Darmana et al. [1]
and experimental measurements of Harteveld et al. [52]. Data is averaged over the time interval 10 − 20 s.

Table 8
Parallel performance of FoxBerry code. Comparison of time spent on communication (Tc ), solving the momentum equations 
(Tm), solving the PPE (T p ), matrix assembly (Ta), full time (T f ), the overall speedup and the parallel efficiency. Results are 
averaged over 10 time steps and 192 cores are taken as a reference.

Cores/192 Tc , [s] Tm , [s] T p , [s] Ta , [s] T f , [s] Speedup Efficiency, [%]

1 0.772 21.599 32.030 53.030 116.158 1.0 100.0
2 0.522 12.478 17.206 34.079 69.680 1.7 83.4
4 0.686 6.403 9.963 18.698 37.783 3.1 76.9
8 0.345 4.018 4.928 14.568 27.091 4.3 53.6
16 0.285 2.262 4.248 6.690 15.012 7.7 48.4

those of the serial code. This can be attributed to the nearest-neighbour treatment of bubble-bubble collisions near the 
edges of the sub-domains. To maintain the momentum conservation across the sub-domain borders which renders it to a 
slightly more deterministic collision treatment [25].

In the T2 case, results are compared with experimental measurements of Harteveld et al. [52] and numerical data, using 
the DBM, from Darmana et al. [25]. In this test case, the simulations are performed using 24 cores. Fig. 12 demonstrates the 
integral gas hold-up as a function of superficial gas velocity. The calculated values of the parallelized code show excellent 
agreement with the experimental data as well as with the reference simulations.

6. Parallel performance and comparison with previous approaches

In this section, we analyze the parallel performance of the implementation by considering different types of problems. 
All tests are performed on “Cartesius”, the Dutch National Supercomputer. Every node consists of 2x12 cores of Intel Xeon 
E5-2690 v3 with a basic clock speed of 2.6 GHz and hyper-threading switched off. The numerical code is compiled using 
the Intel C++ compiler v16.0.3, Intel MPI v5.1.3 and Trilinos 12.10.

6.1. Single phase flow solver

The parallel efficiency of FoxBerry is measured based on the flow in the initial section of the square duct. The domain is 
discretized on 125 · 106 grid cells. The chosen time step is 10−3 s. Each time step takes approximately 20 inner iterations 
of the SIMPLE algorithm.

The strong scaling of FoxBerry is shown in Table 8 and demonstrates 48.4% of the parallel efficiency on 3072 tested 
cores (relative to the reference performance on 192 cores). The results in Table 8 also show a breakdown of the most 
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Table 9
Main properties of the P1 and P2 cases. Ncells and dx are the total number of Eulerian cells 
and their size, respectively. < Nb > is the average number of bubbles in the fully devel-
oped system and vb is the superficial gas velocity. Dimensions L, D and H correspond to 
x, y and z axes, respectively.

Case L × D × H , [m] Ncells dx , [mm] #nozzles

< Nb > dp , [mm] Rb , [mm] vb , [cm/s]

P1 0.45 × 0.45 × 1.35 2.2 · 106 5 441
2.3 · 105 6.25 2 12

P2 0.50 × 0.50 × 2.00 4.0 · 106 5 3844
0.8 · 106 8.00 2 1

Fig. 13. Strong scaling of the P1 case based on 10 iterations. The domain consists of 2.2 · 106 cells and 2.3 · 105 bubbles. The result on 24 cores is taken as 
a reference.

computationally expensive parts of the code, indicating a significant contribution of the matrix assembly into the total time. 
This part can be further improved by implementation of a more suitable algorithm for the pressure-velocity coupling for 
transient problems, e.g. the fractional step method. In addition, the solution of the PPE demonstrates poor scaling after 768 
cores, which can be improved with a better preconditioning technique.

6.2. Combined code

The parallel efficiency of the coupled Euler-Lagrange code directly depends on uniformity of the distribution of La-
grangian entities in the Eulerian domain [4,24]. In bubble column reactors, this distribution is directly determined by the 
geometry and placement of the sparger. This section demonstrates the parallel efficiency of the developed code on examples 
of the two most common scenarios where:

(P1) the sparger partially occupies the bottom plate, which leads to appearance of a plume and an imbalanced workload 
for the parallel DSMC.

(P2) the sparger fully occupies the bottom plate, which leads to uniform bubble rise and a well balanced workload for the 
parallel DSMC.

The main properties of the aforementioned cases are shown in Table 9. All nozzles are arranged in squares and placed at 
the bottom of the domain. The governing equations are discretized on a uniform Cartesian grid. All the following results are 
obtained by averaging the required data over 10 time steps after the flow in the domain is fully developed. It is important 
to note that the used Barton convection scheme demands 3 layers of halo cells to calculate the convective fluxes coming 
into a sub-domain. This results in an increase in the communication message size and adversely affects parallel performance 
when the decomposition is too fine.

The parallel efficiency and the elapsed time for the P1 case are shown in Fig. 13. The code scales well demonstrating 
a 48% combined parallel efficiency on 384 cores, each time step takes 4.4 seconds of which 1.6 seconds are taken by the 
DSMC algorithm. The decrease in the parallel performance of the CFD part is due to the low density of the Eulerian grid, 
causing MPI communications to be dominant over the workload on each process. Additionally, the non-even distribution of 
the bubbles (see Fig. 14) results in a significant work unbalance among the processes in the DSMC algorithm. This leads to 
only 39% parallel efficiency of the DSMC algorithm at 384 cores preventing the coupled code from further scaling.

The problem of unbalanced workload will become more pronounced if the number of bubbles increases, e.g. due to the 
reduction of their sizes. This issue emphasizes the necessity of having a dynamic domain decomposition for the Lagrangian 
part in order to improve the parallel performance of the coupled CFD-DSMC code in simulations similar to the P1 case. This 
requires careful communication of the Eulerian data to the dynamically determined sub-domains for the force calculation 
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Fig. 14. Instantaneous bubble distribution and bubble velocity for the P1 case at different times of the simulation.

Fig. 15. Strong scaling of the P2 case based on 10 iterations. The domain consists of 4 · 106 cells and 106 bubbles. The result on 24 cores is taken as a 
reference.

step. This communication step is currently completely absent. Therefore, one also needs to consider if this will actually pay 
off in terms of performance for general multiphase flow problems.

In the P2 case, the absolutely uniform distribution of bubbles in the domain (see Fig. 16) leads to a substantial increase 
of the parallel performance compared to the P1 case, as shown in Fig. 15. The DSMC algorithm scales up to 768 cores, 
maintaining excellent parallel efficiency, demonstrating the potential for further scaling. However, the grid density of the 
Eulerian solver only allows to scale up to 43% parallel efficiency on 768 cores, which leads to an overall parallel performance 
of 51%. This corresponds to 4.5 seconds elapsed time, among which only 0.5 seconds are taken by the DSMC algorithm.

7. Results

7.1. Large scale bubble column

In this section, a detailed analysis of the hydrodynamics in a large scale bubble column is presented. The configuration 
of the considered column corresponds to the P1 case described in section 6.2. The simulations are performed for 95 seconds 
of the physical time and the results are averaged over the time interval between 10 and 95 seconds. The lower boundary of 
the averaging period corresponds to the time when the fully developed flow conditions are reached.

Fig. 17 shows the distribution of the time-average velocity vector fields at different heights of the column. As can be 
seen, at the bottom of the column, the liquid velocity reaches approximately 1.3 m/s, while at the top it decreases to 
almost 0.2 m/s. The high liquid velocity at the bottom is directly related to the high superficial gas velocity and can be 
explained as follows. The bubbles already released into the domain are decelerated due to the large mass of the liquid 
above them. Because of a lack of coalescence in this simulation, the new bubbles entering the domain collide with the 
decelerated bubbles and form a dense swarm. This swarm is pushed by the next sets of bubbles entering the system and 
thus, it experiences an increase in the axial momentum. At the center of the swarm the liquid fraction is low and bubbles 
experience less drag. Therefore, they have higher velocities compared to the bubbles at the edges. This dynamics is preserved 
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Fig. 16. Instantaneous bubble distribution and bubble velocity for the P2 case at different times of the simulation.

Fig. 17. Distribution of the time averaged velocity vectors at different heights of the domain: a) H = 0.005 m; b) H = 0.18 m; c) H = 0.36 m; d) H =
0.54 m; e) H = 0.72 m; f) H = 0.90 m; g) H = 1.08 m; h) H = 1.26 m. Data is averaged over the time interval 10 . . .95 s.
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Fig. 18. Distribution of the time averaged gas volume fraction in the xy plane at different heights of the domain. Letters correspond to heights indicated in 
Fig. 17. Data is averaged over the time interval 10 . . .95 s.

in time and causes the entrained liquid to behave as a submerged jet which decays along the height due to the viscous 
forces and presence of the top wall.

Figs. 14c and 14d show that after the flow is developed the overall distribution of the bubbles in the domain remains 
unchanged. This can be clearly seen from Fig. 18, which shows the time-average gas volume fraction at different heights in 
the domain. The results show that the column can be clearly split into two parts. The flow in the bottom part is governed by 
the bubble plume, which maintains the high axial momentum and induces the motion of the liquid. During the simulation, 
the bubble plume remains compact (see Figs. 18a-d) and centered. There is only a slight dispersion along the height. 
However, the bubble plume breaks at half the height of the domain (see Figs. 18e-h). In this part, the bubbles rise at the 
center of the column while they move down along the side walls, because the force due to the liquid circulation dominates 
the buoyancy force of the bubbles. At the middle height of the column (see Figs. 17d-e and 18d-e), the strength of the 
circulation zones reduces and the downwards moving bubbles are carried away by the more dominant liquid flow at the 
center of the domain.

The distribution of the time-average vorticity magnitude at different heights of the column is shown in Fig. 19. At the 
bottom half of the domain the flow is highly rotational around the very pronounced core in the center. The regions of 
the high vorticity correlate with the swirling effect of the bottom part of the plume, which can be observed in Fig. 14. 
This swirling effect is caused by the helical trajectories of the bubbles, which is the most energy efficient way for a high-
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Fig. 19. Distribution of the time averaged vorticity magnitude in the xy plane at different heights of the domain. Letters correspond to heights indicated in 
Fig. 17. Data is averaged over the time interval 10 . . .95 s. The colour legend is adjusted for better visualization of the low values at the top heights (figures 
f-h). Before the adjustment the maximum value at the bottom (figure a) was 50 s−1.

Table 10
The circulation, �, at different heights of the column. � is calculated by the integration of a vorticity 
across the full area of the XY cross-sections.

Height a b c d e f g h

�, [m2/s] 0.96 0.55 0.65 0.72 0.90 0.86 0.69 0.59

momentum gas plume to penetrate a viscous fluid. Beside the core, the flow is almost irrotational compared to the central 
region, except in thin layers near the walls, see Figs. 19c-d. At the top half of the column, the plume breakage and the 
large amount of bubbles lead to the appearance of the rotational motion in the whole domain, which results in the high 
circulation at H = 0.72 m and H = 0.90 m, as shown in Table 10. Also, despite the lower magnitude of the vorticity at the 
top, the circulation in that region is comparable to the one at the bottom.

The aforementioned dynamics can also be seen from the distribution of the turbulence kinetic energy (TKE), as shown in 
Fig. 20. While at the bottom of the column most energetic eddies are concentrated close to the core of the plume, the second 
half of the column shows a wide region of high TKE. Nevertheless, at the top of the column, the TKE remains low in the 
vicinity to the corners and walls, due to viscous effects. In addition, Fig. 20 indicates a low region of the TKE at the center 
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Fig. 20. Distribution of the TKE in the xy plane at different heights of the domain. Letters correspond to heights indicated in Fig. 17. Data is averaged over 
the time interval 10 . . .95 s. The colour legend is adjusted for better visualization of the low values at the top heights (figures f-h). Before the adjustment 
the maximum value at the bottom (figure a) was 50 s−1.

of the bubble plume. Similar to a submerged jet, the liquid in this region has a potential core, which can also be observed 
through the zero vorticity at the center of the bubble plume in Figs. 19b-c. However, the TKE significantly increases towards 
the edge of the bubble plume, where the shear-stresses are high and the fluid flow becomes highly turbulent. Further away 
from the plume, the TKE reduces indicating a decrease of the velocity fluctuations.

7.2. Effect of column scale

The results and conclusions obtained from the laboratory-scale bubble column may fail to predict the dynamics in pilot-
or industrial-scale columns, which is caused by the influence of the geometry and scale effects. To assess the significance of 
these effects, three bubble columns of different sizes are compared, see Table 11.

The T1 and P1 cases from Table 11 have already been discussed in section 5.3 and section 7.1, respectively. The P3 case 
represents a domain, which is extended towards industrial scales from the case P1. The numerical and physical parameters 
of the P3 case can be found in Table 6. As in all cases, the sparger in the P3 case is represented by nozzles arranged in a 
square and placed at the center of the bottom of the column. The P3 case is simulated for 27 seconds of the physical time 
using 768 cores. Both P1 and P3 cases have been simulated for 5 days or a wall time of 120 hours on respective number of 
physical cores.
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Table 11
The comparative list of the main characteristics of laboratory-scale (T1), pilot-scale (inter-
mediate) (P1) and pilot-scale (P3) bubble columns. Ncells and dx are the total number of 
Eulerian cells and their size, respectively. < Nb > is the average number of bubbles in the 
fully developed system and vb is the superficial gas velocity. The dimensions L, D and H
correspond to x, y and z axises, respectively.

Case L × D × H , [m] Ncells dx , [mm] #nozzles

< Nb > dp , [mm] Rb , [mm] vb , [cm/s]

T1 0.15 × 0.15 × 0.45 8.1 · 104 5 49
5 · 103 6.25 2 0.49

P1 0.45 × 0.45 × 1.35 2.2 · 106 5 441
2.3 · 105 6.25 2 1

P3 1 × 1 × 10 107 10 625
5 · 105 8 4 0.6

Fig. 21. The instantaneous field of the axial liquid velocity in the mid-plane at different times for the T1 case.

Fig. 22. The instantaneous field of the axial liquid velocity in the mid-plane at different times for the P1 case. The red rectangle indicates the scale of the 
domain from the T1 case.
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Fig. 23. The instantaneous field of the axial liquid velocity in the mid-plane at different times for the P3 case. The red and green rectangles indicate the 
scales of the domains from the T1 and P1 cases, respectively.

Figs. 21, 22 and 23 show the instantaneous axial liquid velocity fields at the vertical mid-plane of the domain for the T1, 
P1 and P3 cases, respectively. It can be clearly seen that the maximal axial liquid velocity in the T1 case varies only slightly 
along with the height of the column, unlike in the P1 and P3 cases, where the axial liquid velocity is significantly higher 
at the bottom part of the domain compared to the top part. This is because of the small distance between the opposite 
vertical walls in the T1 case. Large recirculation zones with a length comparable to the height of the column appear in the 
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Fig. 24. The instant distribution of the bubbles in the domain at different times for the T1 case.

Fig. 25. The instant distribution of the bubbles in the domain at different times for the P2 case. The red rectangle indicates the scale of the domain from 
the T1 case.

domain shortly after the bubbles reached the top. These circulation zones then travel downwards, disturbing core of the 
plume leading to meandering of the plume from the very bottom. In contrast, in the P1 and P3 cases, the rise of the bubble 
plume is accompanied with multiple eddies of different scales from the very beginning. These eddies dissipate energy at 
different sections of the plume leading to unstable large scale structures that break into smaller ones. The core of the plume 
is relatively more stable at the bottom because these smaller eddies do not have the energy to disturb the bottom part of 
the plume completely.

The instantaneous distribution of the bubbles in the three domains is shown in Figs. 24, 25 and 26. The bubble plume 
in the T1 case is highly influenced by the aforementioned recirculation zones, which push the plume towards the different 
side walls (see Fig. 24, t = 15.0 and 27.0 seconds). Due to the dominance of a single large-scale eddy, the bubble plume may 
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Fig. 26. The instant distribution of the bubbles in the domain at different times for the P3 case. The red and green rectangles indicate the scales of the 
domains from the T1 and P1 cases, respectively.

stay close to one of the walls for a long period of time, until it is changed by instabilities arising in the bulk. This dynamics 
is fundamentally different from the P1 and P3 cases, where the plume at the bottom of the domain shifts only slightly 
from the center and never reaches the walls. In addition, the bubble plume in the P1 and P3 cases breaks shortly after the 
bubbles enter the domain. Based on the indicated scales in Fig. 26, the breakage of the bubble plume occurs at almost the 
same heights in both cases. The overall instability of the bubble plume contributes to the almost uniform distribution of the 
bubbles in the domain above the point of breakage.

The comparison of the bubble distribution in the P1 and P3 cases demonstrates the influence of the height of the domain 
on the rising bubbles. The front of the rising bubbles in the P3 case consists of constantly appearing small groups of gas 
inclusions. These groups experience less drag compared to the massive bubble front but they break fast, creating regions 
with lower pressure. The bubbles from the rising front are attracted by these regions, which leads to the appearance of the 
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new groups. These dynamics are not observed in the T1 case, where the bubbles rise in a “mushroom-like” manner [1], and 
in the P1 case, where the rising bubbles represent a dense column moving in the helical path.

8. Conclusion

In this paper a parallel Euler-Lagrange framework and its application to simulation of dense gas-liquid flows are pre-
sented. The Lagrangian phase is resolved by means of the DSMC algorithm, for which parallelization is carried out with MPI, 
whereas the Eulerian phase is resolved using the volume-averaged Navier-Stokes equations incorporated in the in-house 
numerical framework FoxBerry. The coupled parallel code has been verified on several standard problems and demonstrates 
high accuracy, which is independent of the number of used cores.

The stochastic nature of the DSMC algorithm allows one to avoid limitations of the conventional deterministic (DBM) 
methods associated with parallelization for distributed memory platforms. Thus, the DSMC method demonstrates a linear 
scaling up to 768 tested cores for 8.3 · 105 bubbles uniformly distributed across the domain. In the case of non-even 
distribution of bubbles, the DSMC algorithm allows one to simulate 2.3 · 105 gas entities using 384 cores and maintaining 
39% parallel efficiency.

The developed algorithms allow, for the first time, to simulate and analyze a tall square cross-sectioned bubble column 
using full four-way coupling of the Eulerian and Lagrangian phases. The results demonstrate a pronounced split of the do-
main in two sections. In the bottom section, the bubble plume occupies only the central part of the domain and determines 
the overall dynamics of the Eulerian phase. Close to the center of the domain the liquid demonstrates a high rotational 
motion, which is related to the swirling behaviour of the bubble plume. In the top section the plume breaks, which leads to 
a more uniform distribution of bubbles in the bulk and the appearance of a large amount of unstable eddies. This splitting 
is not observed in a smaller scale bubble column, where the bubble plume remains pronounced along the whole height of 
the domain and the dynamics of the plume is governed by the large-scale turbulent structures.
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Appendix A. Domain decomposition

Algorithm A.1 Full 3D domain decomposition.

Input: 
N - number of cells in the domain in each direction, p -number of processes

1: 
ξ = {round( 3
√

p), round(p/ξ2
1 ), floor(p/(ξ1ξ2))} 
 Basic number of sub-domains in each direction

2: 
d = 
N � 
ξ 
 Number of sub-elements in each sub-domain
3: Perform a full 3D decomposition of the domain using 
ξ and 
d
4: s = ∏3

k=1 ξk 
 Number of decomposed domains
5: r = |s − p| 
 Remaining sub-domains
6: if r �= 0 then
7: 
χ = {round(

√
r), r/χ1} 
 Remaining number of pseudo-2D sub-domains

8: 
q = 
N � 
χ 
 Number of sub-elements in each sub-domain
9: η = ξ3d3 
 Starting index in 3rd direction for pseudo-2D decomposition

10: Perform pseudo-2D decomposition of the remaining domain using 
χ and 
q, starting from η
11: Build maps between halo and real cells
12: end if

Appendix B. Momentum error all processes

See Fig. B.27.

http://www.surfsara.nl
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Fig. B.27. Cumulative momenta in the three directions collected in the halo regions of the cells belonging to the neighbouring processes of the remaining 
process ids. Note: CI → Cumulative Impulse and SI → Sum of the Impulses collected in the halo cells of the respective ids.
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